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José Carlos Soares do Esṕırito Santo
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Abstract

This thesis offers a study of the Curry-Howard correspondence for a certain

fragment (the canonical fragment) of sequent calculus based on an investigation

of the relationship between cut elimination in that fragment and normalisation.

The output of this study may be summarised in a new assignment Θ, to proofs

in the canonical fragment, of terms from certain conservative extensions of the

λ-calculus. This assignment, in a sense, is an optimal improvement over the

traditional assignment ϕ, in that it is an isomorphism both in the sense of sound

bijection of proofs and isomorphism of normalisation procedures.

First, a systematic definition of calculi of cut-elimination for the canonical

fragment is carried out. We study various right protocols, i.e. cut-elimination

procedures which give priority to right permutation. We pay particular attention

to the issue of what parts of the procedure are to be implicit, that is, performed

by meta-operators in the style of natural deduction. Next, a comprehensive study

of the relationship between normalisation and these calculi of cut-elimination is

done, producing several new insight of independent interest, particularly concern-

ing a generalisation of Prawitz’s mapping of normal natural deduction proofs into

sequent calculus.

This study suggests the definition of conservative extensions of natural deduc-

tion (and λ-calculus) based on the idea of a built-in distinction between applica-

tive term and application, and also between head and tail application. These

extensions offer perfect counterparts to the calculi in the canonical fragment, as

established by the mentioned mapping Θ. Conceptual rearrangements in proof-

theory deriving from these extensions of natural deduction are discussed.

Finally, we argue that, computationally, both the canonical fragment and nat-

ural deduction (in the extended sense introduced here) correspond to extensions

of the λ-calculus with applicative terms; and that what distinguishes them is the

way applicative terms are structured. In the canonical fragment, the head appli-

cation of an applicative term is “focused”. This, in turn, explains the following

observation: some reduction rules of calculi in the canonical fragment may be

interpreted as transition rules for abstract call-by-name machines.
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Chapter 1

Introduction

The Curry-Howard correspondence [Curry and Feys, 1958, Howard, 1980], in its

simplest form, establishes a connection1 between natural deduction for the intu-

itionistic implicational logic and simply typed λ-calculus. When types are seen

as formulas, λ-terms may be seen as proofs of their types in natural deduction.

When formulas are seen as types, proofs may be seen as programs in a rudimen-

tary programming language, actually the core of functional languages. Moreover,

up to this correspondence, normalisation in natural deduction is the same as β-

reduction in λ-calculus. The correspondence may, then, be extended to much

stronger type theories [Barendregt, 1992], which integrate, according to the per-

spective, both a proof system for a constructive logic, and a functional language

with a sophisticated type system.2

This thesis is about extensions of the Curry-Howard correspondence, but in

the sense of investigating whether it holds for other kinds of proof systems. Ac-

tually, the correspondence was first observed for combinatory logic, which is the

type-theoretic counterpart of Hilbert systems [Curry and Feys, 1958]. Here we

study the extension of the correspondence to sequent calculus. Therefore, we are

interested in the project of finding a programming calculus whose terms may be

put in 1-1 correspondence with the proofs of a sequent calculus, in such a way

1Whether this connection is an isomorphism or not is highly sensitive to technical formalities
like the style of typing (à la Curry or à la Church) or the management of labels in natural
deduction [Hindley, 1997]

2The correspondence may also be extended to classical logic [Griffin, 1990, Parigot, 1992].

1



Chapter 1. Introduction 2

that each step of cut elimination reads as an execution step in the correspond-

ing program and vice-versa. In this thesis we restrict ourselves to intuitionistic

implicational logic.

Recently, it has been clearly demonstrated the interest of extending the Curry-

Howard correspondence to sequent calculus. We take the following quotation from

[Curien and Herbelin, 2000]:

(...) The correspondence between programs and proofs is tradition-
ally explained through natural deduction (...). We believe that this
tradition is in good part misleading. (...) Sequent calculus is far more
well-behaved than natural deduction: it enjoys the subformula prop-
erty, and destruction rules - cuts - are well characterized in contrast
with the elimination rules of natural deduction which superimpose
both a construction and a destruction operation: the application is a
constructor in a term xM , but is destructive in a term (λx.M)N .

Let us emphasize that the real challenge in the Curry-Howard correspondence

is that the term calculus must be meaningful in programming terms. This is what

we mean by a computational interpretation. As observed in [Abramsky, 1993],

What is particularly satisfying about this correspondence in the case
of Intuitionistic Logic is that the formalism on the computational side
is immediately recognisable as an attractive programming paradigm.

Otherwise, we are left with the void exercise of converting a proof system into

the type system for some anonymous term calculus.

Now, the search for the desired programming calculus does not start from

square zero. Actually, it starts from the λ-calculus. This is quite natural because

there are close links between sequent calculus and natural deduction. Specifically,

there is a well-know mapping ϕ introduced in [Prawitz, 1965] and deeply studied

in [Zucker, 1974, Pottinger, 1977] that assigns natural deduction proofs (hence λ-

terms) to sequent calculus proofs. Mapping ϕ interprets axioms as assumptions,

right inferences as introductions, every left inference as a certain combination of

an application and a substitution, and cuts as substitutions.

Assignment ϕ is the starting point of this thesis as well. However, this as-

signment is far from giving an extension of the Curry-Howard correspondence to
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sequent calculus. The λ-calculus has to be refined and extended in several ways

in order to describe cut elimination. In the following, we review previous work

attempting to turn ϕ into a Curry-Howard correspondence. Later on, we explain

the contribution of this thesis to the same goal.

1.1 Curry-Howard correspondence and sequent cal-

culus

Just a few years ago, the situation as to the possibility of extending to sequent

calculus the Curry-Howard correspondence seemed discouraging.

From an algorithmic point of view, the sequent calculus has no Curry-
Howard isomorphism, because of the multitude of ways of writing the
same proof.[Girard et al., 1989]

This remark refers to the possibility of permutation of rules, observed both in

classical and intuitionistic sequent calculus [Troelstra and Schwitchtenberg, 2000,

Kleene, 1952]. Another manifestation of this is the fact that the traditional map-

ping ϕ from intuitionistic sequent calculus to natural deduction is not injective

[Zucker, 1974]. As a consequence, the traditional assignment of λ-terms to se-

quent calculus proofs does not produce a Curry-Howard correspondence 3.

Furthermore, even in a paper where a term calculus with typing rules in the

style of sequent calculus is proposed, one may read:

The reader has probably noticed that our operational semantics is
quite different from the cut elimination rules; many of these rules do
not seem to have computational significance, at least not in the spirit
of current programming practice.[Kesner et al., 1995]

Whether real or apparent, these difficulties did not stop the search for a

Curry-Howard correspondence for sequent calculus in the last ten years or so.

Quite naturally, pioneer works attempted a direct interpretation of the fact

that in sequent calculus one has left introduction rules. The basic idea was that

3For a different opinion, see [Barendregt and Ghilezan, 2000].
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right rules produce data, whereas left rules consume it [Abramsky, 1993]. Hence,

left rules seemed to correspond to pattern matching, an insight that goes back to

[Lafont, 1989]. For instance, using the notation of [Wadler, 1993], the left rule

for conjunction looks like

Γ, x : A, y; B ` t : C

Γ, z : A ∧ B ` case z = (x, y) of t : C
(1.1)

The constructor case z = (x, y) of t wants to decompose a value z of type

A ∧ B into the two components x and y. This matches with the right rule for

conjunction, which produces values of the form (u, v), where u has type A and v

has type B. The rule that does the actual match is cut

Γ ` u : A Γ, x : A ` t : B

Γ ` let x be u in t : B
. (1.2)

The intended meaning of these 4 constructors is

let z be (u, v) in (case z = (x, y) of t) → t[u/x][v/y] . (1.3)

Another possibility offered by sequent calculus and fully exploited since the

early days is the fact that inference rules may act in any formula of the sequent,

unlike natural deduction (in sequent style), in which only the RHS formula is

transformed. This suggests a system of term assignment in which not only the

RHS formula, but instead any formula of the sequent is assigned a term, record-

ing, so to say, its history. Let us call this kind of system asynchronous . Indeed,

there is no term recording the global history of the derivation. For instance,

instead of (1.1), one has

4We started with conjunction instead of implication, which is the connective we are interested
in, because the case constructor for the left introduction of implication has a very unusual form

Γ ` u : A Γ, y : B ` v : C

Γ, z : A ⊃ B ` case z = λu.y of v : C
.

The notation λu.y is due to [Lafont, 1989]. The idea is to match λx.t with λu.y, similarly as
we match (u, v) with (x, y). The reduction rule is

let z be λx.t in (case z = λu.y of v) → v[t[u/x]/y] .
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Γ, p : A, q; B ` t : C

Γ, (p, q) : A ∧ B ` t : C
(1.4)

Here, Γ contains declarations of patterns p : A. Observe how the term t remains

unchanged. The first system fully developed along these lines seems to have been

a term assignment system for classical linear logic in [Abramsky, 1993].

Asynchronous term assignment systems have the potential of modelling nested

patterns, like (x, (y, z)). This line of research was pursued in [Kesner et al., 1995]

and [Cerrito and Kesner, 1999]. Another characteristic is that these systems are

highly insensitive to permutation of rules. To see this, suppose Γ in (1.4) is of the

form Γ0, p
′ : A, y′ : B′ and suppose we want to construct both A∧B and A′ ∧B′.

Independently of the order by which the two instances of the left rule occur, the

final sequent will be

Γ0, (p
′, q′) : A′ ∧ B′, (p, q) : A ∧ B ` t : C

There is no global record telling which conjunction was built first.5 Let us give

another example. Suppose in (1.4) t is of the form λx.t0 and suppose we build a

cut with cutformula C, whose left subderivation is a derivation ending with (1.4).

The term annotating this cut is of the form

let z be λx.t0 in u . (1.5)

In this annotation we have direct access to the last time a right rule was applied

in the left subderivation. In a synchronous system, the access to the last right

rule is gained by explicitly permuting the cut to the left.

Asynchronous term assignment system are a very interesting approach to the

problems caused by permutability of rules in sequent calculus. Nevertheless, it is

an approach we do not follow here. This is so because, in this thesis, we avoid

the permutability problem in a different way, by studying a permutation-free

fragment of the sequent calculus, as explained below.

5This is why the mentioned term calculus for classical linear logic in [Abramsky, 1993] is
proposed as an alternative to proof-nets [Girard, 1987].
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Once we decided not to follow the path of, say, [Kesner et al., 1995], the analy-

sis of sequent calculus so far leaves us with a system of the kind of [Wadler, 1993],

where left rules are interpreted as pattern matching constructors. We are back to

(1.1) and (1.2). Now, some obscure points remain in this interpretation. What

does it mean the left permutation of cuts, a necessary feature in this setting as ex-

plained above when discussing (1.5)? Another example is the mismatch between

the intended meaning of pattern matching constructors (1.3) and what happens

in the key step of cut elimination

let z be (u, v) in (case z = (x, y) of t) → let y be v in (let x be u in t) , (1.6)

where the LHS cut, with cut formula A∧B, say, is replaced by two cuts with cut

formulas A and B, respectively. How do the two let’s in the RHS of (1.6) relate

to t[u/x][v/y] in the RHS of (1.3)? Take, for instance, let x be u in t. In terms

of cut elimination, what we want is to permute to the right the cut represented

by this let. In other words, we want to permute u inside t and, somehow, this is

to be related to t[u/x]. While people were thinking about this, a new metaphor,

a new conceptual tool appeared - that of explicit substitution [Abadi et al., 1991]

- that provided the right language in which to describe the portion of the cut

elimination process we are analysing. The right permutation of let x be u in t

eventually performs t[u/x], but in a stepwise fashion. While the cut in the LHS

of (1.6) matches the pair (u, v) with the pattern (x, y), the cuts in the RHS of

(1.6) are explicit substitutions and (1.6) should be rewritten as

let z be (u, v) in (case z = (x, y) of t) → t〈x := u〉〈y := v〉 . (1.7)

This is the first piece of evidence that cuts bear different interpretations according

to the stage of cut elimination they are going through.6

Several refinements of the traditional assignment ϕ of λ-terms to sequent cal-

culus proofs are suggested. Instead of interpreting cut as (“meta”-)substitution,

one should interpret it as explicit substitution:

6The impact of this observation is clear in the evolution of the system of [Kesner et al., 1995]
to that of [Cerrito and Kesner, 1999].
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Γ ` u : A Γ, x : A ` t : B

Γ ` t〈x := u〉 : B
.

But this is so only for newly-born cuts, which are willing to be permuted to the

right, like those in the RHS of (1.7). Key cuts, like the cut in the LHS of (1.7),

should, for the moment, be annotated with a matching constructor, as in (1.2).

As firstly observed by [Gallier, 1993], explicit substitutions allow, then, to

express in the term calculus (some of the) stepwise cut elimination rules (see also

[Vestergaard and Wells, 1999]). This idea was fully realized for the first time in

[Herbelin, 1995]. Furthermore, as suggested in [Barendregt and Ghilezan, 2000],

explicit substitutions improve the situation as to the permutability problem, if

one refines the traditional term assignment of left rules. For instance, the left

rule for implication becomes

Γ ` u : A Γ, y : B ` t : C

Γ, x : A ⊃ B ` t〈y := xu〉 : C
.

Explicit substitution shows up in the place where meta-substitution appeared

according to the old assignment. Let us see an example, taken from op. cit. (we

will be negligent about contexts). By permuting the two rules of

..., z : A ` z : A

..., x : C,w : B ` w : B
Right

..., w : B ` (λx.w) : C ⊃ B
Left

..., z : A, y : A ⊃ B ` (λx.w)〈w := yz〉 : C ⊃ B

(1.8)

one obtains

..., z : A ` z : A ..., x : C,w : B ` w : B
Left

..., x : C, z : A, y : A ⊃ B ` w〈w := yz〉 : B
Right

..., z : A, y : A ⊃ B ` λx.(w〈w := yz〉) : C ⊃ B

In the traditional term assignment, these two proofs would get the term λx.yz.

With the new assignment, the distinction between these two proofs is reflected

in the distinction between (λx.w)〈w := yz〉 and λx.(w〈w := yz〉).
Unfortunately, explicit substitutions are not a panacea. Let us consider the

following situation (we focus on implication from now on):
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d1···
... ` u : A

d2···
..., x : B ` t : C

Left
..., z : A ⊃ B ` t〈x := zu〉 : C

d3···
..., y : C ` t′ : D

Cut
..., z : A ⊃ B ` t′〈y := t〈x := zu〉〉 : D

(1.9)

Assume that the last inference of d3 is a left rule that introduced the displayed

C without (implicit) contraction. This cut is, thus, right-permuted, i.e. cannot

be permuted to the right any further. On the other hand, it is left-permutable.

