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Abstract

Toposes and quasi-toposes have been shown to be useful in mathematics, logic
and computer science. Because of this, it is important to understand the different
ways in which they can be constructed.

Realizability toposes and presheaf toposes are two important classes of toposes.
All of the former and many of the latter arise by adding “good” quotients of equiv-
alence relations to a simple category with finite limits. This construction is called
the exact completion of the original category. Exact completions are not always
toposes and it was not known, not even in the realizability and presheaf cases,
when or why toposes arise in this way.

Exact completions can be obtained as the composition of two related construc-
tions. The first one assigns to a category with finite limits, the “best” regular
category (called its regular completion) that embeds it. The second assigns to
a regular category the “best” exact category (called its ex/reg completion) that
embeds it. These two constructions are of independent interest. There are quasi-
toposes that arise as regular completions and toposes, such as those of sheaves on
a locale, that arise as ex/reg completions but which are not exact completions.

We give a characterization of the categories with finite limits whose exact com-
pletions are toposes. This provides a very simple way of presenting realizability
toposes, it allows us to give a very simple characterization of the presheaf toposes
whose exact completions are themselves toposes and also to find new examples
of toposes arising as exact completions.

We also characterize universal closure operators in exact completions in terms
of topologies, in a way analogous to the case of presheaf toposes and Grothendieck
topologies. We then identify two “extreme” topologies in our sense and give
simple conditions which ensure that the regular completion of a category is the
category of separated objects for one of these topologies. This connection allows
us to derive good properties of regular completions such as local cartesian closure.
This, in turn, is part of our study of when a regular completion is a quasi-topos.

The second extreme topology gives rise, as its category of sheaves, to the
category of what we call complete equivalence relations. We then characterize the
locally cartesian closed regular categories whose associated category of complete
equivalence relations is a topos. Moreover, we observe that in this case the topos

is nothing but the ex/reg completion of the original category.
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Chapter 1

Introduction

A category with finite limits is called exact if, intuitively, every equivalence rela-
tion in it has a “good” quotient. For any category with finite limits C it is possible
to build the “best” exact category that embeds it. This category (unique up to
equivalence) is called the exact completion of C and it is denoted by C.,.

Many categories of interest to mathematics, logic and computer science arise
in this way. This is a very nice conceptual fact, but there is also something
intriguing about it, because some of these categories have a lot more structure
than “just” good quotients of equivalence relations.

We want to understand how this happens in interesting situations in practice.
Indeed, a key fact that motivates much of this thesis is that there are toposes that
arise as exact completions. Toposes have a lot of structure and are particularly
useful and interesting so the problem of characterizing those C such that C,, is a
topos presents itself naturally. One of the achievements of this thesis is a solution
to this problem.

We will discuss in more detail the motivation and contents of the thesis after
the historical perspective below (Section 1.1) where I believe they can be better

understood.

1.1 History

The history of topos theory and of regular and exact categories will not be dis-
cussed here. But in order to enter into the mood of this section let us mention
some early references. For topos theory see [4, 56, 57| and for regular and exact
categories see [6].

The contents of the section are divided in two. The first part is a chronological
perspective on the events, results and problems that concern us in this thesis. We

start with the conception of realizability toposes and then we emphasize the work
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intended to understand them in terms of universal constructions. Scattered along
the chronology, at the times when they were recognized or proved, several prob-
lems and results are mentioned. The results motivate further problems and all
these problems are then summarized in the second part of the section. Providing

solutions to these problems is the motivation for the thesis.

The reader may then find the first part of the section slightly disjointed after
a first reading. But the summary of open problems will have a historical basis
which will make them easier to understand. With the motivation of the thesis
then understood, a second reading of the chronological perspective will be a lot

clearer.

In their 1979 paper [27], Fourman and Scott presented the topos of sheaves on
a locale as a category of non-standard equivalence relations. The essential idea
behind this presentation is attributed to Higgs and referenced to a 1973 preprint
[34]. I have been unable to obtain a copy of this reference but it seems that it

can be considered the starting point of the research reported here.

This construction inspired that of realizability toposes. Indeed, in his 1982 pa-
per [39], Hyland attributes to Powell and Scott the idea of looking at realizability
in a model theoretic way and uses this idea to explain the construction of the
effective topos Eff in a way resembling Higgs’ construction. In this paper, it is
shown that the category Set of sets arises as the full subcategory of sheaves for
the double negation topology. Moreover, the full subcategory of =—-separated ob-
jects (a quasi-topos) is given a very explicit and simple presentation. Nowadays,

this quasi-topos is denoted by Ass and its objects are called assemblies.

These constructions by Higgs and Hyland motivated the invention of tripos
theory. In 1980-81, tripos theory was presented in Pitts’ thesis [94] and in his joint
paper with Hyland and Johnstone [42]. Using tripos theory it is possible to treat
uniformly the construction of toposes of sheaves on a locale and the construction
of realizability toposes. For any category C with enough structure and equipped
with a tripos, there is a functor (called the constant objects functor in [94]) that
embeds C into the topos induced by the tripos. In the case of Eff, this embedding
is just the embedding of ——-sheaves. On the other hand, in the case of sheaves
on a locale, this functor is the left adjoint to the global sections functor.

Since then, realizability toposes have found diverse applications in logic and
computer science, especially in the semantics of logics and programming languages
[40, 43, 100, 92, 66, 85, 84, 88, 68, 67, 65, 11, 12].

In 1981, the regular completion and exact completion constructions for a cate-

gory with finite limits appeared in C. Magno’s thesis [72] (see also [19] and [16]).



A few years later, in their 1988 paper [17], Carboni, Freyd and Scedrov showed
that Eff is the solution to a universal problem. This is a very nice and important
conceptual fact so let us discuss it in more detail. As Carboni writes in [16], the
idea pursued in the paper loc. cit. is that, “to understand a quite problematic
construction like that of the effective topos, one should look for some universal
property that the construction may enjoy”. The universal problem they work
with is that of adding good quotients of equivalence relations to a reqular category.
This is a different construction from the exact completion of a category with finite
limits, so let us call it the ex/reg completion. Ex/reg completions had been known
for a long time as they appear already in Lawvere’s 1973 Peruggia notes [54], but
they seem to have appeared in print for the first time in [17] where it is shown
that the effective topos is the ex/reg completion of the (much simpler) category
of assemblies (see also [32] 2.169). That is, Eff is the ex/reg completion of its full
subcategory of separated objects for the double negation topology.

In [32] (see 2.16(12) and 2.227) it is also shown that the topos of sheaves on a
locale is also the ex/reg completion of a simpler category. This is, of course, the

essence of the presentation in [27].

These nice conceptual facts already provide an alternative presentation of the
toposes involved. Let us concentrate on Eff. The idea is to introduce it by first
presenting the category of assemblies; then build its ex/reg completion and finally

show that it is a topos.

But the fact that Eff is an ex/reg completion also suggests the possibility of
an even simpler presentation. If we could find a useful sufficient condition on
a regular category for its ex/reg completion to be a topos, this would allow us
to show that Eff (the ex/reg completion of Ass) is a topos without the need
to build the completion and calculate with it. That is, we would only need to
check that the sufficient condition is satisfied in the category of assemblies which
is a lot simpler to present and understand. Of course, such sufficient conditions
could also ease the task of finding new examples and counter-examples. In any
case, such a sufficient condition was not looked for in [17, 32]. Related to this, it
should also be mentioned that in 1995, McLarty presented in [75] necessary and
sufficient conditions for an ex/reg completion to have power objects. But in order
to check these conditions in practice one still has to build the ex/reg completion.
So it was not possible to present Eff by checking some simple conditions on the

category of assemblies.

In their 1990 paper [96], Robinson and Rosolini attribute to Joyal, Carboni and

Magno the characterization of the exact categories arising as exact completions



of a category with finite limits. They use this result to show that Eff is the
exact completion of the category of partitioned assemblies. Again, as in the case
of ex/reg completions, this result suggested that it should be possible to present
Eff by checking some, hopefully simple, conditions on a simple category. But, as
before, this was not achieved. Another fact should be also mentioned: the axiom

of choice was used to prove that Eff is an exact completion.

In 1994, Longley introduced in his thesis [66] a natural notion of morphism
between partial combinatory algebras. In order to relate these to morphisms
between the associated categories of assemblies he used the embedding of Set
(recall the constant objects functor) in a curious way. First, he defined using this
embedding the notion of a cartesian map in a category of assemblies. Intuitively,
this map is like a regular mono but it need not be injective. Then, he shows that
there exists an object D (which he called generic) such that for every assembly
X, there exists a cartesian map X —— D). This is an interesting and peculiar

property, but it seems not to have prompted further study.

In 1995, Carboni collected the main results on regular, exact, ex/reg comple-
tions and their relation to Eff in his survey paper [16]. In particular, he showed
that the category of assemblies is the regular completion of the category of par-
titioned assemblies. In this paper Carboni also noted that the exact completion
of a topos is not a topos in general and he asked for a characterization of the

toposes whose exact completions are again toposes.

Here it should be mentioned Lawvere’s 1996 paper [62] where the proof-
theoretic power set functor was introduced. The connection with regular and
exact completions is not mentioned loc. cit. but we can briefly state it here.
For any object X in a category with finite limits C, the proof-theoretic power
set functor applied to X can be described as the poset of subobjects of X in the

regular or exact completion of C.

In his 1997 paper [84] on extensional realizability, van OQosten presented the
topos A. He builds the topos using tripos theory and shows, using the same idea
used by Robinson and Rosolini, that A is the exact completion of the category of

assemblies.

Also in 1997, D. Scott distributed a manuscript presenting the category of
equilogical spaces (see [102] and [8], see also Section 2.3.5 where the original ter-
minology is slightly modified). Two of its main virtues are that it embeds the
category Top of topological spaces and that it is locally cartesian closed (it is

actually a quasi-topos).

In 1998, Carboni and Rosolini discovered a characterization of the categories



with finite limits whose exact completions are locally cartesian closed (see [21]).
This result can be used to show that the exact completion of Top (and also
the exact completion of the full subcategory of Ty topological spaces) is locally
cartesian closed (see also [98]). Moreover, in their joint paper [13] with Birkedal
and Scott, they used this result to show that Equ is locally cartesian closed by
presenting it as the regular completion of (Tg) topological spaces.

Also in 1998, Rosolini showed that Equ also arises as the category of ——-
separated objects of the exact completion of the category of T topological spaces
(see [101]).

In 1999, Longley introduced a typed version of the notion of a partial combina-
tory algebra in [68] and described how to build a category of assemblies Ass(A)
over a such a structure A. Shortly after, Lietz and Streicher showed that the
ex/reg completion of Ass(A) is a topos if and only if the typed structure A is
equivalent, in a suitable sense, to an untyped structure. Their proof uses the no-
tion of a generic mono (a mono 7 such that every other mono arises as a pullback
of 7 along a not necessarily unique map) and of the constant-objects embedding of
Set into the category Ass(A) which they see as an inclusion of codiscrete objects.
Related to this, it should be mentioned that Lawvere had already advocated for
a conceptual use of codiscrete or chaotic objects in other areas of mathematics
(see for example [59, 55, 61, 63]).

It was very nice to contemplate these very different classes of categories arising
as solutions to the universal problems of finding regular, exact and ex/reg comple-
tions. But it was also clear that the phenomenon was not completely understood.

Indeed, let us summarize some of the open problems indicated above.

1. Many toposes arise as the exact completion of a category with finite limits.
For example, many presheaf toposes, realizability toposes and also variants
of van Qosten’s topos A. On the other hand, a characterization of the
categories with finite limits that give rise to toposes was not available. Such
a characterization would not only ease the presentation of some of these
toposes. It should also be useful, for example, to answer Carboni’s question
on toposes whose exact completions are themselves toposes and also to find

new examples and counterexamples.

2. Similar problems relate quasi-toposes and regular completions on the one
hand and toposes and ex/reg completions on the other. The first problem
is illustrated by the categories of assemblies and of equilogical spaces. The

second is suggested by realizability toposes (as ex/reg completions of as-



semblies) and also by toposes of sheaves over a complete Heyting algebra

(frame).

3. Many of the examples we have mentioned share a number of curious prop-
erties: chaotic objects, generic objects and generic monos. These should
be related by the fact that the underlying category gives rise to a topos

through a completion process.

4. Assemblies and equilogical spaces are examples of regular completions. But
they also arise as categories of =—-separated objects of the associated exact
completions. So it is natural to wonder what is the relation between cat-
egories of separated objects and regular completions. But more generally
we could ask for a treatment of universal closure operators in exact com-
pletions in the spirit of the analogous case for presheaf toposes in terms of

Grothendieck topologies.

The main motivation of the thesis is to provide a clearer picture of these

phenomena and questions.

1.2 Overview of the contents

Chapters 2 and 3 are mainly a review of the basic material and examples. In
Chapter 2 we review the definitions of regular, exact, lextensive and related classes
of categories and introduce the examples that will be used in the rest of the thesis.
In Chapter 3 we present the constructions of coproduct, regular, exact and ex/reg
completions and state their main properties.

The first original work is presented in Chapter 4 where we give sufficient
conditions on a category with finite limits for its regular completion to be a
quasi-topos. As an application we observe that it is possible to iterate regular
completions to obtain hierarchies of quasi-toposes. These hierarchies will appear
later in the thesis giving rise to related hierarchies of toposes.

In Chapter 5 we give a characterization of the categories with finite limits
whose exact completions are toposes. The key notion here is that of a generic
proof. Most of the chapter is devoted to the proof of the characterization, but
there are also a couple of related results. One of these results involves the relation
of such categories with their regular completions. This relation is expressed in
terms of a connection between generic monos and generic proofs. Finally, there is
a discussion of the relation of the characterization with work relating set theory
and type theory [2, 33].



Chapters 6 and 8 can be seen as applications of the characterization, while
Chapter 7 introduces the conceptual treatment of chaotic objects and proves some
technical results needed in Chapter 8. Let us discuss their contents in a bit more
detail.

In [16], it is observed that the exact completion of a topos is not always a
topos. Our characterization in Chapter 5 gives a characterization of the toposes
for which this is the case. But for a restricted class of toposes we can give a
very concrete answer. This is the content of Chapter 6 where we characterize the
presheaf toposes whose exact completions are toposes. We also discuss briefly
the connection of one of these toposes with Lauchli’s realizability. Finally, the
characterization proved in this chapter also allows us to find other examples of

toposes whose exact completions are toposes.

In [59, 61] it is explained how some categories have objects that can naturally
be seen as having “as much structure as possible” or as being “chaotic”. Moreover,
it is shown how to axiomatize such a situation. In Chapter 7 we accommodate
these results to our setting, explain how they arise in some of our examples and

set up the machinery needed for the results in the following chapter.

In Chapter 8 we show how the existence of chaotic objects can be used to sim-
plify the characterization of Chapter 5. This is done by exposing a strong relation
between chaotic objects, generic objects, generic monos and generic proofs. In
turn, this provides a very simple way of introducing realizability toposes. More-
over, it allows us to recognize hierarchies of new examples of toposes that are exact
completions. These hierarchies are related to the hierarchies of quasi-toposes dis-
cussed in Chapter 4. Finally we discuss the relation with the work in [65] on the
inevitability of untypedness for realizability toposes and also show how the exis-
tence of chaotic objects simplify the sufficient conditions for regular completions

to be quasi-toposes discussed in Chapter 4.

Chapters 9 and 10 deal with universal closure operators in regular and exact
completions. In the case of toposes, universal closure operators coincide with
Lawvere-Tierney topologies which, in turn, coincide with subtoposes of the given
topos. Moreover, in the case of the topos of presheaves on a small category C,
universal closure operators coincide with Grothendieck topologies on C.

In Chapter 9 we obtain a similar characterization of universal closure operators
in the regular and exact completions of a category with finite limits C. Indeed,
we show that they coincide with certain “topologies” on C that look very similar

to Grothendieck topologies... but not quite.

In Chapter 10 we continue our study of topologies. We review the notion of



sheaf and of separated object and give an explicit description of the category of
separated objects for a universal closure operator in an exact completion. We
then concentrate on two “extreme” topologies. On the one hand we identify the
largest topology in a category C for which every C-object is separated in the exact
completion. We call it the sep-canonical topology. We then show that under mild
conditions on C, the category of separated objects (in the exact completion of C)
for this topology is equivalent to the regular completion of C.

The second extreme topology is the largest one that makes every C-object a
sheaf. Naturally, we call it canonical. We are also able to characterize the cate-
gory of sheaves for this topology leading to the notion of a complete equivalence
relation. Complete equivalence relations appear already in the seminal work of
Higgs, Fourman-Scott and Hyland-Johnstone-Pitts, but not under this perspec-
tive. We will see that this perspective sheds light on the question of when is the
ex/reg completion of a regular category a topos.

In Chapter 11 we study locally cartesian closed regular categories D with a
generic mono. In particular, we study the ex/reg completion of such a category.
First we show that this completion actually coincides with the category of sheaves
in D, for the canonical topology on D. We use this to show that the ex/reg
completion of D is locally cartesian closed and finally show that it is also a topos.
As a corollary, we obtain a characterization of the locally cartesian closed regular
categories D whose associated category Ceq(D) of complete equivalence relations
is a topos. We also discuss the relation of our work with tripos theory.

The last chapter summarizes the results and some of the problems left open.

The contents of the thesis also include many diagrams. For these, I acknowl-

edge the use of Paul Taylor’s useful diagrams and proof-tree packages.

1.3 Prerequisites

The basic examples use some recursion theory [97], topology [49] and the theory
of locales [47]. Almost all the category theory involved can be found in Chapters
[ to V of [70]. As a convention, when we speak of a category (unqualified) we
mean a locally small category. We may also omit to say that a category C has
finite limats if the context makes this clear.

On the other hand, we refer the reader to [104] for the notion of a bi-adjoint
and to [31] for the definition and results on factorization systems. For topos
theory, Chapters I to VII of [71] should suffice.



Chapter 2

Regular, exact and lextensive
categories

In this chapter we present the main examples and use them to motivate the

axioms for regular, exact and lextensive categories.

2.1 The raw material

In this section we introduce the most basic building blocks of our examples.

2.1.1 Partial combinatory algebras

We introduce partial combinatory algebras and review some basic facts about

them. For more details on the material in this section see [66] or [9].

Definition 2.1.1. A partial applicative structure A = (A, -) is a set A equipped

with a partial binary operation (a,a’) — a - d'.

The intuition is to think of A as an untyped universe of programs or of names
of functions and the operation - as function application. Because of the lack
of types it is reasonable to apply any element to any other (even to itself) and
expect a value. As - is a partial operation the value may not exist. In calculations
involving partial applicative structures we will use terms or expressions involving
variables and due to the partiality of - these expressions may not be defined. We
write ¢ = a’ to mean “a and o’ are both defined and are equal” and we write
a ~ a' to mean “if either a or @' is defined, so is the other and then they are
equal”. We will omit the - from now on and write the operation as juxtaposition,
so a - a’ will be written aa’ and assumed to be left associative so that aa;(apa;)

is to be understood as (aa;)(apay).
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Definition 2.1.2. A partial combinatory algebra (PCA) is a partial applicative
structure A such that there exist elements k and s in A satisfying the following

axioms (for every a,ag,a; in A).
1. kaag = a
2. saag is defined
3. saapa; ~ aay(apa)

An important example of a PCA is that of the natural numbers equipped with
Kleene application: assume some enumeration of the partial recursive functions
and for any natural number m let {m} be the partial recursive function coded by
m. Then define aa’ ~ {a}a’. We call this PCA “Kleene’s PCA” and we denote
it by Kj.

There are many other examples of PCAs built using the theory of the lambda
calculus, domain theory and, more recently, game theory (see [92, 66, 1| for ex-
ample).

It is possible to interpret a simple lambda calculus in any PCA and it is also
possible to code easily data-types such as pairs or booleans. Because of this, we
will write for example A(a,d’).fa and work with this expression as if it were an
element of the algebra that, when applied to any element of the algebra, interprets
this element as a pair, takes its first projection and applies f to it. For details of
these encodings and their behaviour see for example [105] or [66].

We are going to use PCAs to build categories of so called assemblies so we
will not attempt to define a category of PCAs (although, see Section 8.1). But
just to say a word about them, it is not obvious what a morphism of PCAs is

and the interested reader should consult [66].

2.1.2 Frames

Recall that a Heyting algebra H is a lattice such that for each pair of elements
a,b € H there exists an element a — b such that ¢ < a — bif and only if cAa < b.

On the other hand, consider the notion of a frame.

Definition 2.1.3. A frame is a partially ordered set H with finite meets, arbi-
trary joins and such that the following distributivity law holds for every = in H
and Y C H.

e AVY =\{zAylyeY}



As explained in [47] Ch.IIL, frames are exactly the complete Heyting algebras.
However, intuitions from topology [49] suggest maps between frames that do not
preserve implication (and so, are not Heyting algebra homomorphisms). Because
of this, it is useful to introduce this extra terminology.

Let Frm be the category whose objects are frames and whose morphisms are
functions preserving finite meets and arbitrary joins. (The morphisms are not

required to preserve implication.)

2.2 Lextensive categories

At some points in the thesis we will deal with coproducts so it is important
to know what a well behaved coproduct is. For any two objects X and Y we
denote their coproduct by X + Y and the injections by ing : X —— X 4+ Y and
ng Y — X +Y.

Definition 2.2.1. In a category with finite coproducts.

1. Coproducts are said to be disjoint if for every pair of objects X,Y, the
injections iny and in; are mono, their pullback exists and it is the initial

object.

0 Y
! inl
X X+Y

)

2. Coproducts are said to be stable it pullbacks of injections exist and for any

coproduct diagram

ino inl

X X+Y Y

pulling back along any morphism to X + Y gives a coproduct diagram.

We can now introduce the notion of a category with finite limits and well

behaved coproducts [18].



Definition 2.2.2. A category is lextensive if it has finite limits and stable disjoint

finite coproducts.

The following two subsections introduce two important examples of lextensive

categories.

2.2.1 Topological spaces

Topological spaces are the subject matter of topology [49]. Here we will only
recall the most basic definitions and describe some of the “imperfections” that

the category of topological spaces has.

Definition 2.2.3. A topology on a set S is a collection of subsets of S closed
under finite intersections and arbitrary unions. In particular, the empty subset
and the whole of S must be in the topology.

A topological space X is a set | X| equipped with a topology. The elements of
the topology of X are called its open subsets. Also, an open subset U such that
x € U is called an open neighbourhood of x.

We say that a function f: |Y| —— |X]| is continuous if for every open U in

X, f*U ={y|fy=2€ U} is open in Y.

Topological spaces and continuous functions form a category that we call Top.
This category is lextensive, complete, cocomplete and has stable epi/regular-mono
factorizations. This last property will be shared with many of the categories that
we will use in the thesis.

Now recall that an object X in a category with products is called exponentiable
if the functor X x (_) has a right adjoint (_)*. Recall also that a category is
cartesian closed if every object is exponentiable. In this case we may also say
that the category has exponentials.

Regular epis in Top are not preserved by all functors X x (_) and hence Top
is not cartesian closed ([44] and references therein) and regular epis are not stable
under pullback [25] (recall that an epi map is called regular if it is the coequalizer
of some pair of maps). These “imperfections” motivated research in order to find
better categories of spaces (see for example [24, 70, 38, 46, 59] and more recently
(102, 8, 21, 77, 78]).

There is an obvious forgetful functor |_| : Top — Set that assigns to each
topological space its underlying set. This functor has both a left adjoint A and
a right adjoint V, both of which are full and faithful.

The functor A : Set —— Top assigns to each set S the “discrete” topological

space with underlying set S and such that every subset of S is open.



On the other hand, the functor V : Set —— Top assigns to each set S the
“chaotic” topological space with underlying set S and, as open sets, only S itself
and the empty set.

Discrete and chaotic objects can be dealt with abstractly as explained in
[59, 61]. We will discuss this in more detail in Chapter 7.

2.2.2 Partitioned assemblies

In this section we present the category of partitioned assemblies for a partial com-
binatory algebra A. For historical and practical reasons they are very important
examples in the thesis. Recall from Section 1.1 that realizability toposes are the
exact completions of these categories [96]. Indeed, loosely speaking, these cate-
gories have as little structure as possible in order to give rise to a topos, so they
motivate many of the more obscure conditions in the results that appear in the

thesis.

Definition 2.2.4. A partitioned assembly is a pair X = (|X|, ||-||x) consisting of
a set | X| and a function ||_||x : [X]| — A. We usually omit subscripts.

A morphism f Y — X of partitioned assemblies is a function f : Y| — | X|
such that there exists an a € A such that for every y € |Y|, a|ly|| is defined and
allyll = [lfyll-

In this way partitioned assemblies form a lextensive category PAss (or, more
explicitely, PAss(A) if we want to be specific about which particular PCA is
being used). The construction of finite products and coproducts is left as an
easy exercise involving the coding of pairs and booleans mentioned in Section
2.1.1. The equalizer ¢ : E ——Y of two maps f,g : ¥ —— X is given by
|E| = {y|fy = gy} with |ly|lz = |lylly. Then, of course, the regular monos
E'——— Y are those monos such that E’ is isomorphic over Y to some E as
above.

It is also easy to check that PAss has stable epi/regular-mono factorizations.

On the other hand, PAss is not cartesian closed, does not have all coequalizers
and does not have arbitrary products or coproducts.

Again, there is an obvious faithful functor | | : PAss —— Set which sends
every object to its underlying set. As in the case of topological spaces this “un-
derlying set” functor has a full and faithful right adjoint V : Set —— PAss
that assigns to each set the associated “chaotic” partitioned assembly. In order
to define this right adjoint, first choose some element * in the underlying PCA.
Then define for each set S the partitioned assembly V.S that has underlying set

S and such that ||_||ys assigns the constant * to each element of S.



In contrast with topological spaces, the “underlying set” functor does not have

a left adjoint. Nevertheless, the functor |_| does preserve finite limits.

2.3 Regular categories

In this section we introduce regular categories [6, 15, 32, 75]. The intuition be-
hind these categories is that a good class of quotients exists and moreover, these
quotients are well behaved. Recall that the kernel pair of a map f is the (parallel)
pair of maps that form the pullback of f along itself.

Definition 2.3.1. A category with finite limits is reqular if
1. every kernel pair has a coequalizer
2. pullbacks of regular epis are regular epis.

Let us try to motivate these conditions by showing examples of how they can
fail. The category Top of topological spaces has all colimits so, in particular,
every kernel pair has a coequalizer. On the other hand, it is well known [25] that
regular epis in Top are not stable under pullback.

Consider now the category PAss(K7) of partitioned assemblies for Kleene'’s
PCA. We are going to show that not every kernel pair has a coequalizer. First,
let R be the set of recursive functions. Then let X be the partitioned assembly
such that | X| = {(f,a)|f :N—— N € R and a € K; is a code for f} and such
that [|(f,a)|| = a. Finally, consider the obvious map X —— VR sending (f, a)
to f. It is an easy exercise in recursion theory to prove that the kernel pair of
this map can not have a coequalizer in PAss.

So neither Top nor the categories of partitioned assemblies in general are
regular. On the other hand, let us now discuss some good properties that regular

categories have.

Definition 2.3.2. A diagram

€0 e

X

X/ . X//

€1

is called an exact sequence if it is both a pullback and a coequalizer. That is, if

it is a coequalizer diagram and eg, e; is the kernel pair of e.

We now present as a lemma, some well known facts about regular categories
whose proofs can be found in the references mentioned above. As usual, we denote

by a* the operation of pulling back along the map a.



Lemma 2.3.3. In a reqular category,

1. every map f :Y — X factors as a reqular epi followed by a mono. This

factorization is denoted by X — Im(f) —— Y
2. if [ factors through g then Im(f) < Im(g) as subobjects of X
3. exact sequences are stable under pullback

4. gwen a commutative diagram as below such that both rows are exact and the

two left hand squares are pullbacks (so that efyf = eif):

Y/ d() Y d . Y//
di
/' f I
X/ 60 X € . X//
€1

then the right hand square is a pullback.

The existence of regular-epi/mono factorizations has a very nice implication
that we now discuss. First, for any category with finite limits C, we denote by
Sub the contravariant functor that assigns, to each object in C, the class of its
subobjects. The action of Sub on maps is by pullback so that forany f: Y — X
in C, Sub(f) = f* : Sub(X) —— Sub(Y). Now, for any f : Y —— X and
subobject m : U =—— Y we can define 3;(U) = I'm(f.m). This induces a map
dp 0 Sub(Y) —— Sub(X) with the following properties [6, 32].

Lemma 2.3.4. Let f:Y — X.
1. 3¢+ Sub(Y) —— Sub(X) is monotone and left adjoint to f*
2. forany g: Z —Y, 3y 3, =1

3. if f is a reqular epi then the adjunction 3y 4 f* is actually a reflection and
so dp.f* =1d

We will use these adjunctions in Chapter 9.
Before introducing some examples let us define the natural notion of mapping

between regular categories.



Definition 2.3.5. A functor between regular categories is exact if it preserves
finite limits and exact sequences or, equivalently (see [15]) if it preserves finite

limits and regular epis.

We now introduce some examples of regular categories built upon the topo-
logical and recursive theoretic notions that we have introduced in this chapter.
Together with Top and PAss they are the source of examples and counterexam-

ples that we are going to use throughout the thesis.

2.3.1 Sets valued on a frame

For any frame H we define a category H, as follows. An object of H, is a pair
X = (|X], |-llx) such that | X| is a set and ||_||x : | X| — H is a function valued
in the underlying set of the frame H.

A morphism f:Y —— X is a function f : |Y| — |X]| such that for every
ye Y]yl < lfyll-

The category H, is regular and cartesian closed (see [83]). It also has coprod-
ucts and it is actually a quasi-topos as we will see in Section 2.3.6.

As before, there is a faithful “underlying set” functor |-| : H, — Set which,
as in the case of topological spaces, has both a left and a right adjoint (both full
and faithful).

The right adjoint V : Set —— H_ assigns to each set S the object V.S with
underlying set S and such that every element is valued in T the top element of
H.

On the other hand AS has the same underlying set but, in this case, every

element is valued in L the least element of H.

2.3.2 Assemblies

For any PCA A we define now its associated category of assemblies Ass (or
Ass(A) in case of possible confusion).

An assembly is a pair X = (| X/, ||-||x) where | X| is a set and ||_|| x assigns to
each z in | X|, a non empty subset of A.

A map f:Y — X between assemblies is a function f : |Y| — |X| for which
there exists and a € A such that for every y in |Y| and b in ||y||, ab is defined
and in [| fyl|

There is an adjunction || 4 V : Set —— Ass analogous to the case of

partitioned assemblies (Section 2.2.2).



The category Ass is regular. As in the case of H,, it is also a quasi-topos
(see Section 2.3.6 and [39] where Ass(K;) appears as the category of separated
objects for the =—-topology in the effective topos Eff).

2.3.3 Subsequential spaces

In this subsection we present a notion of “space” different from the spaces de-
fined in Section 2.2.1. The category of these new spaces embeds very interesting
categories of topological spaces (see Section 7.6) and does not suffer many of the

pathologies of Top.
Definition 2.3.6.

