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Abstract

The practice of computing has reached a stage where computers are seen as parts of a
global computing platform. The possibility of exploiting resources on a global scale
has given rise to a new paradigm — the mobile computation paradigm — for computation
in large-scale distributed networks. Languages which enable the mobility of code over
the network are becoming widely used for building distributed applications.

This thesis explores distributed computation with languages which adopt functions
as the main programming abstraction and support code mobility through the mobility
of functions between remote sites. It aims to highlight the benefits of using languages
of this family in dealing with the challenges of mobile computation. The possibility of
exploiting existing static analysis techniques suggests that having functions at the core
of a mobile code language is a particularly apt choice.

A range of problems which have impact on the safety, security and performance of
systems are discussed here. It is shown that types extended with effects and other an-
notations can capture a significant amount of information about the dynamic behaviour
of mobile functions and offer solutions to the problems under investigation.

The thesis presents a survey of the languages Concurrent ML, Facile and PLAN
which remain loyal to the principles of the functional language ML and hence inherit
its strengths in the context of concurrent and distributed computation. The languages
which are defined in the subsequent chapters have their roots in these languages.

Two chapters focus on using types to statically predict whether functions are used
locally or may become mobile at runtime. Types are exploited for distributed call-
tracking to estimate which functions are invoked at which sites in the system. Compil-
ers for mobile code languages would benefit from such estimates in dealing with the
heterogeneity of the network nodes, in providing static profiling tools and in estimating
the resource-consumption of programs. Two chapters are devoted to the use of types
in controlling the flow of values in a system where users have different trust levels.
The confinement of values within a specified mobility region is the subject of one of
these. The other focuses on systems where values are classified with respect to their
confidentiality level. The sources of undesirable flows of information are identifed and
a solution based on noninterference is proposed.
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Chapter 1

Introduction

1.1 Mobile computation with functions

The recent developments in telecommunications technology have made it possible to
envisage a global computing platform in which computers interact easily and share
a wide range of resources. Computers are no longer viewed as largely self-contained
computing devices which use local resources and occasionally communicate with each
other. The traditional assumptions about computation in distributed systems and desir-
able features for programming languages are being revised to allow for better use of
the global infrastructure. A consequence of this has been the emergeheenobbile
computation paradignalong with its supporting technologies. The key characteristic

of this paradigm is to give programmers control over the mobility of code or active
computations across the network by providing appropriate language features. There-
fore, a typical mobile computation language is expected to facilitate the expression
and execution of mobile code-containing entities. The dynamism and flexibility of-
fered by this form of computation, however, brings about a set of problems, the most
challenging of which are relevant to safety and security.

Opinions are diverse as to the primary concerns of languages for mobile compu-
tation. We argue that a sound formal foundation is of the greatest significance. By a
formal foundation we mean a collective body of work which describes the computa-
tional model of the language at a suitable level of abstraction and enables rigorous or
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even formal reasoning about programs. Such a foundation would preclude ambigui-
ties about the meaning of programs while also enabling the formulation and proof of
certain properties including safety and security related ones.

Functional languages are known for their well-understood computational models
and their amenability to formal reasoning. They also have strong expressive power
due to higher-order features. Functions can flow from one program point to another
as first-class values. These facts suggest that the kind of mobile computation language
we put forward can be obtained by adopting a functional core and extending it with
features which are in keeping with the principles of functional computation. In such a
language functions can represent mobile code-containing entities and formal systems
for reasoning about functional programs can be further exploited to reason about the
behaviour of mobile code.

In general, this thesis contributes simple but inspiring ideas to the research in for-
mal models of mobile computation and program analysis. In particular, novel ap-
plications of type and effect based analysis and suggestions for future directions are
presented.

1.2 Type and effect based static analysis

Conventionally type systems for functional languages have been used to ensure that
programs cannot corrupt the runtime representation of data values so that further exe-
cution of the program is not faithful to the language semantics. This property is known
astype safetyin the literature. Effect systems were initially proposed as a solution
to the problems encountered in preserving type safety and polymorphism while inte-
grating functional and imperative features. The basic idea was to enhance the type
systems so that the expressions were associated with their observable side-effects as
well as types and to use this information in making judgements with respect to safety.
Some authors have further explored the use of type and effect systems for memory
management and safe integration of concurrent and functional features.

The exploitation of type and effect systems need not be confined to the enforce-
ment of type safety. Annotated with effects and other kinds of information, types can
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capture a significant amount of static information about a program’s potential dynamic
behaviour. The general methodology of type and effect systems then consists of devis-
ing a semantics for the language, expressing a program analysis by means of types and
effects and showing the semantic correctness of this analysis. In other words, the type
system extracts the overall behaviour of the program as a first step and as a later step
one can devise various analyses to reason about it in a sound way. These analyses may
be put to use in various areas such as compiler optimizations, cost profiling and safety
and security. The literature includes examples of such analyses devised prior to the
emergence of the mobile computation paradigm. This work introduces new analyses
motivated by the characteristics of mobile computation.

A slightly different approach to exploiting type and effect systems can be to de-
termine the properties which are desirable for all programs and design the type and
effect system so that those programs which violate these properties are rejected by the
system. This is closer in spirit to the earlier exploitations of type and effect systems
for enforcing type safety. In the context of mobile computation, enforcing type safety
alone is not sufficient to address many of the safety and security concerns. Just as the
languages are revisited to examine their position with respect to the new paradigm of
mobile computation, type and effect systems need to be revisited to adapt their method-
ology to the requirements of the context of mobile computation. The work presented
in this thesis can be considered as a step in this direction.

Enforcing safety and security properties by type systems is an active research area
where the significance of secure flow of information is emphasized. Most of the exist-
ing work is in the framework of computational models different to the one considered
here. In this respect, we contribute to the area of type-based approaches to security
by presenting type and effect systems which incorporate a machinery for tracing the
flow of values in a distributed setting where functions are the essential elements of
computation.
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1.3 Overview of the thesis

Chaptefl introduces the characteristics of mobile computation and functional compu-
tation. It argues that integrating these two paradigms can offer solutions to the prob-
lems which have proved to be challenging in the context of mobile computation. The
useful role which can be played by type and effect systems is discussed.

Chapter[R gives an overview of the process calculi which provide formal models
of distributed and mobile computation. This is followed by a closer look at the pro-
gramming languages Concurrent ML, Facile and PLAN (Programming Language for
Active Networks). These languages point to a consistent effort to benefit from the fun-
damental ideas behind ML in designing and implementing languages for concurrent
and distributed computation.

ChapterB focuses on a language similar to Facile where values of all types, in-
cluding functions and communication channels, can be transmitted between remote
sites. The problem investigated in this chapter is the static estimation of functions
and channels which may become mobile at run-time. A static analysis such as the one
considered in this chapter would be a useful asset for compilers in dealing with the het-
erogeneity of the network nodes, detecting the locality of certain values and providing
static profiling tools.

Chaptef 4 focuses on the language PLAN. The form of support for code mobility
in PLAN is different from that of Facile. It is based on a remote evaluation facility for
functions. The design of PLAN has been influenced by the need to meet the strong
safety and security requirements of active networks; especially by the need to protect
against denial of service. The subject of this chapter is distributed call-tracking by
means of a type and effect system in the framework of a PLAN-like language. It is
argued that for an applicative language distributed call-tracking can provide the basis
for static estimation of resource consumption.

Chapterf b shifts the focus back to a language which resembles Facile. Some dis-
tributed systems are characterized by their heterogeneity in terms of the nature of the
computing devices, security requirements of the information flowing in the system and
the trust level of the users. Programmers who provide code for such systems would
find it useful to have a language mechanism which enables them to confine the flow
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of certain values to a particular part of the system — a mobility region. This chapter
discusses how a static type system can be used to enforce confinement in a specified
mobility region.

Chapterp revisits the language of Chajpter 3 and introduces a variant of it where the
values of the language are classified with respect to their confidentiality level. As in
Chaptelpb, it is assumed that users which interact with the system may not be equally
trustworthy. The sources of undesirable information flows are identified and a secure
information flow property based on noninterference is introduced. Programs which are
accepted by the proposed type and effect system for the language are shown to enjoy
this property.

Chapterf]7 includes a summary of the thesis which clarifies contributions made to
the research areas of functional and mobile code languages, annotated type and effect
systems and the language-based approach to security.



Chapter 2
Towards Mobile Functions

The major sources of inspiration for our subject come from the research areas of func-
tional programming and foundational models of mobile computation. The aim of this
chapter is to give an overview of the existing works in these areas which provide the
background to this thesis.

The idea of integrating the functional programming paradigm with other paradigms
is not new. It has already given rise to the design and implementation of several
languages. The language Standard ML (SML)_IMTHM97] constitutes a good ex-
ample for the systematic integration of functional and imperative features. Concur-
rent ML [Rep92] and Concurrent Haskeli [IGF96] are examples for concurrent func-
tional languages; they extend the languages ML and Haskell with a concurrent pro-
gramming model. Functional languages which support distributed programming in-
clude general-purpose languages such as Facile fT9BKna95], Erlangl[AWWRS3],
the Join-calculus language [EM97], Poly/ML_[Mat97] and MobileMI_[HY00], and
domain-specific languages such as the Programming Language for Active Networks
(PLAN) [HKM T98]. Although the motivations and the intended application domains
for these languages vary, they all share the common goal of exploiting the strengths of
the functional paradigm within their application domains.

In this chapter, we take a closer look at the three of the descendants of Standard
ML, namely Concurrent ML, Facile and PLAN. These languages point to a consistent
effort in the functional language community to benefit from the fundamental ideas
behind ML in designing and implementing languages for concurrent and distributed

6
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computation. There is a large body of theoretical work on these languages. Our aim
is to contribute to this body of work by investigating how principled language design,
and static type systems can help to deal with the challenges of mobile computation.
This chapter also presents a survey of the most frequently cited process calculi in
the foundational study of mobile computation. The developments in the process calculi
framework, particularly those which involve static type systems, are of interest to our
work. This is mainly because they provide abstract and clear formulations of many
interesting problems which can be dealt with using an approach based on types.

2.1 Concurrent and distributed computation

This section introduces some basic concepts and programming language design issues
related to computation in large-scale distributed networks. We focus on the set of
programming language design issues which we consider to be most relevant to our
work. The discussion on each programming language issue is followed by a survey of
the related foundational models. This section also provides a guide to the terminology
used throughout the thesis.

2.1.1 Concurrency

Concurrent computation is the form of computation which consists of independent
threads of control. In the presence of multiple processors, decomposing computation
into independent threads of control allows different parts of a single task to be executed
in parallel. This does not, however, mean that the use of concurrency is limited to sys-
tems with multiple processors. In the case of a single processor, concurrency can serve
as a useful conceptual tool for structuring computation into independently executable
parts whose computational steps can be interleaved. Many interactive applications uti-
lize this style of concurrency. We should also note that concurrency arises naturally in
the case of distributed computation. The different nodes of a network can be used to
carry out different tasks in parallel.
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Processes and communication We refer to the threads of control which comprise a
concurrent computation ggocessesln general, we use the term “process” in a rather
abstract sense as it is used in foundational models of concurrency and higher-level
concurrent programming languages. However, if one considers their implementation,
it would be appropriate to regard them as lightweight threads. For example, several
processes of a concurrent programming language can be implemented within a single
heavyweight operating system process.

A significant design issue for concurrent programming languages is the specifica-
tion and creation of processes. A language can require the set of processes to be fixed
statically or it can provide a feature to enable their dynamic creation.

A large class of applications which benefit from concurrency requires a means
for communicatiorandsynchronizatiorbetween processes to facilitate data exchange
and coordination. Shared-memory languages use a mutable shared state to implement
process communication and provide mechanisms such as semaphores and monitors to
prevent processes from interfering with each other. On the other hand, distributed-
memory languages use message-passing primitives and provide a unified mechanism
for communication and synchronization.

The scheme adopted for naming the end points of communication and the degree
of synchronization are among the most important issues which characterize message-
passing primitives. Throughout the thesis, we use the symehronougo describe
the form of communication where the sender of a message blocks until the message
is received. The form of communication where the sender can continue its execution
after sending the message is caldsynchronous

Calculi for concurrency Seminal formalisms of concurrency such as CSP_[Hoa85]
and CCS [[Miil89] consider static connectivity between processes. They provide an
abstract model of computation where the basic resources are communication channels
and the basic computation is carried out by matching input/output actions on these
channels. Processes are constructed from basic actions by using combinators such as
those for sequencing, parallel composition and choice.

The t-calculus [MPW9?] followed these formalisms by offering a richer model.
This rich model relies on the basic notion of naming and communication of these



Chapter 2. Towards Mobile Functions 9

names between processes. Names can be understood as names of communication
channels. In thetcalculus one can express the dynamic creation of a new name with

a given scope. The fact that processes can exchange names facilitates the expression
of dynamic changes in the interaction capabilities of a process with its environment.
This is one of the senses in which the term “mobility” is used in the literaturertthe
calculus is often described as a calculus for mobility. Tealculus is a candidate for

being the canonical calculus for concurrent computation with its expressive power and
relatively tractable semantic theory. Since its first presentation several variants of the
1-calculus have been proposed suchlfas [HT91, $&n92, Bou97] and their behavioural
properties have been investigated.

2.1.2 Distribution and mobility

The physical distribution of processes among different nodes of a network opens the
way for network-wide sharing of processing power and other computational resources.
Well-designed systems can exploit distributed computing facilities to improve effi-
ciency. Some applications such as those for distributed information retrieval or telecon-
ferencing are distributed by nature. These types of applications can be accommodated
only if computation can be distributed across the system. Distribution is also essential
in providing reliable and fault-tolerant services.

The issues concerning concurrency are applicable to distributed systems with the
additional complexity of taking into consideration the different physical sites of com-
putation. For example, communication between remote sites is vulnerable to link and
network failures. Moreover, the nodes of a distributed system may be heterogeneous
and exchanging data between these nodes may consequently require supptat-for
operability.

The distribution of processes among different physical locations maekabkty an
important notion to be addressed by language designers. The traditional approach to
distributed computing focuses on hiding the presence of different localities and pro-
viding a uniform computational environment for programs. This implies that support
for transparencys a design goal for distributed programming languages.
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Mobility  In recent years many researchers have highlighted the need to revise the
basic assumptions about distributed computing. Location transparency is one of the
principles which is being questioned. Some researchers argue that this principle sets
an obstacle to exploiting the computational infrastructure made available by the recent
technological developments. Languages which enable programmers to have control
over themobility of code are accepted by many as better suited for computation in
modern large-scale networks than languages which do not provide this control.

In designing a language which supports mobility, a crucial issue is to determine
what should be allowed to be mobile. The design decision on this issue has a significant
influence on the expressiveness of the language and on more practical aspects such
as the feasibility of implementation. A comprehensive survey of different forms of
mobility can be found in[[EPV98]. According to the classification which is presented
there, the form of code mobility which involves no migration of execution state is
calledweak mobility The form of mobility which supports the transfer of both code
and execution state is referred tosiong mobility

Data space management is another issue which needs to be resolved by language
designers. When a computational unit moves to a new computational environment,
the set of bindings to resources accessible by it must be rearranged. The method of
achieving this depends on the nature of the resources involved and the type of binding
to these resources. A survey of approaches to data space management can be found in
[EPV98]. A similar survey has been conductedinISY97].

Calculi for distributed computation In SectionZ.1]1 we introduced some of the cal-
culi for concurrency. The main topic of interest for those calculi is provide a simple
and general model for studying the behaviour of concurrent systems by using algebraic
methods. A topic not addressed is the physical distribution of processes among differ-
ent sites of computation. In order to address the issue of physical distribution, many
authors have adopted the approach of basing their work on a varianticleulus.

In this way, they exploit the basic powerful notions of tliealculus. Another ad-
vantage of this approach is that it gives the opportunity to relate the theoretical results
obtained by different studies in the common framework of h&alculus. The sur-

vey paper by Hennessy includes a comparison of several location caiculi jHen98]. We
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include below a brief introduction to some of these calculi to note the state-of-the-art
in this field. See also the paper by Castellani [Cas01] for a discussion on enriching
process calculi with localities and its semantic implications.

15: A line of work on a distributed variant of the-calculus was initiated by the pre-
sentation of thag-calculus by Amadio and Prasad [AP94]. This work focused on the
notions of locality and failure for the programming language Facilery Arogram
consists of a number of processes running on one or more locations where the num-
ber of locations can dynamically change due to the generation or failure of new nodes.
Processes can move between different nodes. The calculus makes clear the dependence
of channels and processes on the nodes where they reside. The authors take the view
that the distribution of processes can be perceived by the absence of certain commu-
nication capabilities due to failures. Theg-calculus [Ama00] which is derived from
theTg-calculus offers a model of asynchronously communicating distributed processes
where every channel name is associated with a unique process.

Drt The language D presented by Hennessy and Riely [HR98b] is a distributed vari-

ant of thertrcalculus. It is different from theg-calculus and its extensions in two
major respects. It ignores location failures and requires communication to be local.
By local we mean that two processes can communicate on a channel only if both of
the processes and the channel are co-located. According to the classification presented
in [Hen98] Drt can express the global migration of passive code. A calculus of dis-
tributed higher-order processes which is related tohas been presented in TYH99].

In this calculus parameterized processes as well as basic values can be transferred be-
tween distinct locations. However, the distributed fragment of this calculus, is not as
expressive as @ This is mainly because locations do not have the first-class status as
they do in Dt

Join-Calculus: The original work on the join-calculus of Fournet and Gonthier [EG96,

practice of concurrent computation in distributed systems. According to the authors,
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the existing calculi provided elegant theories but they overlooked implementation is-
sues. On the other hand, the large set of constructs found in programming languages
for building concurrent distributed applications constituted an obstacle to their the-
oretical investigation. The design of the join-calculus was an attempt to provide a
simple formal model of concurrent, distributed computation which could also be used
as the foundation for a practical programming language suitable for computation in
modern networks. The join-calculus can be regarded as an asynchronous variant of
thetecalculus where scope restriction, reception and replication is merged in a single
construct calledlefinition

The development of the Distributed join-calculus had several stages. The concep-
tual model [EG96] was obtained by an extension of the generic model of the chem-
ical abstract machineé_ [BG92]. In a later work the join-calculus was extended with
explicit locations and primitives for mobilityt [FGMR96]. The resulting Distributed
join-calculus allows the expression of mobile agents moving between different phys-
ical sites. It supports the global migration of active code. This corresponds to strong
mobility in our terminology. A location resides on a physical site and contains a group
of processes. It can also be moved to another site taking all of its sub-locations with it.
Join locations can be organized into a tree structure. This feature of the join-calculus
offers a simple model of failure. An experimental high-level language based on the
calculus with the same name has been implemented in Objective CAML [Ler97]. The
join-calculus has also led to the implementation of the JoCaml system which extends
Objective CAML with the distributed programming model of the join-calculus.

Distributed tcalculus: Distributedtecalculus of Sewell[Sew98] combines the lo-
cation and migration primitives from the Distributed join-calculus with asynchronous
communication in thetrcalculus style.

Nomadic tecalculi: In [PSP98] Sewell, Wojciechowski and Pierce study language
primitives for communication between mobile agents. In particular, they focus on
the need to draw a distinction between location independent and location dependent
primitives. The authors introduce the language Nomadic Pict. This language allows
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infrastructure algorithms to be expressed by means of translations from a high level
which uses location independent primitives to a lower level in which communication
with an agent requires its location to be known. The semantics of Nomadic Pict has
been formally studied by Unyapoth in JUny01].

Ambient Calculus: The Ambient Calculus of Cardelli and Gorddn [C(G98, Car99] is
a process calculus which is different in spirit to tirealculus model of computation.
It focuses on process mobility rather than process communication.

The abstraction of ambient is what gives the calculus its distinctive character. An
ambientis a named location which may contain local processes and subambients. It can
move as a unit in to or out of other ambients. The Ambient calculus can be considered
as supporting local migration of active code [HEN98].

Ambients can model the existence of different administrative domains in large-
scale networks. The ability of processes to cross the barriers between these domains
can be expressed by the capabilities associated with the processes.

Seal @) Calculus: Theo-calculus of Vitek and Castagna [CV99] shares goals with the
Ambient Calculus. It extends thecalculus with location mobility and resource access
control. Security issues have been emphasized in the design @fdhaleulus to allow
context-independent proofs of security. The authors describe their aim as providing a
model for secure distributed applications over large-scale open networks such as the
Internet.

Seals are named, hierarchically-structured locations. A seal can contain a hierarchy
of subseals. Communication occurs synchronously over the channels and is restricted
to be either local or neighbourly. Seals may be moved over channels, this makes the
Seal-calculus a higher-order calculus. The mobility of a seal is under the control of
its environment. There are mechanisms to control the propagation of the names of
channels in order to control external access to local resources. The noportaifis
proposed as the key mechanism to control inter-seal reactions.
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2.1.3 Safety and security

A major motivation for mobile computation is to make better use of the global com-
putation infrastructure by facilitating the sharing of its resources among mobile com-
putational entities. In order to bring about the desired advantages of mobile compu-
tation, safety and security must be taken into consideration with particular emphasis.
In general, safety aims at the prevention of unintended behaviour of programs and is a
precondition for security. Security is concerned with a wider range of issues such as
secrecy and integrity of the information which flow within a system and the prevention
of malicious attacks.

Programming languages may benefit from a wide range of mechanisms to improve
the safety and security of systems. Exploiting language-theoretic techniques is one
of the approaches adopted by researchers and this is also the one in which we are
interested. This approach focuses on principled language design where support for
security is included as one of the design goals. The major challenges faced by the
designers of such languages are identifying what is considered to be harmful behaviour
for programs and devising mechanisms for restricting the execution of programs which
are potentially harmful. Type systems appear to be useful in this context. Languages
may choose to use static typing, dynamic typing or a combination of the two.

It is important to note that the mobile computation paradigm poses challenges to
safety and security of systems which are hard to handle by language-based techniques
alone. Incorporating mechanisms based on cryptography can become a necessity.

Security and process calculi In the previous sections we introduced a representa-
tive set of process calculi which appear to drive much of the foundational research on
mobile computation. Security is a significant topic of interest in mobile computation.
Therefore, it is being widely studied within the framework of these process calculi.
We will focus here on the most recent works which propose type systems to enforce
certain behavioural properties concerning security.

Tecalculus: A pioneering work on the use of types for enforcing secure information
flow is due to Abadi[Aba99]. In this work a notion of behavioural equivalence called
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testing equivalence is used to formulate a secrecy property for the spi-calcuius [AG99]
processes. The spi-calculus is an extension ofthalculus with cryptographic prim-
itives. Itis suitable for describing and analyzing security protocols. Secret information
can be manipulated by the encryption and decryption primitives throughout the com-
putation. The role of the type system is to check statically whether a process has the
desired secrecy property. Well-typed processes cannot leak secret information to the
environment.

Hennessy and Riely have studied a type system for an asynchronous variant of the
T-calculus [HROO] where specific security levels are assigned to input/output capabili-
ties and processes. The type system guarantees that a process cannot access resources
of a higher security level than that of itself. Additionally, in a well-typed system the
behaviour of low-level processes cannot be affected by changes to the high-level be-
haviour. To define this formally they use an appropriate notion of testing equivalence.

A recent work by Honda, Vasconcelos and Yoshida THVYO0O] presents a sophisti-
cated type system for another variant of thealculus. They use input/output types an-
notated with security levels. Their motivation is to provide a foundational calculus into
which typed programming languages can be embedded. This allows the behavioural
analysis of higher-level programs with respect to secure information flow.

Another work on a security type system for tiiealculus is by Cardelli, Ghelliand
Gordon [CGGOO]. A primitive is added to thecalculus for dynamic group creation
with a given scope. The type system guarantees that channels created within the scope
of a particular group cannot be leaked to processes outside the initial scope of the

group.

Dt Thelanguage has played a central role in the study of type systems for mobile
code security. In[[HR98b] Hennessy and Riely propose a static type systenttfor D
where location types are used to express the capabilities which mobile code has at a
particular location. The type system guarantees that mobile code can access a resource
only if it has the required capabilities. The same authors focus on security issues for
open systems in[HRY98C, HR99]. For such systems, one cannot rely on type-checking
the whole system statically. The authors investigate partially-typed semanticstfor D
and propose a mixture of static and dynamic type-checking. Mobile code which comes
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from an unknown or an untrusted source is subjected to some dynamic checks.

Join-Calculus: A polymorphic typing discipline akin to the Damas-Milner typing
discipline of ML has been developed for the join-calculus [FLMR97]. Although the
join-calculus provides the framework for investigating distributed systems security in

type systems for this purpose.

Ambient Calculus:  There are a large number of type systems proposed for the Am-
bient calculus which deal with different aspects of security in the computational model
induced by mobile ambient5s [CG99, CGGBYh, CG(GY9a, 1.S00, BCO1]. The type sys-
tem of [CGY9] is designed to prevent runtime errors caused by the incompatibility of
the types of exchanged messages. The type system of [CGG99b] distinguishes be-
tween mobile and immobile values. The work presented in [CGIG99a] extends the
Ambient calculus with a group creation primitive. This type system can exploit groups
to identify the set of ambients that a process may cross or open.

Levi and Sangiorgi study the possible forms of interference between mobile ambi-
ents and their impact on security in_[I'S00]. A new calculus called Mobile Safe Am-
bients is introduced. This calculus imposes restrictions on the interactions of ambients
to prevent undesirable interferences. Bugliesi and Castagna build on this work and
introduce Secure Safe Ambienfs[BCO01]. Their type system can express behavioural
invariants for mobile ambients. It allows the detection of security threats posed by
hostile ambients which exploit implicit acquisition of capabilities to access sensitive
resources. The authors also discuss how their work relates to the security architecture
of the Java Virtual Machine LY97].
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2.2 ML with concurrency and distribution

2.2.1 Concurrent ML

Concurrent ML (CML) is a programming language, developed by John Réppy [Rep92].

It integrates high-level abstraction mechanisms with concurrency primitives. The suc-
cessful exploitation of procedural abstraction and data abstraction has been a break-
through in sequential programming. In his introduction to CML Reppy draws atten-
tion to this fact. At the time when CML was designed, the practice of concurrent
programming had mainly been based on low-level systems programming languages
which provided abstractions of hardware. The work of Reppy on CML was driven by
the aim of facilitating programmer-defined abstractions for concurrent programming.
His work evolved around the questidWhat is the right notion of abstraction for
concurrent programming”?

Higher-order concurrency The sequential fragment of CML is inherited directly
from Standard ML. Support for dynamic process creation and interprocess communi-
cation are two of the essential extensions to this sequential fragment. Reppy claims that
shared-memory communication is ill-suited for an ML-based language because it relies
on mutable state and leads to an imperative programming style. He argues in favour of
message-passing communication by stating that it provides a level of abstraction which
is in keeping with the basic design philosophy of CML. CML processes communicate
on dynamically-created channels and the communication is synchronous. Reppy jus-
tifies his choice for synchronous communication by explaining that reasoning about
protocols is easier in the case of synchronous communication.

The key underlying idea of CML is to separate the operation of synchronization
from the mechanism for describing synchronization and communication protocols.
CML introduces a new abstract type of values cadlgdnt Events represent potential
communication and synchronization actions. These abstracted actions are performed
only when they are synchronized upon.

By the introduction of theeventdatatype synchronous operations are elevated to
being first-class values. One can draw an analogy between synchronous operations



Chapter 2. Towards Mobile Functions 18

Property Function Values | Event Values

Type constructor — event

Introduction A-abstraction recvEvt, sendEwt, ...
Elimination application sync

Combinators o, map, ... choose, wrap, ...

Figure 2.1: Functions and Events

and functions; an event being analogous to a function abstraction and synchroniza-
tion being analogous to function application. CML also provides combinators for the
construction of more complex events from simpler ones (see Figure 2.1).

Reppy uses the termigher-order concurrent programminigr the style of con-
current programming promoted by CML. This style is characterised by the ability to
express a wide range of concurrency paradigms by using events and a small set of
primitives and combinators.

An overview of common CML operations is given in Figure]2.2. The combina-
torsguard andwrap create events from pre-synchronization and post-synchronization
actions respectively. The functidnn guard f represents a suspended function whose
evaluation is forced upon synchronization on the guard event. Its result is used in the
synchronization. The evert in wrap(ev,f) is wrapped with the functioh When the
wrap event is synchronized on, the functiois applied to the synchronization result
of eventev. It should be relatively obvious what the rest of the operations do.