The result of permuting it over the displayed left inference is

d1···
... ` u : A

d2···
..., x : B ` t : C

d3···
..., y : C ` t′ : D

Cut
..., x : B ` t′〈y := t〉 : D

Left
..., z : A ⊃ B ` t′〈y := t〉〈x := zu〉 : D

(1.10)

With the present assignment of terms, this permutation reads

t′〈y := t〈x := zu〉〉 → t′〈y := t〉〈x := zu〉 .

This is an unnatural and unusual rule. It seems that the explicit substitution

metaphor, appropriate as it is for describing the right permutation of cuts, is not

appropriate anymore for the left permutation. So we are, again, in need of a new

idea.

A radical new idea may be found in [Herbelin, 1995]. The problem of per-

mutability is completely avoided by interpreting, not the whole sequent calculus,

but a permutation-free fragment of it. The point is that nothing is lost in this

fragment, as it proves the same sequents as full LJ . At the same time, cut-free

proofs in this fragment are in 1-1 correspondence with normal natural deduction

proofs. Actually, the fragment has many “structural” advantages, as emphasized

in [Dyckhoff and Pinto, 1998]: for instance, head variables are brought to the

surface of an applicative term xN1...Nk, let alone the fact that it keeps being a

sequent calculus, therefore keeping the subformula property.
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In fact, this fragment, which we call the canonical fragment (or the frag-

ment of canonical proofs), was rediscovered several times [Danos et al., 1997,

Dyckhoff and Pinto, 1999, Mints, 1996].7 In a cut-free setting, both [Mints, 1996]

and [Dyckhoff and Pinto, 1999] called the proofs in the fragment “normal” and

showed that they are the proofs irreducible w.r.t. a set of permutation rules.

Since we will not restrict ourselves to a cut-free setting, we cannot adopt the

“normal” terminology. [Danos et al., 1997] shows that the fragment is closed for

the “tq-protocol” - or rather the t-protocol, as the fragment we have in mind

requires, in the terminology of op. cit., all formulas to be t-coloured. We will

come back to the relation between the t-protocol and Herbelin’s cut elimination

procedure.

The canonical fragment will be explained in detail in Chapter 2. However,

we show briefly here how the interpretation of reduction step (1.9) → (1.10)

improves.

The restriction defining the canonical fragment is such that in (1.9) and (1.10)

B = B1 ⊃ ... ⊃ Bk ⊃ C and C = C1 ⊃ ... ⊃ Cm ⊃ D, for some k,m. Moreover,

derivation d2 (resp. d3) consists of the stack of k (resp. m) left inferences, starting

from axiom C ` C (resp. D ` D), that builds the B = B1 ⊃ ... ⊃ Bk ⊃ C (resp.

C = C1 ⊃ ... ⊃ Cm ⊃ D) displayed in its end-sequent, and is annotated with a

list of terms l = [v1, ..., vk] (resp. l′ = [v′
1, ..., v

′
m]), where vi (resp. v′

i) annotates

the left subderivation of the i-th left inference in the stack (from bottom to top).

The annotation for each left inference in those stacks is consing (notation ::) and

for the axioms C ` C and D ` D is the empty list (notation []). Since the

formulas

7[Troelstra and Schwitchtenberg, 2000] attributes the identification of the fragment to Curry,
on the basis of a passage of [Howard, 1980]. See Chapter 2. As to [Danos et al., 1997], we are
thinking of the intuitionistic, t-coloured restriction of LKη.
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C

Bk ⊃ C

Bk−1 ⊃ Bk ⊃ C

...

B = B1 ⊃ ... ⊃ Bk ⊃ C

and

D

Cm ⊃ D

Cm−1 ⊃ Cm ⊃ D

...

C = C1 ⊃ ... ⊃ Cm ⊃ D

successively introduced in those stacks are linear and main (in the usual sense of

sequent calculus), they do not get a variable. The new annotations for (1.9) are

d1···
... ` u : A

d2···
..., B ` l : C

Left
..., z : A ⊃ B ` z(u :: l) : C

d3···
..., C ` l′ : D

Cut
..., z : A ⊃ B ` (z(u :: l))l′ : D

(1.11)

The displayed left inference is assigned z(u :: l). This is not simply consing

because A ⊃ B is not necessarily linear. An informal reading of z(u :: l) is that

z is “applied” to u, with l providing further arguments. Let t = z(u :: l). Then,

the displayed cut is annotated with tl′. Again, think of this as an application,

where l′ provides m arguments.

As to (1.10), the new assignment is

d1···
... ` u : A

d2···
..., B ` l : C

d3···
..., C ` l′ : D

Cut
..., x : B ` ll′ : D

Left
..., z : A ⊃ B ` z(u :: (ll′)) : D

(1.12)

The displayed cut is of a new kind, between the two list l and l′. This is notated

ll′ and should be understood as an explicit append, or “concatenation”. The left

permutation (1.11) → (1.12) now reads

(z(u :: l))l′ → z(u :: (ll′)) . (1.13)

Cut elimination will keep permuting d3 over d2 and, in the term calculus, this

corresponds to a stepwise performance of the append of l with l′. The final result
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of this permutation is a stack of k+m left inferences, starting from axiom D ` D

and generating B = B1 ⊃ ... ⊃ Bk ⊃ C1 ⊃ ... ⊃ Cm ⊃ D.

The remarkable result of Herbelin is that the Curry-Howard counterpart to his

sequent calculus is a version of the λ-calculus with explicit substitutions, but in

which applicative terms no longer have the form (...(tu1)...uk) but instead have the

form t[u1, ..., uk]. These two ways of representing applicative terms are regarded

by Herbelin as explaining the difference between a sequent calculus structure and

a natural deduction structure. As to cut elimination, Herbelin’s system is the

first with several kinds of cuts bearing different computational interpretations.

In his own words

Each elementary step of cut-elimination exactly matches with a β-
reduction step, a substitution propagation step or a concatenation
computation step.

Substitution propagation corresponds to right permutation and “concatenation”

of lists is related to the left permutation. As to the key-step of cut elimination,

observe that a key-cut is a right-permuted cut whose left subderivation ends with

a right rule. It has the form

d···
..., x : A ` t : B

Right
... ` λx.t : B

d′
···

... ` u : A

d′′
···

..., B ` l : C
Left

..., A ⊃ B ` u :: l : C
Cut

... ` (λx.t)(u :: l) : C

Hence, a key-cut is a kind of β-redex. The key-step of cut elimination produces

d′
···

... ` u : A

d···
..., x : A ` t : B

Cut
... ` t〈x := u〉 : B

d′′
···

..., B ` l : C
Cut

... ` t〈x := u〉l : C

Instead of a “β-reduction step”, this is a beta-reduction step, in the terminology

of explicit substitution calculi [Abadi et al., 1991], as it is the step that generates

an explicit substitution.
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The weak point of this interpretation is the meaning given to (1.13). Is it

a “concatenation computation step”? A better interpretation is obtained by a

combination of two observation. First, the effect of (1.13) is to bring the head

variable z to the surface, so to speak. Second, an interpretation in terms of “lists”,

“concatenation” and so on seems too literal. Already in [Herbelin, 1995] this was

recognised, as the idea of “applicative context” is briefly mentioned in connection

with the idea of lists. An applicative context (other names: call-by-name evalua-

tion context, or continuation8) is an expression of the form (...([−]u1)...uk), where

[−] represents a “hole”. When a term t is “filled” in the hole, an applicative term

(...(tu1)...uk) results.

In [Curien and Herbelin, 2000], the interpretation of lists as evaluation con-

texts was fully developed. Cuts tl are interpreted as t filled in the hole of l.

Consing u :: l means filling the hole of l with [−]u. Although cuts of the form ll′

were not considered in op. cit., it is clear that they correspond to the composition

of contexts, in an obvious sense. As sketched in op. cit., it results that reduction

rules close to (1.13), namely

(t[u])l → t(u :: l) ,

model certain transition rules of environment machines like Krivine’s machine

[Krivine]. Here, lists receive yet another interpretation, as stacks in the abstract

machines terminology.

The search for the computational interpretation of sequent calculus reached its

highest point in [Curien and Herbelin, 2000]. In this paper it is argued that there

is a Curry-Howard match between the symmetry of classical logic, as expressed

in the sequent calculus LK, and implicit symmetries of programming languages

like program/context and call-by-name/call-by-value.

8The idea of evaluation contexts may be traced back to [Felleisen et al., 1986].
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1.2 Contribution of this thesis

The story we have just told may be seen as a long struggle for improving the

traditional assignment ϕ of λ-terms to sequent calculus. Manifestly, λ-calculus is

too poor a language to express what is going on in cut elimination.

In accordance with the main requirement for obtaining a Curry-Howard inter-

pretation, several authors proposed to extend the λ-calculus with features which

were meaningful from a programming point of view, like pattern matching, or were

theoretical tools introduced for reasoning about programs, like explicit substitu-

tions or evaluation contexts. We say that these extensions are of a computational

nature.

In this thesis we propose a new assignment Θ, to the canonical fragment of

sequent calculus, of terms from certain conservative extensions of the λ-calculus.

The main property of Θ is to be an isomorphism, both in the sense of sound

bijection of proofs, and in the sense of isomorphism of normalisation procedures.

The extension of λ-calculus proposed is based on the idea of a built-in dis-

tinction between applicative terms and applications, and also between head and

tail applications.

This extension is proof-theoretical in nature, for three reasons. First, it does

not leave the framework of natural deduction - actually it represents an extension

of it. Second, it is motivated by an analysis of a mapping from natural deduc-

tion to sequent calculus introduced by Prawitz. Third, the issue of explicitness

(in particular, the issue of explicit substitutions), already present in the compu-

tational interpretations mentioned above, will be taken seriously here from the

point of view of normalisation procedures (both for sequent calculus and natural

deduction), their relationship and interpretation.

As to the computational interpretation of sequent calculus, we have seen how

the identification of the canonical fragment of sequent calculus allowed a modular

approach, by which the permutability problem is abstracted away, and a smaller

system - precisely that closer to natural deduction - is studied first. Here we

do the inverse, so to speak. By extending natural deduction so as to obtain a

system isomorphic (but far from equal) to the canonical fragment, we will be able
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to separate, in the interpretation of the latter, among the features added to λ-

calculus, the feature that characterises computationally the canonical fragment,

from the features that were added because λ-calculus is a weak system of natural

deduction.

It turns out that the computational interpretation of both the canonical frag-

ment and natural deduction (in the extended sense introduced here) is certain

extensions of the λ-calculus with applicative terms. Moreover, what distinguishes

computationally the canonical fragment from natural deduction is the way ap-

plicative terms are structured. In the natural deduction side, applicative terms

are built out of head and tail eliminations, and the head application is deeply

buried. In the canonical fragment, applicative terms are built out of an evaluation

context and the head application, and the latter is “focused”, i.e. immediately

available.

As to proof theory, we think that, after the identification of the canonical

fragment, there was no systematic study of cut-elimination in this fragment and

its relation with normalisation. We regard as a contribution of this thesis the

systematic definition of calculi of cut-elimination for the canonical fragment, as

well as the comprehensive study of the relationship with natural deduction that

follows. Moreover, we show how the idea of a built-in distinction between ap-

plicative term and application, simple as it is, causes a vast rearrangement of the

relationship between sequent calculus, natural deduction and λ-calculus.

Overview of the thesis

In Chapter 2 we fix notations definitions and terminology as to sequent calculus

and cut elimination. It also provides the proof-theoretical background for the

following chapters.

In Chapter 3, calculi of cut elimination for the canonical fragment are sys-

tematically developed.

In Chapters 4 and 5 we produce the study of the relationship between cut

elimination in the canonical fragment and normalisation.

In Chapter 6, extensions of natural deduction are defined which provide per-
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fect counterparts to the calculi defined in the canonical fragment. The mapping

Θ mediates between these two kinds of calculi.

In Chapter 7, applications to the computational interpretation of sequent

calculus are discussed.

In Chapter 8, we summarise the contributions of this thesis and propose future

work.

Notations and terminology

Types: We just treat intuitionistic implicational logic. Formulas (or types) are

given by

A,B,C,D ::= p |A ⊃ B

where p ranges over propositional letters. As usual, we assume that implication

is bracketed to the right. E.g. A ⊃ B ⊃ C = A ⊃ (B ⊃ C).

Contexts: A context is a consistent set of declarations x : A. By consistent

we mean that if x : A and x : B are in a context, then A = B. Contexts are

ranged over by Γ. We write x ∈ Γ meaning x : A ∈ Γ for some A. Γ, x : A denotes

the consistent union Γ∪{x : A}, which means that, if x is already declared in Γ,

then it is declared with type A.

Rewriting: If R is a binary relation (sometimes called a notion of reduc-

tion) on a set of terms, then →R denotes its compatible closure and →+,→∗ the

usual closures of →R. We will never deal with conversion. Therefore, = will

always mean equality. If →R is confluent, ↓R denotes the associated normal-form

mapping. Usually we write R1, R2 instead of R1 ∪ R2.

λ-calculus: See Table 1.1. We only work with pure terms. As usual, we

assume that application is bracketed to the left. E.g. MN1N2 = (MN1)N2.

Typing is à la Curry. See Table 1.2. Sequent(s) above the deduction line of a

typing rule are the premiss(es) of the rule and the sequent below the deduction

line is called its conclusion. The order of premisses in rules matters, and is as in

Table 1.2, so that we can refer without ambiguity to the left premiss or the right
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Table 1.1: The λ-calculus

(Terms) M,N ::= x |λx.M |MN

(β) (λx.M)N → M [N/x]

where

x[N/x] = N

y[N/x] = y, y 6= x

(λy.M)[N/x] = λy.M [N/x]

(MM ′)[N/x] = M [N/x]M ′[N/x]

subderivation. The left premiss of Elim is also called the main premiss. We may

refer to Elim (resp. Intro) as the elimination (resp. introduction) rule.

A value is a variable or a λ-abstraction [Plotkin, 1975]. If a λ-term is not a

value, it is an applicative term. Given an application MN , we say the application

is a value application if M is a value.

In [Joachimski and Matthes] the syntax of the λ-calculus is given as follows:

M,N ::= x |λx.M |xN ~N | (λx.M)N ~N

Here ~N ranges over (possibly empty) “vectors” of λ-terms. This is an informal

device for bringing head variables and redexes to the “surface” of applicative

terms. In this thesis we will find formal ways of achieving the same effect.

For future reference, we give here the following definition.

Definition 1 (Compatible closure) Given a binary relation R on λ-terms,

the compatible closure →R is the least binary relation → on λ-terms containing
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Table 1.2: Typing rules for λ

V ar
Γ, x : A ` x : A

Intro
Γ, x : A ` M : B

Γ ` λx.M : A ⊃ B
x /∈ Γ

Elim Γ ` M : A ⊃ B Γ ` N : B
Γ ` MN : B

R closed under:

Intro M → M ′
λx.M → λx.M ′

Elim1 M → M ′
MN → M ′N

Elim2 N → N ′
MN → MN ′

Renaming of bound variables: α-equivalent terms are seen as equal. Re-

naming of bound variables is assumed whenever appropriate. In particular, we

may assume that, in an expression, the sets of free and of bound variables are dis-

joint. This is Barendregt’s variable convention [Barendregt, 1984], which applies

to all calculi in this paper.