1. A subsequential space X consists of a set | X| together with a distinguished
family of functions (NU{oo}) — |X|, called convergent sequencesin X. We
say that (z;) converges to x, in X if the induced function (NU {occ}) — X
is one of the convergent sequences in X. The convergent sequences must

satisfy the following axioms:

(a) the constant sequence (z) converges to x;
(b) if (x;) converges to x, then so does every subsequence of (z;);

(¢) if (x;) is a sequence such that every subsequence of (z;) contains a

subsequence converging to z, then (x;) converges to z.

2. A function between subsequential spaces is said to be continuous if it pre-

serves convergent sequences.

We usually write (z;) — x as a shorthand for (z;) converges to .

Let SSeq be the category of subsequential spaces and continuous functions.
In [46], it is shown that it arises as the full and reflective subcategory of ——-
separated objects of the Grothendieck topos described therein. It is therefore
regular, indeed a quasi-topos.

As in the case of topological spaces, the obvious “underlying set” functor has
both a left and a right adjoint (both full and faithful). The “chaotic” right adjoint
V : Set —— SSeq assigns to each set S the space with the same underlying set
and in which every sequence converges to every point. As we mentioned before,

we will discuss this in further detail in Chapter 7.



2.3.4 Generalized enumerated sets

The recursive topos was introduced in [79] as a “suitable arena for discussion
of higher type recursion” [81] (see also [80]). It is the topos of sheaves for the
canonical topology on the monoid of recursive functions.

We now introduce the category GEn which was shown in [99] to be the cate-
gory of separated objects for the double negation topology of the recursive topos.
For this purpose, let R be the set of recursive functions and for any set S, let SN
be the set of functions N —— S.

Definition 2.3.7.

1. A generalized enumerated set is a pair X = (|.X|, E) such that | X]| is a set
and F is a subset of | X|N such that the following hold.

(a) the images of the functions in E cover the set | X|

(b) for all ey, e; € E there exists e € E and ro, 7 € R such that e¢; = e.r;
for i =0,1

(c)ifeec Fandr € Rthenere E

2. Amap f: (|Y],D) — (| X|, E) between generalized enumerated sets is a
function f : |Y| —— | X| such that f.D C E where f.D = {f.d|d € D}.

We denote the category of generalized enumerated sets by GEn.

In this case, the right adjoint to the obvious “underlying set” functor assigns
to each set S the object V.S = (S, SY). We will discuss the “discrete” left adjoint
in Chapter 7.

2.3.5 Equilogical spaces

Slightly generalizing Scott’s original terminology [102, 8] let us introduce the

following definition.
Definition 2.3.8.

1. An equilogical space is a pair (X, ~) where X is a topological space and ~

is an arbitrary equivalence relation on the underlying set of X.

2. An equivariant map ¢ : (X, ~x) — (Y, ~y) is a function ¢ from the quotient

set X/ ~x to the quotient set Y/ ~y that is realized by some continuous



f X — Y that preserves the equivalence relations (i.e. the diagram below

commutes).

We write Equ for the category of equilogical spaces and equivariant maps.

In the original definition of equilogical space [102] the topological spaces in-
volved were required to be Tj. One of the important facts about this category
is that it is cartesian closed. In the original presentation the proof of this fact
was very concrete. Soon afterwards, an abstract account of the reasons why the
category is cartesian closed [21, 13| showed that the Tj restriction was not neces-
sary to achieve this. This is why we use the term equilogical space to mean the
natural generalization presented in Definition 2.3.8. Also, in [8] the equivariant
maps are defined as equivalence classes of equivalence-relation-preserving contin-
uous functions, rather than as functions between quotient sets. This is essentially
equivalent to the definition presented above.

There are chaotic and discrete inclusions of Set into Equ analogous to the

case of Top.

2.3.6 Quasi-toposes

The categories Ass, H,, SSeq, GEn and Equ have a lot more structure than
being just regular. In fact, they are quasi-toposes [90, 106]. We briefly introduce

these here.

Definition 2.3.9. A mono m : U ~—— X is strong if for every commutative
square with top map epi as below, there exists a (necessarily unique) diagonal

map as shown making the two triangles commute.




It is easy to see that regular monos are strong and that strong monos are closed
under pullback and composition. It is also easy to see that in a category with
epi/regular-mono factorizations, every strong mono is regular. So, for example,
this is the case in PAss (see Section 2.2.2) and in Top (see Section 2.2.1).

Definition 2.3.10. A strong-subobject classifieris a map T : 1 —— €2 such that
for every strong mono m : U —— X there exists a unique y,, : X —— €2 such

that the following square is a pullback.

U 1
m T
X Q

Xm

As any map from the terminal object is a (split) regular mono and regular
monos are closed under pullback, it follows that in a category with a strong
subobject classifier regular and strong monos coincide. In particular, we can
conclude that in such a category regular monos compose.

As an example of a strong-subobject classifier let us consider again the cat-
egory PAss. Let Q = V{T, F'} and let the map T : 1 ——  send the unique
element of 1 to T

It is an easy exercise, using the description of the regular monos in Section
2.2.2, to prove that T gives a strong-subobject classifier.

As another example consider Top. As in the case of PAss the strong-
subobject classifier is given by the inclusion of 7" into the “chaotic” topological
space V{T, F'}.

Recall that a category C is locally cartesian closed if every slice C/X is carte-
sian closed. As we mentioned already, neither PAss nor Top are even cartesian

closed so they are not quasi-toposes in the sense of the definition below.

Definition 2.3.11. A quasi-toposis a locally cartesian closed category with finite

limits, finite colimits and a strong-subobject classifier.

Quasi-toposes are regular categories (see [106]) and as we mentioned in the
beginning of this section all of Ass, H,, SSeq, GEn and Equ are quasi-toposes.
Except for GEn, finite limits, colimits and exponentials in these categories have

been explicitely described elsewhere: for Ass see [39, 66|, for H, see [83], for



SSeq see [77, 78] (beware! subsequential spaces are called limit spaces there) and
finally, for Equ see [102, §].

So let us describe the strong-subobject classifiers. In all cases, it is the inclu-
sion of T into the “chaotic” V{T, F'}. We leave it as an easy exercise to check
that these are actually strong-subobject classifiers.

Notice that in all cases, {2 has, intuitively, as much structure as possible.
Compare, for example, the object © in H, with the “discrete” object A{T, F'}.
This last object can be thought of as having as little structure as possible.

In Chapter 7 we will see that there is a conceptual way of looking at “chaotic”
(and “discrete”) objects and that they can be used to explain important properties
of our examples.

We end this section with a comment about coproducts in a quasi-topos. In
general, these are stable (indeed, all colimits in a quasi-topos are stable [106]).
On the other hand, coproducts need not be disjoint. So quasi-toposes are not
lextensive in general (see Section 46 in [106]). Notice however, that all quasi-

toposes that we have introduced are lextensive.

2.4 Relations in regular categories

In this section we review the basic facts of the theory of relations in a regular
category [32, 75, 23].

Definition 2.4.1. A relation from Y to X is a subobject of Y x X.

So a relation from Y to X is determined by a jointly monic pair of maps
(fy,fx) : R——Y x X. We may sometimes abuse terminology by denoting
such a relation by R. Let us look at some examples of relations.

For any X we have the diagonal relation Ax = (id,id) : X —— X x X. We
usually forget the subscript. If (fy, fx) : R—— Y x X is a relation then its
opposite (fx, fy) : R—— X x Y is also a relation and we denote it by R°.

Any map f:Y —— X can be viewed as a relation (id, f) : Y —— Y x X.
We call this relation the graph of f. We sometimes denote the graph of f by f.

Another important class of relations is the following.

Definition 2.4.2. An equivalence relation is a relation (dy, dq) : X7 —— Xox X,
such that:

1. (reflexivity) there exists a map r : Xy — X such that do.r = dy.r = id

2. (symmetry) there exists a map s : X; — X; such that dy.s = d; and
dl.S = do



3. (transitivity) if py : P — X; and p; : P — X form the pullback of d; and

dy as in the following diagram

Dbo 1

d() dl

then there exists a map t : P — X such that dy.t = dy.py and dy.t = d;.p;.

Notice that this definition assumes finite limits. There is an alternative
definition [6]: an equivalence relation on Xy is a jointly monic pair of maps
do, dy : X1 — X such that for every object X, the relation (in the usual sense)
Rx =A{(do.f,dv.f)|f : X — X1} on the set Hom(X, Xj) is an equivalence rela-
tion (again, in the usual sense). One of the advantages of this definition is that it
does not require products. Another advantage is that some equivalence relations
may be more easily recognized in this guise. In the presence of finite limits (which

is the case in this thesis), this definition and Definition 2.4.2 are equivalent.

Kernel pairs are equivalence relations but not every equivalence relation is a

kernel pair in general.

In a regular category, relations can be composed as follows, if (fy, fx) :
R——Y x X and (gz,gy) : S—— Z x Y are relations from Y to X and
Z to Y respectively then their composition (hz, hyx) : SR—— Z x X from Z
to X is defined as the mono part of the regular-epi/mono factorization of the

rightmost map below.



TR

S Xy R R S Xy R S Xy R
s fy reg
S Y SR <gZ-7T,S'7fX-7TR>
gy
<hZahX>

7 x X 7 x X

It is important to mention that composition of relations is associative (see [32]
1.569 where it is explained how regular categories are precisely what is needed to
make composition of relations associative).

As is standard practice, the order in which we write the composition of rela-
tions is inverse to the one in which we write the composition of maps.

Notice also that relations from Y to X inherit a partial order < as subobjects
of Y x X. Moreover, composition and (_)° preserve this partial order.

Using these ideas and notation we can reformulate the notion of equivalence

relation as follows. A relation F is an equivalence relation if the following hold.
reflexivity A < F

symmetry E = E°

transitivity FFE < F

It is not difficult to figure out the correspondence between this definition of

equivalence relation and the one given in Definition 2.4.2.

2.4.1 Functional relations

In this section we describe two notions of morphisms between equivalence relations
and explain the relation between them.

Given two equivalence relations (eg,e;) : EF—— X x X and (dy,d;)
D ——Y x Y we say that a relation (fy, fx): F—Y x X is

1. defined from D it DF = F
2. defined to E it F = FFE

3. total if D < FF*°



4. single valued if F°F < F

5. functional from D to E if it is defined from D and to E and is total and

single valued.

We now state the main properties of functional relations ([32],[75]).
Proposition 2.4.3.

1. any equivalence relation is functional from itself to itself

2. (functional relations compose) if F is functional from E to E' and F' is
functional from E' to E" then FF' is functional from E to E".

3. A relation F is functional from Ay to Ax if and only if it is the graph of

a necessarily unique map f:Y — X.

4. if F and G are both functional from D to E and F' < G then F' = G.

There is another natural notion of morphism between equivalence relations.
Given D and E equivalence relations as above we say that a map f:Y — X
induces a map from D to E if there exists a map f’ : D —— E such that for
i = 0,1 it holds that f.d; = e;.f’. This is justified by the following result.

Proposition 2.4.4. Let f, g induce maps from D to E as below.

I !
f > D g

D E

do dl € €1 d() dl €0 €1

Y X Y

f g
Then the following hold.

1. DfE is a functional relation from D to E

2. DfE = DgFE if and only if there exists h : Y —— E such that eq.h = g
and e1.h = f.

Proof. This is easy but tiresome. I have been unable to find a published statement

so I included a proof in Appendix A. O

The next proposition is useful to recognize functional relations induced by
maps. Moreover, it implies (by the implication 2 = 1) that the morphisms giving

rise to functional relations are exactly those that induce maps.



Proposition 2.4.5. Let D and E be equivalence relations as above. Let (hy, hx) :
H —— Y x X be a functional relation from D to E and let h : Y —— X. Then,

the following are equivalent.

1. there exists an h' : D —— E such that eg.h' = do.h and e;.h' = di.h as in
the square below and also DhE = H.

h/

D E

do dy €0 €1

2. h< H

3. there exists an hg : H —— E such that the following square commutes.

hg

H E
(hx, hy) (e, €1)
X XY — X xX
1d X
Proof. Idem proof of Proposition 2.4.4. O

2.5 Exact categories and toposes

As we have seen, regular categories form a good setting in which to develop a
theory of relations. On the other hand, there is one important aspect in which this
theory of relations differs from the usual one among sets: equivalence relations
are not required to have a “good” quotient. At this point this is not a precise

statement and this leads us to the notion of an exact category.
Definition 2.5.1. (Effective equivalence relations and exact categories)
1. An equivalence relation is effective if it is the kernel pair of some arrow.

2. A category is exact if it is regular and every equivalence relation is effective.



The intuition is that an effective equivalence relation is one that has a “good”
quotient. Let us mention two important classes of examples: abelian categories
[30] (which we are not going to touch) and toposes.

Topos theory (see [46, 71, 7, 75] and references therein) is a very rich theory.

In this section we will only recall the most basic definitions.

Definition 2.5.2. A subobject classifier is a map T : 1 =——— €2 such that for
every mono m : U —— X, there exists a unique x,, : X —— €2 such that the

square below is a pullback.

U 1
m T
X Q

Xm

Probably, the best known example of a subobject classifier is the the inclusion
{T} —— {T, F'} in Set which is, in turn, the best known topos.

Definition 2.5.3. A topos is a category of with finite limits, exponentials and a

subobject classifier.

It is not trivial to prove that toposes have finite colimits (see [71] for example),
but they do and they are also locally cartesian closed. So it is clear that every
topos is a quasi-topos. On the other hand, a quasi-topos £ is a topos if and only
if every mono in £ is strong.

We will not attempt to give an introduction to topos theory. Everything we
will need can be found in any of the references above. At some point in Chapter
8 we will deal with presheaf toposes, for readers unfamiliar with these, Chapter
I of [71] is an excellent introduction. In Chapters 9, 10 and 11 we are going
to work with topologies and universal closure operators. Readers familiar with
Grothendieck topologies (Chapters II and III of [71]) will find the material in the
chapters here a lot easier to read.

On the other hand, the topic of realizability toposes does not seem to have such
definitive accounts. Of course, anyone interested in the subject should take a look
at [39, 94, 42] (see also [93] and the more recent [95]). For later accounts, closer
to the approach of this thesis [96, 16] are also essential. Moreover, also closely
related to the approach of the thesis (especially in connection with the results

in Chapter 11) are the accounts of the effective topos Eff in [32, 75] (see also



[17]). The thesis [82] has a very good introduction to and survey of realizability
(not restricted to its appearance in topos theory), numerous examples and a good
bibliography (see also [87]). For more on realizability toposes and applications of
these ideas to the semantics of programming languages, logics and computation
see for example [40, 43, 100, 92, 66, 69, 85, 84, 88, 68, 67, 65, 11, 12].

Although we are not going to be particularly interested in the class of preto-
poses [74, 45] as such, we are going to encounter them (apart from dealing with

toposes) from time to time, so we might as well define them.

Definition 2.5.4. A pretopos is an exact lextensive category.



Chapter 3

Completions

The main purpose of this chapter is to introduce four free constructions that are
fundamental in the thesis. We will review the constructions of the regular and
exact completions of a category with finite limits [72], the coproduct completion
of any category [72] and the ex/reg completion of a regular category [54, 32, 75|
(see also [16] for a survey of all the constructions).

We also present important properties of these constructions that will be used
in the remaining chapters. Of particular importance are the characterizations of
the categories that arise as coproduct, regular and exact completions [72, 19, 16]
and also the characterization of the categories with finite limits whose exact
completions are locally cartesian closed [21].

Finally we present the notion of suitable functor [96] that will play an impor-

tant role in later chapters.

3.1 Coproduct completions

For categories C and C’ let CAT(C,C’) denote the category of functors from
C to C’ and natural transformations between them. Also, for categories with
small coproducts D and D’ let COP(D,D’) denote the category of coproduct
preserving functors and natural transformations between them.

For any category C there exists a unique (up to equivalence) category C,
with small coproducts and a full and faithful functor y : C —— C, satisfying the
following universal property: for every category D with coproducts, the functor
(0).y : COP(C,,D) —— CAT(C, D) is an equivalence of categories.

We construct C, below. Any category equivalent to C, will be called the
coproduct completion of C.

An object of C, is a family of objects {X;}ier in C indexed by a set I. A
map between {X;}ier and {Y;},es is a family f = {f; : X; —— Yy }ier with f;
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in C and ¢ a function from [ to J.

The coproduct completion of any category always has stable and disjoint co-
products [16, 18]. Moreover, if C has finite limits, then so does C, and the
embedding C —— C_. preserves them [16].

Definition 3.1.1. An object X is connected if the corresponding covariant hom-

functor Hom(X, _) preserves existing coproducts.

In the presence of stable and disjoint coproducts, an object X is connected if
and only if X is not initial and cannot be decomposed as a coproduct of non-initial

objects. The following simple result is stated in [22].

Proposition 3.1.2. A category E is the coproduct completion of a small category
C if and only if E is locally small with small coproducts and there exists a small
subcategory C' of E equivalent to C consisting of connected objects and such that

every object in E is isomorphic to a coproduct of objects in C'.

We have already presented an example of a coproduct completion: H, as
introduced in Section 2.3.1 is the coproduct completion of H seen as a small

category.

3.2 Regular completions

For categories C and C’ with finite limits, let LEX(C, C’) be the category whose
objects are the functors from C to C’ that preserve finite limits and whose maps
are the natural transformations between these functors.

Similarly, for regular categories D and D', let REG(D, D’) be the category
of exact functors from D to D’ and natural transformations between them.

For any category with finite limits C, there exists a unique (up to equivalence)
regular category C,., and a full and faithful functor y : C —— C,, preserving
finite limits satisfying the following universal property: for any regular category
D, ().y : REG(C,.,, D) — LEX(C, D) is an equivalence of categories.

We build C,., below. Any category equivalent to C,., will be called the
reqular completion of C.

The category C,., has an easy description. Its objects are maps f: X — VY
imC.Amap [[|]: (f: X —=Y)—(g:U — V) in C,, is an equivalence class of
maps [ : X — U such that g.l.fy = g.l.f1 where f, and f; form the kernel pair of
f. Two such maps [, m are considered equivalent if g.l = g.m.

The idea is that the object (f : X —— Y') represents the image of the map
f: X —Y in C.,.



If we let ~ denote equivalence of categories then we have, for example, that
Ass ~ PAss,, (see [16]) and that Equ ~ Top,,, (see [21, 13]).
The categories that arise as regular completions can be characterized as fol-

lows.

Definition 3.2.1. An object X is projective if for every regular epie: A — B
and map ¢g : X — B there exists a map f : X — A such that e.f = g.

About our terminology, notice that what we call projectives are usually called
reqular projectives.

We say that a category has enough projectives if for every object A there exists
a projective X and a regular epi ¢ : X — A. We say that ¢ is a projective cover
of A.

The following result appears in [16].

Proposition 3.2.2. A reqular category D is a reqular completion if and only if it
has enough projectives, projectives are closed under finite limits and every object
s a subobject of a projective. Moreover, in this case D is the reqular completion

of its full subcategory of projectives.

For any category D we denote by y : Proj(D) —— D the embedding of the
full subcategory of projectives. It follows that for any category with finite limits
C, C ~ Proj(C,ey) = Cyey-

For more on regular completions see [22, 37| and the remark at the end of the

next section.

3.3 Exact completions

For exact categories E and E/| let EX(E, E’) be the category of exact functors
from E to E' and natural transformations between them.

For any category with finite limits C, there exists a unique (up to equivalence)
exact category C,., and a full and faithful functor y : C —— C,_, preserving
finite limits with the following universal property: for every exact category E,
(0).y : EX(C.;, E) — LEX(C, E) is an equivalence of categories.

We build C,, below. Any category equivalent to C,., is called the exact com-
pletion of C.

The objects of C,, are pseudo equivalence relations in C in the following

sense.



Definition 3.3.1. A pseudo equivalence relation is a (not necessarily jointly
do

monic) pair of maps X; — X satisfying reflexivity, symmetry and transitivity
d

1
in the sense of Definition 2.4.2.

A map [f] : (X4 Z::? Xo) — (V1 :::(: Yy) in C,, is an equivalence class of
maps [ : Xg — Y; such that there exists an f’: X; — Y7 and such that the two
squares eg.f" = f.dy and e;.f" = f.d; commute.

Two such maps f and g are equivalent if there exits an h : Xy — Y7 such that
eg.h = f and e;.h = g.

Proposition 3.3.2 (Joyal; Carboni-Magno). An ezact category E is an exact
completion if and only if it has enough projectives and projectives are closed under
finite limits in E. Moreover, in this case E is the exact completion of its full

subcategory of projectives.

This characterization was used in [96] in order to prove that the realizability
topos associated to a partial combinatory algebra A arises as the exact completion
of PAss(A), the main example being Eff ~ (PAss(K}))es-

Many other toposes arise as exact completions as is clear from the following

proposition that relates presheaf toposes with coproduct and exact completions.

Proposition 3.3.3. Let C be a small category. If Cy has finite limits then

(Cy)ew is equivalent to Set®™" .

Proof. This is the argument used in the Corollary in p. 130 of [16]. See also
Corollary 43 in [22]. O

Notice that C need not have finite limits (see [36] for an analysis of limits in
coproduct completions).

As explained in [16], there is for any C, an exact functor Ker : C,.; —— Ce,
(given by the universal property of C,.,) taking an object (f : Y — X) in C,,
to the object in C,, given by the kernel pair of f.

Finally, we briefly discuss related work on regular and exact completions. In
[22] it is explained how to construct regular and exact completions of categories
with weak finite limits in a similar way as described here.

A different approach is that in [37]. For any locally small category C with
finite limits (actually they do not restrict to the finite case) they present the
regular and exact completions of C as certain full subcategories of the category

of contravariant functors from C to Set.



3.3.1 Local cartesian closure

In this section we review the characterization of the categories with finite limits

whose exact completions are locally cartesian closed [21].

Definition 3.3.4. A weak dependent product of a map f : X — J along a map
a:J — I consists of maps ( : Z — [ and € : J x; Z — X such that f.e = a*(.
Moreover, the pair €, ( is weakly universal in the sense that for any other pair
of maps ' : 7/ — I and € : J x; Z' — X such that f./ = o*(’ there exists a
(not necessarily unique) f’: J x; Z" —— J x; Z such that o*(’ = (a*().f’ and

e.fl=¢.

JX[Z - X

a*¢ f
J

Proposition 3.3.5 (Carboni-Rosolini). C., is locally cartesian closed if and

only if C has weak dependent products.

As explained in [13, 21], both Top and PAss have weak dependent products
and this gives short conceptual proofs that Top., and (PAss(K))e. ~ Eff are
locally cartesian closed. Moreover, an important intended application was to give
a conceptual proof that Top,., >~ Equ is locally cartesian closed. In order to do
this they use the following result [13].

First, call an equivalence relation (eg, e1) : B —— X x X regular if (ep, e1) is
a regular mono. Then, for any category C with finite limits let C., be the full

subcategory of C,, induced by the regular equivalence relations.

Proposition 3.3.6 (Birkedal,Carboni,Rosolini,Scott). Suppose C has finite
limits and stable epi/reqular-mono factorizations. Then, the inclusion C.; — Cey
has a left adjoint which preserves products and commutes with pullbacks along

maps in Ce,. Hence, if C., is locally cartesian closed so is C,.

Actually, the result in [13] is slightly more general and involves any stable

factorization system, but for our purposes the statement above suffices.

Corollary 3.3.7. If C has weak dependent products, stable epi/regular-mono fac-
torizations and is such that every reqular equivalence relation is a kernel pair then

C, ey is locally cartesian closed.



Proof. As every equivalence relation is a kernel pair it follows that C,., is equiv-

alent to C,, and then the result follows from Proposition 3.3.6. O

In Section 10.6 we will give an alternative proof of local cartesian closure of
C., using the fact that C,, is the category of separated objects for a universal

closure operator in C,,.

3.4 The exact completion of a regular category

For any regular category D there exists an exact category Dy /r, (unique up to
equivalence) and a full and faithful exact functor y : D —— D, ¢, satisfying the
following universal property: for any exact category E, it holds that the functor
(1).y : EX(Deg/reg. E) — REG(D, E) is an equivalence of categories.

We build the category D, /ey below. Any category equivalent to Dy /ey will
be called the ex/reg completion of D.

The objects of D, /ey are the equivalence relations in D and its maps are the
functional relations between them as defined in Section 2.4.1. If eg,e; : £ —— X
is an equivalence relation on X we will usually denote the corresponding object in
D .. /reg by X/ E so as to suggest that the object must be thought of as the quotient
of X by E. Proposition 2.4.3.1 gives the identities, 2.4.3.2 gives composition and
2.4.3.3 shows that there is a full and faithful embedding y : D =—— D, /-

As explained in [16], the ex/reg-completion is an idempotent construction in
the sense that the embedding D »=—— D,/ is an equivalence if and only if D
is exact.

Notice also that for any category with finite limits C, Cey = (Creg) eq/reg- This
is very easy to see if we understand the completions as inducing bi-adjunctions
between 2-categories [104]. Indeed, we can see the regular completion construction
as inducing a left bi-adjoint to the forgetful functor from the 2-category of regular
categories and exact functors to that of categories with finite limits and functors
preserving them. Also, we can see the ex/reg completion construction as a left bi-
adjoint to the (full) forgetful functor from the 2-category of exact categories and
exact functors to that of regular categories. So the statement Cep ™~ (Cyeg)en/reg
is just the fact that bi-adjoints compose.

Any finite-limit-preserving functor £’ : C —— C’ induces a natural transfor-
mation Subc(X) —— Subc (F'X). We say that F' preserves subobjects if this

transformation is actually a natural iso.

Lemma 3.4.1. The exact functor'y : D —— Dy /e, preserves subobjects. That

is, if X is in D and Y/D —— X is mono in Dy /ey then Y/D is isomorphic



over X to an object in D.
Proof. See for example [75] where D, /., is denoted by Map(D). O

In other words, the embedding D »— D, /., adds no subobjects of objects
in D.

For another presentation of ex/reg completions see [52]. Any small regular
category D embeds through the Yoneda embedding into the topos of sheaves for
the Grothendieck topology on D induced by the regular epis. It is then possible
to characterize D,/ as the closure of D in the topos of sheaves under finite

limits and coequalizers of equivalence relations (see Proposition 3.2 loc. cit.).

3.5 Covered categories and suitable functors

Propositions 3.2.2 and 3.3.2 and also the construction in Section 3.4 show that in
regular, exact and ex/reg completions every object is the codomain of a regular
epi whose domain is an object in the original category. In this section we explain

how to profit from this.

Definition 3.5.1. Let D be a full subcategory of E. We say that D covers E (or
that E is covered by D) if for every @ in E there exists a regular epi X —> @
with X in D.

For example, regular and exact completions C,., and C,, are covered by C
while ex/reg completions D, /e, are covered by D.

If y : D —— E is the embedding of a covering category, we say that a functor
F : E°? —— Set is representable over D if there exists an object R of E such
that Fly = E(y(.), R).

Definition 3.5.2. A functor F' : E°P — Set is suitable if it takes exact se-

quences to equalizer diagrams.

(Tt is worth noting that suitable functors are the sheaves in Set®” for the
topology given by the regular epis.)

Consider for example a well-powered regular category E. Then the functor
Sub : E°P —— Set that takes every object to its set of subobjects and acts on
arrows by pullback is suitable by item 4 of Lemma 2.3.3.

As strong subobjects are closed under pullback we can consider the sub-functor
SSub : E°P —— Set of Sub that takes each object to its set of strong subobjects.
It follows that SSub is also suitable.



Proposition 3.5.3. Lety : D —— E be an embedding such that D covers E.
If F: E°® —— Set is a suitable functor that is representable over D then F is

representable.

Proof. The proof in [96] of the related result involving projectives works in this
case. We reproduce it here for completeness.

Assume that there exists an object R such that F.y = E(y(-), R). Let Q be
any object in E. Because D covers E there exists a regular epi ¢ : X — () with
X in D. Let ey, e; : E —— X be the kernel pair of q. Again using that D covers
E, let e : Y — FE be a regular epi with Y in D. We then have a coequalizer

diagram as below.

€0
¢ W E x4

- Q

€1

Let fo = eg.e and f; = ej.e. It is clear that suitable functors carry regular epis
to regular monos so it follows that F' carries the coequalizer diagram q.fy = q.f1
to an equalizer diagram. The representable E(_, R) also carries coequalizers to

equalizers so we obtain the following two equalizer diagrams.

F fo
FOQ FX FY
Ff
(-)-fo
E(Q,R) ~— E(yX, R) ——= E(yY, R)
(0)-f1
So it must be the case that F'Q = E(Q, R). O

Let us put in elementary terms what does it mean for Sub and SSub to be

representable over a subcategory D of E.

Definition 3.5.4. Let D be a full subcategory of E. A classifier of (strong)
subobjects of D-objects is a (strong) mono ' ——  in E such that for every
object X of D and (strong) mono m : U —— X in E there exists a unique

Xm : X — €2 such that the following square is a pullback.



X Q
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In the case of regular and exact completions, by Propositions 3.2.2 and 3.3.2,
we can speak of a classifier of subobjects of projectives.
This is the formulation that we are going to use in Sections 4.2, 5.3 and 11.3

together with the following.

Corollary 3.5.5. Let C be a category with finite limits and let D be a reqular

category.

1. C,.y has a strong-subobject classifier if and only if it has a classifier of

strong subobjects of projectives.

2. Cep has a subobject classifier if and only if it has a classifier of subobjects

of projectives.

3. Dey/reg has a subobject classifier if and only if it has a classifier of subobjects
of D-objects.

Proof. These are just corollaries of Proposition 3.5.3 together with Proposition
[.3.1 of [71] in order to prove that 2’ must be 1. O

Most of the thesis will address properties of regular and exact completions.
In order to treat them in a concise way let us say that a category is suitable if
it is regular, it is covered by its full subcategory of projectives and moreover,

projectives are closed under finite limits.



Chapter 4

Regular completions, colimits
and quasi-toposes

In Chapters 2 and 3 we saw that there exist categories that are both regular
completions and quasi-toposes. In this chapter we analyze this phenomenon by
giving sufficient conditions for regular completions to have colimits and to have a
strong-subobject classifier. In this way, we obtain sufficient conditions for regular
completions to be lextensive quasi-toposes. We will also see that any lextensive
quasi-topos satisfies these conditions and it is then possible to iterate the regular
completion construction to obtain hierarchies of quasi-toposes that have appar-
ently not been encountered before. In Chapter 8 we will see that under certain

extra conditions these hierarchies have companion hierarchies of toposes.

4.1 Colimits in regular completions

In this section we are going to address the problem of the existence of finite

colimits in regular and exact completions. First, let us review coproducts.

Proposition 4.1.1. For any category C with finite limits, the following are equiv-

alent.

1. C is lextensive

2. C. is lextensive (and so a pretopos). Moreover, the embedding C —— C,,

preserves coproducts.

3. C,eq s lextensive and the embeddings C —— C,¢, and G,y —— C,,

preserve coproducts.

