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Abstract

In this thesis we give a type-based analysis for an ML-like distributed language
that detects references certain not to escape from one processor to another.

We assume a model of distribution based on distributed shared memory. From
the programmer’s viewpoint, the same reference on different machines refers to
the same data object in a single logical store, but data is in fact distributed among
the machines. A coherency protocol is then responsible for determining for each
operation with references whether the associated data is available on the current
machine, and if not, retrieving it over the network.

The costs of calling a coherency protocol for each store access can be reduced if
a locality analysis can determine which references refer to local data only. Assign-
ment and dereference operations using these local references can then be compiled
to specialised versions, usually comprising a few machine instructions to manip-
ulate data in the store.

The locality analysis we propose takes the form of a conservative extension of
the Hindley-Milner polymorphic type discipline where reference types are tagged
with locality information. We prove type soundness of the type system with
respect to an operational semantics, and we also show that the type system
soundly describes the locality of references in the sense that a local reference
is certain not to escape according to the operational semantics.

This result means that a compiler can safely use the locality information pro-
vided by the types to replace assignment and dereferencing operations performed
on local references with specialised variants, which are less costly than the origi-
nals. In order to illustrate how this can be done we define a target language and
we give an operational semantics for it at a level of abstraction that differentiates
between local and global versions of operations with the store. We define a trans-
lation from well typed source expressions to expressions in the target language
induced by the locality information on types, and we prove that this translation
preserves the original behaviour.

We then give a sound type reconstruction algorithm and we discuss a restricted
form of best locality property that we conjecture the algorithm possesses. We also
report on experiments showing that detecting local references has a significant
impact on the performance of programs.
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Chapter 1

Introduction

1.1 Motivation

Memory management for distributed systems has been an active area of research
for several years. Two distinct models for building parallel machines and for par-
allel programming are known as shared memory systems and distributed memory
systems.

The architecture for shared memory is more costly due to the complications
of connecting more than one processor to a single shared memory. On the other
hand it makes the programming task easier as there is a single address space.

Most distributed systems are however, based on architectures with distributed
memories where each processor has its own store. This architecture is less expen-
sive and more scalable but programming is made more difficult. If the same data
is to be used by different machines the programmer should be aware of that and
control the transmission of data from one machine to another.

Distributed Shared Memory (DSM) systems combine the advantages of shared
memory multiprocessors and distributed memory systems. They provide the
shared memory programming model in systems with physically distributed mem-
ories. Because of that, the concept of DSM is recognised as one of the most
attractive approaches for building large-scale, high-performance multiprocessor
systems. There is a vast literature about the subject, for a recent and compre-
hensive survey see [21].

But everything comes at a cost. Distributed copies of mutable objects must
be kept consistent. This is performed by a coherency protocol. The coherency
protocol is responsible for ensuring that each read operation on mutable shared
data operates on the latest version of it.

There are several approaches to the design of coherency protocols ([8], [23]) all

aiming at reducing the overhead caused by the traffic of data among processors.
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This overhead can be further reduced if it can be determined which mutable data
is local to a single processor. Operations to access or modify this local mutable
data will usually comprise only a few machine instructions to manipulate data in
the store, avoiding the need to call a protocol.

Parallel to the research effort on DSM and on coherency protocols there has
been also an interest in functional distributed languages ([17],[1],[6]). These lan-
guages encourage a mostly functional programming style and also provide facilities
for creating threads of execution on possibly different processors. Most data in
a typical functional program is immutable. For this reason, using such languages
potentially reduces the need for a coherency protocol. Recent research [15] shows
that functional languages compare favourably to non-functional languages not
only for implementation and maintenance but also in the execution performance
of distributed applications.

In trying to reduce costs even more while maintaining data consistency one
can think of using static program analysis to collect locality information about
mutable data. Static analysis techniques [2] have been extensively used in several
compilers to collect information about programs. This information is then used by
the compiler to transform the original program into one with equivalent behaviour
but with better performance and/or better resource utilisation.

In this thesis we propose a type-based locality analysis for an ML-like dis-
tributed language. Compared with other kinds of program analysis, type-based
analyses have the advantage of being compositional, making the task of proving
their correctness simpler. The locality analysis we propose takes the form of a
conservative extension of the Hindley-Milner polymorphic type discipline where
types of mutable data are tagged with locality information.

In order to evaluate our claims of improved performance we did tests with an
experimental version of the Distributed Poly/ML [17]. Distributed Poly/ML is an
extension of Poly/ML which supports the creation of process in remote machines.
Poly /ML in its turn is an implementation of the Standard ML language [20].

In these tests it was observed that the local versions of dereference and as-
signment operations are both at least three times as fast as the default, non-local

versions.

1.2 Related Work

Locality issues in Distributed Poly/ML are addressed in [25] where a global

dataflow analysis to detect local channels is presented. The syntactic approach to



dataflow analysis used there built upon earlier work for sequential languages, for
example, [26] and [27]. Such global analyses, contrary to the type-based analysis
designed here, are inherently non-compositional.

That work uses a language that is similar to ours and it does a reachability
analysis that detects some cases of mutable objects that go to processors different
where they were declared but are not used in these processors. Such cases are
not detected by our type-based analysis.

In [24] and [32] type-based approaches using subtypes are used to detect
global and local capabilities of channels in distributed calculi based on Milner’s
m-calculus.

All the analysis cited above were proved to be correct in the sense that they
do not infer that an object is local when in fact it escapes. In oder to make a
precise comparison between the amount of locality these analysis and ours detect
it is necessary to have a common framework in which to represent them. The
development of such a common framework is though, outside the scope of this
thesis.

To the best of our knowledge the work in this thesis is the first to propose a
type-based locality analysis integrated with the Hindley-Milner polymorphic type

discipline.

1.3 Contents of the Thesis

An overview of the contents of the thesis chapter by chapter is:

Chapter 2. We describe a simplified version of a functional language with ref-
erences and with primitives for creating distributed threads. We give an
operational semantics for the language at a level of abstraction matching
the programmer’s view of the store. This view is the one provided by the
mechanism of Distributed Shared Memory. We conclude this chapter with
a discussion of the aspects of the locality of references that will be detected

by our analysis.

Chapter 3. We begin by presenting the language of types annotated with lo-
cality information. We discuss how terms can be locality polymorphic and
why references cannot be polymorphic in their locality. We then define con-
straints over locality labels of types and we explain how these constraints
are used to guarantee that references tagged as local do not escape. The

type system is finally presented and we give intuitions for the ways the



rules assign locality labels to types. This chapter concludes by proving
that our type system is a conservative extension of the Hindley-Milner type

discipline.

Chapter 4. For clarity of presentation we split the soundness result of the type
system with respect to the operational semantics in two parts. In this
chapter we prove type soundness, not taking into account locality proper-
ties. We follow the syntactic approach of Wright and Felleisen [31] and
Harper [12],[13] so we first prove type preservation, then we prove that ex-
pressions that may lead to execution errors are untypable, and finally we

prove type soundness.

Chapter 5. In this chapter we prove that references that are considered local
by our type system are certain not to escape according to the operational
semantics. This property, which we call Locality Soundness, together with
the type soundness proved in Chapter 4 completes the result that our type

system is sound with respect to the operational semantics.

Chapter 6. We define a translation from well typed source expressions to expres-
sions in a target language which distinguishes local and global dereference
and assignment operators. We start by presenting the target language. We
then give an operational semantics for it that differentiates between local
and non-local operations on the store. We then prove that the translation

preserves the behaviour of source programs.

Chapter 7. In this chapter we give a type reconstruction algorithm for our type
system and we prove it sound with respect to the type system. This re-
sult combined with the result of locality soundness of the type system with
respect to the operational semantics, means that the locality analysis per-
formed by the algorithm is safe. We conclude this chapter with a discussion
of the restricted form of best locality property that we conjecture holds for

the algorithm.

Chapter 8. In this chapter we present our conclusions and some further direc-

tions for this work.

Appendices. We have two appendices. In Appendix A we have proofs for some
auxiliary lemmas. In Appendix B we report on an experiment we did using
an experimental version of DP/ML which provides the programmer with

local and global operations with references. We compared the execution
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time of programs written using the local operations with the execution time

of the same programs using the global operations.



Chapter 2

The Language and its
Operational Semantics

We describe a simplified version of an implicitly typed polymorphic functional
language with references and with primitives for creating distributed threads at
explicitly identified processors.

In Section 2.2 we give an operational semantics for the language at a level of
abstraction matching the programmer’s view of the store. This view is provided
by the mechanism of Distributed Shared Memory explained in Chapter 1. We
conclude this chapter discussing the aspects of the locality behaviour of references

that are captured by our analysis.

2.1 The Language

In this section we present the language which will be the object of our locality
analysis. One of its key aspects is that it supports the creation of remote threads
and that the processors where these remote threads will be executed should be
explicitly specified. The language is implicitly typed and it supports polymorphic

types. The terms of the language are given by the following grammar

M = x
| ¢

| fnz.M

| recfxz.M

| MM

| (M, M")

| if M then M'else M"

| letx = Min M'end



where c ranges over the constants given by the grammar

c = n
|7
|  unit
| zero?
| true | false
| fst | snd
|  succ | pred
| fork | rfork,
| ref | deref | :=.

Variables are binded by functions, let expressions and recursive functions. In
a recursive function rec f x.M both variables f and z are binded. We give an
example of how rec f x.M is used to define a recursive function in Section 2.2,
after we give the rules of the operational semantics. Let-expressions do not allow
recursive definitions: in an expression like 1let £+ = M in N end, the variable
x cannot occur free in M. The language supports value let-polymorphism [30].
Variables binded to a value by a let expression can then have polymorphic types.
The language also has pair and conditional expressions.

In the grammar for c,
e n ranges over integer constants,

e 1 ranges over an infinite set of reference constants, which denote store lo-

cations,
e fork is a fork constant, used to create new local threads,

e rfork, ranges over a finite set of constants, one for each processor p in a
fixed network of processors. Each rfork, is used to create new threads on

processor p,

e ref is a constant used to create references, and deref and := are the

constants used to read and modify them, respectively.

The other constants of the grammar above have their usual meaning. The reason
for having one constant rfork, for each processor p, instead of having a single
constant receiving a processor identifier as one of its arguments, is to simplify the
formal presentation. Otherwise we would have to assume the existence of a set
of processor identifiers in the language and to introduce a type for them.

We refer to this language as the source language. In Chapter 6, we shall define

a target language for a translation of the source language.
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The set of free variables in a term M is given by F'V (M). The set of reference
constants of a term M is given by Refs(M). A term M is a program if FV (M) = ()
and Refs (M) = 0.

We call syntactic values or values for short, the irreducible terms of the lan-

guage. The values of the language are given by the following grammar

Vv T

| ¢

| fnz.M
| recfax.M
(V).

We use V' as a metavariable ranging over values. We also write M := N for the
application of the assignment operator := to the pair (M, N). We sometimes
write n;1; and n;_; for the successor and predecessor, respectively, of a integer
constant n;. Application is associative to the left, and parentheses are used to
change the associativity.

We follow the variable convention of Barendregt [4, section 2.1.13], that the
bound variables are distinct from the free variables when discussing one or more
terms in a given context.

One would naturally expect such a language to have channels for inter-thread
synchronous communication. Channels are mutable objects and it has been shown
in [5] that channels and threads can be used to define stores and to simulate the
high level execution behaviour of operations with references. Hence, for concep-
tual simplicity, we could dispense with references in our study language and adopt
channels instead.

However, the locality analysis we propose should work for any mutable object.
In a distributed program channels can, of course, be used both for communication
between threads running on the same processor or in different processors. But
we believe that in a language with channels, references are more likely to be local
to a single processor. The payoff of detecting local references is then potentially
greater than of detecting local channels. We then deliberately omit channels from
our treatment and adopt references as our mutable objects of study.

Because shared memory (in the form of references) will be used as a means of
communication between concurrent threads, one would also expect the language
to have constructs for thread synchronization. We claim that the introduction of
primitives for synchronization would have no effect on the key aspects of our type-
based analysis, because of that, in order to keep the formal treatment simpler,

we omit them from the language.
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2.2 Operational Semantics

We give a small step operational semantics for the language in a style similar to
the semantics of concurrent ML given in [5], [22], and [25].

We use evaluation contexts in order to reduce the number of rules in the
operational semantics and consequently reduce the number of cases in proofs
relying on the semantics.

Evaluation contexts are terms with a “hole” in them, given by the grammar:

EE][] M
VE[]

B[] =
|
| (B[], M)
|
|
|

(V,E[]
if E[|then M else M’
let x = E[]in M end .

The notation E[M] means that the hole in the context E[] is filled by the term
M. The holes are used to indicate the syntactic location of the next reduction
step [10]. By the grammar above, in applications, the operator is reduced before
the operand; in pairs, the first element is reduced before the second. Note that
context holes can occur neither in the bodies of functions nor in the bodies of let
expressions.

As mentioned before the constants fork and rfork, are used to create new
threads of execution. At each step of evaluation a thread of execution is rep-
resented by what we call a thread component. A thread component is a pair
(p, M) where p identifies the processor where the thread runs and M is the term
associated to the thread at that point of execution.

A thread component map, or thread map for short, is a finite, non-empty map
from thread identifiers to thread components. We assume that there are infinitely
many thread identifiers available and we write p and ¢ as typical thread identifiers.
We write I1 for a thread map. The thread map Il[p : p, M| is the same as II, except
that the thread of execution identified by p is running on processor p and M is
its associated term.

A store is a finite, possibly empty map from store locations to values. We
write S as a metavariable for stores. The store S[r — V] is the same as S, except
that the store location r is mapped to the value V.

The operational semantics for the language is divided in two parts. The
sequential part of the semantics is shown in Figure 2.1 and the concurrent part

in Figure 2.2. In the sequential part, an evaluation step takes a store and a term
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Succ: Pred:

S, E[ succ n;] w7 S, E[n;y1] S, E[pred n;] w7 S, E[n;_1]
Zero-True: Zero-False:

S, E| zero? 0] w7 S, E[true] S, E| zero? n| w7 S, E[false] n#0
Fst: Snd:

S,E[fst (V,V")] w7 S, E[V] S,E[snd (V,V")] o S, E[V']

J’H

S, E[(fnz.M) V] w7 S,E[M[V/x]]
Rec-Unroll:

S, E[(rec fz.M) V] = S,E[(fnz.M)[rec fx.M/f] V]
Cond-True:

S,E[if truethen M else N]| w7 S, E[M]
Cond-False:

S,E[if falsethen M else N| e S, E[N]

Ref:

S, E[ref V] i S[r — V], E|r] r & Dom(S)
Deref:

S, E[deref 7] i S, E[V] S(r)=V
Assign:

S, E[r :=V] o S[r — V], E[unit] r € Dom(S)
Let:

S,E[let x =V in M end | - S, E[M[V/x]]

Figure 2.1: Sequential evaluation.
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Seq
SaE[M] ?CI) SlaE[MI]

S,[p:p, EIM]] — S"1[p: p, E[M]]

con

Fork
q ¢ Dom(II) U {p}
S1[p: p, E[fork fnz.M]] —— S, I[p: p, E[unit]][q: p, M[unit/z]]

Rfork
q & Dom(1l) U {p}
S,[p: p, E[rfork, fnz.M]] — S,I[p:p, E[unit]][q: p', M[unit/z]]

Figure 2.2: Thread map evaluation.

and produces another, possibly different, store and a term. The relation -
is thus a binary relation on store and term pairs and we write ?q>* for its
reflexive and transitive closure.

We call a pair consisting of store and thread component map a configuration.
In the concurrent part of the semantics, a configuration on the left-hand side
produces a different configuration on the right-hand side. The relation — is
thus a binary relation on configurations and " is its reflexive and transitive
closure. We also say that S,I1 —" S II' iff S,II —* S, II" in n steps.

A redezx is either an application of the form V V', a conditional expression
if V then Nelse M or a let expression let x = V in M end. The redexes
filling the holes in the evaluation contexts appearing in the left side of - in
Figure 2.1, and those filling the holes in evaluation contexts in the left side of

—= inFigure 2.2, are called proper redezes. Any other redex is called improper.

According to the lemma below any non-value term can be uniquely represented

as a redex inside an evaluation context.

Lemma 2.1 FEvery non-value of the language can be uniquely decomposed as

E[M] for some evaluation context E|| and redex M.

ProOF. By induction on the structure of non-value terms. [ |

One consequence of the previous lemma is that sequential evaluation given in
Figure 2.1 is deterministic.
Note that the operational semantics is given at a level of abstraction that

reflects the programmer’s view of the store. The fact that store is physically
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distributed and that a coherency protocol is needed to keep distributed copies of
mutable data consistent is therefore not expressed by the semantic rules.

We call p € Dom(ll) the selected thread in a transition S,II — S II" if
its associated term is evaluated by the transition. Because the rules also do not
express which thread of a configuration will be selected, if the configuration has
more than one, concurrent evaluation of threads is non-deterministic.

Below we give some examples to illustrate how the semantic rules can be
used in the evaluation of expressions. For clarity, we underline the expression
filling the hole in evaluation contexts instead of enclosing it with square brackets.
The evaluation context itself surrounds the underlined expression. In the right
side we write the names of the operational rules used in the derivation. For
the concurrent transitions using a sequential transition as premise we indicate

between parentheses the name of the sequential rule used.

Example 2.1 The Minus function can be defined recursively in the following
way:
Minus = rec fa.M

where

M = fny.if zero? ythen zelse f (pred z)(pred y).

Here is how the rule for recursive functions can be used to prove that 2 —1 = 1.

Minus 2 1 Seq (Rec-Unroll)
o fnz. M[Minus/f] 2 1
= fnuz.fny.if zero? ythen zelse Minus(pred z)(pred y) 2 1 Seq(p)
w7 Iny.if zero? ythen 2else Minus (pred 2)(pred y) 1 Seq(p)
g 1f zero? lthen 2else Minus (pred 2)(pred 1) Seq (Zero-False)
w¢ if false then 2else Minus (pred 2)(pred 1) Seq (Cond-False)
w5 Minus (pred 2)(pred 1) Seq (Pred)
w7 Minus 1 (pred 1) Seq (Rec-Unroll)
— fnz.M[Minus/f] 1 (pred 1)

[
1]
o

fnz.fny.if zero? ythen z else Minus(pred z)(pred y) 1 (pred 1) Seq(f)

Lo

=g fny.if zero? ythen lelse Minus (pred 1)(pred y) (pred 1) Seq (Pred)

w7 ny.if zero? ythen 1else Minus (pred 1)(pred y) 0 Seq(8)

w7 1if zero? Othen lelse Minus (pred 1)(pred 0) Seq (Zero-True)
g 1f true thenlelse Minus (pred 1)(pred 0) Seq (Cond-True)
— 1.

[
1]
Qo
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Example 2.2 The following expression creates two references and it also creates

a new thread of execution using rfork ,:

let z =ref 0 in
let y =ref fnw.x in M end

end
where
M = rfork, fnz.snd (deref y,unit).

We now give a sequence of reduction steps for the expression above.

[p:p, let x =ref 0 in let y =ref fnw.x in M end end] Seq (Ref)

— [r—0l,[p:p, let z =7 inlet y =ref fnw.z in M end end] Seq (Let)

= [r—0],[p: p, let y=ref fnw.r in M end] Seq (Ref)
=3 [r= 0,7 fnw.rl,[p:p, let y=7" in M end] Seq (Let)
=3 [r— 0,7~ fnw.r],[p: p, rfork, fnz.snd (deref ', unit)] Rfork

— [r— 0,7 — fnw.r],[p: p, unit][g: p', snd (Fnw.r,unit)] Seq (Snd)

],
B
— [r— 0,7"— fnw.r],[p: p, unit][g: p', snd (deref r’,unit)] Seq (Deref)
I,
B

— [r— 0,7 — fnw.r],[p: p, unit][g: p', unit].

In the remainder of this section we give other definitions and a lemma related
to the operational semantics. Some of these definitions are used only in Chapter 4
and Chapter 5 in order to state and prove type and locality soundness of programs
in a more concise way.

We first define what we mean by a thread to be faulty in a configuration.

Definition 2.1 We say that a thread p is faulty in a configuration S,II if the
term M associated to it in II is not a value and there is no configuration S’ II'
such that S, 11 — S, II', with p the selected thread.

According to the definition above a thread is faulty in a configuration S,II if
its associated term can be decomposed as E[R], for an evaluation context E[],
and an improper redex R. The thread is also faulty if R is of the form r := V
or deref r but the side condition of the corresponding sequential rule does not
hold, that is, » € Dom(S).

Definition 2.2 A trace T is a possibly-infinite sequence of configurations
So, Io; S1, Iy

such that S(),HO a) Sl,Hl —

con
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Definition 2.3 The set of threads of a trace T is defined as
Threads (T) = {p | 3 S;,1I; € T with p € Dom(11;) }.

We define the notions of convergence and divergence of a thread of execution

relative to a particular trace.

Definition 2.4 A thread p converges to a value V in T, written p {7 V', if there
is S,I1 in T such that II(p) = (p, V). We say that p diverges in T, written p {r,
if for every S,11 € T, the term associated to p in Il is not a value and p is not
faulty in S, 11.

A thread may diverge if it is not selected enough times to be evaluated even if its
associated term is reducible to a value. It will also diverge of course if it enters in
an infinite loop. Note that if T is S, [p : p, succ n;] for example, according to the
definition above the thread p diverges in 7": the term succ n; is not a value and
p clearly is not faulty in the configuration. We will be interested only in notions

of convergence and divergence in mazimal traces, which we call computations.

Definition 2.5 A computation is an infinite trace or it is a finite trace ending
in a configuration S,I1 such that for all p € Dom(Il), either p is faulty in S, 11,
or there is V' such that II(p) = (p,V). If P is a program then we define the

computations of P to be
Comp (P) ={T /T is a computation starting with configuration (0, [py : (po, P)] }

where py and py are, by convention, initial thread and processor identifiers respec-

tively.

The following lemma will be used only in Chapter 4 where we prove type

soundness.

Lemma 2.2 (Uniform Evaluation) Let P be a program, let T' be any trace in
Comp(P), and p be any thread in Threads(T), then exactly one of the following
holds

.pﬂT7
e plrV or

e p is faulty in some configuration of T'.

PRoOOF. From the definitions 2.1 and 2.4. [ |
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2.3 Escaping References

We say that a reference escapes according to the operational semantics or simply
that a reference escapes, if it goes to a processor different than the one where
it was created; and we say that a reference is local according to the operational
semantics or local for short, if it does not escape.

The references r and r’ in Example 2.2 of the previous section, for instance,
are created on processor p. The reference r’ escapes to processor p' in the body
of the rforked function. When the new rforked thread is selected for execution
the reference r' is dereferenced. The function fn w.r then appears on processor
o', causing the reference r that was created on processor p to escape from p to p'.

Note that in the following expression no reference escapes to processor p
rfork, fnz.fst (unit,ref unit).

Although a new thread will be executed on processor p, the new reference will
not escape to p. It will be in fact created on that processor.

The goal of our locality analysis is to collect information about programs that
can be used to reduce the number of times a coherency protocol has to be used.

Ideally the analysis should be able to identify all deref and assignment op-
erations of a program that do not operate on references used on processors where
they escape to when the program is executed. These references are those that do
not escape and references that do escape but are not read or modified remotely.

The problem of identifying these references prior to the execution of the pro-
gram is undecidable, consequently no static analysis can detect all of them.

The alternative we choose is to approximate in a conservative way the set of
references that do not escape when executing the program. Our analysis then
detects all the references that can escape when executing a program. The other
references will constitute a safe approximation to the set of references that do
not escape. Operations deref and := with these references can then be safely
translated to their specialized versions.

Some opportunities for detecting local references and references that escape
but are not used remotely will, of course, be missed. Consider for instance, the

following expression running on processor p # p

let z =ref 0 in
(fork fnw.fst (unit,deref z), (fnz.rfork, fny.z:=3) M)

end .
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Suppose that M is an expression whose evaluation does not terminate. In this
case the rfork, will never be executed and the reference z will remain local to
the processor where it was created. The deref operation could then be translated
to its specialized version. However, as our locality analysis cannot decide about
the termination or not of M, it takes a conservative approach and detects that
the reference x can escape. As a consequence the deref will not be specialized.

The next example illustrates the case where a function is rforked but no refer-
ence is used remotely. Suppose the following expression runs on processor p # p/,

and suppose that M is an expression whose evaluation does not terminate and
that y & FV(M).

let z=ref 0 in
(fork fnw.fst (unit,deref 1), rfork, fny.(fnz.z:=3 M))

end .

Clearly, the reference x escapes to processor p' in the body of the rforked function
fny.(fnz.x := 3 M). But the assignment to z will never be executed. The deref
operation could then be translated to a version not requiring a coherency protocol.
But our analysis detects that the reference x escapes and this will be enough for
translating deref to its default non-specialized version.

As another example that shows how our analysis misses opportunities for

optimization, suppose we start the execution of the expression below on processor

/

p

let x =ref Oin
(fork fnw.fst (unit,deref z), rfork, fny.r:=3)

end.

Although the reference x in the expression above occurs in the body of an
rforked function, it does not escape because the function is rforked to the same
processor where the reference was created. As programs do not have any informa-
tion of where they will initiate their execution, the reference x will be considered
by our analysis as a reference that can escape, and the operation deref will not
be specialized.

In the next chapter we present our type-based locality analysis in the form of
a type system that detects references that can escape from the processors where

they are created.
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Chapter 3

The Type System

In this chapter we begin by presenting the language of types annotated with local-
ity information. In Section 3.2 we discuss how terms can be locality polymorphic
and why references cannot be polymorphic in their locality. In Section 3.3 we de-
fine constraints over locality labels of types and we explain how these constraints
are used to guarantee that references tagged as local do not escape. The type
rules are then finally presented in Section 3.4, and in Section 3.5 we give intuitions
for the ways the rules assign locality labels to types. This chapter concludes by
proving that our type system is a conservative extension of the Hindley-Milner

type discipline. A preliminary version of the type system was presented in [3].

3.1 Labelled Types

The types for our language are similar to those of an ML-like language with

references. In addition, some types include a locality label.
Definition 3.1 A locality label is an element of the set defined by the grammar
pu=L]€]l k.

In the definition above k ranges over an infinite set LocVar of locality variables.
We call ¢ the local label and € the escape label. The labelled types are given by

the following grammar:
7 u= bool | int |unit | af |rref? |77 |7 x¢

where « is a metavariable ranging over an infinite set of type variables ' distinct
from the set of locality variables. The locality label of a type 7, if it has one, is

given by lab (7).

!Following the 1997 Definition of Standard ML [20], we adopt “value polymorphism” [30].
and omit the imperative variables that appeared in the original Definition.
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Remark 3.1 Type variables are required to be consistently labelled with locality
labels. That 1s, distinct occurrences of the same type variable have the same

locality label.

Our concern is with the locality properties of references, so clearly the locality
labels belong on reference types. Intuitively, a reference that may escape from
one processor to another will have a type with € as its locality label; a reference
that cannot escape can safely be assigned a type with locality label /.

As an example, suppose that the expression below runs on processor p:

let £ = ref unit
in rforkp, fnw. deref x

end .

Using a primitive for remote thread creation (rfork ,), a new thread is created on
a processor p' to evaluate the body of the function fnw. deref z. The reference
x, created on p, escapes to processor p/, so its reference type should be tagged
with e.

In contrast, in the expression

let x = ref unit
in (fnw. deref z) unit

end

the reference x is a local reference as it does not escape to a processor different
from the one where it was created. Its reference type can therefore be tagged
with /.

Function types, pair types and type variables also carry a locality label. A
value that escapes from one processor to another may contain reference subterms,
causing those references to escape with the value. In our language, the only values
that may contain references, other than references themselves, are functions and
pairs. So the function in the first example above will have a type tagged with e
and the function in the second example can have a type tagged with £.

If we had a language with other kinds of value possibly containing references,
such as lists or user-definable data types, then we would want to add locality
labels to their types. Type variables carry a locality label because they may be
instantiated to labelled types.
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3.2 Locality Polymorphism

Some terms are locality polymorphic, because they can be used in term contexts
that expect any locality. Particularly, functions and pairs of values may be poly-

morphic in their locality. Consider for example the expression

let f=fnz.P
in (fny. rfork, f) (if ...then f else g)

end .

We must consider f escaping, because it is an argument to an rfork, constant.
However, there is no reason that f cannot also be used in a context that requires
a local function. For example, if ¢ is tagged as local in the example above, locality
polymorphism allows us to consider f as local also. Similarly, a pair of values can
also be made polymorphic in its locality.

Analogous to the well known fact that references cannot have polymorphic
types [28], references in our type system cannot be locality polymorphic. Suppose

a thread p runs on processor p and has the following expression associated to it

let x =ref 3
in (fny.deref z) (rfork, fnw.z:=5)

end.