Grammars: We present syntax as in the top part of Table 1.1. Terms is the

syntactic class and M,N are meta-variables ranging over Terms.

Lists: Empty list and cons are written [] and ::, respectively. [u1, u2, ..., uk]

abbreviates u1 :: (u2 :: ... :: (uk :: [])...). In particular, [u] is u :: [].

Naming of λ-calculi: Often we refer to the λ-calculus simply as λ, and

similarly for other calculi. In naming λ-calculi, we follow some conventions. (1)

λ means that the calculus is close to Herbelin’s λ-calculus [Herbelin, 1995]. (2)

G is after Gentzen. (3) P is after Prawitz. (4) N means that the calculus is

a natural deduction system. (5) h signals a reduction rule for simplifying head

applications. (6) x signals explicit substitutions.
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Relationship between calculi: We will find several times the following

situation. (1) The terms of a calculus λ1 are also terms of another calculus λ2.

(2) If t → u in λ1 then t →+ u in λ2. (3) There is a mapping p : λ2 → λ1

such that (i) pt = t, for all t in λ1 and (ii) t → u in λ2 implies pt →∗ pu in λ1.

Such mapping will be called a projection. Then, we say that λ2 is a conservative

extension of λ1, because it holds that

t →∗ u in λ1 iff t →∗ u in λ2, for all t, u in λ1.

“Only if” follows from (2). As to “if”, suppose t →∗ u in λ2, with t, u in λ1.

Then, by (3-ii), pt →∗ pu in λ1. But pt = t and pu = u, by (3-i).

Moreover, quite often p is such that t →∗ pt in λ2. In that case, we say that

λ2 is internally conservative over λ1.

Simultaneous induction: Consider the following example:

NormalTerms N ::= x | (λx.N) | app(A)

NormalApplications A ::= (xN) | (AN)

Let P be a property over the elements of NormalTerms and Q a property over

the elements of NormalApplications. Suppose we want to prove

for all N , P (N)

and

for all A, Q(A) .

(1.14)

It suffices to prove

P (x)
P (N)

P (λx.N)
Q(A)

P (app(A))

P (N)
Q(xN)

Q(A) P (N)
Q(AN)

A proof of these five implications is what we call a proof of (1.14) by simultaneous

induction on N and A. We will refer to induction hypotheses P (N) and Q(A) as

IH1 and IH2 respectively.
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Sequent calculus: See Chapter 2.

Abbreviations: We will use the following: RHS (= right hand side), LHS

(= left hand side), iff (= if and only if), IH (= induction hypothesis), whnf (=

weak head normal form).



Chapter 2

Background

In this chapter we introduce some preliminary material. First, we define the

family of cut-elimination procedures we adopt in this thesis and give one example

in detail - the so-called t-protocol [Danos et al., 1997]. Second, we explain the

canonical fragment of sequent calculus. We adopt the approach of [Herbelin, 1995]

as to the way the syntactic machinery is set up.

2.1 A cut-elimination procedure

Consider the sequent calculus defined in Table 2.1. Sequents have the form

Γ ` L : A , (2.1)

where Γ is a consistent set of declarations x : B and L is a term in a certain

language defined by

L ::= Ax(x) |Cut(L, (y)L) | L(x, L, (y)L) |R((x)L)

Rules in Table 2.1 have a natural reading as typing rules for this language.

However they have another reading, as natural as this, as rules for generating

logical derivations. This is clear if one understands a sequent (2.1) occurring in

a derivation as the usual sequent

20
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Table 2.1: Sequent calculus inference rules

Ax
Γ, x : A ` Ax(x) : A

Left
Γ ` L1 : A Γ, y : B ` L2 : C

Γ, x : A ⊃ B ` L(x, L1, (y)L2) : C
, y /∈ Γ

Right
Γ, x : A ` L : B

Γ ` R((x)L) : A ⊃ B
x /∈ Γ

Cut
Γ ` L1 : A Γ, y : A ` L2 : C

Γ ` Cut(L1, (y)L2) : C
y /∈ Γ

Γ ` A ,

plus some information about the derivation above the sequent, contained in the

term L, and which is made locally available. This is the same phenomenon as

natural deduction “in sequent style”, in which, for each formula occurrence in a

derivation, the information about undischarged assumptions (that is, the undis-

charged leaves of the derivation above the formula occurrence) is made locally

available in the form of a context.

In the case of (2.1), L keeps record of the sequence of rules by which the deriva-

tion above the sequent was built, together with extra information contained in

the bound and free variables of L. This information refers, respectively, to which

formulas in the contexts were active in, or were introduced by, the application of

a rule.

The record L is an incomplete one in the sense that we cannot reconstruct,

from Γ ` A plus L the whole derivation above the sequent. Actually, there may

be many derivations of Γ ` L : A. This situation is due to the fact that L is

untyped, and is typical of Curry-style typing [Hindley, 1997]. Nevertheless, we

stick to this logical understanding of sequents (2.1). The advantage is that we
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may, for instance, define cut elimination directly in typing derivations. We do

not have two entities - the typing system and the underlying logical calculus -

but a single one, and we will never talk about term erasure. This approach will

apply to any calculus in this thesis.

We now introduce some terminology. In a sequent, we often refer to the part

to the left (resp. right) of ` as the LHS (resp. RHS ) of the sequent. In a

sequent calculus rule, the sequent(s) above the deduction line is (are) called the

premiss(es) of the rule and the sequent below the line is called the conclusion of

the rule. By an inference we mean an occurrence of a rule. An occurrence of Ax,

Left, Right and Cut may be referred to as an axiom, a left inference, a right

inference and a cut, respectively.

In each sequent calculus rule, some formulas play a distinguished role. Con-

sider again Table 2.1. The occurrences of A and B in rules Left, Right and Cut

are said to be active. In the case of Cut, active formulas are also called the cut

formulas . Moreover, the right (resp. the left) cut formula of an occurrence of

cut is the cut formula in the end-sequent of the right (resp. left) subderivation.

For this terminology to make sense, order of premisses in rules matters and is

fixed as in Table 2.1. Observe that the right (resp. left) cut formula occurs in

the LHS (resp. RHS) of a sequent. The occurrences of A in Ax and of A ⊃ B

in Left and Right are said to be main. Cut has no main formula, Ax has two,

the left-main and the right-main. We distinguish between the main formulas of

Left and Right, on the one hand, and the main formulas of Ax. The former are

said to be logical . If a formula in a rule is neither active not main, it is said to

be passive.

Often, passive formulas are not as passive as they seem. Passive formulas

in rule Ax are called weakened . Passive formulas in the conclusion of Left and

Cut are said to be contracted . The passive formulas that are simply passive are

those of Right and the formula C in Left and Cut. Even a main formula may be

contracted. This is when, in the rule Left, x is already in Γ. Finally, a formula

is linear if it is neither weakened nor contracted.

The variable displayed at the right premiss of the Cut rule is called the cut
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variable.

We now want to define the complete right permutation of a cut. This is the

expected process, consisting in performing the following instructions as long as

possible, to the initial cut and its descendants. The cut is permuted upwards

through the right subderivation past Right inferences, other cuts and even Left

inferences when the main formula of the latter is not the right cut formula. This

process causes duplication (resp. erasing) of the cut whenever the right cut

formula is contracted (resp. weakened). If the right cut formula is main in Ax,

the cut is replaced by its left subderivation. If the right cut formula is main in

Left, the permutation of the cut stops (with two new copies of the cut continuing

their own permutations, if the main formula of the Left inference is contracted).

The complete left permutation of a cut is simpler. Permute the cut upwards

through the left subderivation as long as the last inference of the latter is Left

or Cut. When the last inference of the left subderivation is Ax, replace the cut

with its right subderivation; when it is Right, do nothing and stop the process.

A cut is right permuted if its right cut formula is main in Left and linear;

otherwise, the cut is right permutable. A cut is left permuted if its left cut formula

is main in Right; otherwise, the cut is left permutable. A key-cut is a cut that is

both right and left permuted.

By a cut-elimination procedure we mean a (possibly non-deterministic) set of

rules describing which transformations are to be applied to an arbitrary instance

of cut. In this sense, a cut-elimination procedure does not determine which

instance of cut is to be reduced next.

The t-protocol [Danos et al., 1997] is the cut elimination procedure consisting

of the repeated application of the following instruction, regarded as a single step

of reduction, to an arbitrary instance of the cut rule. Given a cut, it is either

right permutable or right permuted. In the first case, perform its complete right

permutation. In the second case, the cut is either left permutable or left permuted.

In the former case, perform its complete left permutation. In the latter case the

cut is a key cut. In this case, both cut formulas are logical, hence apply the key

step of cut elimination.
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The t-protocol is an example of a right protocol. A right protocol is a cut-

elimination procedure such that, when reducing a cut that is simultaneously right

and left-permutable, gives priority to the right permutation.

Given a cut

d1···
Γ ` L1 : A

d2···
Γ, x : A ` L2 : B

Γ ` Cut(L1, (x)L2) : B

its complete right permutation generates right permuted cuts. These have the

form

d1···
Γ ` L1 : A1 ⊃ A2

d21···
Γ ` L21 : A1

d22···
Γ, y : A2 ` L22 : B

Left
Γ, x : A1 ⊃ A2 ` L(x, L21, (y)L22) : B

Γ ` Cut(L1, (x)L(x, L21, (y)L22)) : B

where x is linear. We may compact this in a single construction Cut(L1, L21, (y)L22)

with typing rule

d1···
Γ ` L1 : A1 ⊃ A2

d21···
Γ ` L21 : A1

d22···
Γ, y : A2 ` L22 : B

Γ ` Cut(L1, L21, (y)L22) : B

Observe that variable x disappears. Indeed, the variable is irrelevant when a for-

mula is linear and becomes active immediately after being introduced. This in-

ference rule is called generalised application in [Negri and von Plato, 2001]. The

complete left permutation of each of these cuts generates, at most, one cut of the

form

d11···
Γ, z : A1 ` L11 : A2

Right
Γ ` R((z)L11) : A1 ⊃ A2

d21···
Γ ` L21 : A1

d22···
Γ, y : A2 ` L22 : B

Left
Γ, x : A1 ⊃ A2 ` L(x, L21, (y)L22) : B

Γ ` Cut(R((z)L11), (x)L(x, L21, (y)L22)) : B
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or, in compact form,

d11···
Γ, z : A1 ` L11 : A2

d21···
Γ ` L21 : A1

d22···
Γ, y : A2 ` L22 : B

Γ ` Cut((z)L11, L21, (y)L22) : B

where Cut((z)L11, L21, (y)L22) is the corresponding new construction. This is a

key cut.

Consider the derivations

d1···
Γ ` L1 : A

d2···
Γ, x : A ` L2 : B

We say that this pair of derivations (by this order) constitutes an implicit cut.

Now it should be clear how to define the complete right permutation of d1 over d2

at x. It is as if we completely right permuted the “ghost” cut that this implicit

cut is. The complete right permutation of a cut may then be defined as the

complete right permutation of its left subderivation over its right permutation at

the cut variable.

Similarly one may define the complete left permutation of d2 over d1 with x.

The complete left permutation of a cut is then the complete left permutation of

its right subderivation over its left subderivation with its cut variable. In the

particular case of an implicit right permuted cut

d1···
Γ ` L1 : A1 ⊃ A2

d21···
Γ ` L21 : A1

d22···
Γ, y : A2 ` L22 : B

we may also refer to the complete left permutation of d21 and d22 over d1 (without

any variable, because the right cut formula is main and linear).

Finally, the complete permutation of d1 over d2 at x is like the complete right

permutation of d1 over d2 at x, except that instead of generating right permuted

cuts, we immediately perform their complete left permutation.
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2.2 Herbelin’s system

In [Howard, 1980] (written in the late 1960’s), Howard attributes to Curry the

remark that, if one wants to generate “irreducible” λ-terms alone, then one should

replace application by a new term-formation rule, building xN1...Nk from given

N1, ..., Nk, with typing rule (ignoring contexts)

... ` N1 : A1 ... ... ` Nk : Ak

..., x : A1 ⊃ ... ⊃ Ak ⊃ B ` xN1...Nk : B
(2.2)

replacing usual elimination rule. Then Howard observes that this typing rule can

be obtained by k applications of Gentzen’s left rule (plus an axiom). Explicitly,

····
... ` A1

····
... ` A2

····
... ` Ak

Ax
..., zk : B ` B

Left
..., zk−1 : Ak ⊃ B ` B····

..., z2 : A3 ⊃ ... ⊃ Ak ⊃ B ` B
Left

..., z1 : A2 ⊃ ... ⊃ Ak ⊃ B ` B
Left

..., x : A1 ⊃ A2 ⊃ ... ⊃ Ak ⊃ B ` B

(2.3)

In fact, we will explain in detail in Chapter 5 that what is happening here is a

mapping of normal natural deduction proofs into cut-free sequent calculus deriva-

tions introduced in [Prawitz, 1965], except that, instead of (2.2), Prawitz uses k

elimination rules and talks about the main branch of a normal proof, i.e. the

sequence of bold formulas in

V ar
..., x ` x : A1 ⊃ ... ⊃ Ak ⊃ B

····
... ` N1 : A1

Elim
..., x ` xN1 : A2 ⊃ ... ⊃ Ak ⊃ B······

..., x ` xN1...Nk−1 : Ak ⊃ B

····
... ` Nk : Ak

Elim
..., x ` xN1...Nk : B
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Observe how the sequence of formulas in the main branch corresponds to the

sequence of bold formulas in (2.3), except that, as it were, the main branch was

turned upside down. This is a typical phenomenon that one should bear in mind.

By the observation of (2.3), one realizes that in the range of this mapping

of natural deduction into sequent calculus there are derivations of a particular

kind. Actually, all formulas declared with zi in (2.3) (i = 1, ..., k) are linear.

Only recently the importance of this fact was fully recognised [Herbelin, 1995,

Danos et al., 1997, Mints, 1996, Dyckhoff and Pinto, 1999].

Definition 2 A left inference is canonical if the active formula of its right pre-

miss is main and linear. A sequent calculus derivation is canonical if all left

inferences occurring in it are canonical.

Indeed, every left inference in (2.3) is canonical. Conversely, let us see the

effect of this restriction on derivations. Let d be a derivation ending with a left

inference introducing A1 ⊃ B1 and consider the active formula B1 of its right

premiss. It is main and linear, and, moreover: (1) if it is not logical, it is main in

an axiom, and the right subderivation of the left inference consists of this axiom

alone. (2) if it is logical, it is main in a canonical left inference. Now look again

at the active formula of the right premiss of this new left inference.