Proof. In [16] Lemma 2.2, it is stated that 1 implies 2.
41



We now show that 2 implies 3. In [72] it is explained that if A, B in C,,
arise as the quotients of pseudo equivalence relations pg,p1 : X' —— X and
Go,q1 : Y —— Y respectively then A + B is defined as the quotient of the “co-
product” pseudo equivalence relation [po, qol, [p1,¢1] : X' +Y' —— X +Y. Using
lextensivity, it is easy to see that if the pseudo equivalence relations are kernel
pairs then so is their “coproduct”. Together with the fact that the embedding
C,eg — C,, preserves finite limits this shows that if C,, has stable and disjoint
coproducts then so does C,., and that the embedding C,., —— C,, preserves
them. Finally, it is also easy to see that the embedding C —— C,., preserves

coproducts. This finishes the proof that 2 implies 3.

To prove that 3 implies 1, notice that as coproducts of projectives are pro-
jective and the embedding C —— C,.., preserves finite limits it follows that if
C, ¢4 has stable and disjoint coproducts then so does C and that the embedding

preserves them. O

In order to analyze coequalizers let us introduce the following definition which

is inspired by Carboni’s notion of a quasi-effective category (see Definition 4.1.6).

Definition 4.1.2. Let f,g : Y —— X be a parallel pair of maps. A quasi-
coequalizer of f and ¢ is a map ¢ : X —— @ such that ¢.f = ¢.¢g and such that
if ¢ : X —— @' is another map with ¢’.f = ¢'.¢g then ¢'.qo = ¢’.q1 where ¢y and

¢1 form the kernel pair of q.

This notion seems a bit unnatural but perhaps the following two results will

help in this respect.

Proposition 4.1.3. If C is lextensive and has quasi-coequalizers then both C,.,

and Ce, have coequalizers (and so, they are finitely cocomplete).

Proof. Let D be either C,.4 or C,,. First, it is very easy to see that any pair of
maps f,g:Y —— X in C has a coequalizer in D. Just take the regular epi part

of the factorization of any of their quasi-coequalizers in C.

So let f',¢g' : B—— A be a parallel pair in D. Let Y and X be projective
covers of B and A respectively and let f and ¢ arise by projectivity as in the

following diagram.
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9
a
v f ! v
B / A
9

Let a arise as the coequalizer of the pair of maps ag, a; : X’ —— X in C (recall
Section 3.5).

We can then take the coequalizer 7 : X —— R (in D) of the parallel pair
lao, f],[a1,9] : X' +Y — X in C.

Clearly, r.ag = r.a;. As a is a coequalizer in D, there exists a unique 7 :
A —— R such that 7.a = r.

Let 7 factor as a regular epi ' : A — R’ followed by a mono m : R' —— R.
We now show that r’ is the coequalizer of f’ and ¢'.

It is easily seen using that m is mono and the cover Y ——= B epi that
r.ff=1r'.4q.

So let h : A —— C be such that h.f" = h.g’. It follows that h.a.f = h.a.g.
But then h.a factors through » = m.r’.a and so h factors through m.r" and hence,

through r’.

X'+Y X—" R
a m
I v
B————=4 -R N\
g T
h

For the case of C,., we can prove a little more.

Corollary 4.1.4. Let C be lextensive. Then C has quasi-coequalizers if and only

if Cyeg has coequalizers (and so, C,, is finitely cocomplete).



Proof. By Proposition 4.1.3 we need only consider the if direction. Let f,g :
Y —— X be a parallel pair. Let ¢ : X —— C be their coequalizer in C,.,. By
Proposition 3.2.2 there exists a mono m : C'—— (@) into a projective Q). It is
very easy to see that m.c : X —— @ (which is in C) is a quasi-coequalizer of f
and g. O

Of course, the coequalizer of a parallel pair is trivially a quasi-coequalizer.
So, for example, as Top is cocomplete it follows that Top,., ~ Equ is also
cocomplete. On the other hand, consider PAss. It has finite coproducts but, as

we have already observed in Section 2.3, not every pair of maps has a coequalizer.

Example 4.1.5 (PAss has quasi-coequalizers). Recall the “chaotic” inclu-
sion of Set into PAss (Section 2.2.2). Now, let f,g:Y —— X be a parallel pair
in PAss. Let ¢ : | X| — @ be the coequalizer of |f| and |g| in Set. It is easy to
see that the map X —— V(@ in PAss with underlying function ¢ and realized
by the constant recursive function sending everything to * is a quasi-coequalizer
of f and g.

We have already mentioned that the notion of a quasi-coequalizer is inspired in
that of a quasi-effective category [16]. With the terminology we have introduced,

these are defined as follows.

Definition 4.1.6. A category is quasi-effective if every pseudo equivalence rela-

tion has a quasi-coequalizer.
The point about these categories is the following result taken from [16].

Proposition 4.1.7. The embedding C,., —— C., has a left adjoint if and only

if C is quasi-effective.

4.2 Regular completions and strong-subobject
classifiers

In this section we show how regular completions inherit strong-subobject classi-
fiers.

First, we recall a nice folklore fact about regular categories. Its statement
appears in [50], but being unable to find a published proof we give one for com-

pleteness.

Lemma 4.2.1. In a reqular category consider the following diagram with d and
e reqular epis and such that both the left hand square and the outer rectangle are

pullbacks.



e f
Then the right hand square is a pullback.

Proof. First pullback z along f followed by the exact sequence given by e and its

kernel pair.

8
>
N

€0
—_—
_ >

€1 € f

In order to prove the result we are going to show that ¢ = A’ and h = y. First
notice that (f.e)*z = z follows because the outer rectangle in the statement of
the lemma is a pullback. Also, as the left hand square in the statement is a
pullback, it must be the case that dy and d; form the kernel pair of d. As €’ is
also the coequalizer of dy and d; it follows that d and €’ are isomorphic. We can
assume they are equal and it follows that h = y. Also, h'.d = z*(f.e) = g.d which
implies (being d epi) that A" = g. So the right hand square in the statement is a
pullback. O

We can now relate regular monos in C and C,.,.

Lemma 4.2.2. Let C have a strong-subobject classifier. Consider the following

pullback square in C,.y with the horizontal maps being projective covers.

Y - B
m n
X - A

e

Then m is a reqular mono if and only if n is.



Proof. The if direction is trivial so consider the converse. As m is a regular mono,
we have a classifying map x,, : X —— Q. Let eg, e; be the kernel pair of e. As
the square in the statement is a pullback, it follows that eq and e; pull m back
to the same subobject. Then, x,,.¢90 = Xm.€1. It follows that y,, factors uniquely
through e via the dashed arrow in the diagram below. It follows that the outer

rectangle is a pullback.

Y - B ~ 1
m n T
X S S -0
e

We can apply Lemma 4.2.1 to conclude that n is a pullback of the regular mono

T and so a regular mono itself. O

The following fact is the main ingredient of Proposition 4.2.4 to be proved

below.

Lemma 4.2.3. If C has a strong-subobject classifier then regular monos compose

in Creg.

Proof. Let n’ : C' > B and n : B —— A be two regular monos in C,.,. Let

e : X — A be a projective cover and pull the composition n.n’ back along it.

7~ Y - - X

(&

C———B- - A
n n

As regular monos compose in C (recall Section 2.3.6), the top composition is a
regular mono. By Lemma 4.2.2, it follows that the bottom composition is also a

regular mono. ]

We can now state the main fact about regular completions and strong-subobject

classifiers.

Proposition 4.2.4. Let C be lextensive and have quasi-coequalizers. If C has a

strong-subobject classifier then so does C,.,.



Proof. By Corollary 4.1.4, C,,4 has finite colimits and by Lemma 4.2.3, regular
monos compose in C,,.

Proposition 12.5 in [106] says that in any category with finite limits and such
that regular monos compose, if a map has a cokernel pair then it factors as an
epi followed by a regular mono. It follows that in our case, every map in C,, has
an epi/regular-mono factorization.

Recall from Section 2.3.6 that in a category with this type of factorization,
strong and regular monos coincide. It follows that every strong subobject in C,,
of a projective is a regular subobject and so is itself projective (because C is
closed under finite limits). Then, as C has a strong-subobject classifier, C,., has
a classifier of strong subobjects of projectives (recall Definition 3.5.4). Then, by
Corollary 3.5.5, C,, has a strong-subobject classifier. O

4.3 Regular completions and quasi-toposes

In this section we put together the results of the previous sections and with the
help of the analysis of local cartesian closure done in Section 3.3.1 we present
sufficient conditions on a category C for its regular completion to be a lexten-
sive quasi-topos. An interesting observation is that every lextensive quasi-topos
satisfies these conditions itself.

Recall from Section 3.3.1 that an equivalence relation is called regular if the

corresponding mono is.

Proposition 4.3.1. Let C be lextensive in which every reqular equivalence rela-

tion is a kernel pair. Moreover, let C have the following properties:
1. stable epi/reqular-mono factorizations
2. quasi-coequalizers
3. weak dependent products
4. a strong-subobject classifier
then C,ey is a lextensive quasi-topos.

Proof. By Proposition 4.1.1 C,., is lextensive and by Corollary 3.3.7 C,, is
locally cartesian closed.

As C is lextensive and has quasi-coequalizers we obtain by Corollary 4.1.4
that C,.4 has finite colimits.

As C is lextensive, has quasi-coequalizers and a strong-subobject classifier, it

follows by Proposition 4.2.4 that C,., has a strong-subobject classifier. O



In the cases we are involved with, the fact that every regular equivalence

relation is a kernel pair is actually a consequence of a more basic fact.

Definition 4.3.2. In any category call an object X exponentiating if for every

object Y the exponential XY exists.

Also, we say that a strong-subobject classifier T : 1 —— (2 is exponentiating
if Q is.

Proposition 4.3.3. In a category with finite limits and an exponentiating strong-

subobject classifier every reqular equivalence relation is a kernel pair.

Proof. This is the argument to prove that in toposes every equivalence relation is
effective [45, 51|. For any regular equivalence relation e = (eg, e;) on X consider
its classifying map y. : X x X —— Q. It is then proved that eq, e; is the kernel
pair of the transposition ¥, : X —— QX. O

So we easily obtain the following corollary.

Corollary 4.3.4. Let C be a lextensive category with the following properties:

1. stable epi/reqular-mono factorizations
2. quasi-coequalizers
3. weak dependent products

4. an exponentiating strong-subobject classifier

Then C,4 is a lextensive quasi-topos.

In Section 8.4 we will review this result under a different light that will allow
us to simplify it by subsuming most of the conditions in its statement under one
simple conceptual property that our examples enjoy. In the meantime let us apply
the result as it is.

Consider the category PAss of partitioned assemblies for some PCA. We
mentioned in Section 2.2.2 that it has stable epi/regular-mono factorizations, we
described quasi-coequalizers in Example 4.1.5 and it was shown in [13, 21] that
it has weak dependent products. Finally, it is easy to show that the strong-
subobject classifier described in Section 2.3.6 is exponentiable (abstractly, this
follows from properties of the adjunction |-| 4 V). So it follows by Corollary 4.3.4
that PAss,., >~ Ass is a quasi-topos.



There is another conceptual explanation for this. The category Ass is a quasi-
topos because it is a category of separated objects for a topology in the topos
PAss,, [39, 46, 16]. On the other hand, this explanation does not work in the
case of Top.

The exact completion of Top is not a topos (it is not well powered). But,
Top has epi/regular-mono factorizations, it is cocomplete and hence has quasi-
coequalizers trivially, has weak dependent products as explained in [13, 21] and
it is again easy to see that the strong-subobject classifier described in Section
2.3.6 is exponentiating (same argument as in the case of PAss). This is why
Top,., >~ Equ is a quasi-topos.

As quasi-toposes are locally cartesian closed it follows by Proposition 4.3.3
that every regular equivalence relation in them is a kernel pair. It is clear then
that lextensive quasi-toposes satisfy the premises of Corollary 4.3.4 and so it

is possible to iterate this result in the following sense. Let C,.40) = C and

Creg(n-‘,—l) = (Creg(n) ) reg-

Corollary 4.3.5. Let C be as in Corollary 4.5.4. Then for every n > 0, Cyeq(n)

18 @ quasi-topos.
Finally, let us prove that these hierarchies are not trivial.

Proposition 4.3.6. If C is not a reqular completion then for any n,m, C,qq4n) ~

Coreg(m) tmplies that n = m.

Proof. For the sake of contradiction let us assume that there exist an n < m
such that C,cge,) is equivalent to C,qq¢,). As C is not a regular completion it
follows that n > 0. Now, let m be the least number such that there exists an
n < m such that Cregn) &~ Cregimy. It follows that Proj(Cieyn)) is equivalent
to Proj(Ciegm))- That is, that C,egm_1) is equivalent to C,og(m—1). But this is

absurd because we have assumed that m was the least one. O

If we let C be PAss(K;) then we have that C,.;q) = C,., is the category
Ass. For n > 1 see Section 8.2.

For C = H, we have a clearer picture.

4.4 The hierarchy associated to a frame

Let SLat be the category whose objects (called semilattices) are partially ordered
sets with all finite meets and whose morphisms are functions preserving finite

meets. There is an obvious forgetful functor Frm —— SLat.



A subset A’ of a semilattice A is a lower subset if for every a in A’ and
a>a € Ait follows that o' € A’. For any a in A, we have that |a = {d'|d’ < a}
is a lower set.

Now, for any semilattice A let DA denote the set of all lower subsets of A
ordered by inclusion. In [47] (Theorem 1.2) it is shown that this gives rise to a
functor D : SLat —— Frm that is left adjoint to the forgetful Frm —— SLat.

We need a slightly modified version of D. Indeed, let D, A denote the set of
all non-empty lower subsets of A. It is not difficult to show that D, A has a least
element if A does and that in this case D, A is a frame.

Also, let us describe regular epis in categories of the form H,. It is not

difficult to show that they are characterized as the epi maps q : Z7 —— Y such
that [[y[ly = V{llzllzlgz = y}-

Proposition 4.4.1. For any frame H, (Hy),eq ~ (D1 H)..

Proof. As D, H is a frame, (D, H), is a regular category. We are going to use
Proposition 3.2.2 to show that it is the regular completion of H,.

Using that | @ C| o if and only if a < o, it is easy to show that there is
an embedding y : H, —— (D, H), that assigns to each X in H, the object
yX = (1X], L|llx) in (D4 ),

Let us now prove that the objects of the form yX are projective. So let
f:yX — Y beany map in (D, H), to the codomain of a regular epi q as above.
Then, for every x in y X we have that ||| =] ||z|x C | fz|y = U{llz|lz]¢z = fz}.
As q is a regular epi, there exists a z, in Z such that | [|z||x C ||z]|. It follows
that the assignment x —— z, induces a map yX —— Z such that composed
with g gives f. Hence, yX is projective.

Now suppose that P is projective in (D, H),. We show that it is in the image
ofy: H. —— (DyH),. For any element p of P, let Z, be the object given by
1Zp] = {a € Hla € |[pl} +{T}, [limall =La and [Jin, T[] = H.

Also, let Y, be given by |Y,| = {p} + {T}, |linup|| = |Ip||p and ||in, T| = H.

There is an obvious epi g, : Z, — Y}, that sends in, T to in, T and everything
else to imyp. It is clearly a regular epi.

Now, consider the map P —— Y}, that sends p to in;p and everything else to
T. The fact that P is projective shows that ||p|| C|a for some a € ||p||. It follows
that ||p|| =/ a. As this is for every p, P is in the image of y.

So we have characterized the image of y as the full subcategory of projectives.

Now, let us prove that every object C'in (D4 H)4 is covered by a projective.

Let X be the object in the image of y given by |X| = {(c,a)|lc € C,a € ||c||}

and ||c, a|| =] a. There is an obvious regular epi X — C.



There only remains to prove that every C' is embedded in a projective. For
this, let X be such that | X| = |C| and ||c||x =] (V ||c||¢). Clearly, X is projective

and it is easy to prove that there is a mono C' —— X. U

A word of acknowledgement goes to Jaap van Oosten who found a mistake in

a previous version of this result.
It follows that (H, )regm) ~ ((D4)"H)4.



Chapter 5

The categories whose exact
completions are toposes

In this chapter we give a characterization of the categories with finite limits
whose exact completions are toposes. The main ingredient is the notion of a
generic proof. These are introduced in Section 5.2 together with the statement
of the characterization and some examples showing, in particular, how to use the
characterization to present realizability toposes. We prove the characterization
in Section 5.3 and then observe a curious relation between a strong version of
generic proofs and the axiom of choice. We also describe the structure that arises
in the regular completion of a category with a generic proof and finally discuss

the relevance of the different classifying and generic notions that we introduce.

5.1 The proof-theoretic power set functor

For any category with finite limits C, let us denote by Prf the contravariant
functor that for every object X in C, Prf(X) = C/X is the poset reflection of

the slice. It operates on arrows by pullback. For any f:Y —— X we denote

the corresponding element in Prf(X) by |f]. Lawvere calls this functor the
proof-theoretic power set functor in [62]. For any X, the elements of Prf(X) will
be called proofs.

As explained in [62], Prf(X) can be a proper class even if the category is well
powered (an example given by the topos Set— of (directed) irreflexive graphs).
Also, the characterization of the Grothendieck toposes for which the functor Prf
takes values in Set is posed as an open problem.

The relation of the proof-theoretic power set functor with our current problem
is the following simple observation. Recall from Section 3.5 that a category D is

called suitable if it is regular, has enough projectives and projectives are closed

52



under finite limits.

Lemma 5.1.1. Let D be a suitable category and let y : C —— D be the embed-
ding of the full subcategory of projectives. Then, there exists a natural isomor-

phism Subp(yX) = Prfo(X).

Proof. We give a sketch. For any proof | f| € Prfo(X) assign Im(f) € Subp(yX).
It follows from Lemma 2.3.3 that this assignment is well defined. On the other
hand, given any m : U —— y X in Subp(yX), we can cover U with a projective
yY giving a map f : Y —— X and thus a proof | f|. Because we are covering
with projective objects, any two such coverings induce the same proof. So this
assignment is also well defined. We leave it as an easy exercise to prove that these

assignments give a natural iso. ]

So the proofs in C give a perfect picture of the subobjects of projectives in

D. This is an essential ingredient in the proof of our characterization.

5.2 Generic proofs

As we will show in Section 5.4, only in very special cases it is possible to classify
proofs. On the other hand, the possibility of weakly classifying them is intimately

related to our characterization.

Definition 5.2.1. A generic proofis a map 6 : © — A such that for every map
f Y — X there exists a (not necessarily unique) vy : X — A such that f factors

through v36 and v;0 factors through f.

Y Y’ S
_]
; u]*ﬁ 0
X A

Vy
With this terminology we are ready to state our characterization.

Theorem 5.2.2. If C has finite limits, C., is a topos if and only if C has weak

dependent products and a generic proof.

Let us look at a couple of simple examples.



Example 5.2.3 (PAss(A) has a generic proof). Recall the “chaotic” inclu-
sion of Set into PAss (Section 2.2.2). Let pA be the set of subsets of A and let
A = V(pA). Moreover, let © be defined so that |0 = {(U,a)|U C A and a € U}
and |[(U,a)|| = a.

We have an obvious map 6 : © — A with first projection as underlying
function. We now prove that 6 is a generic proof. Let f : Y — X be realized by
as. Then define v: X — A by v = {||y|| |fy = =}

Let P be the pullback of v and 6. It has underlying set |P| = {(z,vz,a)|a €
va} and ||(z, U, a)|| = (||z||, a). It is easy to see that f factors through7: P — X
via the function y —— (fy, v fy, ||y||) which is realized by a —— (aya, a).

Now for each (z,U,a) € |P| there exists a gz € |Y| such that fgz = 2 and
|lgz|| = a. Using choice we obtain a function g : |P| — |Y| that is realized by the

projection (z,U, a) —— a. It clearly holds that f.g = 7.

Realizability toposes for PCAs have been shown to be exact completions of the
respective categories of partitioned assemblies in [96]. So it follows by Theorem
5.2.2 that the latter categories must have generic proofs. On the other hand,
the point we want to emphasize is the alternative way of presenting realizability
toposes. The proof in [96] is done by constructing the toposes and then using
the characterization of exact completions (Proposition 3.3.2). With Theorem
5.2.2 and Example 5.2.3 together with the fact that PAss has weak dependent
products (see Section 3.3.1) it is possible to introduce realizability toposes as exact
completions without having to build the toposes first in another way.

At this point it is important to discuss the use of the axiom of choice in Exam-
ple 5.2.3. We claim that it is essential. In order to see this, consider a realizability
topos over a PCA A seen as the ex/reg completion of the corresponding category
of assemblies (this presentation does not require the axiom of choice). Now as-
sume that partitioned assemblies are projective in the topos. We now show that
it follows that every epi splits in Set.

It is not difficult to show that the embedding V : Set —— PAss preserves
regular epis. The embedding of PAss into Ass also preserves the regular epis
coming from Set and hence, so does the embedding of PAss into the correspond-
ing realizability topos. So, if partitioned assemblies are to be projective then
regular epis split in Set. That is, if we want realizability toposes over PCAs to
be exact completions of the corresponding categories of partitioned assemblies

then we must accept the axiom of choice in Set.

Example 5.2.4 (H, has a generic proof). Recall Section 2.3.1 and also Sec-

tion 3.1 where we mentioned that H, is the coproduct completion of H. It follows



by Proposition 3.3.3 that the exact completion of H, is the topos of presheaves
on H. Let us describe a generic proof in H.

Let pH be the set of subsets of H and define A = V(pH).

Also, let |©| = {(U,a)la € U € |A|} and ||(U,a)| = a.

Using the same idea as in Example 5.2.3, it is not difficult to prove that the

first projection © — A is a generic proof in H,.

Now, by Proposition 3.3.3 and Theorem 5.2.2 it must be the case that every
coproduct completion with finite limits has a generic proof. We now give an
explicit construction of them in order to give more examples of generic proofs.

First, we need a small lemma.
Lemma 5.2.5. If C be a small category then for any X in C,, Prf(X) is a set.

Proof. Let f : Y —— X in C,.. We can assume that Y is a small coproduct
[I;c; Ci of objects in C. It follows that f is determined by a family of maps
{fi + C; —— X}ier. Reordering things a little bit it is easy to see that |f]
is determined by a family {Uc}cec where each Ug is a subset (maybe empty)
of C4(C,X). That is | f] is determined by a subset of the small coproduct
[Heec C+(C, X). Hence, Prf(X) is bounded by the set Sub(][,.c C+(C,X)).

U

It is easy to check that in a category with stable and disjoint coproducts
the functor Prf carries coproducts to products. That is, there exists a natural

isomorphism

[ Prrxa) = Prr(J %)

1€l 1€l

Notice also that C has a generic proof if and only if there exists an object A
and a natural epi C(X, A) —= Prf(X). We can say Prf is weakly representable.

We can now describe the generic proofs.
Proposition 5.2.6. If C is a small category then C, has a generic proof.

Proof. Let P = {(p,C)|C € C,p € Prf(C)}. It is a set because C is small and by
Lemma 5.2.5, so is each Prf(C'). For each (p,C) € P chooseamap f, : X, — C

such that | f,| = p. Now consider the following small coproduct of maps.

s x5—10c¢

(p,C)eP (p,C)eP (p,C)eP



Denote this map by 8 : © —— A. We now prove that 6 is a generic proof.
To do this, consider first a connected object C'. We can assume it is in C. Let

g : Z —— C be any map and consider the following diagram.

Z X Lg] ©

_
19l 0

C A

n(|g),0)
So A is a generic “proof of connected object”.
Now for an arbitrary X. Again, by Proposition 3.1.2 and without loss of
generality we can assume that X = [],_; C; with I a set and for each i € I, Cj in
C. The following calculation shows that A weakly represents Prf.

Prf(X) = Prf HC’ ) =

i€l

~ 1] Prc Ci.A) = C(J[ G A) = CL(X, A)

el el el

O

Strictly speaking, C, should have finite limits in order for Prf to be a functor
and therefore the argument above be completely correct. But as pullbacks along
injections exists in C_ there is really no essential problem in showing that the map
© —— A above is a generic proof. For more on limits in coproduct completions
see [36].

5.3 The proof of the characterization

First, we need to introduce a technical notion related to the classification of

subobjects.

Definition 5.3.1. A generic subobject-of-projective is a mono 7 : T —— A such
that for every projective X and mono m : U —— X there exists a (not necessarily

unique) v, : X — A such that the following square is a pullback.

U T
m T
X A




Also, a generic subobject-of-projective 7 : T —— A is projective if A is.

We have already mentioned that C has a generic proof if and only if there
exists an object A and a natural epi C(X,A) — Prf(X). That is, if Prf is
weakly representable.

Now, consider a suitable category D with C as its full subcategory of pro-
jectives. The existence of a projective generic subobject-of-projective in a suit-
able category D is equivalent to the fact that Sub : D°P — Set is weakly rep-
resentable over projectives. That is, that there exists a natural epimorphism
C(X,A) 2 D(yX,yA) — Subp(yX) (recall that y denotes the embedding of
the full subcategory of projectives C into D).

Lemma 5.3.2. The following are equivalent.

1. C has a generic proof
2. D has a projective generic subobject-of-projective

3. D has a generic subobject-of-projective

Proof. The equivalence between 1 and 2 is trivial by Lemma 5.1.1. Indeed, this
is just C(X,A) — Prfo(X) = Subp(yX). To be more explicit, given a generic
proof 8 : © —— A in C, the mono part of its factorization in D is a (projective)
generic subobject-of-projective. On the other hand, given any projective generic
subobject-of-projective 7 : T = A in D, the map to A induced by a projective
cover of T is a generic proof in C.

Trivially, 2 implies 3. So we need only prove that 3 implies 2. Let 7’ :
YT’ A’ be a generic subobject-of-projective in D. Let p : A — A’ be a
projective cover. Then define 7 : T —— A to be the pullback of 7" along p. To
prove that this 7 is a generic subobject-of-projective, let X be projective and let
m : U —— X. By hypothesis, there exists a x,, : X — A’ such that m is the
pullback of 7" along x,,. Now, as X is projective and p is a regular epi, there
exists a v, : X — A such that p.v,, = xm. It follows by the Pasting Lemma that

m is the pullback of 7 along v, as in the following diagram.

U -1 - T’
m T T
X - A - A
Up, P



The strategy for the proof of Theorem 5.2.2 is to build a classifier of subobjects
of projectives (Definition 3.5.4) out of a generic subobject-of-projective (Defini-
tion 5.3.1). In order to do this, we are going to use the locally cartesian closed
structure of the exact completion to build an equivalence relation on A. The
quotient of this equivalence relation will classify subobjects of projectives. Then,
using Corollary 3.5.5 we will be able to conclude that there exists a subobject

classifier.

The following lemma explains how to build the equivalence relation.

Lemma 5.3.3. Let E be locally cartesian closed and let m : U —— X. Then
there exists an arrow m’ : U —— X x X such that (f,g) : Z — X x X
factors through m' if and only if f and g pull m back to the same subobject (i.e.

ffm=g*m).

Proof. Consider v = m xidy : U X X —— X x X and 6 = idxy xm : X X
U X x X as objects in the slice E/(X x X). We can then build the mono

m/ =~° x §7 : U —— X x X using the product and exponentiation in the slice.

Now, let (f,g) : 7 — X x X factor through m'. That is, we have an arrow
(f.g) — m' in the slice E/(X x X). This is uniquely determined by arrows
(f.g) — ~° and (f,g) — 07. Let us concentrate on the arrow on the left. It is
uniquely determined by an arrow (f, g) x 6 — . Products in the slice are just

pullbacks in E, so we have an easy description of the domain of this arrow

gU - X xU
_
g'm idx X m
Z - X x X

(f.9)

So, our arrow (f,g) X & — ~ is just an arrow (h,h’) : ¢*U — U x X such
that (m x idx).(h,h'y = (f,g).g"m = (idx x m).(f.(¢*m), m*g). This implies
m.h = f.g*m and then it follows that ¢g*m < f*m.



Similarly, the arrow (f, g) — 07 implies that f*m < g*m.

On the other hand, if we start assuming that ¢g*m < f*m, by following the
proof above from bottom to top, it is easy to prove that there is an arrow (f, g) —
+?. Using the same idea, starting from f*m < ¢g*m it is easy to prove the existence
of (f,g) — 7. So, if f and g pullback m to the same subobject, then (f, g) factors
through m/. O

Clearly, “pulling back an arrow with codomain X to the same thing” de-
termines an equivalence relation on the hom-sets E(_,X). It follows by the re-
mark below Definition 2.4.2 that the m’ = (mg, m1) built above determines an
equivalence relation. Notice that U’ can be defined, using the internal logic, by
U =z2:XF Uz —Ux)N Uz — Ux).

Proposition 5.3.4. IfC,, is locally cartesian closed then the following are equiv-

alent:

1. C., is a topos

2. C has a generic proof

Proof. To see that 1 implies 2, notice that the subobject classifier is trivially a
generic subobject-of-projective. It follows by Lemma 5.3.2 that C has a generic
proof.

To prove that 2 implies 1, we apply again Lemma 5.3.2 to obtain a generic
subobject-of-projective 7 : T —— A in C,,. By hypothesis, the slice C., /(A x A)
is cartesian closed. So we can apply Lemma 5.3.3 to obtain an equivalence relation

7/ T —— A x A with the properties specified. We can then take the quotient:

A

T’ -

1



Trivially, (79, 1) = 7’ factors through 7/. Then 77 = 77 by Lemma 5.3.3.
Also, 7 pulls the equivalence relation 7, 71 back to another equivalence relation
(recall Section 2.5). As C,, is exact, we can take its effective quotient and obtain
the top exact sequence in the diagram below. Using the universal property of
coequalizers we obtain the map T making the right hand square commute. It

follows by Lemma 2.3.3 that the right hand square is a pullback. That is, p*T = 7.

> .

- Q)

T1

We now prove that 2 classifies subobjects of projectives. It will then follow
by Corollary 3.5.5 that C., is a topos.

So let X be projective and let m : U —— X be an arbitrary subobject. Then,
as A is a generic subobject-of-projective, there exists a v, such that m = v, 7 =

*

Vi (p*T) = (p.vy,)*T. This means that T is also a generic subobject-of-projective.

We need to prove that there is only one arrow classifying each subobject. So
let f',g" : X — Q pull T back to the same subobject. As X is projective, it
follows that f’ and ¢’ factor through p, say via f and g. Then f and g pullback
7 to the same subobject. So there exists an h such that (f, g) = 7.h by Lemma
5.3.3. But then f = 19.h and g = 71.h. So p.f = p.19.h = p.71.h = p.g. That is,

f'=4. =
This proposition is the main ingredient in our characterization.

Corollary 5.3.5. (Theorem 5.2.2) C,, is a topos if and only if C has weak de-

pendent products and a generic proof.

Proof. Follows from Propositions 3.3.5 and 5.3.4. O

5.4 Proof classifiers

It is natural to wonder if there exist cases in which the functor Prf is repre-
sentable.

By a proof classifier we mean a generic proof  : © — A such that for every
f Y — X there is a unique vy : X — A such that the diagram in Definition

5.2.1 commutes.



Of course, by Yoneda, this is equivalent to the fact that Prf is representable.
That is, to the existence of a natural isomorphism Hom(X,A) — Prf(X).
Toposes in which every epi splits provide trivial examples of proof classifiers as

in this case Prf(X) is isomorphic to Sub(X). In fact, these are the only examples.

Proposition 5.4.1. If Prf is representable then every epi splits.