According to the operational semantics the program above is non-deterministic:
the result returned by thread p can be either 5 or 3. If we admit references poly-
morphic in their locality, the body of the let expression above could be typed in
an environment where = has the type scheme Vk.int ref ®. Then, the first occur-
rence of z can have the type int ref ¢ and the occurrence in the rforked function
has type int ref . Based on this type and locality information a compiler could

translate the program to:

let z =ref 3
in (fny.deref’z) (rfork, fnw.z :=5)

end

where deref ¢ is the specialised local version of deref (which does not rely on a
coherency protocol). Although we have not yet given a semantics for deref ¢ we
can argue informally that the value 5 cannot be returned by thread p, so the pro-
gram above no longer has a non-deterministic behaviour. Even if the assignment
is executed before the dereferencing, updating the copy of z in processor p' with

5, the operation deref’ on p cannot retrieve this most recent value as it does
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not call a coherency protocol. This claim will be made precise later on Chapter 6
where we define a translation to a target language which includes specialised lo-
cal versions of deref and the assignment operator :=, and give an operational

semantics for it.

3.3 Constrained Types

Consider the term ref (ref 3). If the outer reference escapes, it may be derefer-
enced, causing the inner reference to escape. Therefore, possible types for such
a term include int ref ‘ref€, int ref ‘ref’ and int ref‘ref’. Explicitly we
want to exclude the type int ref ‘ref €. Such a type would give unsound locality
information.

We also want to exclude the type int ref”ref® If the outer reference
is labelled with €, then we will expect that the type of the value this reference
points to should be also labelled as escaping. We say that the type int ref " ref ¢
provides unresolved information about locality.

The same ideas also apply to pairs. Suppose we have a pair like (ref 3, ref 0).
We have to exclude a type like int ref ¢ x¢int ref ¢, for example. Were we al-
lowed to assign such a type, then the pair might escape, carrying with it references
that are labelled with /.

How then to give a general type for terms in such a way that undesired types
are excluded? The solution we adopt is to give types with constraints on their
locality labels. A constrained type T\C is a pair consisting of a type 7 and a set C'
of constraints on locality labels possibly appearing in 7, each of the form ¢ < ¢'.

We sometimes use the metavariable v to range over constrained types.

Definition 3.2 We say that a constraint ¢ < ¢' is
e unsound iff p =€ and ¢' = ¢,

e unresolved iff ¢ = € and ¢' € LocVar.

Definition 3.3 A constraint set C is valid iff no constraint in its transitive clo-

sure is unsound or unresolved. A constraint set is invalid iff it is not valid.

We will see that rules of the type system form, at their conclusions, the union
of the constraint sets of their premises The following lemma says that the union

of valid constraint sets is also valid.

Lemma 3.1 If C and C' are valid constraint sets, then C U C" is also valid.
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PROOF. By contradiction. We assume C' and C’ valid and we try to prove that
C U is invalid. According to Definition 3.3, for C UC"’ to be invalid means that

l.e<le(CUC') or
2. e< k€ (CUC)* for some locality variable k.

If (1) holds, then either € < £ € (C'U C') or there exists &' such that e < ' €
(CUC)and ¥ <l e (CUCl)t. If e < ¢ € (CUC), then this contradicts the
hypothesis that C' and C" are valid. On the other hand if e < &' € (C U ("), then
this also contradicts the hypothesis that C' and C” are valid.

Similarly for (2). i

Remark 3.2 In order to avoid unsound and unresolved locality information we
require that in a type derivation for a term, the type assigned to each of its sub-
terms has an associated valid constraint set. It will be assumed that type deriva-

tions producing invalid constraints sets will be rejected.

References are created with the ref constant. According to the typing rules
presented in the next section, if we apply ref to a term of type int ref e\@ for
example, the resulting constrained type will be of the form int ref ‘ref ?\¢ < £.
By Remark 3.2 the label ¢ must be different than e.

We shall show later on Chapter 5 that this local validity property is crucial
in establishing the desired global property of the system, that references tagged

as local indeed do not escape.

3.4 Type Judgements

ML type schemes have the form V&. 7, where 7 is an ML type and & is a sequence
of type variables. Our constrained types can have locality variables as well as type
variables, hence a constrained type scheme has the form Vag. 7\ C, where 7 is a
type, C' is any constraint set not necessarily valid , and @ and K are sequences of
type and locality variables, respectively. The order of the binders in a constrained
type scheme is not significant; we segregate type variables from locality variables
for clarity. We use ¢ as a metavariable ranging over constrained type schemes. For
a sequence of type variables @, let [@] be the set consisting of the type variables
in the sequence; similarly for locality variables.

Our type judgements use two notions of context:
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e A term type contert is a finite map from variables to constrained type
schemes. The term type context I'[z — o] is the same as I', but maps z

to o.

o A store type contert is a finite map from store locations to constrained types
of the form 7 ref ?\C. The store type context A[r — 7 ref ®\C] is the same
as A, but maps 7 to 7ref ?\C.

Because type variables do not appear in constraints, the set FTV (7\C) of

free type variables of a constrained type 7\C is given by
FTV(r\C) = FTV(r).
The set FTV (1) of free type variables of a type 7 is given by

FTV(r) ={} if 7 € {int,bool,unit}
FTV a¢) {a}

(
(
FTV(n x?m) = FTV(n) U FTV(r)
(
(

)

TV 1 —) TQ) FTV(Tl) U FTV(TQ)
FTV(rref?) = FTV (7).

We define FLV (¢) = {¢} if ¢ is a locality variable. FLV (¢) = () otherwise. The
set FLV (1\C) of free locality variables of a constrained type 7\C is defined in

the following way
FLV(r\C) = FLV () U FLV(C).
The set FLV (1) of free locality variables of 7 is given by

FLV (1) ={} if 7 € {int,bool,unit}

FLV (a?) = FLV ()

FLV (1, x® 1) = FLV(r1) U FLV(r) U FLV(¢)
FTV(r % ) = FTV(r) U FLV(r) U FLV(4)
FLV(rref?) = FTV(r) U FLV(9),

and for a constraint set C' = {¢; < ¢! ..., 0, < &)}, we have
FLV(C) = FLV (¢1) U FLV(¢})...U FLV (¢,) U FLV (¢},).
For a constrained type scheme V&&. 7\ C' define

FTV(VaR.T\C) = FTV(r\C) \ |&], and
FLV (Yak.T7\C) = FLV(T\C) \ [R].
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For term type contexts and store type contexts, we define their sets of free type
variables and free locality variables by pointwise union. We write FLV (', A) for
FLV(T')U FLV (A), and FTV (T, A) for FTV (') U FTV (A).

Below, we define the notion of a polymorphic-consistent type scheme. The
intuition behind this definition is that we only get locality polymorphism on type

variables when we have type polymorphism.

Definition 3.4 We say that Vak. 7\ C' is polymorphic-consistent iff for all a €
FTV(r) if lab(a) € [R] then « € [@]. We also say that a term type context
I' is polymorphic-consistent if all the constrained type schemes in its range are

polymorphic-consistent.

Similarly to Standard ML, we obtain polymorphism by generalising over the
constrained types of let-bound variables. Our notion of generalisation includes

generalisation over locality variables, as well as over type variables:
Definition 3.5 (Generalisation) Gen(7\C,T',A) =Vak.7\C where

[K] = FLV(r)\ FLV(T,A) and
(@] = FTV(r)\ FTV (T, A).

Generalising a constrained type under a polymorphic-consistent typing con-

text produces a polymorphic-consistent constrained type scheme.

Lemma 3.2 IfT is polymorphic-consistent then Gen(T\C,T',A) is polymorphic-

consistent.

PrOOF. Let Gen(r\C,I',A) =Var.7\C so that [@]| = FTV(r)\ FTV(L,A)
and [K] = FLV(r) \ FLV(I',A). Suppose that there are o and x such that
a € FTV(r) and lab («) in 7 is k. Suppose also that x € [K]. We prove
by contradiction that o € [@]. So we assume that o ¢ [&@|. Because o €
FTV(7) but « ¢ [@], it must be the case that a occurs free either in I" or in
A. By the consistent labelling assumption on the locality labels of type variables
(Remark 3.1), all these occurrences of « in I' and A must be labelled with k. By
the assumption that I' is polymorphic-consistent, these occurrences of k labelling

« in T must also be free. But this contradicts the assumption that x € [£]. 1

Since we have two kinds of variables appearing in types, we need to define
substitutions involving these variables carefully. We split the definition into three
parts: locality substitution, type substitution and what we call extended type sub-

stitution which combines both locality and type substitutions.
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Definition 3.6 (Locality substitution) A locality substitution Z"¢ is a map-
ping from locality variables to locality labels. Extending the domain appropriately
we define the application of Z'¢ to locality labels, constraint sets, types and con-

strained types in the following way

Z%4=¢ if delel)

Zloc oy — {Zlocd) < Zloc¢l | ¢ < ¢I c C}
Z%r =1 ifr € {int,unit,bool}
Floc (a"’) — 2"

Zle (r 2 ) = (Zle ) (Zloc )

7 loc (7_ «® 7_/) — (Zloc 7_) xZ"’Cqb (Zloc 7_/)
Z' (rref?) = (Z'° 1) ref z¢

Zloc (T\C) — Zloc T\Zloc C.

We assume that locality substitutions behave like the identity function when

applied to locality variables outside their domains.

Definition 3.7 (Type substitution) A type substitution Z%P¢ is a mapping
from type variables to types. FExtending the domain of a type substitution appro-
priately we define the application of ZWP to types and constrained types in the

following way

Zwre (a?) = 1 if ZWP%(a) = 7 and either lab (1) = ¢ or lab (1) is undefined
Zwper = ’7' if T € {unit, int, bool}

ztwe (7 5 11y = (ztwer) B (Ztwe )

7 type (7- x® 7 ) (Ztype ) %@ (Ztype 7-/)

ZWre (rref ?) = (Ztl”’e 7) ref ?

zte (T\C) = (Z"7)\C.

In order to illustrate the previous definition suppose that Z%P¢ is the map

{a+ intref, 8 — int x* int,n > unit}. Then the following holds:

Z'wre (%) is undefined
Ztwpe (B%) = int x* int
ZWre (nf) = unit.
In the first example above note that the type variable « is in the domain of
Z%WPe but the result of applying Z%P¢ to o is undefined! We say that applications
like that are not well behaved. We define a well behaved application of a type

substitution in the following way:
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Definition 3.8 We say that Z%¢a? is well behaved iff Z%¢a? is undefined
only when o & Dom(Z%). We say that Z%°1 is well behaved iff Z%P¢a? is
well behaved for all « € FTV (1) with ¢ the label of o in 7.

Next we define a substitution which is a combination of type and locality

substitutions.

Definition 3.9 (Extended type substitution) An extended type substitution
7 is a pair (2%, Z'¢) of type and locality substitutions. We define the application

of Z to constraint sets, types, and constrained types in the following way

ZC = ZzbeC
Z1 = Zwe (Zlocr)
Z(t\C)=Z7\ZC.

Note that by the definition above, when applying an extended type substitu-
tion to a type 7 the locality component is applied first. Similarly as we did for
type substitution we define when the application of an extended type substitution

is well behaved.

Definition 3.10 Let Z = (Z%¢, Z'¢) be an extended type substitution. We say
that Z 7 is well behaved iff Z%P¢ (Z"°T) is well behaved; and we say that Z (7\C)
15 well behaved iff Z T is well behaved.

We also define the application of type and locality substitution to constrained
type schemes separately. The added complexity is due to the need of renaming
both type and locality variables to avoid capture. Later on, to keep some proofs
simpler, we will assume that all bound type and locality variables are different
from free variables in a given context, so we shall not need to worry about this

cumbersome renaming of variables.

Definition 3.11 We extend the application of locality substitution to constrained

type schemes by first renaming its bound locality variables as follows?
Z9°(Va Ky .. Kkn. y) = VYA K. KL Z9 (21 ),

where Z''¢ = {k1+— K, ... kn— K.} and each & is a distinct and fresh locality

variable.

2Tn this definition and in the next one, all bound type and locality variables are renamed to
fresh ones. One could change these definitions so that renaming will occur only when needed.
The first alternative results in clearer definitions.
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Example 3.1 Consider the constrained type scheme Yo ki ky. 7 = BI\D and
the locality substitution Z'¢ = {j + k1}. We then have

7" (Yaky ky. B 5 BI\D) = Vak! k). B it B\ (3.1)

since

Z'%° (Yo ky ko 7 55 87\ D)
= Var| k. 7" ({ki— K|, Ky = &b} (87 5 BI\0)) def. 3.11

= Var| k. Zc (B ﬁ BI\0) def. 3.6
= Yar, k). {j ki) (B 5 B\ 0) def. of Zk¢
= VYa K,Il 142_ Bm K_& BM\@ def. 3.6.

Definition 3.12 The application of a type substitution to a constrained type

scheme requires the renaming of bound locality variables and bound type variables.
ZW° Yoy . ..o K1 .. bip. ) = YBi...Bm Kl ... K. ZWPe (Z’type 7' boc v)

where Z'*¢ = {k1+ K\, ...k, K.} and each k! is a distinct and fresh locality
variable, and Z'W° = {ay > B ... auy— B9}, with each B; a distinct and fresh
type variable, and ¢; is the locality label of a; in Z"° v, if a; € FTV(Z'¢ ),

otherwise ¢; is any label.

Example 3.2 In order to illustrate this definition let ZW® = {f+s o> ref '},
We then have

ZWre (Yo k! kh. B 3 BPN\0) = Vo' k! KL o ref ™ DB afref F1\)  (3.2)
since

Zwpe (Yo i) K. B50 2S ri\ ()
= Vo' & K. 7 ({as o/} ({K, — &7, kL &1} (85 53 B2\ 0)))  def. 3.12

= Vo' kY KY. ZWP ({arso/?}(B™ i B\ 0)) def. 3.6
— Vol &I K. 2t (g g\ ) def. 3.7
= Vo' K"Kl {Br>aferef F1} (8% it B\ 0) def. of Zwre
= Vo' K"Kl a2 ref ™ 5 ok ref M) def. 3.7.

We now define the result of applying an extended type substitution to a con-
strained type scheme. As for constrained types, the locality component is applied

first. So for a constrained type scheme o we have

(Ztype’ Zloc) o = Ztype (Zloc 0_).
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So for example, let Z'¢ be as in Example 3.1 and let Z%?¢ be as in Example 3.2.
Then

(ZWPe 7% (Vaky kg, B 55 BI\0D) = Vo' k) K. a2 ref " 5 o2 reof "\D

since

(Ztre, ZV¢) (VYaky ky. 75 BI\D)
= ZWe (2" (Ya ki ke B7 = BI\D))
= ZWre (Yo k) kY. ™ i B\ 0) ex. 3.1
= Vo' KKl o2 ref ™ A o2 ref f\G ex. 3.2.
Type, locality and extended type substitutions may be applied to term and store
type contexts, by applying them pointwise.

The composition of type substitutions and the composition of locality substi-
tutions is ordinary function composition. Next we define composition of extended
type substitutions.

We use the same symbol o for both composition of functions and composition
of extended type substitutions. Any ambiguity is resolved by the context. Note
that a locality substitution may also be applied to type substitution by pointwise

application. So if Z%W¢ = {a;+— 71 ..., 0, 7, } we have
Z1¢ 7 = {ay = Z'°1y ... o 27, )

Definition 3.13 Let Z = (Z% Z'¢) and Z' = (7', Z''°) be two extended
type substitutions. We define the composition of Z and Z', written Z o Z', as the

following extended type substitution
(Ztype o (Zloc thype)7 Zloc o Z!loc)'

The following lemma states some properties of the composition of extended

type substitutions.

Lemma 3.3 Let Z,, Zy and Z3 be extended type substitutions. Then
1. if Zy 7 is well behaved then (Z1 o Zy) (T\C) = Z1 (Z5 (1\C)), and

2. Zl e} (ZQ O Z3) = (Z]_ o} Zg) e} Z3.

Proo¥r. Straightforward from Definition 3.13, the way type and locality substi-

tutions are defined and properties of function composition. [ |
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As an example of why Z,7 in the first case of the lemma above should be well
behaved, suppose that Z = (Id%", {x +— €}) and Z' = ({o — intref ¢}, 1d"°).
One can readily check that (Z o Z') o # Z (Z'a").

Definition 3.14 (Instantiation) We say that 7'\C" is an instance of Var.7\C,
written Yar.7\C = 7'\C" iff for some extended type substitution Z = (ZWpe, Z'c)
such that Dom(Z"%¢) = [R] and Dom(Z%¢) = [a]| we have Z(T\C) = 7'\ C'.
Extending this notion to constrained type schemes, say that o > o' iff for all T,
C, we have o' > 7\C implies o > 7\C.

Here are some examples of instantiation:

Va.of 5 of\ {} = int 5 int\{}

Va.of = af\ {} = intref® -5 intref ‘ref °\{}

Vakk'k". of %5 o ref “\{k' < Kk} > intref®-S intref ‘ref ‘\{e < ¢}
Vaks'k". o 55 o ref “\{k! < k} > intref’! S intref’ref!\{j’ <j}
Vakk'k". o & o ref “\{k' < Kk} > int 5 intref’ \{j' < j}.

AN

Examples 1 and 2 above show the instantiation of constrained type schemes with
no bound locality variables and with empty sets of constraints. Note that, as
illustrated by examples 3 and 5 above, instantiation may produce constrained
types with some obsolete constraints. In example 3 the set {€ < €} is obsolete as
it is not constraining any locality variable. In example 5 the locality variable j in
the set {j' < j} does not appear in the type, so this constraint also has no effect.

We assume the usual notion of a-conversion, so we say that oy =, oy if
o1 and oy differ only by the names of their bound type and locality variables.
As a consequence of the next lemma from now on we will identify a-equivalent

constrained type schemes.
Lemma 3.4 If 0 =, ¢’ then o > o' and o' = 0.

PROOF. By the definition of a-equivalence and by Definition 3.14 above. ||

Next we give a series of definitions of escaping predicates. The intuition behind
these predicates will be given in the next section where we explain the mechanisms

used by the type system to detect references that can escape.

Definition 3.15 The predicate esc?(7) holds iff lab (1) = € or lab (7) is unde-
fined.

Definition 3.16 The predicate esc?(o) holds , iff there exists a constrained type
T\C with C valid, such that o > 7\C and esc?(7).
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Constrained types can be seen as constrained type schemes with no bound vari-
ables. Hence the following lemma is an immediate consequence of the previous

definition.
Lemma 3.5 esc?(7\C) iff C is valid and esc?(r).
PROOF. From Definition 3.16 and the fact that 7\C > 7\C. i

Definition 3.16 is based on the ezistence of an appropriate extended type
substitution. We can view the result of the next auxiliary lemma as providing an
alternative way to decide if esc?(o) holds based solely on the form of the type
scheme ¢ itself. This lemma will be used to simplify some subsequent proofs. In

the following, we write C* for the transitive closure of C.
Lemma 3.6 esc?(Vai.7\C) iff
1. e<tgCt and e<keCT onlyifr € [R], and
2. exactly one of the following holds:

(a) T = ot for some a € [d],
(b) esc?(t), or

(c) lab(r) € [R], lab(r) < £ ¢ C* and lab(r) < k' € CT only if
k' € [RK].

PROOF. See Appendix A.l. [ |

Definition 3.17 The predicate esc?(T', A,M) holds iff
e V(M) C Dom(T') and for all x in FV (M), esc?(I'(x)), and
o Refs(M) C Dom(A) and for all v in Refs(M), esc?(A(r)).
So for instance, the predicate
esc?([z— int ref °\J], [r— int ref \}], fny.(z, 7))

holds since the constrained types of the free variable x and the reference constant

r satisfy the predicate esc?. But the following predicate

esc?([z Vk. int ref ¢ x*int\k < /], {},fny.z)
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n : int\0
unit  : unit\(}
true : bool\(
false : bool\(

. K .
succ  : int — int\(
pred : int > int\(
zero? : int -3 bool\()
£st : (x5 BY) S ar\0

" ry Kk l
snd s (af xB AR S BB
! "

ref : o 5 afref® \(K" < K}
deref : ofref” o\ (
= . (aFref® x*'af) S unit\0
fork : (unit —> unit) - unit\0Q
rfork, (unit 5 unit) - unit\@

Figure 3.1: Constrained type schemes for constants.

does not hold since the constrained type scheme of the free variable x does not
satisfy the predicate esc?. If the bound locality variable x that labels the product
type is instantiated to € the invalid constraint set {¢ < ¢} is produced.

Type judgements have the form I'; A F M : 7\ C where M is a term of the
language and I and A are term and store type contexts respectively and C' must
be a valid constraint set. We sometimes omit [ and/or A when they are empty.
The rules of the type system appear in Figures 3.1 and 3.2.  Figure 3.1 has the
constrained type schemes of all constants other than references. Each constant
¢ has a constrained type scheme given by typeof (c). Quantifiers are omitted to
simplify the presentation. We say that an expression M is well-typed if there are
I', A and a constrained labelled type 7\C such that I'; A = M: 7\C.

Observe that in the conclusion of the type rules we often form the union of the
constraints sets in the premises. Some of these constraints propagated towards
the root of a type derivation may become obsolete. In an implementation, we
might omit displaying obsolete constraints.

In the next section we explain the rules in Figure 3.2, giving the intuitions for
the ways they assign locality labels to types.
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typeof(c) > 7\C

VAR ;AR ce:T\C
[(z) = 7\C
CTE ARz 7\C
REF TAFr: Alr)
r A+ M:
ABS, [z — 1 \C']; : 7\C
AR fonzM:m = \CUC!
ABS Lz — n\C';AF M: 5\C esc?(T,A,fnz.M)
€
;AR fnz.M: 7 2) T\C UC'
REC L[f—mn ﬁ)TQ\C][:I:i—)ﬁ\C'];AI—M:'rg\C”
v
AFrecfo.M: 1 i>7'2\CUC’UC”
REC T[f—>mn 4 \Cllz — 1 \C'; A+ M: \C" esc?(T,A,rec f z.M)
AFrecfo.M:m E>7'2\C’UC'UC”
PAIR ;AR M :\C T;AF My: p\C'
TSAF (M, My):m x9 \CUC UCTUCH
where :
C" ={¢ <lab (1)}, if lab (1) is defined, C" = () otherwise
C" ={¢ <lab ()}, if lab (r2) is defined, C"" = otherwise
APP P;A"M:TlgTQ\C AR N: 1 \C'
AR MN:\CUC!
COND IAF M:bool\C T;AFN:7\C'" T;AFP:7\C"
AR if Mthen Nelse P: 7\CUC' UC"
LET DARV:\C' Tz~ Gen(r'\C',T,A);AFN:7\C
v IAFletz=Vin N: 7\CUC'
LET T;AFM:7\C'" Tz~ 7\C';AFN:7\C

I'"TAFletz=Min Nend: 7\CUC'

Figure 3.2: Typing rules.
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3.5 Types and Locality

Our type system detects references that may escape from one processor to another
— the others, in a result that we prove in Chapter 5, are sure to be local. There
are four mechanisms in the type system to find out which types should be labelled

with e
1. the first mechanism is the type scheme for rfork , constants in Figure 3.1:
rfork, : V. (unit < unit) = unit\0.

This type scheme requires the argument of rfork, to be of a function type
labelled with e. This is sensible, since applying a remote fork constant in a

parent thread spawns a child thread on a possibly different processor;

2. the second mechanism is the use of the predicate esc? in the rule in Fig-

ure 3.2 used to type functions with label € or with a locality variable:
Lz — 1 \C';AF P:1\C esc?(l'; A,fnz.P)
AR fnz.P:my 2 \CUC'

As an example of how the predicate esc? is used consider the following

expression

let x = ref unit in
let p= (z,0) in
rfork, fnu.(deref (fst p))
end

end .

Clearly the reference x can escape to a processor different than the one
where it is created. Its reference type should then be labelled with €. The
type system finds this out by requiring the predicate esc? to hold when
typing the function fnu.(deref (fst p)). So suppose the rforked function

is typed in the following type environment
[ = [z~ unitref? prs Vk.unitref? x"int\x < ¢).
Then, according to Definition 3.17,
esc?(l, {},fnu.(deref (fst p))

holds only if
esc?(Vk.unit ref ¢ x*int\x < ¢)
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holds, which in its turn, according to Definition 3.16 (or Lemma 3.6) holds
only if ¢ = €.

If a function is to be polymorphic in its locality it may have an escaping
instance. For this reason the type rule used for deriving I'; A - fnx.M :
71 = 75\ C should also use the predicate esc?(I'; A,fnz.M). All we just

said about function abstractions also applies to recursive functions;

. the third mechanism is a combination of the type scheme we assign to the

constant ref in Figure 3.1
ref : Vork'k".o" 5 o ref * \{k" < K}

and the assumption that type derivations with invalid constraint sets are
rejected. When ref is applied, if the resulting reference type is labelled
with € then the “inner” type cannot be labelled with ¢ or with a locality

variable as that would produce an invalid constraint set.

. the fourth mechanism is analogous to the previous one. It is a combination

of the rule for typing pairs:

AR M \C T;AF My: 1\’
T;AF (My, My):m x®\CUC' UC"UC™
where :
C" ={¢ <lab (m)}, if lab (1) is defined, C" = () otherwise
C" ={¢ <lab (1)}, if lab (7) is defined, C" = ) otherwise

and the assumption that type derivations producing invalid constraint sets
are rejected. So if the type of a pair (M, Ms) is labelled with € then 7y and
Ty, the type of its components must be such that esc?(7;) and esc?(7),

that is, they cannot be labelled with £ or with a locality variable.

An immediate consequence of the next lemma is that if a value has its type

labelled with the escape label the types of its references subterms should also be
labelled with e.

Lemma 3.7 IfT'; A+ V:7\C and esc?(r) then esc?(I", A,V).

Proor. By induction on the height of type derivation for V.

case I

We have that ['; A - z: 7\C. Then I'(z) > 7\C and as esc?(7) and C is
valid, by Definition 3.17, we have esc?(I', A,z).
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case

case

case

case

case

-
We have that A(r) = 7' ref “\C' with C valid. Then by Definition 3.17, we
have esc?([, A,r).

c other than a reference
We have FV(c) = () and Refs(c) = (. Then esc?(T", A,c) holds trivially.

fnz'.P
We have a type derivation of the form
2" — 1 \Ci; A+ P: \Cy esc?(l, A,fnz’.P)
[;AFfna’ P = n\CLUC,

where the predicate esc?(I', A,fn z’.P) holds as a premise.

rec fx.P

Same as the proof for the previous case.

V1, Va)
The proof of I'; A = (V, V5) : 7y X¢ 75\ C' must have been of this form:

ARV \C1 T5A RV m\Cy
F;ZX}_ (Vﬁ,va)271 X€7Q\CZLLJCE|vJC%|vJCh
where
C3 ={e <lab (1)} or C5 =0 if lab (1) is undefined
Cy={e <lab (1)} or Cy =0 if lab (72) is undefined

As C3 and Cy are valid, lab(7;) = € or it is undefined and the same
for lab (73), which means that esc?(r;) and esc?(7;). Hence by the in-
duction hypothesis and the first and second premises of the proof above
we have that esc?(I',A,V;) and esc?(I', A,V;). We then conclude that
esc?([, A,(V4,V3)). [ |

Observe that the lemma above does not hold for non-values terms. Consider for

example the following type judgement

[,AF snd (z,3): int\{}

where I' maps z to the type int ref“\{}. One can easily check that this type

judgement is derivable using the rules of the type system and that esc?(int)
holds. But esc?(I", A,snd (x,3)) is false since the type of z in I is labelled with

L.

Later on Chapter 5 we prove that the locality analysis specified by the type

system is safe meaning that no reference is considered local if it can escape.
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Equally important, we note that the analysis is not trivial, that is, it allows

references to be tagged as local.

Lemma 3.8 The locality analysis given by the type system in Figures 3.1 and

3.2 is not trivial.

PrROOF. The proof consists of exhibiting type derivations where references can
be labelled with /. In any non-distributed program, for example, references that

do not occur free in a locally polymorphic function can be labelled with /. ||
Next we give an example of a type derivation using the rules of Figure 3.2.
Example 3.3 The following is a type derivation for the expression

let z = ref unit in M end

where
M = fork fnu.deref z.

