
Diagrammatic Representations in
Domain-Specific Languages

Konstantinos Tourlas

Doctor of Philosophy

University of Edinburgh

2001

Abstract

One emerging approach to reducing the labour and costs of software develop-

ment favours the specialisation of techniques to particular application domains.

The rationale is that programs within a given domain often share enough com-

mon features and assumptions to enable the incorporation of substantial support

mechanisms into domain-specific programming languages and associated tools.

Instead of being machine-oriented, algorithmic implementations, programs in

many domain-specific languages (DSLs) are rather user-level, problem-oriented

specifications of solutions. Taken further, this view suggests that the most ap-

propriate representation of programs in many domains is diagrammatic, in a way

which derives from existing design notations in the domain.

This thesis conducts an investigation, using mathematical techniques and sup-

ported by case studies, of issues arising from the use of diagrammatic represen-

tations in DSLs. Its structure is conceptually divided into two parts: the first is

concerned with semantic and reasoning issues; the second introduces an approach

to describing the syntax and layout of diagrams, in a way which addresses some

pragmatic aspects of their use.

The empirical context of our work is that of IEC 1131-3, an industry standard

programming language for embedded control systems. The diagrammatic syntax

of IEC 1131-3 consists of circuit (i.e. box-and-wire) diagrams, emphasising a data-

flow view, and variants of Petri net diagrams, suited to a control-flow view.

The first contribution of the thesis is the formalisation of the diagrammatic

syntax and the semantics of IEC 1131-3 languages, as a prerequisite to the ap-

plication of algebraic techniques. More generally, we outline an approach to the

design of diagrammatic DSLs, emphasising compositionality in the semantics of

the language so as to allow the development of simple proof systems for inferring

properties which are deemed essential in the domain. The control-flow subset

of IEC 1131-3 is carefully evaluated, and is subsequently re-designed, to yield a

straightforward proof system for a restricted, yet commonly occurring, class of

safety properties.

A substantial part of the thesis deals with DSLs in which programs may be

represented both textually and diagrammatically, as indeed is the case with IEC

1131-3. We develop a formalisation of the data-flow diagrams in IEC 1131-3

and rigorously demonstrate the match between these diagrams, their internal

textual equivalents and their computational interpretation. Using the devices of

universal algebra, we formulate a general, rigorous consistency criterion regarding

such “dual” representations.

Finally, we motivate the need to include pragmatic aspects of diagrams, such

as layout, in formalisations. We demonstrate how certain classes of categories

can capture both the structure and layout of graph-based notations. Use of this

technique is concretely illustrated in terms of control-flow diagrams in IEC 1131-

3, yielding a basis on which diagram-driven and layout-sensitive rules of inference

can be formulated.

2

Acknowledgements

To Stuart Anderson, my supervisor, I owe a debt of gratitude, not least for his pa-

tience and skillful handling of my perpetually oscillating mood, which often swings

from optimism to pessimism in a matter of minutes. Stuart has had a profound

influence on my outlook to computing, instilling in me a genuinely holistic view:

that understanding computing at the social and cognitive levels is as important,

and complementary to, any technological or mathematical understanding. After

all, computer systems are designed for and used by people.

It was Stuart, too, who introduced me to Corin Gurr, with whom I’ve had

great pleasure working and from whom I have learned a great deal. Substantial

parts of this thesis have, directly or indirectly, benefited from our collaboration,

which I hope continues in the future.

During my third year, I was privileged to receive interest and encouragement

from John Power. John’s highly pragmatic advice, always accompanied by his

unique sense of humour, has had enormous influence on my view of the research

process.

My warmest thanks, too, to my friends Carsten, Conor, Pauline and Steve for

an endless supply of much needed displacement activities, useful discussions and

a great time.

Declaration

I declare that this thesis was composed by myself and that the work contained

herein is my own, with the exception of the material in Chapter 6 which is the

product of joint work with Dr Corin A. Gurr1. Early versions of parts of this

thesis have already been published elsewhere:

• Chapter 3 as [49] (sections 3.4 and 3.5) and [5, 6] (rest of chapter)

• Chapter 4 as [4]; and

• Chapter 6 as [48].

Konstantinos Tourlas

1Corin Gurr is a member of the Human Communication Research Centre (HCRC) at the
University of Edinburgh.

Table of Contents

Chapter 1 Introduction 5

1.1 The practical problem . 6

1.2 The nature of our approach . 7

1.3 Related work and literature . 9

1.3.1 Domain-specific languages 9

1.3.2 Visual (programming) languages 10

1.3.3 Summary . 11

1.4 Outline by chapter . 11

1.5 Background requirements and conventions 12

1.5.1 Algebras, signatures and terms 13

1.5.2 Conventions . 14

Chapter 2 The Domain of Embedded Control 15

2.1 Reactive, embedded and Real-Time systems 15

2.1.1 Models of reactive software 16

2.1.2 The synchronous approach to embedded control 17

2.2 Programmable logic controllers 18

2.3 The IEC 1131-3 standard . 19

2.3.1 Function Blocks and their diagrams 21

2.3.2 Sequential Function Charts 23

2.4 Discussion . 26

Chapter 3 Design for Proof 27

3.1 Introduction . 27

3.2 Design for Proof . 29

3.3 Compositionality . 29

3.3.1 Compositional inference systems 30

3.3.2 Compositionality in semantics 30

3.3.3 The choice of logic . 31

3.4 Homomorphicity, systematicity 31

1

3.5 Lack of systematicity in IEC SFCs 34

3.6 A rational re-design of SFCs . 36

3.6.1 Characterising the domain 37

3.6.2 Choosing the logic . 38

3.7 An abstract syntax for SFC diagrams 39

3.7.1 Program Gravel translated 39

3.8 A compositional semantics of SFC diagrams 40

3.8.1 Semantics of actions . 40

3.8.2 Semantics of SFC programs 41

3.9 The proof system . 44

3.10 Verifying Gravel . 46

3.11 Discussion . 47

3.12 Proof of Proposition 3.1 . 48

3.12.1 Preliminaries . 48

3.12.2 Main proof . 49

Chapter 4 On the Coexistence of Text and Diagrams in DSLs 51

4.1 Motivation . 51

4.2 Outline of method . 52

4.2.1 Notation . 53

4.3 An abstract syntax for function blocks 54

4.4 Diagrams . 57

4.4.1 From terms to diagrams 58

4.4.2 Proper diagrams . 58

4.5 An algebra of diagrams . 60

4.6 Equational Laws . 63

4.7 Completeness . 63

4.8 Connecting diagrams and programs 71

4.8.1 Semantics of Function Blocks 71

4.8.2 Verifying the equational laws 73

4.9 Discussion . 74

Chapter 5 Graphs and Categories 76

5.1 Graphs . 76

5.1.1 Graph homomorphisms . 77

5.1.2 Reflexive graphs . 77

5.2 Categories . 78

5.2.1 Examples of categories . 78

2

5.2.2 Commutative diagrams . 80

5.3 Isomorphisms . 80

5.4 Coproducts . 81

5.4.1 The coproduct in Graph 83

5.5 Pushouts . 83

5.5.1 Properties of pushouts . 85

5.5.2 Gluing graphs . 85

5.6 Tensor categories . 86

5.6.1 Symmetric tensor categories 88

5.6.2 Traces on tensor categories 89

5.6.3 Units and counits . 91

5.7 Further Remarks . 92

Chapter 6 Formalising Pragmatic Features 93

6.1 Visual language pragmatics . 94

6.2 Layout in SFC diagrams . 95

6.3 Specifying structure and layout 96

6.3.1 Diagrams of arrows in tensor categories 98

6.4 Specifying SFC diagrams . 102

6.4.1 The tensor category of metagraphs 106

6.4.2 SFC expressions . 110

6.5 Representations and tasks . 112

6.6 Reasoning on diagrams . 115

6.7 Discussion . 116

Chapter 7 Metagraphs for SFC diagrams 119

7.1 Intuition behind metagraphs . 119

7.1.1 SFC nets . 119

7.1.2 From SFC-nets to metagraphs 122

7.2 Categories of metagraphs . 123

7.3 The tensor category of concatenable metagraphs 125

7.3.1 Concatenable metagraphs 125

7.3.2 Operations on concatenable metagraphs 126

7.4 Discussion . 133

Chapter 8 Conclusions 135

8.1 Summary of main results . 136

8.2 Directions for further work . 137

3

8.2.1 Empirical work . 138

8.2.2 Cognitive analysis of representations 138

8.2.3 A mathematical theory of representation 139

8.2.4 Supporting domain-specific reasoning 140

Bibliography 141

4

Chapter 1

Introduction

There is a tension between engineering practice and the objectives of programma-

bility in computer systems. Typically, engineering practice is domain-specific ex-

ploiting the constraints of the class of systems under study to simplify the design

task for the engineer. By contrast, programmable systems rest upon the princi-

ples of universality, generality and ultimate flexibility. The recent popularisation

of domain-specific programming languages propounds one approach to resolving

this tension.

Our view emphasises representations for programmable systems that incorpo-

rate domain knowledge and notation. In many situations domain notations are

extensively diagrammatic, thus suggesting a naturally diagrammatic syntax for

programming languages specific to the domain. This incorporation of domain no-

tation in program representations provides strong support for the integration of

programmable components into the engineering practices of domains. However,

there is as yet no systematic study of the qualities and features representations

must possess in order to be effective in supporting this integration.

To this end, this thesis contributes the novel application of established and

emerging mathematical techniques to the analysis of diagrammatic domain-specific

languages. Our analysis is not only based on languages enjoying wide industrial

use, but also motivated by pragmatic issues arising from the use of diagrams in

such languages. One issue relates to the potential divergence between a user’s

interpretation of diagrams as artifacts in the domain and their actual computa-

tional interpretation. The other issues addressed concern the degree to which

diagrammatic syntax supports domain experts in reasoning about programs and

the use of secondary features (such as layout) in encoding domain knowledge.

5

1.1 The practical problem

Seldom is any domain of knowledge or expertise mature without the development

of specialised vocabulary and notations for the description and analysis of artifacts

in the domain. One one hand, the role of notations is cognitive in nature as

they provide support for basic design and reasoning tasks. On the other hand,

notations also have an important social role as communication interfaces between

different, and possibly diverse, technical specialities involved in a domain.

To date, Computing Science has focused primarily on universal notations for

system representation which are primitive and thus generic: general-purpose pro-

gramming languages and hardware descriptions in terms of basic components (e.g.

logic gates, counters, etc.) are both examples of such notations.

On the other hand the development of domain-specific techniques in comput-

ing has been remarkably slow—except perhaps in hardware design where building

blocks are becoming increasingly application-specific. Rectifying this situation is

therefore being argued for as a vital area of future research, as, for instance, in a

document [98] by Bennett and McDermid submitted recently to the Engineering

Board of the British Computer Society:

Work on artifacts, or products, has to be domain-specific, i.e. to re-
flect the structure of artifacts in a particular industry. [. . .] In other
engineering disciplines, the underlying science is adapted to provide
domain specific notations and analyses. It is important to adopt a
similar approach in Software Engineering to ensure that research pro-
duces usable methods which offer significant technical advantage.

The design of domain-specific programming languages also features promi-

nently in [45], a report to the ACM meeting on Strategic Directions in Computing

Research (organised on the Association’s 50th anniversary), as one of four areas

that demand additional research immediately. According to Gunter, Mitchell and

Notkin:

Domain-specific languages are intended to allow domain engineers to
develop families of applications that are easily specified, highly evolv-
able, and largely automated.

In the same report, the formalisation of informal notations found in domains

and the development of theoretical frameworks applicable to domain-specific lan-

guages are proposed as specific sub-goals. These provide the starting point of our

research.

6

1.2 The nature of our approach

One way of characterising a domain is in terms of the practices and design pro-

cesses that experts in the domain employ; the objects of such practices and pro-

cesses being the artifacts of interest in the domain. An essential feature of design

processes in mature domains is the use of specialised notations to provide conve-

nient representations of the artifacts being designed with the aim of facilitating

analyses and the inference of commonly required properties. Control engineers,

for instance, have developed variants of circuit diagrams and Petri nets as no-

tations for the design and analysis of embedded controllers. Similarly in rail

transport, engineers have evolved their own notation to represent the complex

structure of signalling systems [107, 106].

Central to our approach is the belief that domain-specific representations of

computer software should accord with, and ideally be derived from existing no-

tations in the domain. As an instance of this, we consider the diagrammatic

representation of software elements in the formalism of IEC 1131-3, the industry-

standard programming language for embedded control systems. Software dia-

grams in IEC 1131-3 derive directly from circuit notations and, as such, they

encourage thinking in terms of a “hardware” paradigm which is familiar to con-

trol engineers. In actuality, however, these diagrams are internally translated into

sequential programs and executed by microprocessors.

This example illustrates how representations can support understanding of

system structure and operation in terms of artifacts in the domain—in our case

the hard-wired controller circuits which software elements replace. Our may there-

fore attempt to understand domains first at a social level, in terms of engineering

practice, and at a cognitive level, in terms of the way representations support in-

dividuals contributing to engineering practice. Here, our work centres on the re-

lation between representations and domain artifacts and how appropriate choices

of representation ease reasoning tasks. Particular choices of representation may

differ profoundly in their ability to support particular tasks and inferences. In

Chapter 3, for example, we show how IEC 1131-3 diagrams could be improved to

facilitate the formulation of a simple proof system for expressing and validating

simple safety arguments. Our eventual aim, partly realised in this thesis, is to

inform mathematical analyses of diagrammatic representations by the findings of

established cognitive analyses.

In order to validate the use of diagrammatic representations as vehicles for the

analysis and programming of domain-specific software, one requires a theory of

how these representations relate to concrete implementations. Our second concern

7

is the development of such a theory, based upon rigorous models of the abstract

syntax of diagrams (static structure) and semantics (dynamic behaviour). It

seems that diagrams aim to make concrete some structural aspects of systems

while the behaviour of systems bears some (possibly complex) relation to the

structure.

This distinction between structural and semantic (behavioural) models is com-

mon in the study of the semantics of computation where some structural equiv-

alence is introduced to ease the presentation of the semantic models (e.g. CCS

[103] and the pi-calculus [104]). Here we take the view that interposing a struc-

tural model between the concrete (and largely informal) representations and the

semantic models provides an intermediate level that is suited to studying do-

main specific semantics and reasoning. We aim to study and develop techniques

which, whilst rigorous and semantically sound, enable reasoning to be conducted

primarily on representation and be justified by reference to structural models.

An approach of how this can be done in a formally justifiable manner will be

presented in Chapters 3 and 6.

Finally, our approach is concerned with criteria which representations impose

on the suitability of candidate implementations. In Chapter 4, for example, we

define an algebra corresponding to the abstract syntax of a class of IEC 1131-

3 diagrams and formally demonstrate the match between these diagrams, their

internal textual equivalents and their computational interpretation. The result

generalises to a rigorous criterion for the use of diagrammatic notations in domain-

specific languages.

However, the scope of the research herein presented is only partly contained

within the well-established field of programming language semantics. More broadly,

we focus on two areas that promise to forge a link between cognitive and semantic

concerns in domain specific notations:

• the extent to which features identified by cognitive analysis of domain spe-

cific notations can be incorporated into expressive structural models.

• the study of mappings between structural and behavioural models in their

capacity to justify the manipulation of diagrams by humans in reasoning

about the behaviour of systems.

8

1.3 Related work and literature

1.3.1 Domain-specific languages

Recently there has been a resurgence within the programming languages commu-

nity of interest in domain-specific languages (DSLs) [117, 76]. Among a majority

of publications detailing and justifying the design of individual languages, there

is a growing number of attempts to address issues of wider concern. Broadly,

these issues relate to the implementation and methodological design of DSLs.

1.3.1.1 Implementation techniques

Investigations into the rapid implementation and prototyping of DSLs have yielded

a number of approaches based on the specialisation of existing syntactic and se-

mantic techniques. These range from the mostly syntactic (e.g. “jargons” [108])

to the mostly semantic (e.g. constraint programming [34, 35]). Among the most

popular are techniques based on the embedding of DSLs into general-purpose

languages and the domain-specific compiler or program specialisation.

The use of general-purpose languages as hosts for DSLs is advocated mainly by

the groups led by Hudak [70] and Kamin [77]. In their approach, a newly devised

DSL inherits the infrastructure of a high-level, strongly-typed functional language

such as ML or Haskell. In addition to drastically cutting down implementation

effort, this in principle enables reuse, or specialisation, of static analysis and

type-checking tools. The main limitation, in our view, relates to the extent in

which the DSL semantics is naturally expressible in terms of that of its host

language. (The same argument is often used by the proponents of Haskell owing

to the language’s ability to express a variety of user-defined semantic effects via

monad transformations [87].) When an adequate semantic match exists, the

results can be highly satisfactory as demonstrated by case studies in 3D graphics

animation [29, 30], picture-drawing [78] and “geometric region servers” [19]. More

recently, variants of the approach employ the host language to construct stand-

alone, modular interpreters for DSLs. There appears to be some friction between

the objectives of interpreter modularity and optimisation [71] and a variety of

technologies (including staging, monads [122] and partial evaluation [71]) are

currently being evaluated.

The other popular approach regards programs in a DSL as a family, i.e. a

class of programs characterised by a large number of common features. The idea

is to incorporate application semantics into the compilation process [32] by ap-

plying a range commonality analysis techniques. Due to the costs associated with

9

compiler design and implementation, which are often disproportionally high to

the size of typical DSLs, interpretation methods are often preferred. In his thesis

[139], Thibault details a method by which a domain-specific abstract machine is

obtained to serve as a basis for interpreter generation and later optimisation by

means of partial evaluation. The emphasis there is on the automatic generation

of efficient interpreters for DSLs and the method has been evaluated on languages

for video device drivers [138] and active networking [137].

1.3.1.2 Methodologies of DSL design

These attempt to place DSL design and implementation into the wider context

of domain engineering. Methods of domain engineering address the issue of iden-

tifying or creating reusable assets within a problem domain following thorough

analysis of commonalities and variability among specific problem instances [7].

In this respect, requirements for a domain-specific language may be seen as a

possible product of domain engineering.

The SDA (standing for Software Design Automation) methodology, proposed

by Hook and Widen [145], takes the results of domain engineering as its starting

point in guiding language design and implementation. It relies on building an

essentially mathematical model of the domain, represented in a typed functional

language. A candidate solution to the DSL design problem is subsequently vali-

dated with respect to the model, which also provides a formal semantics for the

language. Thereafter, implementation follows techniques largely similar to those

proposed by the advocates of embedded DSLs. Reliance on a formal semantics

is advertised as one of SDA’s merits. There is, however, no work known to us

which uses this semantics as a foundation for the development of language-specific

reasoning techniques. It also appears that the method is still in need of further

evaluation, its current demonstration being in terms of a messaging system [143].

1.3.2 Visual (programming) languages

Owing to our interest in diagrammatic representations of software, our work nat-

urally relates to developments in visual programming languages. To date, the-

oretical efforts in the field have focused mainly on the formulation, application

and classification of grammatical techniques for graph specification and parsing

(recognition). Relevant surveys are provided by Marriott and Meyer [95, 96, 97].

As Erwig remarks [33], it is mainly the concrete aspects of visual syntax that

this research addresses. Grammatical formalisms are therefore deemed too cum-

bersome to serve as a basis for semantic definitions. Alternatively to regarding a

10

visual language as the set of graphs producible by a grammar, one may attempt

to obtain it as an algebra. More specifically, as the free algebra generated by

applying a finite number of graph-based operations to a set of primitive visual

programs.

Yet, the application of algebraic techniques in the description of visual lan-

guages (as opposed to the study of graph grammars and transformations) has

been remarkably scanty. A notable exception is [142], where a Visual Object Def-

inition Language is introduced, based on the principles of algebraic specification.

Whereas the authors depart in advocacy of application-specific visual languages,

their algebra itself is intended to be general (in the sense that a variety of visual

notations could be defined in it). The view suggested in this thesis is that the

choice of a particular algebra should be specific to the notation at hand. Instead

of fixing any seemingly generic choice, attention should be shifted towards the col-

lective meta-theoretic properties of notation-specific algebras and their relation

to semantics.

1.3.3 Summary

On the whole, recent research on domain-specific languages has focused almost

exclusively on textual languages and domains within mainstream computing (e.g.

web computing [18] and networking [137]). In such domains, language specificity

manifests itself primarily as “special [textual] syntax, operations and types” [77].

We wish to argue that, in general, the understanding of DSLs requires a context

which is wider than simply “syntax” (or, even, semantics in the limiting sense

that the term is applied to the semantically-driven construction of interpreters

using techniques borrowed from general-purpose languages). Whereas it is widely

agreed that a good DSL must capture the native notation and semantics of its

application domain [17, 70], the range of languages studied thus far has led to a

particularly narrow perception of both “notation” and “semantics”. By empha-

sising industrial (engineering) domains and diagrammatic representations, our

work aspires to contribute a genuinely new perspective.

1.4 Outline by chapter

The structure of this thesis can be conceptually divided into two parts:

• Part One is concerned with semantic and reasoning issues arising from the

use of diagrams in domain-specific languages.

11

– Chapter 2 introduces the domain of embedded control and IEC 1131-

3, a class of industrial languages which are used to both motivate and

illustrate our approach.

– Chapter 3 formulates and demonstrates an approach to the design

diagrammatic DSLs. The approach emphasises compositionality in the

semantics of the language so as to allow the development of a simple

proof system for inferring properties which are essential in the domain.

– Chapter 4 deals with DSLs in which programs may be equivalently

represented textually or diagrammatically. It establishes a rigorous

consistency criterion regarding the two representations and details its

application on the data-flow subset of IEC 1131-3.

• Part Two introduces an approach to defining the abstract syntax of dia-

grams in a way which both captures pragmatic aspects of their use and

provides a basis for formal reasoning.

– Chapter 5 introduces the mathematical preliminaries required in this

part, namely the category of graphs and graph-homomorphisms and a

variety of monoidal categories (herein referred to as tensor categories).

– Chapter 6 motivates the need to include pragmatic aspects of dia-

grams in formalisations and demonstrates how a tensor category of

metagraphs captures the abstract syntax and layout of control-flow di-

agrams in IEC 1131-3. Use of the formalism is subsequently illustrated

in formulating inference rules for reasoning directly on the structure

of diagrams.

– Chapter 7 justifies the choice of metagraphs as specifications for IEC

1131-3 control diagrams and provides formal evidence that their cate-

gory has the kind of algebraic structure required in Chapter 6.

1.5 Background requirements and conventions

A substantial amount of exposition in this thesis is mathematical in nature. The

reader is assumed to possess a working knowledge of set theory and first-order

(predicate) logic1. Some familiarity with universal algebra [99] will also be useful,

so we provide a brief and simplified review of the basic concepts.

1Three texts which the author recommends as particularly gentle, pleasing-to-read introduc-
tions to sets and logic are [44, 133, 59]

12

1.5.1 Algebras, signatures and terms

A multi-sorted algebra is a collection A of sets, called the carriers, together with

functions of the form f : A1 × . . .× An → Am (where Ak ∈ A), called operations,

and possibly some distinguished elements ci called constants.

A signature Σ is a collection of symbols partitioned into: a set SΣ of sort

symbols, a set KΣ of constant symbols, and a set FΣ of function symbols. Each

constant symbol c is associated with a sort s, this association being written c : s.

Each function symbol is associated with a string s1 · · · sm+1 of sorts (i.e. an ele-

ment of S+
Σ), called the arity of the symbol, and one writes f : s1 · · · sm → sm+1

to denote this.

An algebra for a signature Σ is a collection of sets As, one for each sort s in

Σ, together with a distinguished element ac ∈ As for each constant symbol c : s

in Σ and a function Ff : As1 × . . .×Asm → Asm+1 for each function symbol f in

Σ of arity f : s1 . . . sm → sm+1.

Given any signature Σ and a setX whose elements are regarded as “variables”,

one may construct an algebra of terms (i.e. expressions) over Σ and X, denoted

T(Σ, X). Each variable x ∈ X is associated with a sort s, written x : s. All terms

are formed as follows:

• c is “a term of sort s” for every constant symbol c ∈ KΣ such that c : s.

• x is “a term of sort s” for every variable x ∈ X such that x : s.

• Given terms t1, . . . , tn of respective sorts s1, . . . , sn and a function symbol

f : s1 · · · sn → sk, then f(t1, . . . , tn) is a term of sort sk. It is customary to

use infix notation for binary function symbols and write “t1 f t2” instead of

“f(t1, t2)”.

Each carrier of T(Σ, X) collects together all terms of the same sort. Each term

of the form “c” is a constant (i.e. distinguished element). To recognise T(Σ, X)

as an algebra, think of each term “f(t1, . . . , tn)” as resulting from applying a

function (corresponding to the symbol f) to the terms t1, . . . , tn.

An equation over a term algebra T(Σ, X) is a pair 〈t, t′〉 of terms (of the same

sort), conventionally written as t = t′. If t = t′ can be established by means of

equational reasoning using a set E of equations as axioms, one writes E ` t = t′.

This establishes an equivalence relation on T(Σ, X): two terms (of the same sort)

are equivalent if they can be proved equal using E. The algebra T(Σ, X)/E in

which each carrier collects all the equivalence classes of terms of the same sort

is called the quotient of T(Σ, X) by E and has a very special property. Every

13

other algebra which corresponds to the same signature Σ and in which equality

is precisely captured by the axioms E is “essentially the same” (isomorphic) to

the quotient algebra T(Σ, X)/E.

1.5.2 Conventions

Definitions, propositions and examples are numbered with reference to the chapter

in which they occur first. Thus, for example, “Definition 5.4” refers to the fourth

definition in Chapter 5.

The proofs of propositions and lemmas are given in the text (as opposed to

an appendix). Some of the longer proofs, especially in Chapters 4 and 7, may be

skipped at first reading.

14

Chapter 2

The Domain of Embedded
Control

This chapter introduces the domain of embedded control and its associated sys-

tems. This commonly occurring class of systems spans many different industries

(e.g. automotive, process control, ASIC design, mobile telephony) and is a very

common component of critical systems. The reason for our interest in embedded

control is twofold:

• One of the first, principled and highly convincing arguments for the need

to design and employ domain-specific languages originated in this domain

[13].

• Most languages specific to the domain are naturally diagrammatic or admit

both diagrammatic and textual representations of programs in order to cater

for the needs of human users and system tools alike.

2.1 Reactive, embedded and Real-Time systems

Following a tradition established by Harel and Pnueli [61] (also [90], pages 3–5),

the universe of computer programs is conceptually partitioned into those which

are transformational and those which are reactive.

The purpose of a transformational program is to produce a set of outputs

by applying a finite amount of computation to a given set of inputs. Thus, at

least conceptually, changes in the inputs can only be accommodated in between

program invocations. Examples in this class include compilers and programs for

numeric computation (equation solvers, integrators etc.).

By contrast, a reactive program is one that maintains an ongoing interaction

with its environment; during which it responds to a dynamically changing stream

15

of inputs by dynamically producing an appropriate stream of outputs. Conven-

tional examples of such programs include operating systems and graphical user

interfaces. The most widespread application of reactive programs, however, is

in the control of mechanical, chemical and other processes (e.g. engines and re-

actor plants). In such control applications, the reactions of the program aim to

counteract changes detected in the state of the environment (the process being

monitored), thereby controlling the environment’s evolving behaviour.

Additionally, as it is commonly the case in control applications, the reac-

tions of a reactive program may be constrained by specific temporal deadlines.

Therefore, the correctness of such real-time programs not only depends on the

functional aspects of their operation (logical correctness) but also, and critically

so, on the timeliness of their behaviour (temporal correctness). In practice, timing

constraints often mandate that specialised hardware is dedicated to the execution

of real-time programs and that such hardware is, in turn, tightly coupled with

the environment to ensure minimum latency in detecting and effecting change. In

such cases, one speaks of reactive systems (that is, combinations of reactive soft-

ware and specialised hardware) which are embedded in their environment. Most

real-time control systems are embedded in this sense.

2.1.1 Models of reactive software

Mathematical functions provide an adequate, and also natural, abstraction of

(the behaviour of) transformational programs. In particular, this view forms the

basis of the denotational approach to the semantics of conventional programming

languages [121]. In this framework, reference to time is made only when issues of

termination or complexity are discussed. Even then, either a qualitative account

of time passage suffices [65], or the semantic model is explicitly augmented with

complexity measures [53].

On the other hand, the modelling of reactive programs is typically operational

in style, relying on transition systems to provide a mathematical abstraction

of their behaviour [90]. A transition system is, in essence, an automaton: the

states represent discrete configurations of the program’s state and each transition

represents an action by the program to transform one state into another.

In order to deal with real-time software, the introduction of an explicit, quan-

titative account of time passage becomes inevitable. In this direction, transition

systems have been extended in various ways. The two most popular approaches

consist in the specification of temporal bounds (minimal and maximal delays) on

transitions to obtain timed transition systems [66, 67], and the introduction of

16

“clocks” (i.e. variables recording the passage of time) to obtain timed automata

[1, 2].

In spite of recent progress, the current mathematical theory of real-time soft-

ware is in many ways unsatisfactory and remains the subject of much ongoing

research. Hoogeboom and Halang [69] discuss why computing lacks a stable no-

tion of time by reviewing the philosophical, physical, mathematical, technological

and social understandings of the concept. In particular, a significant problem re-

gards the mathematical conception of time. Most commonly, time “values” are

required to form a dense set, usually that being R (the set of real numbers). This,

in turn, reflects a continuously varying environment which can unpredictably pro-

voke events occurring at any point in time. Unfortunately, the complexity of

reasoning over R seriously impedes the practical application of the theory to the

verification of real-life systems. In response, techniques based on Q (the set of

rational numbers) as an approximation (e.g. [58]) have been developed.

2.1.2 The synchronous approach to embedded control

In contrast to the general situation, the theory of embedded control software

exhibits remarkable simplicity and has achieved a significant transfer of techniques

into industrial use. Key to this success has been the observation that certain

assumptions governing the application domain lead to simplifications in the design

of specialised languages.

Among the earliest languages used in the domain were variants of general-

purpose, imperative and concurrent languages such as Ada [13]. As a result of the

asynchronous nature of process communication and the non-deterministic nature

of concurrency in such languages, the behaviour and timing of control software

became extremely hard to predict. In reaction to this unsatisfactory situation,

a number of so-called synchronous languages were developed in the 1980’s, the

most prominent among which being Esterel [16, 14], Lustre [57, 20], Signal [38],

Statecharts [62] and Argos [91]. The design of synchronous languages rests on

the idealisation, called the synchrony hypothesis [10, 89], that each reaction of

the system is instantaneous. Any reference to “real time” within synchronous

programs may then be eliminated, resulting in the development of simple semantic

models [12, 15, 92, 21].

17

bin_empty (sensor)

truck_on_ramp
(sensor)

bin_valve

TRUCK

BIN

BELT

CONTROL PANEL

sw load
run

Figure 2.1: A gravel dump site. Labels having arrows pointing towards them
represent inputs to the PLC, whereas labels with outgoing arrows represent PLC
outputs.

2.2 Programmable logic controllers

Programmable logic controllers [135, 111] (PLCs) are a class of embedded systems

developed specifically for applications in industrial process control. As the name

implies, a PLC is programmed to compute a particular, usually mode-dependent

and time-varying, relation between a set of controlled outputs and a set of process-

related inputs.

Figure 2.1 (adapted from an example in [23], Annex F) presents the setup

of a typical PLC application. Here the task is to transfer a measured amount

of gravel from a bin onto a track under human supervision. Human control is

exercised through a panel of two on/off switches, the status of which is represented

as boolean variables sw and load in the PLC system. The other two inputs to

the controller come from two sensors represented as boolean variables bin empty

and truck on ramp respectively. Based on these inputs the controller computes

boolean outputs run and bin valve to control the motion of the conveyor belt and

the valve at the bottom of the bin.

Control theory models processes as vectors of continuously varying quantities,

called signals. The inputs to a PLC are discritised (i.e. quantised through sam-

pling) representations of these signals. In the preceding example, for instance,

the input bin empty is a boolean quantisation of the quantity of gravel in the

bin, which may assume any real value between 0 and the capacity of the bin.

Discretisation is performed by an array of devices called sensors. Similarly, the

outputs from the PLC are effected upon the controlled process through an array

18

of actuators. These, in turn, drive a variety of electromechanical devices, such as

motors, pumps or relays. The embedding of a PLC in the context of a plant is

illustrated in Figure 2.2.

Driven by a digital clock, a PLC repeats a simple three-step cycle consisting

of:

1. reading the values of the sensors (inputs) on the occurrence of each clock

pulse;

2. computing before the next occurrence of a clock pulse, and by means of

executing instructions in software, new values for the outputs based on the

current inputs; and

3. releasing the new output values to the actuators at the next occurrence of

a clock pulse.

In practice, sophisticated latching mechanisms are employed to ensure that the

inputs presented to the PLC are stable when they are read at the beginning of

each cycle; correspondingly, the outputs are also latched before they are applied

at the beginning of the next cycle. Diagrammatically, this sequence of events is

illustrated in Figure 2.3.

A critical assumption in the application domain is that the clock of the PLC is

much faster (sometimes by orders of magnitude) than the rate at which the signals

representing the environment change. This justifies one in applying the synchrony

hypothesis, with important ramifications to the design of PLC software.