Generalized selective communication Reppy takes the view that support for gen-
eralized selective communication is essential for a concurrent programming language.
He points out the limitation imposed by the notion of selective communication of
CSP [Hoa85] in which only input guards are allowed. He attempts to generalize this
notion so that both input and output operations are allowed as guards.

The interplay between abstraction and generalized selective communication has
been a key issue influencing the design of CML. The examplésin[Rep92]and [Rep99]
may convince the reader that the new abstraction mechasnts indeed indispens-
able for a realistic integration of abstraction with selective communication. It hides the
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type thread.id
type ’achan

type ’aevent

val spawn: (unit — unit) — thread_id

val channel: unit — 'a chan

val recv:’achan —'a

val send: ('a chan x 'a) — unit
val recvEvt: 'a chan — ’a event

val sendEvt: ("a chan * 'a) — unit event

val guard: (unit — 'a event) — 'a event
val wrap: ('a event x ('a — 'b)) — 'b event

val choose: 'a event list — 'a event

val sync:’aevent — 'a

val select: 'a event list — 'a

Figure 2.2: Overview of CML operations

details of the communication protocols while allowing the expression and implemen-
tation of selective communication.

Mobility CML is a concurrent programming language and support for distributed
programming is hot among its design goals. Naturally, we cannot talk of mobile com-
putation in the sense in which it is used throughout this thesis. However, values of
CML which include channels and functions do move between processes and the com-
munication topology evolves dynamically. We can use the term mobility in the sense
in which it is used for thew-calculus. One can view CML channels and teed and

recv operations as providing an implementation of a typed version ofdbalculus.

The key difference is that in the-calculus one can send free channel names along
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channels whereas in CML a channel has to be created in some scope before being sent.
CML bears an even closer resemblance to the higher-order extensionswefdhmilus
whereA-calculus terms are allowed to be exchanged over channels.

Safety and security =~ CML adopts static typing to enforce type safety in the style

of Standard ML. The polymorphic type system of ML has been adapted to support
polymorphism of channels. In his thesis Reppy presents a type safety property for a
subset of CML which includes the essential concurrency extensions such as channels
and events.

Formal foundations A formal mathematical model was not one of the design goals
of CML. The main motivation was to produce a realistic language to be used in
large-scale computer programming. However, the algebra of events was observed
to have some properties which makes it interesting from a mathematical point of
view. Alan Jeffrey has investigated the categorical structure of CML and its deno-
tational semantics_.Jef96]. Some other authors have worked on the semantic foun-
dations of CML using the frameworks of action semantics [MM94] and process cal-
culi [EHJ96,LJR00]. CML has also been extensively studied within the field of static
analysis [NNY6b, NN95, NN94, GFHO7, B[197].

In his thesis Reppy also presents an operational semantics for a small ladguage
which models the concurrency features of CML. The type safety result mentioned
above has been obtained with respect to the semanticg.0A revised version of this
semantics appears in [Rep99].

Comments The emphasis in the design of CML is on combining programmer-defined
abstractions for concurrency and generalized selective communication. A fully-developed
functional mobile code language would benefit from the kind of support provided by
CML for concurrent programming. However, the emphasis of our work is not on pro-
gramming convenience. The influence of CML on our work is due to the following list

of conclusions we have drawn.

¢ In a language where concurrently executing processes can communicate by ex-
changing values, giving first-class status to functions and channels increases the



Chapter 2. Towards Mobile Functions 21

expressive power of the language.

e Synchronous message-passing communication over typed channels is well-suited
for a concurrent programming language based on ML.

e The principle of strong typing can be adapted to concurrent programming.

e Existing implementations of ML such as SML/N.JJAM91] can be exploited in
implementing languages which support concurrent programming.

2.2.2 Facile

Facile [TLP"93] is a language which aims to encompass functional, imperative, con-
current, and distributed programming paradigms in a single programming language.
The original work on Facile focused on the formal foundations of the functional,
concurrent language integration and on abstract implementation madels [GMP89].
This work was influenced by the work on process calculi such as CCS [Mil89] and
CHOCS [Tha89]. It was investigated further by Knabe to support the mobile compu-
tation paradigm[Kna95].

Integration of paradigms A major principle in the design of Facile is the symmetric
integration of different programming paradigms so that every paradigm can use any
other paradigm as a subcomponent for its expression. For example, a function may be
implemented as a system of communicating processes and the internals of a process
may be implemented using functions.

The designers of Facile emphasize the importance of simplicity and coherence of
concepts and language constructs. The number of concepts and constructs must be
relatively few. They must be easy to understand and their meaning must not be too
sensitive to their context. Except for a few which involve behaviours most of the
language constructs can be expressed in the spirit ohtb&lculus using function
application and values.

Facile adopts the principle of uniform treatment of values from Standard ML. All
values are treated equally. For example, scripts, channels, guards, nodes and libraries
are all first class values. This principle enables Facile to inherit many of the benefits of
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proc fib_server(a,b) = let fun fib(i)= if i=0)or (i=1)then 1
else fib(i-1) + fib(i-2)
in b ! (fib(a?))
end;

terminate

Figure 2.3: Processes use functions

Standard ML as well as facilitating the implementation of applications which require
dynamic connectivity.

Concurrency  Facile’s model of computation depends on multiple concurrently exe-
cuting processes. Processes can be created dynamically and they execute by evaluat-
ing expressions. The behaviour of a process is syntactically described by a behaviour
expression. The simplest behaviour expressiaerisinate which denotes a dead pro-
cess. The other basic form of behaviour expressiantigate exp whereexp evaluates

to a process script. A script can be thought of as the code executed by a process. The
language provides construcssript andactivate for converting a behaviour expression

into a script and vice versa. Behaviour expressions also include parallel composition
of behaviour expressions and nondeterministic choice. Processes communicate over
synchronous channels. Any value which can be defined in the language can also be
communicated over channels.

We choose to give an overview of Facile by means of an example. The basic oper-
ations are similar to those of CML except for the characteristic event synchronization
mechanism described in Sectipn 2.2.1. Figures 2.3 gn@d 2.4 show different imple-
mentations of the same function illustrating the fact that Facile can support different
programming approaches.

Distribution and mobility To address the locality of processes the notionazfehas

been introduced. A Facile system can be viewed as a collection of nodes each of which
host a number of processes. A node corresponds to a virtual processor with an address
space. Nodes can be created dynamically and may reside on different computers in a
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proc fib_server(a,b) =
let fun fib(i)= if i=0) or (i=1)then 1
else
let val (inl,outl) = (channel(int), channel(int));
val (in2,out2) = (channel(int), channel(int));
in
spawn(outl ! (fib(inl ?)); terminate);
spawn(out2 ! (fib(in2 ?)); terminate);
(in1! (i-1));
(in2! (i-2));
((outl ?) + (out2 ?))
end
in b! (fib(a?))
end;
terminate

Figure 2.4: Functions use processes

network. The language also provides the construstsawn andr_channel to create
processes and channels at specific nodes.

Since the implementation of the choice operator of CCS leads to problems in a real
distributed setting, Facile adopts a different version of the choice operator which is
discussed in detail in JGMP89]. Facile also provides some general constructs to im-
plement delay and time-out mechanisms to circumvent the problems posed by blocked
communications.

The fact that functions are first-class values means that we can create functions
at runtime, apply them to arguments, pass them to other functions as arguments and
receive them as results. We can also transmit them over communication channels. All
of these properties imply that mobile agents have a natural representation as functions
in Facile.

However, there are other requirements for Facile to be generally accepted as a mo-
bile computation language for the global computing platform. One such requirement



Chapter 2. Towards Mobile Functions 24

is the ability to deal with heterogeneity of network nodes. Different nodes may be
of different architectures and therefore support different value representations. Knabe
has demonstrated different approaches for dealing with this issue and implemented a
language which can be classified as a weakly mobile langiiage [Kna95]. This language
combines strong typing, remote resource access and independent compilation which
are desirable properties for a language for mobile computation.

Safety and security  Facile adopts static typing in the style of ML. The original
definition of Facile presents a monomorphic type system for Facile. The authors have
also presented a polymorphic type and effect system for a subset of Facile along with
a type inference algorithm.ITho94].

Formal foundations A clean and well-understood semantics has been the main mo-
tivation from the very early days of Facile. This has led to a number of works on the
formal foundations of Facile such as [GMP&9, TT95, AP94]. It continues to be of
interest to researchers of process calculi.

Comments  Our study of the language Facile reinforces the ideas we formed as a
result of our study of CML. We focus on Facile more closely in our work because

it supports distributed computation. It is also the case that language support for mo-
bile computation has previously been investigated within the framework of the Facile
project. However, this work has an emphasis on practical issues, whereas our work has
a more theoretical slant. Moreover, we are not constrained by any specific language
infrastructure to build upon.

2.2.3 Packet Language for Active Networks

Packet Language for Active Networks (PLAN) [HKME] is a domain-specific, sim-

ple functional language for programs which form the packets of an active network. It
is based on a subset of ML with some primitives to express remote evaluation. PLAN
is being developed at the University of Pennsylvania as a part of the SwitchWare
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project [AAHT99] which is one of the prominent projects within the area of active
network research [TSR7].

Active Networks  The concept of active networking has been motivated by the de-
sire to bring programmability to networks. Active networks amtivein the sense

that switches perform customized computations on the packets flowing through them.
This can be contrasted with the approach adopted in traditional networks. In these net-
works the nodes transport data passively; computation is limited to header processing
for packet-switching networks and signalling for connection-oriented networks. The
principal advantages of active networking are to be seen in the enabling of adaptive
protocols, implementation of application-specific functions at strategic points within
the network and the deployment of new services at a faster pace Pli$S

The SwitchWare project explores how to make the network programmable by al-
lowing switches to be dynamically extended with new services and by allowing packets
themselves to be programs. The idea of packets as programs is being explored through
the design and implementation of the PLAN language.

The SwitchWare architecture is based on three layers. The top layer consists of ac-
tive packets which are mobile entities containing both code and data which replace the
header and payload of conventional packets. The middle layer consists of extensions
which may be dynamically loaded or which can be part of the basic functionality of a
switch. The lowest layer is static and provides a secure foundation for the layers above
itself.

The active packet layer is intended for high-level control while the complex func-
tionality resides in the services which are provided by the middle layer. Thus PLAN
was designed to support lightweight programmability for packets while also providing
a scripting language for general services which may employ heavyweight computa-
tions. The most recent implementation of PLAN has been carried out in Objective
CAML [Ler97].

Concurrency and distribution As a language designed specifically for active net-
works, PLAN supports concurrent and distributed execution of programs carried in
active packets. It is a purely functional language and its packets do not communi-
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cate with each other. This ensures noninterference among concurrently executing pro-
grams. Service layer extensions may be written in other general-purpose languages.
This can introduce possibilities for communication.

A PLAN application consists of a series of PLAN packets which comprise a task.
A host application constructs a PLAN packet and injects it into the active network
through a port connected to the local PLAN interpreter.

Packets: A PLAN packet encapsulatescaunk (code hunkand the fieldsevaluation
destination, resource bound, routing function naswurceandhandler.

Packet

chunk
evalDest| RB | routFun| source| handler

code | entry point| bindings

A chunk is composed of three components: PLAN code, a function name to serve
as an entry point and values to serve as bindings for the function’s arguments. Chunks
are first-class data values and their execution can be forced by the core sealice

The code consists of a series of definitions which bind names to functions, values
and exceptions where the names of the services available at the node of definition form
the initial bindings in the namespace. The arguments are evaluated locally in a call-by-
value fashion and the actual evaluation of the function call is delayed until the packet
arrives at its destination. The function call takes place in an environment where all top-
level bindings are available. This is the point where PLAN departs from the discipline
of static scoping which it adopts elsewhere.

The roles of the remaining fields of a packet are as follows. The routing function
serves to define how the packet will be transported from the current node to the evalu-
ation destination. The resource bound sets the limit on the number of hops the packet
or any of its descendants can make. This restricts the global network resource usage
of a PLAN application. The source field names the packet’s oldest ancestor and the
handler field provides the name of a service routine on the source which will handle
certain communication errors.
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Network Primitives: PLAN programs create new packets through calls to the network
primitives OnRemote andOnNeighbor. The callOnRemote(C,evalDest, Rb, routFun)
creates a new packet which will evaluate chanén nodeevalDest. As we have noted
above, the bindings of the chunk are determined locally while the function applica-
tion is evaluated remotely. The argumeRtsandroutFun correspond respectively to

the resource bound and the routing function name fields of the created packet. Until it
reaches its evaluation destinati®, is decremented by one at each hop and the packet
is terminated if the resource bound is exhausted. The network prin@tixzighbor

is similar toOnRemote the difference being that the created packet must execute on a
neighbour of the current node.

Services:PLAN programs can call core services which are present on all active nodes
in the same way as they call locally-defined functions. Core services are guaranteed to
terminate. The serviceBisHost, getHostByName, getNeighbors, getRB, defaultRoute,

print are examples of core services presented in the Specification of FLAN [KHMG99]
to be provided as standard library functions. In addition to these, there are a number
of service packages which extend the functionality of PLAN programs. For example,
the service packagesident enables PLAN programs to leave data on the nodes they
visit to facilitate exploring the network topology. Note that service packages such as
these may create the possibility for unsafe operations and therefore PLAN may have
to impose certain safety and security requirements to permit their employment.

Mobility  In Section[2.2]3 we have introduced the execution model for PLAN pro-
grams in an active network. Mobility of PLAN packets and the remote evaluation of
chunks encapsulated in these packets is at the heart of the execution of PLAN pro-
grams. Given its domain-specific approach, it is not straightforward to compare PLAN
with general-purpose languages to classify the kind of mobility it supports. Neverthe-
less, we consider PLAN to be strongly mobile due to the fact that PLAN programs
are able to initiate their own evaluation at a remote site as well as taking with them a
collection of resources which they may need at that remote site.
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Safety and security ~ PLAN has a limited set of simple constructs for flow of control.

It supports statement sequencing, conditional execution, iteration over lists by fold-
ing, and exceptions in the style of ML. Recursive functions and unbounded iteration
are ruled out to ensure the termination of programs. Besides these limitations on its
expressiveness, we have also noted its resource-limited semantics. All of these restric-
tions are intended to enforce safety and security in a simple way. Indeed, pure PLAN
programs, which use core services only, can run with no need for authentication.

PLAN is strongly typed which implies that well-typed programs cannot go wrong.

It requires that programs are statically typeable but it also allows dynamic type check-
ing. A discussion about the relative merits of static and dynamic type checking for
PLAN can be found in[[KHMGY9].

The safety and security of pure PLAN programs can be ensured by the mechanisms
presented above. However, PLAN programs can also call service routines which are
written in general-purpose languages. This constitutes a potential threat to the safety
and security of the system. To make service calls safe the pure part of PLAN has been
complemented with a system of trust management [HK99]. According to this system,
each node administrator creates a policy which restricts the use of unsafe services to
selected users through a process of authorization. Packets are then required to authen-
ticate themselves before accessing the privileged services. The technique employed by
PLAN is callednamespace-based security is based on expanding or contracting a
packet’s service environment depending on its level of privilege.

Controlling access to resources is an important part of providing security within
a multi-user system. However, it is usually not sufficient to control the flow of in-
formation within the system. A line of research on the PLAN language focuses on
developing a theory of information flow for PLAN-like languages IKGAQO].

Formal Foundations ~ PLAN has recently been provided with a specification which
aims to define a mathematically precise operational semanfics [KHMG99]. It is in-
tended to set a standard for implementations and to support proofs of the key properties
of PLAN which all conformant implementations must obey.

The designers of PLAN have put emphasis on the language being sufficiently well
defined so that advances in type theory, programming language semantics and formal



Chapter 2. Towards Mobile Functions 29

methods can be exploited to address issues related to safety and security. It has the
A-calculus at its core and adopts many features of ML for its well-defined foundations.
Hence, itis possible to benefit from the existing work in programming language theory.

Comments A close look at PLAN makes one realize that the support for mobility in

a functional language need not depend on the mobility of values over channels as is
suggested by CML and Facile. Instead, a functional mobile code language can adopt
a variant of the remote evaluation model introduced by PLAN if it suits its intended
application domain. PLAN also draws our attention to the fact that in a system with
limited resources restricting the expressiveness of the language may be a useful method
for enforcing certain safety and security requirements.

2.2.4 Conclusions

Language CML Facile PLAN

Process Creation|| dynamic dynamic dynamic

message-passing | message-passing

Communication | first-class channels | fist-class channels| No

synchronous synchronous
Distribution No distinct localities| distinct localities | distinct localities
Mobility channel mobility weak code mobility strong code mobility
Static Typing v v v
Dynamic Typing || No No v

Figure 2.5: Summary

Figure[Z.b summarizes the approaches taken by different language designs with
respect to the issues which we have considered in detail throughout this section. Our
concise reading of this picture is as follows. All of the languages we have considered
support dynamic creation of concurrent computational units indicating that this is a
requirement to accommodate the dynamics of modern networks. Whether to support
communication or not remains an issue of choice depending on the targeted applica-
tion domain of the language. If communication between processes is supported at all,
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synchronous message-passing communication over channels is considered to be more
in accord with the philosophy of ML. Increasing demand for control over the mobility

of computations can be observed by inspecting the chronological order of the devel-
opments around these languages. We should also note that the difficulty of achieving
strong mobility without compromising safety or security is a commonly agreed fact.
Type systems are seen as useful tools for providing safety. The guarantees offered by
static typing seem to be attractive to all, however some languages may find flexibility
equally important and seek to reconcile the advantages of static and dynamic typing.

2.3 A Core language for mobile code

2.3.1 Aims and approach

So far in this chapter we have looked at the state-of-the art in the foundational studies
for mobile computation and the state-of-the art in ML-based language design for con-
current and distributed programming. The aim of the work presented in later chapters
IS neither to propose a new process calculus nor to design a fully-fledged functional
mobile code language. We base our work on a series of small functional languages
which are derived from those of the previous section. These languages serve as meta-
languages for investigating a range of problems, such as the estimation of mobile val-
ues in a Facile-like language and call-tracking analysis for a PLAN-like language by
using a type-based approach. The existing works on CML, Facile and PLAN have
served as a valuable departure point for this stream of work. We have also introduced
new research points for functional languages. Type systems for secure information
flow have not yet been studied as extensively in the framework of functional distributed
languages as in the frameworks of process calculi and imperative languages. Those
parts of this work which investigate secure information flow for mobile functions have
been motivated by this fact.

The meta-languages presented throughout the thesis can be considered as candi-
dates for typed intermediate languages to be used in modern type-preserving compil-
ers. This idea is rooted in the fact that some of the recent compilers for functional lan-
guages use higher-order typed intermediate languages which facilitate sophisticated
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type-based analyses [TM®6, [JLMY7,[Sha97]. The information obtained by these
analyses has so far proved to be useful in optimizations, and promoting the efficiency
of both data representation and garbage collection. In the context of mobile compu-
tation, the intermediate language level appears also to be a suitable level to deal with
security problems.

2.3.2 The Core Language

We now present a language — the Core — which corresponds to a common subset of
the sequential fragments of CML, Facile and PLAN. It is a simple extension of the
A-calculus and all of the languages which appear in the later chapters are derived from
it in one way or another. Figufe 2.6 gives the abstract syntax of this language.

We refer to thefree variablesof an expressioe asFV(e). Function abstractions
and let bindings are the only forms of expressions which bind variables. An abstraction
of the formfnx = e bindsx in e and a let expression of the forlet X = e; in & binds
xin ey;. Formally, FV(fnx = e) = FV(e) \ {x} andFV(letx = ejiney) = FV(e) U
(FV(e2) \ {x}). The definition ofFV extends to other forms of expressions in the obvi-
ous way; the set of the free variables of an expression is the union of the free variables
of its subexpressions. In this chapter and elsewhere in this thesis, we adopt the con-
vention that bound variables of an expression are different from the free ones and that
expressions which differ only in the names of their bound variables are identical. Note
that such expressions are caltegquivalent as one can be obtained from the other by
a-conversion. That is to say by a consistent renaming of its bound variables.

In the rest of the section we first determine a set of rules which govern the evalua-
tion of an expression. We then present a type system which is used to judge whether
an expression is well-formed according to a set of typing rules.

2.3.3 Evaluation rules

We adopt the structural approach to defining operational semanticsI[Plo91] where the
evaluation of an expression is defined in terms of the evaluation of its subexpressions.
Each sentence of the form— € defines one step in the evaluation so tHais the
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Constants c == () unit
| n integer
| true | false boolean
Expressions e = ¢ constant
| X variable
| fnx=e function abstraction
| ere function application
| if 1 then ey else @3 conditional
| letx=erine local binding
|ejope primitive operation

Figure 2.6: Abstract Syntax for the Core

result of the first step of evaluation ef A rule may be an axiom in the form of

a single sentence or an inference rule where the sentences above the bar represent
the hypotheses and the sentence below represents the conclusion. For simplicity, we

assume that the expressions are closed which means that they do not contain any free
variables.

Values v = ()| n]true|false | fnx=-e

The expressions which cannot be further evaluated are czdliednical expressions
The unit value, integers, booleans and function abstractions are canonical expressions
and denote the values of the Core.

Function application

e1—>e{1

@ 2%

(1) —
e —ege Ve —VE,

(3)  (fnx = e)v— efv/x}

The first two rules above indicate that the expressions are evaluated in left-to-right or-
der. The third rule shows that in order for evaluation to proceed the value of the first
expression must be a function closure. The notagiorix} denotes the substitution of
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valuev for variablex in expressiore, where the necessary renaming is assumed to have
taken place to avoid the capture of free variables. This rule also reveals the strict nature
of the language. The expression in the argument position is fully evaluated before it is
substituted for the formal parameter in the body of the function.

Conditional expression

0 i

if ejthen ) else @3 — if € then & else e3

(2) if truetheneyelsees — e, (3) if false then & else 63 — &3

The evaluation of a conditional starts by the evaluation of its first expression which we
refer to as the guard. The value of this expression determines which one of the two
alternative branches will be taken in the rest of the evaluation. If it is true the first
branch is taken and the value of the conditional expression is the value of expression
er. Otherwise, it is the evaluation e which yields the value of the conditional.

Local binding

) i

. : (2) letx=vine — e{v/x}
letx=ejine — letx=¢€ ine

These rules concern the evaluation of an expression with a local binding where the
scope of the variable is the expressior,. The first expression is evaluated first and
its result is substituted for within ;.

Primitive operation

—d —
= L (2) © % (3) viopw — v if v=viopvs
e ope — € ope vope —Vopé

(1)

The rules for primitive operators follow the same principle as those for function ap-
plication. The first expression is fully evaluated before the evaluation of the second
expression starts. When both of the expressions have evaluated to a value, the binary
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operation denoted bygp is applied to them to yield the final result. Note that we as-
sume thabp ranges over primitive operator symbols and that for each such symbol
there exists a corresponding primitive operation.

We have presented a particular way of defining operational semantics for the Core
which uses small-step transitions and direct substitution. We use the term small-step
transition here for the transition of an expression by a single step from one form to
another. It is important to note that there are a variety of choices as to how to define
operational semantics. For example, in some cases it may be technically more conve-
nient to use big-step transitions or to make use of explicit evaluation environments. The
term big-step transition is used for those transitions which involve multiple computa-
tional steps. In many cases different choices in formulations do not lead to a change
in the meaning of the language and different formulations of semantics can usually be
proved to be equivalent. The work by Nielson and Nielson provides useful insights
about this topicl[NN9Y8].

2.3.4 Type system

Type systems constitute an essential part of our work and we will be presenting a va-
riety of type systems which are designed to capture a variety of phenomena related
to mobile computation. We now present a simple monomorphic type system for the
Core. The aim of this type system is to show the role of types in classifying values of
the language and that type systems adopt a compositional approach to deriving a type
for an expression.

Types 1 = unit | int | bool | T1—T2

The types of the language consist of the unit type, the type of integers, booleans and
function types. The other semantic object of the type system is the type environment
I which is a finite map from variables to types.
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Type environment Moo= [Xe—T1...% — Tp)

The notation” [x — 1] is used to denote the environménéextended with the binding
of variablex to typet where the current binding ofis overwritten with the new one
if x already appears in the domain. The empty environment is writt€h as

A sentence of the fornii - e: T is referred to as a typing judgement. It means
that assuming type environmelnt expressiore is well-formed according to the type
system and has type

Constant () :unit FEn:int
[+ true : bool I - false : bool

The constants are the basic values of the Core and their types are the basic types.
Variable ME=x:T(X)

The type of a variable must be present in the type environment as a binding for the
variable.

. . Fx — 1jke: 7
Function abstraction

NrNfnx=e: 17

The type of a function abstraction is a composition of the type of its formal parameter
and the type of its body. It also important to note that the type of the body is derived
with respect to an environment where the binding for the formal argument is present.
The types on the left and right of the arrow are referred to as the argument type and the
result type respectively.

NlN-e: /=1 NFe:7
N-ee:t

Function application

This rule indicates that for an application to be well-formed according to the type sys-
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tem, the first expression must have a function type and its argument type must match
the type of the second expression.

M~e:bool Tre:1T TINkFes:t

Conditional expression
M- if eithenevelsees: t

The first expression of a conditional is required to be of boolean type. The two ex-
pressions which constitute the branches can be of any type so long as the types of both
expressions are identical. The type of the conditional is the same as the type of its
branches.

FFe:t Mx— 1kFe: T
Local binding & x—1re

M-letx=eriney: T

Two conditions are necessary for the entire let expression to be well-formed. Firstly,
the expression of the local declaration must be well-formed. Secondly, it must be pos-
sible to derive a type for the body of the expression in the environment extended with
the binding obtained from the declaration. The type of the body is also the type of the
entire expression.

NFep:t TFhe:1 op:(tx17)—T
e ope:T

Primitive operation

We assume that primitive operators have predefined types and that they operate on a
pair of values which have identical types. The result type, however may be different
from the types of the operands. For example, we regard the test for equality as a prim-
itive operation which tests whether a pair of integers are equal and returns a boolean
value as a result.

If we view an expression as a simple program to be executed, the evaluation and
typing rules define respectively the dynamic and static phases of its execution. In later
chapters, we will exploit extensions of this type system to make static predictions about
the dynamic behaviour of programs.



Chapter 3
Estimating Mobile Values

Mobile code languages facilitate the transmission of code between remote sites in a
system. A piece of code which is generated at one site can be transmitted for execution
at another site which exhibits characteristics different from its place of origin. This
poses implementation challenges for mobile code languages. For example, it becomes
necessary for compiler writers to consider the heterogeneity of network nodes when
generating code. By heterogeneity we mean that different nodes of a network may be
of different architectures and therefore support different value representations.

Another implementation challenge involves performance. Transmission of large
sizes of code and data may incur significant performance penalties for the system.
Minimizing the transmission overheads becomes an essential goal for implementors.

The ability to statically predict which values may be transmitted to a remote site
during the execution of a program can be useful in addressing these implementation
challenges. It facilitates code and space optimizations and the development of profiling
tools which can be used to tune performance.

It is the aim of this chapter to demonstrate how such predictions can be made by
using an approach which is based on type and effect systems. The implementation
of the Facile language by Knabe introduced in Chapter 2 provides the framework for
our discussion. We define a language which is a subset of the language Facile and
investigate in a formal setting the problem of estimating mobile values.

37
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3.1 Application areas

3.1.1 Compiler optimizations

It is argued by Knabe [Kna95] that the first-class nature of functions could prove to
be convenient for mobile computation if one could successfully deal with the hetero-
geneity of network nodes. A common method for dealing with heterogeneity is to
adopt a standard transmissible representation. Before transmission, each value is con-
verted into a standard representation determined by its type. This operation is called
marshalling Marshalling is a recursive process which decomposes a value until it ter-
minates with the conversion of primitive components such as integers and characters.
Upon receipt, the standard representation is converted into the representation appropri-
ate for the receiving machine in an operation calladharshalling In Facile and most
higher-order languages, a function is compiled into a function closure which contains
the code of the function together with the bindings from the definition environment of
the function. The primitive component of a closure in Facile is the machine code of the
function. Converting machine code to a standard representation is a difficult problem
and the remaining possibility of translating one native machine code into another one
at runtime is mostly impractical.

The fact that functions produced at runtime are just new closures containing old
code makes it possible to circumvent this impracticality. One can perform marshalling
and generate transmissible representations of code at compile-time and an increased
runtime performance can be obtained.