Proof. Suppose that there exists an object A and an isomorphism Hom(X,A) —
Prf(X) natural in X.

Let e : X —> @ be epi. Then (_.e) : Hom(Q,A) —— Hom(X, A) must be
an inclusion. Hence, so is e* : Prf(Q) —— Prf(X). This means that for every
f:Z—-Qand f': 72 — Q,if e f and e* f’ factor through each other then so do
f and f’.

Now, clearly, e*e and idx = e*idg factor through each other. Then, by hy-

pothesis, e and idg factor through each other. That is, e splits. O

5.5 (Generic monos

In this section we identify the structure in C,., corresponding to a generic proof

in C and show two examples.

Definition 5.5.1. A generic mono in a category D is a mono 7 : T —— A
such that every mono u : U —— A in D arises as a pullback of 7 along a not

necessarily unique map.

Proposition 5.5.2. Let C be a category with finite limits. C has a generic proof

if and only if C,eqy has a generic mono.

Proof. For the if part notice that if C,., has a generic mono then it has a generic
subobject-of-projective. So, by Lemma 5.3.2, C has a generic proof.

For the only if part, again by Lemma 5.3.2, we need only prove that the
existence of a generic subobject-of-projective in C,, implies the existence of a
generic mono.

Let 7 : T —— A be a generic subobject-of-projective in C,.,. Now, let
u : U»=— A be an arbitrary mono in C,.,. By Proposition 3.2.2, there is a
mono m : A~ X into a projective X. Then, there exists a v : X —— A such
that m.u : U —— X arises as the pullback of 7 along v. But then the following

diagram is also a pullback.



U -1

u T

A~ - X - A
m v

This proves that 7 is a generic mono.
O

It follows by Example 5.2.3 that the categories of assemblies Ass ~ PAss,.,
all have generic monos. Indeed, by the proof of Proposition 5.5.2 we know that
they arise as the images of the generic proofs described in Example 5.2.3. So we
can calculate them immediately. The object A is the same and T is given by
Y| ={U0#U C A} and [[U| = U.

Curiously, in spite of not being regular completions, the categories of parti-

tioned assemblies and Hy also have generic monos.

Example 5.5.3 (PAss(A) has a generic mono). Let A = V(A +1). On the
other hand, let |T| = A and let ||_|[y : || —— A be the identity function.
Finally, let 7 : T —— A be the obvious (left) inclusion which is realized by a
constant function.

Let us prove that so defined, 7 is a generic mono. So let m : U —— X be
mono. Then let v, : X —— A be defined as follows.

uma:{”xHU , ifxelU

1L, otherwise

It is easy to check that v, pulls 7 back to m.
The case of sets valued on a frame is similar.

Example 5.5.4 (H; has a generic mono). Indeed, first let A = V(H + 1).
Then, let |Y| = H and let |||y : |[Y| —— H be the identity function.
Using the same idea as in Example 5.5.3 it is easy to prove that the obvious

inclusion 7 : ¥ = A is a generic mono in H,.

5.6 A word about classifying and generic things

We have introduced several similar notions of objects that weakly or strongly
classify subobjects or proofs of arbitrary objects or of the class of projectives. We

now briefly discuss their relevance.



The notions of classifier of subobjects of projectives (Definition 3.5.4) and of
generic subobject-of-projective (Definition 5.3.1) are only good ways in which to
structure the proof of Theorem 5.2.2 (Corollary 5.3.5). The former highlights at
which point it is used the property of having enough projectives while the latter
does the same for the existence of effective quotients.

On the other hand, of undoubted importance is the notion of a subobject
classifier (Definition 2.5.2).

Now, about generic monos. We have come across them because they arise in
the regular-epi/mono factorization of generic proofs. We later learned of the work
[64] (see also Section 8.1) and we finally came up with Theorem 11.3.3 where they
play an essential role in ex/reg completions (see Section 3.4) being toposes. So
it seems that generic monos are also of independent interest and not just mono
parts of generic proofs. In fact, we will see in Section 8.2 that in some cases they
are at least as primitive as generic proofs in the sense that the existence of one
concept is equivalent to the existence of the other. A hint of this fact is given
already by Examples 5.5.3 and 5.5.4.

It should also be clear, from their role in Theorem 5.2.2, that generic proofs
(Definition 5.2.1) are also of intrinsic interest. The applications of Theorem 5.2.2
discussed in Chapters 6 and 8 will make this more evident. Evidence of a different

kind is given below.

5.6.1 Russell’s axiom of reducibility

Here we show the connection between generic proofs and the type theoretic ver-
sions of Russell’s aziom of reducibility as explained in [2, 33]. In order to explain
this we recall the interpretation of type theory in a locally cartesian closed cat-
egory [103]. Given a locally cartesian closed category C, the idea is to interpret
contexts as objects in C, types in context I' as maps in C with codomain (the
interpretation) of I' and terms as sections of (the interpretation of) their types.
Moreover product and exponential (arrow) types are interpreted as products and
exponentials in the appropriate slice of C.

For example, we say that two types A and B in context I' are equivalent if
there is a term (in context I') of type B4 x AB. We abbreviate this type by
A < B. By interpreting this definition in a locally cartesian closed C we obtain
that A and B are equivalent in C if the interpretation of A (a map with codomain
') factors through the interpretation of B and vice-versa.

The type theoretic formulation of the axiom of reducibility is given as follows:

There exists a type P whose elements are codes for types such that for every type



A there exists an element (A) of P equivalent to A.
We now reproduce the formal rules expressing this using the notation of [33]
and then explain how they are connected to generic proofs.
I'F A type I'Fa:P

'k (A):P ' Tp(a) type
' A type

[Fe:Tp((A)) <« A

In order to see the connection to our work think of P as A and let us work
out how this rules are interpreted in a locally cartesian closed category.

The judgement I' = A type should be thought of as giving a map A —— T
and the judgement I' - a : P as giving amap a : I' — P.

So the right hand rule says that if we have a map a : ' —— P then there
exists a map Tp(a) — I'. Actually, it says something more explicit. The map
id : P —— P gives a map that we choose to denote  : © —— P. Now for every
map a: I' —— P, the map Tp(a) — T" induced by the rule is just a*6.

On the other hand, the left hand rule is saying that for every map f: A — T’
there exists a map (f) : ' —— P. Think of (f) as vy.

Finally, the rule in the middle is saying that for any f : A —— 1T, f is
equivalent to Tp(vy). That is, | f]| = [v}0].

So generic proofs are the same thing as the type theoretic expression of the
axiom of reducibility. This suggests an interesting connection between type theory
with the axiom of reducibility and locally cartesian closed categories C with a
generic proof. By Theorem 5.2.2; the exact completion of any such is a topos and
moreover, the natural isomorphism Subc,, (yX) = Prfc(X) gives the possibility
of “internalizing” the type theory of the original category in the internal logic of

the topos.



Chapter 6

Boolean presheaf toposes

In this very short chapter we characterize the presheaf toposes that have a generic
proof. We also explain briefly the connection of these toposes with Lauchli’s
realizability [53, 62]. Moreover, the characterization above will also let us find
other examples of Grothendieck toposes whose exact completions are themselves

toposes.

6.1 Boolean presheaf toposes

In [16] the observation that for the topos Set— of irreflexive directed graphs,
Prf(1) is not small is attributed to Lawvere. From this, it follows that the exact
completion of Set— is not a topos as it is not well powered.

Also in [16], the characterization of the class of toposes whose exact com-
pletions are toposes is posed as an open problem. We now know that they are
the ones that have a generic proof. Moreover, for the restricted class of presheaf
toposes we can give a very concrete description. Indeed, we extend the charac-

terization of boolean presheaf toposes [45, 32, 71] as follows.

Theorem 6.1.1. Let C be a small category. Then the following are equivalent.

1. Set®” is boolean

2. C 18 a groupoid

3. Set®” has an essentially small class of connected objects
4. Set®” is the coproduct completion of a small category

op .
5. Set®”™ has a generic proof

D

) (Setcop)ex is a topos
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Proof. The equivalence between 1 and 2 is well known [45, 32, 71]. That between
3 and 4 is Proposition 3.1.2. That between 5 and 6 is Theorem 5.2.2. Also,
Proposition 5.2.6 gives that 4 implies 5. So we only need to prove that 2 implies
3 and that 5 implies 2.

In order to prove that 2 implies 3 consider first the case that C is a group.
Then, Set®™ is the topos of sets acted on by the group C [45, 71, 3]. It is well
known (see [3] for example) that the connected objects in such a topos are the non-
empty ones with only one orbit. Moreover, every connected object is isomorphic
to one given by a coset space (see Proposition 4 in Section 3 of Chapter 1 in [3])
and so, the class of connected objects in Set©™ is essentially small.

If C is a groupoid then it is equivalent, as a category, to a small coproduct
of groups. It follows that Set©” is equivalent to a small product of toposes (as
categories) of the form dealt with in the previous paragraph. Hence, the class of
connected objects in Set®”" is essentially small for this case too.

It remains to show that 5 implies 2. Suppose, for the sake of contradiction,
that there exists a generic proof 6 : © —— A in Set®” and that C is not a
groupoid. Then there exists a map a : A —— B in C that does not have a
section. That is, there is no map s : B —— A such that a.s = idg. The
contradiction we are aiming for is that © A cannot be a set.

Define U as the following pushout.

ca) S o B
C(—= CL) N
C(.B) —— U

If we call ing,in; : C(_, B) — C(_, B) + C(_, B) the injections then U is the
quotient of C(_, B) + C(_, B) by the equivalence relation generated by the pairs
(inof,in1 f) for f = a.g for some g.

If we use square brackets to denote equivalence classes in U then it is clear
that [inga] = [inja] in UA. Let us call this element a. On the other hand, we
have that 5y = [ingidp] # [in1idg] = B1 in UB because a does not have a section.

Now, fix some index set I and let U! be the I-fold product of U. Let ay € UTA
be the I-tuple such that every component is a. Also, for each d : I —— {0, 1}
we can consider the element I; € U B given by the I-uple (..., Bagy, ---)ier- Notice
that for d,e € {0,1}!, I; = I, if and only if d = e. Also, for each such d we have
d: C(_, B) — U! given by the universal property of the power U’ as follows.



Finally we have a unique map f given by the universal property of the following

coproduct.

C(_, B)
ind E
v= [] c.B) e U!

de{0,1}1

First, notice that for each d € {0,1}, f(inga) = da = a; € U'A and that
f(ingidg) = d(idp) = I; € U'B. Notice also that (ingidp) is the unique element
over Iy via f. Indeed, if for some k : B —— B we have that f(ingk) = I; then
dk = I; and so, for each i € I, m;(dk) = juk = [ingk] = [ingid] = jyuid = ml,.
As jo and j; are injective, we have that k = id.

As 0 is a generic proof we have the following situation.

Y/

| PB. |0

Ul A

Vi

Let Jq = g(ingidp) € Y'B. As f(hJs) = f'(g(ingidp)) = f(ingidp) = I,
it must be the case that hJy; = (ingidg) and in particular, that all the J;'s are
different for different d’s.

Also, as h((Y'a)Jq) = (Ya)(hJg) = (inga) it must be the case that all the
((Y'a)Jy)’s are different in Y'A (because the (inga)’s are different for different
d’s).

But f/((Y"a)Ja) = F(h((Y"a) Ja)) = f(inga) = ar € U'A.



So we have {0,1} different elements in Y'A over af € U'A via f). As
J' is the pullback of @ along vy, it follows by the construction of pullbacks in
presheaf toposes that there must be {0, 1}! different elements in the inverse image
07" (vrar) which is a subset of ©A. But this is for every set I! So ©A cannot be
a set. Absurd. O

A word of acknowledgement and gratitude: the equivalence between 2 and 3
is due to Lawvere and Schanuel and it was communicated to me by the former.
In their proof they use the object U and its powers in order to produce a proper
class of connected objects. After seeing their proof we realized that it was possible
to use these objects in order to generalize our result in [76] of the fact that the
exact completion of the topos Set™ is not a topos (notice that this fact is harder
than the case of Set— because the classes of proofs of Set™ are small). This

generalization is the main proof presented above.

6.2 A word about Lauchli’s realizability

Due to its connection with Lauchli’s abstract notion of realizability and com-
pleteness result [53], it may be of interest to pay special attention to the exact
completion of the topos of Z-sets. In [73] (see also [62]) the hyperdoctrine that
assigns to each object X of Set” the small Heyting algebra Prf(X) = (Set?/X)

is used to give an abstract account of Lauchli’s completeness result.

The topos (SetZ)ex should provide a useful tool to improve our understanding
of Lauchli’s work. Indeed, for every X in SetZ, the lattice of subobjects of X in
(Set”),, is isomorphic to the Prf(X) above. This shows that the internal logic
of (Set”),, is the logic of Liuchli’s realizability (some care is required to give
Léuchli’s interpretation of falsity).

Moreover, in order to study this topos there is an alternative description
that is perhaps simpler than the construction using pseudo-equivalence relations.
Indeed, by Proposition 3.1.2, for any group G, the topos (Set®)., is the presheaf
topos on the full subcategory of Set® induced by the connected objects (which,

as we have argued in the proof above, is essentially small).

6.3 Continuous group actions

If G is a topological group, then it is possible to consider the topos BG of con-
tinuous G-sets. That is, those actions X X G —— X that are continuous when

X is equipped with the discrete topology.



Corollary 6.3.1. For any topological group G, (BG)e, is a topos.

Proof. Let G° denote the group G but with the discrete topology. Then the
topos BG? is just the usual topos Set® of G-sets for the underlying group G. It
is shown in [71] that BG is a coreflective subcategory of BG?. It is easily seen
that generic proofs are inherited by coreflective subcategories. So it follows that

for any topological group G, (BG),, is a topos. O

This gives more examples of toposes whose exact completions are themselves
toposes. Moreover, in [71] it is also shown that BG is a Grothendieck topos whose
site of definition is not a groupoid in general. So even if C is not a groupoid, it
may still be the case that there are some subtoposes of Set®” with non trivial
generic proofs. Of course, as Set arises as a sheaf subtopos of many Grothendieck
toposes, it was clear that there are non-groupoidal sites whose corresponding sheaf
toposes have a generic proof. But the case of sets is not interesting because in
this case, as every epi splits, the subobject classifier is a proof classifier.

It would be interesting to characterize the categories and the Grothendieck

topologies on them whose corresponding sheaf subtoposes have generic proofs.



Chapter 7

Chaotic situations

The category of sets is embedded in many of our examples in such a way that
the image of this embedding consists of objects that can be thought of as having
as much structure as possible. We can call these objects chaotic. As we will
see in this chapter and also in Chapter 8, the existence of chaotic objects can
be used to conceptualize many properties of our examples and also to see more
deeply into the construction of generic proofs and monos. Moreover, this deeper
understanding will help us find a variety of new examples of toposes that are
exact completions.

In this chapter we borrow some ideas from [59, 61], axiomatize the existence of
full subcategories of chaotic objects and develop the technical machinery necessary

for proving the results of Chapter 8 in a suitable abstract way.

7.1 Chaotic objects

Consider the categories H, for a frame H, PAss and Ass for some PCA, Top,
SSeq, GEn and Equ.

Consider also the following two finite categories. Let g be the category with
two objects A and N and non identity maps s,t : A —— N andr: N — A
such that s.r = idy = t.r. Then, let =X be the subcategory of E: given by the

parallel pair s and .
_

The presheaf topos Set™ is the topos of directed reflexive graphs. On the
other hand, the presheaf topos Set— is that of directed irreflexive graphs. By
irreflerive here we mean that the graphs do not have a distinguished loop for each
node. See [60] for more on these toposes.

There are functors |_| from each of these categories to the category of sets. As
we have already mention in Chapter 2, in the cases of H,, PAss, Ass, Top and

SSeq the value of this functor at each object is its underlying set. The value at

70



a map is always the corresponding function between the underlying sets. In the
case of Equ, [(X, ~)| is the underlying set of the quotient X/ ~.

For the presheaf toposes, the value of || at a graph is its underlying set of
nodes and the value at a map is the underlying function between the sets of nodes.

All the functors |_| described above have full and faithful right adjoints that we
are going to denote by a V. We have already described most of them in Chapter
2 but we recall them here for convenience.

In the case of H,, for any set S, VS has S as underlying set and every element
is valued as T the top element of H. The action on functions is evident.

Let * be some fixed element of the PCA A. The functor V : Set —— PAss
takes a set S to the partitioned assembly with the same underlying set and such
that every element is valued as x. Again, the action on functions is evident. The
functor to V : Set —— Ass can be described similarly.

In the case of Top, V assigns to each set the corresponding chaotic or indis-
crete space with the two trivial opens and in the case of Equ, it assigns the same
space together with equality as associated equivalence relation.

The functor to SSeq assigns to each set the space with same underlying set
and such that every sequence converges to every point.

In the case of GEn, for any set S, V.S = SN,

The functors to the toposes of graphs assign to each set the graph with the
same set of nodes and exactly one arrow between any ordered pair of nodes.

Notice that in all cases, the image of the functors V consists of objects that
have, in some sense, as much structure as possible. One way to see this is that an
object of the form VS has so much structure that for any object X, any function
| X| —— S between the underlying sets is continuous or realizable (preserves
structure). This is very clearly expressed in the statement that || is left adjoint
to V. Indeed, as it is explained in [59, 61] the adjointness properties can be used
to axiomatize the existence of discrete and chaotic objects in a theory of space.

In the cases of PAss. Ass. Top, SSeq, GEn, Equ and the topos of reflexive
graphs, the functor |_| is nothing but the “points” functor I' = Hom(1, _). This is
not the case for Hy or the topos of irreflexive graphs. In the case of H,, the set
of points of an object is the set of elements that are valued as the top element of
H. The set of points of an irreflexive graph is its set of loops. In the case of H,
the “points” functor I' is right adjoint to V.

We will see in this chapter and the next one that many properties of our
examples follow from the fact that Set is embedded in them in the way described

above.



Actually, few properties of sets are going to be used in this chapter so in
order to present the results as abstractly as possible, let us fix from now on two

categories S and C with finite limits and an adjunction |-| 4 V with V: S — C.

7.2 Pre-embeddings

Consider a continuous f : Y —— X between topological spaces such that U is

open in Y if and only if there exists an open V' in X such that f*V = U. Such

an f need not be a regular mono but, in some sense, it is as close as it can be.
Maps of this kind will play an important role in what follows so it is good

that we can characterize them in an abstract way.
Definition 7.2.1. Amap f : Y — X is a pre-embedding if the following square
is a pullback.

Y X

Ny Nx

VY| W VIX]|

With our conventions, pre-embeddings are maps in C. Notice that the defini-

tion of pre-embedding is relative to the adjunction |_| 4 V.

Proposition 7.2.2. In each of the categories below a map f Y —— X is a
pre-embedding (relative to the adjunctions presented in the previous section) if

and only if the corresponding condition holds.

(Top) U is open in'Y if and only if there exists a V in X such that f*V =U

(Hy) foreveryy in'Y, |yl = | fyll

(PAss and Ass) Y is isomorphic over X to an f':Y' —— X such that for
every y in Y, ly[| = | /'y

(SSeq) (fyi) converges to fy in X implies that (y;) converges toy in'Y

(GEn) if we let Y = (|Y|,D) and X = (|X|,E) then the condition is that
D={g:N—|Y||fg€E}
= —

(Set— and Set—) for every pair of nodes n, n', f induces an isomorphism

Arrows(n,n’) =2 Arrows(fn, fn') (in other words, f is full and faithful but

not necessarily injective on nodes).



Proof. See [66] (where pre-embeddings are called cartesian maps) for the fact in

Ass. The fact for SSeq is in [77, 78]. The rest are left as easy exercises. O

The intuition behind these maps is that the structure of Y is inherited from
that of X. For another (recent) example of this phenomenon the reader is invited
to characterize the pre-embeddings in Equ.

Let us state some easy consequences of Definition 7.2.1.
Proposition 7.2.3.

1. pre-embeddings are closed under composition

2. 4f f and f.g are pre-embeddings then so is g

3. if m is mono and m.f is a pre-embedding then f is a pre-embedding
Proof. Easy. O

In our examples, the adjunction || - V is a reflection (that is, V is an
embedding). This is why the counit € : |[V(_)| — Id is an iso [70]. Actually, in
our examples, the adjunction |-| 4 V is a localization (that is, a reflection such that
the left adjoint preserves finite limits). This allows the following characterization

of pre-embeddings.

Proposition 7.2.4. Let || 4 V be a localization. Then f : Y —— X is a

pre-embedding if and only if there exists a pullback as below.

Y / X
k h
vw \A%4

g

Proof. The only if direction is trivial. So consider the converse.
The basic theory of adjunctions implies that the square above factors as fol-

lows.

vk
y — gy Y o

f VIf] g = Vg

X — s VIX| ——>VV
n VI



As both || and V preserve finite limits, the right hand square is a pullback.
It follows by the Pasting Lemma that left hand square also is and hence, that f
is a pre-embedding. O

Another useful consequence of the fact that | | 4 V is a localization (actually,
that || preserves products) is that the functors interact well with exponentials.
So, if the exponential S exists in S, then (V.9)4 exists in C and it is isomorphic
to V(SH1). So, if S is cartesian closed then every object VX is exponentiating

(Definition 4.3.2) in C. In this case, we also say that S is an exponential ideal of
C.

Corollary 7.2.5. If || 4V is a localization then:
1. pre-embeddings are closed under pullback
2. if A is exponentiable and f is a pre-embedding then f# also is

Proof. The first property is trivial using Proposition 7.2.4. For the second use
that (1) preserves pullbacks, the isomorphisms (V.S)4 = V(SI4/) for every S and
Proposition 7.2.4. O

7.3 Mono-localizations

We have already mentioned that for a pre-embedding f : Y —— X we think of
the structure of Y being determined by that of X via f. This is also the intuition
that one has for regular monos in Top, H,, PAss, Ass, SSeq, GEn and Equ.
Indeed, in these categories, regular monos are pre-embeddings. It is possible to

explain this in terms of the unit of the localization.

Proposition 7.3.1. Let || 4V be a localization. Then the following are equiv-

alent.
1. n s a natural mono
2. || is faithful
3. Fvery reqular mono is a pre-embedding

4. if f.g is a pre-embedding then so is g.



Proof. The equivalence between the first two items is a general property of ad-

junctions [70]. For the fact that 1 implies 4 consider the following diagram.

V|Z| W VY] W VIX|

The rectangle is a pullback by hypothesis and we need to prove that the left
hand square is a pullback. So we assume that n.ky = V]g|.ky. It follows that
there exists a unique k : K —— Z such that n.k = kg and f.g.k = f.k;. But then
we have n.k; = V|g|.ko = V|g|.n.k = n.g.k and as n is mono, k; = ¢g.k. Again
because 7 is mono, k is unique. So the left hand square is a pullback.

We now prove that 4 implies 3. Consider for any X the diagonal map A =
(id,idy + X —— X x X. As m.A = id and id is a pre-embedding we have, by
hypothesis, that A is a pre-embedding. As every regular mono is a pullback of a
diagonal we have that every regular mono is a pre-embedding.

Finally, we prove that 3 implies 1. As diagonal maps are (split) regular monos,

they are pre-embeddings. That is, for any X the following diagram is a pullback.

X x X

n nxn
V|X| —= V|X| x V|X|
A
But this is equivalent to the fact that » is mono. O

Let us call a localization with a monic unit a mono-localization.

Corollary 7.3.2. Let |-| 4V be a mono-localization. A map f:Y — X is a

pre-embedding if and only if there exists any pullback as below.



Y X
k h
A% A

9

Proof. As nz : Z —— V|Z| is mono, the following square is a pullback.

Y / X
k ﬁzh
VW V|Z|
Nnz.9
Then f is a pre-embedding by Proposition 7.2.4. O

The next lemma is going to be essential in the proof of the main result in
Chapter 8.

Lemma 7.3.3. Let || 4 V be a mono-localization. If f : Y —— X is a pre-
embedding, then (f,g) : Y —— X X Z is a pre-embedding for any g : Y — 7.

Proof. This follows from Proposition 7.3.1 because 7.(f,g) = f which is a pre-
embedding. O

In our main examples, S will be a topos so let us say that a category C has
a chaotic situation if it has a topos as a mono-localization. Notice that at this
point the theory collapses if both C and S are toposes as any mono-localization
between toposes is an equivalence (see [45] Lemma 4.13, where it is proved that a

geometric morphism that is both a surjection and an inclusion is an equivalence).

Lemma 7.3.4. If C has a chaotic situation then every mono pre-embedding is a

reqular mono.

Proof. Let m be a mono pre-embedding. As || preserves finite limits then |m/| is
mono. As S is a topos, |m| is a regular mono. As V preserves finite limits, V|m)|
is a regular mono. As m is a pre-embedding, it is a pullback of V|m| and hence

it is also a regular mono. O



7.4 Regular completions and mono-localizations

In this section we study some relations between a mono-localization as above and

the regular completion of the category C.

7.4.1 Inheriting mono-localizations

Consider a mono localization |-| 4 V with V : S —— C and S regular. We now
explain how C,, inherits S as a mono localization.

Indeed, as the functor || : C —— S preserves finite limits, the universal
property of y : C —— C,., gives an exact functor L : C,.;, —— S (that we can
assume to be) such that L.y = ||.

The functor L has an easy description. Recall (Section 3.2) that objects in C,,
are given by maps in C. So, for an object (f : Y —— X) in C,.y, L(f) = Im|f|,
the image of the map |f|: |Y| — |X| in S.

We give a concrete proof of the following simple fact, although it can be dealt
with using abstract 2-categorical properties of the bi-adjoint given by regular

completions.
Lemma 7.4.1. The functor L is part of a mono-localization L 4y.V.

Proof. We need only check that L is left adjoint toV; =y.V:S — C — C,,
and that the unit of this adjunction is mono.

In order to check that L is a left adjoint to Vy, let fy, f1 be the kernel pair of
f:Y—XinCandlet SinS. Then S(L(f:Y — X),S) = S(Im|f],5) =
(oY —= 8 | hlfol = hlfil} 2 Cruyl((f 1Y — X).V,5).

To prove that the unit of the adjunction is mono, let f : Y —— X and let
e : |Y| — Im|f| be the epi part of the regular-epi/mono factorization of |f]|.
It is not difficult to see that the corresponding unit of the adjunction L 4 V; is

given as follows.

\%
Yy — vy —5 Vimlf]
f id
X Vim|f|
In order to prove that [Ven| : (f:Y - X) » ViL(f : Y — X) is
mono let [h],[h] : (g : Y’ - X') > (f : Y —— X)) be maps in C,., such

that [Ve.n].[h] = [Ve.n].][h']. This means that Ve.n.h = Ve.n.h' and it implies



that V|f|.n.h = V|f|.n.h" and so, that n.f.h = n.f.h'. As n is mono, f.h = f.h'
and so [h| = [A/]. O

As Ass and Equ arise as regular completions (Section 3.2), Lemma 7.4.1, to-
gether with the adjunctions from Section 7.1, explain why they have the category

of sets as a mono-localization.

7.4.2 Local cartesian closure

Recall that Corollary 3.3.7 gives sufficient conditions for a regular completion to
be locally cartesian closed. Here we show that two of the three conditions follow
from the assumption of a suitable mono-localization | | 4V : S — C.

First, notice that the fact that |_| is faithful implies that it reflects epis and

monos. In turn, as |V ()| = Ids, it follows that V preserves epis.
Lemma 7.4.2. If S has stable epis then so does C.

Proof. Let e: V —— X be epi in C and let d : W —— Y be its pullback along
some f:Y —— X. As || is a left adjoint |e| is epi in S. As |_| is a localization
and epis are stable in S, |d| is epi. As || is faithful it reflects epis and hence d is

epi. ]

Results in [14] (see Proposition 5.6.2) show that every localization || 4 V

induces a factorization system (£, M) in C characterized as follows.

1. f € & if and only if | f| is an isomorphism

2. f e Mif and only if f is a pre-embedding

Notice that as |_| reflects epis every map in &€ is epi.
Lemma 7.4.3. If S has stable epi/reqular-mono factorizations then so does C.

Proof. As regular-monos and epis (by Lemma 7.4.2) are stable under pullback, we
need only prove that there are epi/regular-mono factorizations. As V preserves
epis and regular monos, every map Vg has an epi/regular-mono factorization in
C. As pre-embeddings are pullbacks of such maps, they also factor in this way.
Now, let f: Y —— X be any map in C. We already know that it factors as
f = m.e with |e| and iso (and hence e epi) and m a pre-embedding. Then m = n.d
with n a regular-mono and d epi. So we have f = n.(d.e) is an epi/regular-mono

factorization of f. O



Lemma 7.4.3 gives a conceptual explanation of why PAss and Top have this
kind of factorization.

The following result should be compared with Proposition 4.3.3.

Lemma 7.4.4. If every reqular equivalence relation is a kernel pair in S then the

same holds in C.

Proof. Let ey, e; : E —— X be a regular equivalence relation. Then |eg], |e1] :
|E| —— | X| is also a regular equivalence relation and by hypothesis we can
assume that it is the kernel pair of the map ¢ : | X| —— Q. We are going to
prove that ey and e; form the kernel pair of Vq.n : X —— V(. So consider the

following diagram where the square is a pullback by definition.

Va.n

\%O,
Vaq.n

The outer diagram commutes because Vq.n.eg = Vq.Vl]eg|.n = V(q.|eo]).n =
V(q.le1|).n = Vg.n.e;. Then, there exists an e such that (e, e1) = (ko, k1).e. As
(€9, €1) is a regular mono, so is e.

Also, as |-| preserves finite limits and |Vq.n| is iso below | X]| to ¢, it follows
that |kol|, |k1| @ || — | X| is the kernel pair of ¢q. Then |e| : |F| — | K| must
be an isomorphism. As || reflects epis, e is epi. As it is also a regular mono, it

is iso. Hence ey, e; : E —— X is a kernel pair. O

In order to be able to apply all the results in this section we need only assume
that S is a regular category with stable epi/regular-mono factorizations and such
that every equivalence relation is a kernel pair. Notice that any topos satisfies
these conditions.

Recall our notation for Corollary 4.3.5.

Corollary 7.4.5. If C has a chaotic situation and weak dependent products then
Jor eachn, C,eqny has weak dependent products and a chaotic situation. Actually,

for everyn >0, C,eqn) 48 locally cartesian closed.



Proof. By induction. Assume that C,.4,) has a chaotic situation and weak de-
pendent products. Lemma 7.4.3 and Lemma 7.4.4 allow us to apply Corollary
3.3.7 and obtain that C,.y(,41) is locally cartesian closed. Lemma 7.4.1 shows

that C,cynq1) also has a chaotic situation. ]

7.5 Pre-embeddings from discrete objects

We have seen that much of the chaotic behaviour of certain classes of objects can
be abstracted by the existence of an adjunction. As explained in [59, 61|, discrete
behaviour can be explained in an analogous way. Let us say that a category C
has a discrete situation if there is a functor |-| : C —— S to a topos S with a
full and faithful left adjoint A : S —— C (not to be confused with the diagonal
map).

In this section we describe some discrete situations with respect to the functors
|| associated with our main examples (some of them have already been described
in Chapter 2).

Let us first consider Top. For any set S, let AS be the space in which every
subset of S is open.