By means of this process, while going upwards through the rightmost branch of

d, we visit the sequence B1, B2, ...Bk of the main formulas of successive (possibly

zero) left inferences, ending in the left-main formula Bk of an axiom. Let us put

B0 = A1 ⊃ B1 and call the sequence B0, B1, B2, ...Bk the principal path of d. This

is exactly as the sequence of bold formulas in (2.3).

Now, there is a difference between all these left inferences that we visit, and

the bottom-most left inference of d, because the main formula of the latter is not

necessarily linear. Moreover, we know that the conclusion of a left inference of

the former kind is the right premiss of another left inference. The same is not

true of the bottom-most inference of d. By the same reason, we may distinguish

two kinds of axioms. The first is the kind of axiom we find at the top of the

rightmost branch of d. We know that its conclusion is the right premiss of a left

inference. The second kind of axiom is an unrestricted one.
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The splitting of axioms and of left inferences into two cases may be expressed

in the term language for the sequent calculus used above by the existence of two

left constructors L(x, L1, ( )L2) and L( , L1, ( )L2) and two axiom constructors

Ax(x) and Ax( ). Variables are omitted because when a linear formula that just

became main is immediately going to be active in the next inference. However,

how do we express that, in L( , L1, ( )L2), L2 has to be either Ax( ) or another

L( , L3, ( )L4)?

A solution due to [Herbelin, 1995] is to arrange the syntax into two classes

(we concentrate on cut-free proofs for the moment)

L ::= Ax(x) | L(x, L, ( )K) |R((x)L)

K ::= Ax( ) | L( , L, ( )K)
(2.4)

where K annotates proofs introducing a linear formula on the LHS of sequents.

The actual syntax of op. cit. is

u, v, t ::= xl |λx.t

l, l′ ::= [] | t :: l
(2.5)

with typing rules given in Table 2.2. There are axiom, left and right rules (named

Ax, Lft and Right) and a dereliction rule Der. This terminology comes from a

connection with linear logic explained in [Danos et al., 1995]. We refer to Lft as

Herbelin’s left rule. Rules operate on two kinds of sequents

Γ;− ` t : A (2.6)

and

Γ; B ` l : A (2.7)

both containing a distinguished position in the LHS, called the “stoup” - a device

invented in [Girard, 1991]. The stoup either is empty, as in (2.6), or contains a

formula, as in (2.7). Observe that: (1) the active formula in the right premiss of

Herbelin’s left rule is in the stoup. (2) the only rules whose conclusion is a sequent

with a formula in the stoup are Lft and Ax. (3) The formula introduced by Lft
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Table 2.2: Inference rules for Herbelin’s sequent calculus

Ax
Γ; A ` [] : A

Der
Γ; A ` l : B

Γ, x : A;− ` xl : B

Lft
Γ;− ` t : A Γ; B ` l : C

Γ; A ⊃ B ` t :: l : C
Right

Γ, x : A;− ` t : B
Γ;− ` λx.t : A ⊃ B

x /∈ Γ

is linear. Therefore, every formula in the stoup belongs to some the principal

path.

Constructors λx.t, [] and u :: l correspond to R((x)L), Ax( ) and L( , L, ( )K).

In terms of derivations, Der allows a formula to leave the stoup, possibly causing

a contraction, if x ∈ Γ. The main formula of Der (i.e. the displayed occurrence

of A in the conclusion of Der) is the bottom-most formula of some principal

path. With dereliction we recover as x[] and x(u :: l) the versions Ax(x) and

L(x, L, ( )K) of axiom and left rule.

Let us go back to (2.3) and see how Herbelin’s system annotates a principal

path. The zi disappear, as each formula in the principal path is in the stoup.

Suppose each sequent ... ` Ai is annotated with ui. Then the displayed axiom gets

[], the left inference just below gets uk :: [], and so on, until we get [u2, ..., uk].

The bottom-most left inference is annotated with a combination of dereliction

and Herbelin’s left inference. We get x(u1 :: [u2, ..., uk]), that is x[u1, ..., uk].

Besides dereliction, there is an evident difference between syntaxes (2.4) and

(2.5) in that the latter suggests and intended interpretation. The right con-

structor is λ-abstraction and xl is like x applied to a list of arguments. This

interpretation is supported by the fact, firstly observed in [Herbelin, 1995], that

there is a bijection between normal natural deduction proofs and cut-free deriva-

tions of the canonical fragment. This bijection is nothing but the mapping be-

tween natural deduction and sequent calculus suggested above. The main branch

xN1...Nk is mapped to the principal path x[u1, ..., uk]. More formally, in the style
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of [Dyckhoff and Pinto, 1998], this is a mapping Ψ from

N ::= x |λx.N | app(A)

A ::= xN |AN

to (2.5) given by

Ψ(x) = x[]

Ψ(λx.N) = λx.ΨN

Ψ(app(A)) = Ψ′(A, [])

Ψ′(xN, l) = x(ΨN :: l)

Ψ′(AN, l) = Ψ′(A, ΨN :: l)

A generalisation of this mapping to non-normal proofs will be extensively studied

in the following chapters.

In the calculi for the canonical fragment we are going to introduce in Chapter

3, we will never use dereliction, but we will adopt a syntax in the style of (2.5),

suggesting a λ-calculus interpretation.

We now consider cut-elimination in Herbelin’s system. The simple fact that

sequents in Table 2.2 have a distinguished position to the left of ` determines

the existence of two kinds of cut, head-cuts and mid-cuts , according to whether

the right cut formula is or is not in the stoup, respectively. Actually, Herbelin

needed two species for each of these kinds of cuts,

mid-cuts head-cuts

t{x := v} tl

l{x := v} ll′

with typing rules as shown in Table 2.3. When we refer to mid or head cut, we

mean constructors t{x := u} or tl. We refer to l{x := u} and ll′ as auxiliary mid

or head cuts, respectively.

Herbelin’s λ-calculus is presented in Table 2.4. Rules 4i and 5j suggest that

mid-cuts behave like explicit substitution. Hence the notation t{x := u} and
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Table 2.3: Cuts for Herbelin’s sequent calculus

MidCut
Γ;− ` v : A Γ, x : A;− ` t : B

Γ;− ` t{x := v} : B
x /∈ Γ

AuxMidCut
Γ;− ` v : A Γ, x : A; C ` l : B

Γ; C ` l{x := v} : B
x /∈ Γ

HeadCut
Γ;− ` t : A Γ; A ` l : B

Γ;− ` tl : B

AuxHeadCut
Γ; C ` l : A Γ; A ` l′ : B

Γ; C ` ll′ : B

l{x := u}. Rules 3i suggest that cut ll′ is an explicit append. Similarly to xl, a

head cut tl is like the application of t to the list of arguments l.

This calculus is about cut-elimination at least in the following sense: every

redex is a cut. Therefore, if t is cut-free (=no subterm is a cut) then t is normal

(=irreducible). The converse is also true. If t has a cut, it has an innermost one.

Such cut is a redex. Nevertheless, the exact cut-elimination procedure defined

by the calculus is only provided in the proof of subject reduction. Then, rule 11

is the key step of cut elimination. Rules 4i and 5j, as well as rule 20, perform

stepwise right permutation. Rules 21 and 3i perform stepwise left permutation.

This suggests that mid-cuts are right permutable cuts. On the other hand,

since the right cut formula of head-cuts is in the stoup, it seems that head-cuts

are right permuted cuts. As observed in [Esṕırito Santo, 2000], this is not exactly

true. The first problem is that we are not sure whether a contraction occurred

or not in a dereliction xl. In the latter case, mid-cut (xl){x := u} is, in a

sense, already right permuted. The second problem is that head cut t[] is a right

permutable cut that reduces to t by 20. This is why, in the following chapters,

we will neither consider head-cuts of the form t[] nor reduction rule 20. A third

problem is that auxiliary cuts take the system outside the canonical fragment,
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Table 2.4: The λ-calculus

(Terms) u, v, t ::= xl |λx.t | tl | t{x := v}
(Lists) l, l′ ::= [] | t :: l | ll′ | l{x := v}

(11) (λx.t)(u :: l) → t{x := u}l

(20) t[] → t

(21) (xl)l′ → x(ll′), l′ 6= []

(31) (u :: l)l′ → u :: (ll′)

(32) []l → l

(41) (xl){x := v} → vl{x := v}
(42) (yl){x := v} → yl{x := v}, y 6= x

(43) (λy.u){x := v} → λy.u{x := v}

(51) (u :: l){x := v} → u{x := v} :: l{x := v}
(52) []{x := v} → []
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because the formula in the stoup, although linear, is no longer necessarily main,

and, therefore, a Herbelin’s left inference is not necessarily canonical. This is why

in the calculi we introduce auxiliary cuts are kept implicit.

Disregarding these minor problems, the cut-elimination procedure associated

to λ is a stepwise right protocol. Mid-cuts are permuted to the right and this

occasionally generates head-cuts (rule 41). Head-cuts are permuted to the left.

However, a cut is never allowed to permute upwards past another cut (this is

what we call a inter-permutation of cuts). So, the procedure is essentially an

innermost strategy.

Herbelin observed that an inter-permutation of cuts like

(44) (tl){x := v} → t{x := v}l{x := v}
was required if the cut-elimination procedure was to simulate full β-reduction.

However, Herbelin did not consider this reduction rule because it breaks the

proof of strong normalisation in [Herbelin, 1995]. In [Dyckhoff and Urban, 2001]

it is shown that rule 44 may be added to the calculus without loss of strong

normalisation, but further inter-permutations of cuts, among which is

(22) (tl)l′ → t(ll′) ,

are to be allowed for retaining confluence of the calculus.

In Chapter 3, we will design λ-calculi for the canonical fragment in a system-

atic way. Our main design decision is to adopt right protocols with increasing

level of explicitness and stepwise character. We even define a fully explicit sys-

tem, by making auxiliary cuts explicit. This system will be close to λ plus 44 and

22. That is, a systematic procedure chose which inter-permutations of cuts were

to be admitted. Later on, we will see that, in our setting, 44 and 22 are enough

for simulating full β-reduction and retaining confluence - although this was not a

requirement impending on how we defined the calculi. Moreover, reduction rule

22 will prove crucial in the computational interpretation of the fragment (e.g. it

is included verbatim in abstract machines). Actually, 22 is indispensable even

for simulating full β reduction, as long as one maps natural deduction into se-
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quent calculus not in the traditional way (Gentzen’s mapping [Gentzen, 1935]),

but according to a suitable generalisation of Prawitz’s mapping [Prawitz, 1965].

What is manifest is that, after the breakthrough that constituted the iden-

tification of the canonical fragment, there did not follow the necessary study of

cut elimination in this fragment, particularly the study of its relationship with

normalisation. The following chapters provide contributions in that direction.

For future reference, we give the following.

Definition 3

λ1 = λ

λ2 = λ1 + {44}
λ3 = λ2 + {22} = λ1 + {22, 44}

The following result is due to [Dyckhoff and Urban, 2001].

Theorem 1 If t is typable in λi, then t is strongly normalising (any i = 1, 2, 3).

We define compatible closure for the λi-calculi.

Definition 4 (Compatible closure) Given a pair R of binary relations, the

first on Terms and the second on Lists, the compatible closure →R is the least

pair of relations →, the first on Terms and containing the first relation of R, the

second on Lists and containing the second relation of R, closed under:
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Right t → t′
λx.t → λx.t′

Der l → l′
xl → xl′

HeadCut1 t → t′
tl → t′l

HeadCut2 l → l′
tl → tl′

MidCut1 t → t′
t{x := v} → t′{x := v} MidCut2 v → v′

t{x := v} → t{x := v′}

Lft1 u → u′
u :: l → u′ :: l

Lft2 l → l′
u :: l → u :: l′

AuxHeadCut1
l0 → l′0

l0l1 → l′0l1
AuxHeadCut2

l1 → l′1
l0l1 → l0l

′
1

AuxMidCut1 l → l′
l{x := v} → l′{x := v} AuxMidCut2 v → v′

l{x := v} → l{x := v′}
For instance, for defining →11, take R = (11, ∅) in Definition 4. The definition of

→3i (i = 1, 2, 3, 4) is by choosing R = (3i, ∅). We could let

(3i)i = 31 ∪ 32

and, thus, →(3i)i
(or, simply, →3i) is defined by taking R = (∅, (3i)i).



Chapter 3

A fragment of sequent calculus

In this chapter we define four calculi of cut-elimination:

λPhx

λPhx

( )◦

?

λPh

( )[

?

λP

( )−

?

In this diagram each arrow is a projection. All cut-elimination procedures asso-

ciated to these calculi are right protocols, but with different levels of explicitness.

We start with λP , a calculus which only admits key-cuts and whose cut-

elimination procedure is fully implicit, in a sense. Then we define λPh, which

allows the more general right permuted cuts and includes an independent reduc-

tion rule for the complete left permutation of cuts. Next we define λPhx, in

which the complete right permutation of cuts is also separated from the key step

36



Chapter 3. A fragment of sequent calculus 37

and performed stepwise. Finally, we define a fully explicit system λPhx. All

these calculi, except λPhx, are in the canonical fragment.

In this chapter we heavily rely on Chapter 2 for notation, terminology and

motivation.

3.1 The λP-calculus

The λP-calculus1 is presented in Table 3.1. Typing rules are in Table 3.2.

Besides constructors for the cut-free canonical fragment, there is a key-cut

constructor (λx.t)(u · l), and no other kind of cut. Reduction rules perform, in a

sense that will be made precise later, a right protocol. But, since the only kind of

explicit cut is key-cuts, most of the stages of cut-elimination are implicit, that is,

performed in a single go by calls to meta-operators. These operators are insert

and append, which perform complete left permutation, and subst, which performs

complete permutation. This explains reduction rules β1 and β2, which start by

performing the key step of cut elimination, but which are forced to immediately

perform the permutation of the cuts generated by the key step. Since subst

performs complete permutation, it has to immediately call insert whenever it

generates a right permuted cut.

Constructor (λx.t)(u · l) binds x in t. By variable convention, x occurs neither

in u nor in l.