In general, the control program executed by a PLC consists of multiple, com-

municating units which operate concurrently (as suggested in Figure 2.2). Since

all computation and communication internal to the PLC must take less than

a clock cycle, synchrony enables the view that internal communication delays

are zero and that all internal components compute in constant time. This view

presents the control engineer with a greatly simplified, yet adequate, model of

computation.

2.3 The IEC 1131-3 standard

In 1993, PLCs became the subject of IEC International Standard 1131. Part 3

of this standard [23, 86], defines a suite of four domain-specific languages which

have become known collectively as IEC 1131-3. Programs in these languages

may be represented either diagrammatically or textually and the two forms of

19

Programmable Logic

Controller

ActuatorsSensors

Plant (process)

Control Software

Clock

Figure 2.2: Embedding of a PLC system.

System
Clock

PLC Output

PLC Input

Latch outputs and

Latch outputs from previous
cycle and new inputs

inputs for next cycle

One Cycle

Figure 2.3: Three-step PLC cycle.

20

representation are declared equivalent by the standard. The conceptual elements

of PLC programs reflect the two main aspects of control programming:

1. Function Blocks specify data dependencies between individual outputs and

inputs of the system.

2. Sequential Function Charts (SFCs) specify how the overall mode of the

system (i.e. the overall input-output relation) changes over time in response

to internal and external events.

2.3.1 Function Blocks and their diagrams

Function blocks are the basic units of PLC programs and encourage the designer

to use predefined components which are then composed to form control pro-

grams. Figure 2.4 shows an example of the graphical declaration of a function

block in IEC 1131-3 notation. The block uses two named instances “DB ON” and

“DB OFF” of a predefined timer block (“TMR”) and an instance “DB FF” of a

predefined “SR” flip-flop block to debounce a binary input “IN”. The outputs of

the block are “OUT” and “ET OFF”. The inputs and outputs of each block con-

stitute its external interface and, by appeal to the diagrammatic representation,

we shall call them the ports of the block.

Function block diagrams are appealing to the user because they resemble

typical circuit schematics developed by control engineers for describing hard-

wired controllers. For the purposes of machine interpretation, however, function

blocks are also given a textual representation in a language called Structured

Text (ST). Figure 2.5 shows the textual declaration corresponding to our example

function block. Labels (and types) for inputs and outputs are introduced by the

keywords VAR IN and VAR OUT, whereas VAR introduces labels for instances

of predefined blocks. The body of the block consists of assignments to the output

labels with references to the input labels and the outputs of block instances (in

the form INSTANCE.OUTPUT).

In essence, function blocks are simple, synchronous data-flow [11] programs

specifying the outputs as functions of the inputs. In general, the function com-

puted may be dependent on the history of its own computation. History depen-

dencies are introduced by means of feedback loops linking outputs to inputs as

illustrated in Figure 2.6. In this example, the new value for A in each cycle is the

value of Q computed in the previous cycle. Explicit initialisation of A is required

to provide a value in the first cycle. In ST, loops are implemented with the aid

of “local variables” whose values persist between invocations:

21

(* Function Block Body *)

IN
Q

ET

TMR

DB_OFF

IN
Q

ET

TMR

DB_ON

Q

R

S

SR
DB_FF

FUNCTION_BLOCK

INBOOL

(* External Interface *)

DEBOUNCE

BOOL

TIMEET_OFF

OUT

IN
OUT

ET_OFF

END_FUNCTION_BLOCK

Figure 2.4: Example of graphical function block declaration.

FUNCTION_BLOCK DEBOUNCE
(** External Interface **)

VAR_INPUT
IN : BOOL;

END_VAR
VAR_OUTPUT
OUT : INT;
ET_OFF : TIME;

END_VAR
VAR
DB_ON : TMR;
DB_OFF : TMR;
DB_FF : SR;

END_VAR
(** Body **)

DB_ON(IN := IN); DB_OFF(IN := NOT IN);
DB_FF(S := DB_ON.Q, R := DB_OFF.Q);
OUT := DB_FF.Q; ET_OFF := DB_OFF.ET;

END_FUNCTION_BLOCK

Figure 2.5: Function block DEBOUNCE in ST.

22

FILL_BIN CU

TON

CV BIN_LEVEL

PT

IN Q

AND

B

A

C

SETPOINT

Q

F

PULSE_TIME ET

PV

Figure 2.6: Block diagram containing a loop from the output Q of TON to the
input A of AND.

FUNCTION BLOCK ...
VAR_INPUT ...
VAR_OUTPUT ...
VAR OLDQ : TYPE := INIT_VAL; ...

BEGIN
AND(A := OLDQ, B := ...);
TON(...);
F(CU := TON.Q, ...);
OLDQ := TON.Q

END

2.3.2 Sequential Function Charts

The diagrammatic representation of SFCs is illustrated in Figure 2.7 on a possible

solution to the gravel transferring problem of Figure 2.1. The graphical notation

employed is that of a net comprising linked elements of following kinds:

• rectangular boxes, called steps;

• thick horizontal lines, called transitions; and

• a variety of branching elements.

In such nets, no elements of the same kind may be linked directly.

Each step is labelled with an identifier, e.g. “DUMP” in Figure 2.7, and is

optionally associated with an action which is typically displayed within an oblong

attached box. Actions are either function block programs or simple truth-value

assignments to boolean variables. Transitions, on the other hand, are labelled

by logical conditions (i.e. boolean expressions)1 and are said to be cleared when

1For convenience and consistency with the rest of the paper we shall write transition condi-
tions using traditional logical notation instead of the standard IEC 1131-3 syntax. In particular,
tt and ff are used here as abbreviations for the logical constants “true” and “false” respectively.

23

sw

WAIT

DUMP

sw

OFF

run := truck on ramp

START

bin valve := tt

bin valve := ff

run := ff

¬sw

CONTROL

bin valve := ff

¬truck on ramp bin empty

load∧truck on ramp

Figure 2.7: Example SFC diagram.

their corresponding condition evaluates to ‘true’. Finally, a number of steps can

be designated as initial ; these are distinguished by a double border.

SFCs exhibit a rich control-flow behaviour (dynamics). At any given time,

each step can be either active or inactive and the set of all active steps defines

the current mode of the system. In each mode, only the actions of all active

steps are invoked. A step remains active until one of its successor transitions

becomes cleared, thereby causing the steps targeted by the links emanating from

that transition to become active in the next cycle.

The construction of SFCs is structured in a way that parts of the diagram

form certain kinds of processes. The rules of processes construction are called

rules of evolution and are illustrated in Figure 2.8.

• Construction (a) is a simple linear sequence. Control passes from S3 to S4

upon clearance of t.

• Construction (b) is a sequence divergence, or “fork”. Control flows from

S5 to S6 if t1 is cleared, or from S5 to S6 if t2 is cleared. The situation

generalises to more than two branches.

• Construction (c) is a sequence convergence, or “join”, in which control

evolves from S7 to S10 if S7 is active and t1 is cleared, or from S9 to

S10 if S9 is active and t2 is cleared. The situation generalises to more than

two branches.

• Construction (d) allows the concurrent activation of more than one pro-

cesses. In the given example, control passes from S3 to both S4 and S5

24

S3

t

S4 S5

...

t

S11S10

S12

...t1 t2

S7 S9

S10

S5

S6 S7

t2t1

t

S11S10

S12

...t1 t2

S7 S9

S10

S5

S6 S7

t2t1

S3

t

S4 S5

...

S3

t

S4

S3

t

S4

(a)(a)

(c)

(b) (d)

(e)(c)

(b) (d)

(e)

(f)

S4

S3

S5

t1

t2

t3t4

S6

Figure 2.8: SFC evolution rules. Adapted from [23].

25

upon clearance of t. Following their simultaneous activation, the processes

beginning at S4, S5 evolve independently.

• The construct of case (e) concludes a number of concurrent processes. In

the given example control evolves from S10 and S11 to S12, if both S10 and

S11 are active and t is cleared.

• Finally, case (f) is a special case of sequence divergence in which one of the

branches loops back to an earlier step.

SFCs are also provided with a textual representation, the details of which will

not concern us here beyond saying that it comprises three lists of objects (steps,

transitions and actions), and that each object contains references to the objects

that are connected to it.

2.4 Discussion

The IEC standard provides a formal (grammatical) definition for only the textual

variants of PLC languages. The syntax of diagrams is illustrated informally by

way of example. On the whole, this situation demonstrates existing methods of

visual language definition to have made only limited impact on most practical

applications. On the other hand, it leaves implementations of the standard with

considerable freedom in translating diagrams into textual forms. The possibility

of unsound, or unexpected translations is obvious. A considerable part of this

thesis is concerned with addressing this problem and, more generally, with the

formal definition of diagrams for domain-specific languages.

Examples are also the preferred method for defining the semantics of PLC lan-

guages in the IEC 1131-3 standard. For many critical applications of PLCs, this

form of definition is clearly inadequate [56, 72] and, as argued in [141], it is partly

ambiguous and confusing. Formal semantic definitions have been attempted sep-

arately for a subset of function blocks [36] and Grafcet [93, 22], the French stan-

dard from which SFCs evolved. A unified, operational semantic framework for

both paradigms was developed in the author’s Masters thesis [140]. (Based on

that earlier account, the semantics of SFCs presented in Chapter 3 is, however,

denotational in style, entirely new and specific to the present thesis.)

26

Chapter 3

Design for Proof

We propose that the domain of a domain-specific language can be characterised

by:

1. the class of environments in which systems developed in the language are

expected to operate; and

2. the class of properties which such systems are expected to possess.

The design of DSLs should therefore include the development of a proof sys-

tem that eases the task of proving the properties in the class identified for the

anticipated operating environments.

We develop these ideas in the context of industrial computing systems by

presenting a semantics and proof system for a language based on IEC SFCs. Of

particular significance in this work is the use of a diagrammatic representation

and the development of a proof system for a class of invariance properties that

requires only local knowledge of the structure of diagrams.

3.1 Introduction

In general, the particular domain for which a DSL is developed will determine

characteristically:

1. The kind of models that programs in the language denote (i.e. the seman-

tics); and

2. The kind of representations that programs admit (i.e. the form(s) in which

programs are presented to the user).

For instance, signal processing programs in Signal [38] have an intuitive inter-

pretation as digital, synchronous circuits. On the other hand the same language

27

admits, in addition to textual syntax, a graphical representation of programs

resembling the block diagrams used by the signal processing community.

Our view is that application domains can also be characterised by some class

of properties that users want easily proven of programs in the domain. The

degree to which the presence of such important properties is made evident in the

representation of programs should therefore be a major quality requirement in

many domains. Programs written in languages which are “designed for proof”

should require little or even no extra effort to exhibit the requisite properties. To

this end, the present chapter advocates the contributing role that formal models

of reasoning can play in the design and evaluation of DSLs.

Languages for industrial critical systems provide excellent material upon which

the above ideas can be applied. Firstly, the importance of certain classes of prop-

erties is apparent: industrial software is often subjected to strict certification

based on various safety and other quality requirements [56]. Secondly, software

representation in industrial systems is often diagrammatic and derived from ex-

isting design practices.

Despite being generally appealing, many of the diagrammatic notations used

for programming purposes are often described as “confusing”. Most commonly,

these are notations which lack a compositional semantics in the sense of permit-

ting spatially dispersed and seemingly unrelated parts in a diagram to engage in

subtle interaction. Confusion then arises when such interactions are not explicitly

represented in the diagram by means of a spatial relation, e.g. a visual “link” be-

tween the interacting parts. As a result, reasoning must involve arguments about

the global structure of potentially large diagrams.

In this chapter, the problem of inferring properties based on diagrams is ad-

dressed in a domain-specific context. In particular, it is shown how properties

may be proved locally by:

1. Eliminating features in the notation which introduce non-compositional be-

haviour; and

2. Exploiting domain-specific assumptions to reduce the complexity of the

reasoning tasks for which basic support is sought. More specifically, the

complexity aspect to be minimised in our case is the dependency on com-

putational history of the formulae in which properties are expressed.

28

3.2 Design for Proof

Domain-specific programming languages are used to represent the artifact that

is the object of a design process. Designers are concerned to provide evidence

that their design is fit for its purpose. This suggests that in designing DSLs one

should attempt to make the task of providing such evidence as easy as possible.

Viewing this formally, evidence is a collection of properties one wants to hold

of the program together with a proof that the program satisfies the properties.

This suggests a characterisation of the application domain by:

1. The class of properties that will be useful in providing evidence that a

system written in the language is fit for its purpose.

2. A characterisation of the environments in which the system will operate.

The designer of a DSL should then:

1. Develop the semantics of the language so that programs can be developed

that satisfy all (or most) properties in the class of interest.

2. Develop a sound proof system for proving that programs satisfy properties

(one may also require that the system is complete in some suitable sense).

Important further considerations in the design of a DSL are the pragmatics

of the language:

1. That the representation of programs is well-matched to the domain.

2. That proofs are easy to carry out, perhaps there is a semi-automated search

procedure that succeeds most of the time.

3. That good diagnostic information is available in the event of failure to show

some property.

3.3 Compositionality

One widely argued advantage of designing domain-specific languages is that pro-

grams in such languages should be easily analysable and that their properties

should be easily inferable. One necessary — but not in any measure sufficient —

condition for this is that the proof systems associated with these language should

be simple and tractable. In this and the next section we clarify what we mean

by “simple proof systems” and examine the repercussions of this requirement to

the design of the languages themselves.

29

3.3.1 Compositional inference systems

Proof systems for domain-specific languages should be as specific as the languages

themselves. In particular, they should be “representation-aware” in the sense that

the form of logical discourse they support relates closely to the domain-specific

representation of programs.

By this we mean that proof obligations should be formulated directly in terms

of the user-level representation of programs. Each such obligation takes the form

P `φ ,

(read “P entails φ”) where P is some term corresponding to (the abstract syntax

of) a program in the language and φ is a logical formula expressing some property

of interest. In particular, P should bear an evident relation to the concrete

representation of the program it stands for; be that representation textual or

diagrammatic.

On the other hand, the requirement of simplicity relates both to the form of

inference rules and the complexity of the logic in which reasoning is conducted.

Proof systems for DSLs should be “representation-directed” also in the sense that

they are compositional. That is, the rules for composite programs take the form:

P1 |= φ1 · · · Pn |= φn

C(P1, . . . , Pn) |= ΦC(φ1, . . . , φn)
,

where C(P1, . . . , Pn) stands for some structural combination of terms P1, . . . , Pn

and ΦC is an n-ary function on formulae1. In words, every way of combining

components induces a corresponding way for combining the properties of each

individual component to yield a property of the composite program.

3.3.2 Compositionality in semantics

The soundness of inference rules is argued based on a mathematical model of the

semantics for the language at hand. Thus, the ability to formulate compositional

proof rules relies upon the existence of a semantics for the language which is

similarly compositional. More precisely, a semantic mapping h is compositional

if for every composite program C(P1, . . . , Pn) one has

h(C(P1, . . . , Pn)) = MC(h(P1), . . . , h(Pn))

for an appropriate function MC, the definition of which does not depend on the

specific programs P1, . . . , Pn.
1I.e. the result of ΦC(φ1, . . . , φn) is a new formula composed out of sub-formulae of the given

φ1, . . . , φn

30

Inability to produce compositional rules for a language is therefore regarded

as evidence of a mismatch between the language’s syntax and semantics. In

other words, certain possibly important aspects of a program’s behaviour are not

adequately reflected in its representation.

3.3.3 The choice of logic

Compositionality is a necessary (but not sufficient) condition for simplicity of

inference. Even in entirely compositional proof systems, further complexity can

arise from the particular choice of logic over which formulae range. Some logics,

such as the modal mu-calculus [131], are known to contain compact formulae

whose models are disproportionally intricate compared to the formula’s structure.

This impacts heavily on the complexity of inference systems which are complete

over the entire logic, i.e. they are capable of deriving P `φ whenever M(P) |= φ

where φ is an arbitrary formula and M(P) a suitable model of P .

Domain-specificity offers the opportunity of not only developing domain spe-

cific logics, but also of restricting attention to just fragments of logical theories.

Such fragments should be expressive enough to cover most properties of interest

in the domain and, hopefully, simple enough to permit elementary inference. In

embedded control, for instance, most required properties follow particular pat-

terns and are predicated upon known properties of earlier designs. Identifying

the nature and form of such patterns can then be seen as a natural objective of

domain analysis methods.

3.4 Homomorphicity, systematicity

The point of having a representation in the first place is that it bears some degree

of resemblance to whatever it is being represented. Owing to this similarity, a

representation reflects some aspects of the represented entity which are deemed

relevant in a particular context, while, possibly, ignoring others. There is, how-

ever, a multitude of notions of “similarity” and varying degrees of constrains that

they impose. A framework for making such notions precise has recently been put

forward by Gurr [52, 46].

This framework is illustrated in Figure 3.1 and consists in abstracting both

the representation and the represented in terms of mathematical entities which

Gurr called α-worlds (standing for “abstract worlds”).

Definition 3.1. An α-world W consists of a set X of objects and a set R of

relations over X. �

31

(v)-w
or

ld

α -w
or

ld

α

(i)

Representation

(iii) (iv)

(ii)

Represented World

Isomorphism?

Interpretation Description

Figure 3.1: Capturing the relationship between represented and representing
worlds: a representation (i) (a diagram, say) and the situation it represents (ii)
are described by two α-worlds. The first corresponds to some reader’s interpre-
tation (iii) of the representation while the second is a description (iv) of the
relevant parts of the represented worlds. To say that the representation is iso-
morphic (homomorphic) to the represented is to say that the mapping (v) is an
isomorphism (homomorphism). (Adapted from [52].)

32

This allows one to define notions of mapping between α-worlds in a way which

clearly parallels definitions in algebra and therefore benefits from a commensurate

degree of rigour:

Definition 3.2. A (general) mapping f from α-world W to α-world W ′ is a

pair fX : X → X ′, fR : R → R′ of functions (although one frequently blurs

notation and denotes both fX and fR as f). A mapping h from W to W ′ is

a homomorphism if for every relation which holds between objects in W , the

corresponding relation in W ′ holds between the corresponding objects. Thus,

a homomorphism h from W to W ′ is a mapping such that for all r ∈ R and

x1, . . . , xn ∈ X

(x1, . . . , xn) ∈ r =⇒ (h(x1), . . . , h(xn)) ∈ h(r) .

�

Consider now a situation such as in Figure 3.1, where the two α-worlds W ,

W ′ adequately capture everything which is deemed relevant in a representation

and the represented. One then says that the representation is homomorphic to

the represented if a homomorphism h exists from W to W ′.

Let us now examine the situation in the opposite direction, assuming as before

that W ′ satisfactorily captures every relation in the represented entity which

we regard as important. What does the existence of a homomorphism h′ from

W ′ to W signify? In part, it tells us that every such important relation has a

corresponding relation in the representation. Additionally, and most importantly,

it tells us that every (first-order) logical statement about the relations in W ′

translates to a statement about W which holds if the original does in W ′.

Following the terminology of Gurr [51], we say that the representation cap-

tured by W is systematic over the represented world W ′, or has the property of

systematicity, if a homomorphism h′ : W ′ → W exists. Systematicity therefore

induces logical properties on the representing relations which “match” those of

the represented. What makes many diagrammatic representations effective for

reasoning purposes is that the induced properties are easily “read off” the dia-

gram, and one is thereby assisted in concluding that corresponding relations must

hold in the represented. In [51], Gurr expresses the same fact by saying that cer-

tain spatial relations holding in diagrams are “directly” semantically interpretable

(considering the represented as providing the semantics of its representation). As

we shall see, this view hints a subtle link between systematicity and composition-

ality.

33

3.5 Lack of systematicity in IEC SFCs

Representations which are systematic in the above sense are a key ingredient of

our “design-for-proof” approach to domain-specific languages. In this section we

take a critical look at one particular feature permitted by the definition of SFCs

in the IEC standard, and expose how it contravenes the objective of facilitating

reasoning.

The semantic model associated with SFCs is that of (labelled) Petri nets, a

concept widely used and well understood in the domain [149], and the basic SFC

notation is highly suggestive of this association. Unfortunately, the definition

of SFCs in [23] abounds with extensions to the basic Petri net concepts that

forcefully violate this analogy. One such extension permits certain actions to

be “set active” by some step and continue to be invoked following the step’s

deactivation. Such actions will remain active either indefinitely or until they are

explicitly “reset” by a step elsewhere in the diagram. This mechanism of action-

step association, called called action qualification, is visualised by attaching an

oblong box to a step as follows:

Q ActionStep
,

where Q is a “qualifier”. Of the many qualifiers permitted, here we look at “N”

(usually omitted and standing for “normal”) and “S”, “R” (standing for “set”

and “reset”).

Consider now the SFC diagram in Figure 3.2 which makes use of this feature.

One possible α-world abstraction of this diagram captures the static structure

(statics), i.e. what one sees in the diagram in terms of visual objects and how

they are visually related (by means of links and associations). So the α-world

in question has objects s1, . . . , s5, A, B, C, t1, . . . , t5, corresponding to the steps,

actions and transitions. The relations in the α-world capture links and action-step

associations. The relation L is such that (x, y) ∈ L iff a directed link exists from

x to y in the diagram (e.g. (t1, s2) ∈ L, but (t5, s4) 6∈ L). For each qualifier and

action a there is a binary relation Q such that (x, a) ∈ Q iff x is a step associated

with a via Q. So, for example, S = {(s3, A)} and N = {(s1, B), (s4, C)}. Let us

call this α-world D as it captures the statics of the diagram.

The labelled-net semantics of our example diagram is given (also diagrammat-

ically!) in Figure 3.3. Each place in the net is labelled with zero or more actions

and the α-world P associated with the net has objects for the places, transitions

and labels (actions). Its relations are F , corresponding to the “flow” of the net,

34

.

? ?

? ?

As2 s3

t2t1

t3 t4

S

?

?

R

s4

s5

t5

A

?

? ?

? ?

?

BNs1

N C

Objects:

s1, . . . , s5

t1, . . . , t5
A,B,C

Relations:

L = {(s1, t1), (s1, t2), (t1, s2),

(t2, s3), . . . }
N = {(s1, B), (s4, C)}
S = {(s3, A)}
R = {(s5, A)}

Figure 3.2: SFC diagram and its α-world D.

��
��

��
��

��
��

��
��

��
��

��
��

?

?

?

?

?

?

?

? ?

??

t1

t3

p2

p4

t2

p3

t4

p5

t5

p6

A

C

B

A,C

p1 Objects:

p1, . . . , p6

t1, . . . , t5
A,B,C

Relations:

F = {(p1, t1), (p1, t2), (t1, p2),

(t2, p3), . . . , (p4, t5), . . . }
M = {(p1, B), (p3, A),

(p4, C), (p5, A), (p5, C)}

Figure 3.3: Corresponding net and its α-world P .

35

and a relation M such that (p, a) ∈M iff place p is labelled with action a.

We now proceed to evaluate the degree of correspondence between the diagram

and its semantics (i.e. between the statics and the implied dynamics). For this

purpose we form an α-world U which provides (partial) information about a user’s

interpretation of the dynamics as inferred from the statics of the SFC diagram,

and we seek a homomorphism from P to U .

The α-world U has the same objects and relation L as D but only one addi-

tional relation G = N ∪ S. In particular, G contains exactly those action-step

associations which are explicitly guaranteed in the diagram, and thus hold in all

semantic interpretations which respect the meaning of qualifiers. Thus, for ex-

ample, (s4, A) 6∈ G as this association depends on the history of the computation

leading to s4.

One now observes that there can be no homomorphism from P to U , as every

candidate should map both p4 and p5 to s4 and (p5, A) ∈M whereas (s4, A) 6∈ G.

We are forced to conclude that an important semantic relation, that of which

actions are invoked in each mode of the system, is not systematically visualised.

This introduces complications in reasoning and suggests that the introduction of

the “S” and “R” qualifiers poorly integrates with the core notation.

Finally, observe that the way in which qualification violates systematicity also

incurs non-compositionality. In general, there is no way of dividing the net of

Figure 3.3 into parts, represent each part (systematically) as an SFC diagram

and combine the resulting diagrams in a similar manner to form our example

SFC.

By elementary analysis, we have thus shown how some questionably conve-

nient features of IEC SFCs can introduce a seriously dangerous mismatch between

a user’s intuitive interpretation of the graphical representation and its actual se-

mantics. In the presence of such features, knowledge of the global structure of

the SFC may be required before overall behaviour can be inferred from the be-

haviours of the currently active steps. Such knowledge may be extremely hard to

establish accurately about large diagrams.

3.6 A rational re-design of SFCs

In this section, and in accordance to our proposed methodology emphasising ease

of proof, we offer an alternative design of SFCs based on:

1. A characterisation of the environments in which SFCs operate;

36

2. The interpretation of a class of properties expressible in first-order logic as

simple invariants of input-output relations;

3. The use of only a basic diagrammatic representation which is free of features

responsible for non-local behaviour; and finally,

4. The development of a simple, intuitive and compositional semantics which

is straightforwardly reflected in the chosen representation. This leads to a

similarly simple and compositional proof system.

Simplicity is therefore given priority over mathematical novelty, unless of

course the latter is required to achieve the former. The intention, however, is

not to impose simplicity artificially on PLC languages. Instead, we wish to argue

that conceptual clarity is naturally present in the primitive notions of step, ac-

tion and transition and that much of the complexity associated with SFCs in IEC

1131-3 is extraneous and largely attributable to the standardisation process. The

latter, being an attempt to reconcile a number of diverse approaches to PLC pro-

gramming, often resorted to the conglomeration of many heterogeneous features

instead of identifying a small, well-understood core [141].

Despite being elementary in nature, our framework suffices to model a large

class of SFCs in IEC 1131-3, either directly or through a simple translation

scheme. It can be further extended to include other features of IEC 1131-3,

e.g. step activity flags, which are not in conflict with our interpretation of the

graphical notation.

3.6.1 Characterising the domain

When designing a DSL, it is important to account for specific assumptions which

are characteristic of the application domain. In our case, the operating environ-

ment of a PLC is assumed to produce signal changes at a rate which is much

slower than the speed of the PLC itself. This both suggests and justifies a par-

ticular design of PLC languages in which interaction with the environment is

perceived as being synchronous.

Characterising the environment through synchrony allows for the simple mod-

elling of PLC programs: The behaviour of SFCs can be linearly but adequately

captured as traces, i.e. finite or (countably) infinite sequences of states:

t : s0 . . . sn−1

Each adjacent pair (si, si+1) of states in a trace constitutes a single cycle (cf.

Figure 2.3).

37

Another characterisation of the application domain is in terms of the classes of

properties which users would like to easily prove of programs. Control applications

are usually characterised by at least the following two basic requirements:

• a responsiveness requirement that the system will always react within a

finite amount of time to a change of stimulus from the controlled environ-

ment;

• a safety requirement that the reaction is always the right one.

In PLCs the responsiveness issue has been resolved at the level of language

design by requiring that the evaluation of all actions terminates within the time

allowed for each cycle.

The safety aspect, on the other hand, lies entirely within the programmer’s re-

sponsibility. To enhance dependability, established development practices require

actions to be composed of standard function blocks drawn from verified libraries.

The latter are usually specific to a particular company, supplying vendor or indus-

trial sector [84, 55]. Nevertheless, behaviour which is custom to the application

at hand is still the result of putting these standard actions together in SFCs.

One is therefore interested in showing that a given SFC succeeds in maintaining

some desired safety invariant throughout its computation. Most commonly, this

will be a relation between only the current values of inputs and outputs (i.e. not

dependent on computational history).

3.6.2 Choosing the logic

One suitable and sufficiently simple language for expressing such input-output

relations is first-order logic augmented with “primed variables”. Each formula A

in the logic will be interpreted wrt. pairs (s, s′) of states, where s and s′ provide

valuations for the unprimed and primed variables in A respectively. Taking (s, s′)

to be the current execution cycle, the primed variables in A will intuitively stand

for the new outputs and the new inputs at the end of the cycle. Finally, given a

trace t as above, one wishes to determine whether A is an invariant of t:

Definition 3.3. t |= A iff (t[j], t[j + 1]) |= A for all 0 ≤ j <| t | −1. The length

| t | of t is defined to be n + 1 for t = s0 . . . sn and | t |def
= ω, the first infinite

ordinal, for every infinite trace t. �

38

P
b

P’
G1 G2

PP

P1 P2

b
G = b P’ G = G1 G2

P;G P;G loop P:b P1 || P2

Figure 3.4: Syntax-diagram correspondence.

3.7 An abstract syntax for SFC diagrams

A textual syntax for the expression of SFC diagrams is first introduced as a basis

for defining a formal semantics:

P ::= 〈a〉 | P ;G | P1‖P2 | loop P : b

G ::= b→ P | G1[]G2

Here, the phrase types are programs, ranged over by P , and guarded programs,

ranged over by G. On the other hand, a is an action and b stands for the condition

for performing a transition. 〈a〉 stands for a single step with associated action

a, P ;G is sequential composition via the transitions in G and P1 ‖P2 is parallel

composition. Finally, loop P : b is a loop with body P and transition b along the

link to the top of the loop. The correspondence of this syntax to the diagrammatic

notation is illustrated in figure 3.4. In particular, the composite G1[]G2 is to be

interpreted as non-deterministic choice between the branches G1 and G2.

3.7.1 Program Gravel translated

As an example of using the syntax just introduced a translation of the diagram

of figure 2.7 is now described. The entire diagram is just P1‖P2 where

• P1 ≡ loop (〈a1〉 ; sw→ 〈a2〉) : ¬sw is the translation of the SFC on the left

with actions a1 ≡ run := ff and a2 ≡ run := truck on ramp;

39

• P2 ≡ loop (〈a3〉 ; sw→ P3) : bin empty corresponds to the SFC on the right

with P3 ≡ loop (〈a3〉 ; (load ∧ truck on ramp→ 〈a4〉)) : ¬truck on ramp be-

ing the translation of the inner loop and a3 ≡ bin valve := ff, a4 ≡ bin valve :=

tt.

3.8 A compositional semantics of SFC diagrams

3.8.1 Semantics of actions

Action computation obeys a well-known synchronous dataflow paradigm, the se-

mantics and properties of which have been studied extensively, e.g. [11, 12]. In

denotational style, the behaviour of signals over time is typically modelled as fi-

nite or (countably) infinite sequences of values, called streams. The i-th element

in a stream is the value of the represented signal at the i-th point on a discrete

time line corresponding to the ticks of the system’s clock. Let Aω denote the set

of streams with elements from set A. A (deterministic) dataflow agent of n input

signals and m output signals is then modelled as a monotone and continuous

[146] function

f : (I1 × . . .× In)ω → (O1 × . . .× Om)ω

where Ii is the set of values which the i-th input may assume over time and Oj

is the set of values for the j-th output. Continuity of f means that its behaviour

on infinite streams is entirely determined by its behaviour on finite ones.

Since actions in SFCs have named inputs and outputs, we assume a set V of

variable names (or signal names) and a set V of basic values, and define S def
= V →

V to the set of states; each state being an association of all variable names with

values. Invoking an action in a given state produces new values for the outputs of

the action. Thus, we denote an action a by a monotone and continuous function

[[a]] : Sω → (γ(a)→ V)ω ,

where γ(a) is the set of outputs of a (i.e. the variables that a may modify).

Furthermore, each [[a]] is required to be length-preserving2.

Then, the set of infinite traces resulting from the repeated invocation of a in

an environment which does not modify the variables in γ(a) is:

Tr∞(a)
def
= {t ∈ Sω | | t |= ω and ∀j ∈ N . t[j + 1]�γ(a) = ([[a]]t)[j]} ,

2I.e., for all t ∈ Sω, | ([[a]] t) |=| t |. Unlike programs in [12], function blocks are always
single-clocked.

40

where t[j] and f �X denote the j-th state of trace t and the restriction of map f

to X, respectively.

In practice, the environment in which a operates will control only a known,

finite set E of variables such that E ∩ γ(a) = ∅. When no ambiguity arises,

we shall sacrifice precision in favour of brevity and refer to the set E as just

the environment. To account for the execution of actions in SFCs, one must

also consider all possible finite (but non-empty) traces of actions. Thus, given

action a and E ⊆ V , define the set of possible traces of a in environment E as:

TrE
≥2(a)

def
= ∅ if E ∩ γ(a) 6= ∅ and

TrE
≥2(a)

def
=

{
t ∈ Sω

∣∣∣∣ t v≥2 t∞ for some t∞ ∈ Tr∞(a) such that
∀x ∈ V . x 6∈ E ∪ γ(a) =⇒ t∞ |= x′ = x

}
otherwise, where t v≥2 t

′ iff t is a prefix of t′ (denoted t v t′) and | t |≥ 2.

3.8.2 Semantics of SFC programs

The meaning of an SFC program P is now identified with the set [[P]]EΨ of traces it

is capable of producing in environment E subject to some exit condition Ψ. The

role of Ψ is to account for the effect of any successor transitions in the context

of sequential composition. Similarly, a set [[G]]EΨ of traces is also defined for each

guarded program G, environment E and transition condition Ψ.

3.8.2.1 Step

When P is a single step 〈a〉, [[〈a〉]]EΨ consists of all traces t resulting from at least

one invocation of a such that:

• Ψ never holds following the initial invocation (in which case t is infinite);

or

• t is a finite trace in TrE
≥2(a) and the last state in t satisfies Ψ.