Generating the transmissible representation for each function and storing them,
however would be space inefficient. Different approaches to reduce the space cost
have been discussed by Knahe [Krna95]. The approach adopted by Facile is to per-
form compile-time marshalling only for those functions which have been explicitly
annotated by the programmer to be potentially transmissible. The identification of
potentially transmissible functions automatically without resorting to user annotations
has been stated as future work in the dissertation of Kriabe [Kna95]. The type system
presented in this chapter, which conservatively estimates mobile functions, proposes
a solution to this problem. Such an estimation also allows one to infer the locality
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of functions which are not detected to be mobile by the type system. Knowing that a
function is local the compiler can then generate code which is optimized for the local
machine.

3.1.2 Cost profiling

Another area where information with respect to mobile entities can be put to use is

providing a profile of a program to facilitate reasoning about its transmission overhead.
Many of the mobile computation languages adopt different mechanisms for value

transmission and data space management [HFV98, SY97]. Mechanisms of value trans-

mission are classified by Sekiguchi[SY97] as follows. Transmissiaopyindicates

that the value is copied to the data space of the receiver. Values are resiléentif

they always stay at the current place and are never moved to another place. Resident

values are referred to by remote references from the outside. Some valgesrere

to the destination and they are referred to by remote references from their previous

place.Propervalues never go out and can never be referred to from the outaée-

awayvalues belong to mobile entities, they go with them and can no longer be referred

to from their originating site Ubiquitousvalues are present in every location so they

do not incur any changes in the data space.

In Facile, the transmission of mobile functions occurs by copy whereas local func-
tions are proper values. There are also ubiquitous values. Bindings to these are created
dynamically. Data structures which implement channels reside on the node where they
were created and they do not move. According to the classification above, Facile chan-
nels are resident values; their transmission implies that the receiving node will need
to reference the node where the channel resides for any subsequent communication
on it. By channel transmission we mean transmitting the name of a channel. Syn-
chronous communication requires two processes to perform handshake by running a
request/propose/trasmit value protocol and the transmission of a value on a channel
corresponds to a value being copied from the environment of the sender to the envi-
ronment of the receiver once the handshake is established.

In this setting, one can expect the cost of computation to be dominated by the cost
of copying function closures between remote sites and running handshake protocols.
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An estimation of the functions which will be copied between remote sites and channels
which will be remotely referenced would be useful for estimating the overall cost of
computation statically. The type system presented in this chapter estimates both mobile
functions and mobile channels. It can provide the basis of a cost profiling tool for a
Facile-like language.

3.2 Potential mobility

In this section we describe informally what is meant in this chapter bythtential
mobility of functions and channels. We follow closely the criteria determined by Kn-
abe to guide programmers in identifying potentially mobile functions when using his
implementation of Facile. In the following section we will define formally a Facile-like
language called Mobila-and continue our investigation based on that language. For
the purposes of this section, it is sufficient to note that the language has the operators !
and ? which correspond to send and receive actions respectively.

3.2.1 Mobile functions

Any function which is passed directly as an argument to the send operator (!) should
be classified as potentially mobile by a static analysis. Itis clear that any such function
will be transmitted if the execution takes the path on which the send operator occurs.
We also know that whenever a functi@anmoves, it takes with it the functions con-
tained in its closure. Therefore, we can argue that a function which is referred to by a
mobile function and which is not defined within it is also mobile. The functions which
are defined within functiort are mobile only by virtue of being a part of its code.
Detecting the mobility of implies the mobility of functions nested within its body.

Example 3.1. The expression below defines two functiaghandg which are local to

an expression that send®ver a channethan. We assume thathan is present in the
environment and that functiohdoes not refer to any value defined outside its body.
Functionf is a part of the definition environment of functigrandg refers tof.
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let fun f x e

I
Hh

fun g x X ouu

in chan ! g

Wheng is sent to a remote site, will also be sent because it is a part of the closure

of g. Therefore, we considerto be mobile as well as. If this example was sufficient

to illustrate what gives rise to the mobility of functions, all the information needed for
automatic detection of mobile functions could be obtained by examining the definition
environment of a function which contains the bindings of its free identifiers. How-
ever, in the presence of higher-order functions one needs to go beyond the information
provided by the definition environment. The following examples illustrate this point.

Example 3.2. Let us consider a function defined as follows.
fun £fh= letfun gx=... hx ...
in

chan ! g

It is obvious that the functiom is mobile. We can also deduce thastands for a
function referred to byy. However,h is neither defined withirt nor is its binding
available in the definition environment 6f it is a bound variable. In this situation, all

the functions which can be bound to — that is all the functions whicban be applied

to — are potentially mobile. Detecting these functions is not straightforward since one
needs to consider cases such as the following.

Applications of f Mobile values
fun k x= ... fa...; a
fun k x = f x ; any possible binding ok
fun k x = X a ;
k £ ...; a
fun khy=... hy ...;

k £ ...; any possible binding of;
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Example 3.3. A similar difficulty arises when a higher-order function is transmitted.
Let us consider an expression which transmits a functidafined as follows.

let fun f x = let fun gV ="e. X euee Y uu.
in g
in chan ! f

The functionf is mobile. The functiony is defined withinf. According to our dis-
cussion above, there is no immediate reasonyftw be taken as potentially mobile.
However, it should be noted that the functioescapes the definition afbecause it
is returned as a result. It may be the case thiatsubsequently transmitted by some
other code which receives We consider functions such asnd the functions which
may be transmitted by also as potentially mobile.

3.2.2 Mobile channels

The arguments for mobile functions above also apply to mobile channels and our crite-
ria for identifying mobile channels is the same as for functions. This is easily justified
as channels are also first-class values and all first-class values are treated uniformly in
Facile-like languages.

3.2.3 Related work

As is demonstrated by the preceding examples, in languages with higher-order func-
tions the flow of control from one program point to another is not easily detectable.
This is because a function can be passed around and subsequently called from multiple
sites in the program. A wide range of analyses have been devised to approximate which
functions can be called from a particular point in the program. Some instances of these
static analyses are known as closure analysis, set-based analysis and constraint-based
analysis which differ in their formulations, the precision they offer and their practical-
ity [Shi91, GFHI7 [ NN97/_JW95, Ste96, Heid4b].

More recently, some authors have pointed out the intuitive connection between
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reasoning about types and control flow in higher-order languages in the sense that they
both derive invariants about the potential bindings of variables in a program. Research

has been carried out in extending control flow systems to perform type anaiyses [PS95]

and in extending type systems to perform control flow analyses|TJ92].

It has also been observed that type inference and control flow analysis are based on
different perspectives. Type inference systems reason locally by associating a type with
each expression and deriving a type for the program compositionally whereas control
flow analyses reason globally and are usually not compositional. Another direction
of research has focused on systematic comparisons of type systems and control flow
systems by establishing correspondences between certain type systems and control
flow analyses([Hei94a, PO95].

Variations for control flow analyzes developed for concurrent programming lan-
guages such a5 [GFHI7, NN97, Sie96] could offer a solution to the problem of detect-
ing potentially mobile values. However, an effect-based analysis which exploits the
existing type system would be more easily applicable. The latter is also the one which
is proposed by [Kna95]. We design an annotated type and effect system which exposes
the overall communication behaviour of a program. The information captured by the
effects are then analyzed to estimate the mobile values.

The values which are not detected to be mobile by our type system are guaranteed
to be used only locally. This relates our work to the works on locality inference by
using type systems IMor99, Sew98]. The languages considered in these works are
different to the one we consider in this chapter. The exploitation of an effect system
for locality inference is another point which distinguishes our type system from theirs.

3.3 Mobile- A

In this section we introduce the language Mohilehich extends the Core language

of ChapterfR with primitives for communication between remote sites. The compu-
tational model induced by Mobilg-provides a sufficient level of generality to model
the transmission of functions and channels in a Facile-like language which is the main
interest of this chapter.
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3.3.1 Abstract syntax

The abstract syntax for the sequential core of Mohilis-similar to that of the Core
language from Chaptéj 2. The only difference is that function abstractions are anno-
tated with labels. The purpose of labdlsi§ to uniquely identify functions. Mobilé-
extends the Core with constructs to express dynamic channel allocation and sending
and receiving values over channels. Channel allocation expressions are also annotated
with labels which serve a similar purpose to those of function labels; they uniquely
identify channel allocation points in a program. Note that all of the labels in a program
are required to be distinct in order to serve as unique identifications. These labels
would typically be internal to a compiler of Mobile+ather than being explicitly pro-

vided by authors of code.

Labels |

= g fla]...
Expressions e = ¢ constant
| X variable
| fl x=e function abstraction
| ere function application
| if e then ey else €3 conditional
| letx=erine local binding
|ejope primitive operation
| chan'() channel allocation
| erler send
| e? receive

Figure 3.1: Abstract Syntax for Mobile-A

3.3.2 Dynamic semantics

Our model of a system is a collection of named sites each of which hosts the execution
of a single MobileA expression. The names of the sites, ranged oves; ls/drawn
from a finite set with elements ... s,.
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Environments and values  The definition of the dynamic semantics makes use of
environments which are defined as finite maps from variables to values. We write
Dom(E) for the domain of an environmeld. The explicit use of environments in

the definition of the dynamic semantics is motivated by our wish to distinguish in our
mobility analysis the functions which are present in the definition environment of a
function from those which are defined within it.

Evaluation environments  E [] | E[x— V]

Cc constants

Values
| k channel identifiers
| (I,E,x,e)  function closures

Values consist of basic constants, channel identifiers and function closures. A channel
identifierk is represented by a tuple which includes the Ildbef the corresponding
channel allocation expression, the identifier of the sites created at and an integer
which is freshly generated each time a new channel is allocated at th&t=sité,§,i)).

The closure of a function encapsulates the lallthe function, an environment
E, the formal parametecand the function bodg. The role of the environment in the
closure is to provide the bindings for the free variables of the function body.

We define the dynamic semantics of MobNdsy using small-step transitions be-
tween system states. Since we use explicit environments rather than direct substitu-
tions, some transitions give rise to forms of expressions which do not conform to the
abstract syntax presented in FigQirg 3.1. In order to circumvent this problem we intro-
duce intermediate forms of expressiom® s in [NNH994]. Intermediate expressions
extend the expressions of the abstract syntax with function closuresirahexpres-
sions. Without the inclusion of function closures in the intermediate expressions we
would not be able to express the evaluation of a function abstraction. The need for
bind expressions will become more clear when we present the evaluation rules below.
At this moment it suffices to say thatbénd expression of the forrmind E inie repre-
sents an expression where the bindings of the free identifidesase recorded .

The environments of nestéihd expressions are likened to frames of a runtime stack
in [NNH99aA].
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Intermediate expressions e = c|x|fn'x=e]iejie
| iepopie | if ieg then ey else e3
| letx=lieiine
| chan'() | ietlies | ie?
| k| (I,E,x,€) | bind Einie

The definition of free variables of an intermediate expresEidfie) is similar to the
definition of free variables of an expressiB¥ (e) given in Chaptef]2.

Evaluation rules A system state is represented by a channel identifie€kand a
process podP in the style of [BMT92]. The channel identifier set contains the channel
identifiers created so far in the computation and the process pool is a set of tuples which
comprise a site name, an evaluation environment and an expression. An element of the
process pool, written ags E) : ie], indicates that expressiae is to be executed at
site s with respect to environmeri. We use the notatioR[(s,E) : ie] to denote the
process pooPU [(S,E) : i€].

Definition 3.1 (Well-formed process pools).A process pooP is well-formed if for
all [(s,E) : ie] € P the following hold:

e FV(ie) C DomE); and

e if [(S E):i€] € Pand[(s,E):ie] € Pthenie =€

Definition 3.2 (Well-formed states). A system statgCl,P) is well-formed if P is
well-formed andFCI(P) C CI whereFCI(P) denotes the free channel identifiers in
process pooP.

A single step transition between system states is writte®l g8 — CI’,P’. The
annotatiora on the arrow represents the observable actions.

Actions a = ¢ Nno communication

| s[newKk] channel allocation

k,v . .
| 51 Q S, communication of a value
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The actions which we would like to observe are channel allocation at a site and the
transmission of a value between two remote parties on a shared channel.

The evaluation rules are presented in three parts in Figure§ 3.2, 3[3’and 3.4. The
rules for the sequential subset correspond to the standard evaluation rules for call-by-
value functional languages put into a distributed context.

Definition 3.3 (Environment narrowing). Given an evaluation environmeBktand a
set of variable¥, E | V represents the evaluation environment which is obtained from
E by removing the bindings of the variables which are not presevit in

E|V=E whereDomE’) =V andE’(x) = E(x) for all x € Dom(E’).

Rules of Figure 32Z] The rule (var) is applied in the evaluation of variables. The
value of a variable is obtained by looking it up in the environment. The rule (fn)
shows how a function abstraction evaluates to a closure. The definition environment
of the function is narrowed down according to Definition 3.3 before it is included in
the closure. Rules (app-1) and (app-2) are similar to those of the Core Language from
ChapterfR. The rule (app-3) gives rise tbiad expression. The environment part

of the closure is extended with the binding of the argument. It is then enclosed in a
bind expression with the body of the function. The domain of environrgjxt— V]
contains the local variables efand it can be discarded when the evaluatiore o
complete. However, the environmeatmay contain the bindings of variables which

are necessary for the rest of the evaluation. If we lia&’) : € in the rule instead

of [(s,E) : bind E’[x+— V] in€] we would overrideE with E’[x — V] and not be able to
recover it again. The rule (bind-1) shows that an expression withindconstruct

Is evaluated with respect to the environment which is enclosed ihitldeconstruct.
When the expression has been fully evaluated the environment can be discarded as
shown in rule (bind-2).

Rules of Figure 331 We refer the reader to Chapfer 2 for the explanations of these
rules. The only rule which might be unfamiliar is (let-2) which becomes applicable
when the evaluation of the first expression has been completed. The environment is
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(var) Cl,P[(s,E) : X i>CI,P[(s,E) tE(X)]

(fn) Cl,P[(S.E) : fn'x= € = CI,P[(S,E) : (I,E’,x,6)]
whereE’ = E | FV(fn'x= ¢)

Cl,P[(s,E) :ie;] = CI',P'[(S E) : ie}]
CI,P[(S,E) : ie1 ieg] == CI',P'[(SE) : i€} iey)]

(app-1)

CI,P[(S,E) :ies] - CI',P'[(s,E) : i€}]
CI,P[(SE) :vie)] == CI',P'[(SE) : vig)]

(app-2)

(app-3) CI,P[(S,E) : {I,E',x,€) V| -= CI,P[(s,E) : bind E'[x — V]in€]

CILP[(s E) :ie] = Cl',P[(s,E) :i¢]

(bind-1) . _
CI,P[(S,E) : bind E'inig] —* CI',P[(S,E) : bind Einie/]

(bind-2)  CI,P[(s,E) : bindE'inv] - CI,P[(S,E) :

Figure 3.2: Evaluation Rules (Part 1)

then narrowed down according to Definitipn]3.3 before being enclosediimdaex-
pression along with the body of thet expression.

Rules of Figure 3471 The rule (chan) for channel allocation states that a fresh channel
identifier is generated upon the execution of a channel allocation expression. Recall
that such an identifier can be represented by a tuple which includes thé Etble
corresponding channel allocation expression, the identifier of the #ite created at

and an integer which is freshly generated each time a new channel is allocated at
that site k= (l,s,i)). The rule (com) for communication illustrates that in order for a
value to be transmitted from one site to another, the communicating expressions need
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Cl,P[(s,E) : ie1] = CI',P'[(S E) : ie}]

(if-1)
CI,P[(sE) : if iesthen e else e3] —— CI’,P'[(s,E) : if i¢jthen & else &3]

(if-2)  CI,P[(S.E): if true then & else &3] —= CI,P[(S.E) : &]
(if-3)  CI,P[(SE) : if false then & else €3] —— CI,P|(S,E) : &3]

Cl,P[(s,E) : ie;] = CI',P'[(S E) : i€}

(let-1) a
CI,P[(s,E) : letx=ley1 in €] — CI',P[(S,E) : let x=i€] in &)]

(let-2)  CI,P[(SE):letx=Vine —= CI,P[(s,E) : bind E/[x— V] in €]
whereE’ =E | FV(e)

Cl,P[(s,E) :ie;] - CI',P'[(S E) : ie)]

(Op-l) . . a I .
Cl,P|[(s,E) :ie10pieg] — CI',P'[(S,E) : i€ op ie)]

Cl,P[(s,E) :ieo] = CI',P'[(S E) : ie))]
Cl,P[(s,E):vopig] = CI',P[(S,E):vopig]

(op-2)

(op-3) CI,P[(s,E):vi0p W] LCI’,P’[(S,E) V] wherev = v 0p Vs

Figure 3.3: Evaluation Rules (Part 2)

to synchronize. Unless the synchronization takes place none of the parties can resume
their computation.

Our choice of style in defining the dynamic semantics of Mohileas been influ-
enced by the need to provide a suitable framework for conducting the proofs of some
properties enjoyed by our type system. For example, we include labels in the represen-
tation of channels and functions in the dynamic semantics. This is because our type
system makes use of labels to trace the identities of functions and channels statically.
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(chan) CI,P[(s,E) : chan' ()] -2 ClI UK, P[(S.E) : K]
wherea = s|newk] andk ¢ ClI

CI,P[(s,E) : e)) = CI',P/[(SE) : €]

(send-1) 2
CLLP[(SE):eile] — ClI',P[(S,E): € ! ey
(send-2) CI,P[(s,E) : &)] i>ac:|',P’[(s,E) &)
Cl,P[(s,E) :k!e] — CI',P'[(S,E) : k! &)]
(receive) Cl,P[(S.E) : & i; CI',P'[(SE): €]
Cl,P[(s,E) :e17 — CI',P[(s,E) : €7
(com) Cl,P[(s1,E1) : k!V][(s2,E2) : k7] =2 CI,P[(s1,E1) : ()][(s2,E2) 1 V]

wherea=¢g M S

Figure 3.4: Evaluation Rules (Part 3)

Labels of the dynamic semantics prove to be useful in establishing a correspondence
between the objects of the static and the dynamic semantics.

Definition 3.4 (Mobile). The functionMobileis defined on the values of the dynamic
semantics. It collects the labels of functions and channels which are of interest in
detecting potential mobility. In the case of function closures the labels of values in the
environment part of the closure are collected as well as the label of the closure itself.

0 ifv=c
Mobile(v) = ¢ {1} if v=k=(l,s,i)
{I}UU{Mobile(E(x)) | xe Dom(E)} if v=(l,E,x,€)
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3.4 Type system

In this section we design a polymorphic type and effect system for Mabil@ur

aim is to estimate the functions and channels that a Mob#égpression can possibly
transmit by analysing the types and effects associated with it. We make use of the
labels provided in the syntax to trace the flow of values through the computation. The
essential idea is to incorporate these labels into the types and effects so that we can
eventually extract those which are of interest to us.

3.4.1 Semantic objects

Our type system views types)(as a pair consisting of two components: a raw type
(1) and a mobility annotatiornyj. Raw types classify values in the conventional sense
whereas mobility annotations estimate the identities of values which become mobile
upon the transmission of the value of that raw type. We also have communication
effects ) as annotations on function types. These stand for the communication actions
which may be triggered by a function when it is applied.

We associate the empty mobility annotatidmith base types as we are not con-
cerned with the mobility of values of base types. For example, if the raw type indicates
that the expression is of typet, this information is sufficient. We need not estimate
which particular integers its value can be. However, as we are interested in the mo-
bility of channels and functions we associate them with annotations othe®tHdre
simplest form of a mobility annotation is a label. The operatas used to obtain a
union of simpler mobility annotations. The meta-variapktands for mobility anno-
tation variables. Mobility annotation variables prove to be useful in typing functions
which require functions or channels as arguments. One can write well-typed functions
which behave uniformly over a set of arguments which may differ in their mobility
annotations.

The communication effects which may occur during the evaluation of an expression
are estimated by its effegt An expression is assigned the eff@df its evaluation in-
curs no communication. The effeatsw L for T, sendTondandrecvTon i are assigned
if its evaluation may incur the allocation of a channel for carrying a specified type of
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values, send and receive actions respectively. The effects can be merged by the union
operatorJ as was the case for mobility annotations. The meta-varialsgands for
effect variables.

Mobility annotations U= 01y mUp

Raw types T == unit |int | bool | chan[t] | T1-5T5 | o
Types T o= (LY

Effects K == O|newpfort |sendTonp | recvtonpl

| B | K1UK2

Definition 3.5 (SubsumptionC). Suppose that equality) on effects is defined mod-
ulo associativity, commutativity and idempotence withs the neutral element far.
Then,k C K’ if there exists a” such thak’ = Kk UK".

Variables and substitutions We have included variables, 3,y as static semantic
objects to be able to express polymorphism of functions. We \kiité(1) for the set

of free raw type, mobility annotation and effect variables.ivector notation is used

to represent sequences of variables, for exarﬁpfbv. Finite maps which map raw
type variables to raw types, effect variables to effects and mobility annotation variables
to mobility annotations are calleslibstitutions

Mobility annotations: Raw types:

FTV(0) =0 FTV(unit) =0 FTV(int)=0 FTV(bool) =0
FTV(l) = FTV(chan[ ]) =FTV(1)

FTV(y) = {y} FTV(TS1) = FTV(1) UFTV(T) UFTV(K)
FTV(lUp2) = FTV(l) UFTV(l2)  FTV(a) = {a}

Effects: Types:

FTV(0)=0 FTV(T,1) = FTV(T) UFTV(W)

FTV(newpfor 1) = FTV(T) UFTV(p)
FTV(sendTonp) = FTV(T) UFTV(W)
FTV(recvtonp) = FTV(T) UFTV(W)
(
(

FTV(B) = {B}
FTV(K'UK') = FTV(K) UFTV(K))
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Type schemes and environments are defined as in polymorphic type systems for lan-
guages with a functional core such as Standard ML. Type schemesd obtained

by universally quantifying types over a set of raw type, effect and mobility annotation
variables.

Type schemes ¢ = va*vx

The context in which an expression is associated with a raw type, an effect and a
mobility annotation is represented by a static environnignthich maps variables to
type schemes. The notatidrx — @] is used for adding elemertto the environment
I", overriding the existing binding it is already in the domain df. We refer to the
domain of an environmerit asDom(I").

The definition ofF TV above extends to type schemesFﬂS)\/(v_S.T) =FTV(1) \3.
It also extends pointwise to type environments. Substitutions on type schemes are
defined as in[[TJ94]. Led,,0” be three substitutiond(vdt) = v&.8"¢/(T) where
o= {3 — S’} is a renaming of the bound variables by fresh variableghich are not
free inT or OT. The substitutio®”d is defined ad if & € & and83 otherwise.

Definition 3.6 (Type generalization). A type schemes = Va[Y.T generalizes a type
T/, written aso-T1/, if there exists a substitutiof over the bound variables afsuch
thatdt = 1. Types are generalized to type schemes by the oper@gmnA variable
cannot be generalized if it is free in the environmemtr the effeck.

GenT,K,1) = Iet{a,ﬁ,V} =FTV(1)\ (FTV(M) UFTV(K))
in Vapy. 1.

The condition that prevents the generalization of variables which are free in the type en-
vironment is standard from the Damas-Milner polymorphic type discipline for purely
functional languages [DM82]. The additional condition which requires them not to be
observable in the effectis imposed to ensure that the presence of primitives for commu-
nication do not compromise type safety. We follow closely the work on polymorphic
types and effects for the Facile language which proposes a generalization criterion
similar to ours [Tho94]. The relevance of thew andrecv effects to the problem of
estimating mobile values is not obvious. Nevertheless, we cannot exclude these effects
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from our type system. If we did, some of the observable effects of an expression would
be ignored opening the way for unsound generalization of types.

Definition 3.7 (TypeOf). The types of the basic constants unit, integers and booleans
do not depend on the typing context and are defined as follows:

TypeOf(()) = (unit,0)  TypeOfn) = (int,0)
TypeOftrue) = (bool,0) TypeOffalse) = (bool,0)
We now define an operation which is employed in the type system to collect the labels

of interest in the process of deriving a type for an expression.

Definition 3.8 (Extracting annotations). Given a type environmerit and a set of
variablesV, the operatiorM extracts the mobility annotations of the variables from

their types.
((l) ifv=0
M(I V) = 0 if V = {x} andx ¢ Dom(I")
u if V = {x} andl" (x) = (T,
\M(r,{x})UM(F,X) if V={xjuX

3.4.2 Typing rules

The static semantics for the language assigns a type and an effect to each expression.
This is represented by a judgement of the fdri e: 1,k. The typing rules are given

in Figures[3b and 3.6. We comment on some of the rules below pointing out the
characteristic features of our type system.

The typing rule (var) shows that a variable can be assigned any type which is an
instance of the type scheme which it is bound to in the type environment.

The typing rule (fn) for functions is essential for our type system. It associates a
non-trivial mobility annotation with a function. This annotation serves as an estima-
tion of the labels of those values which move with the function. The operMianh
Definition [3:8 inspects the typing environment of the function to collect the labels of
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(con) Ikc:TypeOfc),0
Nx)y=0 o>t
(var) )
M=x:t,0
() Fx — tFe:tT,k p=M(,FV(fn'x=e))
MEflx = e (T5T,1Up),0
K
e : (1=v,p),k e :t,K”
(app) p —
MN+-ee: T, KUK UK
. M€ i(bool,0) THex:(T,W),K THeg:(T,|),K
(if) —
IFif ejthen ey else e3: (T,pUY), K UK’
(let) lFe:t,k Mx— Genl,k1)|Fe:TK
M-letx=erine : U, KUK
(o) e :(1,0),k ke (1,0, op:(T+x1)—T
e ope: (U,0),k UK
Nr-e:1,k KCK
(subs)
r-e:t,k

Figure 3.5: Typing Rules for the Core

functions and channels which are referred to by the function body. These labels are
merged with the label of the function itself and recorded as its mobility annotation.
The typing of the conditional expressions by rule (if) requires the raw types of the
branches to be identical. Their mobility annotations are merged by the union operator
U to obtain the mobility annotation of the whole expression.
Regarding polymorphism, we adopt the standard discipline employed in languages
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(chan) [+ chan () : (chan[t],1),newl for T

er:(chanft],p),k TFe:T,K

(send)
[-eler: (unit,0),K UK UsendTonpl

I Fe: (chan[t],p),K
M-e?:T,KUrecvTon|

(receive)

Figure 3.6: Typing Rules for Extensions

with a functional core and allow type generalization to be performed in the (let) rule
only.

The subsumption rule (subs) allows the type system to replace an effect with a
larger one which subsumes it according to Definitiory 3.5. We adopt the approach
which is referred to as early subsumption(in [NIN94] and subeffectingin[TJ92].

The rule (chan) assigns the mobility annotati®éa a channel allocation expression
labelled withl. The type of a channel should be in accordance with the values it com-
municates. In a typing derivation this information has to be derived from the context
of the allocation expression. By includirign the effect of the expression, we make
sure that in an attempt to generalize the type of the channel, the type of the values it
communicates will be taken into consideration.

The rule (send) always assigns the tyjpé to a send expression whereas the effect
embodies the type of the transmitted value. The fact that a send effect is parameterized
over a mobility annotated type makes it possible to analyze these effects further to
expose potentially mobile values. We address this in SeLtipn 3.6.

The rule (receive) is applied in typing a receive expression. As a receive expression
evaluates to the value it receives, its type is expected to be the same as that of the
received value.
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3.4.3 Examples

Having defined Mobilex and its type system we now present some examples which

are inspired by the examples from Section 3.2.

Example 1: Qet= let f= fnlfx = ef
in Ietg:fnlgx:>eg
inch!g

Let us assume the following abouandg:

e f andg are functions from integers to integers with no observable effect;
e e; contains no free identifiers; and

e fisthe only free identifier ir.

Then the following is a possible type annotated version of the expresgioiWe
assume that the expression is typed with respect to an initial environmertiere
I = [ch — (chan[tg],I¢)] andtgis the type of functiorg shown below.

Bet= let f="fn'"x= ef:((int,0)-2(int,0),I1),0
in  letg = fnlox = ey ((int,0)2(int,0),I4Ul),0
inch ! g: (unit,0),sendtgonlc

The effectend tgonlc of the expressiome conveys the information that when a value
of typety is transmitted on the channel with mobility annotatigrthe functions whose
labels are embodied in the typgwill be mobile. The typag is ((int,@)g(int,m), lgU

lt). Therefore, we know that functions with labé}sandl s will become mobile when

the expressiong is evaluated. In Sectidn 3.6 we present an analysis which shows how

to extract the mobility annotations from the types systematically, such as extricting

andl s from the typertg in this example.
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Example 2:  letf =fn'Th = fn'ich = letg =fnlox = hx
in chlg
in (xx scope off xx)

In this example functiorf is a higher-order function which takes a function and a
channel as arguments. Its body consists of a let expression. We assuimewhath
is given below, is the type environment in which the body of funcfiemtyped.

o [ =[h— (T,y1),ch— (chan[(T,lgUy1)],Y2)]
whereT = (int, 0) > (int, 0).