Definition 5 (Compatible closure) Given a pair R of binary relations, the

first on Terms and the second on Lists, the compatible closure →R is the least

pair of relations →, the first on Terms and containing the first relation of R, the

second on Lists and containing the second relation of R, closed under:

1Calculus λP was defined for the first time, with minor differences, in [Esṕırito Santo, 2000],
with the name λH .
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Table 3.1: The λP-calculus

(Terms) u, v, t ::= x |x(v · l) |λx.t | (λx.t)(v · l)
(Lists) l, l′ ::= [] | t :: l

(β1) (λx.t)(v · []) → subst(v, x, t)

(β2) (λx.t)(v · (u :: l)) → insert(u, l, subst(v, x, t))

where

subst(v, x, x) = v

subst(v, x, y) = y, y 6= x

subst(v, x, x(u · l)) = insert(subst(v, x, u), subst(v, x, l), v)

subst(v, x, y(u · l)) = y(subst(v, x, u) · subst(v, x, l)), y 6= x

subst(v, x, λy.t) = λy.subst(v, x, t)

subst(v, x, (λy.t)(u · l)) = (λy.subst(v, x, t))(subst(v, x, u) · subst(v, x, l))

subst(v, x, u :: l) = subst(v, x, u) :: subst(v, x, l)

subst(v, x, []) = []

insert(u, l, x) = x(u · l)
insert(u, l, x(u′ · l′)) = x(u′ · append(l′, u :: l))

insert(u, l, λx.t) = (λx.t)(u :: l)

insert(u, l, (λx.t)(u′ · l′)) = (λx.t) (u′ · append(l′, u :: l))

append(t :: l, l′) = t :: append(l, l′)

append([], l′) = l′
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Table 3.2: Typing rules for λP

V ar
Γ, x : A;− ` x : A

Right
Γ, x : A;− ` t : B

Γ;− ` λx.t : A ⊃ B
x /∈ Γ

Left
Γ, x : A ⊃ B;− ` u : A Γ, x : A ⊃ B; B ` l : C

Γ, x : A ⊃ B;− ` x(u · l) : C

KeyCut
Γ, x : A;− ` t : B Γ;− ` v : A Γ; B ` l : C

Γ;− ` (λx.t)(v · l) : C
x /∈ Γ

Ax
Γ; A ` [] : A

Lft
Γ;− ` t : A Γ; B ` l : C

Γ; A ⊃ B ` t :: l : C

Left1 u → u′
x(u · l) → x(u′ · l) Left2 l → l′

x(u · l) → x(u · l′)

Right t → t′
λx.t → λx.t′

KeyCut1 t → t′
(λx.t)(u · l) → (λx.t′)(u · l)

KeyCut2 u → u′
(λx.t)(u · l) → (λx.t)(u′ · l) KeyCut3 l → l′

(λx.t)(u · l) → (λx.t)(u · l′)

Lft1 u → u′
u :: l → u′ :: l

Lft2 l → l′
u :: l → u :: l′

For instance, for defining →β, take R = (β1 ∪ β2, ∅) in Definition 5. That is,

in λP we set β = (β1 ∪ β2, ∅). One can also define →β1 (resp. →β2) by taking

R = (β1, ∅) (resp. R = (β2, ∅)).

Admissible rules

Lemma 1 In λP, let π1 be a derivation of Γ; C ` l : B and π2 be a derivation

of Γ; B ` l′ : A. The complete left permutation of π2 over π1 is a derivation of

Γ; C ` append(l, l′) : A. In particular, the following rule is admissible:

Γ; C ` l : B Γ; B ` l′ : A

Γ; C ` append(l, l′) : A
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Proof : Let π3 be the complete left permutation of π2 over π1. The proof is by

induction on l.

Case l = []. Then B = C and π3 = π2. Since append(l, l′) = l′, we are done.

Case l = t1 :: l1. Then there are π′
1, π

′′
1 , C1, C2 such that π1 has the form

Lft

π′
1
...

Γ;− ` t1 : C1

π′′
1
...

Γ; C2 ` l1 : B

Γ; C1 ⊃ C2 ` t1 :: l1 : B

and C = C1 ⊃ C2. Derivation π3 is

Lft

π′
1
...

Γ;− ` t1 : C1

π′
3
...

Γ; C2 ` append(l1, l
′) : A

Γ; C1 ⊃ C2 ` t1 :: append(l1, l′) : A

where π′
3 is given by IH. Since append(l, l′) = t1 :: append(l1, l

′), we are done. ¥

Lemma 2 In λP, let π1 be a derivation of Γ;− ` t : C ⊃ B, π2 be a derivation

of Γ;− ` u : C and π3 a derivation of Γ; B ` l : A. The complete left permutation

of π2 and π3 over π1 is a derivation of Γ;− ` insert(u, l, t) : A. In particular,

the following rule is admissible:

Γ;− ` t : C ⊃ B Γ;− ` u : C Γ; B ` l : A

Γ;− ` insert(u, l, t) : A

Proof : Let π4 be the complete left permutation of π2 and π3 over π1. The proof

is by induction on t.

Case t = x. Then, there is Γ′ such that π1 is

V ar
Γ′, x : C ⊃ B;− ` x : C ⊃ B

and Γ = Γ′, x : C ⊃ B. Derivation π4 is

π2···
Γ′, x : C ⊃ B;− ` u : C

π3···
Γ′, x : C ⊃ B; B ` l : A

Left
Γ′, x : C ⊃ B;− ` x(u · l) : A
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Since insert(u, l, t) = x(u · l), we are done.

Case t = x(u′ · l′). Then there are π′
1, π

′′
1 , Γ

′, D,E such that π1 has the form

π′
1···

Γ′, x : D ⊃ E;− ` u′ : D

π′′
1···

Γ′, x : D ⊃ E; E ` l′ : C ⊃ B
Left

Γ′, x : D ⊃ E;− ` x(u′ · l′) : C ⊃ B

and Γ = Γ′, x : D ⊃ E. Derivation π4 is

π′
1···

Γ;− ` u′ : D

π′′
1···

Γ; E ` l′ : C ⊃ B π5
Lemma 1

Γ; E ` append(l′, u :: l) : A
Left

Γ;− ` x(u′ · append(l′, u :: l)) : A

where π5 is

π2···
Γ;− ` u : C

π3···
Γ; B ` l : A

Lft
Γ; C ⊃ B ` u :: l : A

Since insert(u, l, t) = x(u′ · append(l′, u :: l)), we are done.

Case t = λx.t′: Then there is π′
1 such that π1 has the form

π′
1···

Γ, x : C;− ` t′ : B
Right

Γ;− ` λx.t′ : C ⊃ B

and x /∈ Γ. Derivation π4 is

π′
1···

Γ, x : C;− ` t′ : B

π2···
Γ;− ` u : C

π3···
Γ; B ` l : A

KeyCut
Γ;− ` (λx.t′)(u :: l) : A

Since insert(u, l, t) = (λx.t′)(u :: l), we are done.
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Case t = (λx.t′)(u′ · l′): Then there are π′
1, π

′′
1 , π

′′′
1 , D,E such that π1 has the

form

π′
1···

Γ, x : D;− ` t′ : E

π′′
1···

Γ;− ` u′ : D

π′′′
1···

Γ; E ` l′ : C ⊃ B
KeyCut

Γ;− ` (λx.t′)(u′ · l′) : C ⊃ B

and x /∈ Γ. Let π5 be as in case t = x(u′ · l′). Derivation π4 is

π′
1···

Γ, x : D;− ` t′ : E

π′′
1···

Γ;− ` u′ : D

π′′′
1···

Γ; E ` l′ : C ⊃ B π5
Lemma 1

Γ; E ` append(l′, u :: l) : A
KeyCut

Γ;− ` (λx.t′)(u′ · append(l′, u :: l)) : A

Since insert(u, l, t) = (λx.t′)(u′ · append(l′, u :: l)), we are done. ¥

Lemma 3 In λP, let π1 be a derivation of Γ, x : B;− ` t : A, π2 a derivation of

Γ, x : B; C ` l : A and π a derivation of Γ : − ` v : B such that x /∈ Γ. Then,

the complete permutations of π, over π1 at x, and over π2 at x, are derivations

of Γ;− ` subst(v, x, t) : A and of Γ; C ` subst(v, x, l) : A, respectively. In

particular, the following rules are admissible:

Γ;− ` v : B Γ, x : B;− ` t : A
Γ;− ` subst(v, x, t) : A

x /∈ Γ

Γ;− ` v : B Γ, x : B; C ` l : A
Γ; C ` subst(v, x, l) : A

x /∈ Γ

Proof : Let π∗
1 and π∗

2 be the complete permutations of π, over π1 at x, and over

π2 at x, respectively. The proof is by simultaneous induction on t (with induction

hypothesis IH1) and l (with induction hypothesis IH2).

Case t = x. Then B = A and π∗
1 = π. Since subst(v, x, t) = v, we are done.
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Case t = y 6= x. Then there is Γ′ such that π1 is of the form

Γ′, y : A, x : B;− ` y : A
V ar

and Γ = Γ′, y : A. Derivation π∗
1 is

Γ′, y : A;− ` y : A
V ar

Since subst(v, x, t) = y, we are done.

Case t = x(u′ · l′): Then there are π′
1, π

′
2, B1, B2 such that π1 has the form

π′
1···

Γ, x : B1 ⊃ B2;− ` u′ : B1

π′
2···

Γ, x : B1 ⊃ B2; B2 ` l′ : A
Left

Γ, x : B1 ⊃ B2;− ` x(u′ · l′) : A

and B = B1 ⊃ B2. Derivation π∗
1 is given by Lemma 2

π···
Γ;− ` v : B1 ⊃ B2

π+
1···

Γ;− ` subst(v, x, u′) : B1

π+
2···

Γ;− ` subst(v, x, l′) : A

Γ;− ` insert(subst(v, x, u′), subst(v, x, l′), v) : A

where π+
1 and π+

2 are given by IH1 and IH2, respectively. Since subst(v, x, t) =

insert(subst(v, x, u′), subst(v, x, l′), v), we are done.

Case t = y(u′ · l′), y 6= x: Then there are π′
1, π

′
2, Γ

′, C1, C2 such that π1 has the

form

π′
1···

Γ′, y : C1 ⊃ C2, x : B;− ` u′ : C1

π′
2···

Γ′, y : C1 ⊃ C2, x : B; C2 ` l′ : A
Left

Γ′, y : C1 ⊃ C2, x : B;− ` y(u′ · l′) : A

and Γ = Γ′, y : C1 ⊃ C2. Derivation π∗
1 is the following Left inference
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π+
1···

Γ′, y : C1 ⊃ C2;− ` subst(v, x, u′) : C1

π+
2···

Γ′, y : C1 ⊃ C2; C2 ` subst(v, x, l′) : A

Γ′, y : C1 ⊃ C2;− ` y(subst(v, x, u′) · subst(v, x, l′)) : A

where π+
1 and π+

2 are given by IH1 and IH2, respectively. Since subst(v, x, t) =

y(subst(v, x, u′) · subst(v, x, l′)), we are done.

Case t = λy.t′: Then there are π′
1, A1, A2 such that π1 has the form

π′
1···

Γ, y : A1, x : B;− ` t′ : A2
Right ,

Γ, x : B;− ` λy.t′ : A1 ⊃ A2

A = A1 ⊃ A2 and y /∈ Γ. Derivation π∗
1 is

π+
1···

Γ, y : A1;− ` subst(v, x, t′) : A2
Right

Γ;− ` λy.subst(v, x, t′) : A1 ⊃ A2

where π+
1 is given by IH1. Since subst(v, x, t) = λy.subst(v, x, t′), we are done.

Case t = (λy.t′)(u′ · l′). Then there are π′
1, π

′′
1 , π

′
2, C1, C2 such that π1 has the

form

π′
1···

Γ, y : C1, x : B;− ` t′ : C2

π′′
1···

Γ, x : B;− ` u′ : C1

π′
2···

Γ, x : B; C2 ` l′ : A
KeyCut

Γ, x : B;− ` (λy.t′)(u′ · l′) : A

Let us write s for subst. Derivation π∗
1 is the following KeyCut inference

π+
1···

Γ, y : C1;− ` s(v, x, t′) : C2

π++
1···

Γ;− ` s(v, x, u′) : C1

π+
2···

Γ; C2 ` s(v, x, l′) : A

Γ, x : B;− ` (λy.s(v, x, t′))(s(v, x, u′) · s(v, x, l′)) : A
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where π+
1 and π++

1 are given by IH1 and π+
2 is given by IH2. Since s(v, x, t) =

(λy.s(v, x, t′))(s(v, x, u′) · s(v, x, l′)), we are done.

Case l = []: Then C = A and π∗
2 is

Γ; A ` [] : A
Ax

Since subst(v, x, l) = [], we are done.

Case l = u′ :: l′: Then there are π′
1, π

′
2, C1, C2 such that π2 has the form

π′
1
...

Γ, x : B;− ` u′ : C1

π′
2
...

Γ, x : B; C2 ` l′ : A

Γ, x : B; C1 ⊃ C2 ` u′ :: l′ : A
Lft

and C = C1 ⊃ C2. Derivation π∗
2 is

π+
1

...

Γ;− ` subst(v, x, u′) : C1

π+
2

...

Γ; C2 ` subst(v, x, l′) : A

Γ; C1 ⊃ C2 ` subst(v, x, u′) :: subst(v, x, l′) : A
Lft

where π+
1 and π+

2 are given by IH1 and IH2, respectively. Since subst(v, x, l) =

subst(v, x, u′) :: subst(v, x, l′), we are done. ¥

Cut elimination in λP
In this subsection we show in what precise sense the reduction rules of λP perform

cut-elimination.

Rule β1: (λx.t)(u · []) → subst(u, x, t).

π1···
Γ, x : A;− ` t : B

π2···
Γ;− ` u : A

Ax
Γ; B ` B

KeyCut
Γ;− ` (λx.t)(u · []) : B

reduces to
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π2···
Γ;− ` u : A

π1···
Γ, x : A;− ` t : B

Lemma 3
Γ;− ` subst(u, x, t) : B

Rule β2: (λx.t)(u · (v :: l)) → insert(v, l, subst(u, x, t)).

π1···
Γ, x : A;− ` t : B1 ⊃ B2

π2···
Γ;− ` u : A

π3···
Γ;− ` v : B1

π4···
Γ; B2 ` l : C

Lft
Γ; B1 ⊃ B2 ` v :: l : C

KeyCut
Γ;− ` (λx.t)(u · (v :: l)) : C

reduces to

π2···
Γ;− ` u : A

π1···
Γ, x : A;− ` t : B1 ⊃ B2

(1)
Γ;− ` subst(u, x, t) : B1 ⊃ B2

π3···
Γ;− ` v : B1

π4···
Γ; B2 ` l : C

(2)
Γ;− ` insert(v, l, subst(u, x, t)) : C

where (1) is by Lemma 3 and (2) by Lemma 2.

Proposition 1 (Subject reduction) In λP, if Γ;− ` t : A and t → t′, then

Γ;− ` t′ : A

Proof: The claim is proved together with the claim that if Γ;B ` l : A and

l → l′, then Γ; B ` l′ : A, by simultaneous induction on t → t′ and l → l′. All

cases but the base cases are routine, and the latter were done above. ¥

Permutation of meta-operators

We prove some permutations of operators subst, insert and append.

Lemma 4 For all u, u′, l, l′, l′′ in λP:

append(append(l′′, u′ :: l′), u :: l) = append(l′′, u′ :: append(l′, u :: l)).
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Proof: Straightforward induction on l′′. ¥

Lemma 5 For all t, u, u′, l, l′ in λP:

insert(u, l, insert(u′, l′, t)) = insert(u′, append(l′, u :: l), t).