Adopting the convention of writing s |= A as a shorthand for (s, s) |= A whenever

A contains no primed variables, one formally has:

[[〈a〉]]EΨ = {t ∈ TrE
≥2(a) | | t |= ω and ∀ j ≥ 1. t[j] |= ¬Ψ}∪{

t ∈ TrE
≥2(a)

∣∣∣∣ | t |= n < ω, ∀ 1 ≤ j ≤ n− 2 . t[j] |= ¬Ψ
and t[n− 1] |= Ψ

}
.

3.8.2.2 Sequential Composition

A trace of P ;G is defined as the concatenation of a trace of P and a trace of G,

thus corresponding exactly to the intuitive interpretation of sequence induced by

the diagrammatic representation.

41

Definition 3.4. Given two traces t1, t2 ∈ Sω, their concatenation t1 ◦ t2 is only

defined when:

• either | t1 |= ω, in which case t1 ◦ t2 = t1;

• or t1 = s0 . . . sn and t2 = sn sn+1 . . ., in which case:

t1 ◦ t2 = s0 . . . sn sn+1 �

Given any two sets T1, T2 ⊆ Sω of traces, let T1 ⊕ T2 be the set of all possible

traces resulting by legitimately concatenating traces in T1 with traces in T2:

T1 ⊕ T2
def
= {t1 ◦ t2 | t1 ∈ T1, t2 ∈ T2} .

In particular, T ⊕ ∅ = ∅ ⊕ T = ∅ for all T ⊆ Sω. The semantics of sequence

is now formally defined as:

[[P ;G]]EΨ = [[P]]Econd(G) ⊕ [[G]]EΨ ,

where cond(G) is the assertion associated with the conditions on the initial tran-

sitions in G, defined as: cond(b→ P)
def
= b and cond(G1[]G2)

def
= cond(G1) ∨

cond(G2).

3.8.2.3 Parallel Composition

The semantics of parallel composition in 1131-3 is, at least in our opinion, inad-

equately defined and obscurely presented. In particular, the relevant clauses in

the standard prescribe no method of concurrency realisation, either through in-

terleaving or otherwise. Furthermore, reasoning about concurrent SFCs is greatly

complicated by the presence of many ad-hoc features (e.g. delayed action execu-

tion) which, although questionably convenient for reducing the size of program

representation, are by no means essential. Instead, they introduce behavioural

complications which are extremely hard to deduce from the diagrammatic repre-

sentation, particularly in large SFCs.

This unfortunate situation is to be sharply contrasted with function blocks

which obey a simple dataflow model. Let, for instance, a1 and a2 be two function

blocks with inputs I1 and I2 and outputs O1 and O2 respectively. These two blocks

may be composed in parallel provided that they share no outputs (O1 ∩O2 = ∅).
The inputs and the outputs of the composite block are then I1 ∪ I2 and O1 ∪ O2

respectively. This model is inherently concurrent and interaction between the two

components is only permitted through their inputs and outputs at the boundaries

42

between successive invocation cycles. Consequently, this form of composition is

also well-behaved in the following sense: if A1 and A2 are formulae characterising

the current invocation cycle of a1 and a2 respectively, then the current invocation

of a1 ‖a2 is characterised by A1 ∧ A2.

It is only reasonable to expect this property of ‘static’ block composition

to be preserved when actions are ‘dynamically’ composed in parallel under the

control of SFCs. This requirement, which is not guaranteed in 1131-3, forces us

to restrict parallel composition only to programs P1 and P2 which are disjoint in

the following sense:

Definition 3.5. Let γ(P)
def
=

⋃
a∈Act(P) γ(a) where Act(P) is the set of all actions

in P . Programs P1 and P2 are called disjoint if γ(P1) ∩ γ(P2) = ∅. �

In words, P1 and P2 are disjoint if none of the actions in P1 shares an output

with an action of P2 and vice-versa. No other restriction is placed on either the

inputs of any action or the transition conditions, in either P1 or P2. Now, the

above requirement on the behaviour of P1‖P2 can be formalised as:

[[P1 ‖P2]]
E
Ψ = [[P1]]

E1
Ψ ∩ [[P2]]

E2
Ψ (P1, P2 disjoint) ,

where E1 = E ∪ γ(P2) and E2 = E ∪ γ(P1). Observe that when P1 = 〈a1〉 and

P2 = 〈a2〉, P1 ‖P2 behaves exactly as the parallel composition of the two function

blocks a1 and a2.

3.8.2.4 Loop

The repetitive behaviour of loops is captured by

[[loop P : b]]EΨ = fix(λT . [[P]]EΨ ∪ ([[P]]Eb ⊕ T)) , (3.1)

where fix(F) stands for the least fixed point3 of function F .

It is worth pointing out that equation (3.1) abstracts from the behaviour of

loops in 1131-3 by allowing a non-deterministic choice of which condition (b or Ψ)

is attended at the end of each loop iteration. An interpretation which conforms

to the standard can be obtained by simply replacing [[P]]Eb in (3.1) with

[[P]]Eb∨Ψ \ {t | | t |= n < ω ∧ t[n− 1] |= Ψ} .

Equation (3.1) is therefore adequate for showing invariants of SFCs in 1131-3 and

is preferred here for its simplicity.

3In (3.1), the least fixed point exists because ⊕, and hence λT . [[P]]EΨ ∪ ([[P]]Eb ⊕T), is clearly
monotonic.

43

3.8.2.5 Guarded Programs

Finally, guarded programs receive the following simple interpretations:

[[b→ P]]EΨ = {t ∈ [[P]]EΨ | t[0] |= b} ,
[[G1[]G2]]

E
Ψ = [[G1]]

E
Ψ ∪ [[G2]]

E
Ψ .

In particular, the modelling of G1[]G2 as non-deterministic choice presents a gen-

eralisation of sequence divergence (fork) in IEC 1131-3 where left-to-right prece-

dence of transitions is usually assumed.

3.9 The proof system

Our design effort now yields straightforward proof rules for showing safety prop-

erties of the kind identified in section 3.6.1. Safety is semantically characterised

in terms of relations:

Definition 3.6. a |=E A iff t |= A for all t ∈ TrE
≥2(a). �

In words, each relation a |=E A expresses that every E-computation of action

a exhibits invariant A.

Definition 3.7.

{Φ}P {Ψ} |=E A

iff t |= A for all traces t ∈ [[P]]EΨ such that t[0] |= Φ. (Φ and Ψ are assumed to

contain no primed variables.) �

In words, {Φ}P {Ψ} |=E A holds iff formula A is an invariant of every trace

representing a computation of program P started in a state satisfying Φ and under

exit condition Ψ. A relation of the form {Φ}G {Ψ} |=E A is defined similarly.

Figure 3.5 lists the inference rules for the entire language. Each judgement

of the form {Φ}P {Ψ} `E A is interpreted as asserting that {Φ}P {Ψ} |=E A

holds. Judgements of the form {Φ}G {Ψ} `E A receive a similar interpretation.

Assuming the soundness of the rules with respect to the semantic interpre-

tations, a derivation of {Θ}P {ff} `E A will therefore be a proof that A is an

invariant of the complete program P in environment E and under initial condition

Θ. A proof of the soundness theorem below can be found in the Appendix.

Proposition 3.1. If {Φ}P {Ψ} `E A is derivable using rules (3.2)–(3.9) then

{Φ}P {Ψ} |=E A.

44

{Φ} 〈a〉 {Ψ} `E A
a |=E Φ ∨ ¬Ψ =⇒ A (3.2)

{Φ}P {cond(G)} `E A {cond(G)}G {Ψ} `E A
{Φ}P ;G {Ψ} `E A

(3.3)

{Φ}P1 {Ψ} `E∪γ(P2) A1 {Φ}P2 {Ψ} `E∪γ(P1) A2

{Φ}P1‖P2 {Ψ} `E A1 ∧ A2
(3.4)

{Φ ∨ b}P {Ψ ∨ b} `E A
{Φ} loop P : b {Ψ} `E A

(3.5)

{Φ}P {Ψ} `E A
Φ =⇒ ff (3.6)

{Φ}P {Ψ} `E A′

{Φ}P {Ψ} `E A
A′ =⇒ A (3.7)

{Φ ∧ b}P {Ψ} `E A
{Φ} b→ P {Ψ} `E A

(3.8)

{Φ}G1 {Ψ} `E A {Φ}G2 {Ψ} `E A
{Φ}G1[]G2 {Ψ} `E A

(3.9)

Figure 3.5: Proof rules

Proof. See Section 3.12. �

Our aim in designing the semantics of SFCs and the associated proof system

was ease of proof, not mathematical novelty. In particular, two aspects of the

proof system are worth noting:

1. Support for a proof strategy based on localised arguments. The correctness

of any step S wrt. some property A is locally evident in the vicinity of S,

that is in the action a of S and the immediately preceding and succeeding

transition conditions. This is reflected in rule (3.2), which also highlights the

role of the two transitions Φ and Ψ as summaries of the information about

the behaviour of the environment while S is active. Localised reasoning was

also made possible through the exploitation of domain-specific assumptions

to reduce the complexity of properties to a level expressible in first order

logic instead of, say, some temporal logic.

2. Easy to reason about concurrency. Compared to most corresponding rules

in various proof systems for shared-variable concurrency, e.g. [132, 147],

rule (3.4) looks unrealistically simple. However, this is only partly the

result of disregarding the issue of completeness of the proof system. Pri-

45

marily, though, it is the result of observing a model of parallelism which

is appropriate to the domain at hand. The parallel composition of SFCs

was naturally derived from the simple notion of concurrency provided by

the underlying circuit-like model which individual actions obey. Apart from

maintaining consistency with the level of function blocks, this interpretation

allows P1‖P2 to be thought of in terms of logical conjunction, as suggested

by rule (3.4). The definition of SFCs in the IEC standard fails to provide

such a simple characterisation.

Unlike many similar proof systems, the one presented here is not geared to-

wards program analysis or the synthesis of programs from specifications. As such,

it was not meant to support any particular approach to program development (e.g.

top-down or bottom-up). Instead, the purpose of the rules and of the soundness

theorem is to provide formal justification for simple reasoning (both formal and

informal) about the safety of SFCs based on their diagrammatic representation.

As a result of taking this particular point of view, completeness of the rules was

of lesser importance to our development.

Remark. The condition a |=E Φ ∨ ¬Ψ =⇒ A in rule (3.2) is rather strong,

but preferred here for reasons of clarity. Alternatively, one could have defined a

safety relation

a |=E
Φ,Ψ A

as t |= φ for all t ∈ [[〈a〉]]ΨE such that t[0] |= Φ. That is, A is invariant of every

E-computation of a which starts in a state satisfying Φ and in which Ψ holds

invariantly thereafter. Under this definition, rule (3.2) would be:

{Φ} 〈a〉 {Ψ} `E A
a |=E

Φ,¬Ψ A .

3.10 Verifying Gravel

The inference rules of the previous section are now illustrated by proving a simple

invariant property of program Gravel: namely that whenever the truck leaves the

ramp, the program will close the bin valve and stop the belt at the next cycle.

So formally, let A ≡ ¬truck on ramp =⇒ ¬bin valve′ ∧ ¬run′. (For each

boolean variable x we abbreviate formulae (x = tt) and (x′ = tt) as x and x′

respectively.) We prove that {tt}P1‖P2 {ff} |=E A, where P1 and P2 are exactly

as given in Section 3.7 and E = {truck on ramp, bin empty, sw, load}.

46

First, rules (3.4) and (3.7) suggest that one seeks properties A1 and A2 which

together imply the desired property A such that A1 is an invariant of P1 and A2 an

invariant of P2. Two suitable such properties are A1 ≡ ¬truck on ramp =⇒ ¬run′

and A2 ≡ ¬truck on ramp =⇒ ¬bin valve′. The root of the proof tree is thus:

∆1 ∆2

{tt}P1‖P2 {ff} `E A1 ∧A2
A1 ∧ A2 =⇒ A (3.4)

{tt}P1‖P2 {ff} `E A

where ∆1 is the sub-derivation of {tt}P1 {ff} `E1 A1, E1 = E ∪ {bin valve}, and

∆2 is the the proof of {tt}P2 {ff} `E2 A2, E2 = E ∪ {run}. Let us first consider

∆1 (in which environment information has been suppressed):

(3.2)
{tt} 〈a1〉 {sw} ` A1

(3.2)
{sw ∧ sw} 〈a2〉 {¬sw} ` A1

(3.8)
{sw} sw→ 〈a2〉 {¬sw} ` A1

(3.3)
{tt ∨ ¬sw} (〈a1〉 ; sw→ 〈a2〉) {ff ∨ ¬sw} ` A1

(3.5)
{tt} loop (〈a1〉 ; sw→ 〈a2〉) : ¬sw {ff} ` A1

Now a1 |= (tt∨¬sw) =⇒ A1, which is equivalent to a1 |= ¬run′∨truck on ramp,

holds clearly as a1 always sets run to ff. Similarly, a2 |= (sw ∨ ¬¬sw) =⇒ A1 is

equivalent to a2 |= ¬sw ∨ (¬truck on ramp =⇒ ¬run′) and holds because every

evaluation of run := truck on ramp satisfies run′ =⇒ truck on ramp.

Moving now to the proof that P2 has A2 let us consider tree ∆2:

(3.2)
{tt} 〈a3〉 {sw} ` A2 ∆21

(3.3)
{tt ∨ bin empty} (〈a3〉 ; sw→ P3) {ff ∨ bin empty} ` A2

(3.5)
{tt} loop (〈a3〉 ; sw→ P3) : bin empty {ff} ` A2

Requirement a3 |= (bin empty∨¬sw) =⇒ A2 is equivalent to a3 |= truck on ramp∨
¬bin valve′ and therefore holds for reasons similar to those applied in the case of

a1. ∆21 considers the inner loop P3 and is very similar to ∆1.

3.11 Discussion

We have outlined an approach to the design of domain-specific languages. Our

approach emphasises ease of proof for classes of properties associated with the

application domain. Our understanding of proof in this context is based on a

formal model of the language and its programs and on a set of sound inference

rules. The essence of domain specificity lies in assumptions which are usually

47

far stronger than those holding in general-purpose languages. This results in

considerable uniformity across programs in the same language and domain owing

to a large number of common characteristics. Domain specificity can therefore

be exploited to focus a formal approach to language design on precisely those

aspects, features and properties of the language for which good design support

is needed most. It is in this way, we argue, that domain-specific languages lend

themselves to semantic and logical models which are clear and tractable.

Our approach was illustrated by presenting a model for a core language cor-

responding to sequential function charts in IEC 1131-3. In this experiment, only

a basic diagrammatic representation of programs was assumed which, however,

reflects the essential concepts in applications. The model of the language was

compositionally developed on the structure of diagrams and in a way correspond-

ing to intuition. Motivated by ease-of-proof, our design exercise resulted in a set

of straightforward but sound proof rules which validate reasoning about a nar-

rowed but commonly occurring class of safety properties. Moreover, use of our

rules requires only local knowledge about the representation of SFC programs as

diagrams.

3.12 Proof of Proposition 3.1

3.12.1 Preliminaries

Sets of traces together with the usual subset ordering ⊆ form a simple complete

partial order (cpo) [146] with bottom element ∅. Let T range over sets of traces.

⊕ is continuous in its right argument. Hence, function F = λT . [[P]]EΨ∪([[P]]Eb ⊕
T) is continuous and, by a standard result of fixed-point theory,

[[loop P : b]]EΨ =
⋃
n∈N

Tn (3.10)

where T0 = ∅ and Tn+1 = F (Tn) for all n ≥ 0. The following lemmas are simple

consequences of the definitions in Section 3.8

Lemma 3.1. For all t ∈ [[P]]EΨ or t ∈ [[G]]EΨ, | t |≥ 2. Moreover, if | t |= n < ω

then t[n− 1] |= Ψ.

Informally, Lemma 3.1 states that any trace of P results from at least one

execution of the initial step(s) in P and, moreover, the last state of any finite

such trace satisfies the exit condition Ψ.

Lemma 3.2. For all t ∈ [[G]]EΨ, t[0] |= cond(G).

48

3.12.2 Main proof

By rule induction [146]. We consider each rule in turn:

Rule 3.2 Assume a |=E (Φ ∨ ¬Ψ) =⇒ A. Fully expanded, this assumption

reads:

∀t ∈ TrE
≥2(a). ∀ 0 ≤ j <| t | −1. (t[j], t[j + 1]) |= (Φ ∨ ¬Ψ) =⇒ A

or, equivalently,

∀t ∈ TrE
≥2(a). ∀ 0 ≤ j <| t | −1. (t[j], t[j + 1]) |= Φ ∨ ¬Ψ implies

(t[j], t[j + 1]) |= A .

(3.11)

Now consider t ∈ [[〈a〉]]EΨ such that t[0] |= Φ. There are two sub-cases:

1. t ∈ TrE
≥2(a), | t |= ω and t[j] |= ¬Ψ for all j ≥ 1. Then, since t[0] |= Φ,

t[j] |= Φ∨¬Ψ for all j ∈ N . Since Φ and Ψ contain no primed variables,

one also has that (t[j], t[j + 1]) |= Φ∨¬Ψ for all j ∈ N . It now follows

from (3.11) that (t[j], t[j + 1]) |= A for all 0 ≤ j < ω. Hence t |= A.

2. t ∈ TrE
≥2(a), | t |< ω, t[j] |= ¬Ψ for all 1 ≤ j ≤| t | −2 and t[| t | −1] |= Ψ.

Again, clearly, t[j] |= Φ ∨ ¬Ψ for all 0 ≤ j <| t | −1. Consequently,

(t[j], t[j + 1]) |= Φ∨¬Ψ for all 0 ≤ j <| t | −1. Hence t |= A by (3.11).

Rule 3.3 Assume

{Φ}P {cond(G)} |=E A

and

{cond(G)}G {Ψ} |=E A ,

and consider t ∈ [[P ;G]]EΨ such that t[0] |= Φ. By definition of ⊕ there exist

t1 ∈ [[P]]Econd(G), t2 ∈ [[G]]EΨ such that t = t1 ◦ t2 and by definition of ◦ one

distinguishes the following two sub-cases:

1. | t1 |= ω. Then t = t1 and t |= A by assumption {Φ}P {cond(G)} |=E

A.

2. | t1 |= n < ω and, necessarily, t1[n− 1] = t2[0]. By Lemma 3.1, n ≥ 2

and | t2 |≥ 2. Now t1[0] |= Φ since t[0] |= Φ and t1[0] = t[0], whence

t1 |= A by assumption {Φ}P {cond(G)} |=E A. By Lemma 3.1 and

t2[0] = t1[n− 1] it follows that t2[0] |= cond(G). Hence t2 |= A by

assumption {cond(G)}G {Ψ} |=E A. Thus t |= A as required.

49

Rule 3.4 Obviously sound.

Rule 3.5 Assume

{Φ ∨ b}P {Ψ ∨ b} |=E A . (3.12)

It will be shown that {Φ ∨ b} loop P : b {Ψ} |=E A, from which it will follow

that {Φ} loop P : b {Ψ} |=E A.

Recalling equation (3.10) it suffices to prove for all n ≥ 0 that t |= A for all

t ∈ Tn such that t[0] |= Φ∨ b. The proof of this proceeds by induction on n:

For T0 the result holds vacuously since T0 = ∅. Consider now t ∈ Tn+1 such

that t[0] |= Φ ∨ b. By definition, Tn+1 = F (Tn) = [[P]]EΨ ∪ ([[P]]Eb ⊕ Tn) and

thus there are two cases (suppressing irrelevant environment information):

1. t ∈ [[P]]Ψ. Then t |= A follows immediately from assumption (3.12)

and the fact that [[P]]Ψ ⊆ [[P]]Ψ∨b.

2. t ∈ [[P]]b ⊕ Tn. Here the proof is similar to that for rule (3.3): t =

t1 ◦ t2 for some t1 ∈ [[P]]b and some t2 ∈ Tn. If | t1 |= ω then t |=
A follows from assumption (3.12). If | t1 |= m < ω then t1 |= A

also by assumption (3.12). By Lemma 3.1, t1[m− 1] |= b and hence

t1[m− 1] |= Φ∨ b. By definition of ◦ it then follows that t2[0] |= Φ∨ b
and hence t2 |= A by the induction hypothesis for Tn. Hence t |= A as

required.

Rules 3.6, 3.7, 3.8 & 3.9 Obviously sound.

50

Chapter 4

On the Coexistence of Text and
Diagrams in DSLs

In many domain specific languages diagrammatic notation is used because it

conforms to notations used by domain specialists before the deployment of pro-

grammable components. The aim is to lessen the possibility of error by changing

as little as possible. However the switch to programmable components often

means a radical change in the details of the implementation. Such changes can

mean that the domain experts’ interpretation of the notation diverges significantly

from the actual implementation.

We explore this problem, taking programmable controllers as a specific exam-

ple. The IEC 1131-3 international standard has both a diagrammatic notation

and a textual language for the description of “function blocks” which are the

basic components of controller programs. We take an idealised version of the tex-

tual language and of its diagrammatic counterpart and show that the diagrams

capture equivalence of textual programs under a collection of equational laws.

This result establishes that diagrams relieve the programmer of the need to

consider non-significant variants of programs and the match between program

texts, their corresponding diagrams and their intended interpretation.

4.1 Motivation

The use of domain-specific languages is becoming ever more widespread as pro-

grammable components replace “hard-wired” systems. One feature of such lan-

guages is their choice of programming notation. Frequently this is diagrammatic

and derived from earlier design practice. The use of such notation is appealing

because it eases the transition to new implementation technology. However, it

can introduce new risks. Any given, non-atomic diagram can be built or decom-

51

posed in a variety of ways and the notation usually has a concrete representation

as a term in some language (or as a representation in the programming system).

If the interpretation of the diagram is sensitive to this information it could mean

that seemingly identical programs have divergent interpretations and that some

of these interpretations differ from what the developer expects. This places an

obligation on the language designers to establish that all methods of building the

same diagram are interpreted identically. As far as we know there are few results

of this kind. Milner’s result on the correspondence between flowgraphs and CCS

terms [103, 102] is a notable exception.

Here we present an exploration of the correspondence between diagrams and

their textual form for an idealisation of IEC 1131-3 [23, 86] function blocks. Users

of the function block diagrams are encouraged to think in a “circuit” paradigm

[111, 135] – but the diagrams are internally translated into a textual form and

are interpreted by microprocessors. The potential for divergence of the expected

behaviour of diagrammatic notations is obvious. For example, failure of the as-

sociativity of diagram composition is certainly possible if care is not taken in

defining the meaning of the textual form of the program or in implementing this

definition.

4.2 Outline of method

Inspired by the work of Milner [102], our approach consists in:

1. Enumerating the various classes of programs and program formation op-

erations in a signature Σ. (Σ may be left implicit if properly understood

from the context.) A term algebra F = T(Σ, X) over this signature for-

malises the abstract syntax of (textual) programs, where the elements of X

stand for (the names of) pre-defined programs, available from libraries or

otherwise. For function blocks, below, we take X = ∅.

2. Defining the set of valid diagrammatic representations formally as an al-

gebra D over the same signature Σ. In particular, this provides a “dia-

grammatic interpretation” of program formation operations. Usually, D
will be generated by a set Γ of atomic diagrams (i.e. all diagrams in D are

constructed from those in Γ using the operations) and one is interested in

proving that all valid diagrams arise in this way. The elements of the term

algebra T(Σ,Γ) are therefore called diagram expressions.

3. Observing that, in general, each composite diagram in D will have multiple

52

representations in terms of diagram expressions. Intuition about diagrams

induces a (usually non-empty) set E of equational laws which hold in D.

4. Establishing D as a free Σ algebra subject to E by proving that the laws

in E are complete for D. (That is, whenever any two diagram expressions

denote the same diagram, then they can be shown equal using the axioms in

E.) This establishes an isomorphism between D and the quotient T(Σ,Γ)/E

of T(Σ,Γ) induced by the equational laws E. Intuitively, each element of

that quotient algebra collects all diagram expressions corresponding to the

same diagram in D.

5. Establishing the link between diagram expressions and the abstract syntax

of programs by providing a bijection γ between Γ and F . Intuitively, this

means that every program can be uniquely represented as an atomic diagram

hiding the program’s internal structure and, also, that every atomic diagram

is a representation of some program. Then, the properties of term algebras

and the freeness of D assert that:

T(Σ,F)/E ∼= T(Σ,Γ)/E ∼= D ,

where ∼= is read “is isomorphic to”. That is, diagrams capture precisely the

equivalence classes of programs under E.

6. Interpreting the terms in F by means of an operational or denotational

semantics and proving the soundness of the laws in E under the chosen

interpretation. This establishes that the evaluation of all programs corre-

sponding to the same diagram produce identical computations.

4.2.1 Notation

Before proceeding to the application of our method, let us introduce some fre-

quently used notation. Let h be a function. Then domh and ranh are the domain

and range of h, respectively. We will also write domR and ranR to mean those

subsets of A and B, respectively, over which a relation R ⊆ A×B is defined.

If X ⊆ domh, we write h � X for the restriction of h on X and h(X) for

the image of X under h. Assuming that g is a function with ran g ⊆ domh, the

composition h ◦ g of g with h is then (h ◦ g)(x) def
= h(g(x)). Finally, for X an

arbitrary finite set, we let |X | denote the number of elements in X.

53

Combinator Name Precedence
f1 � f2 Composition 2
f \X Restriction 1
f [g] Relabelling 1

f [c; y → x] Loop 1

Table 4.1: Function block combinators

4.3 An abstract syntax for function blocks

In [140, 3] we introduce a rationalised version of the function block language,

provide it with an operational semantics and argue that the rationalisation is

adequate to describe most PLC programs as well as to support formal reasoning

about such programs. Here we are mostly concerned with the relationship between

diagrams and the textual form of the language. To compress the presentation

we shall omit a detailed account of our language, although a summary of the

semantics will be provided in Section 4.8. For the time being, we outline an

abstract syntax corresponding to the textual representation of function blocks in

IEC 1131-3.

The set of function block terms, ranged over by f , is produced by the following

abstract grammar:

f ::= y = e | f \X | f [g] | f [c; y → x] | f1 � f2

Composite function blocks are constructed using the combinators in Table 4.1.

Every function block f has a finite number of labelled ports, each classified as

either an input or an output port, and the combinators use these in their def-

initions. Composition assigns each output of f2 to an input of f1 having the

same label, restriction hides (internalises) some ports, and relabelling recasts the

labels of ports according to the mapping g. Looping connects an output port

to an input port while specifying the initial value on the loop. In terms of IEC

1131-3 syntax, each f [c; y → x] corresponds to an initialised local variable over

f . Schematically:

FUNCTION_BLOCK ‘‘F[c; Y -> X]’’

...

VAR YOLD := c : ... END_VAR

BEGIN_BLOCK

F(X := YOLD; ...);

YOLD := F.Y

END_BLOCK

54

(* Function Block Body *)

IN
Q

ET

TMR

DB_OFF

IN
Q

ET

TMR

DB_ON

Q

R

S

SR
DB_FF

FUNCTION_BLOCK

INBOOL

(* External Interface *)

DEBOUNCE

BOOL

TIMEET_OFF

OUT

IN
OUT

ET_OFF

END_FUNCTION_BLOCK

Figure 4.1: Function block DEBOUNCE. (Repeated for convenience from Fig-
ure 2.4.)

In the remaining clause, y = e defines the output port y to be set to the value of

the expression e (which may use input ports).

Example 4.1. We illustrate the syntax by providing a translation term fDB

corresponding to the DEBOUNCE block of Figure 4.1. This will have a single

input port labelled in and two output ports labelled out and et off. The overall

decomposition of fDB is

fDB
def
= (fINV � fDB ON � fDB OFF � fDB FF) \ S ,

that is a restricted composition where S = {r}. The fINV component is a simple

boolean inverter:

fINV
def
= n = ¬in .

The fDB ON ,fDB OFF and fDB FF terms are the instances of TMR and SR with

their ports suitably relabelled to specify the desired connections. Using pairs of

the form g(x)/x as a compact notation for relabellings, one has:

fDB ON
def
= fTMR[s/q] \ et

fDB OFF
def
= fTMR[n/in, et off/et, r/q]

fDB FF
def
= fSR[out/q] .

55

For instance, the input in of fTMR in fDB OFF has been renamed to n so as to be

connected to the output port n of the inverter fINV . Also, the et port of fTMR in

fDB ON has been hidden by the restriction and therefore has been removed from

the outputs of fDB. Finally, the restriction \S internalises all those output ports

which do not appear among the outputs of fDB.

The SR flip-flop is a simple example of a history-dependent function block,

with a possible representation for it being

fSR
def
= (q = s ∨ (r ∧ q1))[ff; q → q1] .

The current value of output q depends not only on the current values of inputs s

and r but also on the previous value of q, fed back to the input q1 via the loop

[ff; q → q1]. Thus, the role of the loop linking q to q1 in fSR is that of a local

variable in the terminology of IEC 1131-3. In this case, the initial value for that

variable is ff. �

We write inf and outf respectively for the labels on the input and output

ports of f . Port labels are drawn from a set PLab, its finite subsets being ranged

over by X, Y , Z, Constants belong to a set Con. We now make precise

what we mean by a “relabelling map”:

Definition 4.1. Let 〈X, Y 〉 and 〈X ′, Y ′〉 be pairs of disjoint subsets of PLab. A

relabelling g from 〈X, Y 〉 to 〈X ′, Y ′〉 is a pair 〈g0, g1〉 of functions g0 : X → X ′

and g1 : Y → Y ′ such that g0 is surjective and g1 is bijective. We shall write

g : 〈X, Y 〉 → 〈X ′, Y ′〉 to denote a relabelling from 〈X, Y 〉 to 〈X ′, Y ′〉. Each

relabelling g may be specified as a list of pairs of the form g0(x)/x and g1(y)/y,

omitting those pairs in which both labels are the same. Relabellings compose in

the obvious way: given g : 〈X, Y 〉 → 〈X ′, Y ′〉 and g′ : 〈X ′, Y ′〉 → 〈X ′′, Y ′′〉, their

composite g′ ◦ g is 〈g′0 ◦ g0, g
′
1 ◦ g1〉. �

We now provide an explicit description of the term algebra F . Each carrier

F (X, Y) ∈ F collects all function block terms f with inf = X and outf = Y :

Definition 4.2. The sets F (X, Y) are inductively defined as follows:

1. y = e ∈ F (X, {y}), for all expressions e whose set of port labels is X and

all port labels y 6∈ X.

2. Whenever f1 ∈ F (X1, Y1), f2 ∈ F (X2, Y2) and Y1 ∩ Y2 = ∅, then f1 � f2 ∈
F ((X1 ∪X2) \ Y1, Y1 ∪ Y2).

3. Whenever f ∈ F (X, Y) and g : 〈X, Y 〉 → 〈X ′, Y ′〉, then f [g] ∈ F (X ′, Y ′).

56

4. Whenever f ∈ F (X, Y), then f \ y ∈ F (X, Y \ {y}) for all port labels y.

5. Whenever f ∈ F (X, Y), then f [c; y→ x] ∈ F (X \ {x}, Y) for any x ∈ X,

y ∈ Y and c ∈ Con. �

It is routine to check that X ∩ Y = ∅ for all F (X, Y) in F . That is, in well-

formed function block terms the labels on the inputs and outputs are disjoint.

For simplicity, we shall write f ∈ F to mean “f belongs to some F (X, Y) in F”

whenever knowledge of the exact sets X and Y is immaterial.

4.4 Diagrams

Informally, a function block diagram consists of a set of nodes, each labelled with

a function block term and possessing a set of ports. Each port has an internal

label and, optionally, an external label. All labels are drawn from the set PLab

of port labels. Furthermore, some input ports may be assigned a constant c from

the set Con. Finally, ports may be connected by means of connections.

Definition 4.3. In the context of this chapter, a diagram

d = (N,F, I, O, C, λ, ε, ι)

consists of:

1. A finite set N of nodes. Each n ∈ N possesses two disjoint sets I(n) and

O(n) of ports such that I(n) ∩ I(m) = ∅ and O(n) ∩ O(m) = ∅ whenever

n 6= m.

2. A map F : N → F which assigns a function block term F (n) to each node

n ∈ N such that |I(n) |=| inF (n) | and |O(n) |=|outF (n) | for all n ∈ N .

3. A set of input ports I =
⋃

n∈N I(n) and a set of output portsO =
⋃

n∈N O(n).

4. A relation C ⊆ O × I, the set of connections. Each connection (o, i) ∈ C
represents a directed edge from port o to port i.

5. A total map λ : I ∪ O→ PLab, the internal label map, such that λ(I(n)) =

inF (n) and λ(O(n)) = outF (n) for all n ∈ N .

6. A partial map ε from I ∪ O to PLab, the external label map.

7. A partial map ι from I to Con, the port initialisation map. �

57

The set ind of input labels in a diagram d is defined to be {ε(p) | p ∈ I ∩ dom ε},
that is the set of all external labels assigned to input ports. Similarly, the set of

output labels outd of d is the set of all external labels assigned to output ports:

{ε(p) | p ∈ O ∩ dom ε}. Ports with external labels will be referred to as the exter-

nal ports, whereas those possessing internal labels only will be called the internal

ports.