The letters X and U stand for the following term type contexts

X =z unitref’\Y < k] and Y =[y+— unit\f).

typeof (ref ) > unit % unit ref <k

ref :unit % unitref O\ < k Funit: unit\0 see below
F ref unit: unit ref é\é <K X F M:unit\l <k
Flet x = ref unit in M end : unit\/ < &

typeof (fork) > (unit 4 unit) LN unit\( see below

X F fork: (unit 4 unit) LN unit\ () X F fnu.deref z: unit 5 unit\4 < kK
X F fork fnu.deref z:unit\l < &

typeof (deref ) > unit ref 4 unit\ () typeof (z) > unit ref ‘\ < &
XU F deref :unitrefegunit\(b XUI—x:unitrefe\ZSK;
XU F deref z:unit\l < k

X F fnu. deref z: unit > unit\/ < k

In the derivation above observe that constraints are introduced when instantiating
the type scheme of the ref constant. Instantiation may produce junk locality
variables, as is the case of the locality variable x above. In an implementation,

sets of constraints should be simplified to eliminate junk constraints.
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3.6 Conservative Extension

Before considering in the following chapters other fundamental properties of our
type system, we prove that the expressions accepted by it can also be typed
under the Hindley-Milner polymorphic discipline. Because that type discipline
forms the base of the type system for languages like SML, this result gives us an
indication that our locality analysis can be extended to the full SML language.

The type system which corresponds to the Hindley-Milner type discipline is
given by the first set of rules in Figure 3.3. We will refer to that type system as
the ML type system. We write ¢+ to represent ML types and all the other objects
used in the ML type system are annotated with the subscript wmr.

For the purpose of the conservative extension proof it is enough to consider
a simplified version of our type system. This simplified version, presented in the
second set of rules in Figure 3.3, is the same as the type system in Figure 3.2

with the following modifications:

e type judgements do not have store typing contexts, so there is no rule for

typing reference constants, and

e there are no typing rules for

constants,

— conditional expression,

— pairs,

— let-expressions binding variables to non-value expressions, and

— recursive functions.

We will prove the conservative extension result for source expressions which do
not contain reference constants, for this reason we can omit store typing contexts
from type judgements and the rule for typing references

The proof cases for the conditional expression and pairs follow the same lines as
the proof case for application. The let expression binding a non-value to a variable
can be seen as a sugared version of a function applied to a term. The conservative
extension result for this case follows by composing the result for functions and
applications. We also eliminate the rule for typing constants assuming that for
each constant ¢ in Figure 3.1 there is a variable named after it in the domain of
term type contexts and that the type scheme associated to this variable is the

same as typeof (c).
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[(x) =y t
by xz:t

Clz = 1] by Mg
I' by fnax. M 11—,

F|_ML M:L1—>L2 F}_ML N!Ll

Chu Vit Tz Genyr (VD)) by Nt
I'yp let =V in Nend::

[(z) > 7\C
F'Fz:7\C

Lz » n\C'F M: \C
'+fnz.M:7 N \C Ul

Pz — n\C'FM:\C esc?(l',fnz.M)
F'Ffnax.M: 7 2 \C UC"

TFM:m 3 m\C THN:m\C
'FMN:n\CUC!

FFV:7\C" Tz~ Gen(r'\C",T')]F N:7\C
'Fletz=Vin Nend:7\CUC'

Figure 3.3: Type systems for the conservative extension result.
The rules for recursive functions were also eliminated as the proof cases in-

volving these rules are analogous to the proof cases for functions.

We define a map ) which simply erases all locality information and constraint
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information from objects from our type system:

Q if T=a®

T if 7€ {int,bool, unit}
Y(r) = () = Y(r) if T=n 4, To

Y(r) ref if T=1 ref?

Y(m) xp(ry) if T=71x%m
P(r\C) = (1)
Y (Var.7\C) = Va.y(r\C)

(') = Ty where Dom(Ty.) = Dom(T) and
Vo € Dom(Ty), Dye(z) = ¥(T(2)).

Theorem 3.1 Let M be a term of the language, then
1. if T'= M: v then ¢(T) by M:2)(7y), and

2. if Uy o M2 1 then there exist T and v such that ¢(T') = Ty, ¥(7) = ¢,
and ' = M : 7.

Proor. Part 1 is proved by induction on the type derivation of M using our
type system. Part 2 is proved by induction on the ML type derivation of M (see

Appendix A.1 for auxiliary lemmas and a complete proof). [ |
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Chapter 4

Type Soundness

For clarity of presentation we split the soundness result of the type system with
respect to the operational semantics in two parts. In this chapter we prove
type soundness, not taking into account locality properties. Locality soundness is
proved in the next chapter.

In order to prove type soundness we follow the syntactic approach of Wright
and Felleisen [31] and Harper [12]: we first prove type preservation in Section 4.1,
then we prove in Section 4.2 that expressions that may lead to execution errors

are untypable, and finally we prove type soundness in Section 4.3.

4.1 Type Preservation

In order to prove type preservation we need a few preliminary results. The fol-
lowing two lemmas say that the type of a term and if the term satisfies or not
the three-place predicate esc? depend only on its free variables and reference

constants which are its subterms.

Lemma 4.1 (1) If esc?(I', A,M) and A'(r) = A(r) for all v € Refs(M) then
esc?(,A',M), and (2) if T; A= M: 7\C and A'(r) = A(r) for all r € Refs(M)
then T; A" M: 7\C.

ProoOF. Part 1 follows from Definition 3.17. Part 2 is proved by induction on

the height of type derivations using result 7 when necessary. |

Lemma 4.2 (1) If esc?(I', A,M) and T'(z) = T'(z) for all x € FV(M) then
esc?(I",A,M), and (2) if T;AF M: 7\C and I'(xz) = T'(x) for all x € FV (M)
then I'; A+ M:7\C.

PROOF. Similar to the proof for the previous lemma. [ |
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The following lemma says that types of variables in the term type context can be

generalised without affecting the type of a term.
Lemma 4.3 If'[z —» o; A+ M:7\C and o' > o, then [z — o'; A+ M: 7\C.

ProOOF. By induction on the height of the type derivation for M. See Wright
and Felleisen’s Lemma 4.6 [31]. i

In proofs for the Hindley-Milner polymorphic type discipline, a result saying
that
if ' M: 7 and S is a substitution then ST’ M : ST

is essential to prove a substitution lemma which, in its turn, is used to prove type
preservation ([28], [31]). The proof of such a lemma also requires a lemma saying

that substitution commutes with instantiation:
ifo > 1 and S is a substitution then So » ST.

We shall prove similar results for our type system in Lemmas 4.8 and 4.7 below.
We start by proving that the truth of our escaping predicates is preserved by
extended type substitutions.

Lemma 4.4 If esc?(o) and there is T\C such that o = 7\C and ZC is valid
then esc?(Z o).

PROOF. See Appendix A.2. ||

Lemma 4.5 Ifesc?(7\C) and ZC is valid then esc?(Z (7\C)).

ProoOF. Follows immediately from the previous lemma, considering 7\C' as a

constrained type scheme o with no bound type and locality variables. ||

Lemma 4.6 Suppose that esc?(I', A,M) and let Z be an extended type substitu-
tion. If for all v € Refs (M) with A(r) = Tref \C we have ZC is valid, and if
for all x € FV(M) there is T\ C such that I'(z) = 7\C and ZC is valid, then
esc?(Zl', ZA,M).

PROOF. From the definition of the 3-place predicate esc? (Definition 3.17) and
Lemmas 4.4 and 4.5. |

Extended type substitution commutes with instantiation of polymorphic-consistent

constrained type schemes:
Lemma 4.7 If o is polymorphic-consistent and o > 7\C, then Zo = Z(7\C).

PROOF. Similar to the proof of Lemma 2.16 in [28]. i
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In order to illustrate why such condition is necessary consider the following
example. Consider the constrained type scheme Vk.o* % o\ (). One readily
checks that

Ve.of 5o\ = o S5 af\D.
Now let Z = ({a — int ref ¢}, {}). We have that

Z (Ve.a S a"\0) = Vk'.a" 5 a®\0

and
Z (of 5 of\()) = intref® - intref °\},
but
Z (Vk.a® S o"\0) ¥ Z(a S a\0).

The reason why substitution fails to commute with the instantiation above
is that the type scheme Vk.a® -5 o*\( is not polymorphic consistent, that is, a
bound locality variable (k) labels a free type variable ().

Having proved that the truth of the escaping predicates and that the instan-
tiation relation are preserved by extended type substitution, our next step is to
prove that type derivability is preserved by extended type substitutions. Before
proceeding, we state another general assumption, this time about bound type and
locality variables:

Remark 4.1 We assume that, in a given context (e.g. type derivation, proof,
substitution) bound type variables are different from any other type variables ap-

pearing in the same context. Similarly for bound locality variables.

This is not a restrictive assumption since, as we have stated, we are equating a-
equivalent constrained type schemes and we assume the existence of a countable

infinite set of type and locality variables.

Lemma 4.8 (Type Substitution) If
1. T, AFM:7\C,
2. T' is polymorphic-consistent, and
3. ZC is valid

then ZU,ZAF M: Z(7\C).

ProoOF. By induction on the height of the type derivation of M. We present

proof details only for the interesting cases.
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case

case

x
We have that I'; A - z: 7\ C. By the rule for typing variables we have
['(z) = 7\ C. By the assumption that I" is polymorphic-consistent, I'(x) is
polymorphic-consistent. By Lemma 4.7 we then get Z (I'(x)) = Z (7\C),
which, because substitutions are applied pointwise to typing contexts, is
equivalent to

(ZT)(z) = Z (1\C). (4.1)

By assumption that ZC' is valid we can use (4.1) as premise for the rule for

typing variables and get

ZU5ZAFx: Z (1\O).

fnx.P
The type derivation for this case must have been of this form
[z — m\Ci];AF P: o\Cy (%)
F, AF fnx.P: T1 i) 7'2\01 U 02

where (x) represents the possible use of the predicate esc?(T'; A, fn z.P).

Since I' is polymorphic-consistent, we have

[[z — 7\ C1] is polymorphic-consistent. (4.2)

By the assumption that Z (C; U Cs) is valid it follows that

ZCy is valid. (4.3)

By the induction hypothesis with (4.2), (4.3) and the premise of the proof

above we get,
Z Lz n\Ci)); ZAF P: Z (15\Cy)

which is equivalent to

ZUx — Zn\ZC1|; ZA & P: Z1\ ZCs. (4.4)

If ¢ in the type derivation above is ¢, or ¢ is a locality variable x such
that Z!¢(k) = ¢ then we use (4.4) as premise for the rule for typing local
functions and we get

T3 ZA & fnz.P: 71 -5 Zm\Z2C, U ZC,,
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case

which is equivalent to

ZU,ZAF fnx.P: Z (1 2, 72\ C1 U Cy).

If ¢ = ¢, or ¢ is a locality variable s such that either Z"¢(k) = ¢ or Z'¢(k) is
another locality variable, we still have to prove that esc?(ZT", ZA,fn z.P).

For these cases
esc?(I', A,fn z.P) (4.5)

must have held in the type derivation above.

If y e FV(fnz.P) then I(y) > 7\C, for some I'" D T" and 7\ C, must be
at the leaves of any derivation tree for I'' A - fnz.P: 7 £> 7\ C1 U Cs.
Constraints are accumulated in the root so we know that C' C Cy U Cs. By
the assumption that Z (C; U Cy) is valid we have that ZC' is also valid. We
also have that I'(y) = I"(y). Hence, the following holds

for any y € FV (fnx.P) 3 7\C such that T'(y) > T\C and ZC is valid, (4.6)

and by a similar reasoning we also have that

for any r € Refs(fnx.P) if A(r) = Tref \C then ZC is valid.  (4.7)

By Lemma 4.6 with (4.5), (4.6) and (4.7) we then get

esc?(ZT', ZA,fnz.P). (4.8)

let £ =V in Pend

The proof derivation for this case must have been of this form

DARV:T\C" Tz~ Gen(7'\C",T,A);A+ N:7\C
[TAFlet z=Vin Nend: 7\CUC('

By the assumption that Z (C U (") is valid we have that
ZC" is valid, (4.9)

and
ZC is valid (4.10)

By the induction hypothesis with (4.9) and the first premise of the proof
above we get,
ZU; ZA RV Z(7'\C") (4.11)
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By Lemma 3.2 and the assumption that I' is polymorphic-consistent we

have that Gen(7'\C’,T', A) is polymorphic-consistent. Hence,
L[z — Gen(7'\C',T', A)] is polymorphic-consistent. (4.12)

By the induction hypothesis with (4.12), (4.10) and the second premise of

the proof above we get

ZU[x — Z Gen(7'\C'",T',A)|; ZAF N: Z (1\C). (4.13)
We have that

Z Gen(7'\C'",T',A) = Gen(Z (7'\C"), ZT, ZA) (4.14)

since
Z Gen(T'\C",T', A)
= Z(Yar.7\C")
= Var.Z (r'\C") by Remark 4.1
= Gen(Z(T'\(C"),ZT,ZA)

By (4.13) and (4.14) above we get
ZUx — Gen(Z(7'\C"), ZT, ZA)|; ZA+ N: Z (t\C U (C"). (4.15)

We then use (4.11) and (4.15) as premises for the rule for typing let expres-

sions to get
ZT;ZAFlet z=Vin Nend: Z (7\CUC")

as desired. ]

A substitution lemma is used when proving type preservation for the evalua-
tion rules which involve the substitution of a value for a variable in a term. In
their proofs of Subject Reduction (Type Preservation), Wright and Felleisen are
able to do with a single Substitution Lemma (Lemma 4.4 in [31]). In their S
transition the type of the variable is the same as the type of the value. In the
rule for let expressions the type of the variable is a generalisation of the type of
the value. For this reason only one lemma, assuming a quantified type for the
variable, is necessary. When the lemma is used in the proof of type preservation
for the g transition the type of the variable is treated as a quantified type with
no bound type variables.

Our introduction of constrained types though requires two such lemmas. The

crucial difference here is that the constraint sets in the constrained type of the
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variable and in the constrained type of the value are not known to be the same. A
single lemma is then not possible: a quantified version of the type of the variable
does not correspond to a generalisation of the value’s type.

We now present the first of our substitution lemmas. Before we give an aux-

iliary lemma which can be seen as a substitution lemma for the predicate esc?.
Lemma 4.9 Ifesc?(I'; A,M) and esc?(I'; A,V) then esc?(T; A,M[V/x]).
PROOF. By Definition 3.17 and the facts that FV (M[V/xz]) C FV(M)UFV (V)
and Refs (M[V/xz]) C Refs(M) U Refs (V). i
Lemma 4.10 (Polymorphic Substitution) If

e ' is polymorphic-consistent,

e ['[z— Gen(7'\C",T,A); A+ M:7\C

e x ¢ Dom(T),

e ARV T\C".
then T; A+ M[V/xz]: 7\C.
PrRoOOF. By induction on the height of the typing derivation for M.

case r
We have I'[z+— Gen(7'\C",T'; A)]; A r: 7\C. Then, as the type of r does
not depend on the type of z, we have I'; A Fr: 7\C, and as r = r[V/z] we
have I'; A Fr[V/x]: 7\C.

cases c and y, where y # x

Similar to the previous case.

case z
Let VA@R.7'\C" = Gen(7'\C",T, A) with [a@] = FTV(r')\ FTV (', A) and
[R] = FLV (') \ FLV (T, A). By the typing rule for variables, Va@g.7'\C" >
7\ C. By definition of instantiation (Definition 3.14), there exists Z =
(Ztre, Z%¢) such that Dom(Z%¢) = [a&], Dom(Z'"¢) = [K] and Z(7'\C") =
7\C. As C is valid by assumption it must be that

ZC" is valid. (4.16)
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case

By Lemma 4.8 with the assumption that I' is polymorphic-consistent and
(4.16) we get
ZU; ZA R V: Z(7'\C").

By the definition of the domains of Z'*¢ and Z%"¢ we have that ZI' = I" and
ZA = A. Then the type judgement above is equivalent to

ARV T\C,
and since V' = z[V/z], we have
A Fz[V/z]: 7\C.

fnz'.P

For some 71, 75, and some ¢, we have a type derivation of the form

[z — Gen(r'\C",T,A)][z' = 1 \C1];AF P: \Cy (%)
[z — Gen(7'\C",T', A); A+ fna'.P: 7 RN 7\ C1 U Cy

where (x) represents the possible use of the predicate

esc?(I'[z— Gen(7'\C', T, A)]; Ajfna’.P). (4.17)

Changing the order of the type assumptions we rewrite the first premise of

the proof above as

2" = 1 \Ci][z = Gen(7'\C',T,A); A+ P: 1\ Co. (4.18)

By Remark 4.1, we have FLV (r;\Cy) N (FLV (') \ FLV(T,A)) = ( and
FTV(r\Cy) N (FTV () \ FTV(T,A)) = 0. Hence

Gen(7'\C", T, A) = Gen(r'\C", T[z' — 7\ C4], A),
and we can then write (4.18) as
[z’ — 7 \Ci][z = Gen(7'\C'", Tz’ = 1 \C1], A); A F P: \Cy. (4.19)
Since I is polymorphic-consistent
L[z’ +— 17\ C1] is polymorphic consistent. (4.20)

By the variable convention, because z’ is bound in fnz'.P we have that

7 & FV(V), (4.21)
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and also
x # . (4.22)

By the assumption that © ¢ Dom(T") and (4.22) we have that

z & Dom(T[z' — 7\ C1]). (4.23)

By Lemma 4.2 and (4.21) we may weaken I' in the assumption I'; A F V':
7\ C' to get
Llz' = n\Ci;AFV:7\C" (4.24)

By the induction hypothesis with (4.19), (4.20), (4.23) and (4.24) above, we
get
F[.’L‘I — 7'1\01]; AF P[V/ZE] TQ\CQ.

We now have to consider the locality label ¢ associated with the function
type. Suppose ¢ = £. Then by the first type rule for abstractions using the
type judgement above as premise we get

F; AF fnx'.P[V/:c]: 1 _E) 7'2\01 U 02.
By (4.21) and (4.22) the type judgement above is equivalent to
F; AF (fnx'P)[V/x] 1 —£> 7'2\01 U 02.

Suppose instead that ¢ = € or ¢ = k. We have to prove that the predicate
esc?(l, A,(fn2’.P)[V/z]) holds. For this subcase 4.17 must have held in
the type derivation.

If ¢ FV(fn2'.P) then by Lemma 4.2 and (4.17) above we also have that
esc?(I'; A,fn2'.P), and because in this case fnz'.P = (fnz'.P)[V/z] we
also have esc?(I'; A,(fn z'.P)[V/z]).

On the other hand, if z € FV(fnz'.P) then by Definition 3.17 and (4.17)
above there is 7'\ C", such that Gen(7'\C',T',A) > 7"\ C" with C" valid
and esc?(7"). By Definition 3.14 there is a suitable Z such that Z(7\C') =
T”\C”.
By Lemma 4.8 and the assumption I'; A - V: 7'\ C”" we get

ZU; ZA R V: Z(7\C"),

By the way Z is defined, we have ZI' = I' and ZA = A. The type

judgement above is then the same as

ARV T\C"
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Because esc?(7"), by Lemma 3.7 we get that esc?(I'; A,V'). By the assump-
tions that z & Dom(T) and T'; A+ V: 7'\ C’, we have that x ¢ FV(V), by
Lemma 4.2 we then get

esc?([[z— Gen(7'\C",T', A)]; A, V). (4.25)
By (4.17) and (4.25) above and by Lemma 4.9 we have
esc?(L[z— Gen(7'\C',T', A)]; A,(fn2'.P)[V/x]).
As z ¢ FV((fna'.P)[V/x]), by Lemma 4.2 we finally conclude

esc?([; A,(fn 2’ .P)[V/z]).

case rec fx'.P

Similar to the case for function abstractions.

case (P, Q)
Suppose [V = I'[z+— Gen(7'\C', T, A)]. We then have a proof of the form

IMMAFP:m\C; THAFQ:\Cy
IMAF(P,Q): 1 x?1p\C1 UCyUCsUCy

where :
C; ={¢ <lab (n1)}, if lab (1) is defined, C35 = 0 otherwise
Cy = {¢ <1lab (1)}, if lab (r2) is defined, Cy = 0 otherwise

Applying the induction hypothesis to the premises in the proof above, we
have I'; A + P[V/x]: 1 \C1, and T; A F Q[V/x]: 72\ Cs. By the rule for

pairs with these two type judgements as premises we conclude
F; A (P[V/:E], Q[V/.’E]) ] X¢ 7'2\01 U 02 U 03 U 04,
which is the same as ['; A = (P, Q) [V/x]: 1 x? 15 \C1 U Co U C3 U Cy.

cases P (Q and if N then Pelse

Similar to the previous case.
case let 2/ =V'in Qend
The derivation of the type judgement is of the form

ARV "\C" T'x'—ol;AFQ:T\C"
["Atlet 2/ =V'in Qend : 7\C" U C"

where I = I'[z+— Gen(7'\C",T', A)] and 0 = Gen(7"\C",I", A).
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By the induction hypothesis and the first premise above
ARV V/a): 7"\ C". (4.26)

We may write the second premise in the proof above as
Iz’ - o]z Gen(T'\C", T,A); A+ Q: 7\C". (4.27)

Now we have
FLV (o) C FLV (L', A) (4.28)

since

FLV (o

FLV ()N FLV (I'[z — Gen(7'\C'",T,A)], A)
FLV (") (FLV (') U FLV (Gen(7'\C",T, A)
FLV (L) U FLV (Gen(7'\C",T, A)) U FLV (A)
FLV (D) U (FLV (') N FLV (T, A)) U FLV (A)
FLV (L, A).

)U FLV(A))

NN

With a similar derivation we can also prove that
FTV (o) C FTV(T,A). (4.29)
Hence, with (4.28) and (4.29) we get
Gen(T'\C",T[z' — o], A) = Gen(r'\C',T, A). (4.30)
By Lemma 4.3 with (4.27) and (4.30) we get
[[z' — o[z — Gen(7'\C", T[z' — o], A);AFQ: 7\C". (4.31)
Since z’ is let-bound, by the variable convention we have that
¥ g FV(V), (4.32)

and also
t £ . (4.33)

By Lemma 4.2 and (4.32), we may weaken I" in the assumption I'; A + V':
7'\ C' to get:
Lz’ = o; AEV:\C". (4.34)

By (4.33) and the assumption that x ¢ Dom(I') we have that
x & Dom(T[z' — o]). (4.35)
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By assumption that ' is polymorphic consistent and Lemma 3.2 we have
that Gen(7'\C’,T', A) is polymorphic consistent. Hence, because I'[x +—
Gen(7"\C'",T', A)] is polymorphic consistent and Lemma 3.2 we have that

o is polymorphic consistent, consequently

['[z — o] is polymorphic consistent. (4.36)

By (4.31), (4.36), (4.34), (4.35) and by the induction hypothesis we get
Lz’ = o A+ Q[V/z]: T\C". (4.37)
By assumption, z ¢ Dom(I'), so
Gen(T"\C",T',A) = Gen(7"\C",T[z— Gen(7'\C', T, A)],A). (4.38)
Hence by Lemma 4.3, with (4.37) and (4.38)
[[z' = Gen(7"\C", T, A); A+ Q[V/z]: T\C". (4.39)

By the first typing rule for let using (4.26) and (4.39) above as premises

we have
[;AFlet ' = V'[V/z]in Q[V/z] end : 7\C" U C".
By (4.32) and (4.33) the judgement above is equivalent to

AR (let o/ =V'in Q)[V/x]end : 7\C" U C™.

case let 7' = @ in Pend, where @ not a value

Similar to the case for functions. [ |

Unlike the Polymorphic Substitution lemma, our other substitution lemma
assumes an unquantified constrained type scheme for the variable z to be substi-
tuted.

Before proving the ordinary substitution lemma below we need the following

two auxiliary lemmas.

Lemma 4.11 IfT'[z — VAR.7T\C); A+ M: 7\C', CUC" is valid and FLV (C")N
[K] =0 then Uz — VART\CUC"; A+ M: 7'\C", for some C" C C'UC".

PROOF. By induction on the height of the type derivation (see Appendix A.2).1
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Lemma 4.12 If 'z — VarR.T\C|;A = M : 7'\C" and C" C C then 'z —
Var.T\C"|; A+ M: 7'\C", for some C" C C".

PROOF. By induction on the height of the type derivation (see Appendix A.2).H

Lemma 4.13 (Ordinary Substitution) If
o I'lz— 7\C'; A+ M:7\C with C' valid,
e ¢ Dom(l') and
e ARV F\C
then T;AF M[V/x]: 7T\C", for some C" CCUC".
PROOF. By induction on the height of the typing derivation for M.

case r
We have T'lz — 7'\C']; A F r: 7\C. The type of r does not depend on
the type of . By Lemma 4.2 we then conclude I'; A F r: 7\ C which, as
r =r[V/z], is the same as ['; A - r[V/z]: 7\C. Note that C C C U (",

cases c and y, where y # x

Similar to the previous case.

case x
By the assumption that C' is valid we have I'[x — 7'\C'; A F z: 7'\C". By
the assumption I'; A F V: 7\C" and as V = z[V/z], we get ['; A F z[V/x]:
7\ C". Note that C" C C'UC".

case fna'.P
We have a proof of the form

Lz — 7'\C'[z' = 1 \C1|; AF P: \Cy (%)
Pz — 7\C";AF fnz'.P: 1y 2, 7\ C1 U Cy

where the possible use of the predicate esc?(I'[z — 7'\C']; A,fnz'.P) is
marked by ().

We may write the premise of the proof above as
L[z’ = 7 \Ci][lz — 7\C']; A+ P: 1\ Cy. (4.40)
By the variable convention, as z’ is bound in fnz’.P we have that

7 & FV(V), (4.41)
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and
T #x. (4.42)

By (4.41) can weaken I' in the assumption I'; A = V: 7\ C" and get

L' = n\Ci; AEV: 7\ C" (4.43)

By the assumption that ¢ Dom(T") and by (4.42) we have that

r & Dom(T[z’ — 7\ C1]). (4.44)

By the induction hypothesis with (4.40), (4.44) and (4.43) we get
[[z' — 7 \C1]; A+ P[V/x]: ,\C3 where C3 C Co UC". (4.45)

Constraint sets C; and C3 are valid, so by Lemma 3.1 we have that C; UCs
is also valid. Suppose the locality label ¢ from the proof above is £. Then
by the first typing rule for function abstractions using (4.45) above we get

AR fn2' . PlV/z]: 7y N 7\ C1 U Cs.

By (4.41) and (4.42) the type judgement above is equivalent to
F, A (fn.TIP)[V/SL'] 1 £> TQ\Cl U 03.

Note that
01 U 03 Q 01 U (02 U C”) by (445)

(CruCy)ucC”.
Suppose instead that ¢ is € or a locality variable. Then we must also show
that esc?([, A,(fn 2. P)[V/z]).
For this subcase
esc?([[x — 7'\C']; A,fn 2'. P) (4.46)
must have held in the type derivation.

If x ¢ FV(fna'.P) by Lemma 4.2 and (4.46) we have esc?(I'; A,fnz'.P)
and because fnx'.P = (fnz'.P)[V /x| we get esc?([; A,(fn2'.P)[V/x]).

Suppose z € FV(fn z'.P). By (4.46) and Definition 3.17 we have that
esc?(7'). By the assumption I'; A - V: 7'\ C" and Lemma 3.7 we get that
esc?(I'; A,V). By the assumptions that z ¢ Dom(I") and I'; A = V: 7'\ C”
we know that x ¢ FV (V). Then, by Lemma 4.2 we get

esc?(C[x — 7'\C']; A,V). (4.47)
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By (4.46) and (4.47) above and by Lemma 4.9 we get that
esc?([[z — 7'\C"]; A,(fn 2'.P)[V/x])
and, as € FV((fnz'.P)[V/z]), by Lemma 4.2 we finally conclude

esc?(T; A,(fn2'.P)[V/x]).

case rec fx.P

Similar to the previous case.

case (P, Q)
The proof of the type judgement must have been of the form

[lz— 7\C';AFP:7\C; Tz 7\C;AFQ: \Cs
Lz — 7"\C'; AF (P,Q): 171 x?\C,UCyUC3U Cy
where :
C3 ={¢ <lab (1)}, if lab (1) is defined, C3 = () otherwise
Cy = {¢ <lab (rn)}, if lab (r2) is defined, C, = 0 otherwise

By the induction hypothesis and the first and second premises above re-

spectively we get
;A PV/z]: m\C{" where C{" CC,UC" (4.48)

and
LA QIV/z]: »\CY  where Cy' C CoUC”. (4.49)

By Lemma 3.1 we have that C)' U C}" U C3 U Cy is valid. Then by the
typing rule for pairs using (4.48) and (4.49) as premises we have that ['; A -
(P[V/z],Q[V/z]) : 1 x? ,\C}" U CY' U C3 U Cy which is equivalent to

AR (PQ)[V/z]: i x? \C"UCY UCs UC,.