Now consider SSeq. For any set S, the subsequential space AS has underlying
set S and is such that a sequence converges to a point p if and only if it is
eventually constant with value p.

In the case of GEn, for any set S, AS has underlying set S and the associated
structure is given by the subset of SN consisting of the functions with finite image.

The reader is invited to calculate what the discrete inclusions for Equ and
the presheaf topos of reflexive graphs are.

Moreover, in the cases above, the functor A preserves finite limits.

The definition of a discrete situation in the first paragraph of this section does
not assume that |_| : C —— S is part of a chaotic situation. But this is the case
in our examples.

Between toposes, the geometric morphisms A 4 || : C —— S with A full
and faithful and such that |_| has a right adjoint V : S —— C are called local
48] (see also [61, 63| where such strings of adjoints A 4 || 4V :S —— C are
called unity-and-identity-of-opposites and used to account for an abstract theory
of space).

Our purpose for introducing discrete situations is to present the following

concrete observation in a natural setting.

Lemma 7.5.1. Let f: AS —— X be a pre-embedding with discrete domain.



1. In Top it follows that f is mono.
2. In SSeq it follows that f is mono.

3. In GEn it follows that f has finite fibers (f is “almost mono”)

Proof. In all cases we use Proposition 7.2.2 describing the pre-embeddings in each
case.

To prove 1, assume that fs = fs’ =z. As {s} is open in AS and f is a pre-
embedding, there exists an open neighbourhood V' of fs such that f*V = {s}. It
follows that s = .

To prove 2, assume that that fs = fs’ = x. Now consider the sequence (t;)
such that ty; = s and ;11 = §’. The sequence (ft;) is constantly x and so, it
converges to x. As f is a pre-embedding, it must be the case that (¢;) converges
to s (and to s’). But then s = s’ because f has discrete domain. Hence f is
mono.

To prove 3, let X = (|X|, £) and assume there exists an infinite U C S such
that fU = {z} for some z in |X|. Then, for any infinite choice of elements
¢c:N—UCS, f.c: N—— |X]| is the function constantly = which must be in
E. As f is a pre-embedding, ¢ must be in AS but this is absurd because ¢ has

an infinite image. O

This lemma will be used in Section 8.1.

Finally, notice that we have not required A to preserve finite limits. May be
one should, but consider the following examples.

First consider H,. Recall that if for any set S, we let AS have S as underlying
set and be such that every element is valued in L, then we obtain a left adjoint
to || : Hy —— Set. This left adjoint does not preserve the terminal object.
Notice, though, that it preserves non-empty products and equalizers.

A similar situation arises in the case of irreflexive graphs. For any set S we
can let AS be the graph with S nodes and no arrows.

Notice that in these cases, pre-embeddings from a discrete object need not be

(“almost”) mono.

7.6 Sequential spaces

Although unrelated to the main results of the thesis, we describe in this section
an application of pre-embeddings to obtain an abstract characterisation of the

sequential spaces [28, 29| which appeared in [78].



The sequential spaces are those topological spaces whose topologies are deter-
mined by sequence convergence. Explicitly, say that a sequence (z;) of elements
of a set X is eventually in a subset O C X if there exists [ such that, for all
i > 1, z; € O. Recall that, in an arbitrary topological space X, a sequence (z;)
is said to converge to a point z if, for every neighbourhood of z, the sequence is

eventually in the neighbourhood.
Definition 7.6.1. Let X be a topological space.

1. A subset O of X is sequentially open if every sequence converging to a point

in O is eventually in O.
2. X is sequential if every sequentially open subset is open.

Let Seq denote the category of sequential spaces and continuous functions.
For sequential spaces, the notion of continuity has a natural reformulation. It is
easily checked that a function f : X — Y between sequential spaces is continuous
if and only if it preserves convergent sequences.

It is easy to see that Seq is a full subcategory of SSeq. The embedding assigns
to each sequential space, the subsequential space with same underlying set and
as convergent sequences those that converge topologically. This embedding has a
left adjoint ' : SSeq —— Seq. In order to define F' notice that the definition
of a sequentially open subset makes sense if X is a subsequential space. Then for
any subsequential space X define F'X to be the sequential space with the same
underlying set and with the sequentially open subsets of X as its topology. The
functor F' preserves finite products (see [77] or [78]). It follows [32] that Seq is

an exponential ideal of SSeq.

Lemma 7.6.2. If X is a sequential space and f: A — X is a pre-embedding in

SSeq then A is also a sequential space.

Proof. We are going to show that if (a;) is eventually in every sequentially open
neighbourhood of a then (a;) — a in A. In order to do this let U be an open
neighbourhood of fa. As f*U is sequentially open, (a;) is eventually in f*U.
Then, (fa;) is eventually in U. As X is topological, this means that (fa;) — fa
in X. As f is a pre-embedding, (a;) — a in A (recall Proposition 7.2.2). O

Let X be Sierpinski space (i.e. the two element space { L, T} with the singleton
{T} as the only non-trivial open). It is easy to prove that the continuous functions
from any topological space X to X are in one-to-one correspondence with the open

subsets of X. Similarly, ¥ is also a subsequential space and the maps from any



subsequential space X to X are in one-to-one correspondence with the sequentially
open subsets of X.

By the last observation, ¥% in SSeq is an object of sequentially open subsets
of a subsequential space X. Moreover, as Seq is an exponential ideal of SSeq, the
object ¥ is a sequential space. For any subsequential space X, let ev’ : X — »=*
denote the transpose of the evaluation map. If X is topological then it is easily
checked that ev’ is mono if and only if X is a Ty space. It is useful to consider a

stronger property of ev’.

Definition 7.6.3. A subsequential space X is extensional if ev' : X — ¥ is a

regular mono. It is pre-extensional if the map is a SSeq-pre-embedding.

The terminology is taken from [41]. Now, recall that F': SSeq — Seq is the

reflection functor.
Lemma 7.6.4. If (ev'z;) — ev'z in ¥*° then (x;) — z in FX.

Proof. Let O be sequentially open in X and z € O. It is clear that (O) — O in
¥X. Then, as (ev'z;) — ev'z, ((ev'z;)0) — (ev'z)O. That is, ((ev'z;)O) must
be eventually T. In other words, (z;) must be eventually in O. So (z;) — x in
FX. O

We can now prove the characterization of the sequential spaces.
Proposition 7.6.5. In SSeq:
1. The full subcategory of pre-extensional objects is equivalent to Seq.

2. The full subcategory of extensional objects is equivalent to the category of

Ty sequential spaces.

Proof. As Y2 s a sequential space, it follows, by Lemma 7.6.2, that so is any
pre-extensional object. Moreover, if X is extensional then ev’ : X — ¥ is also
mono and so X is Ty. On the other hand, if X is a sequential space then Lemma
7.6.4 shows that ev' : X — £ is a pre-embedding. Moreover, if X is Ty then

ev’ is also mono and hence, by Lemma 7.3.4, a regular mono. O



Chapter 8

Generic objects, monos and
proofs

We use the ideas presented in Chapter 7 in order to simplify the characterization
of the categories whose exact completions are toposes for a large class of examples,
especially those arising from realizability. This simplification sheds some light on
the properties and construction of the generic proofs in these examples. Moreover,
these ideas allow us to recognize new hierarchies of examples of toposes that arise
as exact completions. They also provide a different perspective on the results
about the inevitability of untypedness for realizability toposes as explained in
(64, 65, 26]. Finally, these ideas can simplify the sufficient conditions for regular
completions to be quasi-toposes.

Throughout this chapter we assume C to be a category with finite limits and
a chaotic situation V : S —— C with left adjoint |_| : C — S.

8.1 Generic objects and generic monos

In [66] it was observed that the category of assemblies for a PCA has a generic

object in the following sense.

Definition 8.1.1. A generic object is an object YT such that for every X there
exists a pre-embedding X —— T.

Similar ideas have recently appeared in a number of works studying differ-
ent typed versions of realizability [64, 26, 12]. We had been considering pre-
embeddings for a while but we recognized a possible application to this area after
reading [64]. What we are going to show is that if there are chaotic objects around
then the existence of a generic object is equivalent to the existence of a generic
mono which is equivalent (if every epi in S splits) to the existence of a generic

proof.
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Let us look at some examples.

Example 8.1.2 (PAss(A) has a generic object). Let |T| = A and for every
a € A, |lal]lx = a. For every object X = (|X/|,||-||x) the map ||_||x : X — T is
realized by the identity and is a pre-embedding by Proposition 7.2.2.

Example 8.1.3 (H, has a generic object). Similar to the case of PAss. Let
|T| = H and for every v € H, ||v||x = v. The proof that T is a generic object is

analogous to the case of PAss.

Notice that the T’s in both examples are the same as the ones described in

Section 5.2. Proposition 8.1.8 below explains why this is the case.

Example 8.1.4 (Top does not have a generic object). Assume there exists
a generic object T in Top. For any set S, we can consider the discrete topolog-
ical space AS as in Section 7.5. By assumption there exists a pre-embedding
f:AS —— T. By Lemma 7.5.1, f must be mono. So the underlying set of T
has cardinality greater than that of every set. Absurd.

Notice that the same arguments work for SSeq and Seq. Moreover, the same

idea can be applied to a recursion theoretic example.

Example 8.1.5 (GEn does not have a generic object). This case is simi-
lar to the previous one by using Lemma 7.5.1 again. But notice the twist that

pre-embeddings with discrete domain, in this case, need not be mono.

We now prove two results that will help us show that in the presence of a
chaotic situation, the existence of a generic object is equivalent to the existence

of a generic mono.

Lemma 8.1.6. Ifd:Y —— 7 is a mono such that |d| is an isomorphism and
f:Y —— X is a pre-embedding then there exists a pullback square as below for

a unique f'.

Y / X
d n
Z — VI|X]|



Proof. Just consider the diagram below.

d

Y ! vy

d n n

7 V7| ——— VY| === V|X]|
v(ld™) VIfl

The right hand square is a pullback because f is a pre-embedding. The left
hand rectangle is a pullback because it commutes and V(|d|™!).n is mono. The
long rectangle is just the pullback of the statement and f' = V(| f|.|d|7!).n is
unique because d is epi. O

Recall [45] that every topos has partial map classifiers. For any object S in

S, let 0g : S —— S be the corresponding partial map classifier.

Lemma 8.1.7. Regular partial maps with chaotic codomain are classified in C.
Indeed, for every S in S, the map (Vog) : V.S —— VS classifies reqular partial
maps with codomain VS.

Proof. Let m : U —— X a regular mono and f : U —— V.S. We want to prove

that there exists a pullback as below for a unique Y.

U f AV
m VO'S
X VS
X

In S, |m| is a regular mono so there exists a pullback square as below.

/]

U] S

|m| 0s

| X]
Xf



As m is regular, it is a pre-embedding by Proposition 7.3.1. Hence the left hand
square below is a pullback. Also, as V preserves limits, the right hand square is

a pullback. So the rectangle is a pullback.

\Y%
v—" v VIS, VS
m V|m| Vog
X V|X]| VS

Vxy

The top map is equal to f so we have the pullback square in the statement by
letting x = (Vxy).n.
It is easy to see that x is unique. ]

We can now show the main result of the section.

Proposition 8.1.8. C has a generic object if and only if it has a generic mono.

Proof. For the if direction let 7: T —— A be a generic mono and let X be any

object. As nx : X —— V|X]| is mono, there exists a pullback square as below.

X Y
n T
V| X| A

It follows by Corollary 7.3.2 that the top map in the square is a pre-embedding.

For the only if direction assume that T is a generic object. Let m : U —— X
be a mono and let m = n.e be its factorization induced by the localization (recall
subsection 7.4.2) with e : U —— V. So we have that |e| is an isomorphism and
n: V—— X is a pre-embedding. As n is also mono (because |n| is), n is a
regular mono by Lemma 7.3.4.

By hypothesis, there exists a pre-embedding f : U —— Y and by Lemma
8.1.6 there exists the top pullback below. Also, by Proposition 8.1.7 there exists
the bottom pullback below.



U T

e n

V 7 V\VT|
n Voy
X V\%ﬂ

In this way we have presented any mono m as a pullback of 7 = (Voyy)).ny. So

7: Y —— V|T| is a generic mono. O

Notice that in our main examples S is the topos of sets and so it is boolean.
In this case V|/'Ij| is just V(|T]+ 1).

We close this section with some remarks on generic objects. In practice, it
is easier to show the existence or non-existence of generic objects than that of
generic monos (see Examples 8.1.2 to 8.1.5). Conceptually, notice that, although
it is defined relative to an underlying chaotic situation, the existence of a generic
object is robust. Indeed, as the notion of generic mono does not depend on a
chaotic situation, Proposition 8.1.8 shows that the existence of a generic object

is independent of the choice of chaotic situation.

8.2 (Generic proofs and the axiom of choice

We say that a chaotic situation V : S —— C is an AC-chaotic situation if every
epi splits in S. Notice that in this case, every map in the image of V factors as a

split-epi followed by a mono. Hence, so does every pre-embedding.

Theorem 8.2.1. Let C have an AC-chaotic situation. Then the following are

equivalent.

1. C has a generic object
2. C has a generic mono

3. C has a generic proof



Proof. Proposition 8.1.8 (which does not require the splitting of epis) shows the
equivalence between 1 and 2.
To prove that 3 implies 1 assume that there is a generic proof 6 : © —— A

and let X in C. Then we have the following diagram.

m /
X x—2 .9
S
0
1
V| X]| A
1%

Using that 7 is mono it is easy to prove that s is a left inverse of m. Then m is
a (split) regular mono and hence a pre-embedding. As v/ is also a pre-embedding
it follows that v/.m pre-embeds X in ©. Hence, © is a generic object.

So there only remains to prove that 2 implies 3. To do this, assume that there
exists a generic mono 7 : T —— A. We can assume that A is in the image of
V (for if it were not then we could take 7.7 as our generic mono). Then A is
exponentiating (recall Section 7.2).

Let f:Y —— X be any map.

Define &y to be the map arising in the pullback square below. It exists because

7 is mono and T a generic mono.

y & Ly
7’/ T
VY| A

By Corollary 7.3.2, £y is a pre-embedding. Then, by Lemma 7.3.3, the map
(f.&) Y — X x T also is and so it factors as a split epi Y —» Y followed by
a mono Y/ —— X x T. The generic mono gives rise to amap v: X x T —— A
such that v*Y =Y.

Y’ T
-
Xx7T A




We can transpose v (using that A is exponentiating) and obtain 2/ : X —— AT,
Then the diagram below shows how to build a generic proof @ —— AT and also

how it classifies f (all squares are pullbacks).

Y Y’ -0 - T
-
<f7§Y>
XxT———A"xTY A
V' xid ev
™ ™
X , AT
v

O

This result provides a very compact way to present realizability toposes: you
just need to show that the categories of partitioned assemblies have weak depen-
dent products and a generic object.

Notice also that from the proof of Theorem 8.2.1 we have clear examples of
the non-uniqueness of generic monos, objects and proofs. Indeed, given a generic
object T, we can build a generic proof that gives us an object © which, as shown
in the first part of the proof, is also a generic object.

By examples 8.1.4 and 8.1.5, Theorem 8.2.1 implies that the exact completions
of Top, SSeq and GEn are not toposes. For the case of Top this was already
known [8] as the regular completion of Top is not well powered. The reader is
invited to figure out this argument, check if it works for the categories SSeq and
GEn and compare it with the argument in terms of generic objects. For Top
there is also an argument using the fact that the category of algebraic lattices
does not have a universal object (see [65, 11]).

Also as a corollary of Theorem 8.2.1, we can extend the hierarchies of Corollary
4.3.5 as follows.

Corollary 8.2.2. Let C have an AC-chaotic situation, weak dependent products

and a generic object. Then for every n, (Cregn))ea 5 @ topos.

Proof. By induction. Assume that C,.4,) has a chaotic situation, weak dependent
products and a generic object. Theorem 8.2.1 gives a generic proof and then we

can apply Theorem 5.2.2 to obtain that (C,cg(n))es is a topos.



So we need only prove that C,.4(,+1) satisfies the same conditions. By Lemma
7.4.1, Cyeg(ns1) also has an AC-chaotic situation. By Corollary 7.4.5, it is locally
cartesian closed. By Proposition 5.5.2, it has a generic mono and hence by The-

orem 8.2.1, a generic object. ]
We also have a non triviality result.

Corollary 8.2.3. If C is not a regular completion then for anyn,m, (C,egn)) e =

(Creg(m))ea implies that n = m.

Proof. Assume that (Cyegn))ez = (Cregim))ea-

Then Creg(n) ~ P?”Oj((cmg(n))ex) >~ P’I"Oj((creg(m))ex) ~ Creg(m).
By Proposition 4.3.6, n = m. O

If we let C = PAss(K) then we have that (C,cg))es is Eff, the effective
topos. The topos (Cieg(1))ex = AsS(K1)es is the topos A for extensional realiz-
ability studied in [84]. This topos is defined loc. cit. using tripos theory and
later shown to be the exact completion of assemblies using the characterization
of exact completions (Proposition 3.3.2).

For n > 1 the toposes (Creg(n))ex seem not to have been studied before. In
this respect, also in [84], the notion of a <-partial combinatory algebra (<-PCA)
is introduced and it is observed that given any PCA A, the set of non-empty
subsets of A can be made into a <-PCA. Moreover, for any <-PCA it is possible
to define its associated category of “assemblies”. These categories might provide
a way of presenting the hierarchies of toposes (Cyeg(n))ex- We will not pursue this
idea here, though.

Another idea that we will not pursue here is the existence and description of
the colimit of this sequence of toposes.

For the case of C = H, we have a clearer picture. Indeed, by Proposition
4.4.1 it follows that ((Hy)regim))er = ((D3)"H) 1) er o Set P+ )2,

8.3 Typed structures

The 2-category of partial combinatory type structures was introduced in [68] as “a
natural setting for developing all the parts of the standard theory of realizability
models that do not specifically exploit the untypedness of the PCA”. In particular,
it is a nice setting in which to present the results in [67].

It is possible to define categories of assemblies associated to these typed struc-

tures and it is natural to wonder whether they give rise to toposes. It was shown



in [65] that a typed structure gives rise to a topos if and only if it is equivalent
to a PCA. Similar results have also appeared in [26].

In this section we introduce the relevant notions and present this result from
the perspective of the machinery developed in this chapter.

There are slightly different versions of typed structures. We now introduce
the one in [65].

Definition 8.3.1. A typed partial combinatory algebra (TPCA) is a non-empty
set 7 of types together with the following data.

1. binary operations x and —
2. a set |T| of realizers of type T for every T' € T

3. a partial application function -g7 : |S — T'| X |S| — |T'| for all S, T € T

(written as juxtaposition) such that for all S,7,U € T there are elements

ksprel|S—T—S5|, ssrwvel|lS—=T—-U)—(S—T)—(S—U),
pairgy €S =T — SXT|, fstgp € |SXT — S|, sndsy € |SXT —T)|

satisfying

kab=a,  sabis defined,  sabc ~ ac(bc)

fst(pairab) =a ,  snd(pairab) =b

for appropiately typed a, b, c.

For any TPCA 7 it is possible to build the category PAss(7) as follows.
An object X = (| X|,Tx, ||-||x) consists of a set |X]|, a type Tx and a function
I+ 1] — [T.

A map f:Y — X is a function f: |Y| —— | X| such that there exists an
element a € |Ty — Tx| such that for every y € |Y|,ally|ly = || fy||x. We say that
f is realized by a.

It is also possible to define categories of assemblies (which are the categories
that are used in [64, 65]).

For any TPCA 7,PAss(7) is a lextensive category. The description of finite
limits and finite coproducts is not very difficult and it is left as an exercise. The
type of the pullback ¥ xx Y of f: Y —— X and f' : Y/ —— X has type
Ty x Ty.



There is an obvious forgetful functor |_| : PAss(7) —— Set that assigns to
each X its underlying set |X|. It preserves finite limits and it has a full and
faithful right adjoint V : Set —— PAss(7).

To define V choose a non-empty type C' in 7 (there is always one such) and
some element * € |C|. Then for any set S let V.S = (S, C, ||-||vs) with ||s]vs = *
for every s in S. Also, any function f:S" —— S, is realized by kx.

It is straighforward to show that |_| is left adjoint to V and so, that PAss(7)
has an AC-chaotic situation. Objects in the image of V are called codiscrete in
[65].

Lemma 8.3.2. A map f:Y —— X is a pre-embedding in PAss(T) if and only

if f is isomorphic over X to an f':Y' —— X such that Ty = Tx and for every

yn Y’ ylly = [lfyllx-

Proof. Easy. O
A key notion on [64, 65] is the following.

Definition 8.3.3. Let 7 be a TPCA. A type U is called a universal if for any
type T € T there exists realizers ey € |T — U| and rp € |U — T| such that for
every a € |T|,rr(era) = a. That is, every type is a partial (rr may be partial)

retract of the type U.

As explained in [68, 65] it can be shown that a TPCA has a universal type if
and only if it is equivalent (in a suitable sense) to a PCA.
The following result should be compared with Lemma 4.1 in [65] which is

essentially the if direction.

Proposition 8.3.4. A TPCA T has a universal type if and only if PAss(7T) has

a generic object.

Proof. For any type T let Ay = (|T|, T, id|r)).

Consider first the only if direction. So assume that there is a universal type
U. We show that Ay is a generic object. Indeed, by the description of pre-
embeddings in Lemma 8.3.2 it is easy to see that for any 7', the element e, given
by Definition 8.3.3 induces a pre-embedding Ay —— Ay.

It is also easy to see that any X with underlying type 7' is pre-embedded in
Ar. As pre-embeddings compose, every X is pre-embedded in Ay .

For the if direction we assume that there is a generic object T. We show that
U = Tx is a universal type. For any type T', we have a pre-embedding Ay — Y.
By Lemma 8.3.2 this pre-embedding is iso over T to a pre-embedding A/, —— T



such that the type of A’ is U. Realizers for the isomorphisms Ay —— A/, and
A’ —— Ay give the elements e and rp required by Definition 8.3.3. O

So we can present, the following result as a corollary of Proposition 8.3.4 and
Theorem 8.2.1.

Theorem 8.3.5 (Lietz-Streicher). For any TPCA T. PAss(T )., is a topos
if and only if T has a universal type.

8.4 Quasi-toposes and chaotic situations

Here we simply put together some of the results from this chapter and the previous
one in order to observe that chaotic situations can also be used to give very
compact proofs that certain regular completions are quasi-toposes. The idea is
that we have proved in the course of the present chapter and the previous one that
a chaotic situation implies most of the sufficient conditions discussed in Section

4.3. We need only deal here with quasi-coequalizers (recall Definition 4.1.2).
Lemma 8.4.1. If C has a chaotic situation then C has quasi-coequalizers.

Proof. Let f,g:Y —— X. By assumption, |f|, |g| : |Y| — | X| has a coequal-
izer ¢ : X — Q. Tt is then not difficult to prove that Vg.n: X — V|Q| is a

quasi-coequalizer of f and g. O

We can now state a very convenient way of showing that some regular com-

pletions are quasi-toposes.

Corollary 8.4.2. Let C be a lextensive category with weak dependent products

and a chaotic situation. Then C,.,4 is a quasi-topos.

Proof. Lemma 8.4.1 gives quasi-coequalizers and, by Lemma 7.4.3, C has stable
regular-epi/mono factorizations. It follows that strong and regular monos coincide
in C. As V1 is terminal in C, by Proposition 8.1.7, Vo, = VT : V1 —— VQ is a
strong-subobject classifier in C. As V() is exponentiating, Corollary 4.3.4 implies
that C,, is a quasi-topos. O

This gives very easy proofs that Equ and Ass are quasi-toposes. The reader
is invited to check if the category of partitioned assemblies for a TPCA has weak

dependent products.



Chapter 9

Topologies

It is well known [71] that universal closure operators in elementary toposes are
in correspondence with the Lawvere-Tierney topologies therein. Moreover, in the
case of a presheaf topos on a small category C, the universal closure operators
also correspond to the Grothendieck topologies on C.

In this chapter we characterize, in a similar way, the universal closure operators
in the regular and exact completions of a locally small category C.

In order to motivate this abstract result let us mention that regular and ex/reg
completions are closely related to categories of separated objects and of sheaves
with respect to certain “extreme” topologies. This fact will be useful, in turn, to
prove good properties of the completions. All this will be explained in detail in
Chapters 10 and 11.

9.1 Topologies in categories with finite limits

In this section we introduce the notion of a topology in a locally small category
C with finite limits. In a later section we will show that our topologies in C

correspond to the universal closure operators in C,., and C,.
Definition 9.1.1. Let C be a category with finite limits. A quasi-topology is a

function J such that for every X in C, JX is a class of morphisms with codomain

X subject to the following axioms:

(T1) every split epi with codomain X is in JX
(T2) for f: Y — X, if gisin JX then f*gisin JY

(T3) for f: Y — X inJX and g: 7 — X, if f*gisin JY then g isin JX
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This is a compact definition. Let us introduce now an equivalent one in terms
of axioms that may be easier to test in practice. Indeed, this is the case for the

example we will discuss in Section 9.1.1.

Proposition 9.1.2. A quasi-topology can be equivalently defined by the following

axioms.

(T1’) every identity idx is in JX
(T2) for f:Y — X, ifgisin JX then f*g isin JY
(T3%) if g.h is in JX then g is in JX

(T4) if f: Y — X isin JX and g is in JY then f.g is in JX

Proof. Let us first prove that the original set of axioms imply the second. Axiom
T1 follows from T1.

Consider now T3’. If f = g.h then f*g splits and so, by T1, is in J. As f is
assumed to be in J, by T3, g is in J proving T3".

In order to prove T4’ notice that g factors through f*(f.g). Then, as g is in
J, we can use T3’ to conclude that f*(f.g) isin J. But f is also in J, so by T3
we conclude that f.g is in J.

Conversely, assume the second set of axioms.

Axiom T1 follows from T1" and T3'.

Finally, consider axiom T3. By T4, f.(f*g) = g.(¢*f) is in J. Then, by T3’,
gisin J. U

In order to characterize universal closure operators, we need an extra axiom

which requires the following definition.

Definition 9.1.3. A map h: Z — X is closed with respect to a quasi-topology
J if the following holds: for every f :Y — X, f*h € JY implies that f factors
through h.

The next lemma presents alternative formulations of this concept.

Lemma 9.1.4. Let J be a quasi-topology. Then the following are equivalent.

1. h is closed for J

2. for every commutative square as below,



_ >

f

g i J implies that [ factors through h
3. f*h in J implies that f*h is a split epi
Proof. Easy. O

Recall from Section 5.2 that for every f we denote by | f] the corresponding
element of Prf(X). It is clear that if h is closed and |h] = |h'| then A’ is also
closed.

Let us now prove two simple facts about closed maps.

Lemma 9.1.5. Let J be a quasi-topology on C and let h : Y — X. Also, let
9o, g1 be in J and hg, hy be closed such that |hg.go| = |h1.g1]|. Then |ho| = |h1].

Proof. Tt is enough to prove |hg] < |hi]|. For this, let k& be such that hy.g;.k =

ho.go. In other words, the following square commutes.

gl-k
go hy
ho
As hy is closed and gy € J it follows that |ho] < |hq]. O

Lemma 9.1.5 implies that a topology determines, for each proof | f|, a unique

proof | f] where f is a closed map.

Lemma 9.1.6. If h is a closed map for a quasi-topology, then for any f, f*h is
also closed.

Proof. This is immediate from Lemma 9.1.4 item 3. O

We can now formulate the notion of topology.



Definition 9.1.7. A quasi-topology J is a topology if it holds that

(T) for every arrow f : Y — X there exists g : V. — W € JW and a closed
h: W — X such that [ f] = |h.g].

/ h.g
X

The most immediate examples of topologies are given by stable factorization
systems (&£, M) satisfying T3’ (see [31], Proposition 2.1.4). Indeed, given one
such, we can define JX to be the maps in £ with codomain X and in this way
we obtain a quasi-topology J. The fact that £ is orthogonal to M (see [14])
implies that the maps in M are J-closed. The factorization property trivially
implies axiom (T). So J is a topology. For example, stable epi/regular-mono
and stable regular-epi/mono factorizations induce topologies that we will study
in more detail in Chapter 10.

On the other hand, the axiom for a topology is weaker than the usual factor-
ization property. In the next subsection we present a class of examples that, in

general, do not seem to arise from factorization systems.

9.1.1 Oracle topologies

In [39] (section 17) the observation that there is a connection between notions
of degree and the forcing of decidability in recursive realizability is attributed to
Powell. This observation finds a nice expression in the fact that the V-semilattice
of Turing degrees embeds into the Heyting algebra of Lawvere-Tierney topologies
in the effective topos Eff (see [94] p. 65).

Anticipating a bit, it is the case that our topologies in the sense of Defini-
tion 9.1.7 characterize the universal closure operators in the corresponding exact
completion (Corollary 9.3.6). It follows that the Lawvere-Tierney topologies in
Eff can be presented in this way. We now present an example of this. The
main purpose of this example is to show non-trivial instances of the axiom (T) of
Definition 9.1.7.

For any subset A C N of the natural numbers we can consider the the class of
partial A-recursive functions [97], that is, those that in their process of computa-

tion can “ask an oracle whether a number is or not in A” (see also [89)]).



We now build a quasi-topology in PAss(K;). For each X, let J4(X) be
the class of maps with codomain X that have an A-recursive section. That is,
g: Z —— X is in Ju4(X) if and only if there exists a function s : | X| — |Z|

that can be realized by a partial A-recursive function and such that |g|.s = id.

Lemma 9.1.8. J, is a quasi-topology.

Proof. We use Proposition 9.1.2. Axioms T1,T3" and T4’ easily hold. In order
to prove T2, let g : 7 —— X be in Jy, f : Y —— X any map and ¢ =
f*g: P —— X. We can assume that P is given by |P| = {(y, 2)|fy = gz} and
1y )1 =yl [I=11)-

As g is in Ja, there exists a section h : | X| — |Z| that is realized by some
partial A-recursive a;. The map y —— (y, h(fy)) from | X| — |P| is clearly a
section of ¢’ and it is A-realized by Aa.(a,an(ara)). So ¢' is in Jy. O

In order to prove that J4 is a topology we are going to need a bit more work.
First, we can pre-order the subsets of the natural numbers in the two following
ways. For any p,q C N let p F ¢ if and only if there exists a partial recursive
a such that for every n in p, an is defined and in ¢. In this case, we say that
a realizes p = ¢. Similarly, we define p 4 ¢ to mean that there exists a partial
A-recursive realizer satisfying the same condition.

Also, for any set I and indexed pairs p;,q¢; € N with ¢ € I we say that
uniformly p; = ¢; if there exists and a such that for every 7 € I, a realizes p; I g;.
Similarly for 4. We say that a is a uniform realizer.

We now borrow from [91] (see also [92]) the following fact.

Proposition 9.1.9. There exists a function V% taking subsets of N to subsets of
N such that p &4 q if and only if p F % (q).

Although this is not mentioned in [91], the next corollary follows directly from

his proof of Proposition 9.1.9.
Corollary 9.1.10. Uniformly p; Fa q; if and only if uniformly p; F 4% (q:).