The typing environment suggests that the actual argument to whschound must be

a function from integers to integers but nothing specific is assumed about its observable
effect. The actual argument to whichis bound must be a channel which carries func-
tions from integers to integers. We additionally know that the function with Iglzeid

the function to whichh is bound are carried on this channel. The following is a pos-
sible type-annotated version of thee expression. Note that for readability we use the
abbreviationsy, for ' (h), T¢h for I (ch), andk ¢ for send ((int,@)g(int,m, lgUy1)onyo.

let f=fn'th = fn'fich =
let g = fnlox = hx: (T,lgUy1),0

) 0 K )
in ch!g : Vy1yoB.(Th—(Ten— (unit, 0),11),11),0
in  (xx scope Off xx)

Since the type of, andtq, do not appear free in the environment in whids typed,
the operatiorGenfrom Definition[3.6 would generaliz@,y> andp. This means that
the functionf can be applied uniformly to any function from integers to integers.

We could now convince the reader that the typé ofcludes all the information
we seek. Whenevefris fully applied, its polymorphic type will be specialized ac-
cording to those of its arguments. The generalized mobility annotayioosh and
y2 of ch will be specialized to the mobility annotation of its function argument and its
channel argument respectively. For example, if at some point in the scdpéhefe
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appears an expressidrk chl wherek is a function with the mobility annotatioly
and the observable effegf andchl is a channel of the correct type with the mobil-
ity annotationly then the overall effect associated with this application will include
send ((int, 0) % (int, 0),lg U i) on lepy.

3.5 Formal properties of the type system

In this section we prove the soundness of the type system defined in Section 3.4 with
respect to the dynamic semantics presented in Sectipn 3.3. This involves proving that
types are preserved under transitions of the system, characterizing the runtime errors
for Mobile-A programs and showing that the evaluation of well-typed programs do not
give rise to runtime errors.

Mobile-A programs can allocate channels dynamically. This implies that the in-
termediate expressions which describe the intermediate steps of evaluation can include
channel identifiers which cannot be known statically. Therefore, the static environment
" alone would not be sufficient to keep track of the types of intermediate expressions.
In order to be able to show that types are preserved during evaluation, it is necessary
to have a semantic object which associates dynamically allocated channel identifiers
with appropriate types.

Definition 3.9 (Channel environment). A channel environment is a finite map from
channel identifiers to type and mobility annotation pairs.

CE:=[ki — (T1,1)...-Kn — (Tn,n)]-

The type and the mobility annotation represent respectively the type of values commu-
nicated by the channel and the mobility annotation of the channel. We [Wfiethe
empty channel environment.

Definition 3.10 (Extension).

e Let I andl’ be two type environments”’ extendsl, written asl C I’ if
Dom(I") € Dom(I'’") andr (x) = I"(x) for all x € Dom(I").
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e LetCE andCFE' be two channel environmenGE’ extend<CE, written asCE C
CE' if Dom(CE) C Dom(CE’) andCE(k) = CE/(k) for all k e Dom(CE).

3.5.1 Types for intermediate expressions

The proof of type preservation property requires us to be able to type the intermediate
expressions which we have introduced in Sedtion3.3.2. Itis clear that every expression
is also an intermediate expression. Therefore, the typing rules of Figures 35]and 3.6
can be regarded as typing rules for intermediate expressions which conform to the ab-
stract syntax of Mobilex. An addditional set of typing rules is presented below for the
remaining forms of intermediate expressions. The typing judgements for intermediate
expressions includék as well ad".

The rules below also include a typing rule for environments, which define what
it means to be an evaluation environmé&nto be well-typed with respect to a typing
environment . Environment typing rule is referred to by the typing rule for function
closures. This is not cause any cyclic definitions, however, since there are no recursive
functions in MobileA.

CE(k) = (t,n) k= (l,si) | appearsimn
CE,l -k: (chan[t],p),0

J'.rCr’ CE,I'+E CETlHfilx =e: (T£>T’,|.l)
CE,l - (l,LE,x,€) : (rit’,u),m

a'.TCTI" CE,I'+E CETl'Fie:1,K
CE,T FbindE inie: T,K

Dom(I') = Dom(E) ¥xe Dom(E).CE,l' - E(x) : ['(x)
CETHE

We writeCE, T I- v: VaBY.T,0if I -v: 6t for any 6 defined ondpy.
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3.5.2 Type soundness

Definition 3.11 (System typing).Let T be a finite map from site identifiers to type
and effect pairs. A well-formed system state is said to have Typmder a global
channel environmer@E, written asCE - CI, P : T if the following hold:

e Cl C Dom(CE);
e forall [(s,E) : € € Pitis the case thad € Dom(T); and
e forall[(s,E): € € Pitisthe casetha@E, s+ e: T(s)foral swhereCE, st E.

Theorem 3.1 (Type preservation).LetCE be a global channel environment abid P
be a well-formed sytem state. Assume

e CI,P-2,CI',P; and
e CEFCI,P: T for someT.

Then there exists a channel environm@& such that:

e CECCF; and
e CE'-CI',P:T.

Proof. The proof is given by induction on the depth of derivatiorCofP —= CI’,P’.

For the cases which involve no communication, it is obvious that the transition involves
only one of the expressions. Therefore, it is sufficient to prove the theorem considering
one of the expressions only. Selected cases of the proof are shown below.

caseie = x. The dynamic semantics requires the evaluation to follow the rule (var),
that isCI,P[(s,E) : X] LR CL[(s,E) : E(X)]. Suppos€E, s+ x: 1,0. The typing rule
(var) forces thaf s(X) = o whereo > 1. We know by the assumptions th@E, s+ E.

This also implies thaCE, s+ E(x) : ['s(X). Letlg(x) =0 = ¥3.1y. By the definition

of value typing it must be the case ti@GE, I's - E(X) : BTy for any0 defined ord. Then
CE,l's-E(x) : 1,0sinceo >~ T.
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caseie = (fn'x = ). The dynamic semantics requires the evaluation to follow the
rule (fn), that isCI,P[(s,E) : fn' x = €] i>CI,P[(S,E) : (I,E',x,€e)] whereE’ = E |
FV(fn' x = €). SUppoSE€E, st fn'x = e: (157, 1Up), 0. The typing rule (fn) tells
us that for this judgement to hold it must be the case @&t 's[x — 1| Fe: T, K
wherep = M(T's, FV(fnl x = e)).

We know by the assumption th@€, s+ E. This impliesCE, s+ E’ sinceE’ is
a restriction ofe. We can conclude that there existg’asuch thaCE, I’ - (I, E',x,€) :
(T£>T/,| U W), 0 by takingl's as a witness fof’ and referring to the typing rule for
function closures.

caseie = (let X =vin e). The dynamic semantics requires the evaluation to follow
the rule (let-3), that i€I,P[(S,E) : let x=Vine€]| £, Cl,P[(S,E) : bindE'[x— V]in€]
whereE’ = E | FV(e). Suppos€E, sk let x=vine: T,kUK’. The typing rule (let)
requires tha€CE, s+ v: 1,k andCE,g[x — Gen[ K, T)]Fe: T, K.

By Lemma[3.R we know that there exist andk, such thatk; Ukz) C (K UK)
whereCE, s v:T,k1 andlg[x — Gen[T,K,T)] - e: T, k2. By Lemma 3.l we have
CE,flrst v: 0t1,6k1 for any substitutiorf. For 6 defined on those variables which
are not free inl5 or K1 it is the case thaCE,l v : B1,K1. Let these variables
bed. The typing rules for values allows us to conclude t6&t st v : VS.I,Kl.
This is equivalent to saying that the typeofs Genl's,k1,T). We take aI”’ such
that " = Mg[x — Gen(l,k1,T)]. We can conclude thaE,l" - E’[x — V]. Given
CE,ls[x — Gen(l,k1,T)] - e: T ,Kp, the typing rule for bind expressions allow us
to conclude thaCE, s+ bindE'[x — V]ine: T, K2. By Lemma 3.pbindE’[x— V]ine:

T, KUK,

caseie = chan (). The dynamic semantics requires the evaluation to follow the rule
(chan), thati€1,P[(s,E) : chan' ()] 22X, C1UK, P[(s, E) : K. SUppoSEE, s - chan' ()
(chan[t],1),newl for 1. By the typing rule (chan) we know thkt CI. Taking a chan-

nel environment such th&E’' = CE[k — (1,1)] for somert satisfies all the necessary

conditions.
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caseie; = (klv) andie, = (k?). The dynamic semantics requires the evaluation to fol-
low the rule (com), that i€, P[(s1, E1) : k! V][(S, E2) 1 k7] =2 CI,P[(s1,E1) : O][(2, Ea) :
v|wherea=s; k), Sp. SUPPOSEE, s, - K!v: unit, K UK'UsendTonpandCE, I, - k?:
T,KUrecvTon|l. By the typing rules (send) and (receive) we know &t s - K:
(chan[t],p),k andls, Fv: T,k andCE,ls, - k : (chan[t],1),K. This case refers to
Lemma[3.R as the case above. The rest of the proof is immediate by a simple inspec-

tion of the typing rules for receive and send expressions. O

The following lemma which shows that typing is stable under substitution is used
in the proof of the type preservation theorem.

Lemma 3.1 (Substitution). If CE,T" Fie: 1,k thenCE, 0l  ie: 61,6k for any sub-
stitution 6.

Proof. The proof is given by induction on the depth of derivatiorf ¢f ie : T,k. Two
selected cases of the proof are presented in the Appendix. O

Lemma 3.2 (Subsumption elimination). We can assume for the derivation of a typ-
ing judgemenCE,T +ie: T,k that the non-structural rule (subs) is used after every
structural rule.

Proof. Any derivation tree foCE,I" I- ie: T,k can be transformed into a derivation tree
where we use the rule (subs) after every structural rule. By transitivity of the relation
C we can eliminate multiple applications of the (subs) rule and consider it as a single
application of the rule. O

Definition 3.12 (Runtime error). The evaluation of an intermediate expresserauses
a runtime error, written a8, P[(s,E) : ie] — ERROR if all of the following proposi-
tions are simultaneously true:

e ieis not a value;

e ieis not blocked on communication; and

e there is no evaluation rule such ti@t P[(s,E) : ie] — CI’,P'[(s,E) : i€/].
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Note that the above characterization of a runtime error does not capture the errors
which are caused by the absence of a communication partner. For example, an expres-
sion can attempt at runtime to send a value on a channel which is listened to by no
other process. We do not treat this as a runtime error. However, any attempt to send a
value which does not match with the type of the channel would cause a runtime error.

Theorem 3.2 (Type soundness)Let CE be a global channel environment a@tl P
be a well-formed system state. Assu@ CI,P: T for someT. Then for nd(s,E) :
ie] € Pitis the case thatl,P[(s,E) : ie] — ERROR.

Proof. The proof is given by induction on the depth of the typing derivatioieof []

3.5.3 Principal typing

Given a typing context and an expression, the typing rules presented above do not
necessarily assign a unique type to an expression. It could be possible to derive zero,
one or even infinitely many types for an expression. The theorem below shows that if
an expression can be typed at all in our system it also h@#aipal type, that is a

type which is the most general type with respect to substitution on variables. Similarly,
there is an effect which is minimal with respect to the subsumption relation

Theorem 3.3 (Principal Typing). If a type can be derived for an expressim the
type system then there exists an environn®fit, a typetP andkP such thabPrl - e:
1P, kP and whenevel" |- e: T,k then for some substitutiafit is the case thap(6PI") =

or andytP =t andk C YkP. The typetP is principal forein T.

Proof. Selected proof cases can be found in the Appendix. O

3.6 Static estimation

As we provided explanations on our particular choice of annotations in Séciion 3.4,
at this point it should be clear how we intend to use the static information captured
in types to estimate mobile functions and channels. Our approach is as follows. Sup-
posing that an expression is associated with an ekegée consider eackendtonl



Chapter 3. Estimating Mobile Values 65

which appears ik in isolation, analyza to collect the mobility annotations (labels)
of interest and finally merge the results.

3.6.1 Extracting labels

Definition 3.13 (£). We define the relatiolr as the smallest relation which satisfies
the rules of Figurg¢ 37. It relates types and effects to sets of labels. The relation for
types and the relation for effects are defined mutually recursively. A set of labels
associated with an effegtestimates the labels of values which become mobile when
an expression with effeatis executed.

Types Effects
(t1) E (unit,p): 0 (el) FO0:0
(t2) E(int,n):0 (€2) Enew(t,p):0
(t3) E(a,pn):0 (e3) EB:0
(t4)  E (chan[t],1):{l} (e4) Frecvtonl: 0
(t5)  E (chan[t],p):L (e5) Fr1:L

E (chan[t],lUp): {I}UL FsendTonpl : L

(t6) FU:L FEk:l (e6) Fk:L Fk:LU

F:(T£>T’,|)Z{|}ULUL’ FKUK LUl
(t7) ETU:L EkExk:l' E (rﬁT’,u) L

E (ST up s {tuLuL UL

Figure 3.7: Mobility Analysis

Rules 1, 2 and 3 for types apply when the raw type is a base type or a variable. Our
type system does not keep track of the values of base types and a variable type does
not contain any specific information that we need to note. Therefore, we takee
empty. In the case of channel types, however, we collect the mobility annotation as
shown in Rules 4 and 5.

Rules 6 and 7 apply when the type is a function type. As well as extracting the
mobility annotation of the function, the result type and the effect are also examined to
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collect the annotation of those values which may escape to another site and be sent from
that site subsequently. Note that the need for this has been motivated by Example 3.3
in Section"3711.

The rules for effects show that it is the send effects which we are concerned with.
The types of the sent values are examined to estimate potentially mobile values.

3.6.2 Soundness

We have shown that our type system associates values with types which are consistent
in the sense defined in Sectipn 3]5.2. The soundness of the analysis presented above
relies on this fact. The definition of the notion of soundness for the mobility analysis
states that the analysis of a correctly typed expression would conservatively estimate
the labels of interest. Conservative estimation is expressed by the subset relation.

Theorem 3.4 (Soundness of analysis)Given a channel environme@E consider a
single step in the evaluation of an expressmsauch that

e CI,P[(S,E):ie] -2 CI,P[(S,E):i¢/] wherea= s Y ¢ for somes’; and

e CE,[sFEandCE,l'sie: 1,k where=K: L.
It follows thatMobile(v) C L.
Proof. The proof is given by straightforward induction on the derivation of evaluation.
It refers to Lemma 3] 3 given below. O
Lemma 3.3 (Soundness of label estimation).

If I'tv:1,0andF 1: L thenLabelgv) C L.

Proof. The proof is given by considering all possible forms/ofVe give the proof of

two selected cases only.

casev=Kk = (s,,i). By the hypothesis, we ha@®E, " - k: (chan[t], 1), 0 wherel ap-
pears i By Rule t5 of Figurg 3]7 we also know thlts C L wherek (chan[t],p) : L.
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By Definition[3.4Mobile(k) = {I}. It follows thatMobile(v) C L.

casev = (I,E,x,e). By the hypothesis we hav@E,l I (I,E,x,e) : (tﬁq’,p). This
requires there to exist & such thaCE,[” - E andCE, "+ fnl x = e (tir’,u),(b.
The typing rule for functions allows us to conclude also BB [x — T|Fe: T, K
wherep=lUM(I’,FV(fn' x = €)). By Definition[3.4 we havéobile((l,E,x,€)) =

{I} US whereS = [J{Mobile(E(x)) | x € Dom(E)}. By Rule t7 of Figurg 3]7 we
also have= (T£>T', W {ItuLul’UL” whereF 1 : LandFk : L and(Tﬁr’, W)L’
wherep! = M(I',FV(fn' x = €)). SinceCE, " I E andl' C I’ we haveCE, [ - E(x) :
I'(x) for everyx € Dom(E). By referring to Definitior{ 3]8 we can conclude that any
element ofS occurs iny. Hence any element ¢f1} US)) occurs inp. It follows that
Mobile(v) C ({I}uLuUL UL"). O

3.7 Concluding Remarks

In this chapter we have shown that the methodology of annotated type and effect sys-
tems can be exploited to predict the mobility of values in a higher-order functional
language extended with primitives for communication. The work presented in this
Chapter is intended to be a natural continuation of the works discussed in $ectipn 3.2.3.
To the best of our knowledge this is the first application of the type and effect discipline
to a problem which concerns mobile code languages in particular.

We have included in the language MobMNesnly those features which are crucial
for our investigation. For example, Mobilecan be extended with features for dy-
namic process creation at local or remote sites. This does not, however, provide new
insights into the problem.

In Mobile-A any communication is assumed to take place between two remote par-
ties. Therefore any communication gives rise to mobility between two remote sites.
Consequently, the definitions of the dynamic and static semantics treat any commu-
nication as observable. If we allowed dynamic creation of processes at local and re-
mote sites it would be appropriate to define an observation criterion such as the ones
in [Tho94,T.J94] to distinguish between local and remote communications. The type



Chapter 3. Estimating Mobile Values 68

system then would have to trace the annotations of remotely communicated values
only. Such an extension can easily be incorporated into the existing type system.

Devising an algorithm to infer the principal types and minimal effects is out of the
scope of this chapter. However, the existing works in the field suggest that such an
algorithm can be devised and implemented.



Chapter 4

Distributed Call-Tracking

One of the positive qualities associated with mobile computation is that it provides a

flexible setting for sharing computational resources. A piece of code can move towards
a site which hosts the resources it aims to exploit. Input/output devices, file systems,
network, memory and processing power (CPU cycles) are typical examples of shared
resources which may be exploited by mobile code.

In a system where shared resources such as processing power and memory are
limited, it is particularly important that some programs do not exhaust the resources at
the expense of other programs. For example, if access to CPU cycles is not controlled
to enforce an appropriate fairness criterion, a program can hinder the execution of
another program which uses the same processor, by occupying the CPU most of the
time. Similarly, if a program is allowed to allocate unlimited memory, it may cause the
system to deny service to other programs.

Computation in active networks with the Programming Language for Active Net-
works (PLAN), introduced in Chapté} 2, is a specific instance of mobile computation
in a system where the allocation of resources to programs must be strictly controlled.
Denial-of-service attacks are considered as one of the major threats to the safety and
security of active networks. The design of PLAN has been highly influenced by the
need to prevent denial of service.

The ideas underlying the design of PLAN could form the basis of a general purpose
mobile code language which is suitable for computation in resource-sensitive systems
if the restrictions of PLAN could be made less severe. In this chapter, we introduce a

69
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language which mitigates some of the restrictions in PLAN’s computational model and
extends it with support for mobility through remote evaluation of functions in the spirit
of the model proposed by Stamos and Giffard [SG90]. We then investigate the use of
annotated type systems in estimating which functions are called at which sites. We call
this distributed call-tracking analysiOur approach can be regarded as extending the
work on type-basedall-tracking analysidor sequential functional languages 11792,
Hei94a]. The information obtained by distributed call-tracking analysis can serve as
the starting point for traditional compiler optimizations as well as allowing compilers
to produce code optimized for particular sites which a function may visit at runtime.

In an applicative language where function applications constitute the basis of com-
putation, attempts to estimate the resource consumption of programs would benefit
from distributed call-tracking. For example, if we take processing power as the re-
source of interest, the number of functions called is an indicator for the processing
time demanded by the evaluation of a program. In cases such as ours, where the lan-
guage facilitates remote evaluation of functions on different sites, the estimation of
processing time demanded from a particular site requires the estimation of functions
called at that site.

4.1 Security through language restrictions

In Chaptell2 we have presented the essential elements of the design of PLAN. In this
section we recapitulate those features of PLAN which are motivated by the need to
prevent denial-of-service attacks and to prevent programs from interfering with one

another’s execution.

4.1.1 Termination and resource bounds

Non-terminating programs consume the resources of a system unboundedly and there-
fore make them vulnerable to denial-of-service attacks. The designers of PLAN have
adopted a strict approach in dealing with this problem. They have ensured that pure
PLAN programs terminate by eliminating recursion and non-fixed length iteration, and
imposing resource bounds on the number of packets generated. The following exam-
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ple from [HK99] motivates the need for explicit resource bounds in PLAN. Without a
resource bound counter which is decremented each time a new packet is generated, the
functionping_pong below would move between the two nodes of the network forever.

fun ping_pong (pingHost:host, pongHost:host):unit =
OnRemote  (|ping_pong (pongHost, pingHost) |,
pongHost, getRB (), defaultroute)

It is argued in [HK99] that even these restrictions are not adequate and it would be
more appropriate to ensure that PLAN programs contained in a packet require band-
width, CPU and memory linear in the size of the packet. A detailed discussion about
the motivating factors and the alternative approaches for implementing this can be
found in [HK99,[IMHNO]. The execution of a function such&a®onential below

is considered to be undesirable because the number of function calls is exponential in
the number of function definitions.

fun  f1(0)= ()

fun  £2()= (f1();£f1())
fun  £3()= (£2();£2())
fun  f4()= (£3();£3())

fun  exponential ()=(f4();f4())

4.1.2 Isolation and strong typing

Pure PLAN programs are executed in isolation from one another. There is no notion
of shared mutable state or communication channels as in Facile or Concurrent ML.
No language mechanism for direct communication exists. This ensures that programs
have their own logical space for data and there can be no interference between them.

PLAN is a strongly typed language. Only those programs which are accepted by
the type system as well-formed are allowed to be executed. The combination of this
style of typing and automatic memory management proves useful in ruling out indirect
means of communication, for example, due to buffer overflaws [ILR98, HK99].
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4.1.3 Exploiting static analysis

It is stated by the authors who work on the formal specification of PLAN [KHMG99]
that PLAN programs should be type checked at each node where they are executed.
The capability for static type checking is seen as a requirement while dynamic type
checking is allowed as an option. There is no doubt that strong static typing is a crucial
security property for a PLAN-like language. We observe that if the type system could
be exploited further to infer information about the function call behaviour of programs

it would be possible to enhance the advantages brought about by strong typing. Instead
of ruling out recursion from the language and imposing resource bounds, one could
adopt a more liberal approach. Each site could enforce its own policy to protect itself
from the potential threats posed by a program. This would be particularly appealing
for computation in contexts where resources are not as scarce as in active networks.

For example, if the type system could expose that the fungtio _pong above
calls itself at two distinct sites, this could be taken as an indication for a possibly non-
terminating computation which affects two sites. In case the system is highly vulnera-
ble to computations of this nature, the execution of the program could be disallowed.
Likewise, if functions such asxponential are undesirable, exposing the number of
function calls initiated by xponential would be sufficient to alarm the type checking
site about the potential risks.

In the following sections we present two type systems for distributed call-tracking
analysis. The first one is a monomorphic type system which uses sets to estimate which
functions are called at which sites. The second type system incorporates a limited
form of polymorphism and captures finer-grained information about the control flow
in programs.

4.2 rEval-A

In this section we introduce a language for remote evaluation — =valhich extends
the Core language of Chapfer 2 with site names, recursive expressions and primitives
for initiating the remote evaluation of expressions.
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4.2.1 Abstract syntax

As in Mobile-A from Chapter]3, all functions are labelled. A predefined collection of
site names is available for rEvalexpressions to specify the sites in a system. Addi-
tionally, rEval-A provides two constructs for sending an expression to be evaluated at a
remote site. These are distinguished by the way in which the result of the evaluation is
handled. We provide a more detailed explanation about this in the following section.

Site names S = s1|s]...
Function labels | = Iy ]la...
Expressions e = ¢ constant
|'s site name
| X variable
| fnlx=e function abstraction
| rec' f(x) =€ recursive function
| ere function application

| if €1 then ey else €3 conditional

| letx=-epine local binding
|etope primitive operation
| reval (e1, &) ates remote evaluation
| spawn (e1,ep)ates  remote spawn

Figure 4.1: Abstract Syntax for rEval-A

4.2.2 Dynamic semantics

A system is modelled as a collection of sites where a site may host the execution of
multiple threads of control. Sites are uniquely identified by site names which are drawn
from a finite set with elements ... s, as in Chaptef]3. Values of the language consist
of basic constants, site names and functions.
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Values v = c|s|fai'x=e

We assume that each site in the system can run rkEpabgrams and provides a stan-
dard set of services. These standard services are referredibagastous valuesWe
treat ubiquitous values in rEval-as special function constants. Létbe the set of
these function constants aMlbe the set of values. We assume the existence of a
functiond from pairs of function constants and values to valdesX x V — V) which
assigns meaning to the elementdJof

The semantic definition of remote evaluation requires expressions which denote
blocked computations. We introduce the expressions of the btarekon (s, p) for this
purpose. The expressions of the dynamic semantics include blocked expressions as
well as expressions of the forms which are presented in F[gure 4.1.

Evaluation rules A system stat&is represented as a set of tuples writtefi(a9) :
el. Atuple[(s,p) : € represents a procegsat sites which is currently executing the
expressiore. The notationS(s, p) : €] is used to denote the s8U[(s,p) : €. To
simplify presentation we assume that expressions do not contain free variables.

Definition 4.1 (Well-formed states). A system stat&is well-formed if for all[(s, p) :
€] € Sthe following hold:

e FV(e)=0; and
o if [(S,p): € € Sand[(s,p): € € § thene=¢.

A single step transition from sta®to stateS is represented by a judgement of the
form S-2.S. The annotatiora on the arrow records the flow of control during the
transition. The type systems we present in the following sections estimate the func-
tions called by a program. By making function calls observable in the semantics in
the form of annotations, we prepare the ground for proving the soundness of our type
systems in the later sections.

Actions a = ¢ no function call
| lI@s call functionl at sites
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Rules of Figure 4.2] These rules are similar to the evaluation rules we have presented
for the Core and the sequential subset of MoBileFhe only rule which appears for
the first time is the rule (rec) for recursive functions. It shows the one step unfolding
of a recursive function. Note that the label of the recursive function is carried over to
the function abstraction which is obtained by the unfolding.

The way we model ubiquitous values requires us to consider a fourth case for
application rules where the first expression is a function conséaatdv) such that
S(s,p):c \/]C—@S> (s,p) : 8(c,v)] if cis a function which represents a ubiquitous value.
We use the function constant as a label in the annotation.

Rules of Figure 43 The evaluation rules which involve distributed computation are
different from the evaluation rules we have considered so far. There are five rules
concerning a remote evaluation expression. The first three of these rules, (reval-1)
to (reval-3), serve the purpose of specifying the evaluation order; subexpressions are
evaluated in left-to-right order as is the case for all forms of expressions. Once all the
subexpressions are fully evaluated, the evaluation can proceed only if the first expres-
sion is a function and the third one is a site name.

Before explaining the rule (reval-4), we need to clarify what an intermediate ex-
pression of the fornblockon (s, p) represents. Intermediate expressions of this form
are introduced to capture suspended computations. For example, th&&ate
blockon (S, p')] indicates that the evaluation of procgsst sites is waiting for the
value which will be returned by the procegsat sites'. The rule (reval-4) shows that
the function body is sent for evaluation at the specified site with the value of the second
expression used as the actual argument. This causes the evaluation at the sending site
to enter a blocked state. The rule (reval-5) shows that the evaluation can only resume
when the computation at the remote evaluation site returns a value. This value is taken
to be the value of the blocked expression. Note that our dynamic semantics abstracts
from how the communication between two remote sites occurs. The only observable
action is the function call at the remote site. We assume that a new process is gener-
ated each time a remote evaluation is initiated. It is implicit in our rules that dynamic
generation of processes at the local site is a special case of the remote evaluation where
s=5s.
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(rec)

(app-1)

(app-2)

(app-3)

(app-4)

(op-1)

(op-2)

(op-3)

(if-1)

(if-2)

(if-3)

(let-1)

(let-2)

Si(s.p) : rec (x) = €--9(s,p) : fn' x = e{ (rec' f (x) = €)/f}]

Si(s,p) : 1] —-S(s.p) : €]

s.p):ere]—-S[(s,p) : € e

Si(s,p) : &2]—-S(s.p) : €

sp):vel-S[(sp):ve)
Si(s.p) : (fn'x = €)v]'B3S((s, p) : {v/x}]
Si(s. p) : V| 2&S((s. p) : 3(c, V)]

Si(s.p) &) - S[(s.p) : €]

p):erope] — S[(s,p): € op e

Sl(s,p) 1 e2] = S[(s.p) : &

Si(s,p):vope] = S(s,p):vopg)
S(s,p) : vi0p W] £, S(s, p) : V] wherev = v;0pvy

Si(s.p) &) - S[(s.p) : €]

p) : if ejthen € else €3] —— S|(s, p) : if € then €; else €3]
S(s,p) : if true then &; else &3] £, S(s,p): e

S(s, p) : if false then e, else €3] £, S(s,p) : e3)

Si(s,p) : ea]—-S[(s.p) : €]

Si(s,p) : let x=eyin ] —-S|(s,p) : let x= €, in &)

S(s,p) : let x=Vvin &]-25S(s. p) : e2{v/x}]

Figure 4.2: Sequential Evaluation Rules
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The evaluation of remote spawn expressions is similar except that the expression
which initiates the evaluation at a remote site does not wait for the result to be sent
back to it; it returns a unit value immediately. This implies that spawn expressions
would typically be used for their side effects.