Note that

CrucyuCsuC,
C (CLuC"U(CouC")yUC3UCy by (4.48) and (4.49)
= (C1UCUC3UCy)UC".

cases P () and if N then Pelse )

Similar to the preceding case.

case let 7' = V'in (Qend
We have a proof of the form
Pz = 7\C';AEV":,\Cy Tz 7\Cz'—o];AFQ:7\Cs
[z — 7 \C';AF let 2’ =V'in Qend : T\C, U Cs
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where 0 = Gen (4 \Cy, [z — 7'\ "], A).
By the induction hypothesis and the first premise above

LA R VIV/z): 4\ Cy, (4.50)

where

C,cCc,uC”. (4.51)

Changing the order of the type assumptions we may write the second

premise of the proof above as
2" — Gen(t4\Cy, [z — 7'\C', A)][z — 7'\C'; A+ Q: 7\C5. (4.52)
By assumption, z ¢ Dom/(T’), so
Gen(14\Cy, T, A) = Gen (4 \Cy, L[z — 7'\ C'], A). (4.53)
By Lemma 4.3 with (4.52) and (4.53) above we get
(2" — Gen(m4\Cy, T, A)|[z — 7'\C'; A+ Q: 7\Cs. (4.54)

Hence by Lemma 4.11, the general assumption about bound locality vari-

ables (Remark 4.1) and the type judgement above we get
L[z’ — Gen(m,\Cs UC" T, A)][z — 7\C"; A+ Q: 7\Cs, (4.55)

where
Ce CCsUC". (4.56)

By Lemma 4.12 with (4.51) and (4.55) we have
(2" — Gen(m\C}, T, A)|[z — 7'\C'l; A+ Q: 7\C7, (4.57)
where
Cr C Cs. (4.58)

Since 7' is 1let-bound, by the variable convention, it does not occur in V.
By Lemma 4.2, we may weaken I' in the assumption I''A F V: 7'\ C” to
get:

[[z' = Gen(m \Cy, T, A);A - V:\C" (4.59)

By the induction hypothesis with (4.57) and (4.59) above we get
[z’ — Gen(m4\Cy, T, A)]; A F Q[V/x]: 7\Cs, (4.60)
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where
Cs CCruC". (4.61)

By the first typing rule for let using (4.50) and (4.60) above as premises
we get
[AFlet o/ = V/[V/z]in Q[V/x]: 7\C} U Cs.

By the variable convention, 2’ # x and 2’ ¢ FV (V). The type judgement

above is then equivalent to

[5AF (let ' =V'in Q)[V/z]: 7\C}y U Cs.

Note that
CiuCs C (CouCU(CruC" (4.51) and (4.61)
C (C,uCmuU(CeuC™) (4.58)
C (CyuCU((CsuC™yuC”) (4.56)
= (CLUCs)ucC”.
case let ' = Pin () end
Similar to the previous case. [ |

Lemma 4.14 (Context-filler Type) IfI'; A+ E[M]: 7\C, then there exist 7’
and C" such that T; A+ M: 7'\ C".

PROOF. By the construction of derivations of type judgements.

Since M is a subterm of E[M], the proof that I'; A - E[M]: 7\C must contain
a subproof assigning a constrained type to the occurrence of M in the context
hole. We want to show that in that subproof, the term type context is I' and the
store type context is A. By an easy induction on the height of type judgement
proofs, the store type context at any subproof is the same as that at the root.
Term type contexts may be extended at subproofs, though. The only instances
in the typing rules where term type contexts are extended are when typing the
bodies of functions and the bodies of let’s. By the grammar for contexts, the
hole in E[] can occur neither in a function body nor in the body of a 1let. So the

term type context for typing the occurrence of M in the context hole must also
be I |
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Lemma 4.15 (Derivation Pasting) Suppose I'; A+ E[M]: 7\C, and the proof
of this type judgement contains the subproof Ty A+ M: 7'\C" for the occurrence
of M at the location of the context hole. Then if T; A+ N: 7'\C", there ezists
C" such that T; A+ E[N]: 7\C".

ProOOF. By replacement of the subproof giving the constrained type of M at
the context hole with the proof giving the constrained type of N, and the facts
that constraints accumulate towards the root of typing derivations and that the

validity of constraint sets is closed under union according to Lemma 3.1. |

A similar lemma appears in [31], based on the lemma in [16, p. 181]. We
extend the result to handle constrained types.

There is a small subtlety here not found in the other versions of the lemma
mentioned above. Suppose the replaced subproof involving M contains a use of
the 3-place version of esc?. How do we know that the predicate holds when
typing N7 By inspection of the typing rules, the 3-place version of esc? is used
only when typing function bodies. Context holes do not occur in function bodies;
hence the predicate is not used when typing M.

The next definition states the requirements for a store typing context to be a

typing for the references in the domain of a store.

Definition 4.1 A store type context A respects a store S given a term context
I iff

e Dom(S) C Dom(A),

o for all v € Dom(S), there erists T such that

1. T;AF S(r): 7\C for some constraint set C, and

2. A(r) = Tref ®\C' where C' is valid and, if lab (1) is defined, then
{¢ <1lab (1)} is in the transitive closure of C'.

The next theorem says that types are preserved by sequential evaluation. We then
use this result to prove type preservation for concurrent evaluation. Observe that
the theorem below says that only the type part of constrained types are preserved
by evaluation. The sets of constraints remain valid but they can be different.
There is no specific relation between the sets of constraints because the rule Deref
introduces a value in the right-hand side of the transition, and the constraint
set of its constrained type has no specific relation with the constraint set of the

reference in the left-hand side of the transition. We hope this point will become
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clearer when looking at the proof of the theorem below, in particular to the proof
case for the Deref transition.

We say that A’ extends A iff Dom(A') O Dom(A) and for all r € Dom(A),
A'(r) = A(r); we write A’ O A to indicate this relation.

Theorem 4.1 (Sequential Type Preservation) Let S be a store and A a
store type context respecting S given I' a polymorphic-consistent term type con-
text. Suppose T; A = M : 7\C and suppose also that S, M ?qf“ S' M'. Then
there exist A" and C' such that

e A'DA,
o A’ respects S' given I' and
e NA'FM':T\C".

PrRoOOF. By induction on the length of sequential evaluation.

If ?q>* represents zero evaluation steps, the results hold by assumption.
For the induction, consider the last evaluation step. Suppose S, M ?qf“ S" M"
and let the last step be S”, M" w7 S', M'. The term M" is not a value so, by
Lemma 2.1, it can be uniquely represented as E[N"] where N" is a redex. We then
consider transitions of the form S”, E[N"] o S', E[N'], where E[N"] = M"
and E[N'] = M'. By the induction hypothesis, there are A” and C” such that
A" D A, A" respects S” given I', and I'; A” = E[N"]: 7\ C".

For each transition, we have to produce a A’, and show that it has the stated
properties. Using that A’ we need to find a type derivation for M’.

In all transitions where S’ = S” we choose A’ to be A”. For these cases the
facts about A’ follow from the induction hypothesis. For the assign case the
store can be modified but we also choose A’ to be A” so A’ D A holds by the
induction hypothesis, and we shall prove that A” respects the modified store. For
the ref case we will construct a suitable A'.

For any of the above choices of A’, we have A’ O A”, so by Lemma 4.1 I'; A’ -
E[N"]: 7\C". By Lemma 4.14, there are 7" and C3 such that I'; A’ = N": 7'\ C;.
If we can also show that I'; A"+ N': 7'\ Cy where Cj is some constraint set, then
by Lemma 4.15, there exists C’' such that T'; A’ - E[N']: 7\ C'. So for each case
below, we derive a suitable constrained type for the term in the context hole on
the right hand side of the transition.

case Succ
We have the judgement I'; A’ - succ n;: int\@. The judgement I'; A’ -

niy1: int\ @ follows from the typing rules.
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cases Pred, Zero-True, Zero-False

Similar to the case for Succ.

case Fst
We have a proof of the form:

typeof (fst) > ... DA RV I\Cy T;A RV 7"\Cs

A" Ffst:... TUA'F WV, VD1 x¥ 7"\ C,UCsuC"UC™
T, A F st (V,VD:7\CiUC,UC" UC”

where :
1.C" = {¢ <lab ()} or C" = f lab () is undefined
2. 0" ={¢' <lab (")} or C" =0 if lab (7") is undefined

By this proof we have that I'; A"+ V: 7'\ Cy.

case Snd

Similar to the previous case.

case [
We have a proof of the form:
[z — 7"\C5]; A’ - P: 7'\ Cs (1) (%)

A" fng. P 7" RN T\ Cs U Cs LA EVr"\Cr (2)
[A'"E (fnz.P) V:7'\C5 U Cs U Ct

where () indicates a possible use of the three-place version of esc?. By
the bound variable convention, as z is bound in fnx.P, we have that x &
Dom(T'). Then by the judgements marked (1) and (2) and by the Ordinary
Substitution lemma we get I'; A"+ P[V/x]: 7'\ Cy for some Cj.

case Rec-Unroll

We have a proof of this form:

T[fs7" 5 7\Cyllz— " \C]; A"+ P: 7\Cs (1) (%)

A" rec fo. P 7" 4 T\C;UCsUC5 (2) A" VEr"\Cy (3)
A" (rec fo.P) V:m'\C7 U Cs U C5 U Cy

where (x) indicates a possible use of esc?.

We need more complicated reasoning here than we used in the S case. Let
us rearrange the order of the term type context in the premise marked with

(1) in the proof above to get:

Tz — 7"\Cs][f = 7" % 7\Ci]; A+ P: 7\ Cs. (4.62)
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Since z is bound in rec f z.P, by Lemma 4.2 and the premise marked (2)

in the proof above we get
[z — 7"\C¢|; A’ +rec fz.P: 7" 2 7\C7 U Cs U Cs. (4.63)

By the variable convention, as f is bound in rec f x.P we have that f &
Dom(T'[xz — 7"\Cs]). This fact together with (4.62), (4.63) and the Ordinary

Substitution lemma give us that for some Cjy
L[z — 7"\ C]; A’ - P[rec f x.P/ f]: 7'\ Cs.

By Lemma 3.1 we have that Cs U Cy is valid. With the judgement above as

premise for any of the typing rules for functions in Figure 3.2 we get
A" fnx.Pl(rec fx.P)/f]: " 4 7'\ Cs U Cs.

Since bound variables are distinct, f # z, so we may rewrite the judgement

above as
;A& (fnz.P)|(rec f2.P)/f]: 7" % 7\ Cs U Cs.

By Lemma 3.1 we have that Cg U Cg U Cy is valid. Hence we can use the
judgement above and the premise (3) from the proof above as premises for

the rule for typing applications to conclude

[A"F (fnx.P)[(rec fz.P)/f] V:71'\CsU Cs U C.
cases Cond-True, Cond-False

Similar to the case for Fst.

case Ref

For any A’ O A” we have a proof of the form

A" ref . 7" ﬂ) ™ ref <’5\6'6 A"V 7"\ Cs
[A"Fref Vi7" ref ¢\C@- U Cs

where Cs = {¢ < lab (7")}, if lab (7") is defined.

On the right-hand side, the context-filler is a fresh reference r. We define
A’ to be A"[r — 7" ref ?\Cg]. Hence by the rule for typing references we
get [; A’ r: " ref ?\Cs.

We still have to show that A’ respects S’ given I'. By the induction hypoth-

esis, A" respects S” given I', so we only have to handle the fresh element
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case

case

case

r in Dom(S’). By the above proof, I'' A’ = V: 7"\ C5 and as S'(r) =V
we also have I'; A’ = S'(r) : 7"\ Cs. From the proof above we know that
{¢ < lab(r")} C Cs if lab (") is defined. Since A'(r) = 7" ref *\Cs, by
Definition 4.1, A’ respects S’ given I.

Deref
The left-hand side term in the context is deref r. We have a type derivation
of the form:

typeof (deref ) > 7' ref ? ?, 7\ 0

T; A’ - deref : 7' ref ¢ 2, T\0 T;A"F 7 ref \Cy
I A"+ deref r: 7'\ Cj

On the right-hand side, the evaluation context becomes filled by S’(r) which
is the same as S”(r). By the induction hypothesis A’ respects S’ given T'.
From the derivation just given, A’(r) = 7' ref ®\C; hence, by Definition 4.1
we have that ['; A’ = S'(r): 7'\ Cy for some Cj.

Assign

For this case we choose A’ to be the same as A”. We have I'; A’ F r .=
V : unit\ C; for the left-hand side term filling the context, and I'; A"
unit: unit\(@ for the right-hand context-filler. We still need to show that
A’ respects S’ given I

For the term filling the context in the left-hand side, we have a derivation

of the form
typeof (=) > ... DA Fr:mref\C) (1) T;A'FV:m\Cy (2)
DA b= ... T;AF @ V) imref? x¥m\CLUC,U{¢' < ¢} UCy
DA Fr =V :unit\CLUCyU{¢ < ¢} UCs
where:

C3 ={¢ <1lab (1)}, if lab (1) is defined, C3 = () otherwise

From (2) in the proof above, and as S'(r) = V we have I'; A" = S'(r) : 7\Cb.
By (1) in the proof above A'(r) = 7 ref ?\C;. In order to satisfy the
requirements of Definition 4.1, we must also show that if lab (7;) is defined,
then ¢ <lab (71) € C;. By the induction hypothesis, A” respects S” given
I. Since A'(r) = A"(r) = 7, ref ?\C; the required condition on C; holds.

Let
The typing derivation for the left-hand side term is of the form:

A" V:7"\Cs Tz o]; A’ N:7'\Cs
[A'"Flet x =Vin Nend : 7'\C5 U Cg
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where 0 = Gen(7"\Cs, ', A).

By the bound variable convention, as x is bound in 1let z =V in N end we
have that x ¢ Dom(I"). Hence, by the Polymorphic Substitution lemma, the
two premises of the proof above and the assumption that I' is polymorphic
consistent we have that I'; A+ N[V/z]: 7'\ Cs U C. [ |

The following theorem says that the type of threads is preserved by concurrent
evaluation. It also says that threads continue across evaluation, remaining on the

same processor where they are created, and that new threads have type unit.

Theorem 4.2 (Concurrent Type Preservation) Let S,II be a configuration
and A a store type context respecting S given a polymorphic consistent term type
context I'. Let p be any thread identifier in Dom(I1) and I1(p) = (p, M) for some
processor p and term M. Suppose that T; A = M : 7\ C. Suppose also that
S,II —* S",II'. Then II'(p) = (p, M") for some term M' and there are A" and
C' such that:

e A'DA,
e A’ respects S' given T,
e NA'FM':7\C" and

e for any thread ¢ € Dom(Il') — Dom(II), there is C" such that T'; A"+ N':

unit\C” where N' is the term associated to q in IT.

PrOOF. By induction on the length of the reduction sequence.

By inspecting the evaluation rules in Figure 2.2 we see that once a thread
is created, it continues across each evaluation step. Moreover, threads remain
on the processor where they are created. Those facts gives us the result that
I'(p) = (p, M") for some M'.

If —* represents zero evaluation steps, the results about A’, C' and the
type of M’ hold by assumption. The result about new threads holds trivially.

For the induction, consider the last evaluation step. Suppose S,II —* S" II",
and let the last step be S, 11" —» S',II'. By the induction hypothesis, for any
p € Dom(II") with I1"(p) = (p, M"), for some M", there are A” and C" such
that A” O A, A” respects S” given I', and I'; A" = M": 7\ C".

We have to prove the existence of A’ with the required properties. Whatever
this suitable A’ is, it should be such that A’ D A”. So, if p does not change from
the left to the right side, M’ = M" and by Lemma 4.2 we get ['; A’ = M': 7\C"".
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We now proceed by case analysis on the last step, considering only threads

that change.

case

case

case

4.2

Seq

This transition has the sequential transition S”, M" e S', M' as premise.
By the Sequential Type Preservation theorem there is C' and A’ O A", with
A’ respecting S’ given I, such that I'; A"+ M': 7\C'.

The result about the type of new threads holds trivially for this case as
Dom(Il') = Dom(I1").

Fork

In this transition S = S” so we choose A’ to be A”. By the induction
hypothesis we have A” O A and A” respects S” given I'. Since A" = A’
and S” = S’ we have A’ D A and A’ respects S’ given I'. We now examine
the threads that change.

For the parent thread: by the induction hypothesis we have the following
type judgement: I'; A’ - E[fork fnz.P]: 7\C". By Lemma 4.14 we have
that I'; A’ - fork fnz.P: unit\Cj3 for some Cs. As I'; A’ - unit: unit\0,
by Lemma 4.15 there exists C’ such that ['; A’ = Efunit]: 7\ C".

For the child thread Plunit/xz]: the typing derivation for the judgement
[ A’ fork fnz.P: unit\Cs must have been of this form:

typeof (fork) > ... [z +— unit\Ci]; A’ = P:unit\Cy (x) (1)

T:A'F fork : ... T;A'F fn2.P: unit 5 unit\C) U Cy
[ A"k fork fnz.P:unit\C) U Cy

where (%) marks the possible use of the predicate esc?(I', A',fnz.P). By
the bound variable convention, as z is bound in fnx.P we have that z ¢
Dom(T"). Then by the premise marked with (1) in the typing derivation
above and as I'; A’ - unit: unit\{), by Lemma 4.13 (Ordinary Substitution)
we conclude that T'; A"+ Plunit/z]: unit\C"”, for some C".

Rfork

Similar to the Fork case. [ |

Faulty Threads are Untypable

In the previous section we proved that if the term associated to a thread has a

type,

this type is preserved by the reduction rules. This is not enough to prove
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type soundness of the type system with respect to the operational semantics.
We still have to prove that if evaluating the term associated to a thread in a
given configuration leads to a configuration in which the thread is faulty (see
Definition 2.1) then the term is untypable.

As an example consider the following reduction sequence
S,[p:p, (fnz.z true) succ] — S,[p:p, succ truel.

The evaluation of the thread p in configuration S,[p : p,(fn z.z true) succ]|
leads to the configuration S, [p : p,succ true] where p is a faulty thread. One
can easily show that the term succ true is untypable. Because we proved last
section that the relation —— preserves types, the term (fnz.xz true) succ is
also untypable.

If arbitrary configurations are allowed, then some threads may be faulty, even

if typable. Consider this example
S,[p:p, (fnz.z y) succ] — S,[p: p, succ yl.

As before, the evaluation of p in configuration S,[p : p, (fnz.z y) succ] leads
to the configuration S, [p: p, succ y] where p is faulty. But one can easily show
that I'; A F succ y: int\C for any A and any I' such that I'(y) = int\C.
Another example is

[r'+ 3],[p: p, (fnz. succ (deref z)) 7] —> [+ 3],[p: p, succ (deref r)].

The evaluation of thread p in configuration [’ — 3|, [p : p, (fnz. succ (deref z)) 7]
leads to a configuration where p is faulty (in this case the thread is faulty because

r & Dom([r' — 3])). But again I'; A I succ (deref r): int\C for any I' and A
such that A(r) = int ref ?\C.

Next we define what we call well-formed configurations and then we prove
that if a thread is faulty in a well-formed configuration then its associated term
is untypable. This is not a restrictive assumption since, as we also prove later,
well-formedness is preserved by evaluation and, according to Definition 2.5, all
the computations of a program start in a well-formed configuration.

We first define what we mean by a store to be well-formed:

Definition 4.2 S is a well-formed store if for all terms M € Range(S), if r €
Refs (M) then r € Dom(S).

The set of store locations appearing in a thread map II is given by

Refs(IT) = {r | r € Refs(M) and I p such that II(p) = (p, M)}.
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The set of free variables appearing in II is given by
FV(I)={z | x € FV(M) and 3 p such that II(p) = (p, M)}.

A configuration S,II is well-formed if S is well-formed and all terms in II are

closed and have their reference subterms mapped in store.

Definition 4.3 S,II is a well-formed configuration if S is a well-formed store,
FV(II) = 0 and Refs(II) C Dom(S).

Well-formedness of configurations is preserved by evaluation:

Lemma 4.16 If 5,11 is a well-formed configuration and S,1I —* S, II' then
S' 11" is well-formed.

ProoF. By induction on the number of evaluation steps. ||

Finally, combining the type preservation theorems with the following lemma

we achieve type soundness for our type system.

Lemma 4.17 (Faulty Threads are Untypable) If p is a faulty thread in a
well-formed configuration S,I1 and I1(p) = (p, M) then M is untypable.

PrOOF. By Definition 2.1 the term M is not a value then, by Lemma 2.1 it can
be uniquely decomposed as E[R] where R is a redex. We have to prove that there
are no A and no constrained type 7\ C such that A - E[R]: 7\C. We assume
that there is such typing for F[R]| and we try to get a contradiction from this. By
Lemma 4.14 we have that A = R: 7'\ C" for some type 7' and constraint set C'.

Since S, 11 is well-formed, p is faulty iff R is an improper redex, that is, R is
a redex of one of these forms:

1. pred V, succ V, zero? V where V' is not a numeral,

2. fst V, snd V where V is not a pair of values,

3. deref V, where V is not a reference constant,

4. Vi := V5, where V; is not a reference constant,

5. fork V, rfork,V where V is not a function abstraction,
6. if V then M else N where V is neither true nor false,

7. V1 V5 where V; is neither a function constant nor a function abstraction.

It is easy to show that if R has one of the forms above it is untypable. As a

consequence E[R] is also untypable. i
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4.3 Type Soundness

Here we finally prove that the type system is sound with respect to the operational
semantics. In fact, the main result of this section is only part of the soundness
result as it does not take into account if the locality information labelling types
is sound with respect to the operational semantics. Locality soundness is proved
in the next chapter.

The following type soundness theorem encompasses all possible computations
of a program P, so it applies to the initial thread and to all possible new threads
created along evaluation. In the following we say that a program P is well-typed

if = P:7\C for some constrained type 7\C.

Theorem 4.3 (Syntactic Type Soundness) Let P be a well-typed program,
T be any trace in Comp(P), and p be any thread in Threads(T). Suppose S;, II;
18 the configuration of T where p occurs for the first time and let M be the term
associated with p in 11;. Then there exist A respecting S;, T and C such that
AF M:7\C and either:

e pir or

e plr V and there are A" O A and C' such that A" =V :7\C".

PRrROOF. All traces in Comp(P) start in a well-formed configuration (3, ITy where
[Ty = [po : (po, P)]- The existence of A respecting S;, 7 and C such that A+ M:
7\C follows from the Concurrent Type Preservation theorem (Theorem 4.2). By
the Uniform Evaluation lemma (Lemma 2.2), we know that either p {tr, p 41 V
or p is a faulty thread in a configuration of 7.

First we prove that p is never faulty. We suppose that p is faulty in a con-
figuration S;,1I; of T, for some j > 4, and we try to get a contradiction from
that. By Lemma 4.16 the configuration S;,1I; is well-formed. Suppose that
II;(p) = (p, M'). By the Concurrent Type Preservation theorem there are A’
respecting S; and C’ such that A’ = M': 7\C". But this contradicts Lemma 4.17
so p cannot be a faulty thread in any configuration of 7.

If p ft+ we are done.

Ifpyr V: let Sy, 11, n > i, be a configuration in 7" such that IT,(p) = (p, V).
By the Concurrent Type Preservation theorem there are A’ respecting S,, and C’
such that A" V: 7\C". i

In order to state a more traditional soundness result we need the following

definition
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Definition 4.4 (eval) For a computation T, define the evaluation of a thread p

m T as:

wrong if p is a faulty thread in a configuration of T
walr®) =y e V.

With this definition we can state weak and strong soundness results.

Theorem 4.4 (Weak Type Soundness) Let P be a well-typed program, T be
any trace in Comp(P) and p be any thread in Threads(T). Then evalr(p) #

wrong.

PrOOF. By Theorem 4.3 and Definition 4.4. |

Theorem 4.5 (Strong Type Soundness) Let P be a well-typed program, T be
any trace in Comp(P), p be any thread in Threads(T), S;,I1; be the configuration
of T where p occurs for the first time and let M be the term associated with p in
II; such that A+ M : 7\C for A respecting S;. Then if evalr(p) =V, there is
A" D A and C" such that A"FV:7\C".

PROOF. By Theorem 4.3 and Definition 4.4. [ |
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Chapter 5

Locality Soundness

We call local references those references whose types are labelled with ¢ or with a
locality variable. In this chapter we prove the claim made in Chapter 3 that local
references are certain not to escape according to the operational semantics. This
property, which we call Locality Soundness, together with type soundness proved
last chapter, completes the result that our type system is sound with respect to

the operational semantics given in Chapter 2.

5.1 Notions of Reachability

We define three notions of reachability of local references that will be used to state
locality soundness and we prove some of their properties.
The first notion is the set Reach®(M) of reference constants of M which are

local according to store type context A. We define this set as follows:
Reach®™(M) = {r € Refs(M) N Dom(A) | lab (A(r)) # ¢}.

The following lemma says that if the type of a value is escaping then it has

no local references as subterms.
Lemma 5.1 IfT;AFV:7\C and esc?(r) then Reach™(V) = (.

PROOF. By the assumptions I'; A+ V': 7\C and esc?(7) we have, by Lemma 3.7
that esc?(I'; A,V), then by Definition 3.17, for all r € Refs(V), lab (A(r)) = e.
Hence Reach™(V) = 0. i

The set of reachable local references from a term M with respect to S and A

is given by the following recursive definition:

Reach™®(M) = Reach®(M) U U Reach™5(S(r)).
r € Refs(M)nDom (S)
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More formally, Reach™"? is the least fixed point of the functional FA5: D — D
defined by

FAS(f&9)(N) = Reach®(N) U U FA5(8(r))
r € Refs(N)nDom (S)

where D is the set of functions from terms of the language to sets of references,
ordered by f&5 Cp g™ iff f&5(M) C g™%(M) for all terms M. The least fixed
point exists because D is clearly a directed complete partial order with a least

element | &

AM. 0, and one readily checks that F*° is continuous.
The following lemma says that, under certain conditions, if the type of a value

is escaping then no local references can be reached from it.

Lemma 5.2 Let A be a store typing context respecting S given a term type con-
text T, and let V be a value. IfT; A+ V:7\C and esc?(7) then Reach™* (V) = (.

pAS

PROOF. We prove by fixed point induction [29] that Reac satisfies the

predicate
P(fA,S) d:effo’l' any value V’ zf P, A i_ V: T\C and eSC?(T) then fA,S(V) = @

For clarity, we omit the superscripts A and S as they are clear from the context.
First we prove that P is admissible: one has to show that if each member of

an ascending chain fy C f; C f5... satisfies the property, so does its supremum

LI, fn- But this is immediate because (L5 fn)(M) = U,5o fo(M).
For the base case: we have to show that P(L) holds which is also immediate.

Now the induction step: assume that P(f) holds. We have to conclude that

so does P(F(f)). In order to conclude this, we assume that both the conditions
AR V:T\C and esc?(r) (5.1)

hold, and from this we deduce that F(f)(V) = 0.
By Lemma 5.1 and (5.1) above we have

Reach®(V) = 0. (5.2)

Hence, by (5.2) above and the definition of Reach®, if r € Refs(V) we have
A(r) = 7'ref \C' for some type 7' and some constraint set C’. Because A

respects S, if the same r is such that r € Dom(S), then

;AR S(r): 7'\C", (5.3)
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for some constraint set C". Also by the definition of respects (Definition 4.1) 7’

is either ground or is labelled with €, so we have
esc?(7'). (5.4)
Because P(f) holds by hypothesis, by (5.3) and (5.4) we have
f(S(r)) =0, for r € Refs(V) N Dom(S). (5.5)

Therefore, F(f)(V) = 0 since

F(f)(V) = Reach®(V) U U F(S(r))
reRefs(V)nDom/(S)
= 0 U f(S(r)) by (5.2)
reRefs(V)nDom (S)
= 0 U 0 by (5.5)
which concludes the proof. ||

We finally give our third notion of reachability. The set of local references
reachable from processor p in thread map II, given a store type context A and a

store S is defined as follows

Reachg’s(p) = U Reach™3(M).

g€ Dom(I1)All(g)=(p,M)

The lemmas 5.3 to 5.7 below state some useful properties about Reach to be
used in other proofs. We omit their proofs as they follow immediately from the

definitions of reachability presented.
Lemma 5.3 If Reach™®(M) = Reach™>(M') then
1. Reachg[’];fp’E[M]](p) = Reachg[gp’E[mit]][q:p’M’] (p), if ¢ &€ Dom(I), and
2. Reachg[fsfp EIMI ) = Reachg[fsfp M .
PROOF. Immediate from the definition of Reach. i
Lemma 5.4 If Reach™®(M) D Reach™>(M") then

Reachg[’ps:p FIMI ) o Reachg[gp EMA ).