It is also easy to show that uniformly %¢% (¢:) F ¥% ().

We can now find some closed maps with respect to J4.

Lemma 9.1.11. Let h : Z —— X be a map in PAss(Ky) such that for every
r € X, there exists a subset q, C N such that |h'z| = {||]z|||hz = z} =
{{|z|],a")|a" € ¥5(q.)}. Then, h is closed with respect to Ja.



Proof. We use item 2 of Lemma 9.1.4. Let f : Y —— X and assume that the

square below commutes for some f’ and g in J4.

!/
| P| P / Z
S g h
Y| Y X
f

Because we assume g to be in Jy, there exists a partial A-recursive function
as realizing s with |g|.s = id. It follows that |h.f’|.s = |f| and clearly, |f'|.s :
|Y| —— | 7] is A-realized. This means that uniformly iny € Y, |ly|| Fa ||.f (sy)]l-
Let a be such a uniform realizer and let b = Ay.m(ay). By our assumptions on
|-|lz. we have that b is a uniform (in y) A-realizer for |y| Fa ¥i(qn(sy)) =
Y4 (qcry)- 1t follows that uniformly |ly|| = 1% (q(sy)). Let ¢ be a uniform realizer
for this. By our assumptions again, for every y € Y there exists a ty € Z such
that h(ty) = fy and such that |[ty|| = (|| fyll, c||y|]). As f has a recursive realizer,
the mapping y —— ty can be realized and so induces a map ¢t : ¥ —— 7 in
PAss(K;) such that h.t = f. So h is closed with respect to J4. O

We can now finish this subsection by showing that the J4's are topologies.
Proposition 9.1.12. For every A C N, Jy4 is a topology in PAss(K;).

Proof. Let f:Y —— X be any map in PAss(K7). Let X, be the partitioned
assembly such that | Xy| = {(x,a)lz € X,a € ¥ (||f7'z|)} and with ||(z,a)| =
(||z||, @). The projection (z, a) — x is a closed map for J4 by Lemma 9.1.11. Let
us call it h : Xg — X. Now let Y; be such that |Yo| = {(y,a)ly € Y, (fy,a) €
Xo} and with ||(y,a)|| = (||ly|l, a). The obvious map (y, a) — (fy, a) is realized
using a realizer for f. We now prove that the induced map ¢ : Y —— X is in
Ja.

By Corollary 9.1.10, we have that, uniformly in x € X, ¥%(|[f7!z|) Fa
|/~ z||. Let b be a uniform realizer for this.

For every (z,a) € X, we have that a € ¥ (||f~"z|). Then, ba is defined an
in ||f~'2|]. That is, there exists a s’z € Y such that f(s’z) = x and such that
|s'z|| = ba. Then, the map (x, a) — (s'x, a) induces a function s : | Xo| — |Yy|
such that g.s = id and such that it is realized by A\(d’, a).(ba, a) which is an A-

recursive function. So ¢ is in Jy4.



Finally, we must prove that | f| = |h.g|. But this is easy because we have
the map Y —— Y sending y to (v, ||y||) and the map Yo —— Y sending (y, a)
to y. 0

As explained in [39, 94, 91] the operation 1% alone is actually enough to deter-
mine the Lawvere-Tierney topology in the effective topos Eff. Indeed, in toposes
arising from triposes, the Lawvere-Tierney topologies are in correspondence with
operations analogous to the 9% above. Because of this, let us stress that our
purpose in this subsection was to show a non-trivial instance of axiom (T).

On the other hand, let us also stress that universal closure operators in ar-
bitrary exact completions (where subobject classifiers need not exist) can not
be characterized in terms of operations analogous to 1% (which induce Lawvere-
Tierney topologies on the subobject classifier of Eff).

Finally, subtoposes of Eff are treated from yet another perspective in [86]
where they are presented in terms of calculi of fractions (defined also using the
ideas behind v7%).

9.2 Closure operators in suitable categories

In this section we recall the definition of universal closure operators (see for
example [14]) and discuss some properties of them in suitable categories (recall
Section 3.5).

Definition 9.2.1. A universal closure operator in a category with finite limits is

a family of operations (-)y : Sub(X) — Sub(X) indexed by the objects of the

category and subject to the following axioms.
1. (monotone) U < V implies U <V
2. (inflationary) U < U
3. (idempotent) U=T
4. (natural) for every f:Y — X and U —— X, f*U = f*U

A subobject U of X is closed if U = U and it is dense if U = X. We now

state some well known properties of closure operators.
Lemma 9.2.2. Letu: U — A.

1. U is closed



2. U is dense as a subobject of U
3. both closed and dense monos are stable under pullbacks
Proof. See for example [14]. O

When the underlying category is regular, the regular epis have good reflection

properties.

Lemma 9.2.3. Consider a universal closure operator in a reqular category. Then
reqular epis reflect both dense and closed monos. That is, if ¢ : Y —> X is a

reqular epi and q*u is closed (resp. dense) then u is closed (resp. dense).

Proof. Let us consider the case of closed monos. Assume that square (1) is a

pullback with v closed and ¢ a regular epi.

<l

% ~U
v (1) u
Y - X

q

As ¢*U = ¢*U =V =V, we obtain the outer regular-epi/mono factorization
of g.v showing that U must be iso to U.

The case for dense monos is similar and can be found in [14]. O

For the rest of this chapter, let D be a suitable category (recall Section 3.5)
and let C = Proj(D).

We are going to show that in such a category, universal closure operators are
determined by their behaviour on projectives. For this purpose let us introduce

the following definition.

Definition 9.2.4. A universal closure operator on subobjects of projectives in D

is a family of operations (_), : Subp(X) — Subp(X) indexed by the projective
objects of D and satisfying axioms 1, 2 and 3 of Definition 9.2.1 and the following.

4. for every f:Y — X between projectives and U — X, f*U = f*U



We will show that these restricted closure operators uniquely extend to honest

universal closure operators.

Lemma 9.2.5. Let (_) be a universal closure operator on subobjects of projectives
in D. Let A be any object and r : R —~ A a reqular epi with R projective. If
square (1) is a pullback then so is square (2) where the top-right composition is

the regular-epi/mono factorization of the left-bottom composition.

U V

- 3,0
v (1) 7 (2)

R - A R

T T

- A

Proof. Let rg,r; be the kernel pair of r and consider the following pullback dia-

gram:

w Vv ~U
w v (1)
To
A R - A
T1 r

By hypothesis we have 7 : V — R. If we prove that roU = riv then the result
follows by Lemma 2.3.3.
To prove this equation let ¢ : Q ——= A’ be a projective cover. We then

have rg.q,m1.q : Q@ — R two arrows between projectives and we can calculate:

(r0-q)"0 = ¢*(r5v) = ¢*w = ¢*(r{v) = (r1.q)"v
As g is a regular epi, ¢* is mono so ¢*(rjv) = ¢*(r{v) implies rjv = rjv. O

We now show how to extend these restricted closure operators.

Proposition 9.2.6. Every universal closure operator on subobjects of projectives

has a unique extension to a universal closure operator.

Proof. For any object A in D we define () , as follows. Choose a projective cover
q:@Q —A. Lemma 9.2.5 leaves only one option: for every u : U —— A let
% : U = A the mono part of the regular-epi/mono factorization of q.¢g*u.

What we are doing is defining U = 3,(¢*U). Notice that by Lemma 9.2.5, we
have that ¢*U = ¢*U.




Let us prove that this definition does not depend on the choice of projective
cover. So let r : R —> A be another projective cover. It follows that r = ¢.s for
some s: R — Q. Now calculate 37U = 3, ;s*¢*U = 3,3,5"¢*U = 3,¢*U.

Let us now prove that so defined, the operation 6 is a universal closure
operator.

As all of 3,, f* and () are monotone, (_) , also is.

To see that it is inflationary notice that as ¢*U is a subobject of a projective
we have that ¢*U < ¢*U and so, by adjointness, U < 3,(¢*U) = U.

To prove UA idempotent, notice that U= Equ*—U =3,¢U =3,¢qU =U.

We finally prove that it is natural. For this, let U —— A and let f: B — A.
We need to prove that f*U = f*U. Solet ¢: Y — B and r : X — A be

projective covers and let g : Y — X arise by projectivity of Y as in the following

square.

Y X

q r

B A
S

Now calculate ¢* f*U = ¢*r*U = g*r*U = ¢*f*U = ¢*f*U. As ¢* is mono,
fU=f*U.
This finishes the proof.

9.3 Topologies and closure operators

In this section we prove the correspondence between topologies on C = Proj(D)

and closure operators in D.

9.3.1 From closure operators to topologies

For a given universal closure operator in D we define a quasi-topology J in C
as follows: for every object X in C, let JX to be the class of maps h in C with

codomain X that factor, in D, as regular-epi followed by a dense mono.

Lemma 9.3.1. J is a quasi-topology.



Proof. Axiom T1’. A split epi in C is a regular epi in D so the mono part of its
factorization is trivially dense.

Axiom T2 follows because dense monos are preserved by pullbacks and pull-
backs are reflected by the embedding of C into D.

Axiom T3’ follows because I'm(g.h) < Im(g).

Axiom T4’. Let g = mgy.eg : Z — Y in JY and f = myef : Y — X in JX
with their respective regular-epi/mono factorizations.

Also, let f.g factor as e : Z —» A a regular epi followed by m: A —— X a

mono. Pullback m along f as in the following diagram.

C - [ > -~ B
m’ n m
Y e D~ - X
€f my

It is clear that g factors through f*m = m/. It follows that m, factors through
m'. As m, is dense because g is in J, m’ is dense. By Lemma 9.2.2, n is dense

and then so is my.n. This, in turn implies that m is dense. So f.g is in J. U

We now characterize the closed maps with respect to the J we have defined

starting from a given closure operator.

Lemma 9.3.2. h in C is closed for J if and only if h factors in D as a reqular

epi followed by a closed mono.

Proof. Let h =m.e: Z — X with m : U —— X mono and e a regular epi.
Let us first consider the only if direction. So assume that h is a closed map
with respect to J.

Let ¢ : Y — U a projective cover and consider the following diagram.

W - A~ -7
(&
SO S
m
Y T - X




First notice that W is in C because projectives are closed under finite limits
in D. Then, as U —— U is dense, the left hand mono is dense and so the left
hand map is in J. By hypothesis, A is closed so the bottom map factors through
h and hence U < U. So U —— X is closed.

Conversely, assume that m is closed and let f*h be in J with f : Y — X.
Then f*m is dense and as it is also closed it follows that it is an isomorphism.

Hence f factors through m. As Y is projective, f also factors through h. O

Proposition 9.3.3. A universal closure operator in D induces a topology on C.

Proof. Given a universal closure operator on D, we have seen how to define a J
that is a quasi-topology by Lemma 9.3.1.
To prove the axiom (T) for a topology, let f : X — Y and consider the

following diagram in D where every square is a pullback.

reg dense

1% - A

X

- Im(f)

reg

Having in mind that the bottom line is the regular-epi/mono factorization of
f, one should look at this diagram from the bottom right corner where we have
the familiar facts that the closure of an object is closed and that the embedding
of an object in its closure is dense.

The regular epi W ——» W is some projective cover. The remaining
squares are explained by the facts that, in D, regular epis and dense monos are
closed under pullback.

Now, V' is a pullback of arrows between projectives so it is projective.

Solet g : V. — W be the top composition and let h : W — Y be the right
hand composition. By our definition of J, g € JW and by Lemma 9.3.2, h is
closed for J. So we have the needed arrows and the fact that |h] > |g.f].

As the map V —» X is a regular epi between projectives in D, it splits. So
lh] <lg.f]. O

Let us concentrate now on the other side of the correspondence.



9.3.2 From topologies to closure operators

We first show how to build a universal closure operator from a topology and then

characterize the dense monos.
Proposition 9.3.4. A topology on C induces a universal closure operator in D.

Proof. By Proposition 9.2.6 we need only prove that J induces a universal closure
operator on subobjects of projectives. Also, by Lemma 5.1.1, we can think of
subobjects of a projective as proofs.

For any subobject | f] of a projective X, the axiom for a topology gives a map
foin J and f closed such that | f| = | f.fo].

Lemma 9.1.5 shows that the assignment (_) given by [ f] = | f] is well defined.
We now show that it is a universal closure operator on subobjects of projectives.
It is clearly inflationary.

To prove that it is monotone, let | f| < |g|. By axiom (T), there exist fo, go
maps in J and f,g closed such that |f| = |f.fo] and |g| = |g.go]. All this

implies that we have diagrams as follows for some py, p, p,.

Dy

. . . p > . . .
Jo / x / g 9o

Py

/ 7

From the diagrams it is easy to see that [ f| < |g]|. It follows that f*7 is a
split epi and so it is in J. Then p}f*g = fo*f*g is also in J. As fy isin J, so is
7. As gis closed, | f] < |g]. This finishes the proof of monotonicity.

We now prove idempotency. For | f| we have that [f] = |f| with f closed.
So we have that | f| = | f.id] with f closed and id in J. Tt follows that m = | f]
and so, that ﬁ = |f].

For universality notice that if | f] = | f.fo] with fy in J and f closed then, for
any g in C with same codomain as f, |g*f] = [(¢*f).(¢"fo)]. But fo pulls back
to a dense map by (T2) and f pulls back to a closed map by Lemma 9.1.6. It

follows that |g*f| = |¢g*f] and so, that g*| f| = ¢*| f]. This finishes the proof of

universality and so that we have a universal closure operator over projectives. [

Lemma 9.3.5. [ f] in Sub(X) is dense if and only if f 1Y —— X is in J.

Proof. | f] = lid] iff | f] = |id.g] with ¢g in J iff f is in J. O



Proposition 9.2.6 shows how the behaviour of a universal closure operator in
a suitable category is determined by its behaviour on subobjects of projectives.

Lemmas 9.3.2 and 9.3.5 help to show that the constructions in Propositions
9.3.3 and 9.3.4 induce a bijective correspondence between universal closure oper-
ators in a suitable category D and topologies in its full subcategory of projectives
C.

Our main examples of suitable categories are regular and exact completions,

so let us state the following result.

Corollary 9.3.6. There is a bijective correspondence between topologies on C

and universal closure operators in Ce, and in C,,.

Finally, it should be mentioned that Grothendieck topologies also make sense
on non-small categories C and one can then consider separated objects and
sheaves in Set©”. Moreover, for any quasi-topology on C it should be possi-
ble to define the associated Grothendieck topology on C and then relate sheaves
and separated objects in C,, and Set®” using the results in Chapter 10 (see
Proposition 10.1.5). On the other hand, Set®™ lacks good properties if C is not
small and arbitrary Grothendieck topologies on C do not make sense with respect
to C,eq 0or Cgp. So we may say that we have found the right workable notion of

topology for locally small categories with finite limits.



Chapter 10

Separated objects, sheaves and
canonical topologies

In this chapter we carry on the study of universal closure operators in exact

completions using the description in terms of topologies explained in Chapter 9.

We study the categories of separated objects and of sheaves. First, we char-
acterize the categories of separated objects and observe that in the case that C,,
is a pretopos, these categories have very good properties.

Then we study stable epi/regular-mono and regular-epi/mono factorizations.
These factorization systems induce topologies that turn out to be extreme in a
sense that we explain. We also study the associated categories of separated objects
and of sheaves of these extreme topologies and relate them with regular and ex/reg
completions. This provides a conceptual explanation of why the completions we

have been working with have so many good properties.

The relation between ex/reg completions and categories of sheaves will also

be exploited in Chapter 11 where we study when is such a completion a topos.

10.1 Separated objects and sheaves

Intimately related to the notion of a universal closure operator are the notions of
sheaf and of separated object. These classes of objects induce full subcategories
with good properties. For more on categories of separated objects and of sheaves
see for example [45, 71, 106, 5, 20].

Definition 10.1.1. In a category with a universal closure operator we say that an
object X is a sheaf if for every dense monom : U —— Z and map f: U — X,

there exists a unique f’: Z — X such that f'.m = f.
109
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Also, we say that X is separated if for every dense m : U —— Z and maps

9,9 : Z —— X such that g.m = ¢’.m then g = ¢'.

In other words, X is separated if in the diagram defining sheaves, the map f’
need not exist, but if it does then it is unique. Another useful characterization of

separated objects is the following.

Lemma 10.1.2. X is separated if and only if the diagonal (id, id) : X —— X x X
15 closed.

Proof. Easy, using the fact that dense and closed monos are orthogonal. See also

[45], for example. O
With this characterization it is easy to prove the following.

Lemma 10.1.3. Let (eg,e1) : E—— X x X be a closed equivalence relation and

assume that it has an effective quotient q : X —s~ X/E. Then X/E is separated.

Proof. As q is effective, the following square is a pullback.

E

- X/E
(id, id)

XxX — X/ExX/E
q%q

The result then follows by Lemmas 9.2.3 and 10.1.2. U

Also, we say that an object is separated or a sheaf over projectives if the object
satisfies the respective condition for subobjects of projectives.

Recall from Section 3.5 that we call a category D suitable if it is regular, it
is covered by its full subcategory of projectives and moreover, projectives are
closed under finite limits. Also, given a suitable category D we denote its full

subcategory of projectives by C.



Lemma 10.1.4. Let () be a universal closure operator in a suitable category D.
Then:

1. A is separated iff A is separated over projectives.
2. A is a sheaf iff A is a sheaf over projectives.

Proof. Let us prove 1. The only if direction is trivial. For the other direction let
fo, f1: B— Aand let u:U — B be a dense mono such that fo.u = fi.u.

Let ¢ : Y —= B be a projective cover. We then have the following diagram.

S

Y - B

q

As v is dense, and A separated with respect to projectives, fo.q = f1.q. As ¢q
is epi, fo = f1 and hence, A is separated.

To prove 2, the only if direction is also trivial. For the converse, we already
know that A is separated. So for, u as above, we need only prove that for any
f:U — A there exists a f': B — A such that f'.u = f.

As before, consider a projective cover ¢ : Y —> B and consider the pullback
square as in the diagram above. As A is a sheaf with respect to projectives, there
exists a unique h : Y — A such that h.v = f.r.

Now, take the kernel pair of ¢ and cover it with a projective obtaining a

coequalizer diagram as in the bottom line of the following diagram.

W L S
W P.B. ) h
qo0
X Y - B
q1 q

As w is a pullback of u, it is dense by Lemma 9.2.2. As A is separated,
h.qo = h.q1. As q is the coequalizer of ¢y and ¢q, there exists a unique f': B — A
such that f'.q = f. We need only check that f’.u = g. For this, use that r is epi
and calculate, f'.u.r = f’.q.v = h.v = f.r. This finishes the proof. O



Using Lemma 10.1.4 it is possible to formulate the conditions for a separated

object or a sheaf in terms of J.

Proposition 10.1.5. Let J be a topology in C and consider the induced universal

closure operator in D.

1. A is separated if and only if for every map f : Y —— X in J and maps
g,h: X — A, g.f = h.f implies that g = h (that is, A believes that maps
in J are epi in D).

2. A is a sheaf if and only if for every map f :Y —— X in J with kernel pair
fo. fi: K ——Y and map g : Y —— A such that g.fy = g.[1 there exists a
unique map g' : X —— A such that ¢'.f = g (that is, A believes that maps

in J are regular epis in D).

Proof. Let us prove 1. For the only if direction, let m.e be the regular-epi/mono
factorization in D of f in J. By Lemma 9.3.5, m is dense. As e is epi, we have
that g.m = h.m. As A is separated, g = h.

For the if direction notice that by Lemma 10.1.4 we need only prove that A
is separated over projectives. To do this, let m : U —— X be a dense subobject
of a projective and let g.m = h.m with g,h : X —— A. Let Y — U be a
projective cover and let f : Y —— X be the resulting map in C, which is in J
by Lemma 9.3.5. Tt follows that g.f = h.f and so, by hypothesis, that g = h.
Hence, A is separated over projectives.

Let us now prove 2. For the only if direction, let m.e be as in the proof of
item 1 with m : U —— X. Ase:Y — U is the coequalizer of f; and f; in
D, it follows that there exists a unique h : U —— A such that h.e = g. As A is
a sheaf, there exists a unique ¢’ : X —— A such that ¢’.m = h. It follows that
g.f =g. As A is separated, ¢’ is unique.

For the if direction, as in case 1, we need only prove that A is a sheaf over
projectives. So let m : U —— X be a dense subobject of a projective and let
g:U—— A. Again, let e : Y —» U be a projective cover and let m.e = f :
Y —— X be the resulting map in C, which is in J by Lemma 9.3.5. Let fo, f1
be the kernel pair of f which is also the kernel pair of e. We then have that
(g.€).fo = (g-e).f1 and so, by hypothesis, we have a unique ¢’ : X —— A such
that ¢'.f = ¢g’.m.e = g.e. As e is epi in D we have that ¢m = g. So A is a
sheaf. O

Universal closure operators are sometimes denoted by the letter j. For any
category E equipped with such a j, we denote by Sep;(E) and Sh;(E) the full

subcategories of E given by separated objects and sheaves respectively.



10.2 Categories of separated objects

Let us now give a concrete description of the categories of separated objects.
Given a topology J on a category C, we say that a pseudo equivalence relation
P=(X; %: Xo) is J-closed if the map (py, p1) : X1 — X x X is closed with
respect to f}l (Definition 9.1.3).

Proposition 10.2.1. Let J be a topology on a category C and let j be the in-
duced universal closure operator in C,,. Then Sepj(Cex) is equivalent to the full

subcategory of C., given by the J-closed pseudo equivalence relations.

Proof. Let P = (X, %: Xj) be a pseudo equivalence relation.

First we show thatplif P is J-closed then it is separated. We use Proposition
10.1.5. Solet f : Y —— X bein J and let g,h : X —— X induce maps
lg],[h] : X —— P in C,, such that [g].f = [h].f. This means that there exists a

commutative square as below.

Y X3
f <p07p1>
X XO X X()

(g, h)

As (po, p1) is closed it follows by Lemma 9.1.4 that (g, h) factors through it.
But this means that [g] = [h] in C,, so, indeed, P is separated.

Now assume that P is separated as an object in C... As J is a topology,
there exists e : X; —— E in J and (eg,e1) : B —— Xy x X closed such that
| (po,p1)| = |{€o,e€1).€]. We now show that P is isomorphic in C., to the object
given by the J-closed pseudo equivalence relation ey, e;. We already have that
(po, p1) factors through (eg, e1) so it is enough to show that (eg, e1) factors through
(po,p1). In order to do this, notice that ey and e; induce maps to P such that
leo].e = [e1].e. As by hypothesis e is in J and P is separated, [eo] = [e1] by
Proposition 10.1.5. But this means that there exists a map h : E —— X; such
that (po, p1).h = (eo,e1). The result follows. O

The full subcategory of separated objects is actually reflective. Indeed, let us

recall a result from [5].

Proposition 10.2.2 (Barr). Let j be a universal closure operator in an exact
category E. The inclusion functor i : Sep;(E) —— E has a left adjoint s with

the following properties:



1. s preserves monos and finite products,

2. the units of the adjunction s 41 are reqular epimorphisms.

(For any X in E, sX is the quotient of X by the closure of its diagonal.)

Moreover, results in [20] imply that, in many cases in practice, the categories of
J-closed pseudo equivalence relations have very good properties. We now briefly

explain this.

Definition 10.2.3. A quasi-pretopos is a regular category with the following

properties:
1. strong equivalence relations are effective
2. admits stable epi/regular-mono factorizations

3. has stable (finite) sums

Notice that a quasi-pretopos need not be lextensive as coproducts need not
be disjoint.
In [20] it was shown that quasi-pretoposes have the following natural charac-

terization in terms of pretoposes (recall Definition 2.5.4).

Proposition 10.2.4 (Carboni-Mantovani). A category D is equivalent to the
category of separated objects for a universal closure operator in a pretopos if and

only if D is a quasi-pretopos.

Now, recall (Proposition 4.1.1) that if C is lextensive then C,, is a pretopos
and so, any category J-closed pseudo equivalence relations of C will be a quasi-

pretopos. This does not seem to be the case for C,.4 in general.

10.3 Sep-canonical topologies

Notice that in order to define sheaves and separated objects, we really did not
need the monos involved to be dense with respect to a universal closure operator.
In fact, any class of monos would do.

For example, given any quasi-topology J on C, the class of monos in C,, that
are the images in C., of the maps in J may still be of interest.

Given a suitable category D, we say that a quasi-topology J on its full sub-
category of projectives C is sep-subcanonical if every projective is separated with

respect to the class of monos in D induced by J as in the paragraph above.



Corollary 10.3.1. A quasi-topology J on C is sep-subcanonical if and only if

every map in J is epi.
Proof. Use Proposition 10.1.5. O
This fact has two immediate consequences.

Corollary 10.3.2. The stable epis form the largest quasi-topology for which every

projective is separated.

Proof. Using Proposition 9.1.2 it is easy to see that stable epis form a quasi-

topology. O
Call this quasi-topology the sep-canonical quasi-topology.

Corollary 10.3.3. If C has stable epi/reqular-mono factorizations then the epis

form the largest topology for which every projective is separated in C,,.

We call this topology the sep-canonical topology.
Recall (Section 3.3.1) that for any category with finite limits C we denote by

C., the full subcategory of C., induced by the regular equivalence relations.

Corollary 10.3.4. If C has stable epi/reqular-mono factorizations then the cat-
egory of separated objects in C,, for the sep-canonical topology is equivalent to

C

eq-
Proof. This follows by Proposition 10.2.1. O

We have now a conceptual explanation of why, for example, Top,, ~ Equ =~
Top,., and PAss,, >~ Ass >~ PAss,,, are categories of separated objects. The

result below explains why they are, at the same time, regular completions.

Corollary 10.3.5. Let C have stable epi/reqular-mono factorizations. Then C,.,
is the category of separated objects in C., for the sep-canonical topology if and

only if every reqular equivalence relation in C is a kernel pair.
We end this section with a small result concerning quasi-pretoposes.

Corollary 10.3.6. Leztensive quasi-pretoposes are closed under reqular comple-

tions.

Proof. 1f C is a lextensive quasi-pretopos then we can apply Corollary 10.3.5 to
obtain C,., as a category of separated objects for a universal closure operator in
C... As C is lextensive, C,, is a pretopos and then, by the results in [20], C,.,
is a quasi-pretopos. But also by Proposition 4.1.1, C,., is lextensive and so the

result follows. O



10.4 Canonical topologies

In [6] it is observed that any small regular category D has a regular embedding
into a topos. In particular, into the topos of sheaves for the (subcanonical)
Grothendieck topology on D induced by the regular epis therein.

Regular epis on any (not necessarily small) regular category also induce a
topology in our sense. In this section we study this topology and also characterize
the sheaves in D, for it. This category of sheaves will be related to ex/reg
completions in Corollary 11.2.4.

Given a suitable category D (recall Section 3.5), we say that a quasi-topology
J on its full subcategory of projectives C is subcanonical if every projective is a
sheaf (as an object in D) for J.

Corollary 10.4.1. A quasi-topology J on C is subcanonical if and only if every

map in J s a reqular epi.
Proof. Use Proposition 10.1.5. O

We have already mentioned that stable regular-epi/mono factorizations induce
topologies. It follows by Corollary 10.4.1 that on any regular category D, this
topology is the largest one for which every object (as an object in D, ) is a sheaf.
We call this topology, the canonical topology and we denote it by can.

We can already consider the associated category of separated objects.

Corollary 10.4.2. Let D be a regular category. Then Sep,,,,(De:) is equivalent

to the full subcategory of D., given by the equivalence relations.
Proof. Use Proposition 10.2.1. 0J

We claim that the sheaves for the canonical topology on a regular category
are the Higgs-complete relations in the following sense (see Section 11.1 for an
explantion of the terminology). At this point the reader should be familiar with

the definition of a functional relation discussed in Section 2.4.1.

Definition 10.4.3. An equivalence relation (eg,e1) : B —— X x X is Higgs-
complete if for every equivalence relation (dy,d;) : D —— Y x Y and functional
relation (fy, fx) : FF——Y x X from D to E there exists amap f:Y — X
such that f < F' (i.e. f induces F).

By Proposition 2.4.5, for F' and f as above, there exists f': D —— F such
that the following diagrams commute and such that DfE = F.



In other words, £ on X is Higgs-complete if for every equivalence relation
D, the inclusion D¢ (Y/D, X/E) —— D¢y reg(Y/D, X/ E) is actually an isomor-
phism.

Compare also with the proposition in page 163 of [58] where it is shown
that Cauchy-complete metric spaces enjoy, with respect to bimodules, a property
similar to Higgs-completeness as in Definition 10.4.3.

In order to relate Higgs-complete equivalence relations and sheaves for the
canonical topology let us notice first that, in some cases, the uniqueness condition

in the definition of a sheaf is unnecessary.

Definition 10.4.4. An object X is a quasi-sheaf if for every dense mono m :
U——Y and map f : U —— X there exists a (not necessarily unique) f’ :
Y —— X such that f.m = f.

Compare with Definition 10.1.1. A quasi-sheaf is separated if and only if it is

a sheaf.

Lemma 10.4.5. Let D be a suitable category. Let eg,eq : E —— X be an
equivalence relation in its full subcategory of projectives C such that it has an
effective quotient e : X —s X/E in D. Moreover, let J be a subcanonical topology
on C. Then the following hold:

1. X/F is separated

2. X/E is a sheaf for J in D if and only if it is a quasi-sheaf.

Proof. Consider the first item. As J is subcanonical, (e, e1) : £ —— X x X is
closed. Then X/FE is separated by Lemma 10.1.3.

For the second part of the result notice that the only if direction is trivial
because a sheaf is always a quasi-sheaf. For the if direction we need only prove
that X/E is separated, but this is what we just did in the first part of the
proof. O



The first part of the lemma explains, for example, why Ass is closed under
quotients of ——-stable equivalence relations in Eff. But let us concentrate on the
characterization of sheaves.

We now express in more concrete terms what does it mean for an equivalence
relation to be a quasi-sheaf for the canonical topology in a regular category.

First, we explain how to factor maps between projectives in an exact comple-
tion. If f:Y —— X is such a map, we can see its kernel pair ko, k; : K — Y
as an object Im(f) = (K ];:0: Y) in C.,. The factorization of f in C., is given
by the maps [id] : Y — ]n;(f) and [f] : Im(f) — X.

It follows from Lemma 9.3.5 that dense monos for the canonical topology in
C.. are given by regular epis (in C) e : Y ——= 7 viewed as monomorphisms
le] : Im(e) —— Z from the kernel pair of e (viewed as an object in C,,) to 7.

It should be clear then that a map from a dense subobject in C,., is induced
by a pair of maps as in Definition 10.4.6 below. It should also be clear that an
equivalence relation F on X is a quasi-sheaf in C,, for the canonical topology if

and only if it is complete in the sense below.

Definition 10.4.6. An equivalence relation (ey, e1) : B —— X x X is complete
if for every exact sequence d.dy = d.d; and maps f, f such that f.dy = e,.f and
f.dy = e;.f as below

D / E
do dl €0 €1
Y X
f
d
Z

there exist maps f' : 7 —— X and k : Y —— F such that ¢y.k = f and
e1.k = f'.d. In other words, [f] = [f'.d] as morphisms from D to E in the exact

completion of the underlying category.