Proof: Straightforward case analysis of t. One case requires Lemma 4. ¥

Lemma 6 For all v, u, l, l′ in λP:

subst(v, x, append(l′, u :: l)) = append(subst(v, x, l′), subst(v, x, u) :: subst(v, x, l)).

Proof: By straightforward induction on l′. ¥

Lemma 7 For all v, u, t, l in λP:

subst(v, x, insert(u, l, t)) = insert(subst(v, x, u), subst(v, x, l), subst(v, x, t)).

Proof: By case analysis of t. We write s for subst, i for insert and a for append.

Case t = x.

s(v, x, i(u, l, t)) = s(v, x, i(u, l, x))

= s(v, x, x(u · l)), by def. insert,

= i(s(v, x, u), s(v, x, l), v), by def. subst,

= i(s(v, x, u), s(v, x, l), s(v, x, x)), by def. subst,

= i(s(v, x, u), s(v, x, l), s(v, x, t)) .

Case t = y, y 6= x.

s(v, x, i(u, l, t)) = s(v, x, i(u, l, y))

= s(v, x, y(u · l)), by def. insert,

= y(s(v, x, u) · s(v, x, l)), by def. subst,

= i(s(v, x, u), s(v, x, l), y), by def. subst,

= i(s(v, x, u), s(v, x, l), s(v, x, y))

= i(s(v, x, u), s(v, x, l), s(v, x, t)) .
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Case t = x(u′ · l′).

s(v, x, i(u, l, t))

= s(v, x, i(u, l, x(u′ · l′)))
= s(v, x, x(u′ · a(l′, u :: l)), by def. insert,

= i(s(v, x, u′), s(v, x, a(l′, u :: l)), v), by def. subst,

= i(s(v, x, u′), a(s(v, x, l′), s(v, x, u) :: s(v, x, l)), v), by Lemma 6,

= i(s(v, x, u), s(v, x, l), i(s(v, x, u′), s(v, x, l′), v)), by Lemma 5,

= i(s(v, x, u), s(v, x, l), s(v, x, x(u′ · l′))), by def. subst,

= i(s(v, x, u), s(v, x, l), s(v, x, t)) .

Case t = y(u′ · l′), y 6= x.

s(v, x, i(u, l, t))

= s(v, x, i(u, l, y(u′ · l′)))
= s(v, x, y(u′ · a(l′, u :: l)), by def. insert,

= y(s(v, x, u′) · s(v, x, a(l′, u :: l))), by def. subst,

= y(s(v, x, u′) · a(s(v, x, l′), s(v, x, u) :: s(v, x, l))), by Lemma 6,

= i(s(v, x, u), s(v, x, l), y(s(v, x, u′) · s(v, x, l′))), by def. insert,

= i(s(v, x, u), s(v, x, l), s(v, x, y(u′ · l′))), by def. subst,

= i(s(v, x, u), s(v, x, l), s(v, x, t)) .

Case t = λy.t′.

s(v, x, i(u, l, t)) = s(v, x, i(u, l, λx.t′))

= s(v, x, (λy.t′)(u · l)), by def. insert,

= (λy.s(v.x.t′))(s(v, x, u) · s(v, x, l)), by def. subst,

= i(s(v, x, u), s(v, x, l), λy.s(v, x, t′)), by def. insert,



Chapter 3. A fragment of sequent calculus 49

= i(s(v, x, u), s(v, x, l)), s(v, x, λy.t′)), by def. subst,

= i(s(v, x, u), s(v, x, l), s(v, x, t)) .

Case t = (λy.t′)(u′ · l′).

s(v, x, i(u, l, t))

= s(v, x, i(u, l, (λy.t′)(u′ · l′)))
= s(v, x, (λy.t′)(u′ · a(l′, u :: l))), by def. insert,

= (λy.s(v, x, t′))(s(v, x, u′) · s(v, x, a(l′, u :: l))), by def. subst,

= (λy.s(v, x, t′))(s(v, x, u′) · a(s(v, x, l′), s(v, x, u) :: s(v, x, l))), by Lemma 6,

= i(s(v, x, u), s(v, x, l), (λy.s(v, x, t′))(s(v, x, u′) · s(v, x, l′))), by def. insert,

= i(s(v, x, u), s(v, x, l), s(v, x, (λy.t′)(u′ · l′))), by def. subst,

= i(s(v, x, u), s(v, x, l), s(v, x, t)) .

¥

The permutation of subst with itself might be called the subst-lemma, by

analogy with the substitution lemma of λ-calculus.

Lemma 8 Let u, v, t, l ∈ λP, x 6= y and y /∈ FV (v). Then:

1. subst(v, x, subst(u, y, t)) = subst(subst(v, x, u), y, subst(v, x, t)).

2. subst(v, x, subst(u, y, l)) = subst(subst(v, x, u), y, subst(v, x, l)).

Proof: By simultaneous induction on t and l, with induction hypotheses IH1

and IH2, respectively. We write s for subst and i for insert.

Case t = x.

s(v, x, s(u, y, t)) = s(v, x, s(u, y, x))

= s(v, x, x), as x 6= y,

= v
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= s(s(v, x, u), y, v), as y /∈ FV (v),

= s(s(v, x, u), y, s(v, x, x))

= s(s(v, x, u), y, s(v, x, t)) .

Case t = y.

s(v, x, s(u, y, t)) = s(v, x, s(u, y, y))

= s(v, x, u)

= s(s(v, x, u), y, y)

= s(s(v, x, u), y, s(v, x, y)), as x 6= y,

= s(s(v, x, u), y, s(v, x, t)) .

Case t = z, z 6= x, y.

s(v, x, s(u, y, t)) = s(v, x, s(u, y, z))

= s(v, x, z), as z 6= y,

= z

= s(s(v, x, u), y, z)), as z 6= y,

= s(s(v, x, u), y, s(v, x, z)), as z 6= x,

= s(s(v, x, u), y, s(v, x, t)) .

Case t = x(u′ · l′).

s(v, x, s(u, y, t))

= s(v, x, s(u, y, x(u′ · l′)))
= s(v, x, x(s(u, y, u′) · s(u, y, l′))), as x 6= y,

= i(s(v, x, s(u, y, u′)), s(v, x, s(u, y, l′)), v)

= i(s(s(v, x, u), y, s(v, x, u′)), s(s(v, x, u), y, s(v, x, l′)), v), by IH1,IH2,

= i(s(s(v, x, u), y, s(v, x, u′)), s(s(v, x, u), y, s(v, x, l′)), s(s(v, x, u), y, v)),
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as y /∈ FV (v),

= s(s(v, x, u), y, i(s(v, x, u′), s(v, x, l′), v)), by Lemma 7,

= s(s(v, x, u), y, s(v, x, x(u′ · l′)))
= s(s(v, x, u), y, s(v, x, t)) .

Case t = y(u′ · l′).

s(v, x, s(u, y, t))

= s(v, x, s(u, y, y(u′ · l′))
= s(v, x, i(s(u, y, u′), s(u, y, l′), u))

= i(s(v, x, s(u, y, u′)), s(v, x, s(u, y, l′)), s(v, x, u)), by Lemma 7,

= i(s(s(v, x, u), y, s(v, x, u′)), s(s(v, x, u), y, s(v, x, l′)), s(v, x, u)), by IH1,IH2,

= s(s(v, x, u), y, y(s(v, x, u′) · s(v, x, l′)))

= s(s(v, x, u), y, s(v, x, y(u′ · l′))), as x 6= y,

= s(s(v, x, u), y, s(v, x, t)) .

Case t = z(u′ · l′), z 6= x, y.

s(v, x, s(u, y, t))

= s(v, x, s(u, y, z(u′ · l′)))
= s(v, x, z(s(u, y, u′) · s(u, y, l′))), as z 6= y,

= z(s(v, x, s(u, y, u′)) · s(v, x, s(u, y, l′))), as z 6= x,

= z(s(s(v, x, u), y, s(v, x, u′)) · s(s(v, x, u), y, s(v, x, l′))), by IH1,IH2,

= s(s(v, x, u), y, z(s(v, x, u′) · s(v, x, l′))), as z 6= y,

= s(s(v, x, u), y, s(v, x, z(u′ · l′))), as z 6= x,

= s(s(v, x, u), y, s(v, x, t)) .

Case t = λz.t′.
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s(v, x, s(u, y, t)) = s(v, x, s(u, y, λz.t′)

= s(v, x, λz.s(u, y, t′))

= λz.s(v, x, s(u, t, t′))

= λz.s(s(v, x, u), y, s(v, x, t′)), by IH1,

= s(s(v, x, u), y, λz.s(v, x, t′))

= s(s(v, x, u), y, s(v, x, λz.t′))

= s(s(v, x, u), y, s(v, x, t)) .

Case t = (λz.t′)(u′ · l′).

s(v, x, s(u, y, t))

= s(v, x, s(u, y, (λz.t′)(u′ · l′))
= s(v, x, (λz.s(u, y, t′))(s(u, y, u′) · s(u, y, l′)))

= (λz.s(v, x, s(u, y, t′)))(s(v, x, s(u, y, u′)) · s(v, x, s(u, y, l′)))

= (λz.s(s(v, x, u), y, s(v, x, t′)))(s(s(v, x, u), y, s(v, x, u′)) · s(s(v, x, u), y, s(v, x, l′))),

by IH1,IH2,

= s(s(v, x, u), y, (λz.s(v, x, t′))(s(v, x, u′) · s(v, x, l′)))

= s(s(v, x, u), y, s(v, x, (λz.t′)(u′ · l′)))
= s(s(v, x, u), y, s(v, x, t)) .

Case l = [].

s(v, x, s(u, y, l)) = s(v, x, s(u, y, []))

= s(v, x, [])

= []

= s(s(v, x, u), y, [])

= s(s(v, x, u), y, s(v, x, []))

= s(s(v, x, u), y, s(v, x, l)) .
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Case l = u′ :: l′.

s(v, x, s(u, y, l)) = s(v, x, s(u, y, u′ :: l′)

= s(v, x, s(u, y, u′) :: s(u, y, l′))

= s(v, x, s(u, y, u′)) :: s(v, x, s(u, y, l′))

= s(s(v, x, u), y, s(v, x, u′)) :: s(s(v, x, u), y, s(v, x, l′)), by IH1,IH2

= s(s(v, x, u), y, s(v, x, u′) :: s(v, x, l′))

= s(s(v, x, u), y, s(v, x, u :: l′))

= s(s(v, x, u), y, s(v, x, l)) .

¥

Appendability, insertability, substitutivity

Lemma 9 In λP, if l2 → l′2 then append(l1, l2) → append(l1, l
′
2).

Proof: By induction on l1. ¥

Lemma 10 In λP:

1. (a) If t → t′ then insert(u, l, t) → insert(u, l, t′).

(b) If l1 → l′1 then append(l1, l2) → append(l′1, l2).

2. If u → u′ then insert(u, l, t) → insert(u′, l, t).

3. If l → l′ then insert(u, l, t) → insert(u, l′, t).

Proof: 1. By simultaneous induction on t → t′ and l1 → l′1. Cases according to

Definition 5. We just do the base cases. The remaining cases are routine. We

write s for subst and i for insert.

Case β1.



Chapter 3. A fragment of sequent calculus 54

i(u, l, (λx.t0)(t1 · [])) = (λx.t0)(t1 · append([], u :: l))

= (λx.t0)(t1 · (u :: l))

→β2 i(u, l, s(t1, x, t0)) .

Case β2.

i(u, l, (λx.t0)(t1 · (t2 :: l0))) = (λx.t0)(t1 · append(t2 :: l0, u :: l))

= (λx.t0)(t1 · (t2 :: append(l0, u :: l)))

→β2 i(t2, append(l0, u :: l), s(t1, x, t0))

= i(u, l, i(t2, l0, s(t1, x, t0)), by Lemma 5.

2. and 3. are by case analysis of t, using Lemma 9. ¥

Lemma 11 In λP:

1. (a) If t → t′ then subst(u, x, t) → subst(u, x, t′).

(b) If l → l′ then subst(u, x, l) → subst(u, x, l′).

2. (a) If u → u′ then subst(u, x, t) →∗ subst(u′, x, t).

(b) If u → u′ then subst(u, x, l) →∗ subst(u′, x, l).

Proof: 1. By simultaneous induction on t → t′ and l → l′. Cases according to

Definition 5. We just do the base cases. Case Left1 (resp. Left2) requires part

2. (resp. part 3.) of Lemma 10. The remaining cases are routine. We write s for

subst and i for insert.

Case β1.

s(u, x, (λy.t0)(t1 · [])) = (λy.s(u, x, t0))(s(u, x, t1) · [])
→β1 s(s(u, x, t1), y, s(u, x, t0))

= s(u, x, s(t1, y, t0)), by Lemma 8.
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Case β2.

s(u, x, (λy.t0)(t1 · (t2 :: l0)))

= (λy.s(u, x, t0))(s(u, x, t1) · (s(u, x, t2) :: s(u, x, l0)))

→β2 i(s(u, x, t2), s(u, x, l0), s(s(u, x, t1), y, s(u, x, t0)))

= i(s(u, x, t2), s(u, x, l0), s(u, x, s(t1, y, t0))), by Lemma 8,

= s(u, x, i(t2, l0, s(t1, y, t0))), by Lemma 7.

2. By simultaneous induction on t and l. Requires part 1. of Lemma 10. ¥

3.2 Independent left permutation

The λPh-calculus is presented in Table 3.3. Typing rules are in Table 3.4.

Besides constructors for the cut-free canonical fragment, λPh includes in its

syntax a kind of cut, the right permuted cut t(u · l), which is more general that

that found in λP . This construction subsumes both the key-cut (λx.t)(u · l) and

the left rule x(u · l) of λP . When t(u · l) does not fall under one of these sub-

classes, it is left permutable, and there is a reduction rule h that performs the

complete left permutation of such cuts. Notice that, in λPh, x(u · l) is a cut

but is not a redex. Moreover, the cuts that are generated by the key step of

cut-elimination are completely right permuted (but not completely permuted, as

in λP). Therefore, there is an essential difference between subst in λP and here.