PROOF. Immediate from the definition of Reach. [ |
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Lemma 5.5 If Reach™®(M) = 0 and p & Dom(T1) then

Reachiy 5(p) = Reachg%p’m(p).
PrROOF. Immediate from the definition of Reach. |
Lemma 5.6 Reachg:[g:p’E[M]](p) = Reachg:[g:p’E[c]](p) U Reach™®(M).
PrOOF. Immediate from the definition of Reach. i

Lemma 5.7 If A respects S given a term context T', Refs(II) C Dom(A) and
A" D A then

Reachg,s (p) = Reachg,,s(p) :

PROOF. Immediate from the definition of Reach. [ |

Lemma 5.8 If r is new or lab (A(r)) = € then
Reachll o(p) = Reach g (0).

PROOF. Immediate from the definition of Reach. [ |

5.2 Locality Preservation

The following lemma says that, under certain conditions, if the sets of local refer-
ences reachable from different processors are disjoint they remain so along evalu-
ation. Before, we define the set of processors associated with a thread map II as
follows

ProcSet(IT) = {p | Iq such that T1(q) = (p, M)}.

Lemma 5.9 Let S,II be a configuration, and assume that all threads in I are
well-typed in a store type context A that respects S given I', a term type context.
Suppose that Reachgs(p) N Reachg’s(p’) = 0 for all distinct p, p' € ProcSet(II).
Suppose also that S,IT —* S'" II'. Then there is A" that respect S' given T,
A" D A, and, for all such A’

Reachg',’s, (p) N Reachgll,s, (") =0 for all distinct p, p' € ProcSet(IT').
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Proor. By induction on the length of the reduction sequence. For a se-

quence of length zero the result holds by assumption. For the induction con-

sider the last evaluation step. Suppose S,II —* S" II" and let the last step be
n " ! !
S’ ,H E) S ,H . } )
By the induction hypothesis Reachan g1 (p)N\Reachpn g:(p') = 0. The existence

of A" O A" respecting S’ follows by the Concurrent Type Preservation theorem.

Now we consider each possible transition proceeding as follows:

case

for the transition Fork we have that ProcSet(Il') = ProcSet(I1"). We prove
that Reachg’,,s, (p) = Reachg’,’,,sn (p) for any p € ProcSet(I'). The result
then follows from the induction hypothesis,

for the transition Rfork we prove that for any processor p' € ProcSet(Il'),
Reachgl,, g(p) = Reachg’,’,, gn(p). If the new thread is created on p’ already in
ProcSet(I1") we have ProcSet(Il') = ProcSet(I") and the result also holds
by the induction hypothesis. If p' & ProcSet(I1") we prove Reachg',’ g (p) =

0.

For the transition Seq we have that ProcSet(Il') = ProcSet(I1"). For Seq
using sequential transitions Succ, Pred, Zero-True and Zero-False we prove
that Reachgl,,s, (p) = Reachg’,’,,su (p) for any p € ProcSet(I'). The result
then follows from the induction hypothesis,

for Seq using the sequential transitions Fst, Snd, Cond-True, Cond-False,
B, Rec-Unroll, Let, Deref and Assign as premises, we prove Reachg,,,s, (p) C
Reachgl,’,,s,, (p) for p involved in the transition. For any other processor p/
not involved, we prove Reachgl,,s, (") = Reachg',',,s,, (p'). We then get the

desired result by the induction hypothesis and by elementary set theory,

if the Ref transition is used in the premise of Seq we give a proof that for
©' not involved in the transition Reachg’,,s, () = Reachgl,l,,s,, (p). If pis
the processor where the selected thread is we prove either Reachgl,,s, (p) =
Reachg/,',’s,, (p), so the result holds by the induction hypothesis, or we have
that Reachgl,ys, (p) = Reachg’,’,,su (p) U {r'} where r’ is the new reference
created, in which case by induction hypothesis and by set theory we obtain

the desired conclusion.

Fork

The last evaluation step has this form:

S",11"[p: p, E[fork fnz.M]] — S",1"[p: p, E[unit]][q : p, M[unit/z]].

COl
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For processor p' # p we have
ReachX,, s(p)
= Reachg’,: g (p)  Lemma 5.7
= Reachg’,”s, (") S =5"
= Reachp, o (p))  p#p-
One can readily check that

Reach®"S" (fork fnz.M) = Reach®"" (M[unit/z)). (5.6)

So for the processor p we can prove

Reachg’,’,’g),:,p’E[fork fn x.M]) (p)

_ Reachg’[’/”[g;’P,E[unit]] [q: pyM[unit/z]] (p) Lemma, 53(1) and (56)

_ Reachgl,l:g,: p,E[unit]] [¢: p,M[unit/z]] (p)

_ Reachgl,l:gz: p,E[unit]] [¢: p,M[unit/z]] (p) S — g

Lemma 5.7

case Rfork

The last evaluation step has this form:

S",11"[p: p, E[rfork, fnx.M]] — S",11"[p: p, E[unit]][q: p', M[unit/z]].

The proof that Reachnl,’ g (") = Reachgl,',’ g7 (p"), for p" not involved in the
transition is similar to the case for Fork for processors not involved in that

transition.

By the Concurrent Type Preservation theorem, for some constrained type
7\C, we have that I'; A" - E[rfork, fnz.M]: 7\C.

By the Context Filler lemma , 'y A" F rfork , fnx.M: unit\C" and the

proof of this judgement must have been of this form:
typeof (rfork,) > ...
T;A"Frfork,:... [;A"Ffnz.M:unit = unit\C"” (1)
[; A" F rfork,, fnz. M : unit\C"

By Lemma 5.2 and the premises marked with (1) in the type derivation
above, it follows that Reach®"" (fnz.M) = (. Therefore we can easily

prove the following two equations

Reach®"5" (rfork, fnz.M) = Reach®’%" (unit) (5.7)

and
Reach®"S" (M[unit /z]]) = 0. (5.8)
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case

For processor p we can then prove:

" [p: p,E[rforkp/ fn z.M]]

Reachpn g (p)
= Reachg,,g}f’ [unitﬂ(p) Lemma 5.3(2) and (5.7 )
— Reachgl,l,l [glz;o,E[unitﬂ lg:p’ ;M [unit/z]] (p) pl 75 0
_ Reachgl,”gf,p’ [unit]] [g:p aM[‘mlt/w]](p) Lemma, 5.7

= Reachll/peElmse] la Mismis/sll ) g1 gn,

For the processor p', where the new thread is created:

1" [p:p,E[rfork ; £fn z.M]]
Reach 5, S 4 (')

= Reachy, 57" () pH
_ Reachi’;’}[g;ﬂ,E[unit]][qu',M[unit/w]]](p/) Lemma 5.5 and (5.8)

_ Reachg’{”g;p,E[unit]][q=p’,M[1mit/I]]] (o) Lemma 5.7
_ ReachA,”[If PvE[unit]][q=P'7M[unit/w]](pl) S — g,

If p' € ProcSet(I1") then ProcSet(Il') = ProcSet(I1") and we get the desired
result for this case by the induction hypothesis. On the other hand, if p’ ¢
ProcSet (I1"), we still have to prove that Reachg',, g (p' )ﬂReachglly s (p) = 0 for
all p € ProcSet(I') different than p'. But that clearly holds since, by (5.8)

above, we have

Reach[gif:g],w[unit/w” (p) = 0.

For the concurrent transition Seq we consider each possible sequential rule

it uses as premise.

Succ

The last evaluation step has this form:

S",1"[p: p, E[succ n]] — S",11"[p: p, E[ni11]].

For p' # p the proof that Reachy, o o) = Reach, o p') is the same as in
S A",S

the case for Fork. For the processor p we have:

II'"" [p:p,E[succ n;]]

Reachpu g (p)
= Reachg,,’, [g,,” Bl ) Lemma 5.3 (2)
= Reachg’/ E,p i) (p) Lemma 5.7
= ReachA,l [p:p Blnig1] (p) S'=9".

cases Pred, Zero-True, Zero-False

Proof as in the previous case.
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case Fst

The last evaluation step is:

S" M"[p: p, Elfst (V,VD]] — S",1I"[p: p, E[V]].

con
For p' # p the proof that Reachg’,’s, (v) = Reachg’,’,,su (p') is the same as in
the Fork case.
We can easily prove that
Reach®"S" (£st (V,V')) D Reach®"S" (V). (5.9)
Then for processor p we have:

Reachg’,’/,[g;f) Blest (Vv (p)

2 Reachgl,l,lgf,” ’E[V]](p) Lemma 5.4 and (5.9)
= Reachg’,’:gﬁp ’E[V]](p) Lemma 5.7
_ Reachg',':k[;’i:p’EM]( p) Sl — g

cases Snd, Cond-True, Cond-False, 3, Rec-Unroll, Let

Similar to the previous case.

case Deref

The last evaluation step has this form:

S",1"[p: p, E[deref r']] — S".11"[p:p,E[V]] S"(+')=V.

CO!

For p' # p the proof that Reachgl,ys, (p) = Reachg,l,,su (p) is the same as in
the Fork case.

By the Concurrent Type Preservation theorem, for some 7’ and C', we know
that I'; A" + E[deref r']: 7'\ C'". By Lemma 4.14, for some 7" and C", we

have I'; A" - deref 7': 7"\ C" and its proof must have been of this form:

typeof (deref) = 7" ref ? L 7\ ()

[; A" - deref : 7" ref ? 9, \G T A"F o ref O\C" (1)
[; A" - deref r': 7"\ C"

Suppose ¢ in type judgement (1) in the derivation above is e. By Lemma 5.2
it follows that ReachA”’S”(r') = (0. As A" respects S”, by definition of
respects, we have that I'; A” = S”(r"): 7"\ C" and esc?(7"”). By Lemma
5.2 we then have that Reach® %" (S"(r')) = 0 which, as S"(r') = V, is the
same as
Reach®"S" (V) = 0. (5.10)
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case

Suppose now that ¢ = £ or ¢ = k. By the way we define Reach we have
that
Reach® %" (') = {r'} U Reach®">" (V). (5.11)

So in either case, by 5.10 and 5.11 we have

Reach®"%" (') D Reach®" 5" (V). (5.12)

We can then prove that:

Reachﬂ”’ [p:p,E[deref r']] (p)

AH,SI’
2 Reachgl,l,l,[g,:,’”E[V]](p) Lemma 5.4 and (5.12)
= Reachg’,’:gfp ’E[V]](p) Lemma 5.7
_ Reachg’l’:g:mE[V]](p) S’ = S".
Assign

The last evaluation step is:

S",0"[p: p, Elr' := V]| — S"[r"— V], II"[p: p, E[unit]] 7' € Dom(S").

By the Concurrent Type Preservation theorem, I'; A" = E[r' := V]: 7\C
for some 7\ C. By the Context Filler lemma there is C’ such that I'; A" I

r' ;== V:unit\C’ and its proof must have been of this form:

typeof(;:) — .. F, A" - T‘IZ T1 ref ¢\Cl (].) F, A" - V: 7'1\02 (2)
A" = .. DA (V)i mref ¢ x¥m\CLUC, U{¢ < ¢} UCs
F;A” |_T’I =V: unit\ClLJCgU{gb' S ¢}U03

where C3 = {¢' <lab (1)} or C5 = ) if lab (1) is undefined.

We now proceed by case analysis on ¢ of the type judgement (1) from the

derivation above.

case ¢ =¢€
By Lemma 5.2 and premise marked with (1) it follows that

Reach®" 5" (") = 0. (5.13)
As A" respects S”, by definition of respects we have that
[; A" = 8"(r"): 7 \C" and esc? (7). (5.14)

By Lemma 5.2 and (5.14) we have that
Reach®"S" (8" (r")) = 0. (5.15)
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Also by Lemma 5.2 and type judgement (2) in the proof above we have

that o
Reach® 5" (V) = (. (5.16)

By (5.13) and (5.16) one can easily check that
Reach®" 5" (r' :== V) = Reach®"%" (unit). (5.17)

We can then have:
Reachg’,’;’[gi/ﬂ Hlr=Vl] (p)
= Reachg’,’,:[g,zf’ Hlnis] (p) Lemma 5.3(2) and (5.17)
= Reachg’,’:gf,:p Hlunit] (p) Lemma 5.7

= Reachgl,l: Shf ,‘E’T’,E._[)u‘l,l]l el (p) Lemma 5.8

and for p' # p:
Reachg’:’[gff} =V (")
_ Reachg””’,[g‘)’:’p,E[unit]] (pl) p ;é pl

= Reachg’,”ng’E[unit]](p’) Lemma. 5.7

—  Reach, PipPlmit] (0 Lemma 5.8

A?,S" [V

case p=Lor ¢ =k
We first consider the case for the processor p involved in the transition.
Suppose that V' = S"(r'). We then have

" [p:p,Elr':=V
ReachA,,,[g,ﬁT,EV,] I (p)

Reach, BipBlr=V]] (p) Lemma 5.7

INRN
" [p:p,E[r":=V

2 ReaChA',g'fr'iTv] ]](p) see (*) below
1" [p:p,E[uni

D ReachA,,g,fT,,_[)V]t]](p) Lemma 5.4.

(*) The second step in the derivation above is justified by the fact
that 7’ is not pointing to V' anymore. The resulting set can then
be smaller because local references of V' might not be reachable

from p anymore.

For p' not involved in the transition: because in II” the reference r’

appears on processor p, by the induction hypotheses we have that

r' ¢ Reachgl,l,ysu (p)- (5.18)
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In other words, ' is not in any thread running on p'. We then have
Reachg’,’,’[gff”E[T’::V]] (7))
= Reachy, 57 (0 gl £ p
" [p:p,E[unit]]

= Reachy gn (¢)) Lemma 5.7

= Reachy, 02 m (o) (5.18)

case Ref
The last evaluation step has this form:

S",11"[p: p, E[xret V]| — S"[r' = V], I1"[p: p, E[r']] 7' new

For p' # p:
ReachA,, [glﬁo,E[ref V] (p/)

= Reachg’,”k[;'f,p BtV Lemma 5.7

= Reachg, Ef,fr’ '_[)I;T vl (0 Lemma 5.8
= Reachly, 57" (p) p#p

For the processor p involved in the transition we first consider the case when

¢ = €. One can easily proof that
Reach® ¥ (r') = Reach® ¥ (ref V) = 0. (5.19)

We then have
Reachg’,’,:[gffp et V] (p)

= Reachgl,ugf,:p oElret V]](p) Lemma 5.7

"p:p,E[ref V]
Slj’fr Hv] (p)

" [p:p,E[r'
= ReachA,,g,ﬁﬂ,’_[W]% (p)

= Reach A/ Lemma 5.8

Lemma 5.3(2) and 5.19

For the case when ¢ = £ or ¢ is a locality variable we have

Reachg,,,:%)ff) ,E'[rer]](p) u {r'}

= Reachg,,”gffp At V] (p) U {r'} Lemma, 5.7
= Reachg, 5[13”’ [ret V1] (p) U {r'} Lemma 5.8
= ReachA, e BV ( u {r'} Lemma 5.3(2)

)
= Reachgl,use 0. Fumit]] (p) U Reach® % (V) U {r'} Lemma 5.6
Rl

" psp, Blunit]]

= ReachA, , p) U Reach® S (r') def. of Reach

= Reachg’,”g ol (p) Lemma 5.6
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An immediate consequence of the previous lemma is that if a local reference is
reachable from just one processor in a configuration it remains so along evaluation,
but that lemma does not say anything about whether the processor where the

local reference is reachable from is the same.

Lemma 5.10 Let S,II be a configuration such that all threads in 11 are well-typed
under a store typing context A that respects S given I', a term type context. Sup-
pose that Reachg’s(p) N Reachgjs(p') = () for all distinct p, p' € ProcSet(I1). Sup-
pose also that S, 11 —* S',1I'. Then for any p € ProcSet(I), p' € ProcSet(11'),
r € Reachy g(p) and r € ReachHI,’S, (p"), where A" O A respects S', implies p = p'.

PrROOF. By induction on the length of the reduction sequence. For a sequence
of length zero the result holds by assumption. For the induction consider just
the last evaluation step. Suppose S,II —* S II" and let the last step be
" n ! !
ST — ST
By Lemma 5.9 for any A” O A respecting S” the following holds

for all distinct p, p € ProcSet(II"), Reach, o (p) N Reachiy ¢ (o) = 0. (5.20
S S

Suppose r € Reachg’,’,,s,,(p) for p € ProcSet(IT"). By 5.20 we know that
r ¢ Reachgl,l,’su (') for any p' # p. Sor € Reachgl,,s,(p') in the right side of a
transition for p’ # p only if there is a transition that modifies the set of local
reachable references of processor p’ so to include r.

We now analyse each transition showing that none satisfies the above require-
ment, allowing us to conclude that if r € Reachﬂl,,s, (') in the right side of a
transition then p' = p

Transitions Seq with sequential transitions Succ, Pred, Zero-True and Zero-
False are excluded. That is because ProcSet(Il') = ProcSet(I") and, as we saw
in the proof of the previous lemma (Lemmab.9), no local reachable set is modified
by this transitions, that is, Reachg’,, g(p) = Reachgl,’,, g1 (p) for all p € ProcSet(IT").

The transitions Seq with premises Fst, Snd, Cond-True, Cond-False, 3, Rec-
Unroll, Let, Deref and Assign are also excluded. For these transitions ProcSet(Il') =
ProcSet(I1") and, in the proof of the previous lemma, we demonstrated that the
sets of local reachable references of processors not involved are not modified, that
is, Reachgl,’s, (p) = Reachg’,’,’su(p) for all p € ProcSet(Il') not involved in the
transition. The set of local reachable references of a processor p involved can be
modified though. But for these transitions we proved in the previous lemma that
Reachg',,s, (p) C Reachg',’,,s,, (p). That is, if modified after the transition, the set

can only become smaller so r ¢ Reachg',, s (p)-
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If the Seq transition has Ref as premise. We also know from the previous
lemma that for the processors p not involved in the transition Reachgl,,s, (p) =
Reachg',',’su (p). The processor involved has its set of local reachable references
modified but only with the inclusion of a new reference.

The transition Fork is also excluded. For this case ProcSet(Il') = ProcSet(I1")
and we prove in the previous lemma that Reachgl,y o(p) = Reachg’/,,su (p') for all
p, p' € ProcSet(Il'), that is, no local reachable set is modified.

For the transition Rfork we also demonstrated in the previous lemma that the
sets of local reachable references of processors not involved and of the processor
where the rfork is executed are not modified. For the processor where the new

thread is created we proved that its set of local reachable references is empty. W

5.3 Locality Soundness

Lemma 5.11 Let P be a well-typed program, T be any trace in Comp(P), S;,I1;
be a configuration of T', and r a reference constant. Suppose that r € Reachgii,si (p)
for some p € ProcSet(Il;) and A; respecting S;. Suppose also S;,11; is a configu-
ration of T with j > i. Then, for any A; D A, respecting S;, r € Reachgé,sj (0
implies p' = p.

PrROOF. By Definition 2.5, all traces in Comp(P) start with a configuration
So, Iy where Sy is the empty store and Iy = [pg : (po, P)]- So the fact

all threads in Iy are well-typed (5.21)
holds by assumption, and the fact
for all distinct p, p' € Dom(Ily), Reachg® 5 (p) N Reachg® 5 (p) =0 (5.22)

holds trivially for any type context A.

By the Concurrent Type Preservation theorem, there exists A; respecting 5;
such that A; O Aj. Hence, by Lemma 5.9 with (5.21) and (5.22) above we get
that

for all distinct p, o' € Dom(IL;), Reachy’ 4 (p) N Reachy’ ¢ (0') =0.  (5.23)

By the Concurrent Type Preservation theorem there is A; respecting S;, A; D A;.
Hence by (5.23) above and Lemma 5.10 we have that if r € Reachgi,’si (p) and
re Reachg§75j (p') then p = p'. [
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Finally we can state and prove the main result of this chapter. In the following,

we write subterm of a thread meaning subterm of the term associated to a thread.

Theorem 5.1 (Locality Soundness) Let P be a well-typed program, T be any
trace in Comp(P). Suppose that the first occurrence of a constant r in T is in
configuration S;, I1; as a subterm of a thread running on processor p. Suppose also
that lab (A;(r)) # € where A; is a store typing constant respecting S;. If later on
the same trace the reference r appears as subterm of a thread running on p', then

p = p.

PROOF. By the previous lemma and by the definition of Reach. [ |
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Chapter 6

Translation

In this chapter we illustrate how the locality information provided by the types
can be used to translate a program into another where store operations with local
references run faster.

We start by presenting, in Section 6.1, the target language for the transla-
tion. We then give an operational semantics for it at a level of abstraction that
distinguishes local and non-local operations on the store.

In Section 6.2 we define a translation from well typed source expressions to ex-
pressions in the target language and we prove, in Section 6.3, that the translation

preserves the behaviour of source programs.

6.1 Target Language and its Semantics

The terms of the target language are given by the following grammar

m T

| ¢

| fnz.m

| recfxz.m

| mm

| (m,m')

| if mthen m'else m"
| let x=min m'end.

In the grammar above the metavariable ¢ ranges over the constants given by the
grammar

¢ == c| deref® | = | ref®

where c is a metavariable ranging over the set of constants of the source language.
The target language is then the same as the source language given in Chapter 2

with deref ¢ and :=¢, the local versions of dereference and assignment operations
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respectively, and ref ¢, a constant used to create local references, added to the
set of constants.

As in the source language, values are the following irreducible terms: free
variables, constants, functions, recursive functions and pairs of values. We use
v as a metavariable ranging over values in the target language. We also write
m :=* m’ for the application of the local assignment operator :=¢ to the pair
(m,m').

We use the notation e[| for evaluation contexts, which are defined in the same
way as evaluation contexts for the source language. Non-value expressions can
also be uniquely decomposed as an evaluation context with a redex filling its hole.

The operational semantics is divided in two parts. The sequential part, shown
in Figure 6.1, is much the same as the sequential semantics for the source language,
the difference is that the rules that modify the store are in the concurrent part
shown in Figure 6.2.

As before, a thread component map is a finite, non-empty map from thread
identifiers to thread components. We write 7 for a thread map, instead of II, to
remind us that a thread component is a pair (p, m) where p identifies the processor
where the thread component runs and m is a term from the target language.

As expected the novelty is in the way the store and the rules that modify it
are defined. A store is a finite, possibly empty map from references to triples.

The first component of these triples is what we call a locality indicator taken
from a set {E, L,, L, ...} of locality indicators constants. If a reference is created
by the default ref operation the first position of its triple has the locality indica-
tor E. If a reference is created by the ref ¢ operation the first element in the triple
is the locality indicator L,, where p is the idenfication of the processor where
the ref ¢ operation is executed. We assume the existence of a supply of locality
indicators L,, Ly, ... one for each possible processor identifier p, o/, .... Observe
that the first element in the triples is determined at the moment a reference is
created and is not modified by any transition.

The second component of a triple is a set of processor identifiers that informs
which processors have the most recent version of the data pointed by a reference.

Immediately after creation (ref and ref’ transitions) a reference is available
only in the processor where the creation occurred.

The ways in which the set of processors is updated by operations with store
represent the differences between local and global dereference operations and
between local and global assignment operations. The updating of the set of

processor identifiers in the rules deref and assign for global dereference and global
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succ:
e[ succ ny] e e[ni1]
zero-true:

el zero? (] w7 e[true]
fst:

e[fst (v,0)] = elv]

B

e[(fnz.m) v] e e[mlv/z]]

rec-unroll:

pred:

e[ pred n;] e eln;_1]
zero-false:

e[ zero? n| s e[false] n#0
snd:

e[ snd (v,v")] e elv']

el(rec fz.m) v gy e[(fnz.m)[rec fxz.m/f]| v]

cond-true:

e[ if true then melse m/| o e[m]

cond-false:

e[ if falsethen melse m/| s e[m’]

let:

e[let £ =vin mend | s e[m[v/z]]

Figure 6.1: Sequential evaluation for the target language
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seq:
e[m)| e e[m’]

s,m[p:pelm]] — s,7[p:p,e[m]|

con

ref:
r & Dom(s) Refs(v) N Local(p,s) =0
s,m[p: p,e[ref v]] o slr— B, {p},v],7[p: p,elr]
deref:

Vp' # p. Refs(v) N Local (o', s) = 0
S L] wlp prelderet 7l —3 slr o £,P U (o}, ol alp - o€l

assign:
t=L, V Refs(v)N Local(p,s) =10
Sl 6P, 0L wlp pelr = ol — sl &, {p}, ol wlp pyelunit]

con

ref’:
r & Dom(s)
Saﬂ-[p 2P e[ref ’U]] W S[’f’ — LP’ {p}a U]aﬂ-[p P 6[7']]
dereft:

Vo' # p. Refs(v) N Local (p', s) =0
5> Ly, (o1 thalp - prelderet ® 1] —3 slr o Ly, (o}, o] 7lp  prelo]

con

assign®:

slr = Ly, {p},v'],m[p: p,e[r :=t v]] —= s[r> Ly, {p},v],7[p: p,e[unit]]

fork:
g ¢ Dom(IT) U {p}
s,m[p: p,e[fork fnx.m|] — s,7w[p: p,e[unit]][q: p, m[unit/z]]

con

rfork:
g ¢ Dom(IT) U {p} Vp" # p'. Refs(m[unit/z]) N Local (p", s)
s,m[p: pye[rfork, fnx.m]| — s,m[p: p,e[unit]][q: o/, m[unit/z]|

Figure 6.2: Thread map evaluation for the target language

assignment represents the cost involved in keeping the coherency of the distributed

copies of mutable data (the coherency problem explained in Chapter 1.)

In the deref transition the identifier of the processor where the dereferencing

operation is executed is added to the set of processor identifiers. This represents
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the validation of the copy associated to that processor.

After a global assignment (assign transition), the set of processor identifiers
associated with the reference is updated to contain only the identifier of the pro-
cessor where the assignment operation is executed. We can see this as modelling
the fact that all the copies of the data pointed by the reference are invalid after the
assignment, except the copy associated with the processor where the assignment
operation is executed.

Finally the third component of the triple is a value from the target language.
We use s, t and P as metavariables for stores, locality indicators and set of
processor identifiers, respectively. Sometimes we call s a target store, ™ a target
thread map, and a pair s, 7 a target configuration.

In the rules deref® and assign’, for the local versions of dereference and as-
signment operations, the set of processor identifiers associated to the reference
is the same before and after the transition, and its single element identifies the
processor where the operation is executed. This represents the fact that local
versions of dereference and assignment operations are less costly than the global
ones because there is no need for a coherency protocol.

Note also that the set of processor identifiers in the range of the store should
not be confused with the processors where references have escaped to. It is
possible that a reference might have escaped to several processors but only a few
of them have the most updated version of the reference’s value.

Some rules also make use of the function Local defined as follows:
Local (p,s) = {r € Dom(s) | s(r) = (L,,P,v)}

where P and v are some processor set and target value, respectively. A set
Local (p, s) is then the set of references in the domain of store s which were
created by a ref operation executed on processor p- We say that a reference
created by ref ¢ on processor p is local to p.

The specialised deref ¢ and :=¢ operations do not work properly if their ref-
erence operand is not local. That is represented in their rules by the locality
indicator in store. Similar restriction is not needed in the rules for deref and :=
because the default operations have full power to access and modify a distributed
shared memory in a consistent way.

Now lets consider the rules assign and ref. After a reference is created or an
assignment is executed the effect is that a reference will be pointing to a value
in the store. The ref operation creates references that can escape so the value
pointed by the reference cannot have references local to the processor where ref

is executed. This fact is represented by that rule’s proviso.
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In the rule for := the proviso has the same role. If r is a reference that was
created by a ref operation (¢t # L,) then r can escape. The assignment can then
only be executed if the references of v are not local to p.

The rule seq, fork and rfork in Figure 6.2 are very similar to their counterparts
in the semantics for the source language. The rfork rule also requires that no local

references be in the rforked term.

6.2 Translation

In Chapter 2 we defined a language and its operational semantics, and in Chap-
ter 3 we gave a type system for it where types are labelled with locality informa-
tion. In this section we illustrate how we can use a type derivation for a term
from the source language to guide a translation for the target language defined
in the previous section.

It is convenient to have a linear representations of type derivation trees in
the form of explicitly typed expressions. In Figure 6.3 we present a function
T from type derivations to explicitly typed expressions. We use V, V', ... as
metavariables for type derivations. The * in clauses for functions and recursive
function represents the possible occurrence of the 3-place predicate esc?.

We use the notation I'; A H7 for the linear representation of a type deriva-
tion for the type judgement I'; A = M : v, or simply M, if we do not need to
make explicitly the type contexts I' and A, and the outermost type 7. In order
to simplify the definition of the translation we assume that in all type derivations
the set of free locality variables is distinct from the set of the bound locality
variables. This is not a restrictive assumption because we can always change the
names of bound locality variables.