The notion of Higgs-completeness seems more intuitively appealing and it is
the one that we are going to use in Section 11.2 which is essential to our proof

of Theorem 11.3.3. On the other hand, the notion of completeness may be easier



to test in practice due to the fact that there are no functional relations involved.
Moreover, it is the natural class of objects induced by Lemma 10.4.5.

The main observation is, of course, that the two notions are equivalent.

Proposition 10.4.7. An equivalence relation is complete if and only if it is

Higgs-complete.

Proof. Consider the only if direction. So let (eg, 1) : B —— X x X be complete.
Let F' be as in the definition of Higgs-completeness. As F' is total, fy is a regular
epi by Lemma A.4.2. Let ko, k1 : F Xy FF—— I be its kernel pair. As F
is single valued, there exists a map s : F' Xy F' —— E such that (eg,e;1).s =

(fx % fx)-(ko, k1). That is, we have the following diagram.

FxyF-2 . F
ko kl €0 €1
F X
fx
fy
Y

By hypothesis there exists a map f: Y —— X and a g : F'—— E such that
eo.g = fx and e1.g = f.fy. The rest follows from Proposition 2.4.5 (item 3).

Consider now the if part. Let E be Higgs-complete and let d.dy = d.d; be
an exact sequence and f’ and f as in the definition of complete equivalence
relation (Definition 10.4.6). Let F = DfE : (D z:: Y) —— (E —= X) be the
functional relation induced by f. Also, notice thatl(d, idy 1Y —— %1 x Y induces
a functional relation I : Ay —— (D % Y) which has an inverse induced by
! — (id, d). 1

Then IF : Ay —— F is a functional relation. By hypothesis, there exists a
map f : Z — X inducing IF, that is fE = IF. But then, [ fE = ["'[F =
F. Then f.d induces F which is induced by f. By Proposition 2.4.4 there exists
g:Y — FE such that ey.g = f and e;.g = f.d. So E is complete. 0

We can now prove our characterization.

Corollary 10.4.8. Let D be a reqular category. The following categories are

equivalent.



1. Shee,(Dey)
2. the full subcategory of D, given by the complete equivalence relations
3. the full subcategory of D., given by the Higgs-complete equivalence relations

Proof. By Proposition 10.4.7 it is enough to show that the category of sheaves
is equivalent to the category of complete equivalence relations in the sense of
Definition 10.4.6.

As Sheg, (D, ) is a full subcategory of Sep,,,,(De..) we already know, by Corol-
lary 10.4.2, that every sheaf is isomorphic to some equivalence relation.

As the complete equivalence relations are exactly the ones that are quasi-

sheaves, the result follows by Lemma 10.4.5. O

The definition of Higgs-completeness (Definition 10.4.3) implies that the full
subcategories of D, and of D¢,/ induced by the Higgs-complete equivalence
relations are equivalent. Let us denote any of these equivalent categories by
Ceq(D). So that we have embeddings Ceq(D) —— D/, and Ceq(D) ~
Shee (Do) — Doy

10.5 Sheaves and the ex/reg completion

In this section we briefly discuss the category Ceq(D) from the perspective of its
embedding into D /re-

Definition 10.5.1. Let D be a subcategory of D’. A map ¢ :Y —— @Q in D’
is D-projecting if for every X in D and map g : X —— @ there exists a map
f: X —— Y such that q.f = g.

It is very easy to see that with D and D’ as in Definition 10.5.1, D-projecting
maps in D’ are closed under pullback.

Let us relate this notion with the sheaves for the canonical topology.

Lemma 10.5.2. Let D be a reqular category, X an object of D and q : X —> Q)
a reqular epi in Degreg. Then q is D-projecting if and only if the kernel pair of

q (an equivalence relation in D) is complete.

Proof. Let (ey,e1) : E—— X x X be the kernel pair of q. By Lemma 3.4.1,
(eg,€1) is an equivalence relation in D and we can assume that @ is the object
X/E in Doy pey-

The if direction is easy as Higgs-completeness of E clearly implies that the
quotient X —» X/F is D-projecting.



For the only if direction assume that the quotient X —» X/F is D-projecting.
To prove completeness of E let d.dy = d.d; be an exact sequence in D with
dy,di : D — Y andd:Y — Z. Moreover, let f:Y — Xand f: D — FE
be as in the diagram in the definition of complete equivalence relation (Definition
10.4.6).

As the embedding D —— D/, is exact, d.dy = d.d; is an exact sequence
in Dey/reg. Then, g.f induces, through the universal property of d, a unique
map g : 4 —— (@ such that ¢q.f = g.d. As, g is D-projecting, there exists a
f': Z —— X such that ¢q.f" = ¢g. This easily implies that eg, e; is complete. [

We can immediately state the following.

Lemma 10.5.3. An object Q in D oy/req is in Ceq(D) if and only if there exists
an X in D and a D-projecting quotient X —» Q).

It follows that for every object @ in Ceq(D) there exists an object X of D
and a D-projecting quotient X —» Q.

Now recall Lemma 3.4.1 and consider the following result.
Lemma 10.5.4. The embedding Ceq(D) —— Dy /ey preserves subobjects.

Proof. Let @@ be a complete equivalence relation and let u : U —— @ be a
subobject of @ in Dy /ny. By Lemma 10.5.3 there exists X in D and a D-
projecting quotient X —» Q. Also, by the construction of D/, it must be
the case that there exists an object Y in D and a regular epi u : Y — U. We

can then take the following pullback diagram.

Z - Im(Z) X

q

Y o U > - Q
T u

As the embedding of D into D, /e, is regular and preserves subobjects, it
must be the case that both Z and Im(Z) are in D. As D-projecting quotients are
closed under pullback, the quotient Im(Z) —» U is D-projecting. By Lemma
10.5.3, U is in Ceq(D). O

The following sums up some good properties of the category Ceq(D).

Proposition 10.5.5. If D is a regular category then Ceq(D) is regular and the

embedding Ceq(D) = D, /ey 5 exact and preserves subobjects.



Proof. We already know that Ceq(D) has finite limits because it is a category
of sheaves. In order to prove that the embedding Ceq(D) = D, /¢, preserves
them it is better to describe the limits as reflected from D, /. As objects from
D and D-projecting quotients are closed under product, Ceq(D) has products
and the embedding into D, /n, preserves them. By Lemma 10.5.4 the same
follows for finite limits.

To prove that Ceq(D) has regular-epi/mono factorizations let f : R —— Q
in Ceq(D) and consider its regular-epi/mono factorization R — T @ in
Dy /reg-

By Lemma 10.5.4, 7" is in Ceq(D) so we need only prove that the map ¢ :
R —+ T is a regular epi in Ceq(D). But as D covers D/, We can cover
the kernel pair of ¢ with an object in D. We then have a coequalizer diagram in
D, /reg that is reflected by the embedding Ceq(D) —— D, /e, showing that ¢
is a regular epi in Ceq(D).

Stability is inherited from D, /e, so indeed Ceq(D) is regular and its embed-

ding into D, pe is exact. O

Notice that as the embedding D —— D, /., also preserves subobjects (Lemma
3.4.1) we obtain that the embedding D —— Ceq(D) does too.
The strong properties of the embedding Ceq(D) —— D,/ have the fol-

lowing consequence.
Corollary 10.5.6. Ceq(D) is exact if and only if it is equivalent to D oy /peg.

Proof. The if direction is trivial so consider the converse. For this, we need
only show that the embedding Ceq(D) —— D,/ is essentially surjective.
So let (eg,e1) : E—— X x X be an equivalence relation in D (that is, an
object in Dgy/peg). As the embedding D —— Ceq(D) preserves subobjects,
(€g,€1) : E—— X x X is an equivalence relation in Ceq(D). As we are assuming
that this category is exact, the equivalence relation has an effective quotient which
the exact embedding Ceq(D) —— Dy /rey must preserve. This shows that this

embedding is essentially surjective and hence, an equivalence. O

10.6 Local cartesian closure

The purpose of this section is to show that certain categories of separated objects
and sheaves are locally cartesian closed. This follows from a folklore fact given
our results in the previous sections.

First, let us discuss the folklore fact.



Let 7 be a universal closure operator in a category with finite limits C. Then,
for any X in C, consider the slice category C/X. If f:Y —— X is amap in C
we denote the corresponding object of C/X by (Y, f).

A map m: (Y g) — (Y, f) in C/X is mono if and only if m : Y — Y
is mono in C. It can be easily shown then that j gives rise to universal closure
operators in the slices. Indeed, let m : (Y',g) — (Y, f) be mono in C/X. Then
we can define (j/X)m = jm: (7Y, f.(jm)) — (Y, f). It can be easily checked
that this defines a universal closure operator j/X in C/X. In particular, a mono
m: (Y, g)—— (Y, f) in C/X is dense (for j/X) if and only if m : Y/ —— Y
(in C) is dense for j.

The following is folklore but we include a proof for completeness.

Lemma 10.6.1. If X is separated for j in C then Sep;,x(C/X) = (Sep,C)/X.
Moreover, if X is a sheaf then Sh(;,x)(C/X) = (Sh;C)/X.

Proof. Let X be separated for j. First, let us prove that Sep;,x)(C/X) is
embedded in (Sep;C)/X. For this, we assume that a : A —— X is an object in
Sep(;/x)(C/X) and show that A is a separated for j in C. So let m : Y’ ——Y
be dense and let h,h' : Y —— A be such that h.m = h’.m. Then we have that
a.h.m = a.h/.m and as X is separated, it follows that a.h = a.h/. But then we
have that m : (Y, a.h.m = a.h'.m) — (Y, a.h = a.h’) is a dense mono in C/X.
Moreover we have that h, h' : (Y, a.h = a.h’) — (A, a) and that h.m = h'.m in
C/X. As we are assuming (A, a) is separated, h = h'. So A is separated.

To prove that (Sep;C)/X is embedded in Sep;,x)(C/X) we are going to
show that if A is separated in C then for every a : A —— X, (A,a) is sep-
arated in C/X. So let m : (Y, f') —— (Y, f) be dense in C/X and let
hW : (Y, f) —— (A, a) be such that h.m = h’.m. But then h.m = h’.m also
holds as maps Y/ —— A in C. As m is also dense in C and A is separated then
h = k' and hence (A, a) is separated in C/X.

It is trivial to see that the embeddings are inverse to each other so indeed
Sep(;;x)(C/X) = (Sep,C)/X.

Now assume that X is a sheaf for j in C. First, let us prove that Sh(;,x)(C/X)
is embedded in (Sh;C)/X. For this, we assume that a : A —— X is an object
in Sh(;/x)(C/X) and show that A is a sheaf for j in C. So let m : Y/ »——Y
be dense and let g : Y/ —— A. Then, as X is a sheaf, we have the a unique
f:Y —— X such that m.f = a.g as below.
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But then m : (Y’ a.g) —— (Y, f) is a dense mono in C/X. Also, we have
that g : (Y, a.g) — (A, a) and so, as a is a sheaf in C/X, there exists a unique
h:(Y,f) — (A, a) as in the diagram below.

(Y, a.9) —2— (A, a)

dlh

(Y, f)

So we have an h : Y —— A such that h.m = g. We already know that A is
separated by the first part of this result so A is indeed a sheaf.

To prove that (Sh;C)/X is embedded in Shy;,x)(C/X) we are going to show
that if A is a sheaf in C then for every a : A —— X, (A, a) is a sheaf in C/X.
Solet m : (Y, f') —— (Y, f) be dense in C/X and let g : (Y, f') —— (A, a).
Then m : Y/ —— Y is dense in C and as A is a sheaf, there exists a unique

h :Y —— A such that h.m = ¢ as in the diagram below.

Y/

Jh

Y

We also have that a.h.m =a.g= f' = fom: Y —— X. As m is dense and X
is a sheaf, a.h = f. So h is a map (Y, f) —— (A, a) such that h.m = g. Again,
we already know that (A, a) is separated so (A, a) is a sheaf.

It is trivial to see that the embeddings are inverse to each other so indeed
Sh(;/x)(C/X) = (Sh;C)/X as stated. O

It is well known (see for example the proof of Lemma V.2.1 in [71]) that if

a category is cartesian closed then the categories of sheaves and of separated



objects for any universal closure operator are also cartesian closed. In the case
of separated objects for a universal closure operator this also follows from the
preservation of products of the reflection functor (Proposition 10.2.2).

We now have an easy proof of the following.

Corollary 10.6.2. Let C have weak dependent products. Then for any topology
J on C, the category of J-closed pseudo equivalence relations is locally cartesian

closed.

Proof. By Proposition 10.2.1 the J-closed pseudo equivalence relations form a
subcategory of separated objects of C., which is, by Proposition 3.3.5, locally

cartesian closed. O

Moreover, these ideas give an alternative proof of Corollary 3.3.7 which we

restate here for convenience.

Corollary 10.6.3. Let C have stable epi/regular-mono factorizations and be such
that every regular equivalence relation is a kernel pair (as is the case, by Lemma
7.4.4, if C has a chaotic situation). If C has weak dependent products then C,.,

15 locally cartesian closed.

Proof. By Corollary 10.3.5, C,., is a category of separated objects in this case.
So the proof of Corollary 10.6.2 applies in this case too. O

Let us compare these results with the approach in [13] to prove local cartesian
closure of certain categories of pseudo equivalence relations. In their work, topolo-
gies in the sense of Definition 9.1.7 are not considered and results on categories of
separated objects are not exploited. For any stable factorization system (£, M)
in C they introduce the full subcategory PER(C, M) of C.,. given by the pseudo
equivalence relations 71,79 : X7 —— X such that (r,m) : X7 —— Xy X X,
is in M. Then they show that the embedding of PER(C, M) into C,, has a
left adjoint which preserves products and commutes with pullbacks along maps
in the subcategory. From this, it follows that if C., is locally cartesian closed
then PER(C, M) also is.

Notice that when (£, M) satisfies T3’ then the factorization system is an
example of our topologies and PER(C, M) is the associated category of separated
objects by Proposition 10.2.1. Then the existence of the left adjoint satistying the
properties mentioned above follows from Proposition 10.2.2 and Lemma 10.6.1.

On the other hand, left adjoints to embeddings of categories of sheaves are not
as easy to construct as in the case of separated objects. Indeed, enough injectives

are usually required [5]. But we can still use our argument to prove the following.



Corollary 10.6.4. If D is a reqular category with weak dependent products then
Ceq(D) is locally cartesian closed.

Proof. Recall from Section 10.4 that Ceq(D) is equivalent, by definition, to
Sh.u,(De;). So the result follows by the remark below Lemma 10.6.1. O

This result will let us show the local cartesian closure of certain ex/reg com-

pletions in Section 11.3.

10.7 Continuous functors?

As explained in [71], given a cocomplete topos E and a Grothendieck topology J
on a small category C with finite limits, the geometric morphisms E — Sh(C, J)
from E to the topos of sheaves on C correspond to functors C —— E that pre-
serve finite limits and are continuous in certain sense.

It is natural then to wonder what is the right notion of continuous functor
with respect to topologies in the sense of Definition 9.1.7. Continuous functors
in this sense should help to describe morphisms to or from categories of sheaves
and of separated objects of exact and regular completions. Although tempted to

follow it, we will not pursue this research direction here.



Chapter 11

Ex /reg completions that are
toposes

We show that the ex/reg completion Dy /e of a locally cartesian closed regular
category D with a generic mono is a topos. In the process we observe that in
this case, D¢ /ey is equivalent to the category of sheaves in D, for the canonical
topology on D, that is, to the category Ceq(D). Moreover, this result will let us
derive a characterization of the locally cartesian closed regular categories whose
associated category Ceq(D) is a topos. We also discuss briefly the relation of
this result with other presentations of toposes as ex/reg completions and also

with tripos theory.

11.1 Toposes and ex/reg completions

We have already observed that (Ass(K1))es/reg > Eff. This naturally leads to
the question of what are the properties of Ass that makes its ex/reg completion
a topos. As Ass is a regular completion (recall that Ass ~ PAss,.,), we have
already answered this question in Proposition 5.5.2: it is the generic mono. But
there are regular categories with generic monos that do not arise as regular com-
pletions (for example the categories H, recall Example 5.5.4). So it is natural to
wonder about the effect of generic monos in ex/reg completions. We will prove
in this chapter that the ex/reg completion of a locally cartesian closed regular
category with a generic mono is a topos.

Let us now compare this statement with other presentations of toposes that are
ex/reg completions. The first one to mention is the presentation of the effective
topos in [17] and [32]. They introduce the category of assemblies, build its ex/reg
completion and show that it has power objects (which is an alternative way of

defining a topos: a category with finite limits and power objects [71]). No attempt
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is made neither in [17] nor in [32] to give sufficient conditions on a regular category
for its ex/reg completion to be a topos.

In [75] there is an attempt to simplify the presentation. McLarty shows that
in order to prove that the ex/reg completion of a regular category D is a topos it
is enough to show that every object in D has a power object in Dy, (actually,
something slightly weaker: the “power” version of a classifier of subobjects of D-
objects as in Definition 3.5.4). That is, in order to prove that D,/ is a topos,
you do not need to build all power objects, just a good class of them. This is
a good simplification, it is essentially item 3 of Corollary 3.5.5. Yet, to use this
fact, you still have to build the ex/reg completion and construct objects in it.

Our result can be used to present toposes that are ex/reg completions in a
way that avoids completely the actual construction of the completion. That is,
they allow you to verify that D,/ is a topos merely by looking at the category
D itself.

A different approach is that of tripos theory and we will discuss its relation
with our results in more detail in Section 11.4.

Let us now discuss the proof of our result. In order to motivate it, let us first
briefly review Higgs’ construction of the category of sheaves on a locale [34] (see
also [35, 27, 10, 106]).

Let H be a frame and consider the category $(H) defined as follows. Its
objects are pairs X = (| X, dx) with | X| a set and dx a function from | X| x | X]|
to H such that dx(z,2’) = dx(a', x) and dx(zo, x1) A Ox (21, 22) < dx (20, T2).

A map Y — X between two such objects is a function f : |Y|x | X| — H
such that the following hold.

L f(y,2) Aoy (y, ') < f(¥,z) and f(y,z) Adx(z,2") < f(y,2')
2. f(y,l') A f(y,xl) < 6X(I7II)

3. Vaex f(y.2) = v (y. %)

It turns out that this category is equivalent to the category of sheaves on the
frame H. Let us outline a sketch of the proof. We use the terminology of [35].
We say that a map f : Y —— X is represented by a function fy: |Y| — | X|
if f(y,z) <dx(foy,z) forally €Y and z € X.

Now define an object X to be ample if every map to X is represented by a
function.

There is functor from the category of sheaves on H to the category S(H)

that assigns to each sheaf an ample object. This property is used to prove that



the functor is full and faithful. Then it is proved that every object in 8(H) is
isomorphic to one in the image of the embedding of sheaves.

Let us stress this fact. Every object in 8( H) is isomorphic to an ample object.

In [42], this presentation of sheaves is used to motivate the definition of a
tripos. In their treatment of geometric morphisms they introduce the notion of
a weakly complete object (see also [94]) which is very similar to the notion of an
ample object. The main fact they prove is that every object in the topos induced
by a tripos is isomorphic to a weakly complete one.

The resemblance of Higgs-completeness with ampleness (and also with weak
completeness [42]) is evident.

We are going to borrow this idea from Higgs and then use an argument similar

to that in the proof of Theorem 5.2.2 in order to prove our result.

11.2 Generic monos and complete equivalence
relations

In this section we outline the proof that in a locally cartesian closed regular
category D with a generic mono, every equivalence relation is isomorphic (as an
object in D, /) to a complete one (we sometimes say that the two equivalence
relations are relationally isomorphic). That is, in view of Corollary 10.4.8, we are
going to show that Ceq(D) ~ Sh,,,(D.,) is equivalent to D ;e

As we have already explained, the idea that every equivalence relation is
relationally isomorphic to a complete one is essentially due to Higgs and the proof,
in the case of the topos of sheaves on a frame, is in [27]. In the more abstract
setting of tripos theory, the result is essentially proved in Proposition 3.3 of [42]
making heavy use of internal logic. Here we recast this proof in diagrammatic
terms.

If the reader is familiar with arguments using internal logic, looking at Propo-
sition 3.3 of [42] will be enough to complete the proofs missing in this section.
On the other hand, our setting is quite different from that of tripos theory so I
have placed the complete details in diagrammatic terms in Appendix B.

Let 7 : T —— A be a generic mono in D.

By Lemma 5.3.3, there exists an equivalence relation (7, 71) : & —— A x A
such that (f,g) : Y — A x A factors through Z if and only if f and g pull 7 back
to the same subobject of Y.

As 7 is a generic mono, = arises as in the following pullback.



(1]

(To, 1) T

AxA A
The idea is that = will give rise to a subobject classifier.

For any X we can consider the following pullback.

<T({(77-1X> <T07TI>X T

A x AY =2 (Ax A —— A
Indeed, think of AX as the object of “intensional” predicates on X and of =¥
as the equivalence relation given by bi-implication between predicates.
As 7 is a generic mono, any equivalence relation (eg, e1) : £ —— X x X gives

rise to the following maps.

E_BY Ly
(€0, €1) T
X x X A
VE A

X —E L AX
Think of vg as the assignment © —— {2/|2'Ez} = [z].

Proposition 11.2.1. Every equivalence relation E on X appears in a pullback

square as below.

E - =X
(e, €1) <TGX;T1X>
X xX AX x AX




Proof. See Appendix B. O

The intuition is that there may be different “elements” in AX denoting the
same “subset of” or “predicate on” X. Also, we think of =X as containing the
information of which elements of AX denote the same subset. In discussing intu-
ition we may sometimes write ¢ < ¢’ to express that the elements ¢ and ¢ of A*
denote the same subset of X.

We now start the construction of a complete equivalence relation relationally

isomorphic to E. First consider the following pullback square and induced map.

Think of Ty as {(c, x)|c « [z]}.

First notice that s is a split mono because €}.s = id. Let T e Ap . AX
be the regular-epi/mono factorization of ej.

Of course, think of Ap as {c € A*|c < [z] for some z € X}.

Also, let v = e.s : X —— Ag so that vg = /v : X —— AX.

We can now split the pullback of Proposition 11.2.1 as follows.

E -J - Zp -

(1]

(e, €1) (Jo, J1) {co, 1)

X x X

Apx X Ap x Ap ——— AY x A
vy X id B id X Vg BXAE 8

So pulling back in this way gives rise to an equivalence relation Zg on an

object Ag and to a relation J from E to =g.

Proposition 11.2.2. The relation J is an isomorphism X/E —— Ag/Zg be-

tween the equivalence relations E and Zg as objects in D ey /reg.



Proof. See Appendix B. O
We now state the key fact about Zg.
Proposition 11.2.3. =5 is complete.

Proof. Let (do,dy) : D——Y X Y be an equivalence relation on Y and let
(fy,fg) : F——Y X Ag be a functional relation from D to Zg. We can form

the following pullback and transposition.

G I .p U Ly
(9x,9v) (fe, fv) T
X XY — — ApxY A

vy X id Vp

Y / AX

One then proves that f’ factors through a map f : Y —— A that induces F.
Full details are given in Appendix B. O

In the view of Section 10.5, we can formulate the results in this section as

follows.

Corollary 11.2.4. IfD is a locally cartesian closed reqular category with a generic
mono then D gy e is equivalent to Ceq(D) ~ Shy,, (D) the category of sheaves
in Dy for the canonical topology on D.

11.3 Sheaves, ex/reg completions and toposes

In this section we prove the main result of the chapter: the ex/reg completion of

a locally cartesian closed regular category with a generic mono is a topos.

Corollary 11.3.1. IfD is a locally cartesian closed reqular category with a generic

mono then D gy ey is locally cartesian closed.

Proof. By Corollary 10.6.4, Sh,,,(D.,) is locally cartesian closed. By Corollary
11.2.4 the result follows. O



Moreover, as the canonical embedding D —— D, /., preserves finite limits,
then the universal property of D, induces an exact functor a : Dey, —— Dy /reg >~
Sh.,,(D.;). This functor is easily seen to be left adjoint to the embedding
Sh.un(Dez) — De,. So we have easily obtained an associated sheaf functor.
Notice that as this functor preserves finite limits, we have another proof of local
cartesian closure of D, /peg > Shegn(Des)-

Also, Corollary 11.2.4 gives a clearer picture of the hierarchies of toposes that
we found in Chapter 8 (Corollary 8.2.2).

Corollary 11.3.2. Let C have an AC-chaotic situation, weak dependent products
and a generic object. Then for every n, (Cregm))ex 5 a topos. It is the topos of

sheaves in (Cregn+1))ex for the canonical topology on Creginir).-

Proof. This follows because (Cregin))ex = (Cregn+1))ex/reg =~ Shean((Cregnti))es)-
]

That is, each topos in the hierarchy is the topos of sheaves for the canonical
topology of the next topos in the hierarchy.

But let us go back to our main purpose. With Corollary 11.3.1 we are now
ready to prove the D,/ is a topos. Notice that we cannot directly apply the
fact that D, /e is equivalent to Sheg,(De,) (Corollary 11.2.4) because D, need
not be a topos (trivial examples are given by toposes without generic proofs).

In order to prove in Theorem 5.2.2 that certain exact completions are toposes,
we reduced the problem of the existence of a subobject classifier to that of the
existence of a classifier of subobjects of projectives.

It is possible to use the same idea in the slightly different setting of ex/reg
completions. But with a twist. In the proof of Theorem 5.2.2 we used the fact
that in C., the objects from C are projective in order to prove that C,., has a
classifier of subobjects of projectives and then immediately apply Corollary 3.5.5.
In the present case we will use the fact that every object of D, /e, is covered by
a D-projecting quotient from an object in D in order to prove that Dy /e, has a

classifier of subobjects of D-objects.

Theorem 11.3.3. IfD is a locally cartesian closed reqular category with a generic

mono then D gy re, is a topos.

Proof. By Corollary 11.3.1, Dy /req is locally cartesian closed. So we need only
prove that D, /., has a subobject classifier. By Corollary 3.5.5 we only need a

classifier of subobjects of objects from D.



Let 7 : T —— A be a generic mono in D. Because D is locally cartesian closed
we can use Lemma 5.3.3 in order to obtain an equivalence relation on A and its
quotient (in Deg/rey) p 1 A —= € such that for any pair of maps f,g: X — A
in D, p.f = p.g if and only if f and g pull 7 back to the same subobject.

Also, as in Proposition 5.3.4, we can build a pullback square as below.

T - Y

T T

- )

p

We now prove that T is a classifier of subobjects of objects in D. The idea is
to follow the proof of Theorem 5.2.2. The problem is that the objects of D are
not projective in this case.

We can nevertheless use a similar idea thanks to the existence of D-projecting
covers. Indeed, as Ceq(D) ~ D¢,/ by Corollary 11.2.4, there exists a D-
projecting regular epi py : Ay —— by Lemma 10.5.3.

Let 19 be be the pullback of T along py as in the square below.

TO > Q/
T0 T
AO > Q

Po

By Lemma 3.4.1, we can assume that 7 is in D.

First, we will show that 7y is a generic mono in D. Second, we will show that
if fo,90 : X —— Ag in D pull 75 back to the same mono, then pg.fo = po-go-
From this, it will follow that T is a classifier of subobjects of objects in D.

The fact that 7y is a generic mono can be proved easily because as py is D-
projecting, p factors through py. It follows that 7 is a pullback of 7y and hence
that 7y is a generic mono.

Our second task takes a bit more effort. Indeed, in order to deal with it we
need to show first that py factors through p.

As 7 is a generic mono and 7y is in D, there exists a pullback as below.



Ty T
To T
Ao A

40

In order to show that pyg = p.vy, consider the pullback of p and py as below.

e

P

- Ao

r Po

\l

A -

P
As r*1r = r*(p*T)
property of p that p.r
Po = pP-o-
We can finally deal with our second task. So let fy, g0 : X —— Ag pull 79

e(pT) = ey = e*(y57), it follows by the defining

p-Vg.e. But we also have that p.r = pg.e. As e is epi,

back to the same subobject and consider the following chain of implications.

foro=gom0 = [fo(T) = 95(157)
= po-fo = p-vo-go

= po-fo = Po-9o

So our second task is finished.

To finish the proof that T is a subobject classifier, let f,g: X —— Q pull T
back to the same subobject.

As, po is D-projecting, there exist fy, go : X —— Ay such that py.fo = f and
Po-go = g. But this implies that fj79 = g7 and hence that f = po.fo = po.g0 = g.

So, indeed, T is a subobject classifier and hence D, /ey is a topos. O

We can slightly change perspective in order to have an idea of how necessary

the generic monos are.

Corollary 11.3.4. Let D be a locally cartesian closed regular category. Then
Ceq(D) is a topos if and only if D has a generic mono. Moreover, in this case,

Ceq(D) is equivalent to D ey /rey.



Proof. The if direction is just Theorem 11.3.3 together with Corollary 11.2.4.
For the only if direction let T : 1 — ) be the subobject classifier in Ceq(D).
By Lemma 10.5.3 there exists a D-projecting quotient p : A — Q with A in D.
Let 7= p*T : T —— A. As D —— Ceq(D) preserves subobjects, T is in D. As
p is D-projecting it is easy to see that 7 is a generic mono in D.
By Corollary 10.5.6, Ceq(D) is equivalent to D .y /pe,- O

Recall that we needed the axiom of choice to prove that PAss has a generic
proof (Example 5.2.3). On the other hand, the proof that Ass satisfies the
premises of Theorem 11.3.3 (or Corollary 11.3.4) is choice-free (see Example 5.5.3
for the generic mono). So we we have a choice-free presentation of realizability
toposes as the categories Ass., /., Which, as explained in Section 11.1 is much
simpler than those in [17, 32, 75].

The proof that H, has a generic mono (Example 5.5.4) is also choice free and
we have that (H)es/re is the topos of sheaves on H.

More generally, although we do not know how to do this in general, we expect
that many of the examples dealt with tripos theory [94, 42| can be dealt with
using Theorem 11.3.3. We briefly explain this in the next section.

11.4 On the relation with tripos theory

In this section we outline some connections of tripos theory [94, 42] with our

results. We will do this from the perspective of the more recent [95].

Definition 11.4.1. Let C be a category with finite products. A first order hyper-
doctrine P over C is specified by a contravariant functor from C into the category

of partially ordered sets and monotone functions, with the following properties.

1. For each X in C, PX is a Heyting algebra.

2. Foreach f : X ——Y in C, Pf : PY —— P X is a homomorphism of
Heyting algebras.

3. For each diagonal morphism Ay : X —— X x X in C, the left adjoint to
PAx at the top element T € PX exists, in other words there is an element
=x of P(X x X) such that

T < (PAx)A if and only if =x< A.

4. For each product projection 7 : I' x X —— I" in C, the monotone function
Pr : PI' —— P(I"' x X) has both a left adjoint and a right adjoint both

natural in I.



The elements of PX will be referred to as P-predicates.

First order hyperdoctrines can interpret first order logic with equality and one
can associate to each first order hyperdoctrine (C,P) its internal language which
is the signature having a sort for each object of C, a function symbol (of the
appropriate arity) for each map in C and a relation symbol for each P-predicate.

The internal language can then be used to express conditions on the hyper-
doctrine. We usually express this by writing that some formula in the internal
language of (C,P) holds in P or that P satisfies the formula.