4.2.3 Examples

In this section we present three examples of small rRvatograms. The first one
illustrates the use of the remote evaluation facility for a simple but useful purpose.
The second example illustrates that an improper use of the remote evaluation facility
can lead to undesirable exploitation of processing power. The third example illustrates
that the application of some functions can cause a quick growth in the number of
subsequent function calls.

Example 4.1. We assume thagetTime is a ubiquitous function which takes a unit
argument. An expression which returns the local time at a remotelsiian be coded
in rEval-A as follows.

e= let remoteTime = fnl x = reval(getTime, ()) at x

in  remoteTimesl

Example 4.2. If thisHost is a ubiquitous function which returns the name of the site
where the program is currently running, the evaluation of the following expression at
sitesO would trigger repeated invocations ©0bn sitessO andsl. Note that the effect

of this expression can be likened to that of the PLAN functiorg_pong presented in
Section411.

e= let f=rec'f(x) = spawn(f,thisHost()) at x
in fsl

Example 4.3. The functiontwice is a higher-order function which takes two argu-
ments, the first of which is a function. The full evaluationtefce results in its first
argument being applied twice, once to its second argument and once to the result of its
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(reval-1)

(reval-2)

(reval-3)

(reval-4)

(reval-5)

(spawn-1)

(spawn-2)

(spawn-3)

(spawn-4)

Si(s,p) : ex]—-S(s.p) : €]

S((s,p) : reval (ey, ) at €3] —S|(s, p) : reval (€, &) at €3]

Si(s,p) : 2] —-S(s.p) : &)

S((s, p) : reval (v, &) at €3] —S|(s, p) : reval (v, €,) at €3]

Si(s,p) : 5] —-S(s.p) : €

S((s, p) : reval (vi, V) at €3] —S|(s, p) : reval (v1,V7) at €]

S((s,p) : reval ((fn' x = €),v) ats]'%S

Si(s, p) : blockon (s, pP)][(S, p') : e{v/x}] wherep’ new ats

S{(s,p) : blockon (8, p)][(S, P) : VI-=S{(s,p) : V]

Si(s.p) : &1 —-S[(s,p) : €]

(s, p) : spawn (&1, &) at &3] ——S|(s, p) : spawn (€, &) at €]

Si(s,p) : &2]—S[(s.p) : €]

(s, p) : spawn (v, &) at &3] ——S(s, p) : spawn (V, &) at €3]

Si(s,p) : 5] —S(s.p) : €]

(s, p) : spawn (v1,V2) at &3] ——S(s, p) : spawn (V1, Vo) at €]

Si(s,p) : spawn((fn' x = €),v) ats)] &5

S((s,p): O][(s,p) : e{v/x}] wherep’ new ats

Figure 4.3: Distributed Evaluation Rules
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application to the second argument. The code presented below shows that the appli-
cation oftwice to the functionf3 and() gives rise to several nested applications of the
functionsf3, f2 andf1.

e= let twice= fn'lf = fnl2x = f(f(x))
in et fl=fn%x= ()
in let 2= fnl4x = twice f1x
in let f3 =fn'5x = twice f2x
in twice 3 ()

4.3 A Monomorphic type system

It would be possible to obtain a monomorphic type system for r&w@mply by ex-
tending the basic types of the Core language with a type for site names. However, we
do not only want to design a type system which enjoys a soundness property but also
to be able to exploit types for distributed call-tracking.

4.3.1 Semantic objects

The idea of enriching types with annotations for static estimation purposes has already
appeared in Chapt€r 3. The type systems of this chapter build on similar intuitions.
The values which are of interest to the problem in hand are determined and expres-
sions which yield these kinds of values are labelled. The type system then examines a
program collecting information about its possible behaviours. This is achieved through
incorporating labels into types as annotations.

The values of interest for distributed call-tracking analysis are functions and sites.
Therefore, we annotate function and site types only. If an expression has a site type in
our system, the annotation of its type estimates the site hames which can result from
evaluating this expression. If an expression has a function type, the annotation of its
type estimates the functions which may be called during its evaluation.

Site annotations are sets of site names. Flow annotations are sets whose elements
can be function labels or located labels of the fo@s. A function label stands for a
function which is called at the current site and an annotation of the fb@s} is used
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to represent the invocation of the function with labelt the sites. Flow annotations
can be merged by set union.

Site annotations S 0| {s}|S1US82
o{l}[{l@s} | F1UF2

unit | int | bool | sited | T15—r>T2

Flow annotations ¥

Types T

The only other objects used by our type system are type environments which are de-
fined as finite maps from variables to types.:& [X1 — T1,... Xy — Tp]). The notation

I'[x — 1] is used for adding elememtto the environmenk, overriding the existing
binding if x is already in the domain df. We assume that the types of the ubiquitous
values are present in the initial type environment.

4.3.2 Typing rules

Our type system for rEval- assigns a typ€t) and a flow annotatiori¥) to each
expression. A judgement of the form- e: 1, ¥ states that an expression has type
T and induces a flow represented fywherel contains the assumptions about the
types of free variables a&. The judgements of this type system can be compared to
the judgements of the forint- e: 1,k from Chaptef]3. In that system we estimated the
possible communication effeckswhich may be incurred by an expression in much
the same way as we are estimating the possible function €alls the current type
system.

The typing rules presented in Figure]4.4 are mostly self-explanatory. The rule (site)
for typing site names ensures that the annotation of the type of a site name includes the
site name itself. This provides the means for tracing site names in the static semantics.

The typing rule (fn) requires that the label of a function is included in its type as
an element of its flow annotation along with the flow annotation derived for the body
of the function. By inspecting the rule (app) for function applications we can see how
these annotations are exploited. When a function is applied as a part of the evaluation
of an expression, it is guaranteed that the flow annotation derived for the expression
will include the label of the applied function.
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While presenting the dynamic semantics we stated that a remote evaluation can
take place only if the first expression evaluates to a function. The typing rule (reval)
ensures that this condition is met. Since the value of the second expression is used as
an argument to the function during its remote evaluation, the typing rule also requires
that its type is identical to the argument type of the function. The value of the third
expression is used to specify the destination for evaluation. Therefore, the typing rule
forces its type to be a site type. We capture the fact that the function is to be evaluated
at the specified site through associating the elementg wfith elements of the site
annotation$ according to Definitiof 4]2. The typing epawn expressions follows
the same principle. Finally, the typing rule (subs) allows a flow annotaficio be
replaced by another ong’ if ¥’ is at least as large g5.

Definition 4.2 (Flat).

0 if F=00rs5=0

{l@s} if 7 ={1}ands = {s}
Flat(F,S5) = ¢ {I@s} UFlat({l},5") if 7 ={1}ands={sjus’

{l@s} if ¥ ={@s}

Flat(#',S)UFlat(¥",8) if F =F uF”

The fifth clause of Definitiof 4.2 expresses the fact that if a function body embodies
nested remote evaluations, it is the innermost layer which determines the site of the
function call. Consider, for example, a functibwith flow annotationf = {lo, |1 @s}
meaning that the functioihhas labelg and embodies a call to a function with labght

s. If the type system estimatgsto be the call site of, the application of Definitioh 4.2

to the pair( F,s) would yield {lo@s,11@s} wheresis retained as the call site bf.

4.3.3 Examples
We now discuss which types can be assigned by our type system to the examples of

Section™Z713.

Revisiting Example 4[I] Let us assume that the functigretTime is a ubiquitous
function and the typing takes place with respect to the initial type environiment



Chapter 4. Distributed Call-Tracking

(con)

(site)

(var)

(fn)

(rec)

(app)

(op)

(if)

(let)

(reval)

(spawn)

(subs)

FE():unit,0 MF=n:int,0

I true : bool,® T I false: bool,0
MNes: site5,(7) wherese §
Me=x:r(x),0

Mx—1tkFe: 1T, F

Fan'X:e:TMT’,m

F

Fx—1[f—1>T1t]Fe: T, F

rkrec'f(x):>e:T£>T’,(l)

I'l—el:rir’,f’ Nr-e:t, 7’

MFee: U, FUF UF”

fFer:1,F TrFe:t, ¥ Op:(T*T)gT/

r-eope: v, 7FUug’

FFe:bool,F TrFe:t,F TrFe:t,F”

I+if etthenevelsees: T, FUF UF”

rFe:t,7 Mx—tke:t, ¥

MEletx=eine U, FUF'

e 1Lt 7 The:tF Thes: siteS, §”

[+ reval (e, &)ates: U, F'UF"UF" UFlat(F,S)

I'r—el:TZT’,T’ MNe:1,F7" Fl—eg:siteS,T”’

[+ spawn (e1,&)ates : unit, F'U F" U F" UFlat(F,S)

rce:t,7 FC¥

r-e:t, 7'

Figure 4.4: Monomorphic Typing Rules for rEval-A
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| . . .
whererl (getTime) = unitg}int. The following types can be derived for the function
remoteTime and the expressioa

lLlg@sl} .
e I I remoteTime : site{St) ﬂ int,0

o [e:int, {l,Ig@sl}

The flow annotation derived f@exposes that the evaluationextan cause the function
with labell to be called at the current site and the function with lagethat is function
getTime, to be called at sitel.

Revisiting Example 4[27] Let us assume thahisHost is a ubiquitous function and

| . . .
[ (thisHost) = unit Wsite (S The following types can be derived for the recursive
functionf and the expressioa

{It,| @0, @sL,l; @s0,lt @s1} "

o I f:sitel0s} nit, 0

o [+ e:unit, {l,| @0, @s1, l; @0, | @s1}

The argument type of functiof reveals that the actual arguments to functfoat
runtime may be eithes0 or s1. The flow annotation derived fa¥ indicates that the
function with labell; can be called at the site where the type checking has taken place
and the functions with labdlandl; can also be called at a site estimated by the set
{s0,sl1}. The fact that the evaluation of a recursive function may span two sites could
be considered as potentially dangerous for certain systems.

Revisiting Example 4[37] The following types can be derived for the expressamd
the functions embodied by it where = {I1,12,13,14,l5}. The initial type environment
has no bearing upon the typing in this case.

o [ twice: (unitiunit)%}unitiunit,ﬂ

o MHfl: (unitiunit),ﬂ)

wherel’ = I"[twice — (unitiunit) — unit=unit

o MEf2: (unitZunit),f

wherel” =T"[fl — (unitiunit)]
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o 13 (unitiunit),f

wherer” = [[2 — (unitLunit)]

e [Fe:unit,F

The flow annotation derived foe rightly expresses that the evaluation efvould
cause all the functions in the code to be invoked. The types of the fundiipsf3
are identical because they are all passed as an argument to the fumdétanlIf a
higher-degree of precision is required then a modification of the type system becomes
necessary. In Sectign #.4 we propose a more complex type system which improves
upon the monomorphic type system in terms of expressiveness and precision.

4.3.4 Formal properties

One of the properties we prove about our type system is its consistency with the dy-

namic semantics. This involves showing that types are preserved under transitions of
the system and that flow annotations are consistent with the annotations of the dynamic
semantics.

Types for blocked expressions Showing a type preservation property requires us
to be able to derive types for all forms of intermediate expressions. We introduce
the following typing rule for blocked expressions in addition to the typing rules of

Figure[4.4.

Jelrte:1,F Flat(F,{s})C ¥’
[ F blockon (s,p) : T, F'

The witness for expressioain this rule, will typically be the expression which is
triggered by a remote evaluation or spawning of a function assiteorder to accom-
modate this, we allow’ to be larger thaifrlat( F, {s}).

Consistency The annotations on the dynamic evaluation rules represent function
calls. The flow annotations used in the type system are meant to be static estimates of
these actions.
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If a well-typed expression is reduced to another expression in a single step, the
resulting expression must also be an expression of the same type. The first part of
the consistency theorem below proves that this is indeed the case. This property is a
precondition for ensuring that the evaluation of an expression in multiple steps yields
a value of the expected type.

We also need to show that the function call behaviour incurred by the evaluation
at run-time is estimated by the flow annotation assigned to the expression in the sense
defined above. If a well-typed expressereduces to another expressiby possibly
calling a function represented lay the flow annotation oé must estimate. This is
proved by the second part of the consistency theorem.

Theorem 4.1 (Consistency).Let e be a closed expression which is evaluated atssite
in the system. Assum§i(s,p) : € —-S|[(s,p): €] andl -e: 1, 7. Thenl +¢€ : T, F
and eithela= € ora € Flat(F,{s}).

Proof. The proof is given by induction on the depth of the derivationSgs, p) :
e-2S[(s,p) : €]. It refers to Lemma 4l1. Two selected cases are given in the Ap-
pendix. Note that we can assume that the non-structural (subs) rule is used after every
structural rule and nowhere else. Any derivation treelfére: t, ¥ can be trans-
formed into a derivation tree where we use the rule (subs) after every structural rule.
By transitivity of the subset relatiofi on sets we can eliminate multiple applications

of the (subs) rule and consider it as a single application of the rule. We appeal to the
lemma presented below in our proof. O

Lemma 4.1 (Expression substitution).If I'[x+— 1]-e: T, F andl - € : 1,0. Then
r-e{e/x}: v, F.

Proof. The proof is by induction on the depth of the typing derivation. O

Minimum types  Given an expressio@aand an initial type environmefht, there may

be zero, one or multiple typing derivations which conform to the typing rules of our
system. This is mainly due to the possibility of deriving annotations which are larger
than strictly necessary. Since flow annotations are sets the we use set size as the mea-
sure of size for a flow annotation. The precision of estimation increases as the size of
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annotations decreases. Therefore, the notidmest typecoincides with the notion of
minimum typewhich is the type with the smallest annotation.

Definition 4.3 (Ordering T on types).

basic types TC T if Tisint,unit or bool

sites sited C siteS, if sCS’

functions rlirz C T’lir’z if tyCtjandt; Ct,andF C F'
We note that the orderingc can be extended to type environments in a pointwise
manner with[ ] C T

Definition 4.4 (Annotation erasure (.])). The operatiori.| is defined on annotated
types. It erases all the annotations on the types and yields a simple (non-annotated)
type. The definition of . | extends to type environments such thiag(x) = | (x)] for

everyx in the domain of".

Proposition 4.1 (Minimum types). Let | be a non-empty set of indices adde the
set of possible typing judgements for an expressidefined as follows:

J={Mre:t, 7' |iel, ] =[rK,[tl] = |1 forall pairsj ke l}

Then there exists a minimum elementXfwritten asr il - e: Mt,M%, such that for
alli €1 itis the case thatr C I andrit C T andrn ¥ C Ti.

Proof. The proof is given by induction on the depth of the typing derivationefor
We present the proof for the selected cases in the Appendix. The proof method is an
adaptation of that presented INJNNH99D]. O

4.4 A Polymorphic type system

In this section we present a type system which can be distinguished from the type
system of the previous chapter in two main respects. Firstly, it allows types to be para-
metric in their flow annotations. Secondly, the form of flow annotations are modified
to be able to expose the multiplicity of function calls.
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We assume familiarity with the basic concepts and definitions regarding polymor-
phic type systems as we have already presented one such type system in Qhapter 3.
The definitions of type substitution and type generalization can be adapted to the type
system of this section by replacing communication effects with flow annotations.

4.4.1 Semantic objects

In our polymorphic type system we continue to use sets as site annotations. The crucial
extension is that it is now possible to have site types with variable annotations. The
meta-variable ranges over site name variables.

Flow annotations are multisets. The annotatfbis used to denote the absence
of a function call. Function labels and annotations of the f¢h@s} are used in a
similar fashion to their counterparts in the monomorphic type system. Parametricity
of flow annotations is supported though the incorporation of flow annotation variables
into types. The meta-variabigranges over flow annotation variables.

An annotation of the formec @.F represents a call to a recursive function with
labell that exhibits the function call behavio@f. The recursive nature of the call is
captured by the fact that the varialgjenay appear free irf . The operatotJ is used
to denote multiset union.

Site annotations § = 0| {s} | S1US>

Flow annotations F == 0| {I} | {I@s} | {rec' @.F} | {rec' 9. F @s}
| F1U T2

Types T = unit|int| bool | sited | rlirz

Type schemes o = VpQI

Type environments are finite maps from variables to type schemes as in Jhapter 3.

4.4.2 Typing rules

The typing rules for the polymorphic type system are presented in Figure 4.5. They
are similar to those of the monomorphic type system. We replace sets with multisets
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and set union with multiset union. Replacing sets with multisets improves upon the
monomorphic type system in that it allows us to trace how many times a function is
called. For example, the sélt} which can only express the possibility of a call to the
function with labell can be contrasted with the multisgt|} which expresses that it
may be called twice.

The typing rules for constants and variables are straightforward. The typing rule
(fn) for functions adds to the label of the function the flow annotation derived from the
function body. Recursive expressions are assigned types with recursive flow annota-
tions by the rule (rec).

Conditional expressions are typed with respect to the rule (if). The type of a condi-
tional expression is the same as the type of its branches. However, its flow annotation
is the union of those of its subexpressions. This gives a rather crude approximation
of the actual function call behaviour. A more sophisticated type system such as that
of [NN94] could be designed by allowing flow annotations to represent choice via the
combinator+. In that case we would assign the flow annotatipru (' + ") to
the conditional expression. We have, however, chosen to keep the types as simple as
possible at the expense of precision. Our main concern in this section is to introduce
an approach of incorporating polymorphism to the monomorphic type system of the
previous section.

The (let) rule is where the type generalization occurs in a typing derivation. The
annotation variables which appear in a type are generalized only if they do not appear
free in the typing environment and the flow annotation derived for the expression.

In the typing rules (reval) and (spawn) we use a flattening operation which is de-
fined in a similar fashion to that of the monomorphic type system. The typing rule
(subs) is an analogue of the typing rule with the same name of the monomorphic type
system. It allows replacing a flow annotation with an annotation related to itself by the
relationC defined below.

Definition 4.5 (C).

FCF ifFCH
,‘F[rec| O.F /@ C rec! 0.F
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Definition 4.6 (Flat). Let (7) be an operation defined on flow annotations such that
given a singleton it yields the element of the singleton and given a variable acts as an
identity operation.
0 if F=0o0r5=0
(F @5} if (F = {1} or F = {rec'@.9"} or ¥ = ¢)
and (S={s} orS=p)
Flat(%,8) = { {F@S'} UFlat(F,S8")  if (F ={l}or F = {rec 9.7} or F = ¢)
and$ =S US” where (§' = {s} or S’ = p)
F if F={1@s}or¥F = {rec 0.7 @s}
| Flat(F',.$) UFlat(F",$) if F =F'uF"

4.4.3 Examples

In Section[4.3]3, after presenting the rules of our monomorphic type system, we dis-
cussed which types can be assigned to the examples of SEctidn 4.2.3. We now proceed
in a similar fashion and present possible typings for the same examples.

Revisiting Example 4[I] Our assumption about the ubiquitous functgzTime re-
mains the samd; (getTime) = unlt{—g>}|nt. In the polymorphic type system it is pos-
sible to derive the following types for the functioamoteTime and the expression
e.

— 1IN

I
e [+ remoteTime : Vp.site? { t,0

o [He:int, {l,Ig@sl}

The type of the functiomemoteTime is parametric in site names. It reveals that the
function remoteSite expects a site name as an argument and invokes the function
getTime at the site which is passed as an argument to it. In our expresdiois

site happens to b€l and the variable gets instantiated tel in the flow annotation

of e. However, we note that the functieemoteTime could be used polymorphically.
Another expression in the scoperefnote Time could call it with a different site name.
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(con)

(site)

(var)

(fn)

(rec)

(app)

(op)

(let)

(reval)

(spawn)

(equiv)

FE():unit,0 TFn:int,0
I true : bool,® T I false: bool,
MNes: site5,(7) wherese §

FrMx)=0 o>t

MN=x:t,0

Mx—1tkFe: T, F

kan'x:e:er’,Q)

r | ).
Fx—1[f —1 ec—wﬂ’] Fe:t red @ F

|
rFreclf(X)éeZTMT’,O

I'l—el:rj—rﬁ/,f’ Nr-e:t, ¥’

MMee: U, FUF'UF

MrFe:T,F TrFe:T,F op:(1x1)5T

Meope: U, FUF’

FFe:bool,F Tre:t,F TrFe:tT,F”

MFifeitheneelsees: T, FUF UF"

e :t,F Fx—Genl, F,1)|Fe:T,F

Mletx=eine: T, FUF’

e 150 F The:TF" [-es:siteS, 7"

I reval (e, &)ates: U, F UF"UF" UFlat(F,S)

Me 120, The:T.7" [heyisiteS 7"

I I spawn (e1,&)ates : unit, F' U F"U F” UFlat(F,S)

Nr-e:t,¥ FC¥F

frFe:t, 7'

Figure 4.5: Polymorphic Typing Rules for rEval-A
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Revisiting Example 4[27] Let us assume thdt is the initial type environment a0
andthisHost is a ubiquitous function such thB{thisHost) = V¥p.unit-bsite(P}. Itis
possible to derive the following types for the recursive funcfiamd the expressioa

o [Ff:Vp.sitelOP rec @ {l.0@0.9@p}

o [Fe: unit,recI ¢.{lt,p@s0, p@p}

nit

The type of the recursive functidireveals thaf expects a site name as an argument.
The annotation of the site type is requested tg4i8 U p in the typing derivation. The
flow annotation shows the recursive nature of the functioifter calling the function
with labell; at the current site, it calls itself at a site estimated by th¢$BtUp. The
presence of the variabfein both the argument type and the type of the destination for
the recursive call may hint at a potentially non-terminating computation.

At first sight it may not be clear why we assign the tyjze{S"° to the parameter
of f rather than jusp. The reason is to do with the fact that we do not allow functions
to be used polymorphically within their own definition. The type of the argument is
required to be identical to the type of the result of the calhisHost and we know that
any instantiation of the result type tfisHost will have O as a part of its annotation.

Revisiting Example 4[37] In Section[4.3]3, we observed that the types of all of the
functions which were passed as an argument to the funoti@a had to be identical.

In the current type system this is no longer necessary due to the possibility of giv-
ing a polymorphic type to the functiotwice. The following are possible typings for
functionstwice, f1, f2 andf3.

o [ twice: ‘v’(p.(unitgunit){—ll>}unit Helg unit, 0
o ["Hfl: (unit z, unit),®
whereF’ = {I3} andr”’ = I twice — V@, (unit-Zunit) 1 unit 1212 yniy]

o "+ 1f2: (unit 7 unit), 0
where 7" = {l4} U{l1} U{l2} U F U F" andl” =T"'[f1 — (unit EN unit)]
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"

o "E13: (unitf—> unit), 0
where 7" = {Is U{l }U{l2} U F” U F" andr"” = I"[f2 — (unit2= unit)]
o MFe:unit, {liJu{la}uF”"uF”
This example also illustrates that using multisets as flow annotations enables us to

observe the multiplicity of functions calls. The flow annotation does not only reveal
which functions are called but also the number of times that each function is called.

4.4.4 Formal properties

In this section we prove the consistency of the dynamic semantics of Neaad the
static semantics which is based on a polymorphic type system. The technical develop-
ment is similar to that of Sectidn4_B.4.

Types for blocked expressions

Jelte:1,¥ Flat(F,{s})C F’
[ I blockon (s, p) : T, F'

This typing rule is based on a similar intuition to the typing rule for blocked expres-
sions in the monomorphic type system. Since expressions of this form arise as a conse-
guence of a function being sent to a remote site for evaluation, the remotely evaluated
function’s label must appear ifi’.

Consistency  The consistency theorem is similar to Theorem 4.1. It states that types

are preserved under transitions. It is sufficient to show that the flow annotation of the

expression produced as a result of one step is related with respect to Definition 4.5 to
the flow annotation of the expression which is being reduced. Whatever function call

might occur must be estimated by the flow annotation of the expression which goes
under reduction.

Theorem 4.2 (Consistency) Let e be a closed expression which is evaluated atssite
AssumeS[(s,p) : €] —-S|(s,p):€]andl - e:1,F. Thenl - € : 1, 7' whereF' C F
and eithela= ¢ ora € Flat(#,{s}).
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Proof. Two selected cases of the proof are given in the Appendix. The proof refers to
Lemmad412 and4.3. O]

Lemma 4.2 (Type substitution). If I Fe: 1, F thenOrl' - e: 61,04 for any substitu-
tion 6.

Lemma 4.3 (Expression substitution).If I'[x+— Gen[l,0,1)]Fe: T, F andl+¢€ :
1,0thenl - e{e /x}T', F.

4.5 Concluding remarks

When we introduced the term distributed call-tracking analysis, we mentioned that
the idea of using type systems for estimating which functions are called during the
execution of a program is not novel. Type systems for call-tracking analysis have
already been investigated within the context of higher-order sequential functional lan-
guages([Hei95, T.J92]. The novelty of our work lies in the fact that our type systems
account for the presence of different localities in a system. The invocation of a function
at one site is distinguished from its invocation at another site.

Types as interface descriptions Our work also draws attention to the important role
played by types as concise descriptions of programs. In a functional language such as
rEval-A the type of a function serves as its interface description which tells how it
should be used, which other functions it may call and which sites its evaluation may
span. In a security-sensitive system such descriptions generated by credible sources
would be useful not only for automated tools that rely on this information but for users
who wish to use services developed by other parties.

Types and termination analysis We have pointed out the connection between ter-
mination of programs and security threats caused by denial of service. This suggests
that static termination analyses could be exploited for strengthening the security prop-
erties of a language. An approach based on types for termination analysis has been
studied in INN96a]. This work focuses on a higher-order functional language with
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algebraic datatypes. The main idea is to check by means of types whether the size of
arguments to recursive calls decreases as the computation evolves. It requires defin-
ing a well-founded partial order for the data types which may be passed as arguments
to functions. The applicability of this work in the framework of a language such as
rEval-A would be an interesting subject for future research. However, the work pre-
sented in this chapter is not aimed at termination analysis in particular.

Types and resource bounds  We have suggested that one of the application areas of
distributed-call tracking could be execution time analysis. This relates our work to the
line of related research on using type systems for estimating the time-complexity of
programs[DJG9Z, RG94]. A polymorphic type system which estimates the execution
time of expressions in a functional language has been presented in [DJG92]. In this
type system function types carry as annotation the estimated number of clock ticks
for the execution of a function. The time required for the execution of an expression
is derived in a compositional manner, by algebraic manipulations of the estimated
time for the execution of its subexpressions. Types of recursive functions have an
annotation of a special form which states that the execution may take an arbitrarily
long time. The time estimates are suggested to be useful for determining where the
code optimization effort should be concentrated and when it is worthwhile to exploit
parallelizing the execution of a program on multiprocessors. More recently, some
authors have pointed out the potential benefits of using type systems for specifying
and certifying resource bounds such as bounds on running fime [CWO0O0]. A decidable
type system for a functional language has been presented in J[CW00]. Our work shares
its motivation with these works. However, distributed-call tracking can be of interest
for reasons other than execution time estimation because it provides information about
the identities of functions and their call sites.

Using type systems to guarantee resource bounds on space consumption of func-
tional languages has also been of interest to several authors JHof00, HP99]. A possible
direction of future work could be to extend the language rBvalith inductively de-
fined datatypes such as lists and language constructs for manipulating these. It would
then be possible to investigate variants of the type systems of this chapter to estimate
the space consumption of programs at different sites within a system.
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Alternative forms of remote evaluation The support for remote evaluation is a char-
acteristic feature of the language rEvalExpressions can be sent for evaluation at a
remote site in the distributed system and the sender blocks until the result is returned
back to it by the site which has computed the result. It can be possible to adopt a
more flexible remote evaluation model for rEvalwhich is inspired by the mecha-

nism of futures [Hai85]. After initiating a remote evaluation the sender can resume
its computation until an attempt is made to use the result of the remotely evaluated
expression. We believe that the ideas and techniques presented in this chapter would
also be applicable to tackle the problem of distributed-call tracking analysis for such a
language.