The translation of a term M based on a type derivation M consists simply of:

e replacing occurrences of deref : rref? i) 7\ C, with derefe, whenever

¢ =/ or ¢ is a locality variable that does not occur bound in M,

e replacing occurrences of :=: 7ref ? x?¥r 2 unit\C, with :=¢, whenever
¢ = or ¢ is a locality variable that does not occur bound in A, and

e replacing occurrences of ref : 7 % rref ¢\C, with ref ¢, whenever o =1

or ¢ is a locality variable that does not occur bound in M.
We define a translation @ in the following way:

(M) = ¥'(M,{})
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T
g

T typeof(c) = v
I;AFc:y

[(z) =y

T (F;Al—x:'y

T(T;AFr:y)

T v_x
;AR fnz.M: vy

T v_x
Abrecfz.M:y

v Vv

T (r;m (L0

v Vv

v VI VII

I';AF if M then Nelse P: vy

v Vv

T
(F,AI—Ml Mzi’y

I'AbFlet t=Min Nend: vy

)
)

)
)

)
)
)
)

(fnz 4. T(V)) : v
VI
Tz v];AF M: "

where V =

(recf:v'z:4".T(V)) : v
vl

where V = Lif =Yz =AM 4"

(T(V), T(V') : vy
(T(V) T(V')
(if T(V)then T (V') else T(V")) : vy

(let z:0=T(V)in T(V')end) : v
VII

[
where V' = Tz o;AFM:y

Figure 6.3: Linear represention of type derivations
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®'(r:v,B)
®'(zx:0):v,B)

®'(¢:+,B)

®'(deref : Tref? LA 7\C, B)
®'(:=:Tref? A 7\C, B)

®'(ref : 7 ?, rret \C, B)

®'((fnz: 0.N) : v, B)

¥ ((recf:0x:0"N):,B)

o'((N P):v,B)

& (((N,P)) : 7, B)

®'((if Nthen Pelse Q) : v, B)

¥ ((let :y=Nin Pend): v, B)

®'((let ¢ : VAR.y=V in Pend) : 9/, B)

x
¢ for c & {deref ,:= ref}

ifo=cor¢peB

deref
otherwise

derefg

L=
ref
refz

fnz.®'(N, B)

ifop=eor¢peB
otherwise

ifp=€cor¢peB
otherwise

rec f z.9'(N, B)

(N, B) (P, B)

(®'(N,B),%'(P,B))

if ®'(N, B)then ®'(P, B) else ®'(Q, B)
let 7 = &'(N, B) in &' (P, B) end

let + = ' (V,[R] UB) in ®'(P, B) end

Figure 6.4: Translation
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where @', given in Figure 6.4, takes a linear representation of a type derivation
tree for a term M, a set B of locality variables and returns a term in the target
language. The interesting clauses of ®' are those for the constants deref , := and
ref . Observe that the translation ® of a term starts with an empty set of locality
variables. Variables are introduced in this set by the clause for let expressions
binding a variable to a value.

As we said before, one of the purposes of this chapter is to illustrate how the
locality information labelling types can be used in a program translation. We
assume the translation operates on original source expressions but that does not
need to be the case. If types are kept through other program transformations,
further translations based on locality information can be revealed.

Consider for example an expression like

let d = deref
in ...(dr)...(d7")...

end,

and suppose that r is a local integer reference and that r' is an escaping integer
reference. The first occurrence of d has the type int ref* 2 int and the second
one has the type intref i,> int, but no transformation is done by ®. But
suppose that we keep type and locality information and the expression above is

transformed, using some kind of inline expansion, to
...(deref r)...(deref r')...
The locality information could then be used by ® to produce

...(deref® r)...(deref r’)...

6.3 Correctness of Translation

We have to prove that the translation given in the previous section preserves the
behaviour of original programs. Here, thread maps are evaluated non determin-
istically and evaluation may fail to terminate. Therefore our proof of correction
of the translation ® will be based on the notion of a bisimulation relation [19].
We define the set ®(I'; A, M) of possible translations of a term M given T

and A as follows

(A, M)={m |IT;A+M and m =d(;A+ M)}.
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We say that the target term m is a translation of M if m € ®(I'; A, M). We
extend this notion of translation to source stores as follows:
®(I'yA, S) = s such that
Dom(s) = Dom(S) and for all r € Dom(S)
if S(r) =V then s(r) = (t,P,v), wherev € (', A, V),
. { E if esc?(A(r))

L, for some p otherwise

any processor set if esc?(A(r))
P = .
{p}, for some p  otherwise.

So

We also define the translation of a thread map in the following way:

(I, A, II) = = such that
Dom(m) = Dom(II) and for all p € Dom(r)

i TU(p) = (p, M) then 7(p) = (p, m)
where m € ®(T', A, M).

Finally we combine the two previous definitions to define the set of translations

of a source configuration as follows:
oI, A, S\IT) = {(s,7) | s € ®(I', A, S) and 7 € (T, A, II)}.

At this point it might be useful to see the main result that we want to achieve
in this chapter. In the following, we abbreviate the initial source configuration
0, [po : po, P] and the initial target configuration (0, [py : po, p] by writing only P
and p respectively. We also write ®(P) for ®(I', A, P) when I and A are empty,
both when P is a source program or when P stands for the initial configuration
0, [po : po, P]. The result we want to proof is then the following:

Let P be a well-typed source program and p be such that p € ®(P). Then the
following hold:

Lif P —" S, I then there is a configuration s', 7' such that p ——>" s', 7'

and (s',7') € ®(A', S, II') for A’ respecting S', and

2. if p —" 8,7 then there is a configuration S',II' such that P —" S',1I
and (s',7") € ®(A!, S", 1I') for A’ respecting S'.

In order to prove the result above, we need an auxiliary lemma. When we
proved type preservation lemmas in Chapter 4 we prove that the outermost type
of a term can be preserved. When proving the Sequential Type Preservation

theorem we also proved that the outermost type of the term filling the evaluation
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context in the left hand side of the transition is preserved in the term filling the
same evaluation context on the right side. But none of these two results say
anything about preservation of other internal types. The proof of the lemma

below involves showing that internal types can also be preserved by evaluation.

Lemma 6.1 Let S,II be a source configuration and A be a store type context
respecting S gqiven a term type context I'. Suppose that all terms associated
to thread components of 11 are well-typed under I' and A. Suppose also that
Reachg’s(p) N Reachgs(p’) for distinct p, p’ in ProcSet(II).

Now let s,m be a target configuration such that (s,m) € ®(T'; A, S,II). Then
the following hold:

1. of S,II —" S IV, then there exist s',m' such that s,m —" s', 7' and
(s',7'") € ®(T; A, S IT) for some A" D A respecting S’ given T, and

2. if s,m —" §', 7' then there exist S",1I' such that S,11 =" S, II" and
(s',7'") € ®(T; A, S IT) for some A" D A respecting S’ given T’

Proor. By induction on the length of the reduction sequence. We prove part
1 first. For a sequence of length zero the result holds by assumption. We assume
a sequence S, I1 _c%:—1 S" II" and we consider the last step S”, I1" - ST
We proceed by case analysis on each possible transition - from Figure 2.2.

For the Seq transition we consider each possible sequential transition it has
as premise. The interesting cases are for transitions that modify the store, so for
the transitions that do not modify the store we give the proof only for Seq with

Succ as premise. The proofs for the other transitions follow the same lines.

case Seq with Succ

We have the following transition
S",1"[p : p, E[succ n]] —> S",11"[p: p, E[ni14]].

By the induction hypothesis and by the definition of ® we have the following

target configuration
(", 7"[p: p,e[succ n;]]) € ;A" S", 1"[p: p, E[succ n;]]) (6.1)

where
s" e ®(T; A", 8", (6.2)

e ;A" "), (6.3)
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and
e[succ n;| € ®(I'; A", E[succ ny). (6.4)

With p the selected thread in the target configuration of (6.1) we have the

following transition

s",m"[p: p,e[succ ni]] — ", 7"[p: p,e[niy]].

For this case A" = A”. By (6.2) and (6.3) we then get
s e ;A S") (6.5)
and
e o(T; A, II). (6.6)
We still have to prove that e[n;1] € (I, A!, E[n;1]).
By (6.4) above, the fact that A” = A’, and the definition of ® we know that
3I'; A’ + E[succ ng) such that e[succ n;] = ®(T; A’ + E[succ ny]) (6.7)
which implies that
3T A’ - SUCT Tyineyg- (6.8)

For the value n;;; we can have the following type derivation
[ A Fng s int\0. (6.9)

By removing, from the type derivation T'; A’ - E[succ n;] of (6.7) above, the
subderivation for succ n; and replacing it with the derivation of (6.9) we get
a derivation I'; A’ - E[n; 1] where the types for subterms of E[] are the same
as the types for the occurrences of these subterms in I'; A’ - E[succ nl.
We then have e[n; 1] = ®T; A’ F E[n;]), which, by the definition of ®
implies

e[niz1] € (A", Engyq))- (6.10)
Finally, with (6.5), (6.6) and (6.10) we get

S”a 7T””[p 2 Ps e[ni—|—1” € (I)(Fa Ala S”a H”I[p 2 Ps E[”H—l]]a
as desired.

case Seq with Ref

We have the following transition:

S",11"[p: p, E[ref V]| — S"[r = V],I1"[p: p, E[r]].
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By induction hypothesis and the definition of ®, we have a target configu-

ration
(s",7"[p: pyelcv]]) € @(T;A", S",II"[p: p, Elref V])),
where ¢ is either ref or ref, and
s" e ;A" 8",
" e oT; A", 1I"),

elcv] € @(IA", Efref V),

and
v € ;A" V).

(6.11)

(6.12)

(6.13)
(6.14)

(6.15)

We build a A’ respecting S”[r — V| as an extension of A” with a typing

for the new reference r. Because r is new, from (6.12), (6.13), (6.14), and

(6.15) we get
" e (A", S"),

ﬂ_III c @(F; A,,H”,),
e[cv] € ®I; A, E[ref V]),

and
v E (IJ(F;A', V).

By (6.18) above and the definition of ® we know that

3T A"+ Elref V] such that efc v] = ®(T'; A’ F E[ref V)

which implies that
AT A Fref Vo epnc
and one can easily check that in this type derivation
;A "Fref:r % rref ne,
and
A FV:r\C",
for some constraint sets C’, C”, and labels ¢ and ¢'.

We choose
A" = A"[r s Tref 2\C].
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which implies that
;A o rref O\ (6.25)

By removing, from the type derivation I'; A’ - Elref V| of (6.20) above,
the subderivation for ref V' and replacing it with the derivation of (6.25)

we get a derivation I'; A’ = E[r] where the types for subterms of E[] are the
same as the types for the occurrences of these subterms in I'; A’ = E[ref V.
We then have e[r] = ®(I"; A’ - E|[r]), which, by the definition of ®, implies

e[r] € ®(;A', Er]). (6.26)
We now proceed by case analysis on the label ¢ of (6.22).

case ¢ =¢
We can rewrite (6.11) as

", 7"[p: p,e[ref v]] € ®(T; A", 8" 1I"[p: p, E[ref V]]). (6.27)
By (6.16), (6.17), (6.19), (6.26), and the definition of ® we get
s"lr— E,P,v],7"[p: p,elr]] € ;A" S"[r— V], II"[p: p, E[r]])

where P is any processor set.

By the fact that A’ respects the store S’ and by the typing of r and
V in (6.22) and (6.23) we have that esc?(7). By Lemma 3.7 we
then have that esc?(I'; A’,V) which implies that for all » € Refs(V),
esc?(A'(r)). We then have that Refs(v) N Local(p,s") = . We can

then conclude that

III[

s",m"[p: pe[ref v]] — s"[r = E,P,0], 7"

p:pelr]].

case ¢ # ¢

We can rewrite (6.11) as
s". 7"[p: p,e[ref “v]] € BT, A", S" TI"[p: p, E[ref *V])). (6.28)
By (6.16), (6.17), (6.19), (6.26), and the definition of ® we get
s"[r = Ly, {p}, 0], 7"[p: p,elr]] € @I A, S"[r = V],1I"[p: p, E[r]].
And we have the following transition
s", 7" [p : p,e[ref v — §'[r— Ly, {p},v], 7" [p: p,elr]].
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case Deref

We have the following transition:

S"[r = V],11"[p: p, E[deref r]] — S"[r— V], I"[p: p, E[V]].

CO!

By the induction hypothesis and the definition of ® we have that

s e ®(T; A", §™), (6.29)
v € ®(T;A", V), (6.30)

and
eler] € ®(T;A", E[deref r]). (6.31)

where ¢ is either deref or deref /.

We have that A’ = A"/ so by (6.29), (6.30), and (6.31),

" e (A, S, (6.32)
v e ;A V), (6.33)

and
elcr] € ®(T;A’, E[deref r]). (6.34)

By a reasoning similar to the one used in the previous cases, with (6.33)
and (6.34) we have
e[v] € B A, E[V]). (6.35)

Also from (6.34) an the definition of ® we know that
ar; A’ - deref r
which implies that
;A'F deref : rref? % 7\ 0, (6.36)

and
;A" r:rref 9\C, (6.37)
for some type 7, constraint set C' and labels ¢ and ¢’. We now proceed by

case analysis on ¢

case ¢ =¢€
By (6.29), (6.30), (6.31), and the definition of ® we have that
SHI[T = Ea Pa U]a W"'[p P, e[deref 7']]

S
(L5 A", S"[r— V], II"[p : p, E[deref 7]].
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where P is any processor set. From (6.32), (6.33), (6.35) and the
definition of ® we have that

s"[r— E,PU{p},v], 7"[p : p,e[v]]
S
(T A S"[r— V], T"[p: p, E[V]]).

In order to show that

SI”[T = Ea Pa U]7 7T"'[P <P, e[deref T‘]]

con

s"[r = E,PU{p},0l, 7"[p: p,e[v]

we still have to prove that the proviso for this rule holds. We have to
show that for all 7’ € Refs(v) their locality indicator should be either
Eor L, with p' = p.

By (6.37) and the fact that A” respects S” we know that I'; A” F
V. 7\ C" for some C". Also by the definition of respects we know
that esc?(7). By Lemma 3.7 we then have that esc?(I"; A”,V'), which
implies that esc?(A”(r')) holds for all " € Refs(V'). By the definition

of ® the locality indicator of all the references of v are then E.

case ¢ # ¢
By (6.29), (6.30), (6.31), and the definition of ® we have that

[ > Ly, {p},v)], ™[p: p,elderet 'r]
€
O(T; A", S"[r— V], I"[p : p, E[deref r]]).

From (6.32), (6.33), (6.35) and the definition of ® we have that

s"[r = Ly, {p},v], 7"[p : p, e[v]]
€
O(T; A, S"[r— V], I"[p: p, E[V]]).

In order to show that

$"r = Ly, {p},v], [p : p, clderet ‘1]

s"[r— Ly, {p},v], 7"[p : p, e[v]]
We still have to prove that the proviso of this rule holds. Note that
Reach® " (V) C Reach™S" (V) C Reachg',',,s,, (p)-

By Lemma 5.9 and the assumption that Reachg, s(p)N Reachg, s(p') for
all p' # p we have that Reachgys(p) N Reachgys(p’) for all p' # p.

99



We then know that the references of V in Reach™"" (V) cannot be
reachable from any other processor p' # p. The ref operations that
created this local references of V, translated to ref ¢ operations, were
executed at processor p only. The proviso of the rule, then follows

immediately.

case Seq with Assign

We have the following transition:

S"lr = V', 1"[p: p, Elr :=V]] — S"[r = V],II"[p: p, E[unit]].

on

By the induction hypothesis and the definition of ® we have that

s e ®(; A", S™) (6.38)
v € B(T; A", V), (6.39)
e[r cv] € ;A" E[r:=V]) (6.40)
and
v e OTA", V) (6.41)

where c is either := or :=*.

We have that A’ = A", so by (6.38), (6.39), (6.40) and (6.41)

s" e oA, 5", (6.42)
Ve B(T;A, V), (6.43)
e[r cv] € ®T; A" E[r:=V]), (6.44)
and
v € ;A V). (6.45)

By a reasoning similar to previous cases using (6.44) we have
elunit] € ®(I'; A, E[unit]). (6.46)
Also by (6.44) we know that
A Fr=V

which implies that

DA Fi=:rref? x?¥'7 % unit\C, (6.47)
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;A Fr:rref \O, (6.48)

and
A FV:r\C", (6.49)

for some 7, ¢, ¢’ and constraint sets C, C' and C".

We now proceed by case analysis on the label ¢ of the reference r above.

case ¢ =¢€
By (6.38), (6.39), (6.40), and the definition of ® we have that
s"[r— E,P,v")], 7"[p: p,e[r =]

€
(T A", S"[r— V'], I"[p: p, E[r :=V]])

where P is any processor set.
From (6.42), (6.45), (6.46) and the definition of ® we have that
s"[r — E,{p},v], 7"[p : p, e[unit]]

€
&(T; A, S"[r v V], I"[p : p, E[unit]]).

In order to show that

s"r— E, P, v, 7"[p : p,elr :=v]]

s"[r— E, {p},v)], 7"[p : p, e[unit]].
we still have to prove that the proviso for this transition is satisfied.
Because A” = A’ respects S” and by (6.49) we know that esc?(7’).
By Lemma 3.7 we then have that esc?(I"; A”,V'), which implies that
esc?(A”(r")) holds for all 7' € Refs(V). By the definition of ® the

locality indicator ¢ of all the references of v are then E.

case ¢ # ¢
By (6.38), (6.39), (6.44), and the definition of ® we have that

s"[r = Ly, {p}, '], 7"[p : pe[r :=* v]]
(T A" S"'r — V],EH'"[p :p, E[r:=V]]).
From (6.42), (6.45), (6.46) and the definition of ® we have that
s"[r— Ly, {p},v], 7"[p : p, e[unit]|

S
(T A, S"[r— V], I"[p: p, E[unit]]).
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And we can also have that

"1 = Ly, {p},), 7'lp  pyelr =" o]

s"[r— L,,{p},v], #"[p : p, e[unit]].

as desired.

case Rfork
We have the following transition:

S".1"[p: p, E[rfork, fnz. M]] — S",11"[p: p, E[unit]|[g : o', M[unit/z]].

By the induction hypothesis and the definition of ® we have

" e o(T; A", 5", (6.50)
" e ;A" 1I"), (6.51)

and
e[rfork, fnz.m| € ®(I;A", E[rfork, fnz.M]). (6.52)

We have that A" = A” hence by (6.50), (6.51) and (6.52)

& € ®(; A, 8", (6.53)
" e oT; A 1), (6.54)

and
e[rfork, fnxz.m] € ®(I;A', E[rfork, fnz.M)]). (6.55)

By a similar reasoning used in the previous cases we can prove that
e[unit] € @(I'; A’, E[unit]) (6.56)
mlunit/x] € ®(; A, M[unit/x]) (6.57)
Then, by the definition of ® with (6.53), (6.54), (6.56) and (6.57) we con-
clude
s",m"[p: p,efunit]][g : p, e[m[unit/z]]]

S
O(; A, 8" 11" [p : p, Elunit]|[q : p, E[M[unit/z]]]).

In order to conclude the transition

s",m"[p: p,e[rfork, fnx.m]] — ", 7"[p: p, efunit]][q : p', m[unit/z]].
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We still have to show that the proviso for this rule holds, that is, Vp" #
p'. Refs (m[unit/x]) N Local(p", s). For some constrained type 7\C, we have
that I'; A” = Efrfork, fnz.M]: 7\C. By the typing rules, the type of
any rforked function must be labelled with e. By Lemma 3.7 we then have
that for all r € Refs(fn z.M), esc?(A”(r)). One can easily check that
Refs(fnx.M) = Refs(m[unit/z]), so according to the definition of @, all

the locality indicators of references of the term munit/z] are E.

case Fork

Similar to the previous case.

The proof of part 2 is analogous to the proof of part 1. [ |

We finally prove the main result of this chapter: translation of well typed
programs induced by their type derivations preserves the behaviour of original
programs.

In the following, we abbreviate the initial source configuration @, [py : po, P]
and the initial target configuration 0, [py : po, p| by writing only P and p respec-
tively. We also write ®(P) for ®(I', A, P) when I' and A are empty, both when P

is a source program or when P stands for the initial configuration 0, [py : po, P].

Theorem 6.1 Let P be a well-typed source program and p be such that p € ®(P).
Then the following hold:

1. if P —" S",II" then there is a configuration s', 7" such that p —" s', '

and (s, 7") € ®(A', S",II") for A’ respecting S', and

2. if p —>" &', 7' then there is a configuration S', 11" such that P —" S',1I
and (s',7') € ®(A', §',1I') for A" respecting S'.

PROOF. By Lemma 6.1 and the facts that both the source configuration 0, [p:
po, P] and the target configuration 0, [py: po, p| satisfy the conditions required by

that lemma. [ ]
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Chapter 7

Type Inference

In this chapter we give a type reconstruction algorithm for our type system.

We begin by presenting, in Section 7.1, a type system which is essentially the
same as the type system presented in Chapter 3, but with some simplifications
which help us to concentrate on the key ideas of the algorithm

The algorithm, which we call W, returns an explicitly typed expression
which corresponds to its input expression with type and locality information re-
constructed. We present these explicitly typed expressions in Section 7.2. W, is
presented in Section 7.3. It is divided in two sub-algorithms: W, and £. W, and
its proof of soundness are presented in Section 7.3.1 and Section 7.4.1 respectively.
The algorithm £ and its proof of soundness are given in Section 7.3.2 and Sec-
tion 7.4.2. In Section 7.4 these two results are put together to produce a proof of
soundness for W,.. Soundness of W,,. with respect to the type system combined
with the result of type and locality soundness of the type system with respect to
the operational semantics, means that the locality analysis performed by W, is
safe. Section 7.5 concludes this chapter with a discussion of the restricted form
of best locality property that we conjecture holds for W,,.

7.1 Type System for Type Reconstruction

We will prove the algorithm W,,. sound with respect to the type system in Fig-
ure 7.1. This type system is in essence the same as the one given in Chapter 3
(Figure 3.2), whose type and locality soundness were proved with respect to the

operational semantics for the language. The only differences are:

e type judgements do not have store typing contexts, so there is no rule for

typing reference constants, and
e there are no typing rules for
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I(z) = 7\C
VAR —_—
F'Fz:7\C
r T M:
ABS, [z — 7 \C'] : 7 \C
F'Ffnz.M: 17 = \CUC'!
ABS Lz — n\C'|FM: \C esc?(T,fnz.M)
T'fnz.M:7 E) T\CUC'
PAIR Pl—MllTl\C F|_M2:T2\C,
'H (M, My): 7 xe\CUC'UC"uyCc"
where:
C" ={¢ <lab (1)}, if lab (71) is defined, C" = 0 otherwise
C" ={¢ <lab (1)}, if lab (12) is defined, C" = otherwise
APP THM:m 5 m\C THN:m\C'
T+ MN:\CUC
LET 'EV:7\C" Tz Gen(r'\C",T)|]F N:7\C
F'letz=Vin Nend: 7\CUC'
Figure 7.1: Typing rules for type inference.
— constants,

— conditional expression,
— let-expressions binding variables to non-value expressions, and

— recursive functions.

We had store typing contexts and a rule for typing reference constants in the
type system of Figure 3.2 because the proof method used to prove type soundness
in Chapter 4 and locality soundness in Chapter 5 uses the type system itself to
type intermediate states of evaluation, which might contain reference constants.

We also do not consider conditional expressions and let-expressions binding
variables to non-value expressions as their type reconstruction are very similar
to the type reconstruction of applications. We also eliminate the rule for typing
constants assuming that for each constant ¢ in Figure 3.1 there is a variable named
after it in the domain of term type contexts and that the type scheme associated
to this variable is the same as typeof (c).

We also omit recursive functions. Although the type reconstruction for recur-
sive functions has its own peculiarities, its locality information reconstruction is

similar to the reconstruction of locality for non-recursive functions.
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As expected the type system in Figure 7.1 shares several properties with the
type system in Figure 3.2. When necessary we will refer to chapters 3 and 4 for

definitions and proofs.

7.2 Explicitly Typed Expressions

The type reconstruction algorithm returns what we call extended explicitly typed
expressions. The constrained types and constrained type schemes annotating
these extended explicitly typed expressions are of the form 7\C, C' and Vag.7\C, C’
respectively, where 7 is a labelled type and C' and C' are constraint sets as defined
in Chapter 3. Note that they have an extra set of constraints, for this reason we
call them extended constrained types and extended constrained type schemes.

In 7\C, C' we say that C is a regular constraint set and C’ is an eztra constraint
set. Constraints are added to the extra set of constraints only in the clause of the
algorithm for abstractions. Extra sets of constraints have information relating the
locality of functions with the locality of their free term variables. This information
helps the algorithm to infer locality labels for the types of term variables occurring
free in escaping and polymorphic functions.

The metavariables § and ¢ will be used to range over extended constrained
types and extended constrained type schemes, respectively.

Extended explicitly typed expressions are given by the following grammar

M

1)
:¢=Vin N end : 6.

We write M, M', M", ... for different extended explicitly typed versions of expres-
sion M, and V, V', V', ... for different extended explicitly typed versions of value
V' For simplicity we omit constraint sets when they are empty. We sometimes
write mr\c,c' to indicate that 7\C, C" is the outermost extended constrained type
of M.

Example 7.1 Consider the expression let id = fnx.x in id id end. A possi-

ble explicitly typed version of this expression is

K/l

letid:¢=(fnz: af.(z: af): a"): af = af
in ((id§<):(ﬁji'>ﬁj)i">(ﬁji'>ﬁj) (id:c): g7 L giy: pi L o

end : 37 L5 B9

106



nl
where ¢ = Vakk'.a® = of.

The extra sets of constraints have their role in the algorithm but ultimately
we will be interested only in the regular sets. If M is an extended explicitly typed
expression, Reg(M), defined below, erases extra constraint sets from all extended
constrained types and extended constrained type schemes of M. We call the
resulting expression a reqular explicitly typed expression, or simply an explicitly
typed expression. Observe that linear representations for type derivation trees as
given in the previous chapter are regular explicitly typed expressions.

) = 1\C

Reg(VomT\C C'") = Var.t\C

Reg((z:¢):0) = (z: Reg(c)) : Reg(d)

Reg((fnz : 6. P) : ) (fnz : Reg(s). Reg(P)) : Reg(6)

Reg(let z:¢ =V inPend:§) = let z: Reg(s) = Reg(V) in Reg(P)end : Reg(6).

In the remaining of this section we give other auxiliary functions over ex-
tended explicitly type expressions. These functions will helps us state and prove
properties about W,,. and its components.

The set BLV (M) of bound locality variables of M is given by

BLV((z:5):6) = {}
BLV((fnz:<.P):§) = BLV(P)
BLV((MN):4) = BLV(M) U BLV(N)
BLV((M,N) : §) = BLV(M) U BLV(N)
BLV(let z:Var.' =V inPend : §) = BLV(V) U BLV(P) U [R].

The set FV(M) of free term variables of M, paired with their type schemes is

given by
FV((z:6):6) = {z—¢<}
FV((fnz _gE) :0) = FV(E) \ {z—¢}
FV(MN):6) = FV(M) u FV(N)
FV((M,N) :46) = FV(M) U FV(N)
FV(let z:¢ =V inPend :§) = FV(V) U (FV(P) \ {z—<})

The set F'Voccur(M) of occurrences of free term variables of M is given by

FVoccur((z : <) :0) = {(z:¢):4d}
FVoccur((fnz :c.P) : §) = FVoccur(P)\ {(z':¢'): 6" | 2’ = z,¢' =<}
FVoccur((MN) : ) = FVoccur(M) U FVoccur(N)
FVoccur((M, N) §) = FVoccur(M) U FVoccur(N)
FVoccur(let z:¢ =V in Pend : §) FVoccur(V

- V) U

(FVoceur(P)\ {(z':¢"):0" | 2’ = z,¢' =¢}).
Observe the difference between FVoccur(M) and FV(M): if M is the pair

((x:¢): 0, (x:6): 6" :6" for example, with § # §' we have that FV(M) = {z:¢}

and FVoccur(M) = {(z:6): 8, (z:¢):6'}.
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The set the set Sub(M) of subexpressions of M is given by

Sub((z:5):6) = {(z:5):6} B
Sub((fnz :c.P):0) = Sub(P) U {(fnz:¢.P): 4}
Sub((M N):6) = Sub(M) U Sub(N) U {(MN):d}
Sub((M,N) : §) = Sub(M) U Sub(N) U {(M,N) : 4}
Sub(let z:¢ =V inPend : ) = Sub(V) U Sub(P) U

{(1et z:¢ =V inPend): d}.