Remark. There is a natural notion of isomorphism for diagrams: d and d′ are

isomorphic if there exist bijections ν : N → N ′ and π : I ∪ O → I ′ ∪O′ such

that π(p) ∈ I ′(ν(n)) iff p ∈ I(n), π(p) ∈ O′(ν(n)) iff p ∈ O(n), F ′(ν(n)) =

F (n), (π(p), π(p′)) ∈ C ′ iff (p, p′) ∈ C, λ′(π(p)) = λ(p), ε′(π(p)) = ε(p) and

ι′(π(p)) = ι(p) for all nodes n and ports p, p′ of d. All pertinent information

about diagrams resides in the labellings of their nodes and ports, not in the nature

of the (mathematical) objects one chooses as the nodes and ports themselves. We

will therefore treat isomorphic diagrams as identical.

4.4.1 From terms to diagrams

Every term f ∈ F with inf = {x1, . . . , xm} and outf = {y1, . . . , ym′} may now

be represented by a single-node diagram γ(f) as shown in Figure 4.2. Formally,

γ is an injective function from F into diagrams: Let {p1, . . . , pm}, {p′1, . . . , p′m′}
be two disjoint sets of ports. Then, γ(f)

def
= (N,F, I, O, C, λ, ε, ι), where

N = {n} is a singleton

F (n) = f

I = {pi | i = 1, . . . , m}
O = {p′i | i = 1, . . . , m′}
C = ∅
λ = {(pi, xi) | i = 1, . . . , m} ∪ {(p′i, yi) | i = 1, . . . , m′}
ε = λ

ι = ∅ .

As we shall see shortly, every function block diagram can be generated from

those in ran γ. To remind ourselves of this, we shall write Γ in place of the less

mnemonic ran γ.

4.4.2 Proper diagrams

Definition 4.3 is, for reasons of simplicity, quite general. Not every diagram

permitted by this definition is a proper function block diagram (although each

58

s
s

s

s
s

s

y2

x1

xm

y2

y1 y1

f

x2

ym′ym′

x1

x2

xm

...
...

...
...

Figure 4.2: A single-node diagram of function block f .

γ(f) certainly is).

Informally, a diagram d is proper if the following additional constraints are

met:

1. Each input port can be connected to at most one output port.

2. All output ports have distinct external labels.

3. No input port is given the same external label as any output port, that is

ind ∩ outd = ∅.

4. Only unconnected input ports may have external labels.

5. Only connected input ports may be initialised.

Our aim is to define an algebra of proper function block diagrams by choosing

a suitable set of operations corresponding to the combinators of Table 4.1. The

carrier set of this algebra will then be precisely the set of diagrams generated from

Γ using these operations. We begin by first identifying this set and postpone the

introduction of the operations until the next section.

Definition 4.4. A diagram d = (N,F, I, O, C, λ, ε, ι) is called proper, iff

1. C−1 is a function

2. ε�O is an injection

3. ε(O) ∩ ε(I) = ∅

4. dom (ε�I) = I \ ranC; and

5. dom ι ⊆ ranC. �

59

Easy consequences of the above definition are that, in all proper diagrams d,

ε(ranC) = ∅ and also dom ι ∩ dom ε = ∅.

4.5 An algebra of diagrams

This section completes the definition of our algebra of diagrams by introducing

a set of operations corresponding to those in the programming language. Each

expression in the algebra describes a particular way of building a diagram and thus

the operations are interpreted in terms of the diagrams they construct. The choice

of the carrier set made in the previous section is finally justified by demonstrating

that all diagrams so constructed are proper.

Definition 4.5 (Diagram Composition). Let di = (Ni, Fi, Ii, Oi, Ci, λi, εi, ιi),

i = 1, 2, be diagrams with N1 ∩N2 = ∅ and outd1 ∩ outd2 = ∅. Then,

d1 � d2
def
= (N,F, I, O, C, λ, ε, ι)

is the diagram given by:

N = N1 ∪N2 , F = F1 ∪ F2 , I = I1 ∪ I2 ,

O = O1 ∪ O2 , C = C1 ∪ C2 ∪ Ĉ , λ = λ1 ∪ λ2 ,

ι = ι1 ∪ ι2 , ε = ε1 ∪ (ε2 \ {(p, x) | p ∈ ran Ĉ})

where Ĉ = {(p, p′) ∈ O1 × I2 | ε1(p) = ε2(p
′) ∈ PLab}. �

Definition 4.6 (Diagram Restriction). For all d = (N,F, I, O, C, λ, ε, ι) and

x ∈ PLab,

d \ x
def
= (N,F, I, O, C, λ, ε′, ι) ,

where ε′ = ε \ {(p, x) | p ∈ O}. �

Definition 4.7 (Diagram Relabelling). For all d = (N,F, I, O, C, λ, ε, ι) and

relabellings g of 〈ind, outd〉,

d[g]
def
= (N,F, I, O, C, λ, ε′, ι) ,

where ε′ = (g0 ◦ (ε�I)) ∪ (g1 ◦ (ε�O)). �

Definition 4.8 (Diagram Loop). For all d = (N,F, I, O,A, λ, ε, ι), c ∈ Con

and x ∈ ind, y ∈ outd. Then

d[c; y → x]
def
= (N,F, I, O, C ∪ Ĉ, λ, ε′, ι′) ,

where Ĉ = {(p, p′) | p ∈ O, p′ ∈ I, ε(p) = y, ε(p′) = x}, ε′ = ε \ {(p, x) | p ∈ I}
and ι′ = ι ∪ {(p, c) | p ∈ ran Ĉ}. �

60

In words, the composition d1 � d2 connects those output ports of d1 to those

input ports of d2 having matching external labels. The external labels of the

inputs thus connected are subsequently removed. The restriction in d \ y removes

all occurrences of the external label y from the output ports of d. Relabelling

applies the relabelling function g to recast the external labels of d. Finally,

d[c; y → x] connects the output port of d having external label y to all input

ports of d having external label x. The input ports so connected have their

external labels subsequently removed and are initialised with the constant c.

Let now D be the algebra generated by Γ, that is the least set containing Γ

that is closed under the above operations. Expressions over this algebra, i.e. well-

formed expressions built from the elements of Γ using the operations, will be called

diagram expressions. The name stems from the fact that diagram expressions

provide a syntactic means to describe every diagram in D, with most non-atomic

diagrams (i.e. diagrams in D \ Γ) having multiple descriptions. As a notational

convention, we will use f to stand for γ(f) in diagram expressions and use w to

range over diagram expressions.

Lemma 4.1. The diagram operations of Composition, Restriction, Relabelling

and Loop preserve properness.

Proof. Routine from the definitions. �

With the help of this lemma, one may now prove that the proper diagrams

are precisely the diagrams in D.

Proposition 4.1. A diagram is in D iff it is proper.

Proof. To establish the forward implication one needs to show that all diagrams

in Γ are proper, which holds by definition of γ. Then by Lemma 4.1, all diagrams

in D are proper.

For the converse implication assume d = (N,F, I, O, C, λ, ε, ι) proper.

1. Add distinct fresh labels1 z1, . . . , zk, one for each output port p1, . . . , pk ∈
O \ dom ε to form diagram d′ = (N,F, I, O, C, λ, ε′, ι) with

ε′ = ε ∪ {(pi, zi) | i ∈ {1, . . . , k}} .

Clearly, d′ is proper and

d = d′ \ z1 . . . \ zk .

1i.e. not occurring among the input or output labels of d

61

2. Now, for each initialised input port pj ∈ dom ι, let p′j = C−1(pj) be the

unique output port to which pj is connected via a connection in C. Such

an unique output port always exists since C−1 is a function and dom ι ⊆
domC−1. Furthermore, let yj be the unique external label assigned to

p′j under ε′. (The existence of yj is guaranteed by the totality of ε′ and

its uniqueness by the requirement that ε � O — and hence ε′ � O — is

an injection.) Add now fresh labels xj, one for each pj, and remove all

connections in C to the pj’s to form d′′ = (N,F, I, O, C ′′, λ, ε′′, ∅) with

C ′′ = C \ {(p′j, pj) | pj ∈ dom ι} ,

and

ε′′ = ε′ ∪ {(pj , xj) | pj ∈ dom ι} .

Clearly then

d′ = d′′[c1; y1 → x1] . . . [cn; yn → xn] ,

where n =|dom ι | and cj = ι(pj), j = 1, . . . , n. Furthermore, it is not hard

to verify that d′′ is also proper.

3. Now consider each node ni in d′′ and let fi = F (ni). The map ε′′ is defined

on every port of d′′ except those input ports that are connected, that is those

ports p ∈ ranC ′′. However, ε′′ extends to a total map η : I ∪O → PLab as

follows:

η = ε′′ ∪ {(p, ε′′(p′)) | (p′, p) ∈ C ′′} .

Since ε′′ �O is an injection and ε′′(I) ∩ ε′′(O) = ∅, it follows that η �O is an

injection and η(I(ni)) ∩ η(O(ni)) = ∅. Now, for each ni define a relabelling

gi by

gi = {η(p)/λ(p) | p ∈ P (ni)} ,

that maps the internal labels of ports in ni to their corresponding labels

under η. By the properties of η and the definition of λ, it follows that each

gi � outfi is an injection and that gi(infi) ∩ gi(outfi) = ∅. Moreover, it is

not hard to see that

d′′ = f1[g1]� (f2[g2]� (. . .))

whence we obtain the diagram expression for d:

d = (f1[g1]� (f2[g2]� (. . .)))[c1; y1 → x1] . . . [cn; yn → xn] \ z1 . . . \ zk.

�

62

Thus, every proper diagram can be described by at least one diagram expres-

sion involving operations which correspond to those in the textual representation.

4.6 Equational Laws

In this section we develop an equational system E for our algebra of diagrams.

The system comprises seventeen equational laws which provide the means to link

diagrams to the textual form of the language. To establish the result that there is

no deviation between diagrammatic and textual programs, one must also establish

the validity of these laws in the semantics of the programming language. This is

done in Section 4.8.

Proposition 4.2 (Equational Laws). The identities in Table 4.2 hold in D,

whenever d, di, . . . are diagrams such that both sides of each equation are well-

defined.

Proof. Routine from the definitions. �

The following is a useful corollary of Proposition 4.2.

Corollary 4.1. The following identities hold whenever both sides are defined:

1. d \ y = d[z/y] \ z

2. d \ x1 . . . \ xn = d[z1/x1, . . . , zn/xn] \ z1 . . . \ zn if the zi are distinct.

3. d[c; y→ x][g] = d[g][c; g(y)→ g(x)] if g0 is an injection. �

4.7 Completeness

Reverting to the question of which diagram expressions describe the same dia-

gram, we demonstrate that the equational system E of the previous section is

complete for D. In other words, any two diagram expressions describing the same

diagram may be proved equal from laws (E1)–(E16). We shall write E ` w = w′

to mean “w and w′ may be proved equal from E”. The proof of the completeness

theorem is vastly simplified if one observes that any diagram expression can be

converted using the laws into an equivalent normal form.

Definition 4.9 (Normal Form). A well-formed diagram expression w is in nor-

mal form if

w
def
= (f1[g1]� . . .� fm[gm])[c1; y1 → x1] . . . [cn; yn → xn] \ z1 . . . \ zk ,

where

63

(E1) (d1 � d2)� d3 = d1 � (d2 � d3)

(E2) d1 � d2 = d2 � d1 if outd1 ∩ ind2 = ∅ and outd2 ∩ ind1 = ∅

(E3) (d1[c; y→ x])� d2 = (d1 � d2)[c; y→ x] if y 6∈ outd2 and x 6∈ ind2

(E4) d1 � (d2[c; y→ x]) = (d1 � d2)[c; y→ x] if y 6∈ outd1 and x 6∈ ind1

(E5) d \ y = d if y 6∈ outd

(E6) d \ x \ y = d \ y \ x

(E7) d1 \ y� d2 = (d1 � d2) \ y if y 6∈ outd2 ∪ (ind2 ∩ outd1)

(E8) d1 � d2 \ y = (d1 � d2) \ y if y 6∈ outd1

(E9) d[] = d

(E10) d[g][g′] = d[g′ ◦ g]

(E11) (d \ y)[g] = d[g, z/y] \ z

(E12) (d1 � d2)[g] = d1[g1]� d2[g2] if gi = g �〈indi, outdi〉

(E13) d[c; y→ x][g] = d[g, z/x][c; g(y)→ z] if z 6∈ ran g0

(E14) d \ z[c; y→ x] = d[c; y→ x] \ z

(E15) d[c; y→ x][c′; y′ → x′] = d[c′; y′ → x′][c; y→ x]

(E16) d[c; y→ z][c; y→ x] = d[x/z][c; y→ x]

Table 4.2: The equational laws for the algebra of function block diagrams.

64

• the zi are distinct and all occur in some of the output sorts out(fi[gi]),

i = 1, . . . , m.

• the (yi, ci) are all distinct pairs.

(By the well-formedness of w it follows that the xi are also distinct.) �

Lemma 4.2 (Normal Form Lemma). For every diagram expression w, there

is a normal form w? such that E ` w = w?.

Proof. We outline the phases of the transformation of w into w?, writing wi for

the resulting expression at the end of phase i.

1. Use (E5) where applicable to remove any unnecessary restrictions; that is

restrictions \z where z is not in the output sort of the subexpression qualified

by the restriction.

2. Some of the labels z in the remaining restrictions \z may not be distinct

from each other, or may occur in either

X = {x | there is a loop [c; y→ x] in w1} ,

or inw ∪ outw. In this case, pick up a fresh2 label s for each offending

restriction \z and use Corollary 4.1(1) to replace \z by [s/z] \ s. All labels

restricted over in w2 are now distinct from each other, and do not occur in

either inw ∪ outw or X.

3. Use (E11), (E12) and (E13) to move all relabellings in w2 innermost. In

particular, (E11) can always be applied as a result of the work done in phase

1, care must be taken in choosing z so as to preserve the work of phase 2.

Finally, use (E10) to coalesce innermost relabellings.

4. Move all restrictions \z in w3 outermost, past any occurrences of composi-

tions and loops. The only slightly problematic case is that of composition,

which may be analysed as follows:

• Suppose that \z occurs in the context d′ � (d′′ \ z). Now, z 6∈ outd′

since otherwise z ∈ outw or \z occurs further out in w3, and these

possibilities have been eliminated during phase 2.

2In the context of this proof, a fresh label is one not occurring anywhere in the entire
expression being manipulated.

65

• Suppose that \z occurs in the context (d′ \ z) � d′′. Again, one has

that z 6∈ outd′′ ∪ (ind′′ ∩ outd′). Firstly, z 6∈ outd′′ for reasons similar

to those exhibited in the previous case. Secondly, z 6∈ (ind′′ ∩ outd′)

since otherwise either z ∈ inw, or there is a loop [c; y→ z] further

out which hides the input label z. Again, phase 2 has precluded these

possibilities.

Hence, one may use (E7), (E8) and (E14) freely to move all restrictions \z
in w3 outermost.

5. Move all loops [c; y→ x] in w4 outside all occurrences of composition. Sup-

pose a loop occurs in the context (d′[c; y → x]) � d′′ and x ∈ ind′′ so

that (E3) cannot be applied directly3. Then one may use the following

sequence of transformations to move the loop out:

(d′[c; y→ x])� d′′

= 〈using (E9)〉
(d′[c; y→ x][])� d′′

= 〈using (E13) with z 6∈ inf ′′〉
(d′[z/x][c; y→ z])� f ′′

= 〈using (E3)〉
(d′[z/x]� d′′)[c; y→ z]

In particular, z must be distinct from any restriction and any input label

occurring in a loop of w4 in order to preserve the work of the previous

phases. A similar course of action is taken when the loop occurs in the

context d′ � (d′′[c; y→ x]).

6. Coalesce relabellings in w5 using (E10).

7. w6 now has the required form, except that some of the (yi, ci) may not be

distinct. In such a case, follow the procedure suggested by the following

3Obviously, one has that y 6∈ outd′′ since y ∈ outd′ by definition and outd′ ∩ outd′′ = ∅ by
the properness of the diagram being manipulated.

66

example, where w′ is a composite of diagrams of the form fi or fi[gi]:

w′[c1; y1 → x1] . . . [c; y→ xi] . . . [c; y → xj] . . . [cn; yn → xn]

= 〈repeatedly using (E15)〉
w′[c; y → xi][c; y → xj][c1; y1 → x1] . . . [cn; yn → xn]

= 〈using (E16)〉
w′[xj/xi][c; y→ xj][c1; y1 → x1] . . . [cn; yn → xn]

Now move the generated relabelling into w′ using (E12) and coalesce inner-

most relabellings. Repeat the above procedure as many times as necessary.

If, finally, some atomic diagram f is not qualified by a relabelling, use (E9)

to replace it with f []. The resulting expression is w?, the required normal

form. �

The following auxiliary result concerns the special case in which two diagram

expressions constructing the same diagram only involve compositions and rela-

bellings of atomic diagrams.

Lemma 4.3. For all diagram expressions

w
def
= f1[g1]� . . .� fm[gm]

and

w′ def
= f ′

1[g
′
1]� . . .� f ′

m′ [g′m′]

representing the same diagram d, E ` w = w′.

Proof. Since d = w = w′, it follows that the atomic diagrams fk, f
′
k and the

nodes nk of d are in bijection, whence m′ = m. Without loss of generality,

assume the bijection between the nk and fk to be nk 7→ fk. Since composition is

not fully commutative, however, there will in general be a permutation j1, . . . , jm

of 1, . . . , m such that the bijection between the nk and f ′
k is nk 7→ f ′

jk
.

Also, from the properness of d follows that the fk[gk] (respectively, the f ′
k[g

′
k])

are all distinct from each other. For supposing the contrary, d would have two

external output ports having the same label. Hence, fk = f ′
jk

. It follows that

one must also have gk = g′jk
, otherwise w and w′ would not represent the same

diagram.

We can now restate our goal as follows: for all diagram expressions

w
def
= f1[g1]� . . .� fm[gm]

67

and

w′ def
= f ′

1[g
′
1]� . . .� f ′

m[g′m]

such that d = w = w′ and fi[gi] 6= fj[gj], f
′
i [g

′
i] 6= f ′

j[g
′
j] for all i 6= j, E ` w = w′.

The proof of this is by induction on the number m of components in w and

w′. For m = 1 one trivially has E ` w = w′. Now, assume that the induction

hypothesis holds for all expressions w,w′ of length m describing the same diagram

and prove the result for the case of m+ 1, taking

w
def
= f1[g1]� . . .� fm+1[gm+1]

and

w′ def
= f ′

1[g
′
1]� . . .� f ′

m+1[g
′
m+1] .

Consider f1[g1] and let k be the unique index such that f1[g1] = f ′
k[g

′
k]. Since f1[g1]

is the “leftmost” component of w, none of the input ports of the corresponding

node n1 in d will be connected. Consequently, as f ′
k[g

′
k] represents the same node

n1 in w′, one has that

in(f ′
k[g

′
k]) ∩

k−1⋃
j=1

out(f ′
j [g

′
j]) = ∅ .

Hence, one may use (E1) and (E2) to transform w′ as follows:

w′ = ((f ′
1[g

′
1] . . .� f ′

k−1[g
′
k−1])� f ′

k[g
′
k])� (f ′

k+1[g
′
k+1]� . . .� f ′

m+1[g
′
m+1])

= f ′
k[g

′
k]� (f ′

1[g
′
1]� . . .� f ′

k−1[g
′
k−1]� f ′

k+1[g
′
k+1]� . . .� f ′

m+1[g
′
m+1])

= f ′
k[g

′
k]� w′

1

where

w′
1

def
= f ′

1[g
′
1]� . . .� f ′

k−1[g
′
k−1]� f ′

k+1[g
′
k+1]� . . .� f ′

m+1[g
′
m+1] .

Now, if one lets

w1
def
= f2[g2]� . . .� fm+1[gm+1] ,

then it is not hard to see that, because f1[g1] = f ′
k[g

′
k], both w1 and w′

1 represent

the same diagram d1 and that they are both of length m. By applying the

induction hypothesis, one now gets that E ` w1 = w′
1. Hence, E ` w = w′ as

required. �

68

Lemma 4.4. Consider the expressions

w
def
= w1[c1; y1 → x1] . . . [cn; yn → xn]

and

w′ def
= w′

1[c
′
1; y′1 → x′1] . . . [c′n′ ; y′n′ → x′n′]

where

• w1 and w′
1 contain no instances of loops

• the pairs (yi, ci) are distinct; and

• the pairs (y′j, c
′
j) are distinct.

If both w and w′ denote the same diagram d then the (yi, ci) are in bijection with

the (y′j, c
′
j), whence n′ = n. That is, there exists a permutation b of 1, . . . , n such

that y′b(k) = yk and c′b(k) = ck. Moreover,

d1 = d′1[x1/x
′
b(1), . . . , xn/x

′
b(n)]

where d1 and d′1 are the diagrams denoted by w1 and w′
1 respectively.

Proof. Consider the set of loop connections in d:

CL = {(p, p′) ∈ C2 | p ∈ dom ε2, p
′ ∈ dom ι2} .

CL can be further partitioned into sets

C(l, k) = {(p, p′) ∈ CL | ε(p) = l, ι(p′) = k} .

In words, each connection in C(l, k) emanates from the same output port labelled

l and terminates at some internalised input port initialised with constant k. These

sets are clearly disjoint as there can be no output port with more than one external

label nor a multiply initialised input port.

It follows from the disjointness assumptions and

d = d1[c1; y1 → x1] . . . [cn; yn → xn] = d′1[c
′
1; y′1 → x′1] . . . [c′n; y′n′ → x′n′]

that the required bijection exists such that (yi, ci) = (y′b(i), c
′
b(i)). �

Proposition 4.3 (Completeness). Whenever w, w′ denote the same diagram,

E ` w = w′.

69

Proof. Given Lemma 4.2 it now suffices to show that, if d = w = w′ and w,w′

are in normal form, then E ` w = w′. Suppose then that,

w
def
= (

w1︷ ︸︸ ︷
f1[g1]� . . .� fm[gm])[c1; y1 → x1] . . . [cn; yn → xn]︸ ︷︷ ︸

w2

\z1 . . . \ zk ,

w′ def
= (

w′
1︷ ︸︸ ︷

f ′
1[g

′
1]� . . .� f ′

m′ [g′m′])[c′1; y′1 → x′1] . . . [c′n′; y′n′ → x′n′]︸ ︷︷ ︸
w′

2

\z′1 . . . \ z′k′ ,

and let d2, d
′
2 be the diagrams denoted by w2, w

′
2, respectively. Since

d = d2 \ z1 . . . \ zk = d′2 \ z′1 . . . \ z′k′ ,

the sets {z1, . . . , zk} and {z′1, . . . , z′k′} are in bijection with the internalised out-

put ports of d. (Each restriction internalises exactly one output port of d.) It

follows that k = k′ and

d2 = d′2[z1 . . . zk/z
′
1 . . . z

′
k] . (4.1)

Using Corollary 4.1(2), one obtains:

w′
2[z1 . . . zk/z

′
1 . . . z

′
k] \ z1 . . . \ zk = w′

Using Corollary 4.1(3), the fact that the x′i are distinct from the z′i (by well-

formedness), and (E12), one further obtains:

w′
2[z1 . . . zk/z

′
1 . . . z

′
k]

def
= w′

1[c
′
1; y′1 → x′1] . . . [c′n′ ; y′n′ → x′n′][z1 . . . zk/z

′
1 . . . z

′
k]

= w′
1[z1 . . . zk/z

′
1 . . . z

′
k][c

′
1; y′′1 → x′1] . . . [c′n′; y′′n′ → x′n′]

= w′′
1 [c

′
1; y′′1 → x′1] . . . [c′n′ ; y′′n′ → x′n′]

where w′′
1

def
= f ′

1[g
′′
1]� . . .� f ′

m′ [g′′m′], and each g′′i is the composition of g′i with the

restriction of (z1 . . . zk/z
′
1 . . . z

′
k) to fi. Moreover, the pairs (y′′j , c

′
j) are distinct.

(The (y′j, c
′
j) are distinct, since w′ is in normal form, and the relabelling z′i 7→ zi

is one-to-one.)

By (4.1), both w′′
1 [c

′
1; y′′1 → x′1] . . . [c′n′ ; y′′n′ → x′n′] and w2 above denote d2,

so Lemma 4.4 applies and establishes a bijection between the (yj, cj) and the

(y′′j, c
′
j) (whence n′ = n). Without loss of generality we may assume (via (E15)

appropriately applied prior to obtaining w and w′) this bijection to be (yi, ci) =

(y′′i, c
′
i) and, consequently, that

d1 = d′′1[x1 . . . xn/x
′
1 . . . x

′
n] , (4.2)

70

where d′′1 is the diagram denoted by w′′
1 .

Now (E12) derives,

w′′
1 [x1 . . . xn/x

′
1 . . . x

′
n] = f ′

1[g
′′′
1]� . . .� f ′

m′ [g′′′m′] ,

where each g′′′i is the composition of g′′i with the restriction of (x1 . . . xn/x
′
1 . . . x

′
n)

to f ′
i . Letting

w′′′
1

def
= f ′

1[g
′′′
1]� . . .� f ′

m′ [g′′′m′] ,

(4.2) asserts that w1 and w′′′
1 both denote d1, so Lemma 4.3 applies to establish

E ` w1 = w′′′
1 .

Putting it all together (in reverse order):

w = w1[c1; y1 → x1] . . . [cn; yn → xn] \ z1 . . . \ zk

= w′′′
1 [c1; y1 → x1] . . . [cn; yn → xn] \ z1 . . . \ zk

= w′′
1 [x1 . . . xn/x

′
1 . . . x

′
n][c1; y1 → x1] . . . [cn; yn → xn]

\z1 . . . \ zk

= . . . 〈using (E13) and (E9)〉
= w′′

1 [c1; y1 → x′1] . . . [cn; yn → x′n] \ z1 . . . \ zk

= w′
2[z1 . . . zk/z

′
1 . . . z

′
k] \ z1 . . . \ zk

= w′ .

This proves E ` w = w′. �

4.8 Connecting diagrams and programs

To complete the connection we must establish that the equations of Proposi-

tion 4.2 hold for the operational semantics of the programming language.

4.8.1 Semantics of Function Blocks

The detailed definition of the semantics is given elsewhere [140]. In general, a

function block f is evaluated against a set i of input values to produce a set

o of output values. As a result of evaluation, f evolves into a new term f ′ of

the same type which records the new state of f . Formally, we define relations
i , o−→ ⊆ F (X, Y)× F (X, Y), written in the form

f
i , o−→ f ′ ,

71

i ` e→ c

y = e
i , (c/y)−−−−→ y = e

(4.3)

f
i , o−→ f ′

f \ y
i , o\{y}−−−−→ f ′ \ y

(4.4)

f
ig , o−−→ f ′

f [g]
i , og

−−→ f ′[g]
〈ig, og〉 = 〈i, o〉g (4.5)

f
i+(c/x) , o−−−−−→ f ′

f [c; y → x]
i , o−→ f ′[o(y); y → x]

(4.6)

f1
i1 , o1−−−→ f ′

1 f2
i2 , o2−−−→ f ′

2

f1 � f2
i , o1+o2−−−−→ f ′

1 � f ′
2

i1 = i� inf1

i2 = (i+ o1)� inf2
(4.7)

Figure 4.3: Semantic rules: function block evaluation.

where i : inf → Con and o : outf → Con. (We blur the distinction between con-

stants and the values they denote.) Function block evaluation depends upon the

evaluation of basic expressions. Writing i ` e→ c for the evaluation of expression

e to constant c under input map i, the rules for function block evaluation are as

in Figure 4.3.

Specific maps i, o are given explicitly in the form

(c1/x1, . . . , ck/xk) ,

and we write o\y for the map resulting by excluding y from the domain of o. The

map o + o′ stands for the modification of o by o′, having as domain the union of

their domains and values given by:

(o+ o′)(x) def
= o′(x) if x ∈ dom o′ or o(x) otherwise.

Given relabelling g : 〈X, Y 〉 → 〈X ′, Y ′〉 and maps i : X ′ → Con, o : Y → Con

define 〈i, o〉g to be the unique pair 〈ig, og〉 of maps ig : X → Con and og : Y ′ →
Con such that ig = i ◦ g0 and og ◦ g1 = o.

The evaluation relation −→ can easily be proved monogenic, that is −→ is a

function.

Based on the semantics, one can now define a notion of behavioural equivalence

between function blocks:

Definition 4.10. Two function blocks f1 and f2 of the same type are behaviourally

equivalent, written f1 ≈ f2, iff for all appropriate maps i and o,

72

1. whenever f1
i , o−→ f ′

1, then f2
i , o−→ f ′

2 and f ′
1 ≈ f ′

2; and

2. whenever f2
i , o−→ f ′

2, then f1
i , o−→ f ′

1 and f ′
1 ≈ f ′

2. �

≈ is both an equivalence and a congruence relation. The definition of ≈,

together with the fact that evaluation preserves the syntactic structure of function

block terms, gives rise to the following proof technique [140]:

Lemma 4.5. Let f be some structural combination C(f1, . . . , fn) of f1, . . . , fn

and let f ′ be some combination C′(f ′
1, . . . , f

′
n′) of f ′

1, . . . , f
′
n′. Define a relation R

as follows:

R = {(C(f1, . . . , fn), C′(f ′
1, . . . , f

′
n′)) | f1, . . . , fn, f

′
1, . . . , f

′
n′ ∈ F}

Then in order to prove f ≈ f ′ it suffices to demonstrate that

1. whenever f
i , o−→ h, then f ′ i , o−→ h′ and (h, h′) ∈ R; and

2. whenever f ′ i , o−→ h′, then f
i , o−→ h and (h, h′) ∈ R.

Proof. See [140]. �

4.8.2 Verifying the equational laws

Checking that each equation in Proposition 4.2 holds in the semantics is a routine

task. Here we only demonstrate (E13) to illustrate the use of the technique

described above.

First, assume that

f [c; y → x][g]
i , o−→ f1 ,

for appropriate maps i and o. Then there exists a function block term f ′ and an

output map o′ such that f1
def
= f ′[o′(y); y→ x][g], o = (o′)g and the following is a

valid derivation in the semantics:

f
ig+(c/x) , o′−−−−−−→ f ′

(4.6)

f [c; y→ x]
ig , o′−−→ f ′[o′(y); y→ x]

(4.5)
f [c; y→ x][g]

i , o−→ f ′[o′(y); y→ x][g]

Letting g′ = (g, z/x) observe that, since z does not belong to the image of inf

under g,

(i+ (c/z))g′ = ig + (c/x)

73

and thus

f
(i+(c/z))g′ , o′−−−−−−−−→ f ′

is exactly the same as:

f
ig+(c/x) , o′−−−−−−→ f ′ .

Since, by definition of o, o = (o′)g = (o′)g′ and o(g(y)) = o′(y) we can now

construct the following valid derivation:

f
(i+(c/z))g′ , o′−−−−−−−−→ f ′

(4.5)

f [g′]
i+(c/z) , o−−−−−→ f ′[g′]

(4.6)
f [g, z/x][c; g(y)→ z]

i , o−→ f ′[g, z/x][o′(y); g(y)→ z]

Thus, we have shown part 1 of Lemma 4.5. A completely symmetrical argument

establishes the opposite direction, part 2. So, the relation consisting of all pairs

of terms

f [c; y→ x][g], f [g, z/x][c; g(y)→ z] ,

where f ∈ F and z 6∈ ran g0, satisfies the criterion of Lemma 4.5. Consequently,

f [c; y→ x][g] ≈ f [g, z/x][c; g(y)→ z]

as required.

4.9 Discussion

Recently, there have been a number of approaches to the formalisation of PLC

programming languages, e.g. [36, 54, 55, 84]. These have focused on using formal

definition and verification methods to support reasoning about the textual rep-

resentations of these languages. However, an essential aspect of PLC languages

is the ability to program using diagrams. This ability has an impact on the ac-

ceptance of the programming notation and on the designer’s ability to reason

(formally and informally) about the system.

Here we have established a precise correspondence between diagrams and the

semantics of the language. We believe that this has significance both specifically

for the programming of PLCs in such notation and more generally it establishes

a rigorous criterion for the use of diagrammatic notations in domain-specific pro-

gramming languages. In particular, the criterion regards whether a language

featuring diagrammatic representation is sufficiently well designed to:

74

• ensure that all ways of constructing the same diagram are interpreted iden-

tically; and, thus,

• relieve programmers, through the use of diagrams, from the need to consider

non-significant variants of programs.

It is interesting to note, in passing, how our work relates to some of the

guidelines on domain-specific language selection from [72]; a set of industry-wide

guidelines for the safe deployment of programmable controllers. Under the head-

ing of “Closeness to application domain” (p. 150) [72] suggests that:

If an established representation of the application domain exists (e.g.
textual representations such as mathematical symbols and equations,
or graphical representations such as electronic circuit diagrams etc.)
then the language syntax should be similar to this representation, and
the semantics should be consistent with this syntax.

Moreover:

. . . there should be no difference between the coder’s expectation and
the compiler’s interpretation.

In function blocks one has both textual syntax, derived from data-flow equa-

tions, and diagrammatic syntax. Consistency is therefore required both across

the two different representations and with respect to semantics. Thus, our work

is this chapter provides a formalised, precisely stated criterion which wholly cap-

tures the essence of the above guidelines.