It is possible then to associate to a first order hyperdoctrine (C,P) its category
C[P] of partial equivalence relations. The objects of C[P] are pairs (X, F) with
X a C-object and E € P(X x X) a predicate such that the sentences in the
internal language expressing symmetry and transitivity of £ hold in P. A map
F (X1, By) — (Xy, Ey) is a predicate F' € P(X; x X3) such that the sentences
in the internal language expressing that F' respects £; and F5 and that it is single
valued and total from E; to Es hold.

The category C[P] has finite limits, pullback-stable images and dual images
of subobjects along morphisms, and pullback-stable finite joins of subobjects.
Following [74], Pitts calls a category with this structure a logos. Moreover, all
equivalence relations in C[P] have quotients.

There exists an embedding Ap : C —— C[P] that, on objects, maps X to
(X, =x) and, on morphisms, maps f : X; —— X, to the morphism given by the
formula f(z1) =x, x2 in the internal language of (C,P).

The functor Ap is called the constant objects functor, preserves finite products

and moreover, PX is naturally isomorphic to Subcp)(ApX).

Proposition 11.4.2 (Pitts). Let C be a category with finite products and E a
logos such that every equivalence relation in it has a quotient. Let F': C —— E
be a functor preserving finite products. Then Subg(F(_)) is a first order hyperdoc-
trine. Moreover, C[Subg(F'(-))] is equivalent to E and F' is naturally isomorphic
to the constant objects functor C —— C[Subg(F(_))| if and only if every object

of E is a quotient of a subobject of some object in the image of I'.

If we assume that C has finite limits and enough structure to ensure that C,,
is a logos then Proposition 11.4.2 can be applied to the embedding C —— C,,.
Something analogous happens with ex/reg completions. So, in these cases, Propo-
sition 11.4.2 gives an alternative description of exact and ex/reg completions as
categories of partial equivalence relations of first order hyperdoctrines. In the
case of exact completions, the hyperdoctrine is just the proof-theoretic power set
functor Prf.



Pitts characterized when C[P] is a topos as follows.

Proposition 11.4.3 (Pitts). Suppose C is a category with finite products and
P is a first order hyperdoctrine over C. Then C[P] is a topos if and only if (C, P)
satisfies the following comprehension aziom (CA): for all C-objects X there is a
C-object PX and a P-predicate Inx € P(X x PX) such that for every C-object
[ and P-predicate R € P(X xT'), P satisfies the following sentence of its internal

language.
Vi:T'.3s: PXVx: X.Inx(z,s) < R(z,1)

Starting with a category with finite limits C with enough structure to ensure
that the proof-theoretic power set functor is a first order hyperdoctrine, Propo-
sition 11.4.3 should provide a variant of our Theorem 5.2.2 by working out what
the axiom (CA) amounts to in C.

For Theorem 11.3.3, one could check that for a locally cartesian closed regular
category the subobjects functor Subp induces a first order hyperdoctrine and then
show that the generic mono (with the help of the local cartesian closed structure)
implies that (CA) holds.

Similarly, there probably exists a treatment of weak dependent products along
these lines.

This strategy to deal with the question of exact completions and ex/reg com-
pletions that are locally cartesian closed or that are toposes takes a bit of a
roundabout route and hides much of the simple categorical structure and ar-
guments. On the other hand, this strategy may provide some insight into the
problem of characterizing the ex/reg completions that are toposes. Although in
the end, it would be nice to obtain an indexing-free formulation of the statement
and proof of such a characterization.

Another question on the relation between tripos theory and the work reported
in this thesis is whether every topos arising from a first order hyperdoctrine can
also be generated by an ex/reg completion. Of course, as the ex/reg completion
is an idempotent construction, this is trivially the case. The point of the question
is whether given a first order hyperdoctrine P over C satisfying (CA) there exists
a regular category D, simpler to understand than the topos C[P| and such that
D.y/reg ~ C[P]. Clear examples of this are realizability toposes as ex/reg com-
pletions of categories of assemblies. Moreover, it would be good if the category
D, on top of being easy to understand, would also have good structure, such as

cartesian closed slices and a strong-subobject classifier.



There has not been much work on general first order hyperdoctrines satisfying
(CA). On the other hand, in the case of triposes (which we define below) we can

point out some analogies that suggest that such D’s may exist.

Definition 11.4.4. Generic predicates and triposes.

1. A first order hyperdoctrine P over C has a generic predicate if there exists
a C-object Prop and a P-predicate prf € P Prop such that for any I' and
A € PT there exists a C-morphism v4 : I' —— Prop with A = (Pva)prf.

2. If C is a cartesian closed category, a C-tripos is a first order hyperdoctrine

over C with a generic predicate.

Moreover, we have already mentioned in Section 11.1 that for a C-tripos P,
the topos C[P] of partial equivalence relations associated with P has the property
that every object is isomorphic to a weakly complete one. In fact, as mentioned
in Section 11.2, we have actually borrowed the proof of this fact in order to show
that, in a locally cartesian closed regular category D with a generic mono, every
equivalence relation is relationally isomorphic to a complete one.

This may be suggesting that for a topos E induced by a tripos there exists a
simpler regular subcategory D of E such that for every object @) in E there exists
an object X in D and a D-projecting quotient X —» Q.

Moreover, the generic predicate should induce a generic mono in D and the
embedding D —— E should preserve subobjects. That is, E should be Ceq(D)
(recall Section 10.5).

But we do not know if these analogies can be turned into actual constructions.

In any case, it seems that since the invention of realizability toposes, triposes
were the only general abstract tool to deal with this kind of example. The results
in this thesis provide an extra general tool that avoids the complications of indexed

structures.



Chapter 12

Conclusions

We summarize the contributions of the thesis and indicate some of the problems

left open.

12.1 Summary of the main results

Our main objective was to achieve a good understanding of the relation between

quasi-toposes and toposes on one hand and the universal problems of building

regular, exact and ex/reg completions on the other. The main contributions of

this thesis are the following:

1. A characterization of the categories with finite limits whose exact comple-

tions are toposes (Theorem 5.2.2).

We proved the usefulness of the characterization by applying it to obtain

results on the following two problems.

(a)

A characterization of the presheaf toposes whose exact completions are

toposes (Theorem 6.1.1).

To illustrate the interest of this result it must be said that, before
our characterization, there was no grasp to the problem even in the
simplest cases. For example, it was not known whether the exact

completion of Set was a topos or not.

Finding many new examples of toposes that are exact completions.
Namely, the toposes of continuous actions for topological groups (Corol-
lary 6.3.1) and the hierarchies over the categories of partitioned assem-
blies (Corollaries 8.2.2 and 11.3.2).

In this respect, it must be said that generic proofs were an essential

tool in finding these examples. It struck me as a surprise to find out
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that Ass has a generic proof, but it was not a difficult observation as
the essential idea was the same as in the case of partitioned assemblies.
I later learned that van Oosten had already observed that the exact
completion of the category of assemblies is a topos. His observation
consisted of first building the topos in question and then identifying
its subcategory of projectives with assemblies. Generic proofs pro-
vided a very simple way of iterating this observation (giving rise to
the hierarchies) without having to calculate with any of the induced

toposes.

2. The conceptual use of “chaotic” objects to explain many relevant proper-
ties of our examples (Chapters 7 and 8). In particular, the equivalence (in
this context) of generic objects, generic monos and generic proofs (Theo-
rem 8.2.1). Indeed, generic objects should be highlighted for providing a
very efficient way to present toposes that are exact completions and also to
recognize new examples and counterexamples. In particular, they provide

a nice perspective on the results in [65] (see Section 8.3).

3. A characterization of universal closure operators in regular and exact com-
pletions of a category C in terms of the notion of a topology on C (Corollary
9.3.6).

This was an evident problem suggested by the construction of presheaf
toposes as colimit completions and by the description of the universal closure

operators therein as Grothendieck topologies.

Moreover, this characterization allows us to state and prove the following

nice conceptual facts.

(a) The characterization of categories of closed pseudo equivalence rela-
tions as the categories of separated objects for universal closure op-
erators in exact completions (Proposition 10.2.1). This allows us to
conclude that the former categories are quasi-pretoposes in the pres-
ence of stable and disjoint coproducts (Section 10.2) and to obtain
sufficient conditions for these categories to be locally cartesian closed
(Corollary 10.6.2).

(b) The characterization of stable epi/regular-mono factorizations as sep-
canonical topologies (Corollary 10.3.3) and their relation with regular
completions (Corollary 10.3.5). Sufficient conditions for regular com-

pletions to be locally cartesian closed follow (Corollary 10.6.3).



(¢) The description of stable regular-epi/mono factorizations as canoni-
cal topologies (Section 10.4), the characterization of the sheaves for
this topology as the (Higgs-)complete equivalence relations (Corollary
10.4.8) and the relation of the category of sheaves with ex/reg comple-
tions (Section 10.5). As in the case of separated objects, we can easily
infer sufficient conditions for local cartesian closure (see Corollaries
10.6.4 and 11.3.1).

4. Sufficient conditions on a regular category D for its ex/reg completion to be
a topos (Theorem 11.3.3) and the characterization of the locally cartesian
closed regular categories whose category of complete equivalence relations

is a topos (Corollary 11.3.4).

These results improve in generality and weaken the assumptions over the
related results by Higgs [34], Fourman-Scott [27], Carboni-Freyd-Scedrov
[17] and McLarty [75].

5. Simple conditions for regular completions to be quasi-toposes (Corollaries
4.3.4 and 8.4.2) and in particular, we have characterized the lextensive cat-

egories whose regular completions have coequalizers (Corollary 4.1.4).

Finally, there is a healthy set of topological and recursion theoretic examples
(and counterexamples) showing how the abstract concepts and results arise (or

do not arise) in practice.

12.2 Loose ends

Regular and exact completions can also be taken over categories with weak limits
[22]. It seems plausible to generalize our results in this direction. One of the
toposes described in [84] already motivates such a generalization.

It may be of interest to find sharper results relating local cartesian closure
and quasi-toposes with regular completions.

Our characterization of boolean presheaf toposes shows that for a restricted
class of categories it is possible to simplify the conditions that ensure its exact
completions to be toposes. There may be many other interesting classes. For
example, it is natural to hope for a good description of the sites whose associated
Grothendieck toposes have generic proofs. Also, we do not know if the exact
completion of the effective topos is a topos. In fact, we do not know an example

of a non-boolean topos whose exact completion is itself a topos.



The new hierarchies of toposes presented in Chapter 8 are awaiting a serious
analysis. We have only proved their existence as an application of our character-
ization.

Our characterization in Chapter 9 of universal closure operators in regular
and exact completions seems pretty tight and definitive. As well as explaining
the relationship between factorization systems on a category C and the universal
closure operators in C,.,, it suggests that it one should not restrict to the former.
For example, it would be nice to know if Top has a canonical topology. Also, we
have not touched the important question of what is a good notion of a continuous
functor in this setting. It would be nice if there existed a theory as rich as that
for Grothendieck toposes.

The results in Chapter 10 show that categories of closed pseudo equivalence
relations or of complete equivalence relations have, in general, better properties
than regular and ex/reg completions. Because of this, it may be interesting to
study more deeply the former categories.

Our sufficient conditions for ex/reg completions to be toposes (Theorem 11.3.3)
seem not to be necessary. Concerning the search for a tighter result, one may
start to attempt to characterize the regular categories whose ex/reg completions
are locally cartesian closed and then combine this result with some version of

Pitts” axiom characterizing the hyperdoctrines giving rise to toposes [95].



Appendix A

Some technical facts about
relations

In this appendix we collect some folklore facts about relations that are used in the
thesis (mainly in Sections 2.4.1 and 11.2). None of the results is difficult but some
are a bit tiresome. It should be said that many of the proofs could be simplified if
a treatment of internal logic as in [75] or of representations of regular categories
as in [6] was assumed. Nevertheless I decided to include the most unassuming
proofs.

In order to ease the statements let (do,d;) : D——Y X Y and (eg,e;1) :

E—— X x X be two arbitrary equivalence relations.

A.1 Proposition 2.4.4

Proposition 2.4.4. Let f, g induce maps from D to E as below.

li /
f > D g

D E

do dy €0 €1 dy dy €0 €1

Y

Then the following hold.
1. DfFE is a functional relation from D to E

2. DfE = DgFE if and only if there exists h : Y —— E such that eqg.h = g
and e;.h = f.

Proof. We prove 1 first. That F' = D fFE is defined from D to F is trivial because
DD =D and EFE = E. To prove that F' is total notice that by Lemma A.1.1,
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D < fEf° and then D = DDD < DfEf°D = FF°. To prove that F is
single valued use Lemma A.1.1 again and notice that f°Df < E implies that
I°F=Ff°DfE < FEE = FE.

Let us prove 2. For the if direction notice that it is enough to prove that
fE < gFE because then DfFE < DgFE and as both relations are functional by

item 1, they are equal by Proposition 2.4.3. So consider the following diagrams.

YXfE
Yx; B2 L p Ty
Ty €0 Y
Y f X L o €0

€1

We then have the following.

h
Y X, E— ExxE

It is very easy to prove that (7, e;.7g).h = (ny,e1.mp) 1Y X E——Y x X
which shows that fE < gF.

To prove the only if direction we are going to build a regular cover M of D
and a map mg : M —— E such that the square below commutes, inducing the

inner arrow which proves the statement.

M Ly
meg /3! (9. 1)
E X x X
<€0,€1>
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In order to build this square let us work out what does the equality H = DfE =

DgFE mean. We first calculate the two sides of the isomorphism separately.

/

p—L.yvx,p ™ g Q—L.yx, b . p

Pb Ty €0 dp Ty €0

D .Y ' D .Y '
dy f dy g

The equality means then that, as shown in the diagram below, the maps from
P and @ factor through the same subobject. The square in the diagram is a
pullback defining M.

Tp

M - P
TQ e (do-pp, €1.7p.D)
Q - H ~ - Y x X

€ <hYa hX)

(do-qp, €1.775.q)
It is fair to think

1. of @ as {(vo, y, z0)|yoDy A (gy)Exo},
2. of P as {(y0.y, x0)|yoDy' A (fy)Exo},
3. of H as {(y0,0)|(3y) (¥, ¥, 7o) € Q} = {(yo, 7o) [(FY')(v0, ¥', x0) € P},

4. and S0, of M as {<y07y7y/7 x0)|(y0,y,x0) € Q A (y()'/ylva) € P}

Using f’ and ¢’ it is easy to build maps my, my : M —— F such that intuitively
mg (Yo, ¥, ¥'s 2o) = (9y0) Exo and my(yo, y, ', 20) = (fyo) Exo.

Also, using that k = e;.7y.q.7g = e1.7g.p.1g (which follows from the diagram
above) together with m, and my it is easy to build a map mg : M —— E such
that intuitively mg(vo, v, v, 20) = (9v0)E(fyo). That is, letting k' = e.mg =
e.mp, (ey,e1).mp = (g, f).hy .k

Clearly k' is a regular epi because e and €' are. Also, by the first item of
this proposition we know that (hy,hy) is a functional relation, hence total by
definition and so hy is also a regular epi by Lemma A.4.2.

So, by letting my = hy.k’ we have the square (e, e1).mgr = (g, f).my that
we set up to build and so the proof is finished. O
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Lemma A.1.1. D < fEf° and f°Df < E

Proof. Easy. O

A.2 Proposition 2.4.5

Proposition 2.4.5. Let D and E be equivalence relations as above. Let (hy, hx) :
H —— Y x X be a functional relation from D to E and let h: Y —— X. Then,

the following are equivalent.

1. there exists an h' : D —— E such that eg.h' = do.h and e;.h' = di.h as in
the square below and also DhE = H.

h/

D E

do dy €0 €1

2. (id,h) < H

3. there exists an hgy : H —— E such that the following square commutes.

hg

H E

(hx,hy) (€0, €1)

X xY X x X

id X h

Proof. We first prove that 1 implies 3. Consider the following pullback diagram.

P— "y« EZLE | E

D Ty €0

D LY '
d; h

The equality DhE = H means that there exists a regular epi p : P — H such
that <CIZ().7'('D7 61.7TE.7T> = <hy, h)(>p
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Intuitively, the map p takes a 3-tuple (y,v', x) such that yDy' A (hy') Ez and
returns yHz.

On the other hand, consider the construction of the map [ below.

P Y xx E
D 3l TE
oo
D Exx FE FE
Y o €0
FE X

€1
Intuitively, [ takes a 3-uple (y,7/, ) as above to (hy)FE(hy') and (hy')Ex.

We then have the following outer diagram inducing the inner dotted arrow.

p <hX7 hY)

P - - X XY
l Fhg, id X h
A\
Exx FE - |~ - X x X
sym.trans (€g,e1)

To prove that 3 implies 2, consider the following diagrams.

H
y:i h
Dxy H—H El'ho E
TD hY . H XXE "E E
ud
D dl Y TH €0
H X
hx

Notice that 7wp is a regular epi because hy is by Lemma A.4.2. As H is defined
from D to E, there exist regular episd: Dxy H — Hande: Hxx F — H
satisfying certain equations. It follows that (hy, hx).(e.ho.d) = (id, h).dy.7p. As
do.7p is a regular epi, (id, h) < (hy,hx).
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To prove that 2 implies 1, notice that > (zd h)y < H°DH.

(h,i
As H is defined from D, (h,id)D{id,h) < H
As H is single valued, (h,id)D(id, h) < E.
But this easily implies 1. O

A.3 Definedness

In this section we show two simple lemmas involving the notion of definedness.

Lemma A.3.1. Let (fy,fx) : F—Y x X, h: Z — X and G be as in the
following pullback.

G F

<QZ,QY> <fX7 fY>

7 XY X xY

X 1

If (fy, fx) is defined from D then so is (gy,gx)-

Proof. By Lemma A.3.2 we need only check that (idz x dy) and (idz x dy) pull
GG back to the same subobject. But this is equivalent to (idx x dy).(h X id) and
(idx x dy).(h x id) pulling F' back to the same subobject. This holds because F
is defined from D (Lemma A.3.2 again). O

Intuitively, the next lemma is saying that a relation F' is defined from D is

total if and only if {z,y,V'|yDy' NzFy} = {z,y,y |yDy’ N xFy'}.

Lemma A.3.2. Let (fy, fx): FF —— Y x X a relation. Then F is defined from
D if and only if (id x dy) and (id x dy) pull (fx, fy) back to the same subobject.

U F

(fx: fy)
1d X do
id X dl

XxD X xY

Proof. For the purpose of the proof let us split the diagram above in the pullbacks
below.
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TF Up

D xy F F Up F
D fy Up Iy
D Y D Y
d1 dO

Let us start with the only if direction. We must prove that D xy F and U, are
isomorphic over X x D. The fact F' is defined from D means that (dy.7p, fx.Tr) =
(fy, fx).e for some regular epi e : D Xy F —> F.

It follows that (fx, fy).e = (id X dy).(fx.7r, p) and hence that D xy F' < U
over X x D.

In order to prove that Uy < D Xy F, first take the map s : Uy —— D Xy F
induced by the universal property of D xy F' and the equality fy.ur = dy.sym.up.
We then have that fy.e.s = dy.mp.s = dg.sym.up = di.up. The universal prop-
erty of D xy F shows that Uy < D xy F.

For the if direction we need to prove that DF = F' (that is, the image of
(dy.7p, fx.mF) is isomorphic to (fy, fx) over Y x X).

First, notice that as D is reflexive we have F = FA < F'D.

To show F' < DF, use the map F' —— D Xy F given by dy.refl. fy = fy.id.

To prove that DF < F' just use the hypothesis, that is, that there exists an
isomorphism i : D xy F' —— Uy such that (fx.up,up).i = (fx.7p,7p).

It follows that (fy, fx).up.t = (do.7p, fx.7r) and hence, that DFF < F. [

A.4 Totality

Intuitively, the following lemma shows that in a situation similar to that in Lemma

A.3.1, if h hits representatives of all F-equivalence classes then G is total.

Lemma A.4.1. Let F' be defined from D to E and total and let G and h be as
i Lemma A.3.1. Consider the following pullback diagram.

H E

h/
<hX: hz) (60; €1>

id X h

XxZ X xX
If hx = eg.h' is a regular epi then (gy, gz) is total.
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Proof. Consider the following diagrams.

h
FxxH-2L +H
h
FXXHL’H E“ho h/
T
hF hX FXXE E
hp
F fX X F €o
F X
fx

We are assuming hx is a regular epi, so hg also is. Moreover, because F' is
defined to E, there exists a regular epi e : F'x x E — F such that (fy, fx).e =

(fy.mr,e1.7g).
We can then build the following.
FxxH—%FxyxE

NN

Fx H

fy % hy <9Y>gZ> <fYan>

Y xZ Y x X

id X h

As F'is total, fy is a regular epi, so fy.hr also is and hence gy is a regular epi.
By Lemma A.4.2, GG is total. O

Below we show that a relation (fy, fx) : FF—— Y x X is total from D if and
only if Vy € Y)(3z € F)(fyz =1y).

Lemma A.4.2. Let (fy, fx) : F——Y x X a relation defined from D. Then
F s total from D if and only if fy is a reqular epi.

Proof. Let ko, ky : F' Xxx F —— F the kernel pair of fx.
Let us first prove the only if part. Totality means that we have a map ¢ :
D~ F'I'° as below where <t0, t1>.€ = <fy.]€0, fy.k1>.
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Y - D ~ FF°«+—Y xxY
A <t07t1>
Y xY

Using reflexivity it follows that ¢y is a (split) regular epi. Then ty.e = fy.ko also
is and hence fy also is.

We now prove the if part. Consider the left-hand pullback below. As fy is a
regular epi, mp also is. Now, as F' is defined from D, there exists a regular epi
e: D xy FF— F such that (fy, fx).e = (dy.7p, fx.7mF) and so we can obtain a

map d: D Xy ' —— F' X x F' as in the right-hand diagram below.

D xy F
Dxy FE_ L F
D fY
DY fx

fx
Together with 7mp being a regular epi, the following diagram shows that F is total

(the vertical right hand map is (fy.ko, fy.k1)).

Dxy F2 oo D

A.5 Pulling back relations

We now state one of the main observations that we need in Section 11.2.
It is not difficult to show that if (dy, d;) is an equivalence relation on X then for
any j: Y — X, (j%dy, 7*dy) is an equivalence relation on Y. That is, equivalence

relations are closed under pullback.
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Proposition A.5.1. Assume that there exists a j : X —— Y such that the
following two squares below are pullbacks.

g h

E - J - D

(€0, €1) (Jv,Jx) (do,d1)

X x X Y xY

—— YV X X ——
J xid 1d X j

Then the following hold.
1. (jx,Jjy) is a functional relation from E to D.
2. (Jy,Jx) is a single valued relation from D to E.

Proof. Concerning the first item. Let us prove that (jx,jy) is defined from FE.
The following diagram shows that J < EJ.

J
. id
Jx a1
T
X E X x J J
- .
reﬂ E Jx
FE X
€1

To show that EJ < J, it is enough to find a map F xx J —— J with the right

properties.

Wi h
ExyJ . J )
TE g sym
E DxyD— . D
g o dy
J ) LY
h d;



Then, we build the following.

! trans

ExxJ-deDxyD D
Ty, TE 3! sym
(T, 7E) \ Y
h
JXFE J D
. (Jv,Jx) (do, dy)
Jy X €o
Y x X — Y xY
1d X j

This finishes the proof that (jx, jy) is defined from FE.

The fact that it is defined to D is equivalent to the fact that (jy, jx) is defined
from D which we will show easily in the proof of 2.

That (jx,jy) is total with respect to £ is easily proved using Lemma A.4.2.
Just notice that, as jx.g = ey is a regular epi, so is jx.

Let us prove then that it is single valued with respect to D. For this, let
mo, 1 = J Xx J —— J be the kernel pair of jx.

We will find a map J x x J —— D satisfying the right properties.

1 h

J xx J . J )
=Y. o
J DxyD— . D
L 0 do

D Y
dy

Then we have (dy, d;).trans.h’ = (dg.mo.h', dy.71.10') = (do.h.7o, dy.sSym.h.mwy) =
<jY-7TOan-7Tl>-

Now let us consider item 2. The fact that (jy,jx) is defined from D follows
from the fact that D is defined from itself to itself and Lemma A.3.1.

The fact that it is defined to F is equivalent to the fact that (jx, jy) is defined
from E which we have proved above.

Let us prove that (jy,jx) is single valued with respect to E. So let kg, k; :
J Xy J — J be the kernel pair of jy and let the following diagram define ks.
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J xy J J
ko ks h
J Dxy D22 D
h o do
D DY

But then the outer diagram below commutes giving rise to the inside diagonal

arrow proving that (jy,jx) is single valued.
k
J Xy J —2> D Xy D
<k?0, ]{?1> =l trans

JxJ E

. . <603 €1> <d07 d1>
Jx X J)x

XXX%YXY
J X7
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Appendix B

Every equivalence relation is
relationally isomorphic to a
complete one

We give diagrammatic proofs of the results in Section 11.2 which, as explained

there, have essentially appeared in [27, 42].

B.1 Proposition 11.2.1

Proposition 11.2.1. Fvery equivalence relation E on X appears in a pullback

square as below.

E =
(€0, €1) (5, 71%)

X x X

AX x AX

Vg X Vg

Proof. First, let us prove that (vg x vg).(eg,e1) factors through =X. We use

Lemma B.1.1. So we need to check that the two pullbacks below coincide.

1% F_UBY Ly
-
id X €0
XX FE X x X A
id X €1 VE,A

But this is trivial because E is defined from itself to itself and hence by Lemma
A.3.2 the pullbacks coincide.
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We now prove that the square is a pullback. Let fy, f1 : ¥ —— X and
[ Y —— Z% be such that (75°, 7{%).f = (ve X vg).(fo, f1). By Lemma B.1.1 we

have that the following two pullbacks coincide.

f/
U = B T
fi
<U0,U1> <€0761>
id X fo
X xZ X xX A
id X fl VE A

This implies first that ug = eo.f] = eo.f] and that the following squares are

pullbacks.

f/

U—"—=F
fi

(5] €1

Jo v

Y X
fi

As ey is a split epi, so is u;. Let ug : Y —— U be a section of uy. In order
to prove the proposition it is enough to find a map v’ : ¥ —— E such that

(€o,e1).u = (fo, f1). First, consider the following diagram.

U
15 i
=Y
1
E Exx E E
To €o
sym
e
E SN ¢
Then, we use the fact that u; is a split epi to show the existence of u’ as follows.
1d Uy
U U Y
Uo. U
U Al (fo, f1)
Exx F -~ - X X X
trans (€0, €1)
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Lemma B.1.1. (f,g) : Z —— A* x AX factors through =% if and only if
ev.(idx X f) and ev.(idx x g) pull T back to the same subobject.

U Ex T
-
idx f
XxZ—=XxAX A
1d X g ev

Proof. Just calculate the transpositions and use the defining property of Z. [

B.2 Proposition 11.2.2

Proposition 11.2.2. The relation J is an isomorphism X/E —— Ag/=g be-

tween the equivalence relations E and Zg as objects in D gy /rey -

Proof. By Proposition A.5.1, we need only check that J is total as a relation from
=g to E. In turn, by Lemma A.4.2 this reduces to prove j, is a regular epi. It is
not difficult to show that the map Y —— =% factors through Zg in a way that

makes the outer diagram below commute.

ZE
<.j07j1> <007cl>
AE x X - S AE X AE
1d X vy
As e is a regular epi, jo has to be one too. O

B.3 Proposition 11.2.3

Proposition 11.2.3. =g is complete.

Proof. Let (dg,d;) : D ——Y x Y be an equivalence relation on Y and let
(fy, fr) : F——Y x Ag be a functional relation from D to Zp. We can form

the following pullback and transposition.
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G g .p " Ly
<nggY> <fE'fY> T
X XY — — Agp xY A
Vg X1 VF
/
Y / A

We first prove that f’ factors through Ag. In order to do this we will first show
that G is total and hence that gy is a regular epi. We will then prove that there
exists a map G —— T g making the outer diagram below commute. These imply

the existence of the inner arrow showing that indeed f’ factors through Ag.

/! .
gy / X
G % o Im(f’) A
e
v
TE > AE

(&

In order to prove that G is total we use Lemma A.4.1 whose sufficient condition
is nothing but the content of Proposition 11.2.2.
In order to prove the existence of the map G —— T g we will show that the

map (f' x vg).{gy, gx) factors through =X as in the diagram below.

G
(gY,QX> 3!\
Y x X TE EX
PRI N [T
AX x X - AX x AX
1a X Vg



By Lemma B.1.1 we need to show that Gy and (7 below are isomorphic over
X xG.

Gy IR e It g .Y
(90, 90) (fe, fr) T (91, 91) (€o, e1) T
X xG— ApxY A X xG— X x X A
Vg X gy Vg 1d X gx VE.A

Let us prove first that Gg < G.

As I is total, there exists a map t : F' Xy F'—— Eg such that (cy,c;).t =

<fE-7TOafE-7Tl>-

The arrow Gy —— E below implies that Gy < G.

t
Go— Py F =
(90, 90) 3!\ sym
X x G E > EE
X <€07 61> <COa Cl>
1d X gx
X xX / / AE X AE
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Let us prove now that G; < Gj.

o —2 . F - g
9 Jlgs sym
G F xp, EE o EE
. o Co
Pt

As F' is defined to Zg, there exists a map d : F' x,, Eg — F such that
(fy, fg).d = (fy.mo,c1.m1). The map d.gs : G; —— F can be used in the defini-
tion of Gy in order to prove that G; < Gy.

This finishes the proof that f’ : Y —— AX factors as f/ = €'.f for some
f:Y — Apg.

To finish the proof of completeness we need to find a map D —— =g wit-

nessing that f respects the equivalence relations as below.

By the definition of Zg it is enough to show that (f".dy, f'.di) = (¢/ x €').(f X
f)-{dy,d;) factors through =*.

By Lemma B.1.1, this reduces to show that ev.(id x f).(id x dy) = vp.(V X
id).(id x dy) and ev.(id x f').(id x d1) = vp.(Vg X id).(id x di) pull T to the same
subobject.

In turn, this reduces to check that id x dy and id x d; pull G back to the
same subobject. But as G is defined from D (because F' is, see Lemma A.3.1)
the above holds (see Lemma A.3.2). O
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-subobject classifier, 24
mono, 23
subcanonical quasi-topology, 116
subobject
classifier, 30
closed, 101
dense, 101
subsequential space, 21
extensional, 83
pre-extensional, 83
suitable
category, 40, 101

functor, 38

topological
group, 68
space, 16
topology, 16, 97, 108
canonical, 116, 132
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Grothendieck, 95, 108
sep-canonical, 115
sep-subcanonical, 114
subcanonical, 116
topos, 30, 53, 94, 135
presheaf, 35, 70
quasi-, 23, 24, 48
realizability, 54, 90
tripos, 139
theory, 136
typed partial combinatory algebra, 92

unity-and-identity-of-opposites, 80
universal
closure operator, 101, 108
on subobjects of projectives, 102
type, 93, 94

weak
dependent product, 36, 53, 125
finite limit, 35

weakly
complete object, 129
representable, 55

over projectives, 57