Definition 6 (Compatible closure) Given a pair R of binary relations, the

first on Terms and the second on Lists, the compatible closure →R is the least

pair of relations →, the first on Terms and containing the first relation of R, the

second on Lists and containing the second relation of R, closed under:
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Table 3.3: The λPh-calculus

(Terms) u, v, t ::= x |λx.t | t(u · l)
(Lists) l, l′ ::= [] | t :: l

(β1) (λx.t)(u · []) → subst(u, x, t)

(β2) (λx.t)(u · (v :: l)) → subst(u, x, t)(v · l)
(h) (t(u · l))(u′ · l′) → t(u · append(l, u′ :: l′))

where

subst(v, x, x) = v

subst(v, x, y) = y , y 6= x

subst(v, x, λy.t) = λy.subst(v, x, t)

subst(v, x, t(u · l)) = subst(v, x, t)(subst(v, x, u) · subst(v, x, l))

subst(v, x, u :: l) = subst(v, x, u) :: subst(v, x, l)

subst(v, x, []) = []

append(t :: l, l′) = t :: append(l, l′)

append([], l′) = l′
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Table 3.4: Typing rules for λPh

V ar
Γ, x : A;− ` x : A

Right
Γ, x : A;− ` t : B

Γ;− ` λx.t : A ⊃ B
x /∈ Γ

HeadCut
Γ;− ` t : A ⊃ B Γ;− ` u : A Γ; B ` l : C

Γ;− ` t(u · l) : C

Ax
Γ; A ` [] : A

Lft
Γ;− ` t : A Γ; B ` l : C

Γ; A ⊃ B ` t :: l : C

Right t → t′
λx.t → λx.t′

HeadCut1 t → t′
t(u · l) → t′(u · l)

HeadCut2 u → u′
t(u · l) → t(u′ · l) HeadCut3 l → l′

t(u · l) → t(u · l′)

Lft1 u → u′
u :: l → u′ :: l

Lft2 l → l′
u :: l → u :: l′

For instance, for defining →β, take R = (β1 ∪ β2, ∅) in Definition 6. That is, in

λPh we set β = (β1 ∪ β2, ∅). One can again define →β1 (resp. →β2) by taking

R = (β1, ∅) (resp. R = (β2, ∅)), or define →h by taking R = (h, ∅).

Admissible rules

Lemma 12 In λPh, let π1 be a derivation of Γ; C ` l : B and π2 be a derivation

of Γ; B ` l′ : A. The complete left permutation of π2 over π1 is a derivation of

Γ; C ` append(l, l′) : A. In particular, the following rule is admissible:

Γ; C ` l : B Γ; B ` l′ : A

Γ; C ` append(l, l′) : A

Proof: As in Lemma 1. ¥
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Lemma 13 In λPh, let π1 be a derivation of Γ, x : B;− ` t : A, π2 a derivation

of Γ, x : B; C ` l : A and π a derivation of Γ : − ` v : B such that x /∈
Γ. Then, the complete right permutations of π, over π1 at x, and over π2 at

x, are derivations of Γ;− ` subst(v, x, t) : A and of Γ; C ` subst(v, x, l) : A,

respectively. In particular, the following rules are admissible:

Γ;− ` v : B Γ, x : B;− ` t : A
Γ;− ` subst(v, x, t) : A

x /∈ Γ

Γ;− ` v : B Γ, x : B; C ` l : A
Γ; C ` subst(v, x, l) : A

x /∈ Γ

Proof : Let π∗
1 and π∗

2 be the complete right permutations of π, over π1 at x,

and over π2 at x, respectively. The proof is by simultaneous induction on t (with

induction hypothesis IH1) and l (with induction hypothesis IH2).

Cases t = x, t = y 6= x, t = λy.t′, l = [] and l = u′ :: l′ exactly as in the proof

of Lemma 3. The remaining case is

Case t = t′(u′ · l′). Then there are π′
1, π

′′
1 , π

′
2, C1, C2 such that π1 has the form

π′
1···

Γ, x : B;− ` t′ : C1 ⊃ C2

π′′
1···

Γ, x : B;− ` u′ : C1

π′
2···

Γ, x : B; C2 ` l′ : A
HeadCut

Γ, x : B;− ` t′(u′ · l′) : A

Let us write s for subst. Derivation π∗
1 is the following HeadCut inference

π+
1···

Γ;− ` s(v, x, t′) : C1 ⊃ C2

π++
1···

Γ;− ` s(v, x, u′) : C1

π+
2···

Γ; C2 ` s(v, x, l′) : A

Γ, x : B;− ` s(v, x, t′)(s(v, x, u′) · s(v, x, l′)) : A

where π+
1 and π++

1 are given by IH1 and π+
2 is given by IH2. Since s(v, x, t) =

s(v, x, t′)(s(v, x, u′) · subst(v, x, l′)), we are done.¥
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Cut elimination in λPh

In this subsection we show in what precise sense the reduction rules of λPh

perform cut-elimination.

Rule β1: (λx.t)(u · []) → subst(u, x, t).

π1···
Γ, x : A;− ` t : B

Right
Γ;− ` λx.t : A ⊃ B

π2···
Γ;− ` u : A

Ax
Γ; B ` B

HeadCut
Γ;− ` (λx.t)(u · []) : B

reduces to

π2···
Γ;− ` u : A

π1···
Γ, x : A;− ` t : B

Lemma 13
Γ;− ` subst(u, x, t) : B

Rule β2: (λx.t)(u · (v :: l)) → subst(u, x, t)(v · l).

π1···
Γ, x : A;− ` t : B1 ⊃ B2

Right
Γ;− ` λx.t : A ⊃ B1 ⊃ B2

π2···
Γ;− ` u : A

π3···
Γ;− ` v : B1

π4···
Γ;B2 ` l : C

Lft
Γ;B1 ⊃ B2 ` v :: l : C

HeadCut
Γ;− ` (λx.t)(u · (v :: l)) : C

reduces to

π2···
Γ;− ` u : A

π1···
Γ, x : A;− ` t : B1 ⊃ B2

(1)
Γ;− ` subst(u, x, t) : B1 ⊃ B2

π3···
Γ;− ` v : B1

π4···
Γ; B2 ` l : C

(2)
Γ;− ` subst(u, x, t)(v · l) : C

where (1) is by Lemma 13 and (2) is a HeadCut inference.

Rule h: t(u · l)(u′ · l′) → t(u · append(l, u′ :: l′)).



Chapter 3. A fragment of sequent calculus 60

π1···
Γ;− ` t : D ⊃ E

π2···
Γ;− ` u : D

π3···
Γ;E ` l : A ⊃ B

(1)
Γ;− ` t(u · l) : A ⊃ B

π4···
Γ;− ` u′ : A

π5···
Γ;B ` l′ : C

(2)
Γ;− ` t(u · l)(u′ · l′) : C

where both (1) and (2) are HeadCut inferences, reduces to

π1···
Γ;− ` t : D ⊃ E

π2···
Γ;− ` u : D

π3···
Γ;E ` l : A ⊃ B

π4···
Γ;− ` u′ : A

π5···
Γ;B ` l′ : C

Lft
Γ;A ⊃ B ` u′ :: l′ : C

(3)
Γ;E ` append(l, u′ :: l′) : C

HeadCut
Γ;− ` t(u · l)(u′ · l′) : C

where (3) is by Lemma 12.

Proposition 2 (Subject reduction) In λPh, if Γ;− ` t : A and t → t′, then

Γ;− ` t′ : A

Proof: The claim is proved together with the claim that if Γ;B ` l : A and

l → l′, then Γ; B ` l′ : A, by simultaneous induction on t → t′ and l → l′. All

cases but the base cases are routine, and the latter were done above. ¥

Relating λPh and λP
We regard the terms of λP as forming a subset of the terms of λPh. This

inclusion is correct because typing rules Left and KeyCut of λP may be seen

as the particular cases of typing rule HeadCut of λPh in which the inference

immediately above the leftmost premiss is a V ar or Right inference, respectively.

First, we show that λPh simulates λP .

Lemma 14 In λPh, either t(u · l) = insert(u, l, t) or t(u · l) →h insert(u, l, t),

for all u, t, l in λP.
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Proof: Case analysis of t.

Case t = x. t(u · l) = x(u · l) = insert(u, l, x) = insert(u, l, t).

Case t = x(u0 · l0). t(u · l) = (x(u0 · l0))(u · l) →h x(u0 · append(l0, u :: l)) =

insert(u, l, x(u0 · l0)) = insert(u, l, t), as append in λPh and λP coincide for

arguments in the latter calculus.

Cases t = λx.t0 and t = (λx.t0)(u0 · l0) are similar to cases t = x and

t = x(u0 · l0) respectively. ¥

We need to compare subst in λPh with subst in λP . In the following, when

required, we write the former as subst′.

Lemma 15 In λPh, the following holds:

1. subst′(u, x, t) →∗
h subst(u, x, t), for all u, t in λP.

2. subst′(u, x, l) →∗
h subst(u, x, l), for all u, l in λP.

Proof: By simultaneous induction on t and l. The only interesting case is t =

x(v · l). In this case,

subst′(u, x, t) = subst′(u, x, x(v · l))
= u(subst′(u, x, v) · subst′(u, x, l))

→∗
h u(subst(u, x, v) · subst(u, x, l)), by IH1,IH2,

→h or = insert(subst(u, x, v), subst(u, x, l), u), by Lemma 14,

= subst(u, x, x(v · l))
= subst(u, x, t) .

¥

Proposition 3 If t → t′ in λP, then t →+ t′ in λPh.
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Table 3.5: From λPh to λP

x− = x

(λx.t)− = λx.t−

(t(u · l))− = insert(u−, l−, t−)

([])− = []

(u :: l)− = u− :: l−

Proof: The claim is proved together with the claim that if l → l′ in λP , then

l →+ l′ in λPh, by simultaneous induction on t → t′ and l → l′. Cases according

to Definition 5. We just show the base cases. The remaining cases are routine.

Case β1. (λx.t)(u · []) →β1 subst′(u, x, t) →∗
h subst(u, x, t).

Case β2. (λx.t)(u · (v :: l)) →β2 subst′(u, x, t)(v · l) →∗
h subst(u, x, t)(v · l).

In both cases, the last h-steps are by Lemma 15. ¥

There is a translation ( )− : λPh → λP defined in Table 3.5. We now prove

its correctness.

Proposition 4 (Correctness of ( )−)

1. If λPh derives Γ;− ` t : A then λP derives Γ;− ` t− : A.

2. If λPh derives Γ; C ` l : A then λP derives Γ; C ` l− : A.

Proof : Let π1 be a derivation in λPh of Γ;− ` t : A and π2 be a derivation in

λPh of Γ; C ` l : A. One proves by simultaneous induction on t (with induction

hypothesis IH1) and l (with induction hypothesis IH2) that there are derivations

π∗
1 and π∗

2 in λP of Γ;− ` t− : A and Γ; C ` l− : A respectively. The only

interesting case is t = t0(u0 · l0). The remaining cases are routine.
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Case t = t0(u0 · l0): Then there are π′
1, π

′′
1 , π

′
2, B, C such that π1 has the form

π′
1
...

Γ;− ` t0 : B ⊃ C

π′′
1
...

Γ;− ` u0 : B

π′
2
...

Γ; C ` l0 : A

Γ;− ` t0(u0 · l0) : A
HeadCut

Since t− = insert(u−
0 , l−0 , t−0 ), we want a derivation π∗

1 of Γ;− ` insert(u−
0 , l−0 , t−0 ) :

A. Take π∗
1 as

π+
1

...

Γ;− ` t−0 : B ⊃ C

π++
1

...

Γ;− ` u−
0 : B

π+
2

...

Γ; C ` l−0 : A

Γ;− ` insert(u−
0 , l−0 , t−0 ) : A

Lemma 2

where π+
1 and π++

1 are given by IH1 and π+
2 is given IH2. ¥

Now we show some properties of ( )−.

Lemma 16 t− = t, for all t in λP.

Proof: Immediate, by definition of insert. ¥

Lemma 17 append(l, u′ :: l′)− = append(l−, u′− :: l′−), for all u′, l′, l in λPh.

Proof: By a straightforward induction on l. ¥

Lemma 18

1. (subst′(v, x, t))− = subst(v−, x, t−), for all v, t in λPh.

2. (subst′(v, x, l))− = subst(v−, x, l−), for all v, l in λPh.
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Proof: By simultaneous induction on t and l, with induction hypotheses IH1 and

IH2, respectively. subst′ refers to subst in λPh. We just show the only interesting

case. The remaining cases are routine.

Case t = t0(u0 · l0).

(subst′(v, x, t))−

= (subst′(v, x, t0(u0 · l0)))−

= (subst′(v, x, t0)(subst′(v, x, u0) · subst′(v, x, l0)))
−

= insert(subst′(v, x, u0)
−, subst′(v, x, l0)

−, subst′(v, x, t0)
−), by def. of ( )−,

= insert(subst(v−, x, u−
0 ), subst(v−, x, l−0 ), subst(v−, x, t−0 )), by IH1,IH2,

= subst(v−, x, insert(u−
0 , l−0 , t−0 ), by Lemma 7,

= subst(v−, x, (t0(u0 · l0))−), by def. of ( )−,

= subst(v−, x, t−) .

¥

Proposition 5 If t1 → t2 in λPh, then either t−1 = t−2 or t−1 → t−2 in λP.

Proof: The claim is proved together with the claim that if l1 → l2 in λPh, then

either l−1 = l−2 or l−1 → l−2 in λP , by simultaneous induction on t1 → t2 and

l1 → l2. Cases according to Definition 6.

Case β1. Similar to the following case.

Case β2.

((λx.t)(u · (v :: l)))− = insert(u−, (v :: l)−, (λx.t)−)

= insert(u−, (v− :: l−), λx.t−)

= (λx.t−)(u− · (v− :: l−))

→β2 insert(v−, l−, subst(u−, x, t−))

= insert(v−, l−, subst(u, x, t)−), by Lemma 18,

= (subst(u, x, t)(v · l))−, by def. of ( )−.
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Case h.

((t(u1 · l1))(u2 · l2))− = insert(u−
2 , l−2 , insert(u−

1 , l−1 , t−)), by def. of ( )−,

= insert(u−
1 , append(l−1 , u−

2 :: l−2 ), t−), by Lemma 5,

= insert(u−
1 , append(l1, u2 :: l2)

−, t−), by Lemma 17,

= (t(u1 · append(l1, u2 :: l2)))
−, by def. of ( )−.

Case HeadCut1. Suppose that either t−3 = t−4 or t−3 → t−4 . We want either

(t3(u · l))− = (t4(u · l))− or (t3(u · l))− → (t4(u · l))−. Now,

(t3(u · l))− = insert(u−, l−, t−3 )

= or → insert(u−, l−, t−4 ), by part 1 of Lemma 10,

= (t4(u · l))− .

Case HeadCut2. Similar, by part 2. of Lemma 10.

Case HeadCut3. Similar, by part 3. of Lemma 10.

The remaining cases follow by IH. ¥

Corollary 1 λPh is a conservative extension of λP, i.e. t →∗ t′ in λP iff t →∗ t′

in λPh, for all t, t′ in λP.

Proof: By Propositions 3, 5 and Lemma 16. ¥

Proposition 6 t →∗
h t−, all t in λPh.

Proof: The claim is proved together with the claim that l →h l−, all l in λPh,

by simultaneous induction on t and l. The only interesting case is t = t0(u0 · l0).
In this case,
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t = t0(u0 · l0)
→∗

h t−0 (u−
0 · l−0 ), by IH1,IH2,

→h or = insert(u−
0 , l−0 , t−0 ), by Lemma 14,

= (t0(u0 · l0))−

= t− .