75

Chapter 5

Graphs and Categories

This chapter provides a self-contained introduction to those elements of the theory

of categories which will be required in the remainder of this thesis. As graph-based

notations form a wide class of visual and diagrammatic languages, particular

attention is paid here to the category of graphs and to constructions within it.

The material of section 5.5.2 in particular is motivated entirely by the needs of

this thesis; the definitions and proofs therein are typically not found in standard

texts (or, at least, those known to the author).

An often overwhelming feature of discourse in category theory is its reliance

on an extensive stock of definitions; many of which describe generalisations of

familiar concepts using new and sometimes alien terminology. Here, we have

attempted to arrive at the concepts necessary for our purposes by using as few

definitions as possible. (For instance, our account of monoidal categories in Sec-

tion 5.6 makes no mention of either “bifunctors” or “natural transformations”.)

Consequently, we make no claim of this introduction being comprehensive for any

purpose other than understanding the material in this thesis.

For thorough introductions to the subject the reader is referred to the books by

Barr and Wells [8], and Pierce [114] which are targeted specifically for audiences

in computer science. Shorter introductions, together with further pointers to the

numerous applications of categories in computing, are provided in [115, 40, 119,

26]. The definitive text on category theory is MacLane’s book [88].

5.1 Graphs

A graph consists of a set of objects O (vertices), a set of arrows A (edges) and

a pair of functions ∂0, ∂1 : A→ O, called the source and target functions respec-

tively. It is customary to write a : u → w to denote an arrow a ∈ A such that

∂0(a) = u and ∂1(a) = w.

76

Example 5.1. The graph G which is pictorially represented as

•j ;;

f
((
�

g
ff kdd

has {•,�} as its set of objects and {f, g, j, k} as its set of arrows. For f , ∂0(f) = •
and ∂1(f) = �. �

Let the sources of a graph G = (O,A, ∂0, ∂1) be those objects of G having no

incident arrows:

SrcG
def
= {o | @a ∈ A. ∂1(a) = o} .

The sinks of G are those objects having no emanating arrows:

SnkG
def
= {o | @a ∈ A. ∂0(a) = o} .

5.1.1 Graph homomorphisms

Intuitively, a homomorphism of graphs G and G′ is a mapping h from the objects

and arrows of G to the objects and arrows of G′ such that whenever a : u→ w is

an arrow in G then h(a) : h(u)→ h(w) in an arrow in G′. More precisely:

Definition 5.1. Let G = (O,A, ∂0, ∂1) and G′ = (O′, A′, ∂′0, ∂
′
1) be graphs. A

homomorphism h : G → G′ is a pair h = 〈hO, hA〉 of functions hO : O → O′ and

hA : A→ A′ such that for all a ∈ A,

hO(∂0(a)) = ∂′0(hA(a)) and hO(∂1(a)) = ∂′1(hA(a)) .

�

To simplify notation, we shall often denote both components hO, hA of a graph

homomorphism h as simply h.

5.1.2 Reflexive graphs

A graph G is called reflexive if to every object u of G there is associated a

distinguished arrow u → u, called the identity arrow at u. Formally, a reflexive

graph is a pair 〈G, id〉, where G = (O,A, ∂0, ∂1) is a graph and id : O → A is a

function such that ∂0(id(u)) = ∂1(id(u)) = u for all u ∈ O.

Clearly, any graph G may be made reflexive by adding a distinguished arrow

id(u) = 1u : u → u for each object u of G. The resulting graph is called the

reflexive closure of G and is denoted R(G).

77

5.2 Categories

Any two arrows g, f in a graph such that the source of g coincides with the target

of f are called composable. Thus, the set of all pairs of composable arrows in a

graph G = (O,A, ∂0, ∂1) is:

Comp(G)
def
= {〈g, f〉 ∈ A×A | ∂1(f) = ∂0(g)} .

A category is a reflexive graph in which every composable pair of arrows

f : A → B, g : B → C determines a specified composite arrow g ◦ f : A → C

subject to axioms.

Definition 5.2. A category C is a graph (O,A, ∂0, ∂1) with two additional func-

tions id : O → A and − ◦ − : Comp(C) → A, called identity and composition,

subject to the following axioms:

1. ∂0(id(u)) = ∂1(id(u)) = u

2. ∂0(g ◦ f) = ∂0(f) and ∂1(g ◦ f) = ∂1(g)

3. id(w) ◦ f = f and f ◦ id(u) = f , for f : u→ w

4. k ◦ (g ◦ f) = (k ◦ g) ◦ f .

We shall usually write idu (or 1u, or just u) for id(u). �

Thus, composition in a category is associative and has the arrows id(u) as

identities.

5.2.1 Examples of categories

A great variety of mathematical structures may be regarded as the objects or

arrows of appropriate categories. Here we present examples of such categories

which will be of particular relevance to the rest of the present thesis.

5.2.1.1 The category of sets and functions

We assume that all sets mentioned hereafter belong to a sufficiently large universe

(i.e. set of sets) U .

Let Set be the graph having:

• U as its set of objects (i.e. the objects of Set are all sets in U)

• arrows all (total) functions f : A→ B between sets in U .

78

For each object A of Set, the identity arrow 1A on A is the identity function

on the set A: 1A(x)
def
= x for all x ∈ A. Composition of arrows in Set is the

usual composition of functions: for arrows f : A→ B and g : B → C, g ◦f is the

function A→ C defined by:

(g ◦ f)(x)
def
= g(f(x)), for all x ∈ A .

It is well known that identity functions and composite functions satisfy the

axioms in Definition 5.2. Thus Set is the category of all sets (in U) and functions

between them.

Remark. The restriction of all sets considered to the members of a universe U

is required in order to avoid foundational paradoxes similar to Russell’s paradox

for set theory. In particular U is, by definition, not an object of Set. See [88],

pages 21–24, for a thorough discussion on this topic.

5.2.1.2 The category of graphs and graph homomorphisms

Let Graph be the graph having:

• objects: all graphs (O,A, ∂0, ∂1) such that O,A ∈ U

• arrows: all graph homomorphisms h : G→ G′.

Graph may easily be seen to be a category. The identity arrow corresponding

to a graph G = (O,A, ∂0, ∂1) is the identity homomorphism 1G = 〈1O, 1A〉 : G→
G (where 1O and 1A are the identity functions on O and A respectively). The

composition of graph homomorphisms h : G→ G′ and g : G′ → G′′ is defined in

terms of function composition:

g ◦ h def
= 〈gO ◦ hO, gA ◦ hA〉 : G→ G′′ .

5.2.1.3 Sequences and Permutations

For every n ∈ N , let [n] abbreviate {1, . . . , n}. Given any set A, a finite sequence

over A is a function s : [n]→ A for some n ∈ N .

A bijection1 of the form p : [n] → [n] is called a permutation of {1, . . . , n}.
Permutations may be regarded as the arrows of a simple category Perm having:

• N as its set of objects;

1A bijection is a function which is both injective (i.e. “one-to-one”) and surjective (i.e.
“onto”).

79

• arrows p : n→ n all permutations p : [n]→ [n];

• composition that of functions with the obvious identities 1k : k → k, where

1k(x)
def
= x for all 1 ≤ x ≤ k.

In particular, note that Perm contains no arrows a : m→ n for m 6= n.

5.2.2 Commutative diagrams

A diagram in a category C is a graph D whose objects and arrows are consistently

labelled with objects and arrows in C: that is, whenever an arrow a ofD is labelled

f and ∂0(a), ∂1(a) are labelled A and B respectively, then f : A→ B is an arrow

in C. (Thus, formally, a diagram in C is a homomorphism from a graph D to the

graph underlying C.)

Example 5.2. Let f : A→ B, g : B → B be functions. Then,

A
f //

f
// B

1B

��

ggg

B

is a diagram in Set. �

A diagram D in a category C is said to commute (or to be commutative) if,

for every pair of objects A, B, all the paths in D from A to B determine equal

arrows in C. Thus, to say that the diagram

A

h
��

f // B

g

��
C

k
// D

commutes is tantamount to asserting that g ◦ f = k ◦ h. (Readers interested in a

formal definition of commutativity are advised to consult chapter 4 of [8].)

5.3 Isomorphisms

The reader may recall from set theory that two sets A,B are considered isomor-

phic if there is a bijection f : A → B. Equivalently, A and B are isomorphic

if there exist functions f : A → B and g : B → A such that g ◦ f = 1A and

f ◦ g = 1B. The concept of isomorphic sets admits an immediate generalisation

in terms of arrows in an arbitrary category:

80

Definition 5.3. An arrow m : A→ B in a category C is called an isomorphism

if there exists arrow m−1 : B → A such that m ◦m−1 = 1B and m−1 ◦m = 1A. If

such a pair of arrows exists between A and B, then A is called isomorphic to B,

written A ∼= B. �

Thus, in Set two objects are isomorphic if they are so in the usual set-theoretic

sense. In Graph, G ∼= G′ if there exist graph homomorphisms h : G → G′ and

g : G′ → G satisfying the condition of Definition 5.3 (or, equivalently, if both

components of h are bijections).

Lemma 5.1. Let i : A → B be an isomorphism in a category C. For any two

arrows f, g : B → C in C, f ◦ i = g ◦ i implies f = g.

Proof. Let j : B → A be the arrow such that i◦j = 1B and j ◦ i = 1A and assume

f ◦ i = g ◦ i. Then, f = f ◦1B = f ◦(i◦j) = (f ◦ i)◦j = (g ◦ i)◦j = g ◦1B = g. �

It is straightforward to verify that ∼= is an equivalence relation (i.e. one that

is reflexive, symmetric and transitive) on the objects of any category.

Many other familiar set-theoretic concepts (among them that of subset, dis-

joint union and cartesian product) have category-theoretic generalisations. In the

following two sections we consider two such generalisations which will be required

in Chapter 7.

5.4 Coproducts

Definition 5.4. Let A, B be objects in a category C. A coproduct of A,B is

an object A+B together with two arrows inlA,B : A→ A+B and inrA,B : B →
A +B such that, for any other object C and arrows h : A → C, k : B → C,

there exists a unique arrow [h, k] : A+B → C such that [h, k] ◦ inlA,B = h and

[h, k] ◦ inrA,B = k. That is, both triangles in the following diagram commute:

A
inlA,B //

h

!!D
DD

DD
DD

DD
DD

DD
DD

DD
D A +B

[h,k]

��

B
inrA,Boo

k

}}zz
zz

zz
zz

zz
zz

zz
zz

zz

C

�

A category C is said to have coproducts if every two objects in C have a

coproduct.

81

Example 5.3. In Set, the disjoint union A] B def
= (A × {0}) ∪ (B × {1}) is a

coproduct of sets A and B. (Here, × denotes the cartesian product of sets.) In this

case the injections inlA,B : A → A +B, inrA,B : B → A+B are the mappings:

a ∈ A inl7→ 〈a, 0〉 and b ∈ B inr7→ 〈b, 1〉. �

Coproducts extend to arrows. Let f : A → A′, g : B → B′. Provided that

both A+A′ and B +B′ exist, the arrow f + g is the unique arrow h : A+B →
A′ +B′ such that h ◦ inlA,A′ = inlB,B′ ◦ f and h ◦ inrA,A′ = inrB,B′ ◦ g. (That is,

f + g = [inlA′,B′ ◦ f, inrA′,B′ ◦ g].)

Lemma 5.2. In any category with coproducts, (g+g′)◦(f+f ′) = (g◦f)+(g′◦f ′).

Proof. Let f : A → B, g : B → C, f ′ : A′ → B′ and g′ : B′ → C ′. By the

defining properties of f + f ′ and g + g′, all four inner squares in

A
inl //

f

��

A+ A′

f+f ′
��

A′inroo

f ′

��
B

inl //

g

��

B +B′

g+g′
��

B′inroo

g′

��
C

inl // C + C ′ C ′inroo

commute. It follows that

((g + g′) ◦ (f + f ′)) ◦ inlA,A′ = inlC,C′ ◦ (g ◦ f)

and

((g + g′) ◦ (f + f ′)) ◦ inrA,A′ = inrC,C′ ◦ (g′ ◦ f ′) .

Thus, (g+g′)◦(f+f ′) satisfies the property with respect to which (g◦f)+(g′◦f ′)

is unique. Hence, (g ◦ f) + (g′ ◦ f ′) = (g + g′) ◦ (f + f ′). �

Coproducts are uniquely defined only up to isomorphism: if both C and D

are coproducts of A and B then there is unique isomorphism C ∼= D.

Often, one is interested only in a specific coproduct for any two objects in a

category C. In that case, the chosen coproduct is denoted A +B and is referred

to as just “the coproduct” in C. For instance, the coproduct in Set is that given

by disjoint union. Here is a further examples that we shall use later:

82

5.4.1 The coproduct in Graph

Let G = (O,A, ∂0, ∂1), G
′ = (O′, A′, ∂′0, ∂

′
1) be graphs and let

G+G′ def
= (O +O′, A+ A′, ∂0 + ∂′0, ∂1 + ∂′1)

(on the right-hand side of
def
=, the symbol + denotes the coproduct of objects and

arrows in Set). The graph G + G′ is the coproduct of graphs G and G′ in the

category Graph. In the usual pictorial representation of graphs, G + G′ would

result in the juxtaposition of two disjoint copies of the representations of G and

G′.

5.5 Pushouts

Let E ⊆ A × A be an equivalence relation on a set A. For any a ∈ A, the

equivalence class of a under E, denoted [a]E , is the set {a′ ∈ A | 〈a, a′〉 ∈ E} of

all elements equivalent to a. The set

{[a]E | a ∈ A}

of all such equivalence classes is called the quotient set of A by E and denoted

A/E. The function q : A→ A/E taking each a ∈ A to its equivalence class [a]E

is called the quotient map induced by E.

Definition 5.5 (Amalgam of Sets). Let A,B,C be sets and f : C → A, g : C →
B be functions with common domain C. The amalgam of A and B through f

and g, denoted A qf,g B, is the set obtained from A + B via the quotient map

induced by making the identifications

inl(f(x)) = inr(g(x)), x ∈ C .

�

(I.e., the quotient map in question is induced by the least equivalence relation

E on A +B such that 〈inl(f(x)), inr(g(x))〉 ∈ E for all x ∈ C.)

In words, the amalgamated sum Aqf,gB identifies the elements f(x) and g(x)

in the coproduct of A and B. The following is a known property of q:

Lemma 5.3. Let D be any set and dA : A → D, dB : B → D be functions such

that dA ◦ f = dB ◦ g, where f : C → A, g : C → B. Then:

1. qA ◦ f = qB ◦ g, where qA
def
= q ◦ inlA,B, qB

def
= q ◦ inrA,B, and q is the quotient

map of Definition 5.5;

83

2. there is unique h : Aqf,g B → D such that dA = h ◦ qA and dB = h ◦ qB:

C
f //

g

��

A

qA

�� dA

��

B
qB//

dB ,,

Aqf,g B

h
III

I

$$II
III

D

Proof. Part 1 obviously holds. For part 2, observe that the requirements dA =

h ◦ qA and dB = h ◦ qB define h uniquely. For suppose h′ : Aqf,g B → D is

another function such that dA = h′ ◦ qA and dB = h′ ◦ qB. Since dA ◦ f = dB ◦ g
one also has h ◦ (qA ◦ f) = h′ ◦ (qB ◦ g). By qA ◦ f = qB ◦ g and the fact that qA,

qB are surjective it follows that h = h′. �

Pushouts are the category-theoretic generalisation of amalgams in Set. In

the general setting, one starts with two arrows f : C → A and g : C → B in

a category C having common source C. The idea is that a pushout construc-

tion “combines” the objects A and B into a third object P by making as few

identifications as possible (those “specified” by f and g) and by adding nothing

which is essentially new [40]. The resulting object P comes equipped with arrows

p1 : A→ P and p2 : B → P showing how A and B are “included” in P .

Definition 5.6. A commutative square

C
f−−−→ Ayg p1

y
B

p2−−−→ P

in a category is called a pushout square if whenever there is object Q and arrows

q1 : A → Q, q2 : B → Q such that q1 ◦ f = q2 ◦ g, there is a unique arrow

h : P → Q such that qi = h ◦ pi, i = 1, 2. That is, both triangles in the following

diagram commute:

C
f //

g

��

A

p1

�� q1

��

B
p2 //

q2 ++

P

h
??

?

��?
??

Q

The triple (P, p1, p2) is called a pushout of f, g. �

A category in which a pushout exists for every pair of arrows f : A→ B and

g : A→ C in the category is said to have pushouts.

84

5.5.1 Properties of pushouts

Like coproducts, pushouts are only defined up to isomorphism:

Proposition 5.1. Let both (P, pA, pB) and (P ′, p′A, p
′
B) be pushouts of the same

pair f : C → A, g : C → B of arrows. Then, there exists unique isomorphism

i : P → P ′.

Pushout squares “compose” in a particular way:

Lemma 5.4. If the inner squares in

· −−−→ · −−−→ ·y y y
· −−−→ · −−−→ ·

are pushout squares,

then so is the outer rectangle. �

When coproducts exist, any two pushout squares give rise to a third:

Lemma 5.5. In category with coproducts, if the two leftmost squares in

A
f //

g

��

B

h
��

A′ f ′
//

g′

��

B′

h′
��

A+ A′ f+f ′
//

g+g′
��

B +B′

h+h′
��

C
k

// D C ′
k′

// D′ C + C ′
k+k′

// D +D′

are pushouts, then so is the third. �

5.5.2 Gluing graphs

Pushouts provide a general framework for combining (or “gluing”) two graphs by

identifying some of their objects and arrows. In particular, variants of pushout

constructions have been used extensively as algebraic tools in the theory of graph

transformations and graph grammars (see, e.g. [28, 24]). Here we present the

details of the pushout construction in Graph, which is induced by amalgams of

sets.

Definition 5.7. LetG = (O,A, ∂0, ∂1), G
′ = (O′, A′, ∂′0, ∂

′
1) be graphs and h : B →

G, h′ : B → G′ be graph homomorphisms. The graph

Gqh,h′ G′ = (O′′, A′′, ∂′′0 , ∂
′′
1)

has:

• O′′ = O qh,h′ O′ (the amalgam of sets O,O′ along the object parts of h, h′)

as its set of objects;

85

• A′′ = A qh,h′ A′ (the amalgam of sets A,A′ along the arrow parts of h, h′)

as its set of arrows;

• ∂′′0 defined by ∂′′0 ◦ q = q′ ◦ (∂0 + ∂′0), where q and q′ are the quotient maps

associated with O qh,h′ O′ and A qh,h′ A′ respectively, as in Definition 5.5;

• ∂′′1 defined by ∂′′1 ◦ q = q′ ◦ (∂0 + ∂′0). �

Proposition 5.2. Let G, G′, h and h′ be as in Definition 5.7. There are graph

homomorphisms s, s′ such that

B
h //

h′
��

G

s
��

G′
s′
// Gqh,h′ G′

is a pushout square in Graph.

Proof. Take s
def
= 〈q ◦ inlO,O′, q′ ◦ inlA,A′〉 and s′ def

= 〈q ◦ inrO,O′, q′ ◦ inrA,A′〉 where

q, q′ are as in Definition 5.7. Clearly, s and s′ are graph homomorphisms. More-

over they can be easily shown to satisfy s ◦ h = s′ ◦ h′.
Let B = (BO, BA, . . .). Assume now that T = (TO, TA, . . .) is a graph and

that t : G → T , t′ : G′ → T are homomorphisms satisfying t ◦ h = t′ ◦ h′. Let

uO : O qh,h′ O′ → TO and uA : A qh,h′ A′ → TA be the unique functions asserted

by Lemma 5.3 applied to the following situations:

BO
h //

h′
��

O

s
�� t

��

O′ s′ //

t′ ,,

O qh,h′ O′

uO

JJJ
J

%%JJ
JJJ

TO

BA
h //

h′
��

A

s
�� t

��

A′ s′ //

t′ ,,

Aqh,h′ O′

uA

JJJ
J

$$JJ
JJJ

TA

Thus, u = 〈uO, uA〉 is the unique homomorphism u : Gqh,h′ G′ → T such that

t = u ◦ s and t′ = u ◦ s′. That is, the square in the statement of the proposition

is a pushout square. �

5.6 Tensor categories

In this section we introduce a family of categories which, in addition to the binary

composition of arrows, carry extra algebraic structure. This structure comes in

the form of a binary operator on both the objects and arrows of the category.

86

This operator is generically denoted ⊗ and called tensor or monoidal product.

(The name “monoidal product” derives from the fact that the restriction of ⊗ to

the objects of the category forms a monoid.)

Let C be a category with objects O and arrows A, and B be a pair 〈BO,BA〉 of

functions BO : O × O→ O and BA : A× A→ A. We shall say that B is a binary

operator on C if, whenever f : A→ B and f ′ : A′ → B′ are arrows of C, then

BA(f, f ′) : BO(A,A′)→ BO(B,B′) in C .

When the distinction is made clear from the context, we shall use B to denote

both the object and arrow components of a binary operator B. The application of

binary operators will be written using infix notation (e.g. fBg instead of B(f, g)).

Example 5.4. A binary operator “⊗” on Perm (Section 5.2.1.3) may be defined

as follows:

• for any two objects n, m of Perm, n⊗m def
= n+m;

• for any two arrows p : n → n and p′ : m → m let p⊗ p′ : n+m → n+m

be the permutation:

(p⊗ p′)(x) def
=

{
p(x), 1 ≤ x ≤ n
p′(x− n) + n, n < x ≤ n +m

�

In the context of tensor categories it is customary to denote each composite

arrow g ◦ f as f ; g. (f ; g is often referred to as the composition of f and g in

diagrammatic order.)

Definition 5.8. A tensor category is a triple (C,⊗, e) consisting of

• a category C

• a binary operator ⊗ on C; and

• an object e of C

subject to the following axioms:

1. A⊗ e = e⊗A = A, for all objects A of C

2. (A⊗ B)⊗ C = A⊗ (B ⊗ C), for all objects A,B,C in C

3. 1A ⊗ 1B = 1A⊗B for all objects A,B in C

4. f ⊗ 1e = 1e ⊗ f = f , for all arrows f in C.

87

5. (f ⊗ g)⊗ h = f ⊗ (g ⊗ h) for all arrows f, g and h in C

6. (f ; g) ⊗ (f ′; g′) = (f ⊗ f ′); (g ⊗ g′), for all arrows f : A → B, g : B → C,

f ′ : A′ → B′ and g′ : B′ → C ′ in C. �

Remark. What we have called a tensor category is usually referred to in the

literature as a strict monoidal category (e.g. [88], page 137). In so-called non-

strict monoidal categories, axioms 1, 2 and 4, 5 above are only required to hold

up to isomorphism: e.g., one has A⊗ e ∼= A instead of A⊗ e = A. Moreover, the

mediating isomorphisms are required to satisfy extra coherence conditions.

Example 5.5. Let ⊗ be as in Example 5.4. (Perm,⊗, 0) is a tensor category.

Clearly, n ⊗ 0 = 0 ⊗ n = n and n ⊗ (m ⊗ k) = (n ⊗ m) ⊗ k. Axioms 3, 4

and 5 are also easy to establish: 1n ⊗ 1m = 1n+m, (p ⊗ 10) = p = (10 ⊗ p) and

p⊗ (p′ ⊗ p′′) = (p⊗ p′)⊗ p′′. To establish the last axiom, consider p, p′ : n→ n,

s, s′ : m→ m and let π = (p⊗s); (p′⊗s′) and π′ = (p; p′)⊗(s; s′). For 1 ≤ x ≤ n,

π(x) = p′(p(x)) = (p; p′)(x) = π′(x). For n+1 ≤ x ≤ n+m, π(x) = (p′⊗s′)((p⊗
s)(x)) = (p′ ⊗ s′)(s(x − n) + n) = s′(s(x − n)) + n = (s; s′)(x − n) + n = π′(x).

Thus π(x) = π′(x) for all 1 ≤ x ≤ n +m. �

5.6.1 Symmetric tensor categories

The reader may have noticed that the tensor in a tensor category is not required

to be commutative, i.e. A ⊗ B = B ⊗ A does not hold in general. In many

situations, however, there is a natural isomorphism between A ⊗ B and B ⊗ A
for all pairs of objects A,B in the category. This isomorphism is captured as

an arrow cA,B : A⊗ B → B ⊗ A, called the symmetry on A and B, satisfying

certain intuitive conditions.

Definition 5.9. A symmetry for a tensor category (C,⊗, e) is a family

{cA,B : A⊗ B → B ⊗ A | A,B are objects in C}

of isomorphisms (in the sense of Definition 5.3) such that the following conditions

hold:

1. cA,B ; cB,A = 1A⊗B

2. cA⊗B,C = (1A ⊗ cB,C) ; (cA,C ⊗ 1B)

3. (f ⊗ g) ; cA′,B′ = cA,B ; (g ⊗ f), for all arrows f : A → A′ and g : B → B′

in C.

88

A tensor category equipped with a specified symmetry will be called a symmetric

tensor category. �

Example 5.6. Let πn,m be the permutation of [n+m] defined as:

πn,m(x)
def
=

{
m+ x, 1 ≤ x ≤ n
x− n, n < x ≤ n+m .

We shall call each πn,m a symmetric permutation. Recalling that n⊗m def
= n+m,

the family {πn,m | n,m ∈ N } is a symmetry for the tensor category (Perm,⊗, 0):

1. πn,m ; πm,n = 1n+m

2. πn+m,k = (1n ⊗ πm,k) ; (πn,m ⊗ 1k)

3. For any two permutations p : n→ n and p′ : m→ m,

(p⊗ p′) ; πn,m = πn,m ; (p′ ⊗ p) .

The first two equations should be obvious. The third is established by simple

case analysis and appeal to the definition of ⊗ on permutations:

• For 1 ≤ x ≤ n, ((p ⊗ p′); πn,m)(x) = πn,m(p(x)) = p(x) + m = p(m + x −
m) +m = (p′ ⊗ p)(m+ x) = (πn,m; (p′ ⊗ p))(x).

• For n < x ≤ n+m, ((p⊗ p′); πn,m)(x) = πn,m(p′(x− n) + n) = p′(x− n) =

(p′ ⊗ p)(x− n) = (πn,m; (p′ ⊗ p))(x). �

5.6.2 Traces on tensor categories

Another common feature of many symmetric tensor categories is what Joyal,

Street and Verity have called a “trace” [75]; categories equipped with a trace

being called “traced (tensor) categories”. The application of traced categories

in computing is growing rapidly as many examples of iteration, feedback and

general recursion operators have been shown to be instances of traces. These

include feedback in the calculus of “flownomials” [127], feedback in asynchronous

data-flow networks [68] and circuits [80], recursion from cyclic sharing [64], and

reflection in action calculi [101] among many others.

Our interest in traces stems from the fact that their axioms neatly capture a

particular notion of equivalence between diagrams containing “loops”. Here, we

briefly introduce the axioms for traces and defer their diagrammatic presentation

until the following chapter. The following definition is therefore provided only

as reference; the reader should not be deterred by what might at first appear

89

as an overwhelmingly complicated set of axioms. In particular, an appealing

diagrammatic representation of the axioms exists (given in figures 6.6 and 6.7),

which underpins the material in the next chapter.

Definition 5.10. Let C[A,B] denote the set of all arrows a : A→ B in a category

C. Let also T = (C,⊗, e) be a symmetric tensor category with symmetry c. A

family Tr of functions

TrX
A,B : C[X ⊗A,X ⊗ B] −→ C[A,B]

is called a trace on T if it satisfies the following axioms:

1. Vanishing:

Tre
A,B(f) = f : A→ B

where f : A −→ B, and

TrX⊗Y
A,B (f) = TrY

A,B(TrX
Y ⊗A,Y ⊗B(f))

where f : X ⊗ Y ⊗ A −→ X ⊗ Y ⊗B

2. Superposing:

TrX
A⊗C,B⊗C(f ⊗ 1C) = TrX

A,B(f)⊗ 1C

where f : X ⊗ A −→ X ⊗B

3. Yanking:

TrX
X,X(cX,X) = 1X

4. Left Tightening:

TrX
A,B((1X ⊗ g); f) = g; TrX

A′,B(f)

where f : X ⊗ A′ −→ X ⊗ B and g : A −→ A′

5. Right Tightening:

TrX
A,B(f ; (1X ⊗ g)) = TrX

A,B′(f); g

where f : X ⊗ A −→ B′ ⊗X and g : B′ −→ B

6. Sliding:

TrX
A,B(f ; (1B ⊗ g)) = TrY

A,B((1A ⊗ g); f)

where f : X ⊗ A −→ Y ⊗ B and g : Y −→ X. �

Remark. The above axiomatisation of traces in due to Hasegawa [63, 64] and is

a specialised application of the general definition in [75] which applies to a wide

class of tortile tensor categories [126].

90

5.6.3 Units and counits

Beyond symmetries, symmetric tensor categories often come equipped with other

special arrows. In later chapters we shall make use of two such special arrows,

which we call “unit” and “counit” (pronounced “co-unit”).

Definition 5.11. Let (C,⊗, e) be a symmetric tensor category in which every

arrow f : A → B has an associated “dual” arrow f ? : B → A. Given an object

A of C, a unit-counit pair for A is a pair 〈µA, ηA〉 of arrows µA : e→ A⊗ A and

ηA : A⊗A→ e, such that:

1. (µA ⊗ 1A) ; (1A ⊗ ηA) = 1A

2. (1A ⊗ µA) ; (ηA ⊗ 1A) = 1A

3. µA ; (f ⊗ 1A) = µB ; (1B ⊗ f ?) for all arrows f : A→ B

4. (f ? ⊗ 1A) ; ηA = (1B ⊗ f) ; ηB for all arrows f : A→ B. �

The last two axioms require that the following two diagrams commute:

e
µA //

µB

��

A⊗ A
f⊗1A

��
B ⊗ B

1B⊗f?
// B ⊗ A

B ⊗ A f?⊗1A//

1B⊗f
��

A⊗A
ηA

��
B ⊗ B ηB

// e

A symmetric tensor category is said to have units and counits if a unit-counit

pair exists for every object in the category.

Remark. In general, the function −? is also defined on the objects of the cate-

gory, giving for each object A its “dual” A?. Thus, what we have called “unit-

counit pairs” correspond to the components of the unit and counit (di)natural

transformations ([88], page 214) of a self-dual, compact-closed structure [81] on

a symmetric monoidal category. Self-duality in this context means A? = A for all

objects A in the category.

There is a standard way in which unit-counit pairs equip a symmetric tensor

category with a canonical trace:

Proposition 5.3. In any category with units µ and counits η, a trace is defined

by the formula:

TrX
A,B(f)

def
= (µX ⊗ 1A) ; (1X ⊗ f) ; (ηX ⊗ 1B) .

91

Proof. Units and counits make the category an instance of a tortile tensor cat-

egory [126]. The result then follows from Proposition 3.1 of [75]. Thus, the

canonical trace of f : X ⊗ A→ X ⊗B is the composite arrow:

A
µX⊗1A //X ⊗X ⊗ A 1X⊗f //X ⊗X ⊗ B ηX⊗1B //B .

�

5.7 Further Remarks

Category theory requires a severe paradigm shift from a “sets with elements”

view to that of “objects and arrows”. In the study of diagrammatic and other

representational systems, we believe that such a shift in perspective may be very

well worth making. This is not least because typical mathematical descriptions of

diagrams, exemplified by our Definition 4.3, almost immediately induce notions

of “diagram (homo)morphism” (recall the remark following Definition 4.3). Such

morphisms underpin notions of equivalence between diagrams (such as isomor-

phism) and may be further refined to capture situations of diagrams abstracting

other diagrams etc. Thus, by taking such morphisms into account, one typically

obtains not just a set of (models of) diagrams in the same class, but rather a cat-

egory thereof. We expect that category-theoretic tools will become indispensable

when representational systems, rather than individual diagrams, become one’s

object of study.

92

Chapter 6

Formalising Pragmatic Features

Graph-based notations form a significant subclass of visual languages, particu-

larly in computer science and many engineering domains. Typical formalisations

of such notations often pay scant regard to pragmatic considerations such as the

spatial layout of such graphs. However, studies of the use of graph-based no-

tations in practice have shown that users employ layout to capture important

information concerning the semantics of the domain being represented. Further-

more, this extra information typically supports reasoning tasks over these graph-

based representations, the structure of a proof being directed by the structure of

the graph. Typical approaches to the formalisation of graphs generally do not

capture such pragmatic considerations in a manner which would be sufficient to

account for this kind of support for reasoning. Graph grammars for example

(surveyed in [25]), generally treat spatial relations as uninterpreted, and thus

in some sense as “meaningless”. By contrast theories based upon spatial logics

(see [95] for a survey of both these and grammatical approaches) do account for

layout characteristics in diagrams, but their expressiveness typically far exceeds

what is required for graph-based notations, making them too cumbersome for our

purposes.

This chapter highlights an algebraic approach to the formalisation of graph-

based notations which is sensitive to relevant layout information. In the following

section we summarise the argument, supported by practical studies, for the neces-

sity of including such pragmatic aspects in formalisations. Section 6.2 presents an

example SFC diagram, taken from software engineering practice, which both mo-

tivates and illustrates the subsequent presentation. Sections 6.3 and 6.4 describe

the salient aspects of graphs, and of our example language, which our algebra

seeks to capture. The algebra itself is summarised in Section 6.4.1 and, in Sec-

tion 6.4.2, provides a formalisation of our example. Finally, Sections 6.5 and 6.6

illustrate how this algebraic formalisation both captures pragmatic aspects of our

93

example and how this in turn supports direct reasoning over its structure.