Type, locality and extended type substitutions are applied to extended ex-

plicitly typed expressions inductively on their structure, as expected.

7.3 The Algorithm W,

The type reconstruction algorithm W,,,, is presented in Figure 7.2. The first argu-

ment of W), is a map from term variables to extended constrained type schemes.

We use the metavariable © to range over these maps. When given a map © and

an expression M, W,.(©, M) returns an extended explicitly typed version of M.
The algorithm W, is divided into two sub-algorithms called W, and L.

Wiee(®, M) = 1let (Z, M, X) = W(0, M) (1)
Zle = £ (M, M) (2)
Zlocm (3)

end .

Figure 7.2: Algorithm W,,.

The sub-algorithm W,(©, M) returns a pair Z = (Z%P¢ Z¢) of type and
locality substitution, an extended explicitly typed expression M, and an auxiliary
set X (whose role in W, we explain later).

W, is the component of W, responsible for inferring types and for inferring all
escaping labels. The only labels appearing in types inferred by W, are the escape
label € and locality variables. W, provides all the type and locality information
needed for an optimising transformation as defined in the previous chapter. W,
fails only if W, fails

The reason for having the sub-algorithm £ is that the output of W, cannot
be proved sound with respect to the type system in Figure 7.1. That type sys-
tem requires the predicate esc? to hold (rule ABS.) when labelling a function

abstraction with a locality variable or with €. But, as we will prove later, that is
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[(z) = 7\C
VAR -
aux Ihaw z: 7\C
' .
ABS,.. Lz — 7 \C'] I—au; M:m\C
My fTnz.M: 1 = \CUC!
PAIR D Fae Mi:\C T b Mo: o\ C'
" I Fpwe (M1, M) : 1y x¢\CUC'UC"UC™
where:
C" ={¢ <lab (1)}, if lab (1) is defined, C" = () otherwise
C" ={¢ <lab (1)}, if lab (12) is defined, C" = otherwise
APP T b Mi S 1\C Ty N:ry\C'
T Fo MN: 75\C UC
LET Mk V:m'\C'" Tz~ Gen(r'\C',T)] Foux N: 7\C
o M'F,xletz=Vin Nend: 7\CUC'

Figure 7.3: Auxiliary type system for W,

the case for W, only when the locality label of a function type is € or is a bound
locality variable. The only role £ plays in W, is to go through the explicitly
typed expression produced by W, and, whenever it finds an abstraction labelled

with a free locality variable k, it replaces k with £.

7.3.1 The Algorithm W,

The algorithm W, is given in Figure 7.6. Before explaining W, and its components

we present a formal system against which we prove some properties of W..

7.3.1.1 Type System for W,

As we mentioned before we cannot prove W, sound with respect to the type
system in Figure 7.1. In this section we then present a formal system, in the form
of a type system, against which we prove W, sound. This type system is given
in Figure 7.3. The differences between this auziliary type system and the one in

Figure 7.1 are the following:

e there is only one rule for typing functions and it does not require the pred-

icate esc?,

e the language of labelled types has only € and locality variables as locality

labels, which implies that
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e 3 constraint set is invalid iff it has a constraint like ¢ < x in its transitive

closure.

As expected the type system in Figure 7.3 shares several definitions and prop-
erties with the type system in Figure 7.1 (which in its turn inherits its properties
from the type system in Figure 3.2).

In the next subsections we present some of the components of W,.

7.3.1.2 Unification of Labelled Types

The following notation is adopted to give a description of the algorithm for uni-
fication of labelled types as general as possible: the metavariable ¢, is used to
range over type constructors of arity n > 0. In our case the type constructors of
arity n = 0 are the basic types int, bool and unit. The type constructor ref
has arity n = 1, and x and — are type constructors of arity n = 2. We write ¢¢
to indicate that ¢ is the label of type constructor t,, n > 0.

Figure 7.4 shows the unification algorithm ¢/ used by W,.. Given two labelled
types 7, and Ty, U (71, 72) returns a unifying substitution (Z%r¢, Z'¢) such that
(Ztype’ Zloc) = (Ztype’ Zloc) .

The algorithm U calls Uy, given below, to unify locality labels

Ug($rd) = Id"

Ule, k) = Ug(k,e) = {k—¢€}
U(k,&") = {k— K}

The following lemma establish the correctness of unification in the usual way.
Lemma 7.1 U(m, 7o) terminates, and if it returns Z then

1. Z1 = Z 1y, and

2. for any Z' such that Z'my = Z'1y, there exists some Z" such that Z' = Z"oZ.

PROOF. Similar to the proof of Theorem 15 given in page 36 of [11]. ||

7.3.1.3 Resolving Constraints

When given a set C' of constraints, the algorithm R for resolution of constraints,
in Figure 7.5, returns a locality substitution Z%¢ such that no constraint of the
form € < & is in the transitive closure of Z!¢C. The following lemma establish

the correctness of R

Lemma 7.2 R terminates and if 2" = R(C) then
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Ulr,r) = (Idtype,ldl"c)
Ua?ty) = Uty a®) = ({a tg}, 1d")

U, B?) = let 2" =Uy,(¢,¢')
in
({CV . ,BZIOC¢’}, Zloc)
end

U?, t¥ (r1,...7)) = UL (11,...7), a®) =
if a € FTV(r)U...UFTV(r,) then fail
else let Z'¢=U(p,¢')
in
(o 291 (ry, ... 7))}, 2°)
end

U® (T1,...Tn), i (11,-..1)) =
let Z§™ = Uy($,¢')
Zy = (1d"Pe, Z})
Z1 ZU(ZQTl,ZoT{)

Zn=U(Zp—10...0 20Ty, Zp—10...02ZyT})
in

(Zpo...0Z)
end

U(_,_) = Jail

Figure 7.4: Unification of labelled types.

R(C) = let dom={k;| (e<k;))eC}
in if dom = () then Id'"°
else let Z'°= {kr €|k € dom}
O = gloco
in Z"9¢ o R(C")
end

end

Figure 7.5: Resolution of constraints
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1. there is no k such that € < k € (Z'¢C)*,
2. Dom(Z") C FLV (C),
3. ifk<ecCande <k gCt then k < e € (ZYC)*.

PROOF. R clearly terminates since at each iteration the number of constraints
of the form € < k gets smaller. The program stops when there are no constraints
of the form € < k in C. The other results clearly hold since a locality variable x
is in the domain of the substitutions built at each call of R only if € < & is in the

transitive closure of CT. [ |

The significance of each of the above results about R will be made clear in
subsequent proofs. Result 1 is obviously needed because we want the algorithm
to eliminate invalid constraint sets (in doing so it infers escaping labels). This
result is used in the proof of soundness.

Results 2 and & say that R substitutes e for locality variables only when that
is necessary for the validity of the set of constraints. In doing so it is trying to

infer as few escaping labels as possible.

7.3.1.4 Instantiation and Generalisation

The function Inst used by W, to produce an instance of an extended constrained
type scheme, is defined as follows. We write [k; — «] for the locality substitution

{k1—kKy ... kp— K} and [k;| for {k;..., Kk, }. Similarly for type substitutions.

Inst (VAR.0) =
let g = [k — K} 0
in [a; — 7]
where:
[k:] = [R] and k] is distinct and fresh
[a;] = [d], B; is distinct and fresh, and ¢; = lab («;) in &g
if a; € FTV (&), otherwise ¢ is any label

end .
We prove a result that relates Inst with the instantiation relation >.
Lemma 7.3 If Inst (Vag.7\C,C") = 19\ Co, C} then

1. there is Z such that Dom(Z') = [R], Dom(Z%) = [d], and ZT = 79 ,
ZC =Cy and ZC' = C{, and also

2. Var.t\C » 19\ Co.
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PrOOF. Part 1: immediate from the way the function Inst is defined above.
Part 2: by part 1, there is Z such that Dom(Z%¢) = [R], Dom(Z%r¢) = [d],
and Z1 =1y , ZC = Cy. By the Definition 3.5 of > this corresponds exactly to
Var.m\C > 7\ Cy. i

The algorithm W, generalises type and locality variables of extended con-

strained types using Genyy, defined in the following way

Genw, (T\C,C', ©) =Var.7\C,C’
where:
[k] = FLV (7) \ FLV (©)
[a] = FTV(r)\ FTV(O).

The following lemma relates the generalisation procedure used by the algorithm

and the operation of generalisation of the type system.
Lemma 7.4 Gen(Reg(d), Reg(©)) > Reg(Geny, (3, ©)).

ProOF. The type variables that are generalised are the same on both sides of the
relation . But more locality variables can be generalised in Gen(Reg(6), Reg(©)),
though, since FLV (Reg(©)) C FLV(O). i

7.3.1.5 Explaining W,

Notation. We adopt the following conventions in the presentation of W,.

1. substitutions with a € as a subscript are locality substitutions,
2. we write Z, o Z as an abbreviation for (Id*"* Z,) o Z,

3. if X is the set {(x1:61): 01 ..., (Tn: <u): 0} we write X \ {z} instead
of X\ {(z;:): 6 | x; = x},

4. the definitions of type, locality and extended type substitutions given
in Chapter 3 are extended to © in the expected way.

If we erase from W, all the machinery used to infer locality information, W,
behaves exactly as Milner’s algorithm W [18] when inferring types. We assume
familiarity with W and we concentrate on explaining how W, infers locality in-
formation.

The clauses for variables, application and pairs are analogous to the their
counterparts in W. Resolution of constraints (R) is added at appropriated places
in order to infer valid locality information. Substitutions, including those pro-

duced by R are propagated as expected.
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= x ¢ Dom(©) — fail
|  let 7\C,C' = Inst(O(x))

Z.=R(CUC)
in (2, Z((z: 0@)) : 7\C,C"), {Z((x : O()) : T\C,C")})
end
W€(®a fn.z'.P) = let (Z7 ﬁ7'\C’,C”; XI) = We(@[x'_) an]’ P) a;K/I new
in (Z, (fnz: Z(a®).P): Z(a) 5 7\C,C"UC", X)
end
where

k new, X = X' \ {z}
C" ={k <lab(d) | Ts € X and lab (0) is defined}

We((‘), N P) = let (Z17 NT1\01,017 X) = We((‘), N)

(Z25 PTQ\CQ,C&’ XI) = We(Zl 67 P)
Zy =U(Zo71, T 5 a”l) a, Kk, k' new
Z. =R (ZyZ2(C1 UC)) U Z,(Cy U CY))
in
(Ze 0 Zy0Zy0 7y,
Ze Zoy (ZaN P) : ' \ ZoCy U Oy, ZoCL U CY),
Z.Zy(Z2 X U X))

end
W0, (N,P)) = 1let(Zi, Nn\chc{, X)=W.(0, N)

(Z25 PTQ\O2,O£) XI) = We(Zl G)a P)
Z.=R(Z(CLUC])UC2UCY)
K new
Cs; =lab (Z.Zym) undef. — {} | {k <lab(Z.Zym)}
Cy =lab (Z.) undef. — {} | {k <lab(Z.m)}
C=C3UC,

in
(Ze ° Z2 o Z2;
Z6 (Zgﬁ,ﬁ) :

Ze (Zamy x¥ 1)\ Ze (Z2C1UC2) UC, Z (Zy C1 U Cy),

Z.(Z2X UX"))

end

We(O, let z=V in P) =

let (Zl, VTI\Cl,C{J X) = WE(('), V)
Kr = (FLV(r)\ FLV(Z:0)) n {j | j <¢ € Ci}
Za={k—e| j<keC] AN je[Kf]}
Zey = R(Zea C1 U Zy C7)
S = Vd’k’ Z€2 Zel (7'1\01, C{)
= genwe (Ze2 Zel (Tl\Cl, Cl), Z€2 Zel Z1 @)
(Z27 PTz\Cg,CéJ XIJ ) = We((Ze2 Za Zy 6)[1' — §], P)
Zw3 =R (Zs Zen Zey (CLUCT)UCLUCY)
in
(Zego Zyo Zey 0 Zey o Zy,
Z€3 (let xI: Z2§ = Z2 Z€2 Zel (V) in 5) :
Ze3 (1o\Z2 Zeo Zey CL U Cy, Za Zey Zy C1 U Cy),
Ze3Zn Zes Zay X U Ze3 (X'\ {z}))

end

Figure 7.6: Algorithm W..
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Later we show that if W.(©, M) = (Z,M, X) then X = FVoccur(M), that is
X has all the occurrences of free variables of M.

The unusual aspects of clauses for functions and let expressions when com-
pared to W are due to the need to ensure that functions labelled with a bound
locality variable satisfy the 3-place predicate esc?.

Constraints are added to the extra set of constraints only in the clause for
abstractions. This is also the only place where the set X is used. Extra sets of
constraints have information relating the locality of functions with the locality of
their free term variables.

The clause for let expressions is the most interesting: in W,(16) locality
variables labelling function types which are candidates for generalisation are col-
lected. Among these locality variables are those labelling abstractions occurring
in V.

In W,(17) a substitution is built mapping to € the locality variables labelling
instances of free variables of functions abstractions in V. This will ensure that
these functions, that will be made polymorphic in their locality, are escape-
expectant.

Note that this is the only place in W, where the information in the extra set

of constraints is used.

7.3.2 The Algorithm £

The goal of the algorithm L presented in Figure 7.7 is to return the explicitly
typed expression produced by W, with its free locality variables labelling functions
replaced by ¢. As we said before £ is only included to establish soundness of W,
with respect to the type system in Figure 7.1. Note also that it is formulated in a
very inefficient way. We choose to do so in order to make it simpler to formulate
an inductive hypothesis for its soundness proof.

The only interesting clause of £ is the one for function abstractions: if the
outermost type of the function is labelled with a locality variable x which is not

bound in M then a locality substitution is produced mapping s to ¢

7.4 Soundness of W,

In this section we present soundness of W,,. with respect to the type system in

Figure 7.1. The proof is organised in the following way:

1. first we prove, in Section 7.4.1, that W, is sound with respect to the type

system in Figure 7.3,
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LM, (z:¢):0) = Id

L (M, (fnz:c.P): ) =
let Z; =if lab(§) =k and k € BLV (M)

then [k > /]
else Id
Zy, = L(M, P)
in
ZéOZg
end
LM, (PQ):9) = o
let Z;, = E(M, E)
Zy = LM, Q)
in
ZéOZg
end
E(m, (ﬁ,@) 10) = o
let Z; = L(M, E)
Zy = LM, Q)
in
ZéOZg
end

L(M, let z:¢=VinPend :4) =
let Zy; = E(M, V)
. Z, = L(M, P)
in
ZéOZg
end

Figure 7.7: Algorithm L.
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2. in the same section we prove that if a function F is a subexpression of the
explicitly typed expression M returned by W, and it is labelled with € or
with a locality variable which is bound in M, then the function satisfies the

3-place predicate esc?,
3. we then prove soundness of £ in Section 7.4.2,

4. finally the results about W, and £ are put together to proof that W, is

sound.

We start defining some useful notation.

Notation. 1. We write I'g to represent the regular term type context that is

obtained from map O in the following way: Dom(I'¢) = Dom(©) and

for all x € Dom(T'g), T'e(z) = Reg(©(x)),

2. we write I'y; for Reg(FV (M)),

3. we write F for the extended typed expression of a function abstraction.

7.4.1 Soundness of W,

Several auxiliary lemmas are used in order to prove the two main results about
W,. In order to keep the main line of reasoning as clear as possible we state and
prove these auxiliary lemmas in the Appendix A.3.

The first main result states the soundness of W, with respect to the type
system in Figure 7.3. Before we have to define what we mean by © be polymorphic

consistent.

Definition 7.1 © is polymorphic consistent iff Reg(©) is polymorphic consis-

tent.

Note that Reg(©) is a regular term type context and polymorphic consistency
of regular term type contexts was defined in Chapter 4 ( Definition 3.4).

Lemma 7.5 If © is polymorphic consistent and W.(©, M) = (Z, Mpccr, X)
then ZTg b, M: 7\C.

PrOOF. By induction on the structure of M (See Appendix A.3). i
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Our second main result about W, says that function abstractions labelled
either with € or with a bound locality variable by the algorithm W, are escape-

expectant.

Lemma 7.6 If

1. WO, M) = (Z, M, X),

2. F; € Sub(M), and

3. lab (§) = € or lab (§) € BLV (M),
then esc?(I'g, F)

PROOF. See Appendix A.3. [ |

7.4.2 Soundness of L

The next lemma says that £ is sound with respect to the main type system in

Figure 7.1 in the following sense

Lemma 7.7 Suppose that MT\C,@ and NTQ\CQ,% are such that
1. Ty Fawe M:7\C and
2. if Fs € Sub(M) and lab (§) = € or lab (§) € BLV (M) then esc?(I's,F) and
3. Nﬁ\cz,cé € Sub(MT\C,C/).

Then LM, N) = Z, implies Z,I'5+ N: Z; (12\Ca).

PROOF. By induction on the structure of N. See Appendix A.3. ||

7.4.3 Soundness of W,

We compose the results for W, and L stated in the previous sections to prove
Wi, sound with respect to the type system in Figure 7.1.

The proof makes use of the following auxiliary lemma:

Lemma 7.8 If W.(©, M) = (Z,M,X) then (ZT¢) (z) = Ty (z) for all z €
FV(M).

PROOF. See Appendix A.3. [ |
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Theorem 7.1 If © is polymorphic consistent and Wi,.(©, M) = MT\C’C, then
Iyt M:7\C.

PrOOF. If W, (©, M) returns MT\C,C, the sub-algorithm W, is successful and
by Wiee(1) in Figure 7.2 we have

We(O,M) = (Z, My, or, X) (7.1)

for some Z, MIT oo and X.
1\v1,Vq
By Lemma 7.5 (Soundness of W,) and (7.1) we have

ZF@ l_aux M: Tl\Cl. (72)
By Lemma 7.8 and (7.1) we have
(Zle) (z) = (Ts) (x) for all z € FV(M). (7.3)

The type of a term depends only on the type of its free variables, so by (7.2) and
(7.3) we have
PM’ l_aux M: Tl\Cl. (74)

By Lemma 7.6 with (7.1) the following holds
if F5 € Sub(M') and lab (§) =€ or lab (§) € BLV(M) then esc?(T'g, F). (7.5)

From W,,.(2) in Figure 7.2 we also have

—/ —

['(Mn\cl,cga Mn\cl,c;) = Zy (7-6)

for some Z,. Then, by the assumption that Wi,(©, M) = Mpc ¢ and by Wis(3)

we have
!

Zg (mﬁ\cl’ci) == MT\C,C" (77)
By Lemma 7.7 (Soundness of £) with (7.6), (7.4) and (7.5) we get
Zgrml = M: Zg (7'1\01),
which, by (7.7) is equivalent to

Ty M:7\C,

as desired. ]
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7.5 Best Locality of W,,

Ignoring locality labels, Wj,. behaves exactly as Milner’s algorithm W [18] when
inferring the most general type of an expression.

The proof of completeness of the type reconstruction algorithm W,,., not
considering locality labels, follows the same lines of the standard completeness
result for Milner’s algorithm W [9].

Regarding locality information, the ideal type and locality reconstruction al-
gorithm is one that satisfies what we call the best locality property. We have not
defined precisely this property but the intuition is clear: an algorithm satisfies
best locality if it infers as many local references, or, equivalently, as few escaping
references as allowed by the type system.

An algorithm satisfying best locality allows the greatest number of dereference
and assignment operations to be translated to their local versions.

We conjecture that the algorithm W, satisfies a restricted form of best lo-

cality

Conjecture 7.1 For expressions with no rfork, constant and where references
are not reachable from locality polymorphic functions we conjecture that Wi, sat-

1sfies the best locality property.

For such expressions a reference will be labelled with € only if it is reachable
from a function labelled with e. When inferring the type of a function, W, adds
to the extra set of constraints of the outermost type constraints kK < ¢;...,k <
¢, where k is the label of the function and ¢; ..., ¢, are the labels of its free
variables. Only if x is unified with e resolution of constraints R, will built a
locality substitution mapping locality variables in ¢; ..., ¢, to €.

In order to illustrate the reason for the restriction consider the following ex-

pression:
let r =ref 3
in let f =fnuz. fst (x,deref )
in f 3
end
end .
Note that the expression above has no rfork, constant, so one would expect the
reference r to be labelled with /. In fact the rules of the type system allow £ to
be inferred for the label of the function above and consequently allows ¢ to be
inferred as the label for the reference type of r. But the component W, though,
generalises the locality variable labelling the function fnx. fst (x,deref r). In

doing so, it also ensures that r is labelled with € even though the expression above
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is non-distributed (it has no rfork, constant). But observe that there is no reason
for f be polymorphic in its locality!

For the following expression for instance, the type inference algorithm infers
best locality:

let r =ref 3

in let f = (fnz.fnz. fst (z,deref 7)) unit
in f 3
end

end .

Because the term bound to the variable f is not a value the type of the function
where the reference r occurs free is not polymorphic. The algorithm then infers
that the type of r can be labelled with £.

In order to achieve best locality we have to find an algorithm which also infers
minimal polymorphism over locality labels. To understand what we mean by that

we can consider the analogous situation to "normal” type polymorphism:

let «d =fnx.x
in
id 3

end .
In the expression above id is polymorphic but there is no need for that as it is
only instantiated to type int — int. In [7] there is proposal for a type inference
algorithm that tries to reduce polymorphism to situations where it can be useful.
A possible continuation for the work on this thesis is to adapt that proposal to
obtain minimal locality polymorphism.

We implemented W, using Moscow/ML exactly as described in Chapter 7.

We tested the implementation on several small programs. Our preliminary tests

support the conjecture that W, satisfies the restricted form of best locality

property.
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Chapter 8

Conclusions and Future Work

We have devised a polymorphic type system that soundly describes the locality
of dynamically-created references in a distributed language. The performance
payoff for this analysis promises to be great. In the current implementation of
Distributed Poly/ML, a program that does not use the distribution features and
so uses only local references will execute more slowly than if run under (non-
distributed) Poly/ML. A program that does use the distribution features but
uses local references runs more slowly than it should. Our analysis provides a
basis for redressing these problems.

We believe that our type-based approach can be useful for other distributed
languages with mutable objects based on a shared memory system. Note that
our type system requires that a program itself must contain information of which
threads are to be executed remotely. Because of that our locality analysis cannot
be used for parallel languages where the compiler decides which parts of a program
will constitute concurrent threads.

Any non-specialised operation to access mutable data can be used wherever
a specialised version, not calling a coherency protocol is expected. Because of
that subtypes seems to be a natural choice for a type-based locality analysis to
detect locality. When we started the work in this thesis one of our goals was the
integration of our type-based analysis in an experimental version of Distributed
Poly/ML. For this reason and because the type system of languages based on
the SML type discipline does not support subtypes we decided to adopt variables
ranging over locality labels. Our intention was to treat locality variables in a
way analogous to the way the SML type discipline treats type variables. Later,
when technical developments lead us to the adoption of constraints over locality
variables, we realized that the additional effort to integrate our type system with
that of an ML-like language could have justified the adoption of subtyping in the
first place.
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In order to prove soundness of locality we had to define notions of reachability,
and we had to use fixed point induction to get our main result of Chapter 5. An
alternative way to prove soundness of locality can be achieved by introducing
a wrong value in the target language and by adding rules to the operational
semantics given in Chapter 6 returning this wrong value every time locality is

violated. The semantics given in Chapter 6 has this rule for example

Vo' # p. Refs(v) N Local (p',8) = 0
S 4Py elalp pe[deret 1] — sr s 6P U (o}, ol alp prelv]

where the proviso ensures that local references do not escape as subterms of v.
A rule returning a wrong value in case locality is violated would look like the

following
p' # p. Refs(v) N Local (p',s) #
s[r—t,P,v],n[p: p,e[deref r]] — wrong

The statement of soundness of locality would then be: if P is well typed program
and p € ®(P) where P is a type derivation for P then

p 70(%”) wrong.

The proof that our type system is a conservative extension of the Hindley-
Milner type discipline provides an evidence that we can extend our locality anal-
ysis to the full SML language.

One of the advantages of type based analysis of programs is that it allows
modular analysis. Non-modular or global analyses are not compatible with sepa-
rate compilation. Sometimes the information necessary for optimising a module
of a program depends on information that is collected on another module. If
these modules are to be compiled separately, the compiler cannot have access
to other modules’ information. It has to assume a conservative approach which
often disallows optimising transformations.

Extending our locality analysis to the language of modules of SML the locality
information can be part of the signature of modules. In this way, if a module is
compiled separately, the compiler can have access to locality information of other
modules.

Further work should be done to find a correct type inference algorithm with
minimal locality polymorphism. Only then, as we discussed in Chapter 7 we can
achieve the best locality property.

Having a correct type inference algorithm inferring best locality information,
we believe the next steps before scaling it up to SML is to study a better internal

representation for its output. So another possible future work would be, for
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example, to integrate our locality labels with the work done in [14] which proposes
a type structure of SML by giving an explicitly-typed, polymorphic function

calculus to capture the essential aspects of both the core and the module language.
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Appendix A

Proofs of Auxiliary Lemmas

A.1 Lemmas from Chapter 3
Lemma 3.4 esc?(Var.7\C) iff
1. e<t¢gCt ande <k eC" onlyif k€ [K], and
2. exactly one of the following holds:

(a) T = ot for some a € [@],
(b) esc?(7), or

(c)lab (1) =k, k € [R], k <L Z CT and k < k' € CT only if k' € [R].

PROOF. (=) By Definitions 3.14 and 3.16 we know that there exists Z =
(Ztwre, Z¢) such that Dom(Z"¢) = [R], Dom(Z%¢) = [&]|, ZC is valid and
esc?(Zr).

Because ZC' is valid we know that ¢ < ¢ ¢ CT, and, if ¢ < k € C* then
Z¥%(k) = €. By the way Z"¢ is defined we then have that x € [K]. These facts
prove 1 above.

By Definition 3.15 and because esc?(Z7) we know that either

e 7 = o, in which case Z should be such that Z%¢(a*) = 7' and lab (') is

undefined. By the way Z%P¢ is defined we then have that o € [@],
e 7 is already an escape-expectant type i.e. 7 is such that esc?(7), or

e 7 is labelled with a bound locality variable k, in which case Z should be
such that Z'¢(k) = e. For ZC to be valid, there should be no x < £ in the
transitive closure of C, and, if k < &' is in CT then Z!“(x') = ¢ implying
that «' € [K].
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(<) For each possible constrained type scheme V@R. 7\ C satisfying the con-
ditions on the right side of the implication we can build an extended type sub-
stitution Z = (Z%r¢, Z¢) such that Dom(Z%r¢) = [d], Dom(Z'¢) = [K] and
Z(C is valid and esc?(Z7). Then by definitions 3.14 and 3.16 we conclude that
esc?(Vag.m\C). i

Theorem 3.1 Let M be a term of the language, then
1. if T'E M:~ then ¥(T) by M:)(7y), and

2. if Uy b M2 o then there exist I' and v such that (I') =Ty, ¥(7) = ¢,
and I' = M : ~.

Proor. Part 1 is proved by induction on the type derivation of M using our
type system. Part 2 is proved by induction on the ML type derivation of M. We

start proving part 1.

case z
If T F z: + then by the rule for typing variables I'(z) > - must hold. By
part 1 of Lemma A.2 we know that ¢(I'(z)) >y ¥(7), which is the same
as (Y(I))(x) =L ¥(7). We can then conclude that ¢(I") Fy, M: (7).

case fnx.M
The typing derivation for I' - fnx. M : 7 A 75\ C1 U Cy must have been of

this form
[z — 1 \Ci] F M: 1\ Cy (%)

I'-fnz. M: 1 i) 7'2\01 U 02

where (x) marks the possible use of the three-place predicate esc?.