Chapter 5
Confined Mobile Functions

It is becoming increasingly common for distributed systems to bring together com-
puting devices of different processing power, software provided by different sources
and information with different secrecy and integrity requirements. Moreover, the users
which interact with the system may be of different trust levels.

The ability to distribute computation among different sites is desirable because it
enables effective exploitation of the resources in a system. However, in the absence
of appropriate protection mechanisms it may also lead to uncontrolled use of these
resources and undesirable information flows. It is important that applications be de-
signed with concern for meeting the security requirements of the system.

The aim of this chapter is to introduce a language mechanism which gives program-
mers a means to control the distribution of computation and the flow of information
throughout the system. We consider a simple programming language — Cokfined-
— which allows programmers to declarermbility regionfor the services and the in-
formation they provide. The mobility region of an entity determines the subsystem
in which it can flow freely. We propose a static type system for our language which
enforces the property calletbnfinement in a mobility regionThis property guaran-
tees that the entities created and manipulated by well-typed Cor¥ipeagrams will
remain within their specified mobility regions at run-time.

96



Chapter 5. Confined Mobile Functions 97

5.1 Why restrict mobility?

Before introducing the language Confinkdx detail we discuss why a property such

as confinement in a mobility region could be of interest to programmers. For the
purposes of this section it is sufficient to note that the language Corfinesembles
Mobile-A from Chaptef]3. It supports channel-based communication where values of
all types can be communicated on channels. In an application based on the design
paradigm of code on demand [FPV98], services would be implemented as functions
and the requesters would access these functions by retrieving them over a channel.

The motivation for controlling the mobility of a basic value would typically be
security related. For example, if an integer represents a personal identification number
(PIN) for accessing a particular account, its mobility should be restricted to a part of
the system which harbours as observers only the authorized users of that account. In
a language such as Confingda natural way to realize this would be to associate a
group of users with the integer upon its creation.

Functions are different from basic values because they are not passive values which
are simply passed around. They abstract a behaviour which becomes activated when
the function is applied. The authors may want to constrain the mobility of functions
due to performance and security reasons. For example, a function may be using the
resources of the system intensively to perform its task. To ensure that the performance
of the system is not adversely affected, it would be reasonable to restrict the use of this
function to those sites which have sufficient computational resources. Note that such
a restriction would also be useful in preventing denial of service within the system.
Likewise, it would be desirable to restrict the use of a function which returns private
information about a particular user to a part of the system in which all the observers
are eligible to obtain this information.

Channels provide the only means of establishing connections between remote sites
when computing with Confinedl: The desired level of connectivity within the system
influences the policy on the mobility of channels. On the other hand, channels are
instrumental in communicating information within the system. Acquiring a channel
implies acquiring the right to input or output on that channel. The policy about the
mobility of channels needs to be in accordance with the policy about the mobility of
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the values it can communicate.

5.2 Computing with mobility regions

5.2.1 System model

Throughout this chapter we consider computation in a multi-site system in which
each site has a uniqgue name drawn from a finite set of site n8mefs | 1 <i <
size of the systefn Each site is controlled by a particular user who both provides the
code and observes the results of the computation at that site. This implies that a site
name also identifies a user; the observation of a value at a particular site or the ob-
servation of a value by a particular user are essentially the same concepts. The same
holds for the origination of code at a particular site and the origination of code by a
particular user.

A program consists of multiple expressions, one for each site participating in the
computation. Each expression is type checked by a trusted Corifinedpiler and
the program is allowed to execute only if all of the expressions are well-typed.

ObservablesWe say that a value is observable at a given siggif the computation
returnsv at sites, or v appears at sits as an intermediate step in the computation.
According to this definition, a value could be observable at sitethrough being
received over a channel at any point in the computation or through being contained in
the code of a function which is receivedsat

5.2.2 Mobility regions

As we discussed above, our approach is to give users full control over the flow of
values which are created by the code written by them. Let us now consider a system
which consists of just four sites with the names given in theSset{s;, s, s3,54} and
suppose that the user at s#eprovides the code for a servi€ewhich requires exten-

sive processing power argg is known to be equipped with a less powerful processor.

It is reasonable fog; to restrict the use of only to s, andsz besides itself. On the
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other hand, a servid® may be carrying out a simple operation which does not demand
much processing power but may return a value which the usgmatnts to keep secret
from sz. In this case( should not be allowed to run as.

We define a mobility region as a non-empty subset of the sites in the system. If
we consider the above system with site names drawn 8asny non-empty subset of
Sis a valid mobility region. From the security perspective, mobility regions are used
to declare a web of trust among a group of sites. Information which is required to be
confined to a particular mobility region= {s1,5,S3} may be observed at any site
within r but it should not be observed at any site outside

Continuing this exampleM; = {s1,%,S3} andM, = {s1,%, 54} are the mobility
regions which would be assigned to servieeandG respectivelyF can visits;, S, S3
but notss. G can visits;, Sy, &4 but notss.

|
: — — — — mobility region forF
|

mobility region forG

Ordering on mobility regions Mobility regions can be interpreted as secrecy levels
where the subset relation on mobility regions gives rise to an ordering on secrecy levels.
Suppose thaL is an ordering on secrecy levels where we wAtE B if B indicates

a higher secrecy level thak Then the statements C r, andr, C rp are equivalent.

Note that by using mobility regions it would be possible to express as many secrecy
levels as there are non-empty subsets of the site names in a system.

5.3 Confined- A

The language Confinealis similar to MobileA in that it extends the Core language
with primitives for communication between remote sites. We omit the conditional
expressions because they do not have any significance with regard to the problem con-
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sidered in this chapter. Their operational meaning and typing would have been similar
to those found in the languages of the previous chapters.

5.3.1 Abstract syntax

In ConfinedA canonical expressions and channel allocation expressions are annotated
with mobility regions. It is by means of these annotations that programmers specify
the constraints on the mobility of values created by their programs.

Site names S T s |s|...

Mobility regions r == {s}|riUrz

Expressions e = o constant
| X variable
|fafx=e function abstraction
| ereo function application

| if €1 then ey else @3 conditional

| letx=erine local binding
|etope primitive operation
| chan'() channel allocation
| erler send

| e? receive

Figure 5.1: Abstract Syntax for Confined-A

5.3.2 Dynamic semantics

Canonical expressions, that is the expressions which cannot be further evaluated, de-
note values of the language Confinkd-
Values v = OF K ffx=e

We assume that a channel identifier is represented by a tuple which includes the iden-
tifier of the site it is created at and an integer which is freshly generated each time a
new channel is allocated at a site.
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Definition 5.1 (Lg). FunctionlLy is defined on values of the language. It yields the
label of a given value which denotes its mobility region.

La(ON) =r Lg)=r Lgk=r Ly(fnf'x=e)=r

Evaluation rules  The evaluation rules of Figufe 5.2 are defined in a similar style to
those of the previous chapters. In the rule (op-3) for basic operatisre basic value
obtained by applying operatia@p to v; andv,. We implicitly assume that ifq(v1) =r
andLq(v2) = r’ andv = vy opv, thenLq(v) =rnr’.

5.3.3 Examples

In Section[52 we introduced mobility regions as a useful device for programmers to
specify how they wish to constrain the flow of values. In the next section we will
present a set of typing rules, which forces the values to be confined to their specified
mobility regions. These typing rules prevent region violations where we use the phrase
region violationto refer to the observability of a value outside its specified mobility
region. Our aim here is to give the intuition behind our typing rules by illustrating
major sources of region violations through simple examples.

Example 1: Region violation due to uncontrolled use of channels In the follow-

ing exampleA is the creation site for two values: channkAC intended for commu-
nication between site& and C and functionf which is allowed to roam freely. The
function f forwards the input value back to sifeby using the channelhAC in its
closure. When executed, the expressioA aiill sendf to C on a previously allocated
channelchTop which is known to botA andC. It will then start listening orthAC.

We use ; here as a shorthand for sequencing. It can easily be encoded in the syntax of
ConfinedA.

On the other hand, the execution of the expressidaill cause an integer to be
computed and sent G overchBC. Note that we assumehBC to be a channel with
mobility region{B,C}. The annotation of the created value shows us that the author
of the code aB wishes to restrict the observability of this valueBandC. This wish,
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(app-1)

(app-2)

(app-3)

(let-1)

(let-2)

(op-1)

(op-2)

(op-3)

(chan)

(send-1)

(send-2)

(receive)

(com)

Cl,P[s:

e — Cl',P[s: €]

Cl,P[s:

Cl,P[s:

ere] — ClI',P'[s: € e

e — Cl',P[s: &)

Cl,P[s:

Cl,P[s:

Cl,P[s:

ve] — CI',P'[s: vé)]
(faf x = e)v] — CI,P[s: e{v/x}]

e — Cl',P[s: €]

Cl,P[s:

Cl,P[s:

Cl,P[s:

let x=ejiney] — CI',P'[s: let x=€]iney]

let Xx=Vinep] — CI,P[s: ex{Vv/x}]

e — Cl',P[s: €]

Cl, Pleg

Cl,P[s:

ope] — CI',P'[s: €, op e

e — Cl',P[s: &)

Cl,P[s:

Cl,P[s:

Cl,P[s:

Cl,P[s:

vope] — Cl',P[s:vopé§)]
vi 0p w| — CI,P[s: V] wherev=vj op Vs
chan" ()] — CIUK",P[s: k'] wherek' ¢ CI

e — Cl',P[s: €]

Cl,P[s:

Cl,P[s:

elle] — Cl',P[s: € !e)]

e] — Cl',P'[s: €)]

Cl,P[s:

Cl,P[s:

kK'ley] — CI',P/[s: K1)

el — Cl',P[s: €]

Cl,P[s:

Cl,P[s;

e? — ClI',P[s: €7

K'1V][sp: K'7 — CILP[s1 : ()][s2: V]

Figure 5.2: Evaluation Rules
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however, will not come true as the execution of the expressiGmall causesecretBC
to be received a€ and be subsequently sentAcas the result of application défto
secretBC.

A: let chAC = chan{AC}()
in letf=fn{ABClx = chAC!x
in  chTop!f; (chAC?)

B: letsecretBC =...{BC}
in chBC!secretBC

C: let f'=(chTop?)
in leta=(chBC?)

inf’ a

Our approach in preventing violations such as this is to require the mobility region of
a channel and that of the value it communicates to be identical. In our example, this
would prevensecretBC from being sent ovethAC.

Example 2: Region violation due to escaping values In this example A is the
origination site for functiorf which will be sent tdB when the expression is executed.
However, when applied &, f will return a value which was originally intended to
remain atA.

A: letf=tnlAB() = A
in chAB!f

B: (chAB?)()

Violations such as this can be prevented by requiring the mobility region of the result
of a function to be at least as large as that of the function itself.

Example 3: Region violation due to remotely created values The functionf be-
low, which is allowed to be mobile betwee&nand B, contains a channel allocation
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expression. The annotation shows us that this channel is intended to be used between
A andC. However, when the function is appliedBtthe channel will be created Bt
According to our definition in Section 5.2.1, this will cause the values transmitted on
this channel to be observablekat

A: letf=£nlAB() = let chAC = chanfACH()
in...

in chAB!f

B: (chAB?)()

The problem here arises from the fact that functions are abstractions; the code enclosed
by the function may be executed at a site which is different from the one where the
function was created. Region violations due to this fact may be prevented by requiring
the mobility region of the values created by the function to be a superset of all the sites
where the function may be applied.

Example 4: Region violation due to transmission within a closure The functionf

below refers to the integaecretint which is present in its definition environment. The
annotation shows us that this integer is intended to remafn &towever, according

to the dynamic semantics presented in Sedtion]5.3.2, when the expression is executed
secretInt will be substituted in the code éfand transmitted t&.

A let secretint = .. (A}
in let f = £n{ABH() = ..
(x+ do something witkecretInt * x)
in chAB!f

B: (chAB?) ()

To prevent region violations of this sort we need to address the dependency between the
mobility region of a function and the values which occur in its definition environment.
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5.4 Type system

The property called confinement in a mobility region was motivated in the preceding
sections. The purpose of the type system presented in this section is to enforce that
property. According to our system model, each site participating in the distributed
computation provides an expression which is well-formed according to the syntax pre-
sented in Section 5.3. This expression is then analyzed to check whether it is well-
formed with respect to the rules of the type system given in Figuie 5.4. We discuss
these typing rules in detail in Sectipn 5]4.2.

5.4.1 Semantic objects

The types of our system are pairs. The first component of the pair is a type in the con-
ventional sense whereas the second component is used to record the mobility region.
A type environment is a finite map from variables to types.

Mobility regions roo= {s}|riurs
Raw types T = unit|int|chanf[T] | T1—T2
Types T o= (T,r)

Definition 5.2 (Ls). Lsis a function used in typing rules to extract a mobility region
from a type so thatLg(T,r) =r.

As in previous chapters, a type environmEns defined as a finite map from variables

to types and a channel environmé€i is defined as a finite map from channel identi-
fiers to types. Channel environments are used to record the types of channels created
in the course of the evaluation. We use two forms of judgements in our type system. A
judgement of the fornt- 1 indicates that type is well-formed according to the rules
given in Figure[5]3. We say that a type environment and a channel environment are
well-formed if all of the types in their range are well-formed. A judgement of the
formr,I - e: Tindicates that the expressiertan be assigned a well-formed typat

any site within the mobility regiom, by using the typing rules of Figufe 5.4 and the
well-formed type environmerit. A distinctive point about our type system is the use

of mobility regions in typing judgements along with typing and channel environments.
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= (unit,r) F (int,r)

= (T,r) FT1 BT rCLg(T)
- (chanlt],r) F(t—T,r)

Figure 5.3: Well-formed Types

This allows us to keep track of the static estimation of the origin and the execution site
of an expression.

Definition 5.3 (Typeg). Type:g is a family of functions indexed by channel environ-
ments. It is defined on constants of the language.

Typee(()") = (unit,r) Typeg(n') = (int,r) Typeg(k') =CE(K")

5.4.2 Typing rules

The typing rules are presented in Figlire 5.4. Before looking at the rules in isolation,
it would be helpful to note the following. The mobility regionused in the context

of the judgement at the root of a typing derivation would be a singleton containing the
name of the site at which the top-level expression is type-checked.

The role of the typing rule (con) for constants is to record in the type of a constant
its specified mobility region. The side condition is used to ensure that no spurious
declarations are made. For exampjecannot create a value and declare its mobility
region to bes;. The mobility region of a value is guaranteed to include its origination
site.

The typing rule (var) is used for typing variables. The mobility region in the type of
avariable is required to include the mobility region where the value of the variable may
be found. This rule is crucial in preventing the kind of violation shown in Example 4;
thanks to this rule we do not allow a value to appear in the closure of a function which
may visit some sites where the value should not be observed. This rule also implies
that a function cannot refer to a channel which was created outside its body unless this
channel’s mobility region is a superset of the mobility region of the function. This gives



Chapter 5. Confined Mobile Functions

(con) Typee(c') =1 wheret= (T,r) r'Cr
' CE,T-cl it
(var) [(x)=1 wheret=(1,r) r'Cr
r',CE,lT Fx:1
(fn) r,CE,Ix — tjte:t r'Cr
I',CE,T Ffn' x = e: (1-7,r)
r'"CE,lT ke :(1—=7,r) [ CETFe:T
(app) , e
rrcee:t
(let) r'"CE,Tte:t T ,CETXx+— Tkte:T
r',I'+letx=eriney: T
(o) r',CE,l -ep:(int,r1) r',CE,T Fey:(int,rp)
r',CE,l Fejope: (int,ryNry)
r'Cr
(chan) — ;
r',CE,l + chan' () : (chan[t],r)
(send) r',CE,l -ep: (chan[t],r) r',CE,TFe:(T,r)
r',CE,l Feilex: (unit,r)
(receive) r',CE,l t-e: (chan[t],r)

r',CE,l -e?:(T,r)

Figure 5.4: Typing Rules
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us a useful technical device for controlling the propagation of input/output capabilities
caused by the mobility of functions.

There are three important aspects of the typing rule (fn) for functions. Firstly,
functions are canonical expressions just as special constants. Their typing follows the
same reasoning; we record the specified mobility region of a function in its type. The
second aspect is to do with the fact that a mobility region of a function represents
the sites which the function is allowed to visit. The well-formedness condition for
function types ensures that a value returned by the function is allowed to be observed
in the mobility region of the function itself. Region violations such as the one presented
in Example 2 would be prevented by the presence of this condition. Finally, we need
to take into consideration that the body of the function may be evaluated in a context
different from that of the function abstraction. All we know about itis that it will be one
of the sites that the function is allowed to visit. We type the body of an expression with
respect to the mobility region of the function. Example 3 illustrates the significance of
this final aspect.

The rules for applications and let expressions are quite straightforward. The typing
rule (op) for primitive operations indicates that an operatipiis allowed on integers
only. The mobility region of an integer constructed from two integers using this op-
eration is required to be the intersection of the regions of the components. Otherwise,
a value could appear at a site which is outside its region through being a part of the
composed value.

The concept of mobility region for a channel is not different from that of other
data types. It represents the sites at which a channel is allowed to appear. The typing
rule (chan) for channel allocation expressions ensures that a channel with a particular
mobility region is allowed to be created at one of the sites in its mobility region.

The single most important point about the typing rules (send) and (receive) is that
they force channels to carry values of the same type as themselves. We have motivated
this rule by Example 1.
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5.5 Formal properties

5.5.1 Confinement in a mobility region

We now state some properties of our system which will eventually lead us to formalize
and prove the confinement in a mobility region property. Our type system guarantees
that if an expression is well-typed at a particular site, it enjoys this property and there-
fore can be safely run at that site. We refer the interested readers to the Appendix for
the details of the proofs.

Definition 5.4 (System typing). Let T be a finite map from site identifiers to types. A
system state is said to have typainder a global channel environme2i, written as
CEF CI,P: T if the following hold:

e Cl C Dom(CE);

e if [s: €] € Pthense Dom(T); and

o if [s: €] € Pthen{s},CE,[]Fe:T(s).

Theoren{5]1 below shows that the type of an expression is preserved under transitions
of the system.

Theorem 5.1 (Type preservation).Let CE be a well-formed channel environment.
Assume that

e CI,P—CI',P;and
e CEFCI,P: T for someT.
Then there exists @E’ which extend€E such thaCE', - CI',P': T.

Proof. The proof s given by induction on the depth of inferenc€bfP[s: €] — CI',P'[s:

€] by considering the possible forms ef The cases referring to the third evalu-
ation rule for applications and the second evaluation rule for let bindings appeal to
Lemmal®ll. The case for communication makes use of Lemma 5.2. O]

Lemma 5.1 (Substitution). If r,I'[x— 1] - e: T andr,l - v:Tthenr,I Fe{v/x}:T.
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Lemma 5.2 (Preservation of typability within a region). If r,[ = v: (T,r’) then for
anyr” such that” C r’ itis the case that’, I - v: (T,r').

If expressiore is well-typed as sits and it is evaluated at sitereturning the value

as its result, thesis guaranteed to be within the mobility region specified for value
TheorenT5]2 is the main result which we present in this chapter. We use the symbol
—* below to represent a sequence of transitions.

Theorem 5.2 (Confinement in a mobility region). Assume for a closedthat

e {s},[|Fe:T
e Cl,P[s: g —*ClI',P/[s:V].

Then{s} C Lq(v).

Proof. The proof of the above theorem follows from Theorgm 5.1 and Lenimas 5.3
and[5:#. Lemma&5.3 below shows that the type of an expression conservatively esti-
mates the sites where the expression would be accepted as a result of the type-checking
phase. If an expressiaevaluates to a valueas is assumed in our theorem, by The-
orem[5.1l and Lemmia’5.3 we know that the label in the typewil contain {s}. We

also know by Lemma& 5.4 that the mobility region annotations in the type of a value
are consistent with the annotations provided as a part of the syntalxy (v8.= Ls(T).

This allows us to conclude thés} C Lg(v). O

Lemma 5.3 (Conservative estimation).If r,CE, I - e: T thenr C Lg(T).

Lemma 5.4 (Consistency of labels)If r,CE,I" F v: 1 thenLqy(v) = Lg(T).

5.5.2 Strong confinement

We want the property of confinement in a mobility region to hold for all the values
which are observable in the sense defined in Se€tion 5.2.1. For example, a value which
is embodied in the code of a function is observable at a givers gitee function may
appear at that site at any step during evaluation. The proof of Thgorém 5.2 above is
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based on the consistency between the labels which annotate the values and their types.
The definition of functionLy, however, does not look into the labels which may be
enclosed in the body of a function.

We now define a functiohyec which examines an expression recursively to find the
intersection of the mobility regions of its subexpressions. By using this we can show
that the confinement property enforced by the type system is in fact stronger than the
one formalized by Theorem%.2.

Definition 5.5 (Lyec)-

Lrec(c') =T Lrec(fn" x=€) =rNLyec(e)
Lrec(€1€2) = Lrec(€1) NLrec(€2) Lrec(€10Pp &) = Lrec(€1) NLrec(€2)
Lrec(let X=€1in€) = Lrec(e1) NLrec(€2) Lrec(chan' () =T

Lrec(€1!€2) = Lrec(€1) NLrec(€2) Lrec(€1?) = Lrec(€1)

The proposition below states that the expressions which may be enclosed in the code
of a function are bound to have a mobility region which is at least as large as that of
the function itself.

Proposition 5.1 (Confined closure).If r’,I I fn' x= e: (1—7/,r) thenr C Lyec(e).

Proof. It can be seen by inspecting the typing rules thain the left hand side of

the turnstile in a judgement either grows or remains the same as we go deeper in the
typing derivation. By Lemm& 5.3 we also know that each subexpressierhas a
mobility region which is larger than or equal to By Definition[5.5 we can conclude

thatr C Lrec(e). O

We have defined the values of the language as expressions in canonical form. Hence,
it follows from the proposition above that the values enclosed in a well-typed function
have a mobility region at least as large as that of the function.

We conjecture that a stronger confinement property holds for our type system than
that stated by Theorein 5.2. That is,0f,P[s: €] — CI',P'[s: €] and {s},[]Fe:
T then{s} C Liec(€/). The proof case for application expressions appears not to be
straightforward.



Chapter 5. Confined Mobile Functions 112

5.6 Related work

In this chapter, we have proposed a programming model where programmers can spec-
ify a policy about the flow of values and rely on the type system to enforce this policy.
Adopting such a model can be motivated by several factors such as increasing locality,
achieving better performance and controlling the flow of information in the system. In
this section we will focus on the latter and view confinement in a mobility region as a
secure information flow property.

Formulating and proving secure information flow properties for programs in the
presence of code mobility is a challenging issue. There is a large body of work on ex-
ploiting type systems in this context. It is our view that a property such as confinement
in a mobility region is a natural secure information property which arises in distributed
computing with functions.

A wide range of languages have been subjected to study in the context of type-
based approaches to security. These include imperative languages such as the ones
considered in[SV97,.SV98, SS00, MI.99] and functional languages such as the Secure
Lambda Calculus (SLam) [HRY98a], an extension of Akealculus suitable for trust
analysis [P@97] and the Dependency Core Calcuius [ABHR99]. Type systems for
enforcing security properties in concurrent and mobile systems have also been studied
in the framework of process calculi of thecalculus family [HROO CGG0Q,-SV00],
the ambient calculus [CGGY9b] and the spi-calculus which is an extension of the
calculus with cryptographic primitive§ [AG99]. We present here an in-depth discussion
about the works which we consider as closely related to ours.

The SLam calculus ~ The purely functional subset of the SLam calculus and Confied-
are closely related. In both languages values are annotated to indicate their secrecy lev-
els. In Confinedk we call them mobility regions to make explicit that these annotations
are used to restrict the mobility of values. However, there would be no essential differ-
ence if we interpreted them as sets of users who are allowed to observe these values as
suggested by the SLam calculus.

The annotations of the SLam calculus, called security properties, are more expres-
sive than the annotations of Confingd-This is mainly due to the differences in our
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motivations. The SLam calculus aims at capturing refined notions of security by ex-
ploiting rich type structures. Taking a complementary approach, the aim of this work is
to establish a simple notion of secrecy for distributed computation by remaining close
in spirit to conventional type systems for functional languages.

The work on the SLam calculus distinguishes between direct readers and indirect
readers of values in order to be able to address indirect information flows such as those
caused by branching on high security values in conditional expressions. The annota-
tions of the SLam calculus values are tuples, where the first and the second components
specify respectively its authorized direct readers and indirect readers. The authors also
introduce dual notions to readers and indirect readers; creators and indirect creators
represent users who might have created the objects directly or indirectly. Mobility
region annotations of Confined<can be likened to reader annotations of the SLam
calculus with no distinction between direct readers and indirect readers.

A formal study of the correspondence between the functional subsets of the SLam
calculus restricted to reader annotations and Confiedth mobility region annota-
tions could be a future work in its own right. We now discuss the typing of a function
abstraction and application in both systems to illustrate the similarities and differences
of the adopted approaches.

The following is the typing rule for functions in the SLam calculus. The annotation
K is a tuple of the forngr,ir ) wherer is the direct reader annotation ainds the indirect
reader annotation. A global condition on the type system requiemdicate a higher
secrecy level thair.

x:t11kHe:1

M- (AX:11.€:T2)k : (T1—T2,K)

A function which is typed with respect to the rule above can only be applied by
those readers whose secrecy level is at least as high as the one indicated by the reader
annotatiorr of the function. In order to enforce this, application expressions are anno-
tated with the security levels of programmers and a side condition is used in the typing
rule to check that the programmer is authorized to apply the function.

MEep: (11—T,(nir)) FFe:1y rCr’
ME(ere)y :Toeir
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It is the responsibility of the trusted compiler to ensure that programmers provide
annotations which are consistent with their actual security levels. The rule above also
shows that the result of the application is to be protected at the securityriewel
However, this is not relevant to our present discussion.

We now look at the typing rules for functions and applications in Confinedete
that we have omitted the channel environmgBgtin the typing judgements as we are
comparing the sequential subsets only. In order to facilitate the comparison of the two
systems we could read a judgement of the formt e: T as follows: an expressiaa
provided by an author who is a memberrafan be assigned the type

rrx— 1jFe:ts r'C

i
r',T il x=e: (11—T2,1)

Informally speaking, the role played by the typing rule for applications in the SLam
calculus is assigned to the typing rule for functions in our type system. The only
essential difference is that we force the annotation of the function to include its author.
This reflects our view that it would be natural to allow the use of a function by its own
author. The body of the function above can be executed by the userfi@mce its
typing takes place in a context which includesThis is how we enforce authorized
access to the code of the function. Our approach eliminates the need for annotating
application expressions as in the SLam calculus. The typing rule for applications in
ConfinedA is as follows:

r'rce:(1—1,r) r'F'Fe:t
rrFee:t

The SLam calculus and Confinddadopt different communication models. The
SLam calculus assumes a shared memory where the communication is based on muta-
ble data structures. Confin@ghowever, supports communication by message passing
as this is a more natural method of communication in distributed systems. We also note
that communication based on shared memory is inherently asynchronous whereas the
sender of a message and its receiver must synchronize in Cofin€bese differ-
ences preclude a direct comparison of the two type systems as we were able to do for
the functional core. It would be interesting to formalize an extension of the SLam
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calculus with distributed shared memory and devise a type system for that language
which enjoys the secrecy property of this paper. We would regard any similarity be-
tween this type system and that of Confineds an encouraging sign that secrecy can
be dealt with using similar techniques in functional languages which adopt different
communication models.

Process calculi ~ The channel-based communication model and the presence of ex-
plicit localities relate Confined-to process calculi for concurrent and distributed com-
putation, particularly to higher-order extensions ofthealculus such as the ones pre-
sented in[[YH99[ Tho89]. We are not aware of any other work on these calculi which
focuses on a notion of secure information flow such as ours. On the other hand, en-
forcement of secure information flow by typing has been investigated in the framework
of process calculi whose relation to Confinkds relatively indirect. For example, a
type system which is aimed at detecting information leaks to the environment has been
developed for the spi-calculusTAG99]. This work provides insights into the questions
of formulating and proving secrecy properties for concurrent systems where interac-
tion capabilities evolve dynamically. However, the languages Confinaald the spi-
calculus differ in several respects. The spi-calculus is a calculus which is particularly
suited for the description and analysis of cryptographic protocols. It extends the core
of the r-calculus with cryptographic primitives. There is no direct way of express-
ing the communication of functions between processes. The characteristic feature of
ConfinedA, however, is that it offers a simple model for distributed computation which
is based on the mobility of functions between concurrently executing expressions at re-
mote sites.