6.1 Visual language pragmatics

In linguistic theories of human communication, developed initially for written text

or spoken dialogues, theories of “pragmatics” seek to explain how conventions and

patterns of language use carry information over and above the literal truth value

of sentences. For example, in the discourse:

1. (a) The lone ranger jumped on his horse and rode into the sunset.

(b) The lone ranger rode into the sunset and jumped on his horse.

(1a)’s implicature is that the jump happened first, followed by the riding. By

contrast, (1b)’s implicature is that riding preceded jumping. In both (1a) and

(1b), implicatures go beyond the literal truth conditional meaning. For instance,

all that matters for the truth of a complex sentence of the form P and Q is that

both P and Q be true; the order of mention of the components is irrelevant.

Pragmatics, thus, helps to bridge the gap between truth conditions and “real”

meaning. This concept applies equally well to the use of visual languages in

practice. Indeed, there is a recent history of work which draws parallels between

pragmatic phenomena which occur in natural language, and for which there are

established theories, and phenomena occurring in visual languages [47, 94, 110].

Studies of digital electronics engineers using CAD systems for designing the

layout of computer circuits demonstrated that the most significant difference be-

tween novices and experts is in the use of layout to capture domain informa-

tion [113]. In such circuit diagrams the layout of components is not specified as

being semantically significant. Nevertheless, experienced designers exploit lay-

out to carry important information by grouping together components which are

functionally related. By contrast, certain diagrams produced by novices were

considered poor because they either failed to use layout or, in particularly “aw-

ful” examples, were especially confusing through their mis-use of the common

layout conventions adopted by the experienced engineers. The correct use of

such conventions is thus seen as a significant characteristic distinguishing expert

from novice users. These conventions, termed “secondary notations” in [113], are

shown in [110] to correspond directly with the graphical pragmatics of [94].

More recent studies of the users of various other visual languages, notably

visual programming languages, have highlighted similar usage of graphical prag-

matics [112]. A major conclusion of this collection of studies is that the correct

94

Wait

Move

Start

Brake

Halt

true

Alarm

Checks

ChkFault

Fault

level=FloorCall

Stopped

FloorCall>0

Ready

Fault

Figure 6.1: Example SFC diagram (lift controller).

use of pragmatic features, such as layout in graph-based notations, is a signif-

icant contributory factor in the comprehensibility, and hence usability, of these

representations.

6.2 Layout in SFC diagrams

A concrete application of our work is to the formalisation of diagrammatic (graph-

based) languages for industrial embedded control software.

The SFC of Figure 6.1 is a simplified lift controller 1, adapted from a teaching

example of “good” SFC design from [86]. While Figure 6.1 is a simplified version

of the SFC from [86], nevertheless we have retained the layout of that original

SFC, and note that it carries important information concerning the domain being

represented. The main body of the SFC of Figure 6.1 is conceptually partitioned

into the three regions illustrated in the following outline:

1“elevator” controller, for American readers

95

F

N

A

Region N is concerned with normal operation, A is an alarm-raising component

and F performs fault detection (e.g. action “Checks” monitors the state of the

lift and raises the boolean signal “Fault” whenever a fault occurs).

The following section concerns a general method for the specification of graph-

based diagrams, which is illustrated in Section 6.4 through the formalisation of

SFC diagrams. Thereafter we present how this formalisation both captures the

layout features of SFCs such as that of Figure 6.1, and supports direct reasoning

over the structure of such diagrams.

6.3 Specifying structure and layout

Recall from the previous chapter that a graph is a purely formal (i.e. mathemat-

ical) entity: a collection of “objects” and directed “arrows”.

Let us call a class of diagrams graph-based if every diagram d in the class

may be adequately abstracted (up to graph isomorphism) as a, possibly labelled,

graph G(d).

Example 6.1. SFC diagrams are graph-based. The objects of the correspond-

ing graphs may be labelled with step names, transition conditions and the spe-

cial symbols “F” (sequence divergence, or “fork”), “J” (sequence convergence, or

“join”), “D” (divergence of concurrent sequences), “C” (convergence of concurrent

sequences) standing for the four branching elements. Using these conventions, the

graph corresponding to the lift controller of Figure 6.1 is illustrated in Figure 6.2.

�

Conversely, a graph G may be considered as a specification for (a class of)

graph-based diagrams which, in particular, imposes no constraints on layout.

Our aim here is to introduce an alternative formal specification of graph-based

96

FloorCall>0

Move

"J"

Wait

"F"

Brake

level=...

Stopped

Alarm

Fault

Start

Ready

Checks

ChkFault

Fault

Halt

true

"C"

"D"

Figure 6.2: Graph for the SFC diagram of the lift controller.

97

diagrams which includes both structural and layout information. In general, these

specifications will be expressions denoting arrows in a (suitably chosen) tensor

category.

6.3.1 Diagrams of arrows in tensor categories

A remarkable recent development has been the introduction in [74] (and also [75])

of an intuitive diagrammatic representation for expressions denoting arrows in a

variety of tensor categories. The resulting diagrams are modelled in terms of topo-

logical graphs, that is collections of nodes and edges. (In topological graphs, some

edges may be only semi-attached or even completely detached from the nodes.)

The nodes in these graphs are labelled with arrows in the category whereas the

edges are labelled with objects. Diagrams are constructed inductively (starting

from atomic ones corresponding to single arrows and using the composition “;”

and tensor “⊗” of the category) and their layout is specified precisely by embed-

ding the associated topological graphs into R2 or R3 . For full details, the reader

is referred to [74].

6.3.1.1 Basic, acyclic diagrams

To illustrate the representation, consider a tensor category (C,⊗, e) and let

A = A1 ⊗ . . .⊗ An

B = B1 ⊗ . . .⊗ Bm

C = C1 ⊗ . . .⊗ Ck

D = D1 ⊗ . . .⊗Dj

be objects in C.
The diagram corresponding to an arrow f : A→ B in C is:

A1 An
. . .

f

B1 Bm
. . .

,

consisting of a single node and semi-attached edges as shown. Here we draw

nodes generically as boxes (rectangles) but other choices of graphical symbols

(e.g. circles, line segments etc.) are possible.

The diagram of f ; g, the composite arrow of f : A → B and g : B → C,

results by joining correspondingly labelled edges as shown:

98

A1 An
. . .

f

B1 Bm
. . .

g

C1 Ck
. . .

.

Finally, the diagram corresponding to f ⊗ h, for f as before and h : C → D,

results in the juxtaposition of the component diagrams:

A1 An
. . .

f

B1 Bm
. . .

C1 Ck
. . .

h

D1 Dj. . .
.

Consider now the axiom

(f ; g)⊗ (f ′ ; g′) = (f ⊗ f ′) ; (g ⊗ g′)

of a tensor category and observe that both sides denote identical diagrams. Thus,

the axiom is diagrammatically interpreted as a requirement that composition (;)

and tensor (⊗) should extend diagrams in completely orthogonal spatial dimen-

sions. Together with the non-commutativity of both operations, which enforces

a choice of direction for each, this is the key property allowing arrow expressions

to unambiguously specify the layout of diagrams.

Special diagrams are defined for the distinguished arrows (e.g. identities, sym-

metries etc.) in the category: the diagrams of an identity arrow 1A : A→ A and

of a symmetry cA,B : A⊗B → B ⊗A are given in Figure 6.3.

So far we have described the class of diagrams generated by expressions denot-

ing arrows in an arbitrary symmetric tensor category. All diagrams in this class

are acyclic in the sense that contain no edges linking a node to a preceding one

(that is, one higher up in the diagram). For this reason, such diagrams are termed

progressive in [74]; they can be constructed from top to bottom by progressively

parsing the associated expression.

From now on, we shall often omit the labels on the edges of diagrams.

99

1A : A1 A2 An
. . .

cA,B :

HHHHHHHHHHHHHHHHHHH

�������������������

HHHHHHHHHHHHHHHHHHH

HHHHHHHHHHHHHHHHHHH

�������������������

�������������������

A2 AnA1

B1 B2 Bm A1 A2 An

B1 B2 Bm. . .

. . .

. . .

.

Figure 6.3: Identity and symmetry diagrams (A = A1 ⊗ . . . ⊗ An and B =
B1 ⊗ . . .⊗ Bm).

6.3.1.2 Transformations of layout

Beyond providing a precise formalisation of layout, the topological account of

diagrams also captures the notion of transforming the layout of diagrams. For

example, the diagrams of Figure 6.4 are all transformations of one another. Topo-

logically, such transformations (or “deformations” in the terminology of [74]) are

homeomorphic maps2 (from the topological graph underlying the diagram to the

usual topology on an appropriate subset of R2 or R3).

Transformations induce an equivalence relation on diagrams: two diagrams

are regarded as being equivalent if they can be transformed into one another. A

most remarkable result in [74] is that any two acyclic diagrams are equivalent in

this sense if and only if their associated expressions can be proved equal using the

axioms of a symmetric tensor category. Thus, the axioms of the category capture

precisely the notion of layout transformation associated with this particular class

of diagrams.

Example 6.2. From left to right, the diagrams in Figure 6.4 correspond to the

expressions:

1. f ; (1⊗ h) ; (g ⊗ 1) ; k

2. f ; (g ⊗ h) ; k and

2A homeomorphic map [134, 31] is an isomorphism of topological spaces.

100

......................... @@

SS ��

f

g

h

k

�� SS

SS ��

f

g h

k

......................... @@

��SS

f

k

g

h

Figure 6.4: Three diagrams equivalent under transformation.

3. f ; (g ⊗ 1) ; (1⊗ h) ; k.

By applying

(1⊗ g) ; (h⊗ 1) = (1;h)⊗ (g; 1)

(axiom 6 of Definition 5.8) and

g ; 1 = g and 1 ; h = h

(axiom 3 of Definition 5.2) in that order one may now equate (1) to (2) as follows:

f ; (1⊗ h) ; (g ⊗ 1) ; k = f ; ((1; g)⊗ (h; 1)) ; k = f ; (g ⊗ h) ; k .

Similarly, any pair of expressions corresponding to two (distinct) diagrams in

Figure 6.4 may be proved equal by using the axioms of a tensor category. �

6.3.1.3 Cyclic diagrams

If, in addition, the category has units µA : e→ A⊗ A and counits ηA : A⊗A→ e

(Definition 5.11), these are pictured as:

µA:

A2 A1 A2A1

. . .

An An

. . .

and

101

A2A1 An
f. . .

. . .

. . .

. . .

. . .

C1 Ck

B1 Bm

Figure 6.5: Diagram of TrA
B,C(f).

ηA:

A2 A1 A2A1 An An

.

.

(Thus each of µA, ηA is represented as a bunch of n edges which are “bended” as

shown but not permuted.)

Recalling (Proposition 5.3) that the canonical trace of f : A⊗B → A⊗ C in

such a category is obtained as

TrA
B,C(f)

def
= (µA ⊗ 1B) ; (1A ⊗ f) ; (ηA ⊗ 1C) ,

the diagram of TrA
B,C(f) is simply as given in Figure 6.5. Thus, a trace on a tensor

category provides a canonical way of adding cycles (or “loops”) to the diagrams

representing arrows in the category. The extra axioms required to capture equiv-

alence under transformation in this new class of diagrams are precisely the trace

axioms of Definition 5.10. The diagrammatic representation of these axioms is

illustrated in Figures 6.6 and 6.7.

6.4 Specifying SFC diagrams

Our proposal consists in using the arrows of an appropriately constructed tensor

category to specify the structure and layout of diagrams in a variety of domain-

102

Yanking :

J
J

J
J
JJ

=

Vanishing :
ff

=

Superposing :
f f=

Figure 6.6: Diagrammatic presentation of the Yanking, Vanishing and Super-
posing axioms. (Extraneous thick-lined boxes have been added for clarity in
indicating the sub-diagrams over which the trace operation is applied.)

103

Left tightening :

ff

g g

=

Right tightening :

g g

=

ff

Sliding :

f

g f

g

=

Figure 6.7: Diagrammatic presentation of the Tightening and Sliding axioms.

104

specific languages. The remainder of this chapter is devoted to illustrating the

practical application of this proposal to the specification of SFC diagrams and to

discussing the benefits that such an approach yields.

In the case of SFC diagrams, the arrows of the relevant category will be

obtained from formal constructions which we call metagraphs:

Definition 6.1. In the context of the present chapter, a metagraph M is a par-

ticular labelling of a (finite) graph S. This labelling can be partial on arrows (i.e.

some arrows of S may be left unlabelled). The graph S is called the shape of

metagraph M . �

A formal account of metagraphs (in terms of graph homomorphisms) will be

provided in the following chapter.

Example 6.3. The graph

S : 1
f //2 3

goo

may be labelled by mapping: objects 1, 2 to ♦; 3 to ♥; and arrow g to ♠. The

result is the metagraph

♦ //♦ ♥♠oo

having the same “shape” as the original. �

Let now S and T be the sets of all step names and transition conditions allowed

in SFC diagrams. One way of specifying the structure of an SFC diagram is to

construct a metagraph in which:

1. arrows • s−→ � labelled with elements of S correspond to steps;

2. arrows �
t−→ • labelled with elements of T correspond to transitions;

3. (combinations of) unlabelled arrows � −→ � and • −→ • correspond to

the branching constructs in SFCs.

Thus, the objects of the graph are labelled with either • or �. As we shall see,

this labelling of objects defines a form of typing which, among other constraints,

encodes the strict alternation of steps and transitions in SFC diagrams.

Example 6.4. One metagraph derived from the main body of the lift controller

is:

105

Wait

Floorcall>0

Move

AlarmBrake

Faultlevel...

Stopped

Fault

ChkFault

Checks

in which • ←− • −→ • and � −→ �←− � correspond to the double horizontal

lines in Figure 6.1 (i.e. the introduction and conclusion markers for concurrent

sections in a diagram). �

6.4.1 The tensor category of metagraphs

Having illustrated the correspondence of metagraphs to SFC diagrams, we pro-

ceed to outline how a tensor category can be constructed from metagraphs. The

presentation appeals mostly to intuition and pictorial illustrations, deferring com-

plete formalisations until the following chapter.

6.4.1.1 Concatenable metagraphs

Let M be a metagraph of shape S. Let the sources and sinks of M be respec-

tively the sources and sinks (Section 5.1) of the shape graph S. One way of

composing metagraphs unambiguously is to impose orderings on both their sinks

and sources. These orderings are then regarded as defining “boundaries” through

which metagraphs may be glued to each other.

Definition 6.2. In the context of the present chapter, a concatenable metagraph

is a metagraph M together with an ordering of its sources and an ordering of its

sinks. We shall let C range over concatenable metagraphs. �

106

In the pictorial presentation of concatenable metagraphs we use numeric su-

perscripts to indicate orderings on sources and subscripts for orderings on sinks:

Example 6.5. A concatenable version of the metagraph in Example 6.3 is:

1♦ //♦1
2♥♠oo

�

6.4.1.2 Sequential composition

The sequential composition of C1 and C2 is only defined when there as many sinks

in C1 as there are sources in C2 and, moreover, the chosen orders are such that

the i-th sink of C1 shares the same label with the i-th source of C2. The resulting

construction, denoted C1 ; C2, identifies matching pairs of sources and sinks.

Example 6.6. Consider the concatenable metagraphs

C1 = 1♠ f //

j

 @
@@

@@
@@
♦1

2♦ g //

k @
@@

@@
@@
♠2

♦3

and C2 = 1♦ g //♠1

2♠ f //♦2

3♦
k

>>~~~~~~~

C1 ; C2 is the concatenable metagraph:

1♠ f //

j

��>
>>

>>
>>
♦ g //♠1

2♦ g //

k ��?
??

??
??
♠ f //♦2

♦
k

??�������

�

6.4.1.3 Parallel composition

The parallel composition of C1 and C2, denoted C1 ⊗ C2, results in the “disjoint

union” of the two concatenable metagraphs, pictured as juxtaposition. More-

over the relative orderings on the sinks and sources in each of the component

metagraphs are preserved.

107

Example 6.7. For C1 and C2 as in Example 6.6, C1 ⊗ C2 is simply:

1♠ f //

j

 @
@@

@@
@@
♦1

2♦ g //

k @
@@

@@
@@
♠2

♦3

3♦ g //♠4

4♠ f //♦5

5♦
k

>>~~~~~~~

�

6.4.1.4 Loops

Let C be a concatenable metagraph in which the first sink shares the same label

as the first source. Then, one can identify these two “matching” endpoints to

create a loop over C. The resulting metagraph is denoted � C.

Example 6.8. Consider the concatenable metagraph C,

1♠ f // ♦ g //

k

��@
@@

@@
@@

@ ♠1

2♦
k

??��������
♦2

in which the first source matches the first sink. The concatenable metagraph � C

is:

♠
f

55 ♦
g

uu

k

��@
@@

@@
@@

@

1♦
k

??~~~~~~~~
♦1

�

6.4.1.5 Types for concatenable metagraphs

The orderings of the sinks and sources in a concatenable metagraph C may be

succinctly presented as strings (i.e. ordered sequences) of labels. So, from the

108

sources of C one obtains a string, say α, in which the i-th element is the label

on the i-th source. A string, say β, is similarly obtained from the sinks. Thus, C

may be seen as being “of type” 〈α, β〉, and one writes C : α→ β.

Example 6.9. In Example 6.6, C1 : ♠♦ → ♦♠♦ and C2 : ♦♠♦ → ♠♦.

Now, one may reformulate the condition in the definition of sequential com-

position as: C1;C2 is only defined when C1 : α → β and C2 : β → γ. Then,

C1;C2 : α→ γ. Types are therefore a useful formalisation of constraints subject

to which component metagraphs may be put together to form composites.

Given a string α of n ≥ 0 labels, one can construct a concatenable metagraph

denoted 1α by labelling the graph consisting of objects {1, . . . , n} and no arrows

so that object i is mapped to the i-th element of α. For instance, 1♠♦♠ is the

concatenable metagraph:

1♠1
2♦2
3♠3

.

Clearly, the type of each 1α is α→ α.

6.4.1.6 Equational laws

Relying on intuition alone, one quickly establishes the following list of plausi-

ble identities among concatenable metagraphs, holding whenever all composite

expressions involved are well defined (i.e. well-typed):

1. 1α;C = C and C; 1β = C, for C : α→ β

2. C1; (C2;C3) = (C1;C2);C3

3. 1α ⊗ 1β = 1αβ (αβ denotes the concatenation of α and β)

4. C1 ⊗ (C2 ⊗ C3) = (C1 ⊗ C2)⊗ C3

5. (C1 ⊗ C2); (C
′
1 ⊗ C ′

2) = (C1;C
′
1)⊗ (C2;C

′
2)

6. � (C ⊗ 1α) = (� C)⊗ 1α

7. � ((1l ⊗ C ′);C) = C ′; (� C), where l is a single label

8. � (C; (1l ⊗ C ′)) = (� C) ;C ′, where l is a single label

9. � (C ; (C ′ ⊗ 1α)) =� ((C ′ ⊗ 1α) ;C) .

109

The first two laws establish a category having strings of labels as objects and

as arrows from α to β all concatenable metagraphs of type α→ β. Laws 3, 4 and

5 are a subset of the conditions required to make this a tensor category. Finally,

the reader is invited to examine the similarity of the remaining laws to the Super-

posing, Left and Right tightening and Sliding axioms for traces (Definition 5.10).

In the following chapter we shall extend this list of equations to obtain a

(symmetric) tensor category of concatenable metagraphs equipped with a trace

generalising �. This will establish fully the connection between expressions in-

volving concatenable metagraphs and diagrams. For the time being, we take the

result as granted and concentrate on application.

6.4.2 SFC expressions

Every formalised SFC diagram may now be expressed syntactically in terms of a

few basic metagraphs and the operators �, ⊗ and ;.

Let s denote the concatenable metagraph 1• s−→ �1, s ∈ S, and t denote
1�

t−→ •1, t ∈ T. In particular, the use of labels • and � acts as a typing

scheme encoding the strict alternation of steps and transitions: expressions such

as s; s′ or t; t′ (s, s′ ∈ S, t, t′ ∈ T) are forbidden as they have no meaning as SFC

diagrams.

We also introduce concatenable metagraphs

∆•
def
= •1 ←− 1• −→ •2 and ∇•

def
= 1• −→ •1 ←− 2•

and corresponding versions (∆�, ∇�) for �. In particular ∆• and ∇� stand for

the introduction and conclusion markers in concurrent sections, whereas ∇• and

∆� will stand for “joins” and “forks” of links. We also abbreviate 1• (= 1•1) as

just 1.

The metagraph of Example 6.4 may now be expressed as

LiftBody ≡ ∆•; [(� N);A⊗ F];∇� ,

where:

N ≡ ∇•; Wait; FloorCall > 0; Move; ∆�;

(level . . . ; Brake; Stopped⊗ 1)

A ≡ Fault; Alarm

F ≡ Checks; Fault; ChkFault .

The expressions N,A and F correspond to the regions identified at the end of

Section 6.2:

110

F

N

A

Finally, the expression for the entire controller is:

Lift ≡ Start; Ready;LiftBody; true; Halt .

Any given, non-atomic diagram can be constructed or decomposed in a variety

of ways. For instance, an alternative way of decomposing the main body of our

lift controller is provided by the expression

∆•; [((� N)⊗ (Checks; Fault)); (A⊗ ChkFault)];∇� .

This view of the diagram, which might be appropriate to a particular kind of

analysis, may now be proved equivalent to the one given by expression LiftBody

above by applying the equational law

(C1 ⊗ C2); (C
′
1 ⊗ C ′

2) = (C1;C
′
1)⊗ (C2;C

′
2) .

Thus, the utility of the equational laws lies in identifying equivalent views of the

same representation, such as those resulting from transformations of layout or

from different perceptions of structure.

Consider now an alternative SFC diagram for the main body of our controller:

AlarmBrake

Wait

FloorCall>0

Move

Checks

ChkFault

Fault

Fault

Stopped

level=...

111

The layout of this diagram contains less pragmatic information regarding the

distinction between which parts of the system are concerned with normal and

exceptional operation. In the original diagram of Figure 6.1, both regions A

and F concerning exceptional operation are distinguished from the region N .

The alternative diagram, however, fails to make this distinction, suggesting a

partitioning in only two regions, the one on the right responsible for both normal

and alarm-raising behaviour.

Formalised as graphs, both diagrams would be indistinguishable. (Both dia-

grams comprise the same steps and transitions, which are in both cases intercon-

nected in the same way.) In our specification language, however, the new version

of the controller’s body diagram would be obtained from the expression:

LiftBody ′ ≡ ∆; [F ⊗ (� X)];∇ ,

where:

X ≡ ∇; Wait; FloorCall > 0; Move; ∆;

[(level . . . ; Brake)⊗A] ; (Stopped⊗ 1) ,

and A, F are as before. The metagraph denoted by this expression is the same

as the one in Example 6.4.

Remark. Readers familiar with an earlier version of this chapter [48] will notice

some minor differences resulting from the use here of “1” in place of 1
def
= 1• −→

•1.

6.5 Representations and tasks

A significant determiner of what makes a particular representation effective is that

it should simplify various reasoning tasks. One benefit that certain diagrammatic

representations offer to support this is the potential to directly capture pertinent

aspects of the represented artifact (whether this be a concrete artifact or some

abstract concept). To clarify this argument, which is explored in [50, 47], we must

explain what is meant here by the terms “direct” and “pertinent”.

Firstly, diagrammatic relations can often be directly semantically interpreted.

This is to say that certain diagrammatic relations exhibit intrinsic properties,

such as transitivity or symmetry, and these may be exploited in a systematic

way by choosing to represent some aspect of the represented artifact with a di-

agrammatic relation which has matching intrinsic properties. For example, the

operation of the lift controller in our example is conceptually partitioned into

112

three modes: of normal, alarm-raising and fault checking behaviour. The layout

of the SFC diagram of Figure 6.1 is such that, for any given step or transition,

membership of one these modes is represented as membership of an identifiable

region of the graph (one of the regions N , A or F above). Thus, a conceptual

aspect of the artifact (membership of some behavioural mode) is directly cap-

tured by a representing relation in the diagram with matching logical properties

(membership of a spatial region in the plane). Note that, in this case as with the

expert designers of CAD diagrams and visual programs studied in [113, 112], it

is the pragmatic features of the diagram (layout being chosen so as to suggest

conceptual regions) which are exploited to carry this information. Indeed, in the

original SFC diagram from [86], of which our example is a simplification, these

regions were strikingly well delineated.

Secondly, by “pertinent” aspects of the represented artifact, we refer to those

aspects which are relevant to particular reasoning tasks. We argue that reasoning

is strongly influenced by the structure of the representation within which one rea-

sons. Where the structure of a representation matches the primary concepts over

which one must reason, reasoning is made easier. Conversely, having the “wrong”

structure in a representation will interfere with reasoning, making it more difficult.

This argument is supported by a number of empirical studies of users employing

different representations for similar tasks; as in, for example, studies of various

diagrammatic representations used in solving logical syllogisms [130], and of al-

ternative representations employed in solving the Tower of Hanoi problem [148].

One of the major tasks that SFC notations intend to support is the inference

(by system designers) of which sequences of states may the system exhibit. De-

sirable such sequences are formulated in terms of system properties, prominent

among which are safety properties. For instance, appropriate for our lift con-

troller is property Safe expressed as: “Assuming no faults, the lift always stops

before the next call is attended.”

Example 6.10. The diagram of Figure 6.1 exhibits property Safe because:

1. Once the main loop is entered, the assumption of fault-freeness implies that

control is retained within the loop; and

2. the loop forms a single path from step “Move” to itself that includes con-

dition “Stopped”. �

Crucial to part (2) of this argument is the observation that paths in the

diagram correspond semantically to temporal orderings of events: if only a single

113

path exists from any current step A to step B and condition t appears along the

path, the next activation of B must be preceded by an occurrence of t.

A desirable software engineering goal is to support the formalisation of in-

formal arguments, such as the above. We argue that for a formalisation to be

effective, as with an effective diagrammatic representation, it should accurately

structure those aspects of the represented artifact which are pertinent to the re-

quired reasoning tasks. For example, essential to the informal argument in the

preceding example is the ability to focus precisely on the part of the diagram

which is responsible for property Safe. That is, focusing on the loop and exclud-

ing the alarm-raising and fault-checking parts of the diagram. A formalisation

which does not readily permit a similar structuring, will clearly be less effective

than one which does.

Consider that there are numerous, less direct ways of capturing the semantics

of SFCs; the most common being to enumerate all possible states of the SFC in

a transition system [131].

Example 6.11. A transition system modelling the behaviour of the lift controller

has as states all reachable sets of actions. Its transitions are possible combinations

(i.e. sets) of conditions. A small part of this transition system is given below (with

step names truncated to their initials):

{S} Ready // {W,C}

Floor . . .

��

Fault

yyssssssssssssss

{Floor . . . ,Fault}
JJJ

JJJ

%%

. . . {W,CF} {M,C}

level . . .

��

Fault

##F
FF

FF
FF

FF
FF

F

{level . . . ,Fault}ww
ww

ww
w

{{www

{M,CF}
...

{B,CF}
...

Stopped

OO

{B,C}
...

Fault
oo {A,C}

...

This resulting transition system is typical of a formalisation which obscures

the structure necessary to the informal argument of Example 6.10. This is because

paths in the transition system result from the interweaving of events belonging to

several concurrent components in the SFC. In contrast to the informal argument of

Example 6.10, when arguing properties such as Safe on the model of Example 6.11

it is generally hard to exclude behaviour originating in parts of the system which

are otherwise unrelated to the property in question. While it could be argued

that this is hardly a problem for small SFCs, the size of a transition system grows

exponentially to the number of concurrent components in the SFC.

114

6.6 Reasoning on diagrams

Our algebra enables the formalisation of reasoning arguments which are directed

by the structure of the diagrammatic representation of the system(s), as we illus-

trate next.

Traditional approaches to formal reasoning favour behavioural models and are

typically less concerned with user-oriented representations. Thus, given a system

expressed as diagram d and a property p, traditional approaches typically consist

of:

1. obtaining some behavioural modelM(d) of d, such as a function, a transi-

tion system, etc.;

2. formalising p as a formula φ(p) in some suitable logic; and

3. verifying whetherM(d) |= φ(p), i.e. whether the model satisfies the formula.

Example 6.12. Property Safe may be formalised as a temporal formula [131].

What is important here is the overall structure of the formula, α =⇒ σ, where α

expresses an assumption about the computation (here “always not Fault”) and σ

expresses a commitment of the system. For the purposes of illustration, consider

the (rather crude) example:

φ(Safe)
def
= A(¬Fault) =⇒ (I(Stopped) =⇒

A(Stopped BN (FloorCall > 0 ∧ Move)))
(6.1)

where A(ψ) is interpreted as “always ψ”, I(φ) as “initially φ”, ψ1BNψ2 as “ψ1

before next time ψ2 holds” and =⇒ as “implies”. �

Roughly speaking, our approach attempts to substitute structural (i.e. alge-

braic) models of diagrams for behavioural models in step (1) above. For example,

if C(d) is a concatenable metagraph expression corresponding to an SFC diagram

d, and formula φ(p) expresses a property, the reasoning problem (step (3) above)

is reformulated as C(d) |= φ(p). In terms of our example property Safe and the

main body of our lift controller:

LiftBody |= φ(Safe) . (6.2)

The implicit inferential “short-cuts” in the informal argument of Example 6.10

may now be formalised, and thus justified, by means of inference rules. For in-

stance, one rule views concurrency as the conjunction of the components’ respec-

tive properties:

115

Rule 1: If C |= φ and C ′ |= φ′, then ∆; (C ⊗ C ′);∇ |= φ ∧ φ′.

Another rule eliminates part of a diagram which is inaccessible under given as-

sumptions:

Rule 2: If [C |= A(¬ψ) =⇒ φ] and [t =⇒ ψ], then

C; (t;C ′) |= A(¬ψ) =⇒ φ

Example 6.13. Starting with goal (6.2), equivalently written as

∆; [(� N);A⊗ F];∇ |= φ(Safe) ∧ true ,

and applying Rule 1 yields sub-goals (� N);A |= φ(Safe) and F |= true , the

second of which is trivial. By Rule 2, we now discard the alarm-raising component

to concentrate on the part precisely responsible for our property: � N |= φ(safe).

�

Writing `C = C ′ whenever C and C ′ may be shown equal using the equational

laws for concatenable metagraphs (Section 6.4.1), another interesting rule arises

which permits the interchange of different structural or layout views of the same

diagram within the course of a proof:

Rule 3: If `C = C ′ and C ′ |= φ then C |= φ.

The soundness of rules such as those above must eventually be established

wrt. some behavioural model. This obligation, however, lies with the developers

of the visual language in question and not with the users.

6.7 Discussion

The main problem addressed in this chapter regards the formalisation of graph-

based notations in a way which provides layout information. One way of spec-

ifying both the structure and layout of graph-based diagrams is to construct a

tensor category from the basic elements of such diagrams. We have illustrated

this by associating the basic elements of SFC diagrams (steps, transitions and

branching elements) to such a category of metagraphs.

In pure algebra and theoretical computer science, this idea has been previously

applied to the development of graphical notations for various calculi [37] and,

more recently, to the graphical illustration of programming language semantics

[73]. The novelty of our work lies in exploring the potential of this idea in the

116

specification and modelling of (a large class of) diagrammatic (domain-specific)

languages and, particularly, in its application to a concrete notation from software

engineering (SFC diagrams).

The main difficulty in developing a category suitable for SFC diagrams was

the invention of a typing scheme which, despite its remarkable simplicity, was not

immediately obvious. This was partly due to the existence of various alternative

schemes (cf. the discussion section in the following chapter). By contrast, the

development of a graphical representation for a calculus builds upon an á priori

established type discipline (expressed in terms of sorts in an algebraic signature

or objects in a category, depending on the formulation of the calculus). Many

diagrammatic programming notations are also readily typed: the type of a func-

tion block diagram, for instance, is a pair. The components of the pair are given

by the lists of the block’s input and output ports. A tensor category appropri-

ate for function block diagrams is more-or-less apparent. The following chapter

elaborates on how metagraphs emerged in connection with SFC diagrams.

Formalising the layout of an arbitrarily drawn (graph-based) diagram is a

difficult task, one which requires at least some use of topology. From a practical

standpoint, such a formalisation would be too complex and concrete to serve as

an abstract syntax description. Instead, our approach addresses the problem in

the opposite direction. One starts with a set of expressions denoting entities

which, by virtue of satisfying a particular pattern of equational laws (those of a

tensor category), map to stratified layouts of graph-based diagrams. The choice

of the objects and arrows making up the category is merely a parameter to our

approach, so long as they bear an understood relationship to the diagrams in

question. Even for SFC diagrams, our choice of metagraphs is far from unique.

It is conceivable that a different, perhaps simpler choice could have been made.

Our approach also suggests a particular interaction mode for visual program

editors. We envisage an editing mode which, by contrast to “free-hand” draw-

ing, produces highly stylised layouts of diagrams. In such a mode, diagrams

are constructed by juxtaposing (in both dimensions) instances of pre-defined,

parametrised “tiles”. In other words, the drawing space is “quantised” to form

a grid. Whilst still allowing considerable freedom in choosing a suitable layout,

this approach results in diagrams which are trivial to parse.