From the first premise above and by the induction hypothesis we have that
Y(L[z — 7 \C1]) Faur M : (12\C2)
which is equivalent to
(D)2 = P(n)] b M2 P(72).
By the judgement above and the rule for functions we conclude
Y(T) byp oz M : (1) — P(12),
which one can readily check is the same as

(D) by, £n2.M 2 (11 2 1\ CL U Cy).
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case

case

N P
The proof derivation of I' = N P: 7\CUC" must have been of this form

FI—N:T’EH'\C’ 'FP:7\C
'FNP:7\CUC

By the induction hypothesis and the first premise above we have
() b Nop(7') — (7).
By the induction hypothesis and the second premise above we have
(L) Fa Prp(7').
By the application rule using these two type judgements as premises we get
Y(T) Faw N P:yj(7)

which one readily checks is the same as
() by N P:op(7\CUC").

let x =V in Nend
The proof derivation of I' - 1let x = V in N end : 7\ C must have been of
this form
FEV:7\C" Tz~ Gen(r'\C",T')]F N:7\C
'Fletz=Vin Nend:7\C'UC

By the induction hypothesis and the first premise above we have that
P(T) b Vi p(T'\C"). (A1)
By the induction hypothesis and the second premises above we get
P(0)[z = (Gen(7'\C",T))] Fa N: (7). (A.2)

By Lemma A.1 we have that ¢(Gen(7'\C",T")) = Geny (¢ (7'\C'), ¢(T)).
We can then rewrite (A.2) above as

(D) = Geny (P(7'\C), ()] Far N2 (7). (A.3)

Using (A.1) and (A.3) as premises for the ML rule for polymorphic let we
conclude
(') by let 2 =V in Nend : ¢)(7)

which one readily checks is equivalent to
Y(T) by let £ =V in Nend: ¢(r\C UC")
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We now prove part (2).

case

case

case

x

If Ty Fue 2@ ¢ then by the rule for typing variables 'y (z) >y, ¢. By
part 2 of Lemma A.2 we know that there are o and valid v such that
Y(o) = D'u(z), ¥(y) = ¢, and 0 > 7. We then build a term context I’
such that z is mapped to o and any other y is mapped to a o’ such that
Y(o') = I'y(y). We then have that I'(xz) > v and we can use the rule for
typing variables to conclude that I' = z: .

fnxz. M

We have a type derivation of this form

L[z = 0] by Mg
Dy Fun Tnxe. Mo — 19

By the inductive hypothesis and the premise of the proof above there exist
I with ¢ (I") = Ty [z — 1], 7 and Cy with ¥(\ C2) = 13 such that
PIF'A{27Q\CE.

As we have that ¢ (I'') = ['y.[z — ¢1] we know that, for any C; and for
any 7 such that ¢ (m) = ¢1, I' must be of the form I'lx +— 7\ C;] where
P(I') = I'y. We chose some valid Cy. Cy is also valid, so by Lemma 3.1 we
have that C;UC, is valid. Hence we can use type judgement I' - M : 75\Cy, as
the premise for the rule for typing abstractions in order to get I' - fnx. M :
71 % \C1 UG, and one readily checks that ¥(r - 7\Cy UCh) = 11 — to.

N P
We have a type derivation of this form

My Fvue N P

By the inductive hypothesis and the first premise of the proof above we get
TFN: 7% T\C.
By the inductive hypothesis and the premise of the proof above we can have
'EP:7\C"
By the rule for applications and the two type judgements above we conclude

'-NP:7\CUC"
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case let x =V in Pend

The proof derivation for this case must have been of this form

Cur Fae Vit Tylz = Gengg (VD)) Fa N: e
My by letz=Vin N:y

By the induction hypothesis and the first premise above we know that there
are I' and 7\ C' such that ¢(I") = Ty, ¥(7'\C") = ¢ and

L'Ev:r\C (A.4)

By the induction hypothesis and the second premise above we know that
there are I and 7\C such that ¥/(I'") = Ty [z — Genyy (¢, Ty, 9(1\C) = ¢
and

I'tN:7\C (A.5)

If p(I'") = Tylz — Genyy (¢, )] then I must be of the form 'z —
Gen(7'\C',T')] since
Y[z — Gen(r'\C",T)))
= YD)z = ¢(Gen(r'\C",T))]
= Dz — Geny, (¢, Tyl

We can the rewrite (A.5) above as
L[z — Gen(7'\C",T)]F N: 7\C. (A.6)

Using (A.4) and (A.6) as premises for the rule for typing let expressions we
get
'Fletx=Vin Nend:7\C'UC

as desired. ]

Lemma A.1 Gen,, (Y(7\C),y(T)) = ¢(Gen(r\C,T)).

PRrROOF. Immediate from the definitions of v, Geny;, and Gen and by the facts
that FT V. (¥(7\C)) = FTV (1) and FT V., (¢¥(T)) = FTV (T). [ |

Lemma A.2 (1) IfVag.7'\C' > 7\C then Y (Va&R.T'\C") >, ¥(7\C), and (2)
if Va. i >, ¢ then for any R, 7" and C" such that V&. ' = ¢ (Vag. 7'\ C") there is
T\C such that VAR.7'\C' > 7\C and ¥(7\C) = ¢.
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ProOOF. For proving part I we build an “ML” type substitution S as follows:
Dom(S) = Dom(Z%P¢) = [K] and

S(a) = ¢Y(Z(a?)) where ¢ = lab () in 7' if o € FTV(7'), otherwise ¢ is any label.

The proof then proceeds by induction on the structure of 7'. For part 2 we
build an extended type substitution Z = (Z%F¢ Z!¢) as follows: Z!¢ is such
that Dom(Z'"¢) = [K] and Z"*C' = C. The component Z%¢ is such that
Dom/(Z%wr¢) = Dom(S) = [@] and

ZWre (o) = Z'°r" where " is such that (") = S(a).

Having devised Z, the proof proceeds by induction on the structure of ¢'. [ |

A.2 Lemmas from Chapter 4

Lemma 4.4 If esc?(c) and there is T\C such that o > 7\C and ZC is valid
then esc?(Z o).

PRrROOF. Let o be Vak.7'\C'. Remember from Chapter 3 that we are equating
«a —it equivalent type schemes, so we can assume that o is such that all its bound
type variables and bound locality variables are different from any other type and

locality variable in Z. So we can have
Z (Var.7'\C") =Var. ZT'\ZC". (A.7)
We prove by contradiction that
e<tg (Z*C). (A.8)
Suppose € < £ € (Z'%¢C't). That can only happens if ¢ < ¢/ € C't and
1.9 <¢d'=€e< ¥ or
2. p < diseithere < K,k <Lork <k, and 2 (¢ < ¢') = e < L.

By Lemma 3.6, 1 above contradicts the assumption that esc?(Vag.7'\C"). Case
2 above implies that x and «' are not in [K]. By the definition of instantiation
we then know that ¢ < ¢ is in the constraint set of all possible instantiations
of Vag. 7'\ C'. But that violates the assumption that there is 7\ C such that
Varg.m'\C" > 7\C and ZC is valid.

We prove by contradiction that

e< kg (Z"C"* for k & [R]. (A.9)
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Suppose € < k € (Z%¢C")* for k € [K]. That can only happens if ¢ < ¢' € C'*
and either ¢ < ¢ = e < K, or ¢ < ¢ = k' < k" and 2" (¢ < ¢') = € < k.
But that implies that ' and " are not in [£]|. By the definition of instantiation
we then know that ¢ < ¢ is in the constraint set of all possible instantiations
of Vark.7'\ C'. But that violates the assumption that there is 7\ C such that
Var.m'\C" >= 7\C and ZC is valid.

We still have to prove that

exactly one of the following holds : (A.10)
‘

-7 =«
—esc?(Z1")
—lab(Z7) =k fork e [R],k <L & ZC* k<K' & ZC'* for k' & [R).
By Lemma 3.6 we know that Va@g. 7\C" is such that exactly one of the following
holds

1. 7' = of for some a € [d],
2. esc?(7'), or
3. lab () =k for k € [R],k <L g C* k<K ¢ C* for k' & [R]

In case 1 above holds one readily checks that Z7' = of If esc?(7') we also
have that esc?(Z7'). Finally, if lab (7') = & for some k € [K] then lab (Z7') = &.
Assume k < £is in the transitive closure of Z¢C". So either k < £ or k < &', with
ZV%¢ (k') = £ and &' ¢ [R] are in the transitive closure of C’. But these contradicts

3 above so we have that
k<L Z"C'T,

Assume k < ' is in the transitive closure of Z"*C’ for some ' ¢ [K]. That
can only occur if k < k" for some £’ € [K] is in the transitive closure of C’ and

Z'"¢(k") = k. But this again contradicts 3 above, so we have that
k<K & Z%C* for k' ¢ [R].
Hence, by Lemma 3.6 with (A.8), (A.9) and (A.10) we have
esc?(Vag. Zm'\ZC")

as desired. ]
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Lemma 4.12 If'[z+— Varg.7\C); A+ M: 7\C', CUC" is valid and FLV (C")N
[K] =0 then Dlz— Var.7T\CUC"; A+ M: 7'\C"', where C"" C C' UC".

PrRoOOF. By induction on the type derivation of M. The interesting case is when
M =z.

case z. If ['[z+— Vag.7\C]; A F z: 7'\ C' then by the typing rule for variables
Vak.7\C > 7'\ C'. By Definition 3.14, we know that there exists Z =
(Z%wre, 7%¢) such that Dom(Z'¢) = [R], Dom(Z%¢) = [@], Z7 = 7' and
ZleC =",

We have that Z (CUC") C C' U C" since

Zloc (C U C”) — Zloc C U Zloc C"
= Cruzlec”
c'uc”.

Hence Vag.7\C U C" > 7"\C U C" and by the rule for typing variables we
conclude

[z Var.T\CUC";A+Fz: F\CuC”
as desired. ]

Lemma 4.13 If [z — Var.7\Cl;A = M : 7'\C" and C" C C then Tz —
Var. T\C"|; A+ M: 7'\C", where C"" C C".

ProoF. By induction on the type derivation for M. The interesting case is
when M = x.

case z. If ['[z+— VAR.7\C]; A F z: 7'\ C' then by the typing rule for variables
Var.T\C = 7'\C".

By Definition 3.14, we know that there exists Z = (Z%F¢, Z!¢) such that
Dom(Z"¢) = [R], Dom(Z"¥*) = [@] and Z T = 7" and Z"*C = (C'.

Since, by assumption, C” C C, we have that Z'*C" C C'. Let Z"¢C" =

C". Hence we have that Va@g. 7\C" = 7'\ C"" and we conclude that
Pz— Var.7\C"); A+ z: 7\C"

as desired. ]
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A.3 Lemmas from Chapter 7

Lemma A.3 If © is polymorphic consistent then
1. Z0© is polymorphic consistent,
2. ZT'g is polymorphic consistent,

3. Genyy, (0, ©) is polymorphic consistent.

Proor. Part 1 follows by the definition of polymorphic consistency and by
the definition of application of an extended type substitution to an extended
constrained type scheme. From 1 we also have that I" ;¢ is polymorphic consistent.
Part 2 then follows from the fact that ZI'g = I'zg9. The proof of 3 is analogous
to the proof of Lemma 3.2. ||

We define the set InuLV(Z) of locality variables involved in Z = (Zre, 7o)

in the following way
InvLV(Z%r¢ 7' = FLV (Range(Z™"®)) U Dom(Z"*¢) U FLV (Range(Z"*)).
The set InvTV(Z) of type variables involved in Z = (Z%P¢, Z'¢) is defined as
InvTV(Z%P, 7€) = Dom(Z%"*) U FTV (Range(Z™*)).
Lemma A.4 IfW.(©, M) = (Z,M, X) then
1. BLV(©) N IwLV(Z) = 0,
2. BTV(©)N InvTV(Z) = 0.

PROOF. By induction on the structure of M. [ |

Lemma 7.13 If © is polymorphic consistent and W.(©, M) = (Z, Mpc,cr, X)
then ZT'g b, M: 7\C.

ProoF. By induction on the structure of M.

case z
By Lemma 7.3(2) and W,(1) we have I'g(z) > 7\C. By the assumption that
© is polymorphic consistent I'g is polymorphic consistent, By Lemma 4.7
we then get Z, (T'g(x)) = Z. (7\C), which is equivalent to

(ZeTo)(z) = Ze (T\C). (A-11)
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By W,(2) and Lemma 7.2(1)
Ae<k € (Z.O)". (A.12)
Because of (A.12) we can use (A.11) as premise for the VAR,,, rule to get

Zlo Faw : Z (T\C).

case fnz. P
Oz — o] is polymorphic consistent, so by W,(3) and the induction hy-

pothesis we have ZFQ[ 2 Faw P: 7\ C which is the same as

T—ark

ZTolz — Z(a)] Fuu P: 7\C.

Using the type judgement above as premise for the ABS,,, rule, choosing

aux

as the label for the function type, gives us

ZT Fun. tnz. P: Z(a®) 5 7\C.

case N P
By W,(6) and the induction hypothesis we have

Zl P@ }_aux N: 7'1\01. (A13)

By assumption that © is polymorphic consistent and Lemma A.3.(1)
710 is polymorphic consistent. (A.14)

Hence, by W,7 and the induction hypothesis we have Zo 'z, Fou P: 72\Co,

which one can readily check is the same as
Z5 7, T Fow P: 75\ Ch. (A.15)
By W,8 and by Lemma 7.1(1) we have that
ZuZom = Zyms 24 Z, (aF). (A.16)
By W.9 and Lemma 7.2(1) one readily checks that
Ae<ke€(ZZ,Z,0)" (A.17)

and also
Ae<ke(Z.2,C)7". (A.18)
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By A.14 we have that I'zg is polymorphic consistent. Because I'zg = Z11'g
we have

Z1Tg is polymorphic consistent. (A.19)
By Lemma 4.8 with (A.13), (A.19) and (A.17) we get
272y 7y 21 Ve Fawe N: ZeZy Zo (11 \C1). (A.20)
With (A.16) we rewrite (A.20) as
ZeZuk

ZeZyZo Zn Vo b N: ZZymy 3% 2,2, (0 )\ZZy Z,C,.  (A.21)

By (A.14) above and Lemma A.3 we have that Z»(Z;0) is polymorphic
consistent which implies that Z,7; I'g is polymorphic consistent. Hence, by
Lemma 4.8 with (A.15) and (A.18) we get

ZeZu ZQ Z1 F@ l_aux P: (ZEZUTQ)\ZEZUCQ. (A22)
By the rule APP,,, using (A.21) and (A.22) as premises we get

ZZy 25 21T Fax N P ZZy (/) ZZy (Z5C1 U Cs).

(N, P)
By induction hypothesis and W,10 we have

Z1 F@ }_aux N: 7'1\01. (A23)
By the same reasoning used in the previous case we have
Z1 © is polymorphic consistent, (A.24)

and

Z T'g is polymorphic consistent. (A.25)

By W,(11), (A.24) above and the induction hypothesis we have

Zs Z1 T by P13\ Co. (A.26)
W12 and Lemma 7.2(1) imply that

Ae<ke(ZZyC)t, (A.27)

and
Ae<ke (Z0y)". (A.28)

139



case

By Lemma 4.8 with (A.23), (A.25) and (A.27) we get
Z€Z2 Z1 P@ l_aux N: Z€Z2 (7'1\01). (A29)

By Lemma A.3.(2) and (A.24), ZyI'z,0 is polymorphic consistent which
implies that Z,Z,I'g is polymorphic consistent. Then, by Lemma 4.8 with
(A.26) and (A.28) we get

Z6 Z2 Zl F@ |_aux PI (Ze ’7'2)\Z6 02. (ABO)

By the way (5 and C, are constructed in W,13 and W,14 we know they are
valid. Hence, by the Union Lemma with (A.27) and (A.28) we get

ﬁ € S K € (ZE(ZQ Cl U 02) U 03 U C4)+. (A31)

Because (A.31) holds we can use the PAIR,,, rule with (A.29) and (A.30)
as premises and get

7. 75 71 T Fawe (N, P): Zo(Zom x* 75)\ Ze(Z2 C1 U Co) U C3 U Ch.

let t =V in Pend
By the induction hypothesis and W,15 we have

ere l_aux V: 7'1\01. (A32)

By similar reasoning used in the previous cases we have that
Z1 © is polymorphic consistent, (A.33)

and

7, T'g is polymorphic consistent. (A.34)
By W,(21) and Lemma 7.2.(1) we have
Be < k € Z3ZoZeoZ CF. (A.35)
By Lemma 4.8 with (A.32), (A.34) and (A.35) we get

Ze3loZenZeaZi\lo Fo Vi ZesZoZeo Ze (71\01)- (A-36)

By A.33 and Lemma A.3.(1) we have

Zewo 710 is polymorphic consistent. (A.37)
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By W,(19) we have
s = Genw, (ZeaZa(11\C1,C1), ZeoZe1 Z,9) (A.38)
By Lemma A.3.(8) with (A.37) and (A.38) above we have that
¢ is polymorphic consistent. (A.39)
By (A.37) and (A.39) we get
ZwZaZ1© [x <] is polymorphic consistent. (A.40)
By W,(20) and (A.40) we can use the induction hypothesis to get
Zy (F(ZSQZle@)[zr—)g]) [ 72\02,
which one readily checks is equivalent to
Zy ZeaZien Z1Uolx = ZaReg(S)] Fawx P 12\ Co. (A.41)
By W,(21) and Lemma 7.2.(1)
Ae< k€ (Zs30Cy)". (A.42)
Then by Lemma 4.8 with (A.42) and (A.41) we get
Ze3 Zio Lo Zoe1 ZA Do v Zeg ZaReg(S)] Fawe P Zes (12\ Co). (A.43)
We now consider two possibilities:

case © ¢ FV(P)
In this case, by Lemma 4.2 and (A.43) above we get

Zeg Z2 Z€2Z€121F® [LE — O'] l_aux P: Zeg (7—2\02), (A44)
where
0= Gen(Ze?: Zy Zey Zer (7'1\01), Ze3 Ziy Zey Zea ere)-

Then by the rule for typing let expressions with (A.44) and (A.36) as

premises we get
L3ty Lol aZileobF..let x =V in Pend: Z3 (’7'2\02 U Z2Z€2Z€101)

and we are done.
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case = € FV(P)

For this subcase we have that
Zoy = Id". (A.45)

since in this case Zy ZZ1C1 C Co and also ZyZ 7 C] C CY. Because
CQ and Cé are valid Z2Z€2Z€101 and ZQZGQZEIC{ are valid.
We also have that

Genwe (Z2 Ze2 Zel (7'1\01, Oi), ZQ Z€2 Zel Zl @) = ZQ S (A46)

since, by Lemma A.4, BLV ((Z2Z"Z,0)[x — <]) N InuLV(Z,y) =
and BTV ((ZZ"Z,0)[x — <)) N InvTV(Zy) = (), which implies that
BLV ()N InuLV(Z;) = 0 and BTV (s) N InvTV(Z) = ().

With these two results we have

0 > Ze Zy Reg(s) (A.47)
since,
o)
= Gen(Ze Zo Zey Ziey (m\CL), Zes Zo Zes Zer Z1T o)
= Gen(ldZyZey Za (m\C1), 1dZy Zy Z Z1T o) (A.45)
= Gen(Zz Zea L (71\01), Ly Ly L 2 Fe)

GG’/L(R@g (Z2 ZEQ Zd (7'1\01, C{)), Reg (Z2 ZEQ Zd Z1 Reg(@))

> Reg Genyy, (Zy Zey Zey (\Ch,C), Zo Zey Ze1 Z10) Lemma 7.4
= Reg (Zy Genyy, (Zeg Zey (M\C1), Zea Ze1 Z110)) (A.46)

= Reg (Z39)

= ZsReq(s)

= ZsZyRey(s)

By (A.47), (A.43) and Lemma 4.3 we get
Z€3 Zg ZeZ Zel A F@ [33 — 0'] |_auX P: Z€3 (7'2\02), (A48)

We can then use (A.36) and (A.48) as premises for the Let rule to

conclude
L3lohieolalZil'g o let =V in Pend : Z3 (’7'2\02 U Z2Z62Z€101)

and we are done. [ |
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The following lemma says that the set X returned by W, has the occurrences
of free variables in the type reconstruction for the input expression. This set is

only used for adding elements to the extra set of constraints in line W,(5).
Lemma A.5 If W.(0,M) = (Z, M, X) then X = FVoccur(M)
PROOF. By induction on the structure of M. [ |

The following lemma says about the role of the extra set on constraints. If a
function abstraction is a subexpression of the explicitly typed expression MT\C,C:,
returned by W,, then the constraints relating the label of the abstraction and the
labels of its free variable occurrences are collected at the extra constraint set C’
of M.

Lemma A.6 If
. We((_)aM) = (Za M’7'\C',C"a X);

Fs € Sub(Mpcer),

Y; € FVoccur(F), and

e lab (0) is defined,
then lab (¢") < lab (4) € C".

PROOF. By induction on the structure of M. ||

Lemma A.7 If W.(©, M) = (Z, Mpc,cr, X), then
1. e< ¢ € C't implies ¢ =e,
2. k< ¢ €Ct with k € BLV(M), implies ¢ = €.
ProOOF. By induction on the structure of M. [ |

The following lemma can be viewed as a version of the Context-Filler Type

lemma, for explicitly typed expressions.

Lemma A.8 Let Mﬁ\cl,(;i be such that Tz Foe M 2 1 \Cy. If Nm\cz,cg S a
subexpression of Mn\cl,C{ then Ty Fowe N: 72\ Co.

PROOF. By induction on the structure of M. [
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Lemma 7.14 If
1. W.(0,M) = (Z, M, X), for © polymorphic consistent,
2. F; € Sub(M), and
3. lab (§) = € or lab(8) € BLV (M),

then esc?(I'g, F)

PROOF. According to the Definition 3.17 in order to prove esc?(I'g, F') we have
to prove that for all y € FV (F') we have esc?(o) where 0 = I'g (y).
Assume that y € FV(F). Hence (y : <) : 72\ Cy, Ch € FVoccur(F) for some g,
75, Cy and C. Because F € Sub(M) we also have (y : ) : 75\ Cy, Ch € Sub(M).
By Lemma 7.5 and A.8 we have that [y — o] F,.. y: 72\ C> which by the rule
VAR,,, implies that

aux

O > aux 7'2\02, with 02 valid. (A49)

If lab (73) is undefined then, by the definition of escape-expectant constrained
type scheme and (A.49) we have that esc?(o0).
Suppose that lab (73) is defined. Then by Lemma A.6 with assumptions 1
and 2 we have that
lab (7) < lab (n) € C".

By the assumption 3 we have that lab (7) = € or lab (y) € BLV (M). By Lemma
A.7, we know that lab (73) = e. Then, by the definition of escape-expectant
constrained type scheme and (A.49) we have that esc? (o). i

The following is the proof that £ is sound.
Lemma 7.15 Suppose that MT\QC/ and NTQ\CQ,cg are such that
1. Tyg Fowe M:7\C and
2. if F5 € Sub(M) and lab (§) = € or lab (§) € BLV (M) then esc?(I's,F) and
3. Nfz\cz,cg € Sub(Mpc,or).
Then LM, N) = Z, implies Z;Tz+ N: Z; (12\Ca).

PROOF. By induction on the structure of N.
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case

case

N=(z:5): \Cy, Ch
We have L(M, (z : ) : 2\ Cs,C%) = Id. So we have to prove that
IdP(m):Tz\@,% |— xZ. ]d (T\C)

By the assumptions that MT\C,CI is such that I'y; F. M : 7\ C and that

(@ :6): 2\Cy, Cy € Sub(Mpc,cr), by Lemma A.8 we get
F(z:c):Tz\Cz,Cé |_aux Z: 7—2\02,
which is equivalent to

IdF(x:g):Tz\C%Cé Fa:Id (’7'2\02).

N = (fna:: 7'1\01, Ci 57-2\02,05) T i) 7'2\01 U CQ, C{ U Cé
By the assumption that N € Sub(MT\C,C:) we have that

Poacacy € Sub(Maccor). (A.50)
The assumption that I'y is consistent implies that
['s is consistent. (A.51)
By L(3), (A.50), (A.51) and the induction hypothesis we get
ZyTs = P: Z, (12\Cy). (A.52)
By Lemma A.3 with (A.51) we have that
Zy Z, U is consistent. (A.53)

By (A.52) we know that Z; C, is valid. Because ¢ is the only locality label

in the range of Z, we have
Zy 7, Cy is valid. (A.54)
By Lemma 4.8 with (A.52), (A.53) and (A.54) we get
22T - P: 2,7 (1\Cy). (A.55)

Note that if z: 7, \C is not in I's we can weakening it to contain z: 71\ C}.
For simplicity, we then assume that z: 71\ C} is in I's. One can then easily
check that

I'pg =I'glz — 1 \Ci.
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We can then write type judgement (A.55) above as
(ZeZyTR) [z = ZoZy (m\C1)| F P: ZyZ) (12\ Co). (A.56)

Observe also that the order in which the locality substitutions are composed
in the algorithm is not important as they do not have locality variables in

their range.

If ¢ is such that Z,Z; ¢ = £ we use the rule ABS with the type judgement

above as premise to conclude
Ze T b fna.P: ZyZvm B 2,701\ 270 (Cy U ).
If ¢ is such that Z,Z; ¢ = € of Zy,Z, ¢ = k we still have to prove that
esc?(Z,Z, Ty, fnz.P)

In this case one readily checks that either ¢ = € or ¢ = k and xk € BLV (M).

By assumption we then know that
esc?(I'y,fnz.P) (A.57)
By Lemma 4.6 and (A.57), we get
esc?(ZZ,T'y,fn z.P)
as desired.

N = (§T1\C1,C’{767'2\CQ,C§) T T x® ’7'2\01 U 02 U 03,

By the assumption that (P,Q) € Sub(M) we have that
P € Sub(M). (A.58)
The assumption that FW is consistent implies that
I's is consistent. (A.59)
By £.(4) and the induction hypothesis with (A.58) and (A.59) we get
ZTs - P: Zy (n\C1,) (A.60)
By (A.60) we have that Z, Z; is valid. One then readily checks that

ZyZy Zy is valid. (A.61)
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By (A.59) and Lemma A.3 we get
ZyZU's is consistent. (A.62)
By Lemma 4.8 with (A.60), (A.62) and (A.61) we get
7, Z,Ts F P: 20 Z, (n\Ch,) (A.63)
One can easily check that
(Zy Zy I'eg) (@) = (Zy ZoU5) (z) for all x € FV (P) (A.64)
By Lemma 4.2 with (A.63) and (A.64) we then get

Z, Zi Uy b P2 Z, 2y (1\Ch,) (A.65)

By a similar reasoning used above to prove (A.65) we can prove
Zy Zy I'eq F @: Zy Zy (12\ Coy ). (A.66)
With (A.65) and (A.66) as premises for the rule PAIR,,, we can conclude
ZZy Ve b (P Q) : ZeZy (11 x? \C1 U Cy U Cs,)

case N=(PQ):§

Similar to the previous case

case N=1let z:¢c=VinPend:

Similar to the previous case.
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Appendix B

Experiments

We explain some tests we did with two experimental versions of the Distributed
Poly ML compiler. The goal of these tests was to evaluate the expected improve-
ments on performance we hope to achieve with our analysis.

Distributed Poly/ML (DP/ML) is a variation on Standard ML (SML) that
includes primitives for running threads on workstations distributed across a net-
work . The language run-time system implements distributed shared memory, so
that a program’s address space is the same on all machines. From the program-
mer’s viewpoint, the same reference on different machines refers to the same data
object in the store. Stored data is in fact distributed among the machines run-
ning different threads. The DP/ML run time system checks for each dereference
operation whether the associated data is available on the current machine, and
if not, retrieve it over the network. A similar cost burden is also imposed for
assignment operations.

The only differences between the two experimental versions of the compiler
is that one of them has a local dereference operation (written !!) and a local
assignment operation (written ::=) in addition to the default dereference and
assignment operations (! and := respectively).

The tests were carried out in the following way: we wrote non-distributed im-
perative programs with no free occurrences of references in locality polymorphic
functions. We executed them using the version of DP/ML with default derefer-
ence and assignment operations keeping record of their execution times. As all
the references in non-distributed programs are local, we rewrote the same pro-
grams replacing ! by !!, and := by ::= and we executed them, this time with
the experimental version of DP/ML with local dereference and assignments, also
keeping record of their execution times.

Our conclusion is that the programs using specialised dereference and assign-

ment operations are both at least three times faster than those using the default
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fun irev 1 =

let val resultp = ref []
and 1p =ref 1
in while not (null (!! 1p)) do
(resultp ::= hd (!! 1p) :: !!resultp;
1p ::= 11 (1! 1p)
);
I'lresultp

end;
PolyML.timing true;

irev buildlist(10000),
PolyML.timing false;

Figure B.1: Imperative reverse with local assignment and dereference

operations.

Figure B.2 and Figure B.1 give an example of how we measure the execution
time in the experiments. Both figures show a non-distributed imperative program
to reverse lists. The program in Figure B.2 uses ! and := and the program
in Figure B.1 uses !'! and ::=. DP/ML provides the function Poly.timing
to measure run-time efficiency. Calling Poly.timing true activates the time
profiling. The time taken to evaluate the reversal of a list will be printed after
the result. Poly.timing false deactivates the time facility.

fun irev 1 =
let val resultp = ref []

and 1p =ref 1
in while not (null (! 1p)) do
(resultp := hd (! 1lp) :: !resultp;
1p :=tl (! 1p)
);
Iresultp

end;
PolyML.timing true;
irev buildlist(10000),
PolyML.timing false;

Figure B.2: Imperative reverse with default assignment and dereference
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