A language which is unlike all of the other languages cited above but which can be
regarded as related to Confinkds uPLAN [KGAQO]. This language has been defined
to provide a formal model of computation in active networks. It assumes a fixed set
of sites and the computation is based on the mobility of functions. In these respects it
is similar to Confinedk. However, the mobility in uPLAN is based on a facility for
remote evaluation of functions at explicitly specified locations. The authors propose a
notion of secrecy inspired by the spi-calculus. The proof of their secrecy property does
not depend on a type-based approach such as ours.
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5.7 Concluding remarks

The issues related to information flow due to covert storage channels or covered timing
channels are not within the scope of this chapter. It would be interesting to investigate
these issues for an extension of Confieddth conditional expressions. The anal-
ogy between secrecy levels and mobility regions should allow us to benefit from the
works which focus primarily on noninterference properties such as the ones studied
in [HR98a,VS98/ PC00] and which focus on timing leaks [Aga00].

In the process calculi framework, some researchers have exploited type systems to
enforce locality conditions on the use of capabilities [YH99, Sew98]. It is possible to
regard confinement in a mobility region as a locality condition; we restrict the distribu-
tion of communication of capabilities to a part of the system as a means of controlling
the flow of information within the system. Distinguishing between input and output
capabilities, as In([YH99, Sewd8], could allow us to explore more refined notions of
secure information flow. This remains as an interesting direction for future work.



Chapter 6
Noninterference and Mobile Functions

In this chapter we continue our exploration of secure information flow in multi-user
distributed systems. Of particular interest to us are systems in which data and users are
classified such that the security class of a datum reflects its confidentiality level and
the security class of a user determines which data he is authorized to observe.

A natural security requirement for systems of this kind is to prevent users from
accessing data which they are not authorized to observe. Access control, however,
addresses only a single aspect of secure information flow. It should not be overlooked
that some users may exploit indirect means to obtain confidential information rather
than attempting to access it directly. One can think of a scenario in which a user
writes a program whose behaviour depends on the values of particular variables in
the environment. Even if the user himself is not allowed to access these variables
directly, he can get another user with the required permissions to execute the program.
By observing its behaviour he can then infer the values of the variables. Note that
such leakage of information can be caused by a malicious cooperation among users or
inadvertently.

A programming language whose legal programs are guaranteed not to cause a cer-
tain class of information flows would contribute to preventing security violations of
this kind. In this chapter, we investigate the design of a language based on Mobile-
which is targeted at computation in systems with classified data and users. We first de-
termine a confidentiality property basedmoninterferenceWe then propose a variant
of the type and effect system presented in Chdpter 3 to statically enforce this property.

117
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6.1 Noninterference

Formulating confidentiality properties which account for the absence of undesirable
information flows is a challenging task, let alone developing methods to enforce them.
There is a vast literature osecurity modeldor describing confidentiality require-
ments of systems. A comprehensive survey can be found-in_[McL94]. Noninterfer-
ence emerges as a useful concept in interface models for confidentiality which specify
restrictions on the input/output relation of systems.

6.1.1 A general characterization

The first appearance of the concept of noninterference in the security literature is at-
tributed to Goguen and Meseguer [GM82].

One group of users, using a certain set of commands, is noninterfering with
another group of users if what the first group does with those commands
has no effect on what the second group of users can see.

In their seminal work the authors presented an approach to designing secure sys-
tems which is based on modelling a system by an automaton and defining security
policies as sets of noninterference assertions which can then be verified by appropriate
proof techniques. Gougen and Meseguer's work has had a significant impact on the
subsequent characterizations of secure information flow. This is not due to the par-
ticular formalism the authors used but to the fact that noninterference is a simple and
intuitive notion. Proving that a system is noninterfering is not dependent on the avail-
ability of an automaton model of a system. Different formulations of noninterference
and proof techniques exist for different formalisms [Deri/6, FG95, RS01].

For deterministic systems, noninterference is considered as a satisfactory notion of
secure information flow on which enforceable security policies can be based. Its gen-
eralization to nondeterministic systems, however, is not straightforward. Illuminating
discussions on the topic and examples can be foundin IMcdl94,1VS98].
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6.1.2 A restriction on the input/output relation

In this chapter we assume that there are only two security classes in a sktstbigh)
andL (low). Secret values belong to the cla$sand public values belong to the class
L. Users who belong to the security cla$xan observe any value whereas users who
belong to the security clagscan observe public values only. In this setting, the flow
of information from the clashl to the clas4. is considered as undesirable.

A noninterference property typically states that high-level inputs to the system can-
not interfere with low-level outputs. In other words, the values of public outputs should
not depend on the values of secret inputs. The characteristics of the system in ques-
tion and what is assumed to be observable by whom influences the formulation of a
noninterference property.

6.1.3 Closer look at Mobile- A

Noninterference is concerned with high-level inputs and low-level outputs of a system.
In order to talk about noninterference for computation with languages of the Mbbile-
family it is necessary to make precise the sense in which the terms input and output are
used.

If the computation in a system consisted of a single thread of control with no ref-
erence to the environment — this corresponds to the application of a closed function in
our case — what is meant by input and output would be straightforward. We would be
using the term input for function arguments and the term output for function results.
However, we have multiple concurrently executing functions which can communicate
with each other and access the resources in their environment. The inputs to the system
are not merely the arguments to the top-level functions but also other values which may
flow into the function. The values which are received on channels and the values which
are bound to the free variables of the function should also be taken into consideration.
Similarly, the outputs of the system include values which are sent on communication
channels as well as those returned by functions.

A noninterference property for mobile functions should at the very least express
that the public results returned by functions and the public values which flow out of
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functions on communication channels do not depend on the secret values which flow
into functions. The noninteference property that we enforce by means of a type system
in Section613 formalizes this idea.

It is possible to propose noninterference properties of differing strength. For ex-
ample, if we assume thatusers can infeH information to a high degree of certainty
by observing the timing behaviour or nontermination of programs, or blocked com-
munications, the formulation of the noninterference property would be different to the
setting where these assumptions do not hold. In this chapter, we concern ourselves only
with computations which terminate by producing a result. We also assume that users
cannot infer confidential information by observing the time taken for computation.

6.1.4 Conditional expressions

A challenging point in the enforcement of a noninterference property arises from the
presence of conditional expressions in programs. There is always an implicit flow from
the guard of a conditional expression to its branches. Let us suppose thatBool

is an identifier which refers to a boolean value of the security ¢tassthe following
conditional expression.

if secretBool then true else false

If a user of security claskl were to evaluate this expression and a user of the secu-
rity classL who knows the code were allowed to observe the result, the value of the
secretBool would be leaked.

6.1.5 Example

In the following sections we will define a meta-language which will provide a formal
framework for stating and proving a noninterference property for mobile functions.
Prior to that we present an example to give a more clear idea of undesirable information
flows in the computational model we are considering. We focus on a simple client-
server application coded in a language of the Mohikmily.
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Client: let secretInt = 500
in (sq?) secretInt
Server: let gt100 = chan ()

in let square =fn x = if x> 100
then ( gt100 ! true; x*x )
else ( gtl00 ! false; x*x )

in ( sq ! square ; gtl00? )

The intention of the client is to take the square of an integer which is confidential to
the client. The code necessary for this operation is made available by the server. All
that is needed by the client is to make a request for the code of the fuetiane on

the channetq and apply the received code to the integer.

The functionsquare provided by the server has, however, been coded in a rather
malicious way. It not only performs the requested operation but also leaks information
about the argument it is applied to at the client’s side. The closure of the function
square contains the channejt100 allocated at the server’s side which is used to
maintain a connection back to the server. After sendingare to the client, the
server listens on this channel. The code of the funcii@rmare includes a test on the
argument which returns true if the argument is greater than 100, false otherwise. The
users who know the code of the server and can observe what is returned on the channel
gt100 can infer whether the client applied the functisfuare to an integer greater
than 100.

The language introduced in Sectipn]6.2 has two major aims. Firstly, it facilitates
the static declaration of security classes of the values which will be generated during
evaluation. Secondly, a typing discipline is imposed to guarantee that certain kinds
of information flows cannot occur during evaluation. For example, if the value of
secretInt isto be known only to high-level users, this would be declared by the client
by annotating it with the appropriate label. If the server wants the value received on
the channet100 to be observable by low-level users, the expression which allocates
the channet 100 should be annotated accordingly. The type system of Sectipn 6.3 is
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based on the idea of using these annotations to detect undesirable flows of information
from the security clashl to the clasg..

6.2 Secure Mobile- A

In this section we introduce the language Secure Mobilghich is derived from
Mobile-A. In contrast to the uniform nature of values in MobNewith respect to
confidentiality, computation with Secure Mobieivolves values which may belong
to different security classes.

6.2.1 Abstract syntax

The main characteristic of the abstract syntax of Secure Mabigethat all expres-

sions which are in canonical form and channel allocation expressions are labelled with
security classes. This is intended to assist with tracing the security classes of values
throughout the computation.

Labels | == H]|L

Expressions e := ¢ constant
| X variable
| fnl x=e function abstraction
| e1e function application

| if €1 then e else e3  conditional

| letx=ejine local binding
|lerope primitive operation
| chan'() channel allocation
| erlen send

| e? receive

Figure 6.1: Abstract Syntax for Secure Mobile-A
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Definition 6.1 (Ordering on secrecy labels).Secrecy labels can be partially ordered
with respect to the relation such thal. = H. The set of secrecy labe® = {H,L}
and the orderingt form a two-point lattice witlL andH as the least and the greatest
elements respectively.

6.2.2 Dynamic semantics

We consider a simple system which consists of two remote sites each of which has a
trusted Secure Mobila-compiler. The most important assumption about the system
is that it is deterministic. Each site in the system provides a standard set of values
as a part of its computational environment. These include services coded as func-
tions. Throughout our discussion, we assume that such functions do not introduce
nondeterminism to the system or have side-effects which violate the confidentiality
requirements which we impose on the user-defined functions.

Values of Secure Mobila-consist of primitive values, channel identifiers and func-
tion closures, represented by the semantic ob';écteand(l, E,x,e) respectively. The
dynamic representation of an object encodes the secrecy label of the expression which
leads to its construction. A channel identifieis represented by a tuplé, s,i) where
| is a security labelks is the site where the channel is allocated aista freshly gener-
ated number at each invocation of a channel allocation expression. Wed aioiév)
for the secrecy label of a value.

Evaluation environments  E [] | Ex— V]

' constants

Values vV = C
| k channel identifiers

| (I,E,x,e)  function closures

We also use semantic objects which describe the communication behaviour of an ex-
pression;a stands for a communication action drawn from the {seiv k, k!v,k?v}
representing the allocation of a channel and sending and receiving values over a chan-
nel respectively. The name stands for a sequence of communication actions. Note
that a purely sequential computation which does not involve any communication is
represented by.
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Actions a == newk channel allocation

| klv send

| k?v receive

€ the empty sequence

Action sequences w
| a.w sequence of actions

Top-level rule and matching Secure Mobilex does not include a construct for par-
allel composition of expressions. The concurrent activity is revealed in the composi-
tion of evaluations at each site. Figure] 6.2 shows the evaluation of a system in which
expressiore; is evaluated at sitg; and expressiomn, is evaluated at site,. We rep-
resent the top-level environment as a pair of environments and the result produced by
the system as a pair of values. The top-level evaluation decomposes into individual
evaluations at each site. A judgement of the folr- e — v states that the expres-
sione evaluates to value against an environme#t incurring the sequence of actions
represented bw. The dynamic semantics rules for the evaluation of an expression are
further explained below.

E1 I—slel%vl E, I—SZeZ%VZ Wy || Wo — w
(E1,E2), (sile] || splen]) = (va,v2)

Figure 6.2: Concurrent Evaluation

The communication in Secure Mobileis synchronous. The synchronization between

the expressions is specified by a collection of matching rules between communication
action sequences given in Figuire] 6.3. Informally speaking, at the end of the evaluation,
we can observe that new channels have been allocated. Particular values transmitted
on these channels will have been used in producing the resulting value, however, we
treat their transmissions as internal actions of the system and abstract away from them.
The predicatéOmatchbelow is defined on pairs of action sequences. We will refer to
this predicate later to express that the system consisting of two sites is closed. That is,
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1) elle—ce

Wy || Wo — w

(2)

wi.a || wp — wa

Wy || Wo — w

()
Wy || Wo.a— w.a
Wy || Wo — w
(4)
wy.klval || wo.kval — w
Wy || Wo — w
(5)

wy.kval || wo.klval — w

Figure 6.3: Action Matching

all the communication actions are internal to the system.

Definition 6.2 (IOmatch). IOmatchwi,w,) if and only if wy || we — wand all anno-
tations inw are of the forrmew k for somek.

Evaluation rules  The intuition behind the evaluation rules are similar to those of
Mobile-A. However, our style of defining the semantics of Secure Maobiie-dif-

ferent. We do not specify the intermediate steps of the evaluation but rather define a
relation between expressions and their values in the style of [Ler92].

Functions  The rule (fn) for the evaluation of function abstractions is similar to the
evaluation rule with the same name for MobNeBefore being enclosed in the func-

tion closure the current environment is narrowed down such that its domain consists
of the free variables of the function. For an application expression to evaluate success-
fully, the first expression must be a function closure. The body of the function enclosed
in the closure is evaluated against an environment which is obtained by extending the
environment part of the closure with the binding of the argument.

Primitive operations  Binary operators which are ranged over doy can be either
arithmetic or relational. The application of a binary operator on two values results in
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(con) Erd=-¢
(var) EFx= E(X)
(fn) EFf'x=e== (I,E,x,e) whereE'=E | FV(fn'x = e)
Ekq%(l’,Eﬂx,e}
(app) EFe=2vV E’[Xn—>v]ke£>\/
Elee &%y
(op) Ekelwévl EFeZ%vz V =V10pV2
Ereope 222y
(-0 Ele -2 truel EFey=2 v
El—ifelthenezelseegwl——'w>2V
(9 Ele =2 false! EFe3—2v
El—ifelthenezelseegvgva
(et Ekelgvl E[XHvl]Fezwévz
Elletx=eine =22y,
(chan) E I chan'() eW Ky wherek new
LN W2, i
q EFe K EFe v k= (I,s,i)
(send) Er ol WL Wo KIV |
ele; = ()
(receive) Ele=%k
receive
E ey,

Figure 6.4: Sequential Evaluation Rules
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a value whose secrecy level is the highest of those of its operands. That is to say if
v = (v1 op v2) for someop whereLabelv;) = |1 andLabelv,) = |, thenLabelv) =

1 Llo. For example, an integer which is obtained by adding a public and a secret
integer would be treated as a secret integer.

Expressions involving communication The evaluation rule (chan) states that a chan-
nel identifier which is allocated dynamically must be globally unique. We have already
discussed that a channel identifier is represented by a tuglé). Sincei is freshly
generated each time a new channel is allocated as$,stendi together can guarantee

the uniqueness of an identifier. The evaluation rules (send) and (receive) are straight-
forward.

6.3 Type system

The aim of the type system presented in this section is to guarantee that the values of
security class. which flow out of the system during the evaluation of a well-typed
Secure Mobilex do not depend on the values of security clelsehich flow into the
system.

6.3.1 Semantic objects

The type system builds on similar ideas to the type system presented for Mahile-
Chapterf 3. The structure of the types and effects are almost identical. The crucial
difference lies in the purpose served by the labels. In that type system the labels stood
for the identities of values, in this one they stand for their security classes. Another
difference is with regard to polymorphism. The polymorphism in the type system
of this section is more restricted; we allow function types to be parametric in secrecy
labels only. This is motivated by our wish to keep the type system as simple as possible
while showing how ML-style polymorphism can be adapted to increase its flexibility.
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Secrecy labels = HIL|y]|liuly

I
Raw types T = unit | int | bool | chan[T] | 151
Types T = (T,
Effect K L= 0 | {newl for 1}
| {sendTonl} | {recvTonl} | K1 UK>
Type schemes o = W1

Type environments are defined as finite maps from variables to type schemes.

Definition 6.3 (Well-formed function types). We write Labelt) for the label of a
type; if T = (1,1) thenLabelt) =1. A function type (T5>T’,I) is well-formed if
| C LabelT).

Definition 6.4 (TypeOf). The types of the basic constants unit, integers and booleans
do not depend on the typing context and are defined as follows:

TypeOf()") = (unit,]1)  TypeOfn') = (int,I)
TypeOftrue') = (bool,1) TypeOffalse') = (bool,l)

6.3.2 Typing rules

The typing rules are given in Figufe p.5. An important design decision which has an
impact on the whole of the type system regards communication. It can be seen in the
typing rules (send) and (receive) that we allow channels to carry values of the same
secrecy class as themselves.

Keeping this in mind we can now go on to explain the more interesting rules. Those
are the rules for function abstractions and conditional expressions. We choose to start
with the (if) rule since this will make it easier to understand why we need a side con-
dition in the typing rule (fn) for functions.

Let us consider a simple conditional expression such as the one which appeared in
SectionB11. TheecretBool below is an identifier of a secret boolean and the branches
return public values.

if secretBool then truelelse false"
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(con) [Fsc : TypeOfd),0

rx)=0 o>t

(var)
MsX: 1,0

(fn) Fx — 1]Fse: T,k Safdk,l)
[sfn'x = e: (15T,1),0

(app) Fl—selz(Tﬁr’,I’),K’ MFsep i T,K”
Msee: v, KUK UK’

(o) Meser: (T,1),k Thsex: (T,17),k" op: (T*1)—=T
serope: (U, 1U1N), KUK
Fser: (bool,l), K

(i Mese: (T,1),k" T hses:(1,17),K”
ICI" Safdk’,1) Safdk”l)
[ +ifertheneyelsees: (T,1"),K UK UK”

(let) Mser:t,k Tx — Genl,k,1)|Fe: T, K
Fsletx=erine : T, KUK’

(chan) [ Fschan'() : (chan[T],1), {newl for T}

(send) [ser: (chanft],l),k T Fsex: (T,1),K
[senle: (unit,l), KUK U {sendTonl}

(receive) [ se: (chan[t],]),k
M-e?:(1,]),kU{recvtonl}

(subs) Mse:1,k KCkK

Mse: 1,k

Figure 6.5: Typing Rules
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Expressions such as this one should obviously be ruled out because the value of
this expression which is observable by low-level users depends on a high-level value.
The side conditioth C I is present in the rule (if) for this reason. This side condition
Is, however, not sufficient to detect all kinds of information flows that we wish to
eliminate. The communication capabilities of the branches need also to be taken into
account. Let us suppose thdt is the identifier of a public channel in the example
presented below.

if secretBool then lety =ch! truet
in trueH
else lety=ch! false-

in false™

Even though the result of this expression is a high-level value which is observable only
by high-level users, the information would be leaked due to the communication on
public channels. A low-level user who listens on chanttelvould be able to infer

the value ofecretBool. The predicaté&afein the typing rule (if) is used to detect the
presence of communication capabilities such as this. Branches of an expression can
only send on channels which are at least as secret as the guard of that expression.

Definition 6.5 (Safe flow). Safdk,|) if for all {sendTonl’} C K it is the case that
I

Functions are allowed to send on channels which are at least as secret as themselves;
this is also imposed by the presence of the predi€afiein the typing rule (fn). The
following example justifies the need for this side condition.

if secretBool then (fn x = lety = ch ! truet in true™)

else (fnf x = let y = ch ! false" in false')

The potentially harmful communication capabilities on public channels are now hid-
den within a function abstraction. If the value satretBool is, for exampletrue the
expression will return a function which sendlse on the public channelh. By apply-

ing this function to an appropriate argument a similar effect to the preceding example
can be incurred. What is leaked in a single step in the preceding example is leaked in
two steps in this one.
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It is important to remember also that the secrecy class of the result of a function
Is required to be at least as secret as that of the function itself. It is through the well-
formedness condition in Definitign $.3 on function types that we enforce this. Without
this condition a public value could be obtained by the application of a secret function
present in the environment. This would conflict with our requirement that public values
should not depend on secret values.

The type generalization takes place in the typing rule (let). We omit the definition
of the operatiortsenas it is a straightforward adaptation of the operation with the same
name which appears in Chapfér 3.

Example If we did not allow functions to be parametric in security labels, the type
system would be rather too restrictive. The following example illustrates the use of
polymorphism. Suppose thsdcretint andpublicint are identifiers of a secret integer
and a public integer respectively and that we would like to type-check the following
expression in the environmeht= [secretint — (int,H), publicInt — (int,L)].

let square = fnb x = x*x

in (square publiclnt) * (square secretint)

If we did not allow types to be parametric in security labels, we would not be able
to derive a type for this expression. It would be necessary to write two versions of
the functionsquare; one to be applied to secret integers, one to be applied to public
ones. We can, however, derive the tmq(int,y)g(int,y), L) for the functiorsquare.

The type of the entire expression is them, H) where the type of the subexpression
(square publicnt) is (int,L) and that of(square secretint) is (int,H).

6.4 Formal properties

In this section we first prove the consistency of the dynamic and the static seman-
tics. We then state a noninterference property for mobile functions in a deterministic
computational model and prove that it is enjoyed by the well-typed Secure Mobile-
programs.



Chapter 6. Noninterference and Mobile Functions 132

6.4.1 Consistency

In defining the dynamic semantics of Secure Molilere adopted an approach which
is different from those of the preceding chapters. The proof method we use, which
follows the approach of [er92] is hence unlike those of the preceding chapters.

Our noninterference property relies on a property of entire execution traces and
big-step semantics makes it possible to formulate such a property in terms of the traces
of subexpressions. Although sufficient for the purposes of this chapter, the general-
ization of our proof method to nondeterministic systems is not obvious as big-step
semantics turns out to be a less natural choice for such systems. It would have been
beneficial to adopt the approach af [PCO0O0] in proving the soundness of the type sys-
tem and noninterference if small-step semantics had been used and generalization to
nondeterministic systems had been pursued.

Definition 6.6 (Channel environment). A channel environment is a finite map from
channel identifiers to types.

CE:=[ki — T1...kn — Tyl

The empty channel environment is written[as

Definition 6.7 (Extension). Let CE andCE’ be two channel environment€£E’ ex-
tendsCE, written asCE C CE’ if Dom(CE) € Dom(CE’) andCE(k) = CE’(k) for all
k € Dom(CE).

We now define two interdependent relations; one between the values of the dynamic
semantics and types and another one between dynamic evaluation environments and
static type environments. We wri@E |= v : T to mean that a valuehas typer where

the types of the dynamically allocated channels are recorded in the channel environ-
mentCE.
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Definition 6.8 (CE = v: (T,1)).
CE|=c : TypeOfd)
CE = k: (chan[t],]) if ke Dom(CE) andCE(k) = (1,1)
CE = (I,E,x,€) : (T£>T/,|) if there exists & such that
[Ffolx = e: (157,1),0andCE=E : T
CEEV: VWY1 if CEEv:6rt
for any substitutior® defined ory.

Definiton 6.9 CE=E:T"). CEEE:T

if Dom(E) = Dom(I"),
andCE = E(x) : I'(x) for anyx € Dom(E)

The definition below follows in the same vein and relates action sequences which anno-
tate the evaluation rules of the dynamic semantics to the effects derived for expressions
by the type system.

Definition 6.10 CE = w: K).

CEEe€:K for anyk such that ifk appears ix thenk € Dom(CE)
CE Enewk:k if ke Dom(CE) andCE(k) = (1,1)
and{newl for 1} C K
CEEKlv:k if ke Dom(CE) andCE(k) = (1,1)
andCE = v: (1,1) and{sendtonl} C Kk
CEEKWV:K if ke Dom(CE) andCE(k) = (1,1)

andCE = v: (1,1) and{recvtonl} C Kk
CEEwiwye i kKUK if CEl=wy:kandCE = ws : K/

The consistency theorem stated below assumes a closed system composed of two ex-
pression®g; ande, which are evaluated at sitesands, respectively. Expressions are
assumed to be well-typed and the initial evaluation environment at each site is assumed
to be consistent with the initial static environment in the sense defined above. The the-
orem says that under these assumptions, if the evaluation at a site terminates yielding
a value then this value must be related to the type derived for the expression.
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Theorem 6.1 (Consistency).Assume the following

o Eig & vy andBExts,e 22 v, andlOmatchwy, wo)
o [1Fg€1:T1,K1 andlMoks,e: 12,K2

e CEEE;:T1andCEEEx: T2
then there exists @E’ such that

e CECCF
e CE' =vi:11andCE =wy 1 kg
e CE Ew:12andCE =ws: ko

Proof. The proof is given by induction on the depth of the evaluation tree. For those
cases which involve no communication we give the proof by considesiranly. It
should be noted that the proof would be similar for expressjon

cases(con), (var), (fn). The required result follows from the assumptions and from
Definitions[6.8[619 and 6.110.

casee; = chan' (). The evaluation at sits; must have followed the rule (chan) such
new K

that Eq + chan() =%"k. Suppose thaf1 - chan'() : (chan[T],1). We take &CE’ such
thatCE’ = CE[k — (1,1)]. The required result is immediate by Definition|6.8.

casee; = (letx=ejiney). The evaluation must have followed the rule (let) and must be
of the forml F letx = ey ine == v, whereE i ] =% vs andE[x — vi] - & =2 V.
Suppose thdetx=ejiney: 1o, KUK  wherel - e1: T,k andlN[x — Gen(l,K,T)] F &:
To,K'.

By the induction hypothesis there existS&’ such thaCE C CE' andCE' =v1: 11
andCE’ = w; : K. If we could show tha€E’ = v, : Gen(I, K, T1) then we could apply
the induction hypothesis a®. Let Genl',k,11) = Vy.T1. By Definition[6.8 this boils
down to showing tha€E’ |= v; : 811 for 6 defined ory. If vy is a constant then there
is only a unique type fovy, hence the result is immediate Mf is a channel identifier,
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new k must be a part ofv; . SinceCE’ =k : (chan[t],1), according to Definition 6|8
CE'(k) = (1,1). SinceCE' =w; : K, according to Definitiof 6.10, it must be the case
that {newl for T} C K. We know by the definition oGenthaty do not occur free in

I or K. ThereforeCE' = v : 611 becausé has no effect orty. If vy is a closure

the proof follows a similar idea. Additionally, it refers to the fact thaf if e: T,k

thenOrl + e: Bt,6k. This lemma can be proved by following a similar reasoning to the
various type substitution lemmas presented in the preceding chapters. Having proved
thatCE' = v1 : Genl,K,T1) we can deduce th&E' = E[x— vq] : [[x+— T11]. We can

now apply the induction hypothesis ento establish the required result.

cases(send) (receive). The proofs of the cases which involve communication make
use of the hypothesi©matchwi,w,). This predicate states that for each send there

is a corresponding receive and for each receive there is a send at the remote site. A
channel environment which binds the channel identifier used in the communication to
the type of the sent value should be taken as the channel environment which conforms
to the requirements. The rest of the proof is rather straightforward. O

6.4.2 Noninterference

At various points in our discussions we stated that the dependency of public outputs of
a system on secret inputs is undesirable and should be prevented. This is the same as
requiring that the changes in the secret inputs to the system do not lead to changes on
the public outputs. The noninterference theorem is a formalization of this statement.
As a first step, we make precise when two public values are considered to be equivalent
by means of the following definition.

Definition 6.11 (Equivalence of public values and environments)The notion of equiv-
alence for public constants and channels is obvious. However, in principle it is impos-
sible to decide the equality of two functions. We adopt a notion of equivalence which
is based on the syntactic equality of function bodies. Two function closures are equiv-
alent if the codes they enclose are identical and the environments they enclose are
equivalent.
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d=d if | =L
k=, k if k= (L,si)
(ILE,x,e) = (I,E/,x,e) ifl =LandE=_FE

E=_FE if E(x) = E’(x) for all x such that
x € DomE) andx € Dom(E’)
andLabelE(x)) = LabelE’(x)) = L.

Values can flow into and out of concurrently executing expressions by means of com-
munication on channels. In a deterministic system consisting of two threads of control
such as ours, the source of an incoming value is always known. The received value
can only have been sent by the expression evaluated at the remote site. We enforce
noninterference by ensuring that the values sent on public channels by an expression
do not depend on the changes in the secret values which flow into it. Note that this also
ensures that values which flow into the expression at the other site on communication
channels remain the same.

The noninterference theorem makes use of the action sequences which instrument
the evaluation rules to formalize the constraint on the public values which are sent by
expressions.