Graph-based notations form a significant subclass of visual programming lan-

guages and (software) engineering notations. Most typical accounts of such no-

tations concentrate on concrete syntax (e.g. in terms of productions in graph

grammars) and ignore the pragmatic aspects of graphs, most notably spatial lay-

117

out. However, such pragmatic aspects – again, most notably layout – have been

shown to be a significant contributing factor to the success and popularity of

these notations.

This chapter has presented an algebraic, and therefore formal, account of

graph-based notations which exhibits a considerable sensitivity to pragmatic fea-

tures such as layout. Furthermore, our account enables formal reasoning over

such representations in a manner which clearly parallels the informal, “intuitive”

arguments which diagrams so often support.

118

Chapter 7

Metagraphs for SFC diagrams

In this chapter we provide insight into the choice of metagraphs as formal speci-

fication entities for SFC diagrams and rigorously demonstrate that concatenable

metagraphs form a tensor category with a trace. In doing so, we point out which

elements of our approach may be generalised to other situations.

7.1 Intuition behind metagraphs

7.1.1 SFC nets

One commonly employed abstraction of SFC programs (see, e.g. [54], page 69) is

in terms of elementary nets [136]:

Definition 7.1. A (elementary) net is a triple (S, T, F) where

• S and T are sets such that S ∩ T = ∅

• F ⊆ (S × T) ∪ (T × S) is a relation.

The elements of S and T are called places and transitions respectively. F is called

the flow relation.

We shall make the (harmless) assumption that ∗ is a special element occurring

neither as a place nor as a transition in any of the nets considered here. For any

net (S, T, F) introduce the following convenient notation:

F ∗ def
= F ∪ {〈∗, x〉 | x ∈ S ∪ T, @y. 〈y, x〉 ∈ F} ∪
{〈x, ∗〉 | x ∈ S ∪ T, @y. 〈x, y〉 ∈ F} ,

pre(x)
def
= {y | 〈y, x〉 ∈ F ∗}, x ∈ S ∪ T ,

post(x)
def
= {y | 〈x, y〉 ∈ F ∗}, x ∈ S ∪ T .

119

Example 7.1. Consider the net with places S = {s1, s2, s3, s4}, transitions T =

{t1, t2, t3} and flow relation:

F = {〈s1, t1〉, 〈t1, s2〉, 〈t1, s3〉, 〈s2, t2〉, 〈s3, t2〉, 〈s3, t3〉, 〈t2, s4〉, 〈t3, s4〉} .

There is an informal, diagrammatic presentation of nets in which places are de-

picted as circles, transitions as boxes and pairs 〈x, y〉 as directed arcs from x to

y. The diagram of the net (S, T, F) above is thus:

��
��

��
��

��
��

��
��

?
�

��/
S

SSw

?

�
�

�= ?
�

�
�
�

B
B
B
BN

s1

t1

s3

t3

s4

s2

t2

It is immediate from this diagram that pre(s1) = {∗}, post(s4) = {∗}, pre(s4) =

{t2, t3} and post(t1) = {s2, s3}. �

To capture SFC programs, one needs to additionally specify labellings of the

places and transitions in elementary nets with step names (or actions) and tran-

sition conditions respectively. (It seems, though, that this point is glossed over in

other treatments of SFCs). Moreover there are many nets, including the one in

the preceding example, which cannot arise from legal SFC programs. To overcome

these deficiencies, let us introduce the following:

Definition 7.2. Let S be the set of step names and T the set of condition ex-

pressions allowed in SFC programs. (Assuming S and T disjoint.) An SFC-net

ν = (S, T, F, l) consists of:

• a finite net (S, T, F)

• a labelling function l : S ∪ T → S ∪T

subject to the conditions:

1. l(s) ∈ S for all s ∈ S and l(t) ∈ T for all t ∈ T

2. for all x, y ∈ S∪T , post(x)∩post(y) 6= ∅ implies post(x) = post(y)(6= ∅). �

120

Key to the development of metagraphs as specifications of SFC diagrams has

been the observation of an appealing correspondence between SFC-nets and graph

homomorphisms into a graph N constructed from the labels. Specifically, N has

objects {•,�}, an arrow s : • → � for each s ∈ S and an arrow t : � → • for

each t ∈ T. The correspondence may now be stated precisely as follows:

Proposition 7.1. Let SNet be the set of SFC-nets and HN be the set of all graph

homomorphisms h : G→ N , where G varies. There exist functions H : SNet→
HN and N : HN → SNet such that N(H(ν)) = ν for all SFC-nets ν. That is,

N is a one-sided inverse of H.

Proof. (Sketch) Given an SFC-net ν = (S, T, F, l) define an equivalence relation

∼ on F ∗ by 〈x1, y1〉 ∼ 〈x2, y2〉 iff post(x1) = post(x2). As usual, denote the set of

all equivalence classes in F ∗ as F ∗/∼.

Thus, given any equivalence class f ∈ F ∗/∼ and any two elements 〈x, y〉, 〈x′, y′〉
in f , one has post(x) = post(x′). Write post(f) for the set post(x), where 〈x, y〉
is any element of f . Using the definition of SFC-nets, it is easy to check that,

given f, f ′ ∈ F ∗/∼, post(f) ∩ post(f ′) 6= ∅ implies f = f ′. Consequently, for any

y ∈ S ∪ T , there is unique f ∈ F ∗/∼ such that y ∈ post(f).

Define now, for each SFC-net ν = (S, T, F, l), a graph G(ν) having

• F ∗/∼ as its set of objects,

• S ∪ T as its set of arrows,

• ∂0(x) given by the unique f ∈ F ∗/∼ such that x ∈ post(f); and

• ∂1(x) given by the unique f ∈ F ∗/ ∼ such that 〈x, y〉 ∈ f for some y.

(Uniqueness guaranteed by the definition of F ∗/∼.)

The idea is that ∂1(x) = ∂0(y) in G(ν) whenever 〈x, y〉 ∈ F .

The graph homomorphism H(ν) from G(ν) to N is now defined as:

• H(ν)(x) = l(x) for x ∈ S ∪ T

• H(ν)(∂0(x)) = • if x ∈ S and H(ν)(∂0(x)) = � if x ∈ T

• H(ν)(∂1(x)) = � if x ∈ S and H(ν)(∂1(x)) = • if x ∈ T .

Let now h : G → N be a graph homomorphism, where G = (O,A, ∂0, ∂1).

Define N(h) to be (S ′, T ′, F ′, l′) where:

• S ′ = {x | x ∈ A, h(x) ∈ S}

121

• T ′ = {x | x ∈ A, h(x) ∈ T}

• F ′ = {〈x, y〉 | x, y ∈ A, ∂1(x) = ∂0(y)}

• l′(x) = h(x) for all x ∈ A.

N(h) can be seen to satisfy the conditions in the definition of SFC-nets. More-

over, calculation reveals that N(H(ν)) = ν, as required. �

7.1.2 From SFC-nets to metagraphs

The significance of Proposition 7.1 lies in asserting that SFC-nets are “essentially

the same” as a subset of graph homomorphisms intoN . In isolation, however, this

is hardly a compelling reason for adopting such graph homomorphisms as models

of SFCs. The advantage to be gained by such a change in perspective arises

from the connection between graph homomorphisms and a particular notion of

“typing”. One particularly appealing way of thinking about the graph N is by

analogy to an algebraic signature; the objects •, � playing the role the “sorts” (or

“types”) and the arrows playing the role of “operator symbols”. A homomorphism

h : G → N may then be regarded as a “typed term” which respects the typing

constraints imposed by the signature: no composable arrows a, b in G may be

both mapped to elements of S (or T). This captures the strict alternation of

steps and transitions in (valid) SFC programs. By introducing types explicitly in

this way we have made the first step in developing an algebra of homomorphisms

into N , and thus and algebra of “typed SFC terms”.

The situation just described is an instance of a general approach: the idea

of using graphs as “generalised signatures” is central to the theory of sketches

[8, 83, 144]. Sketches provide a general specification framework which is based

on category theory and supersedes algebraic and language-based specifications.

The next step is to extend N to a graph N ′ such that homomorphisms into N ′

may be used to specify not only SFC-nets but also SFC diagrams (which, in addi-

tion, include branching elements such as “forks” and “joins”). One such extension

results from taking N ′ = R(N), the reflexive closure of N . The subsequent de-

velopment of the algebra, however, does not depend on the exact nature of N .

Thus, we can now generalise our discussion beyond what is strictly necessary for

treating SFCs:

Definition 7.3. Let G be a graph. A metagraph in G is a homomorphism

M : S → R(G) of graphs. The graph S is called the shape of metagraph M

and will be denoted ShM . The sources and sinks of a metagraph M are defined

to be those of its shape graph. �

122

In the previous chapter, metagraphs were introduced as labelled graphs. This

is because every graph homomorphism from S to G may be regarded as a con-

sistent labelling of the objects and arrows of S with those of G. In the case of

metagraphs, the labelling graph G is additionally reflexive. This allows arrows

with the same source and target to be labelled by the distinguished arrows in

G. By convention, the labels corresponding to the distinguished arrows of G will

be omitted in pictorial presentations. Thus, in this sense, the labelling may be

regarded as “partial” on the arrows of S, the distinguished arrows being regarded

as “non-labels”.

7.2 Categories of metagraphs

Definition 7.4. Let M , M ′ be metagraphs in G. A morphism m : M → M ′ is

a graph homomorphism m : ShM → ShM ′ such that M ′ ◦m = M , i.e. such that

the diagram

ShM
m //

M $$H
HH

HH
HHH

H ShM ′

M ′zzuuuuu
uuuu

R(G)

in Graph commutes. �

Clearly, the identity homomorphism ShM → ShM is a morphism 1M : M →
M such that 1M ′ ◦ m = m = m ◦ 1M for every morphism m : M → M ′ of

metagraphs in the same graph G. Also, for every two morphisms m : M → M ′

and m′ : M ′ → M ′′ of metagraphs in G, the graph homomorphism m′ ◦ m is a

morphism m′ ◦m : M → M ′′ of metagraphs and ◦ is associative. Thus, for every

graph G one obtains a category Meta[G] having all metagraphs in G as objects

and all morphisms of metagraphs in G as arrows.

Proposition 7.2. Each Meta[G] has coproducts.

Proof. (Sketch) The coproduct M +M ′ is given by the unique arrow [M,M ′] in

Graph making the following coproduct diagram commute:

ShM
inl //

M

$$JJJJJJJJJJJJJJJJJJJJ ShM + ShM ′

[M,M ′]

��

ShM ′inroo

M ′

yytttttttttttttttttttt

R(G)

123

Thus Sh(M +M ′) = ShM+ShM ′. The associated injections inlM,M ′ and inrM,M ′

are those associated with the coproduct ShM + ShM ′ in Graph. Given any

metagraph M ′′ in G and morphisms f : M → M ′′, f ′ : M ′ → M ′′, the unique

morphism m : M +M ′ → M ′′ such that m ◦ inlM,M ′ = f and m ◦ inrM,M ′ = f ′ is

given by the unique graph homomorphism making

ShM
inl //

f

%%JJJJJJJJJJJJJJJJJJJJJ ShM + ShM ′

m

��

ShM ′inroo

f ′

yysssssssssssssssssssss

ShM ′′

commute. �

Proposition 7.3. Each Meta[G] has pushouts.

Proof. Let f : M → M1 and g : M → M2 be arrows in Meta[G], where M , M1

and M2 have shapes S, S1 and S2 respectively. Form S ′ = S1qf,g S2 and consider

the following situation in Graph:

S
f

{{xx
xx

xx
xx

x
g

##F
FF

FFF
FF

F

S1

t1

""F
FF

FF
FF

FF

M1

��3
33

33
33

33
33

33
33

S2

t2

||xx
xx

xx
xx

x

M2

����
��

��
��

��
��

��
�

S ′

R(G)

where (S ′, t1, t2) is a pushout of f , g. Clearly, M1 ◦ f = M = M2 ◦ g by the fact

that f and g are morphisms of metagraphs. Since (S ′, t1, t2) is a pushout of f, g,

there exists unique graph homomorphism M ′ : S ′ → R(G) such that M ′◦t1 = M1

and M ′◦t2 = M2. It follows that there exists object M ′ and arrows t1 : M1 → M ′,

t2 : M2 → M ′ in Meta[G] such that t1 ◦ f = t2 ◦ g.
Consider now metagraph M ′′ in G of shape S ′′ and metagraph morphisms

r1 : M1 →M ′′, r2 : M2 →M ′′ such that r1 ◦ f = r2 ◦ g. From the pushout of f , g

in Graph one again obtains unique graph homomorphism j : S ′ → S ′′ such that

124

j ◦ t1 = r1 and j ◦ t2 = r2 in Graph. Consider now the following diagram

S1
t1 //

r1

""F
FF

FF
FF

FF

M2

��3
33

33
33

33
33

33
33

S ′

j

��

S2
t2oo

r2

||xx
xx

xx
xx

x

M2

����
��

��
��

��
��

��
�

S ′′

M ′′
��

R(G)

in which the commutativity of the individual triangles gives (j ◦M ′′) ◦ t1 = M1

and (j ◦M ′′) ◦ t2 = M2. Thus, j ◦M ′′ satisfies the defining property of M ′ and

so one necessarily has j ◦M ′′ = M ′. Hence, j is the required, unique metagraph

morphism j : M ′ →M ′′ such that j ◦ t1 = r1 and j ◦ t2 = r2. �

7.3 The tensor category of concatenable meta-

graphs

The purpose of this section is to provide a rigorous definition to the algebra of

concatenable metagraphs.

7.3.1 Concatenable metagraphs

Intuitively, a concatenable metagraph is a metagraph M together with a sequence

of sources of M and a sequence of sinks of M :

Definition 7.5. A concatenable metagraph in G is a triple (M, s0, s1) where:

• M is a metagraph in G

• s0, s1 are sequences such that, either

s0 : [n]→ SrcM and s1 : [m]→ SnkM

or

s0 : [n]→ SnkM and s1 : [m]→ SrcM

for some n,m ∈ N . �

This definition presents a slightly generalised view of concatenable metagraphs

than that presented in the previous chapter. In all concatenable metagraphs

(M, s0, s1) arising in applications, s0 will be the sequence of sources and s1 the

sequence of sinks. However, the formal definition refrains from making this com-

mitment explicit. This is because we shall require the notion that each concaten-

able metagraph C has a dual C?:

125

Definition 7.6. (M, s0, s1)
? def

= (M, s1, s0). �

It is now possible to provide a succinct account for the typing scheme intro-

duced in Section 6.4.1.5.

Definition 7.7. Let C = (M, s0, s1) be a concatenable metagraph in G with s0

and s1 being of length n and m respectively. The type of C is an ordered pair

type(C)
def
= 〈α, β〉 of strings of objects in G, where α = a1 . . . an, β = b1 . . . bm

with ai = M(s0(i)) and bj = M(s1(j)). We shall write C : α → β to assert that

C is a concatenable metagraph of type 〈α, β〉. �

Clearly C? : β → α if and only if C : α→ β.

Given any string α = a1 . . . ak of objects in G, the mapping i 7→ ai, 1 ≤
i ≤ k defines a metagraph in G of shape ([k], ∅, . . .) (i.e. the graph with objects

{1, . . . , k} and no arrows). This metagraph will also be denoted α.

Thus, given any concatenable metagraph (M, s0, s1) : α → β in G one may

conveniently regard the sequences s0, s1 also as metagraph morphisms s0 : α→M

and s1 : β →M .

Definition 7.8. (M, s0, s1) : α→ β and (M ′, s′0, s
′
1) : α→ β in G are isomorphic

if there exists an isomorphism i : M → M ′ of metagraphs such that s′0 = j ◦ s0

and s′1 = j ◦ s1. That is, the diagram

M

j

��

α

s0

>>}}}}}}}}

s′0 @
@@

@@
@@

@ β

s1

``AAAAAAAA

s′1~~~~
~~

~~
~~

M ′

in Meta[G] commutes. �

It is reasonable to disregard differences in concatenable metagraphs arising

solely from the nature of objects and arrows in their respective shape graphs.

This is because all the information of interest lies in the homomorphism part

of the definition, not the formal details of the shape graphs. From now on,

isomorphic concatenable metagraphs will be identified (i.e. considered to be the

same).

7.3.2 Operations on concatenable metagraphs

Assume given, and fixed in the rest of this section, a graph G. We are now in

position to define a few basic operations among concatenable metagraphs in G.

126

7.3.2.1 Sequential Composition

Definition 7.9. The sequential composition of C = (M, s0, s1) : α → β and

C ′ = (M ′, s′0, s
′
1) : γ → δ is only defined when β = γ, in which case it is denoted

C;C ′. Specifically,

C;C ′ def
= (M ′′, t ◦ s0, t

′ ◦ s′1) : α→ δ ,

where (M ′′, t : M →M ′′, t′ : M ′ →M ′′) is a pushout of s1 and s′0 in Meta[G]. �

Thus, the shape of C;C ′ is (isomorphic to) S qs1,s′0 S
′ where S and S ′ are

the shapes of C and C ′ respectively. Under the intended interpretation of the

sequences, the construction of Sh(C;C ′) may be intuitively understood as the

process of:

1. making two disjoint copies of S and S ′; and

2. subsequently identifying each sink s1(i) in S with the source s′0(i) of S ′.

M ′′ is then the metagraph of shape Sh(C;C ′) which agrees with M and M ′ on

the constituent parts.

Remark. Since any two pushouts of the same pair of arrows are isomorphic, the

definition of ; does not depend on any particular choice for (M, t, t′): any two

legitimate choices will result in concatenable metagraphs which are isomorphic

and thus identical.

Definition 7.10. Given string α of objects in G and of length n, let

1α
def
= (α, 1[n], 1[n]) : α→ α �

Proposition 7.4. The following identities hold, whenever the composites in-

volved are defined:

1. 1α ; C = C and C ; 1β = C for all C : α→ β

2. C1 ; (C2 ; C3) = (C1 ;C2) ; C3

Proof. Both parts should be intuitively clear. We shall, however, supply a rigorous

proof of (2) in order to illustrate the use of the category-theoretic definitions.

Let Ci = (Mi, si0, si1) with C1 : α→ β, C2 : β → γ and C3 : γ → δ. Form

C1;C2 = (M12, t ◦ s10, t
′ ◦ s21)

C2;C3 = (M23, r ◦ s20, r
′ ◦ s31)

C1; (C2;C3) = (M, q ◦ s10, q
′ ◦ (r′ ◦ s31))

127

and a pushout of t′, r:

α
s10

 @
@@

@@
@@

@ β

(1)

s20

""D
DD

DD
DD

DD
s11

||zz
zz

zz
zz

z
γ

s30

""D
DD

DD
DD

DD
s21

||zz
zz

zz
zz

z δ
s31

����
��

��
��

M1

t

""D
DD

DD
DD

D

q

��9
99

99
99

99
99

99
99

99
99

99
99

99
99

M2

t′

||zz
zz

zz
zz r

""D
DD

DD
DD

D

(2)

M3

r′

||zz
zz

zz
zz

M12

w

""E
EE

EE
EE

E M23

w′

||yy
yy

yy
yy

q′

����
��

��
��

��
��

��
�

M ′

M

The squares marked (1) and (2) are both pushout squares. By Lemma 5.4 so is the

square with sides s11, r ◦ s20 and vertex M ′. Thus, there is a unique isomorphism

i : M →M ′ such that

i ◦ q = w ◦ t and i ◦ q′ = w′ .

(This is because the square with sides s11, r ◦ s20, q and q′ is also a pushout.)

Similarly, one constructs

(C1;C2);C3 = (M ′′, z ◦ (t ◦ s10), z
′ ◦ s31)

and shows the existence of unique isomorphism j : M ′ → M ′′ such that

j ◦ w = z and j ◦ w′ ◦ r′ = z′ .

It now follows that the isomorphism j ◦ i : M →M ′′ satisfies

(j ◦ i) ◦ (q ◦ s10) = j ◦ w ◦ t ◦ s10 = z ◦ t ◦ s10

and

(j ◦ i) ◦ (q′ ◦ r′ ◦ s31) = j ◦ w′ ◦ r′ ◦ s31 = z′ ◦ s31 .

This proves

C1; (C2;C3) = (M, q ◦ s10, q
′ ◦ (r′ ◦ s31))

= (M ′′, z ◦ (t ◦ s10), z
′ ◦ s31)

= (C1;C2);C3 .

�

128

We have thus shown that every graph G gives rise to a category CMeta[G]

in which:

• the objects are all finite strings of objects in G

• the arrows C : α→ β are all concatenable metagraphs in G of type 〈α, β〉

• the identities are 1α : α→ α

• the composition C ′◦C for each C : α→ β and C ′ : β → γ is given by C;C ′.

7.3.2.2 Parallel Composition

Definition 7.11. The parallel composition (or “disjoint union”) of C : α → β

and C ′ : γ → δ, denoted C ⊗ C ′, is the concatenable metagraph

(M +M ′, s0 + s′0, s1 + s′1) : αγ → βδ ,

where M+M ′ is the coproduct of metagraphs in Meta[G], si+s
′
j is the coproduct

of sequences (regarded as arrows in Set) and αβ denotes the concatenation of

strings α, β. �

In the previous definition, we have exploited the bijection [n +m] ∼= [n] + [m]

given by the mappings x 7→ inl(x) and y 7→ inr(y − n) for all 1 ≤ x ≤ n

and n + 1 ≤ y ≤ n + m, to regard the coproduct of sequences s : [n] → A

and s′ : [m] → B as a sequence s+ s′ : [n+m] → A+B. The same bijection

provides an isomorphism of metagraphs αβ ∼= α + β, which we shall treat as

interchangeable.

Proposition 7.5. Let ε denote the empty string. The following identities hold,

whenever the composites involved are defined:

1. 1α ⊗ 1β = 1αβ

2. C ⊗ 1ε = 1ε ⊗ C = C

3. C1 ⊗ (C2 ⊗ C3) = (C1 ⊗ C2)⊗ C3

4. (C1 ⊗ C2); (C
′
1 ⊗ C ′

2) = (C1;C
′
1)⊗ (C2;C

′
2)

Proof. (1), (2) and (3) are immediate consequences of Definition 7.11. For (4) let

Ci = (Mi, si0, si1) : αi → βi

C ′
i = (M ′

i , s
′
i0, s

′
i1) : βi → γi

Ci ; C
′
i = (M ′′

i , ti ◦ si0, t
′
i ◦ s′i1)

129

i = 1, 2. Form

(C1 ⊗ C2); (C
′
1 ⊗ C ′

2) = (M, r ◦ (s10 + s20), r
′ ◦ (s′11 + s′21))

with associated pushout square:

β1 + β2

s′10+s′20
��

s11+s21 //M1 +M2

r

��
M ′

1 +M ′
2 r′

//M

From the pushout squares corresponding to the Ci;C
′
i and Lemma 5.5 one obtains

that

β1 + β2

s′10+s′20
��

s11+s21 //M1 +M2

t1+t2
��

M ′
1 +M ′

2 t′1+t′2
//M ′′

1 +M ′′
2

is also a pushout square. Thus, there exists unique isomorphism j : M →
M ′′

1 +M ′′
2 such that j ◦ r = t1 + t2 and j ◦ r′ = t′1 + t′2. Using Lemma 5.2,

it follows that

j ◦ r ◦ (s10 + s20) = (t1 + t2) ◦ (s10 + s20) = (t1 ◦ s10) + (t2 ◦ s20)

and

j ◦ r′ ◦ (s′11 + s′21) = (t′1 + t′2) ◦ (s′11 + s′21) = (t′1 ◦ s′11) + (t′2 ◦ s′21) .

This proves

(C1 ⊗ C2); (C
′
1 ⊗ C ′

2) =

(M, r ◦ (s10 + s20), r
′ ◦ (s′11 + s′21)) =

(M ′′
1 +M ′′

2 , (t1 ◦ s10) + (t2 ◦ s20), (t′1 ◦ s′11) + (t′2 ◦ s′21))
= (C1;C

′
1)⊗ (C2;C

′
2) .

�

The operation ⊗ extends to the objects of each CMeta[G] as: α ⊗ β def
= αβ.

We have thus shown that each (CMeta[G],⊗, ε) is a tensor category.

130

7.3.2.3 Symmetries

Definition 7.12. Given strings α, β of objects in G and of lengths n and m

respectively,

cα,β
def
= (αβ, id[n+m], πn,m)

where πn,m is the symmetric permutation of Example 5.6. �

Proposition 7.6. The following identities hold, where C : α→ γ, C ′ : β → δ:

1. cα,β; cβ,α = 1αβ

2. cαβ,γ = (1α ⊗ cβ,γ) ; (cα,γ ⊗ 1β)

3. (C ⊗ C ′); cγ,δ = cα,β; (C ′ ⊗ C)

Proof. Routine from the definitions, using the fact that symmetric permutations

are a symmetry for the tensor category of permutations (Example 5.5). �

Thus, each tensor category CMeta[G] is also symmetric.

7.3.2.4 Loops

The simple loop construction of Section 6.4.1.4 generalises easily: multiple loops

can be created when there are more than one matching pairs of sinks and sources,

i.e. there exists k such that the i-th sink shares the same label as the i-th source

for 1 ≤ i ≤ k. The construction of pair-wise identifying these matching sources

and sinks becomes the trace on each category CMeta[G].

In order to obtain a formal definition of this construction, we first show that

each CMeta[G] has units and counits (Definition 5.11).

Definition 7.13. Let α be a string of objects in G and let n be the length of α.

Define the following concatenable metagraphs in G

µα
def
= (α, ε, δn) : ε→ αα

ηα
def
= (α, δn, ε) : αα→ ε ,

where ε denotes the empty sequence and the sequence δn of length n+ n is given

by: δn(x) = x for 1 ≤ x ≤ n and δn(x) = x− n for n + 1 ≤ x ≤ n+ n. �

Example 7.2. µ♦♠♦ : ε→ ♦♠♦♦♠♦ is

♦1,4 ♠2,5 ♦3,6 ,

131

where we indicate sequences using superscripts and subscripts. (So here, for

instance, each object occurs twice in the sequence and is indexed by both i and

i+ 3.) Correspondingly, η♦♠♦ : ♦♠♦♦♠♦ → ε is

1,4♦ 2,5♠ 3,6♦ .

Now, for C2 as in Example 6.6, µ♦♠♦ ; (C2⊗1♦♠♦) is the concatenable metagraph:

♦3
g //♠1

♠4
f //♦2

♦5

k

>>}}}}}}}

�

Proposition 7.7. For every object α of CMeta[G], 〈µα, ηα〉 is a unit-counit

pair.

Proof. (Sketch) We outline the steps in verifying the four conditions in Defini-

tion 5.11:

1. (µα ⊗ 1α) ; (1α ⊗ ηα) = 1α. Let the length of α be n. One constructs

(µα ⊗ 1α) ; (1α ⊗ ηα) = (α, δn ◦ (ε+ 1[n]), δn ◦ (1[n] + ε)) .

It is then easy to see that δn ◦ (ε+ 1[n]) = 1[n] and that δn ◦ (1[n] + ε) = 1[n].

2. (1α ⊗ µα) ; (ηα ⊗ 1α) = 1α. Similar to (1) above.

3. µα ; (C ⊗ 1α) = ηβ ; (1β ⊗ C?) for all C = (M, s0, s1) : α → β. One begins

by showing that

µα ; (C ⊗ 1α) = (M, ε, [s1, s0]) ,

where [s1, s0] : β + α → M is the unique metagraph morphism such that

[s1, s0] ◦ inl = s1 and [s1, s0] ◦ inr = s0. (Intuitively, this should be clear.

That it is formally a consequence of the definitions, however, is a rather

laborious exercise.) Recalling that C? = (M, s1, s0) one also shows that

ηβ ; (1β ⊗ C?) = (M, ε, [s1, s0]) .

4. (C? ⊗ 1α) ; ηα = (1β ⊗ C) ; ηβ for all C = (M, s0, s1) : α → β. Similar to

(3) above.

132

�

We are now ready to define the general form � C:

Definition 7.14. Given sequences α, β, γ of G, �α
β,γ C is the concatenable

metagraph in G given by:

�α
β,γ C

def
= (µα ⊗ 1β) ; (1α ⊗ C) ; (ηα ⊗ 1β) .

As a corollary of this definition and Proposition 5.3, the general form of the

equational laws for �α
β,γ C are now as follows:

• Vanishing: �ε
α,β C = C, for C : α → β, and �

γδ
α,β C =�δ

α,β (�γ
δα,δβ C),

for C : γδα→ γδβ

• Superposing: �α
βδ,γδ (C ⊗ 1δ) = (�α

β,γ C)⊗ 1δ, for C : αβ → αγ.

• Yanking: �α
α,α cα,α = 1α

• Left-Tightening: �α
β,δ ((1α⊗C ′);C) = C ′; (�α

γ,δ C), C : αγ → αδ, C ′ : β →
γ

• Right-Tightening: �α
β,δ (C; (1α ⊗ C ′)) = (�α

β,γ C) ;C ′, C : αβ → αγ,

C ′ : γ → δ

• Sliding: �α
β,δ (C ; (C ′⊗1δ)) =�γ

β,δ ((C ′⊗1β) ;C), C : αβ → γδ, C ′ : γ → α.

Thus each CMeta[G] is traced.

7.4 Discussion

Our attempts to define an algebra associated with SFC diagrams led us to consider

various approaches to the algebraic theory of Petri nets. One influential such

approach is due to Meseguer and Montanari [100]. There, a net is regarded as a

graphN whose objects are the places of the net (more generally, multisets thereof)

and whose arrows are the transitions. Every such graph can be freely completed

to a tensor category T (N). Although this was already close to our objective, it

suffers from a certain kind of asymmetry: arrow expressions over T (N) suppress

any explicit mention of places. This reflects an asymmetry in the semantics of nets

which attaches computational significance only to the transitions. Our concern,

instead, was to provide a syntactic description of nets which gives places and

transitions equal status (as in Definition 7.1).

133

Nevertheless, the idea of concatenable metagraphs owes its very existence to

work in [27, 120] extending the basic theory of net computations. There, a notion

of “concatenable process” was introduced for nets. Suitably adapted, this inspired

our Definition 7.5 of concatenable metagraphs.

Another algebraic view of nets, closer to ours, is the one of Katis, Sabadini and

Walters [79]. There, nets are associated to arrows in Span(Graph), a tensor cate-

gory constructed from Graph, in a way which maps both places and transitions

to arrows in the category. Here one meets the other extreme: a “place-arrow”

may share the same source and target as a “transition arrow”. Owing to this lack

of a formal distinction between arrows standing for places and those standing for

transitions, one may construct expressions in the category which have no meaning

as nets. Defining which expressions are meaningful in this approach appears to

require an appeal to notational convention. (For the purposes of [79], however,

this is not a problem.)

By contrast, our approach captures the typing constraints of SFC diagrams in

the graph N over which our metagraphs are defined. This is done in a way which

gives “step arrows” and “transition arrows” equal status, making in them both

visible in the resulting expressions, from which one easily “reads off” the layout

of SFC diagrams.

134

Chapter 8

Conclusions

The two main areas to which this thesis contributes are:

• Research in the design and application of domain-specific programming lan-

guages: Recent approaches in this area have regarded expressive power,

rather than modality or form of syntax, as the primary distinction between

domain-specific and general-purpose languages. This view can be accounted

as the result of an almost exclusive focus on domains within mainstream

computing, in which linguistic modalities of expression have been the def-

inite norm. By contrast we have emphasised languages which, owing to

their origins in engineering domains, use diagrams as the primary modal-

ity for expressing programs. However, our choice of emphasis represents

more than mere curiosity. It reflects our conviction that diagrams are a

very natural syntax for software in certain domains; particularly those in

which diagrammatic notations form an integral part of design practice and

technical discourse.

• The study of diagrammatic notations and their role in reasoning : In this

area we have contributed a study in the computational interpretation of

software diagrams and of the consistency issues that such interpretations

raise. Accordingly, we have addressed how the structure of diagrams may

be exploited in guiding reasoning about genuinely computational properties

of systems, such as safety. By contrast, previous studies of diagrammatic

reasoning have focused on notations for syllogistic or set-theoretic infer-

ence, e.g. Euler circles and Venn diagrams. For such applications, simple

model-theoretic structures suffice, whereas our need to address dynamic be-

haviour has demanded sophisticated semantic structures, such as transition

systems and computational traces. In relating diagrams to their computa-

tional behaviour, we have argued for the merits of compositionality. The

135

latter notion is fundamentally linked to algebraic methods of diagram de-

scription, which we argued to be superior analytic tools over grammatical

approaches.

8.1 Summary of main results

This thesis has identified several issues arising from the use of diagrammatic

notations as syntax in domain-specific programming languages. For each issue

identified, we have argued for its importance, subjected it to mathematical anal-

ysis and derived methodological advice to the extent in which similar issues may

be dealt with in the design of future languages.

We have used two examples of diagrammatic languages, drawn from the do-

main of embedded and industrial process control, as a basis for our case studies.

The first language, known as “Function Blocks”, comprises box-and-wire dia-

grams presenting a data-flow view of an embedded controller. The second, known

as “Sequential Function Charts” (SFCs), utilises variants of Petri net diagrams

to specify the control flow of programs.