Definition 6.12 (Purging secret send actions)The operatioriPurgeis defined on ac-
tion sequences. It purges all but send actions on public channels from a sequence.
Purgge) =¢
Purggnew k.w) = Purgew)

Purggw if Labelk) =H
Purggk!v.w) = gelw) (K
Purgek!v.w) otherwise

Purggk?v.w) = Purggw)

Definition 6.13 (Equivalence of purged sequences)iwo purged sequences are equiv-
alent if there is a one-to-one correspondence between the send actions in each sequence
up to the equivalence of the values transmitted.
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E=LE

kK'vi.wg = Klvo.ws  if v = v andwy = Wo.

The theorem below states that if we evaluate a well-typed expression at a given site
against two different initial environments which are the same except at bindings for
secret values and both evaluations terminate yielding a public value, these values are
guaranteed to be equal. Moreover, the two evaluations agree on the values transmitted
on public channels.

Theorem 6.2 (Noninterference).Suppose that the following hold for a typing envi-
ronment”, evaluation environments;,E, E; andE), and a channel environme@E.

e CEEE;:TandCEEE,: T

MEer:(tg,l1),kandl F e : (T2,12),K2

Ei1=L Ei andE, = Eé

EilFg N vi andEx F e 22, vo andlOmatchiwy, w,)

W, W,
E| - e1 ==V, andE} - &, =% v, andIOmatchw}, w)

then

o if i =L thenv; = v/

e Purggw;) =, Purgegw)

Proof. The proof is given by induction on the depth of the evaluation evaluation tree.
We give the proof case involving conditional expressions below. We consider the eval-
uation of expressior; only, the proof fore, would be similar.

casee = (ife;theneyelsees). Suppose thaf + ifejtheneyelsees : (T,17),K UK UK
wherel e; : (bool,l),k andl+ex: (1,1'),k  Tkes: (1,l'),k" andl £ 1" and
Safdk’,|) andSafék”,1).

For the first part of the proof we need to show that it L thenvy = V). If I’ =L
thenl = L. Otherwise, the side conditidnC I’ would not be true. By applying the

W,
induction hypothesis og; we know that ifEq I e; == truet then E] - e1 => truel.
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Similarly if E; - e; == false- thenE} - &, & false. This shows that the evalua-

tion takes the same branch regardless of the value of the guard. That is to say if the
resulting valuev; has been obtained by following the evaluation rule (if-t) such that
EiFe 25 v1 then the value’; will also be obtained by following the same rule such

thatE;' - e g Vv;. By applying the induction hypothesis @ we establish the re-
quired result; thatis; = ;. Note that the same line of reasoning would be applicable
if e; evaluated tdalse" instead.

For the second part of the proof we need to show Ehaggw;) = Purggw;). If
I” =L and the rule (if-t) has been applied the proof follows by applying the induction
hypothesis ore; ande,. We have assumed thai = ws.ws. By the induction hypoth-
esis we know thaPurggws) = Purggw;) andPurggws) = Purgewg). It is easy
to check thaPurggws.ws) = Purggwj;, w;). The same line of reasoning would be
applicable if the evaluation was assumed to have followed the rule (if-f).

If I’=H we can no longer know that the evaluation takes the same branch in the two
independent runs, against the environméntandE] respectively. This is because the
application of the induction hypothesis does not say anything about the value of the
guard which determines the branch taken. wet= w.w whereE; - e; =2 v and
w1’ =w' W whereE; - e1 % V.. All we can know by the induction hypothesis on
e, is thatPurggw) =, Purggw”). If we can show thaPurggw') = Purggw”’) we
can establish the required resBlirggw.w') = Purggw’.w").

By the typing rule (if) and Theorein 6.1 we know that for so@t€, CE' =w : K’
andCE’' =w": k” for someCE'. SinceSafdk’,|) andSafék”,|) we know that neither
k' nork” contains an element of the forsandtonL. By referring to Definition 6.70
we can deduce that neithef norw”’ can have as a subsequence an action of the form
klv whereLabelk) = L. This implies that the application of the operatiBargeon
w andw” yields empty sequences. Sineerggw) = Purggw’) we can state that
Purggw.w') = Purggw”.w").

L]
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6.5 Concluding remarks

In this chapter we have introduced the concept of noninterference and pointed out its
significance in formulating secure information flow properties for systems and pro-
grams. We have then focused on a functional language which supports the mobility
of functions between remote sites. In line with the general theme of this thesis, we
investigated the applicability of type and effect systems in enforcing a noninterference
property. The related work section of the previous chapter contains several pointers
to works by other authors on type systems for security. Many of these works address
noninterference in a given framework. The SLam [HR98a] calculus which is already
discussed in detail in the previous chapter is closely related to Secure Madslevell

as Confinedk. The authors of SLam investigate static certification of programs which
satisfy a lattice-based information flow property as presentedin[Den76]. To simplify
the discussion they restrict to a two-point lattice and note that the results can be gen-
eralized to any lattice of security classes. This is also the approach we have adopted.
The results of this chapter can be generalized to any security lattice.

Nondeterminism  This chapter considers a simple system which consists of two re-
mote sites each of which has a trusted Secure Mabdempiler. The noninterference
property which holds for all well-typed programs of the language Secure Mabile-
relies on the computation being deterministic. We have restricted the system to be
composed of two sites where each site hosts a single thread. Since there is no shared
mutable state and the communication can only take place between two parties, the
concurrency does not give rise to nondeterminism.

This setting is sufficiently general to model the execution of single threaded mobile
code by a host program which is also single threaded. The approach to security adopted
in this chapter is in line with the work on a Web browser with applets written in CAML,

a strongly typed functional language of the ML famiiy [T'R98].

The generalization of noninterference to nondeterministic systems gives rise to dif-
ferent characterizations of noninterference which are out of the scope of our work.
In a nondeterministic concurrent setting, it would be acceptable for a system to out-
put different public values in two different runs. Noninterference should then require
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that the valuegossiblepublic outputs do not depend on the inputs. This notion of
noninterference is referred to psssibilistic noninterferenceHowever, possibilistic
noninterference becomes inadequate when one considers the implementation of con-
current programs. Programs which satisfy possibilistic noninterference can still leak
information by probabilistic inference. If one knows, for example, the probability of a
thread being scheduled, the observation of the outputs can reveal information about the
high-level inputs to the programBrobabilistic noninterferenceectifies this problem

by requiring the probability distribution of the public outputs to be independent of the
high-level inputs.

The work presented in this chapter constitutes a first step in the direction of estab-
lishing a robust and general notion for noninterference for mobile computation with
functions where computation need not be deterministic. We have explored the appli-
cability of the type and effect discipline in tracing information flow in a higher-order
functional language with channel-based communication in a simple setting. This work
could be taken further by considering possibilistic and probabilistic noninterference

for a more general setting.

Blocked communications In languages which adopt synchronous communication
such as Secure Mobile-the ability to send on a channel implies the existence of a
receiver who has received the sent value. Otherwise, the send operation would have
blocked. This makes languages such as Secure Mabinaherable to information

leaks which would not arise if the communication were asynchronous. The example
below shows two expressiores, ande, which are executed in parallel.

€1 = if secretBool then (publicChannel?;true™)
else falseM

& = publicChannel! ()

The expressiom, attempts to leak the value eécretBool by attempting to send a
value on the public channelblicChannel. If the communication succeeds this would
imply thatsecretBool is true.

The type system of this chapter does not aim at eliminating these kinds of informa-
tion leaks. We have included this example here only to emphasize that in computational
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models such as that of Secure MobNdslocked communications constitute a source
of undesirable information flow.



Chapter 7
Conclusions

Each technical chapter in this thesis focuses on a practically-motivated problem con-
cerning mobile computation in modern distributed systems. These problems arise from
the heterogeneity of distributed systems in terms of the nature of computing devices,
security requirements of the information flowing in the system and the trust level of
users. The idea which is emphasized throughout is that principled language design and
the exploitation of static program analysis techniques can offer satisfactory solutions
to the problems considered in this thesis.

7.1 Natural support for code mobility

We regard simplicity and the existence of a formal definition as highly desirable prop-
erties for a mobile code language. It is through these properties that one can make
reliable predictions about the dynamic behaviour of mobile code by using informal or
formal techniques.

Our survey of the languages Concurrent ML, Facile and PLAN has convinced us
that endowing functions with first-class status and incorporating a language construct
for their communication between remote sites constitutes a simple approach to deriving
a mobile code language. Consequently, we have used this approach in defining a series
of higher-order functional languages which support code mobility.

An appealing aspect of these languages is that programmers can maintain a view
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of programs as a collection of function definitions and computation as a series of lo-

cal or remote applications of these functions. Moreover, with appropriate adaptations,
the existing program analysis techniques for functional programs continue to be use-
ful. We demonstrated this by designing type and effect systems for the languages we
defined and exploiting them to make predictions about several issues.

7.2 Type systems and security

Preventing the corruption of resources in a distributed system is a particularly chal-
lenging problem in the presence of code mobility. Memory is an essential resource for
computation and type safety provides a basic protection mechanism against the corrup-
tion of memory. One of our goals has been to ensure that extensions for code mobility
do not compromise type safety. The large body of work on type systems for concurrent
functional languages assisted us in meeting this goal.

It is apparent that preventing the execution of those programs which may breach
type safety does not suffice to protect systems against all security violations. This
thesis presents several example programs which would be well-typed with respect to a
conventional type system yet pose a threat to the availability of the resources or leak
confidential information.

A significant part of the work presented in this thesis aims at extending the range
of security properties which can be enforced by using type systems. The definition
of security properties such as confinement in a mobility region and noninterference
for mobile functions are our major contributions to the research area of foundations
of security. It is widely acknowledged in this area that programming languages which
support the development of code with provable security properties are essential for
improving the security of systems in general. The simple languages presented in this
work should be seen as prototypes of “secure” programming languages which can be
of practical use in some application domains.
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7.3 Further work

We concluded each chapter with a discussion of possible directions that could be fol-
lowed to extend the work presented in that chapter. We now look at the thesis from a
broader perspective and enumerate some ideas which apply to it on the whole.

The thesis presents a collection of statically typed languages and emphasizes the
advantages of static typing. We formulate and prove properties regarding the sound-
ness of these type systems. The automatic inference of types has not been investigated
here. There is a large body of work on this topic which could provide a starting point.

It would be useful to devise algorithms to automate type inference and study their com-
plexity and efficiency in practice. If the results are found to be promising, they will
strengthen the arguments of this thesis.

It is possible to recognize a common characteristic in all of the type systems that
we have presented. Expressions which are of interest to the investigated problem are
labeled and these labels are incorporated into their types as annotations. The annotation
of a type is used to estimate an attribute of the expression relevant to the problem. For
example, in Chaptei$ 3 and 4 this attribute is the identity of the values the expression
can evaluate to, in Chaptgr 5 it is the mobility region, and in Chapter 6 the attribute of
concern is the security class. More importantly, the algebra of annotations appear also
to be similar accross the type systems.

This suggests the possibility of designing a generic type system of which the type
systems of this thesis are particular instances. Further work in this direction would
involve defining a language which subsumes all of the languages we have considered
and might require slight modifications to the ways we have dealt with the problems.
However, casting the problems in such a unified framework would eliminate the need
to prove similar properties for each type system as the properties proved for the generic
type system would carry over to chosen instances. It would also provide an appropriate
framework for the study of other problems of similar nature.

Our approach has been to lay out a problem faced by mobile code languages and
to discuss how types can gather useful information about programs with respect to the
problem under investigation. In some cases, our attempts were limited to proposing
a way to gather this information rather than showing how to use it in building tools
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or transforming programs. It would be interesting, for example, to present some op-
timizations based on the estimation of mobile values or to build tools for estimating
resource consumption.

Throughout we have assumed closed systems and relied on trusted parties to type
check all the code in the system. Although this is reasonable for many distributed
computing environments, for a more general applicability of our work it is desirable
to consider computing environments where global type checking is impossible. This
prompts us to study type systems which may resort to dynamic checks where the static
checks turn out to be inadequate.

We have focused on simple system models with a statically fixed set of computation
sites and assumed that new sites cannot be created and site names cannot be computed
as other values. Another issue which has not been addressed here, which is yet crucial
for distributed computation, is the effect of failures on the system behaviour. It would
be interesting to extend the languages with first-class site names and also study the
phenomena related to failures.

The constant developments in the area of mobile computation, both in theory and
practice, are likely to give rise to many more directions for further research on the topic
of this thesis.



Appendix A

Selected Proof Cases

A.1 Selected proof cases from Chapter 3

Lemma371If I Fie: 1,k thenOrl | ie: 61,06k for any substitutior®.

Proof. The proof is given by induction on the derivationlof- ie : T,K.
caseie = x. The rule (id) of the the static semantics requires the typing to be of the
formT +x: 1,0 wherel' (x) = o ando > T.

We perform the necessary renaming on bound variablesseich thaio = V3.1
andd is out of reach 08. Let® be a substitution ovey such tha®'t, = . Now define
a substitutior®” with domaind; by 6”(&;) = 6(6'(%;)). We then have

0”(8(3;)) = 0"(8) = 6(8'(&)) for all i, sinced are out of reach o

68”(8(p)) = 6(p) = B(6'(p)) for all p not in&;, sinced” is defined ord;
Hence,0”(0(1x)) = 8(6'(1x)) = 6(1) which shows thaért is an instance ofol)(x).
Therefore I’ - x: 61, 0.

caseie = (letx=liejiney). The rule (let) of the static semantics requires fhatie; :
T,k andlNx — Genl,Kk,1)]Fe: T K. Let V.1 be GenT,k,1). For any substitu-
tion 8, let us consider fresB and defined’ as the extension dd; with 9{3 — 5/}
where8; represents the restriction 6fobtained by removing from the domain of
8. By the definition oflGenwe know thatd; € d are not free il or K, otherwise they

146



Appendix A. Selected Proof Cases 147

would not have been generalized. Theref@e~= 6'T andbk = 6'k’. By the defini-
tion of &, & being out of reachy/ (v3.1) = v&.6/1. Thus,®(Tx — Gen[,K,T)]) =
0/(F[x — V&.8'1]) = (8I)[x — Gen(6r, 8K, 8'1)).

By using the induction hypothesis aey with 8’ we get0'T | ie; : 6'1,0/k. By
the definition ofd’, O - ie; : 6'T,0k. By using the induction hypothesis & we get
B(I'[x — Gen[,k,1)]) e : 61,6k’ which is equivalent to the judgement
(Br)[x — Gendr,0k,0'1)] - e : 0T,06k’. Finally by the typing rule (let) we can con-
clude tha®rl |- letx = iejiney : 61/, 6K'.

(]

Theorem[3:3If a type can be derived for an expressmim the type system then there
exist an environmen@Pl’, a typetP andkP such thaBPl" - e: tP,kP and whenever
or i e: 1,k then for some substitutiof it is the case thap(6PIN) = O andytP =1
andk C YkP. The typetP is principal forein T.

Proof. The proof is given by induction on depth of the typing derivationdor
casee = c. The typing rule (con) for constants requires tB&t- c: TypeOfc),0.
By Definition [3.7, the type assigned tois unique and is independent of the typ-
ing environment. We can take the substitutldnwhich maps all variables to them-
selves as the principal substitution required by the proof. Obvio@dlgl ) = 6I" and
B(TypeOfc)) = TypeOfc) and0 C 60. In this caseTypeOfc) is the principal type
and0 is the minimal effect.

casee = X. The typing rule (var) for identifiers requires th& )(x) > 1 for any type

T which can be assigned to We takel - x: tP,0 as the principal typing for the
variablex and show that whenevé)l” - x : T,k then for soma} it is the case that
Yr =06r andytp, =1 and® C Yk. The part of the proof involving the effects is
trivial since0 is a subset of any set. For the part of the proof involving the type, let
(X)) =V81...0n.Tx and®” = [81 + 11,...,0n — 1] for freshi; andtP = 8”1« and

T = 0'1tx. A substitutiony which is a composition 06’ and iy — 91,...,1n — 0n),

that is to sayy = 0’ o ([t1 — 01,... ,1n — Oy|) satisfies our condition thaitP® =t and

yr =or.
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casee = (fn| X = €). The typing of a function expression such as this one follows
the typing rule (fn) so that 6l +- fnlx = e: (rﬁr’,l UW),0 it must be the case that
(Br)[x — 1] e: T,k andu= M(8I,FV(fn'x = e)). We can write(Bo [0 — T,y+—

W (C[x — (a,y)]) for (BMN)[x — T] wherea andy are fresh and = (T, ).

By applying the induction hypothesis ewe conclude that there exists a principal
typing for e such that(8PI" [x — (a,y)]) F e: TP,kP and a substitution) such that
W(OP(M[x — (a,Y)])) = (Bo[a — T,y W)(T[X — (a,Y)]) andyt’® = andkP C
WK. LetuP = {M(BPI",FV(fn'x = €)).

The equality(6P(T"[x — (a,y)])) = (8o [a — T,y W)(Tx — (a,y)]) implies
that P(6Pr) = B andy(a,y) = 1. LettP = (a,y) and take the principal typing as
BPT - fnl x = e: (1p Ll Ty, Mp) wheref is fresh. We know thapt, = T andkP C
K. Since(6PI) = Br, by Definition[3.8 we can deduafl, = . Letk” =k \ PKp.
The substitution)/ = Yo [ +— K] satisfies the necessary conditions.

casee = (letx = ejiney) The typing of a let expression such as this one follows the
typing rule (let) so that iBl" - letx = ey iney : T,K’, we can assume théf +e; : T,K
ander [x — Gen®r,k,1)| e : v,k

By applying the induction hypothesis enthere exists a principal typir@Pl e :
1P, kP and ay such thatp(6r) = 6PI andytP =1 andykP C k. By referring to Defi-
nition 36, one can show thatGen(6PI", kP, TP)) - Gen(OI',K, T). Sincey(6r) =6r,
whenevel(Or ) [x— Gen(0r,k,1)] - & : T',k’ we also have the judgemeui(6I") ) [x+—
Y(Gen((6r,k,1))] e : T,k’. By applying the induction hypothesis @ we have
W(BPr) andyt? =1 andykP C k. By applying the typing rule (let) we can con-
clude tha®Pr + letx = erines : T, kP is the principal typing.

]

A.2 Selected proof cases from Chapter 4

Theorem[4.1Let e be a closed expression which is evaluated atssitethe system.
AssumeS((s,p) : €—-S|(s,p) : €] andl-e:T,F. Thenl ¢ :1,F and either
a=epsorac Flat(F,{s}).
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Proof. casee= (rec' f (x) = €). The dynamic semantics requires the evaluation to fol-
low the rule (rec) such th&(s, p) : (rec' f (x) = €)]-=>Si(s, p) : fn x= { (rec' f (x) =
e)/f}]. Supposd Frec' f(x) = e:1 ER T, F'. By subsumption elimination we

know thatl Frec' f(x) = e: 1 i 1,0 and by the typing rule (rec) we know that

Mx— T][f— (T Lr’)] Fe:T,F. Sincel Fred f(x) = e: 1T LT’,@ andx is not

free in the recursive expression we can stateffipat— 1] - rec' f (x) = e: 1 ER 7,0.
This allows us to apply Lemnja 4.1 to dedudg — t] - e{(rec' f (x) = €)/f}]: T, F.

By using the typing rule (fn) for functions we know that- fn' x = e{(rec' f (x) =

e)/f}:1 7, T, 0. It follows by the rule (subs) that+ fn' x= e{(rec' f (x) =€)/ f}]:

T i T, F'. This concludes the proof of the first part. The proof of the second part is

trivial sincea = &.

casee = (reval ((fn' x = €),v)ats). The dynamic semantics requires the evaluation
to follow the rule (reval-4) such tha8{(s, p) : reval ((fn' x = €),v) ats’]@ (s,p):
blockon(s, p)][(8, P) : e{v/x}] wherep' is new as’. Suppose that we haVe- reval ((fn x=
e),v)ats : T, F. By subsumption elimination we know that there exfStand.s such
thatFlat(#',5) C F andl - fn' x=e: 1 iI>T’,(I)andr FviT,0andr k< :sited 0.

We are required to show thBt- blockon(s, p/) : U, .

By the typing rule (fn) for functions we know thdi[x — 1]+ e: v, " where
{1INUF" = F' for someF" and by appealing to Lemnfa 4.1 it can be shown that
r=e{v/x}:tv,F". We know thatF' = {I} U " for someF". By the typing rule
(site) it must be the case thdte S. By referring to Definition[4]2 we can dedude
thatFlat(F",s) C Flat(F,S) C #. The proof follows by the typing rule for blocked
expressions. O

Proposition4-1Let | be a non-empty set of indices addbe the set of possible typing
judgements for an expressierdefined as follows:

J={Mre:t, 7 |iel,|[[]=[r%, |t = 1K forall pairsj, ke I}.

Then there exists a minimum elementXfwritten asl - e: Mt,M¥, such that for
alli €1 itis the case thatir C I andrit C 1 andrF C 7.
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Proof. casee= x. Itis possible to find a greatest lower bound for any two types which
have the same underlying type structure. Since all the annotations are in the form of
sets, this can be achieved by taking the intersection of the annotations. The proof case
for typing identifiers makes use of this fact. Suppose ﬂhat{l’i FXx: ri,fi}. Obvi-

ously, foralll - x: T, ', itis the case thatr) C I, C (1) (x) andd C .

casee = (fn'x = ¢&). Suppose thal = {I" F fn'x = & : 1’ ngi,f liell.

The typing rule (fn) for functions requires that for each element ofe have a cor-
responding judgemerfit[x — 11| - € : T2, F'. LetJ be the set of these judgements
such that! = {T[x— 1| F € : 1, F' | i el,|Tj[x—1a]| = [Tk[x— 1], [12}] =

| 1oX| for all pairsj,k € 1}. We apply the induction hypothesis to the $eand this al-

lows us to conclude that there exists a minimal elemedt.dfet (M) [x — Mty - € :
Mte,MF be this minimal element. By the typing rule (fn) we can deducertiiat € :

Mty M M1,,0 is a possible typing for the function. SinceF C ' foralli €1,

it must be the case th&lat(7) C Flat(fi) foralli e I. It follows that{l } U F C

{IluF'andrty g, M, C 14 RUCEN T,ifor alli € I. Hence we have shown that

a minimal element fod, the set of possible typing judgements for the function exists.

casee = (reval (e1,e2) at e3). This proof case follows a similar line of reasoning as
the case above. Suppose thaf is the minimal annotation derived for the typeesf
and that$ is the minimal annotation derived feg. The only part of the proof which
may appear not to be obvious is the part which involves showindila&t 7, 1.5) C
Flat(#',s") for all i which index the possible annotations derivabledpandes. The
required result can be established by referring to Defin[tign 4.2. O

Theorem [A:2 Let e be a closed expression which is evaluated at sitéAssume
S(s,p): g-S[(s,p): €] andl -e:1, 7. Thenl+¢€ :1,F whereF' C F and
eithera= ¢ orac Flat(#,{s}).

Proof. casee = (let x= €1 in ). The dynamic semantics requires the evaluation to
follow the rule (let-1) such tha{(s, p) : let X = €1 in &]—5S](s, p) : letx = € ine)
whereS|[(s, p) : €]. Suppose thdt I- letx=e1inex: ', F U F' wherel -e;: 1, F and
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Mx+— GenT,F,1)]Fex: T, F'. By applying the induction hypothesis enwe have
M+é 1,7 such thatf” C F andae Flat(F,{s}). Letc = Vd.1 = GenT, 7, 1)

for & which are not free im and . Since 7’ C ¥, variables inF” must be a
subset of the variables iff. Therefore,Gen(', 7”,1) = Gen, F,1) and X —
Genl, F,1)]F e: T, F implies thaf [x— Gen, ¥”,1)] - ex: T, F'. By the typing

rule (let),l Fletx=erine: T, F”"UF'. Itremains to show thatF "U F') C F U F'

and thata € Flat(F,{s}). The proof of the latter part is immediate from the induction
hypothesis. The proof of the former part can be established by referring to Defini-
tion 46.

casee = (reval ((fn' x = €),v) at §). The dynamic semantics requires the evaluation
to follow the rule (reval-4) such tha&{(s, p) : reval ((fn' x = €),v) at s’]@ (s,p):
blockon(s, p)][(S,P') : {v/x}] wherep’ new ats. Suppose thaft - reval ((fn' x =
e),v) at s : unit, Flat(F,{s'}) wherel - fo'x=e: 1 M T,0such thatF ={l}uU
F'"andrl - v:1,0. By the typing rule for functions we know thafx — 1] -e: U, F’

and by Lemma 4]3 we know th&t- e{v/x} : U, F'. SinceF = F'U{l}, by Defini-
tion[d.6Flat(F',{s’}) CFlat(F,{s}). The typing rule for blocked expressions allows
us to conclude thdt - blockon(s, p') : Flat(F,{s'}).

O

A.3 Selected proof cases from Chapter 5

Lemmap.1If r,CE,l'[x— 14] - e: 12 andr,CE,T - v: 11 thenr,CE,T - e{v/x} : To.

Proof. The proof is given by induction on the typing derivatiom @€ E, ' [x— 11] - e:
T2. Some representative cases are as follows:
casee = x. Suppose that, CE, ' [x— 11] F X : T2.

i. X X. This implies thak’ is in the domain of” such thaf” (xX') = 1, satisfying
the necessary conditions of the typing rule (id). We know sat/x} = x'. We
can conclude by the typing rule (var) tha€CE,T - X : 0.
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ii. x=X. This implies thatt, = 13. Sincex{v/x} = v we need to establish
r,CE,l" - v: 12. This is immediate from the assumptions.

casee = (fn'y = €). Suppose that',CE,[[x — 1] - fn'y = e: (1o—13,r) where
r,CE,l[x— T4][y — To] - e:13andr’ Cr andx#y. By induction hypothesis oa
we haver,CE,l'ly — 12| - e{v/x} : 13. We get the required result by applying the
typing rule (fn). O

Lemma5.21f r,CE,[ - v: (1,r) then for anyr” such that” C r’ it is the case that
r’,CE,l Fv:(1,r').

Proof. The proof is given by induction on the typing derivationrg€E, " - v: (T,r’).
casee=c". Suppose,CE,l+c" : (T,r') whereTypee(c') = (T,r') andr C r’. For
anyr” C r’ the side conditions would still hold for establishifgCE,l - c: (T,r’).

case(fn) Similar to the above case.

case(op)r,CE,l vy op w: (int,r’) wherer,CE,I" vy : (int,r1) andr,CE,l F vy :
(int,r2) andr’ =ryNry. By induction hypothesis om andv, we have that” ,CE,T |- :
vi: (int,r1) andr”,CE,l" vy : (int,r2). The required result follows from the typing
rule (op).

]

Theorem[5.1AssumeCl, P[s: ) — CI’,P'[s: €] andC| = Dom(CE) andr,CE, [ - e:
T. Then there exists@E’ such thar,CE',[| € : TandCl’ = Dom(CE').

Proof. We have outlined the proof in Sectipn 5]5.1. We include here the proofs for
some of the representative cases only.

case(let-2)Cl, P[s: letx=viney] — CI,P[s: e2{v/x}] andr,CE,[| I letx=Viney: T2
wherer,CE,[] Fv:tandr,CE,[x — 1]+ e : 12. By Lemma5.]l we establish the re-
quired result.
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case(com) Cl,P[s; : kK'V][s; : V] — CI",P'[s1 : ()'][s2 : V] andCl = Dom(CE) and
{s1},CE,l FK'lv: (unit,r) and {s;},CE,T -kl? : (T,r). The typing rules for ex-
pressions as; ands; require that{s;},CE, I - k' : (chan[t],r) where{s;} C r and
{s1},CE,l Fv: (T,r) and{s;},CE,l - k' : (chan[T],r) where{s,} Cr . Itis obvi-
ous that{s;},CE,l - ()" : (unit,r). By Lemma 2, using(s;},CE,l-v: (T,r) and
{s2} C r as assumptions, we can establfsh},CE,I" - v: (t,r) which is the required
result. O]

LemmaB.3If r,CE,T - e: tthenr C Lg(T).

Proof. The proof is given by induction on the typing derivationrQCE,l -e: 1.
Some representative cases are as follogases(con),(var) and (fn) follow immedi-
ately from the side conditions imposed by the typing ruleasee = e;e,. Suppose
r,CE,T -ee : 1. The typing rule (app) requires thatCE, T - e; : (T—Ty,r’) and
r,CE,l e : 1. By the induction hypothesis @ we have that C r’. It follows from
the well-formedness condition for function types that Ls(11). By transitivity of the
subset relatior we conclude that C Lg(T1).

(]

Lemma[.4If r,CE,l' - v: TthenlLy(v) = Ls(T).

Proof. A simple inspection of the typing rules is sufficient to prove this lemmall
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