The first issue of concern regards the degree of correspondence between the

structure of a diagram and the semantic structure capturing the diagram’s com-

putational behaviour. We have argued that the representation offered by the

diagrams must be homomorphic and systematic with respect to the represented

semantic structures. Applying a concept due to Gurr, we have demonstrated how

certain SFC diagrams fail this criterion, thereby severely reducing their capacity

to support reasoning.

The class of system properties for which reasoning support is required was

identified as a major characteristic of many domains. We outlined a language

design methodology which emphasises ease of proof for such domain-characteristic

properties. A concrete illustration of our approach was presented by developing

a semantics and compositional proof system for SFC diagrams and simple safety

properties.

Important consistency issues arise from the coexistence, within the same lan-

guage or programming environment, of both conventional (i.e. textual) and dia-

grammatic means for expressing programs. Such, indeed, is the case with function

blocks. We have developed a formal criterion ensuring consistence, formulated in

terms of two algebras sharing the same signature: a term algebra T and an alge-

bra D whose elements are models of the diagrams. A collection E of equations is

imposed, capturing one’s ability to structurally decompose each given composite

136

diagram in more than one way. To ensure consistency, one is required to show

D to be the free algebra over the signature and E, thus showing D isomorphic

to a quotient of T , and, moreover, that the equations in E are respected by the

semantic interpretation of the terms in T . A complete, detailed application of

this general criterion to the language of function blocks was presented.

In an attempt to address some of the pragmatic issues involved in the use of

diagrammatic syntax we concentrated on layout and its role in structuring reason-

ing arguments. We investigated how the recent development of traced categories

may be used to develop algebraic descriptions of graph-based diagrams which

supply both structural and layout information. In this approach, one constructs

an algebra of expressions denoting arrows in a traced category, the axioms in

the category capturing equivalence of diagrams under layout transformation. We

developed such an algebra capturing the basic layout of SFC diagrams and indi-

cated how it may form the basis of a formal reasoning system. The application

rests on a result relating the basic structure of SFC diagrams to a certain class

of graph homomorphisms, which we call metagraphs, and the construction of an

appropriate category thereof.

8.2 Directions for further work

The main open question raised by this thesis regards the existence of a meta-

theory for domain-specific languages. By this we mean both a cognitive analysis

of their use in practice and a collection of mathematical models and results which

underpin their design and associated reasoning. We envisage four main directions

in which our work may be extended:

1. an empirical study of domain-specific notations and how they support rea-

soning about systems;

2. an analysis of the representations employed by designers, using a combined

cognitive/computational account of how well these support typical reason-

ing tasks;

3. the development of an algebraic theory of representations whose adequacy

will be judged by its ability to support features identified in (2) above;

4. the formalisation of reasoning tasks and the extent to which the designers’

reasoning styles can be supported by formal systems.

137

8.2.1 Empirical work

Empirical observation aims to develop a sharp characterisation of the role of

notation in supporting domain practices and to gather concrete examples of its

use. The objective should be to gather typical examples of reasoning practice

in an industrial context rather than to generate a definitive study of industrial

design practice. Two possible activities in such a study would be:

• The documentation of notations used in industrial and engineering domains

and of how they support common practices and tasks.

• The abstraction of the data collected to create a number of scenarios that

cover as many aspects of notations and their use as possible.

Particular emphasis should be placed on how practitioners believe notation

contributes to limiting variability in designs and explicating key properties of

artifacts.

8.2.2 Cognitive analysis of representations

The objective here is to determine which cognitive properties a system repre-

sentation must exhibit to be effective in its target domain. Effectiveness in this

setting refers to the degree in which representations aid understanding of systems

and support user tasks, and is measured in terms of closeness of match between

representation and system/task.

Previous studies of diagrammatic representations have typically sought to ex-

plicate either computational benefits of diagrams through analysis of inherent

constraints [9, 60, 123, 124, 125]; or (from an HCI perspective) features and prop-

erties which impact upon the cognition of the user [39, 43, 85, 109, 129]. Studies

such as [41, 130, 148] have indicated that the most effective representations are

those which are well matched to what they represent, in the context of partic-

ular reasoning tasks. Furthermore, it has been demonstrated in [43, 110, 112]

that pragmatic features of diagrammatic representations (termed “secondary no-

tations” by Green [42]) play a significant role in achieving such matching.

Earlier work at Edinburgh [47], informed by these previous analyses and the

results of psychological studies of individual differences in users responses to var-

ious representations and reasoning tasks [105, 128], explored in general terms

the issues that determine both computational and cognitive effectiveness of di-

agrammatic representations. Subsequently, this general exploration was refined

138

in [50] to focus on those issues which determine whether a representation is well-

matched, and how this matching is achieved. Initial applications of the informal

framework suggested by this work to domain-specific representations are very

promising [4, 48].

We aim to continue the refinement of this approach through the formalisation

of the framework sketched in [50], leading to a principled approach for construct-

ing ontological models of diagrammatic representations which identify their key

properties and their syntactic and pragmatic features. The application of this

framework to diagrams in general is problematic, as the assorted computational

and cognitive factors vary significantly between diagrammatic languages. Further-

more, individual differences can substantially disturb the effects of representations

on reasoning tasks. We believe that focusing on designers using domain-specific

languages simplifies this problem, by reducing the variation in these assorted

factors.

8.2.3 A mathematical theory of representation

A mathematical characterisation is sought of how representations relate to each

other and to the concrete systems they stand for.

• Equivalences and morphisms of diagrams. Any given system may be rep-

resented in a variety of—subtly or grossly—different ways. In particular,

diagrammatic representations may be decomposed (and thus semantically

interpreted) in multiple ways. It is important for users in a domain to know

exactly which such differences are significant, and which are not. Algebra

and category theory provide rich frameworks in which precise notions of

equivalence and morphism between diagrams may be formulated and stud-

ied.

On the whole, the methods of category theory seem highly pertinent to the

study of diagrams. Moreover, a seamless extension of familiar algebraic techniques

from sets to categories has recently been achieved in the work of Power and others

[116, 118, 82]. Subject to adaptation, we expect their novel concept of sketch [83]

to provide a useful device in the conceptual understanding of models of diagrams

and their morphisms.

• Representations and Behaviour. Successful representation formalisms often

promote a conceptual understanding of systems which is considerably re-

moved from the mechanics of actual system operation. Unless the relation

139

between representation and intended system behaviour is made precise, cer-

tain permitted implementations might behave differently to what the users

in the domain expect [4]. Also, it is important to guarantee that equivalent

representations result in equivalent behaviour. In this thesis, such issues

have been dealt with in the context of specific diagrammatic languages and

their semantics. Much further work is required before one obtains more gen-

eral results linking static representations with their dynamic computational

interpretations.

8.2.4 Supporting domain-specific reasoning

This direction considers the practical applications of the theory to the problem

of supporting designers in providing evidence of desirable properties in systems.

While the use of formal methods in supplying evidence is often recommended

or mandated (e.g. SEMSPLC guidelines [72], MOD-00-55 standard), their prac-

tical application remains undeniably difficult, relying on intimate knowledge and

explicit manipulation of some underlying, generic model. By contrast, many in-

formal or semi-formal arguments are guided by the structure of some high-level

representation of the system, such as a diagram. In the course of such argu-

ments, the representation itself is often manipulated in order to expose particular

aspects which seem most pertinent to the goal. Nevertheless, the elevation of

such arguments to a level admissible as rigorous evidence requires their formal

underpinning, validation and justification by logical means. Viewing, as we do,

formalisation as a means to the validation of informal (or semi-formal) reasoning

practices emphasises mathematical analysis as a tool of the notation (language)

designer, not as an imposition on the user.

Thus, our aim is to apply the theory connecting diagrammatic representations

to semantics in seeking criteria under which representation-driven arguments are

deemed sufficient to provide rigorous evidence without the need of explicitly con-

structing fully formal proofs. Doing so successfully seems unlikely in the absence

of any restrictions regarding the class of diagrams and semantics under consid-

eration. Also, the strictness of the criteria is likely to vary considerably across

domains. In generalising from the case studies presented in this thesis, one must

still restrict attention to fairly circumscribed classes of diagrams, such as those

sharing some common, underlying graph structure.

140

Bibliography

[1] R. Alur and D. Dill. Automata for modelling real-time systems. In Pro-

ceedings of ICALP’90, volume 443 of Lecture Notes in Computer Science,

pages 322–335. Springer-Verlag, 1990.

[2] R. Alur and D. Dill. A theory of timed automata. Theoretical Computer

Science, 126:183–235, 1994.

[3] S. Anderson and K. Tourlas. A language for programmable controllers. Un-

published (available from the authors), 1997. Notes detailing an operational

semantics for IEC 1131-3 function blocks.

[4] Stuart Anderson and Konstantinos Tourlas. Diagrams and programming

languages for programmable controllers. In Proceedings of the Formal Meth-

ods Europe Symposium, volume 1313 of Lecture Notes in Computer Science,

pages 1–19. Springer-Verlag, 1997.

[5] Stuart Anderson and Konstantinos Tourlas. Design for proof: An approach

to the design of domain-specific languages. In J. F. Groote, B. Luttik, and

J. van Wamel, editors, Proceedings of the Third International Workshop on

Formal Methods for Industrial Critical Systems, pages 1–16. ERCIM, 1998.

[6] Stuart Anderson and Konstantinos Tourlas. Design for proof: An approach

to the design of domain-specific languages. Formal Aspects of Computing,

10:452–468, 1998.

[7] G. Arango and R. Prieto-Diaz. Domain analysis concepts and research

direction. In Domain Analysis and Software Systems Modeling, pages 9–31.

IEEE Computer Society Press, 1991.

[8] M. Barr and C. Wells. Category Theory for Computing Science. Prentice-

Hall, 1990.

141

[9] J Barwise and J Etchemendy. Heterogeneous logic. In J Glasgow, N H

Narayan, and B Chandrasekaran, editors, Diagrammatic Reasoning: Cog-

nitive and Computational Perspectives, pages 211–234. MIT Press, 1995.

[10] A. Benveniste and G. Berry. The synchronous approach to reactive and

real-time systems. Proceedings of the IEEE, 79(9):1270–1282, September

1991.

[11] Albert Benveniste, Paul Caspi, Paul Le Guernic, and Nicolas Halbwachs.

Data-flow synchronous languages. In A Decade of Concurrency — Reflec-

tions and Perspectives, volume 803 of Lecture Notes in Computer Science.

Springer-Verlag, 1994.

[12] Albert Benveniste, Paul Le Guernic, Yves Sorel, and Michel Sorine. A de-

notational theory of synchronous reactive systems. Information and Com-

putation, 99(2):192–230, August 1992.

[13] Gérard Berry. Real-time programming: Special purpose or general purpose

languages. Information Processing, pages 11–17, 1989.

[14] Gérard Berry. The foundations of Esterel. In G. Plotkin, C. Stirling, and

M. Tofte, editors, Proof, Language and Interaction: Essays in Honour of

Robin Milner. 1998.

[15] Gérard Berry and Georges Gonthier. The Esterel synchronous program-

ming language: Design, semantics, implementation. Science of Computer

Programming, 19(2):82–152, 1992.

[16] Frédéric Boussinot and Robert de Simone. The Esterel language. Proceed-

ings of the IEEE, 79(9):1293–1304, September 1991.

[17] David Bruce. What makes a good domain specific language? In Proceedings

of the First ACM Workshop on Domain-Specific Languages. ACM, 1997.

[18] Luca Cardelli. Service combinators for Web computing. In Ramming [117],

pages 1–10.

[19] E. Carlson, P. Hudak, and M. Jones. An experiment using Haskel to pro-

totype “geometric reagion servers” for navy command and control. Techni-

cal Report YALEU/DCS/RR-1031, Department of Computer Science, Yale

University, 1994.

142

[20] P. Caspi, D. Pilaud, N. Halbwachs, and J. Plaice. LUSTRE: A declara-

tive language for programming synchronous systems. In Fourteenth Annual

ACM Symposium on Principles of Programming Languages, pages 178–188.

ACM, 1987.

[21] Paul Caspi. Clocks in dataflow languages. Theoretical Computer Science,

94:125–140, 1992.

[22] F. Cassez. Formal semantics of reactive Grafcet. European Journal of

Automation, 31(3), 1997.

[23] International Electrotechnical Commission. International Standard 1131,

Programmable Controllers. Part 3: Programming Languages. IEC, 1993.

[24] A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, and M. Löwe.

Algebraic approaches to graph transformation I: Basic concepts and double

pushout approach. In G. Rozenberg, editor, Handbook of Graph Grammars

and Computing by Graph Transformation. World Scientific, 1997.

[25] B Courcelle. Graph rewriting: An algebraic and logical approach. In J van

Leeuwen, editor, Handbook of Theoretical Computer Science. Elsevier, 1990.

[26] R. Crole. Categories for Types. Cambridge Mathematical Textbooks, 1993.

[27] Pierpaolo Degano, José Meseguer, and Ugo Montanari. Axiomatizing the

algebra of net computations and processes. Acta Informatica, 33:641–667,

1996.

[28] H. Ehrig. Introduction to the algebraic theory of graph grammars. In Pro-

ceedings on the First International Workshop on Graph Grammars, num-

ber 73 in Lecture Notes in Computer Science, pages 1–69. Springer-Verlag,

1979.

[29] Conal Elliott. Modelling interactive 3D and multimedia animation with an

embedded language. In Ramming [117].

[30] Conal Elliott and Paul Hudak. Functional reactive animation. In Proceed-

ings of SIGPLAN ICFP, International Conference on Functional Program-

ming. ACM, 1997.

[31] Ryszard Engelking. General topology, volume 6 of Sigma series in pure

mathematics. Springer-Verlag, 1989.

143

[32] Dawson Engler. Incorporating application semantics and control into com-

pilation. In Ramming [117], pages 103–115.

[33] Martin Erwig. Abstract visual syntax. In IEEE Workshop on the Theory

of Visual Languages, 1997.

[34] Markus Fromherz, Vineet Gupta, and Vijay Saraswat. cc — a generic

framework for domain specific languages. In Kamin [76].

[35] Markus Fromherz and Vijay Saraswat. Model-based computing: Using

concurrent constraint programing for modeling and model compilation. In

U. Montanari and F. Rossi, editors, Principles and Practice of Constraint

Programming - CP’95, number 97 in LNCS. Springer-Verlag, 1995.

[36] P. Pepper G. Egger, A. Fett. Formal specification of a safe PLC language

and its compiler. In Proceedings of the SafeComp’94, 13th International

Conference on Computer Safety, Reliability and Security. ISA, 1994.

[37] Phillipa Gardner. Graphical presentations of interactive systems. Paper

associated with the Mathfit Summer School at Imperial College, London,

1998.

[38] Thierry Gautier and Paul Le Guernic. SIGNAL: A declarative language for

synchronous programming of real-time systems. In Gilles Kahn, editor,

Functional Programming Languages and Computer Architecture, volume

274 of Lecture Notes in Computer Science, pages 257–277. Springer-Verlag,

1987.

[39] J Glasgow, N H Narayan, and B Chandrasekaran. Diagrammatic Reasoning:

Cognitive and Computational Perspectives. MIT Press, 1995.

[40] J. Goguen. A categorical manifesto. Mathematical Structures in Computer

Science, 1(1):49–67, 1991.

[41] J Good. VPLs and novice program comprehension: How do different lan-

guages compare? In 15th IEEE Symposium on Visual Languages (VL’99),

pages 262–269. IEEE Computer Society, 1999.

[42] T R G Green. Cognitive dimensions of notations. In A Sutcliffe and

Macaulay, editors, People and Computers V, pages 443–460. Cambridge

University Press, 1989.

144

[43] T R G Green and M Petre. Usability analysis of visual programming en-

vironments: a ‘cognitive dimensions’ framework. Visual Languages and

Computing, 7:131–174, 1996.

[44] D. Gries and F. Schneider. A Logical Approach to Discrete Math. Texts

and Monographs in Computer Science. Springer-Verlag, 1993.

[45] C. Gunter, J. Mitchell, and D. Notkin. Strategic directions in software engi-

neering and programming languages. ACM Computing Surveys, 28(4):727–

737, December 1996.

[46] C Gurr. On the isomorphism (or otherwise) of representations. In Interna-

tional Workshop on Theory of Visual Languages, held in Conjunction with

AVI’96, Gubbio, Italy, May 1996.

[47] C Gurr, J Lee, and K Stenning. Theories of diagrammatic reasoning: dis-

tinguishing component problems. Mind and Machines, 8(4):533–557, De-

cember 1998.

[48] C. Gurr and K. Tourlas. Formalising pragmatic features of graph-based

notations. In 15th IEEE Symposium on Visual Languages (VL’99), pages

220–227. IEEE Computer Society, 1999.

[49] C. Gurr and K. Tourlas. Towards the principled design of software engi-

neering diagrams. In Proceedings of Int. Conf. On Software Engineering,

2000. To appear.

[50] C A Gurr. Effective diagrammatic communication: Syntactic, semantic and

pragmatic issues. Journal of Visual Languages and Computing, 10(4):317–

342, August 1999.

[51] Corin Gurr. Theories of visual and diagrammatic reasoning: Foundational

issues. In G. Allwein, K. Marriot, and B. Meyer, editors, Formalizing Rea-

soning with Visual and Diagrammatic Representations, AAAI Fall Sympo-

sium, 1998.

[52] Corin A. Gurr. On the isomporphism of representations. In K. Marriott and

B. Meyer, editors, Visual Language Theory, pages 288–301. Springer-Verlag,

1998.

[53] Douglas Gurr. Semantic Frameworks for Complexity. PhD thesis, Depart-

ment of Computer Science, University of Edinburgh, 1990.

145

[54] Wolfgang Halang, Soon-Hey Jung, Bernd Krämer, and Johan Scheepstra.

A Safety Licensable Computing Architecture. World Scientific, 1993.

[55] Wolfgang Halang, Bernd Krämer, and Norbert Völker. Formally verified

firmware modules for industrial process automation. In G. Rabe, editor,

14th International Conference on Computer Safety, Reliablity and Security

(SAFECOMP’95), pages 206–218, 1995.

[56] Wolfgang A. Halang and Alceu Heinke Frigeri. Methods and languages for

safety related real time programming. In 17th International Conference on

Computer Safety, Reliablity and Security (SAFECOMP’98), 1998.

[57] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The syn-

chronous dataflow programming language Lustre. Proceedings of the IEEE,

79(9):1305–1320, September 1991.

[58] N. Halbwachs, Y.E. Proy, and P. Roumanoff. Verification of real-time sys-

tems using linear relation analysis. Formal Methods in System Design,

11(2):157–185, 1997.

[59] A. Hamilton. Logic for Mathematicians. Cambridge University Press, 1978.

[60] E Hammer and N Danner. Towards a model theory of Venn diagrams. In

J Barwise and G Allwein, editors, Logical Reasoning with Diagrams, pages

109–127. Oxford University Press, New York, 1996.

[61] D. Harel and A. Pnueli. On the development of reactive systems. In Logic

and Models of Concurrent Systems, volume 13 of NATO ASI Series F.

Springer-Verlag, 1985.

[62] David Harel. Statecharts: A visual approach to complex systems. Science

of Computer Programming, 8(3):231–275, 1987.

[63] Masahito Hasegawa. Models of Sharing Graphs: Categorical Semantics of

let and letrec. PhD thesis, Department of Computer Science, University

of Edinburgh, 1997.

[64] Massahito Hasegawa. Recursion from cyclic sharing: Traced monoidal cat-

egories and models of cyclic lambda calculi. In Proceedings of Third In-

ternational Conference on Typed Lambda Calculi and Applications, volume

1210 of Lecture Notes in Computer Science, pages 196–213. Springer-Verlag,

1997.

146

[65] Eric Hehner. Abstractions of time. In A Classical Mind: Essays in Honour

of C.A.R. Hoare, International Series in Computer Science. Prentice Hall,

1994.

[66] T. Henzinger, Z. Manna, and A. Pnueli. Timed transition systems. In

Real-Time: Theory in Practice, volume 600 of Lecture Notes in Computer

Science. Springer-Verlag, 1992.

[67] T. Henzinger, Z. Manna, and A. Pnueli. Temporal proof methodologies for

timed transition systems. Information and Computation, 112(2):237–337,

1994.

[68] Thomas Troels Hildebrandt, Prakash Panangaden, and Glynn Winskel. A

relational model of non-deterministic dataflow. In Proceedings of CON-

CUR’98, 1998.

[69] Boudewijn Hoogeboom and Wolfgang Halang. The concept of time in the

specification of real time systems. In Real-Time Systems, pages 19–38. IEEE

Computer Society Press, 1992.

[70] Paul Hudak. Building domain-specific embedded languages. ACM Com-

puting Surveys, 28(4), December 1996.

[71] Paul Hudak. Modular domain specific languages and tools. In Proceedings

of the International Conference on Software Reuse, 1998.

[72] Institution of Electrical Engineers. SEMSPLC Guidelines: Safety-Related

Application Software for Programmable Logic Controllers, volume 8 of IEE

Technical Guidelines. IEE, London, 1996.

[73] Alan Jeffrey. Premonoidal categories and a graphical view of programs.

Technical report, School of Cognitive and Computing Sciences, University

of Sussex, 1997. Available as http://klee.cs.depaul.edu/premon.

[74] A. Joyal and R. Street. The geometry of tensor calculus I. Advances in

Mathematics, 88:55–112, 1991.

[75] André Joyal, Ross Street, and Dominic Verity. Traced monoidal cate-

gories. Mathematical Proceedings of the Cambridge Philosophical Society,

119(3):447–468, 1996.

[76] S. Kamin, editor. Proceedings of the First ACM Workshop on Domain-

Specific Languages. ACM, 1997.

147

[77] Samuel Kamin. Moving functional languages into the real world. In Proceed-

ings of Joint Brazilian/US Workshop on Formal Foundations of Software

Systems, 1997.

[78] Samuel Kamin and David Hyatty. A special-purpose language for picture

drawing. In Ramming [117], pages 297–306.

[79] P. Katis, N. Sabadini, and R. F. C. Walters. Representing Place/Transition

nets in Span(Graph). In Michael Johnson, editor, Proceedings of the Sixth

AMAST Conference, volume 1349 of Lecture Notes in Computer Science,

pages 323–336. Springer-Verlag, 1997.

[80] P. Katis, N. Sabadini, and R.F.C. Walters. Bicategories of processes. Jour-

nal of Pure and Applied Algebra, 115:141–178, 1997.

[81] G. Kelly and M. Laplaza. Coherence for compact closed categories. Journal

of Pure and Applied Algebra, 19:193–213, 1980.

[82] G. M. Kelly and A. J. Power. Adjunctions whose counits are coequalisers

and presentations of finitary enriched monads. Journal of Pure and Applied

Algebra, 89:163–179, 1993.

[83] Yoshiki Kinoshita, John Power, and Makoto Takeyama. Sketches. Electronic

Notes in Theoretical Computer Science, 6, 1997.

[84] Bernd Krämer and Norbert Völker. A highly dependable computing archi-

tecture for safety-critical control applications. Real-Time Systems Journal,

1997.

[85] J H Larkin and H A Simon. Why a diagram is (sometimes) worth ten

thousand words. Cognitive Science, 11:65–99, 1987.

[86] R. W. Lewis. Programming industrial control systems using IEC 1131-3.

Control Engineering Series. The Institution of Electrical Engineers (IEE),

London, 1995.

[87] Sheng Liang, Paul Hudak, and Mark Jones. Monad transformers and mod-

ular interpreters. In Proceedings of the 22th Symposium on Principles of

Programming Languages. ACM, 1995.

[88] Saunders MacLane. Categories for the Working Mathematician, volume 5

of Graduate Texts in Mathematics. Springer-Verlag, 1971.

148

[89] O. Maffëıs, M. Morley, and A. Poigné. The synchronous approach to de-

signing reactive systems. Formal Methods in System Design, 12(2):163–187,

1998.

[90] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent

Systems, volume Specification. Springer-Verlag, 1992.

[91] F. Maraninchi. The Argos language: Graphical representation of automata

and description of reactive systems. In Proceedings of the IEEE Workshop

on Visual Languages, 1991.

[92] F. Maraninchi. Operational and compositional semantics of synchronous

automaton compositions. In Proceedings of CONCUR’92. Springer Verlag,

LNCS 630, August 1992.

[93] L. Marce and P. Le Parc. Defining the semantics of languages for pro-

grammable controllers with the help of synchronous processes. Control

Engineering Practice, 1(1), 1993.

[94] J Marks and E Reiter. Avoiding unwanted conversational implicature in

text and graphics. In Proceedings of AAAI-90, pages 450–456, 1990.

[95] K Marriot, B Meyer, and K Wittenberg. A survey of visual language specifi-

cation and recognition. In K Marriot and B Meyer, editors, Visual Language

Theory. Springer Verlag, June 1998.

[96] Kim Marriott and Bernd Meyer. On the classification of visual languages

by grammar hierarchies. Journal of Visual Languages and Computing,

8(4):374–402, 1997.

[97] Kim Marriott and Bernd Meyer. The CCMG visual language hierarchy.

In Marriott and Meyer, editors, Visual Language Theory. Springer-Verlag,

1998.

[98] John McDermid and Keith Bennett. Software engineering research in the

UK: A critical appraisal. Engineering Board Meeting EB/25/98, The British

Computer Society, November 1998.

[99] K. Meinke and J. V. Tucker. Universal algebra. In Handbook of Logic In

Computer Science, volume 1, pages 189–397. Oxford Science Publications,

1995.

149

[100] José Meseguer and Ugo Montanari. Petri nets are monoids: A new algebraic

foundation for net theory. In Proceedings of the Third Annual Symposium on

Logic in Computer Science (LICS), pages 142–154. IEEE Computer Society

Press, 1988.

[101] Alex Mifsud. Control Structures. PhD thesis, Department of Computer

Science, University of Edinburgh, 1996.

[102] Robin Milner. Flowgraphs and flow algebras. Journal of the ACM,

26(4):794–818, October 1979.

[103] Robin Milner. Communication and Concurrency. International Series in

Computer Science. Prentice Hall, 1989.

[104] Robin Milner. The polyadic pi-calulus: a tutorial. Technical Report ECS-

LFCS-91-180, Laboratory for Foundations of Computer Science, University

of Edinburgh, 1991.

[105] P Monaghan and K Stenning. Effects of representational modality and

thinking style on learning to solve reasoning problems. In Proceeding of the

20th Annual Meeting of the Cognitive Science Society of America, 1998.

[106] Matthew J. Morley. Safety-level communication in railway interlockings.

Science of Computer Programming, 29(1–2):147–170, July 1997.

[107] Matthew John Morley. Safety Assurance in Interlocking Design. PhD thesis,

Department of Computer Science, the University of Edinburgh, 1996.

[108] Lloyd Nakatani and Mark Jones. Jargons and infocentrism. In Proceedings

of the First ACM Workshop on Domain-Specific Languages, 1997.

[109] N. H. Narayan. Diagrammatic communication: A taxonomic overview. In

B Kokinov, editor, Perspectives on Cognitive Science, volume 3, pages 91–

122. New Bulgarian University Press, Sofia, Bulgaria, 1997.

[110] J Oberlander. Grice for graphics: pragmatic implicature in network dia-

grams. Information Design Journal, 8(2):163–179, 1996.

[111] E. Parr. Programmable Controllers, An Engineer’s Guide. Newnes, 1993.

[112] M Petre. Why looking isn’t always seeing: Readership skills and graphical

programming. Communications of the ACM, 38(6):33–45, June 1995.

150

[113] M Petre and T R G Green. Requirements of graphical notations for profes-

sional users: electronics CAD systems as a case study. Le Travail Humain,

55:47–70, 1992.

[114] Benjamin Pierce. Basic Category Theory for Computer Scientists. MIT

Press, 1991.

[115] Axel Poigné. Basic category theory. In Handbook of Logic In Computer

Science, volume 1, pages 416–634. Oxford Science Publications, 1995.

[116] John Power. Categories with algebraic structure. In Nielsen and Thomas,

editors, Proceedings of CSL 97, volume 1414 of Lecture Notes in Computer

Science, pages 389–405. Springer-Verlag, 1998.

[117] C. Ramming, editor. Proceedings of the First USENIX Conference on

Domain-Specific Languages. USENIX, 1997.

[118] Edmund Robinson. Variations on algebra: Monadicity and generalisations

of equational theories. Technical Report 1996:06, School of Cognitive and

Computing Sciences, University of Sussex, 1994.

[119] D. E. Rydeheard and R. M. Burstall. Monads and theories: a survey for

computation. In M. Nivat and J. Reynolds, editors, Algebraic Methods in

Semantics. Cambridge, 1985.

[120] Vladimiro Sassone. An axiomatization of the category of Petri net compu-

tations. Mathematical Structures in Computer Science, 8(2):117–152, April

1998.

[121] David Schmidt. Denotational Semantics, A Methodology for Language De-

velopment. Wm. C. Brown Publishers, 1986.

[122] T. Sheard, Z. Banaissa, and E. Pasalic. DSL implementation using staging

and monads. In Proceedings of the Second USENIX Conference on Domain-

Specific Languages, 1999.

[123] A Shimojima. Operational constraints in diagrammatic reasoning. In J Bar-

wise and G Allwein, editors, Logical Reasoning with Diagrams, pages 27–48.

Oxford University Press, New York, 1996.

[124] A Shimojima. Derivative meaning in graphical representations. In 15th

IEEE Symposium on Visual Languages (VL’99), pages 212–219. IEEE Com-

puter Society, 1999.

151

[125] S-J Shin. Situation-theoretic account of valid reasoning with Venn dia-

grams. In J Barwise and G Allwein, editors, Logical Reasoning with Dia-

grams, pages 81–108. Oxford University Press, New York, 1996.

[126] Mei Chee Shum. Tortile tensor categories. Journal of Pure and Applied

Algebra, 93:57–110, 1994.

[127] G. Stefanescu. Algebra of flownomials. Technical Report TUM-I9437, Tech-

nical University Munich, 1994.

[128] K Stenning, R Cox, and J Oberlander. Contrasting the cognitive effects

of graphical and sentential logic teaching: reasoning, representation and

individual differences. Language and Cognitive Processes, 10, 1995.

[129] K Stenning and J Oberlander. A cognitive theory of graphical and linguistic

reasoning: logic and implementation. Cognitive Science, 19:97–140, 1995.

[130] K Stenning and P Yule. Image and language in human reasoning: a syllo-

gistic illustration. Cognitive Psychology, 34(2):109–159, 1997.

[131] C. Stirling. Modal and temporal logics. In Handbook of Logic In Computer

Science, volume 2, pages 478–563. Oxford Science Publications, 1995.

[132] Colin Stirling. A generalisation of Owicki-Gries’s Hoare logic for a concur-

rent while language. Theoretical Computer Science, 58:347–359, 1988.

[133] R. Stoll. Set Theory and Logic. Dover, 1979.

[134] Wilson A. Sutherland. Introduction to metric and topological spaces. Oxford

Clarendon Press, 1975.

[135] F. Swainston. A Systems Approach to Programmable Controllers. Newnes,

1991.

[136] P. S. Thiagarajan. Elementary net systems. In W. Brauer, W. Reisig, and

G. Rozenberg, editors, Advances in Petri Nets, volume 254 of Lecture Notes

in Computer Science, pages 26–59, 1986.

[137] S. Thibault, C. Consel, and G. Muller. Safe and efficient active network

programming. In 17th IEEE Symposium on Reliable Distributed Systems,

1998.

[138] S. Thibault, R. Marlet, and C. Consel. A domain-specific language for video

device drivers: from design to implementation. In Ramming [117].

152

[139] Scott Thibault. Domain-specific Languages: Conception, Implementation

and Application. PhD thesis, L’Université de Rennes 1, 1998.

[140] Konstantinos Tourlas. Semantic analysis and design of languages for pro-

grammable logic controllers. Master’s thesis, Department of Computer Sci-

ence, The University of Edinburgh, 1996.

[141] Konstantinos Tourlas. An assessement of the IEC 1131-3 standard on lan-

guages for programmable controllers. In Peter Daniel, editor, 16th Inter-

national Conference on Computer Safety, Reliablity and Security (SAFE-

COMP’97). Springer-Verlag, 1997.

[142] S Üsküdarlı and T. B. Dinesh. Towards a visual programming environment

generator for algebraic specifications. In Proc. 1995 IEEE Symposium Vi-

sual Languages, September 1995.

[143] L. Walton and J. Hook. Message specification language (MSL): A domain-

specific language for message translation and validation. OGI-CSE-TR,

1994.

[144] Charles Wells. Sketches: Outline with references. Unpublished, 1994.

Available electronically as http://www.cwru.edu/artsci/math/wells/

pub/papers.html#sketch.

[145] Tanya Widen and James Hook. Software design automation: Language

design in the context of domain engineering. In Tenth International Con-

ference on Software Engineering and Knowledge Engineering, June 1998.

[146] Glynn Winskel. The Formal Semantics of Programming Languages. Foun-

dations of Computing Series. The MIT Press, 1994.

[147] Qiwen Xu, Willem-Paul de Roever, and Jifeng He. The Rely-Guarantee

method for verifying shared variable concurrent programs. Formal Aspects

of Computing, 9(2):149–174, 1997.

[148] J Zhang and D Norman. Representations in distributed cognitive tasks.

Cognitive Science, 18:87–122, 1994.

[149] M. Zhou. Petri nets in flexible and agile automation. Kluwer Academic

Publishers, 1995.

153