¥

Corollary 2 If λP is confluent, so is λPh.

Proof: By Propositions 5 and 6. ¥

Lemma 19 If t1 →h t2 in λPh, then t−1 = t−2 .

Proof: It suffices to look at the proof of Proposition 5. ¥

Corollary 3 In λPh, →h is confluent.

Proof: By Proposition 6 and Lemma 19. ¥

Therefore, we may refer to the normal-form mapping ↓h.

Corollary 4 For all t in λPh, t− =↓h (t).

Proof: From Proposition 6 and the fact that each t in λP (as a term in λPh) is

h-normal. ¥
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Permutation of meta-operators

We prove some permutations of operators subst and append.

Lemma 20 For all u, u′, l, l′, l′′ in λPh:

append(append(l′′, u′ :: l′), u :: l) = append(l′′, u′ :: append(l′, u :: l)).

Proof: Straightforward induction on l′′. ¥

Lemma 21 For all v, u, l, l′ in λPh:

subst(v, x, append(l′, u :: l)) = append(subst(v, x, l′), subst(v, x, u) :: subst(v, x, l)).

Proof: Exactly as in Lemma 6. ¥

The following is the subst lemma for λPh.

Lemma 22 Let u, v, t, l ∈ λPh, x 6= y and y /∈ FV (v). Then:

1. subst(v, x, subst(u, y, t)) = subst(subst(v, x, u), y, subst(v, x, t)).

2. subst(v, x, subst(u, y, l)) = subst(subst(v, x, u), y, subst(v, x, l)).

Proof: By simultaneous induction on t and l, with induction hypotheses IH1

and IH2, respectively. Cases t = x, t = y, t = z /∈ {x, y}, t = λz.t′, l = []

and l = u′ :: l′ exactly as in the proof of Lemma 8. We write s for subst in the

remaining case.

Case t = t′(t′ · l′).

s(v, x, s(u, y, t))

= s(v, x, s(u, y, t′(u′ · l′)))
= s(v, x, s(u, y, t′)(s(u, y, u′) · s(u, y, l′)))

= s(v, x, s(u, y, t′))(s(v, x, s(u, y, u′)) · s(v, x, s(u, y, l′)))

= s(s(v, x, u), y, s(v, x, t′))(s(s(v, x, u), y, s(v, x, u′)) · s(s(v, x, u), y, s(v, x, l′))),
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by IH1,IH2,

= s(s(v, x, u), y, s(v, x, t′)(s(v, x, u′) · s(v, x, l′)))

= s(s(v, x, u), y, s(v, x, t′(u′ · l′)))
= s(s(v, x, u), y, s(v, x, t)) .

¥

Appendability and substitutivity

Lemma 23 In λPh:

1. If l1 → l′1, then append(l1, l2) → append(l′1, l2).

2. If l2 → l′2, then append(l1, l2) → append(l1, l
′
2).

Proof: 1. By straightforward induction on l1 → l′1.

2. By straightforward induction on l1. ¥

Lemma 24 In λPh:

1. (a) If t → t′ then subst(u, x, t) → subst(u, x, t′).

(b) If l → l′ then subst(u, x, l) → subst(u, x, l′).

2. (a) If u → u′ then subst(u, x, t) →∗ subst(u′, x, t).

(b) If u → u′ then subst(u, x, l) →∗ subst(u′, x, l).

Proof: 1. By simultaneous induction on t → t′ and l → l′. Cases according to

Definition 6. We just do the base cases. The remaining cases are routine. We

write s for subst.

Case β1.

s(u, x, (λy.t0)(t1 · [])) = (λy.s(u, x, t0))(s(u, x, t1) · [])
→β1 s(s(u, x, t1), y, s(u, x, t0))

= s(u, x, s(t1, y, t0)), by Lemma 22.
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Case β2.

s(u, x, (λy.t0)(t1 · (t2 :: l0)))

= (λy.s(u, x, t0))(s(u, x, t1) · (s(u, x, t2) :: s(u, x, l0)))

→β2 s(s(u, x, t1), y, s(u, x, t0))(s(u, x, t2) · s(u, x, l0))

= s(u, x, s(t1, y, t0))(s(u, x, t2) · s(u, x, l0)), by Lemma 22,

= s(u, x, s(t1, y, t0)(t2 · l0)) .

Case h.

s(u, x, t0(t1 · l1)(t2 · l2))
= s(u, x, t0)(s(u, x, t1) · s(u, x, l1))(s(u, x, t2) · s(u, x, l2))

→h s(u, x, t0)(s(u, x, t1) · append(s(u, x, l1), s(u, x, t2) :: s(u, x, l2)))

= s(u, x, t0)(s(u, x, t1) · s(u, x, append(l1, t2 :: l2))), by Lemma 21,

= s(u, x, t0(t1 · append(l1, t2 :: l2))) .

2. By simultaneous induction on t and l. ¥

3.3 Explicit right permutation

The λPhx-calculus is presented in Table 3.6. Typing rules are in Table 3.7.

The natural next step after the introduction of λPh would be to separate right

permutation from the key step of cut elimination, introducing a new constructor

t{x := u} for right permutable cuts, and keeping a meta-operator for the complete

right permutation. That is, in addition to h, we would take rules β1 and β2 in

λPh and replace calls to subst by t{x := u}

(λx.t)(u · []) → t{x := u}
(λx.t)(u · (v :: l)) → t{x := u}(v · l)
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Table 3.6: The λPhx-calculus

(Terms) u, v, t ::= x |λx.t | t(u · l) | t{x := v}
(Lists) l, l′ ::= [] | t :: l

(b1) (λx.t)(u · []) → t{x := u}
(b2) (λx.t)(u · (v :: l)) → t{x := u}(v · l)

(h) (t(u · l))(u′ · l′) → t(u · append(l, u′ :: l′))

(x1) x{x := v} → v

(x2) y{x := v} → y, y 6= x

(x3) (λy.u){x := v} → λy.u{x := v}
(x4) (t(u · l)){x := v} → (t{x := v})((u{x := v}) · sub(v, x, l))

where

append([], l′) = l′

append(u :: l, l′) = u :: append(l, l′)

sub(v, x, []) = []

sub(v, x, u :: l) = (u{x := v}) :: sub(v, x, l)
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Table 3.7: Typing rules for λPhx

V ar
Γ, x : A;− ` x : A

Right
Γ, x : A;− ` t : B

Γ;− ` λx.t : A ⊃ B
x /∈ Γ

HeadCut
Γ;− ` t : A ⊃ B Γ;− ` u : A Γ; B ` l : C

Γ;− ` t(u · l) : C

MidCut
Γ;− ` v : A Γ, x : A;− ` t : B

Γ;− ` t{x := v} : B
x /∈ Γ

Ax
Γ; A ` [] : A

Lft
Γ;− ` t : A Γ; B ` l : C

Γ; A ⊃ B ` t :: l : C

together with the rule2

t{x := u} → subst(u, x, t) .

A calculus organised in this way has an architecture that is as close as possible

to that of t-protocol. There is the key step and two “structural” steps, one

for right permutation, the other for left permutation, being these permutations

performed by meta-operators.

Nevertheless, we did not isolate such a calculus here and immediately took

a step further, in that, not only constructor t{x := u} is included and right

permutation separated from the key step, but also right permutation becomes

explicit, that is, performed in stepwise fashion by rules of the calculus. Therefore,

there is no subst in this λPhx. As it were, this calculus is a calculus of explicit

subst.

Constructor t{x := u} binds x in t. By variable convention, x does not occur

in u.

2This is calculus λ+
H of [Esṕırito Santo, 2000]
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Definition 7 (Compatible closure) Given a pair R of binary relations, the

first on Terms and the second on Lists, the compatible closure →R is the least

pair of relations →, the first on Terms and containing the first relation of R, the

second on Lists and containing the second relation of R, closed under:

Right t → t′
λx.t → λx.t′

HeadCut1 t → t′
t(u · l) → t′(u · l)

HeadCut2 u → u′
t(u · l) → t(u′ · l) HeadCut3 l → l′

t(u · l) → t(u · l′)

MidCut1 t → t′
t{x := v} → t′{x := v} MidCut2 v → v′

t{x := v} → t{x := v′}

Lft1 u → u′
u :: l → u′ :: l

Lft2 l → l′
u :: l → u :: l′

For instance, for defining →b, take R = (b1 ∪ b2, ∅) in Definition 7. That is,

in λPhx we set b = (b1 ∪ b2, ∅). One can define →b1 (resp. →b2) by taking

R = (b1, ∅) (resp. R = (b2, ∅)), or define →h by taking R = (h, ∅). The definition

of →xi (i = 1, 2, 3, 4) is by choosing R = (xi, ∅). We will also let

x = x1 ∪ x2 ∪ x3 ∪ x4

and, thus, →x is defined by taking R = (x, ∅).

Admissible rules

Lemma 25 In λPhx, let π1 be a derivation of Γ; C ` l : B and π2 be a derivation

of Γ; B ` l′ : A. The complete left permutation of π2 over π1 is a derivation of

Γ; C ` append(l, l′) : A. In particular, the following rule is admissible:

Γ; C ` l : B Γ; B ` l′ : A

Γ; C ` append(l, l′) : A

Proof: As in Lemma 1. ¥
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Lemma 26 In λPhx the following rule is admissible:

Γ;− ` v : B Γ, x : B; C ` l : A

Γ; C ` sub(v, x, l) : A
x /∈ Γ

Proof : Let π2 be a derivation of Γ, x : B; C ` l : A such that x /∈ Γ. We prove

by induction on l that, for any derivation π1 of Γ : − ` v : B, there is a derivation

π∗
2 of Γ;− ` sub(v, x, l) : A.

Case l = []: Then C = A and sub(v, x, l) = []. Hence we want a derivation π∗
2

of Γ; A ` [] : A. Take π∗
2 as an application of the Ax rule.

Case l = u′ :: l′: Then there are π′
1, π

′
2, C1, C2 such that π2 has the form

π′
1
...

Γ, x : B;− ` u′ : C1

π′
2
...

Γ, x : B; C2 ` l′ : A

Γ, x : B; C1 ⊃ C2 ` u′ :: l′ : A
Lft

and C = C1 ⊃ C2. Since sub(v, x, l) = (u′{x := v}) :: subst(v, x, l′), we want a

derivation π∗
2 of Γ; C1 ⊃ C2 ` (u′{x := v}) :: subst(v, x, l′) : A. Take π∗

2 as

π1···
Γ;− ` v : B

π′
1···

Γ, x : B;− ` u′ : C1
MidCut

Γ;− ` u′{x := v} : C1

π+
2···

Γ; C2 ` subst(v, x, l′) : A
Lft

Γ; C1 ⊃ C2 ` (u′{x := v}) :: subst(v, x, l′) : A

where π+
2 is given by IH. ¥

Cut elimination in λPhx

We now see in what precise sense reduction rules of λPhx correspond to cut

elimination steps.

Rules β1 and β2. As for λPh, except that calls to Lemma 13 are replaced by

MidCut inferences.

Rule h. Exactly as for λPh, using Lemma 25 instead of Lemma 12.
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Rules x1, x2. Standard cut-elimination steps reducing a cut whose right sub-

derivation is an axiom.

Rules x3, x4. Standard cut-elimination steps, permuting the cut upwards past

the last inference of the right subderivation. In the case of x4, Lemma 26 is used.

Proposition 7 (Subject reduction) In λPhx, if Γ;− ` t : A and t → t′, then

Γ;− ` t′ : A

Proof: The claim is proved together with the claim that if Γ;B ` l : A and

l → l′, then Γ; B ` l′ : A, by simultaneous induction on t → t′ and l → l′. All

cases but the base cases are routine, and the latter were sketched above. ¥

Relating λPhx and λPh

First, we show that λPhx simulates λPh.

Lemma 27 In λPhx:

1. t{x := v} →+
x subst(v, x, t), for all t, v in λPh.

2. sub(v, x, l) →∗
x subst(v, x, l), for all l, v in λPh.

Proof: By a straightforward, simultaneous induction on t and l. ¥

Proposition 8 If t → t′ in λPh, then t →+ t′ in λPhx.

Proof: The claim is proved together with the claim that if l → l′ in λPh, then

l →+ l′ in λPhx, by simultaneous induction on t → t′ and l → l′. Cases according

to Definition 6. We only show the base cases. The remaining cases are routine.

Case β1. (λx.t)(u · []) →b1 t{x := v} →+
R subst(v, x, t), the last reduction

being by Lemma 27.

Case β2. (λx.t)(u · (v :: l)) →b2 t{x := v}(v · l) →+
R subst(v, x, t)(v · l), the

last reduction being again by Lemma 27.
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Table 3.8: From λPhx to λPh

x[ = x

(λx.t)[ = λx.t[

(t(u · l))[ = t[(u[ · l[)
(t{x := v})[ = subst(v[, x, t[)

([])[ = []

(u :: l)[ = u[ :: l[

Case h. (t(u · l))(u′ · l′) →h t(u · append(l, u′ :: l′)) in λPhx and we are done

because append in λPhx and λPh coincide for arguments in the latter calculus. ¥

We now define a mapping ( )[ from λPhx to λPh. The definition is given

in Table 3.8 and simply amounts to replace each mid-cut by the corresponding

application of operator subst of λPh.

Proposition 9 (Correctness of ( )[)

1. If λPhx derives Γ;− ` t : A then λPh derives Γ;− ` t[ : A.

2. If λPhx derives Γ; C ` l : A then λPh derives Γ; C ` l[ : A.

Proof : Let π1 be a derivation in λPhx of Γ;− ` t : A and π2 be a derivation in

λPhx of Γ; C ` l : A. One proves by simultaneous induction on t (with induction

hypothesis IH1) and l (with induction hypothesis IH2) that there are derivations

π∗
1 and π∗

2 in λPh of Γ;− ` t[ : A and Γ; C ` l[ : A respectively. The only

interesting case is t = t0{x := u0}. The remaining cases are routine.

Case t = t0{x := u0}: Then there are π′
1, π

′′
1 , B such that π1 has the form
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π′
1
...

Γ;− ` u0 : B

π′′
1
...

Γ, x : B;− ` t0 : A

Γ;− ` t0{x := u0} : A
MidCut

Since t[ = subst(u[
0, x, t[0), we want a derivation π∗

1 of Γ;− ` subst(u[
0, x, t[0) : A.

Take π∗
1 as

π+
1

...

Γ;− ` u[
0 : B

π++
1

...

Γ, x : B;− ` t[0 : A

Γ;− ` subst(u[
0, x, t[0) : A

Lemma 13

where π+
1 and π++

1 are given by IH1. ¥

Now we show some properties of ( )[.

Lemma 28 t[ = t, for all t in λPh.

Proof: Immediate. ¥

Lemma 29

1. sub(v, x, l)[ = subst(v[, x, l[), for all v, l in λPhx.

2. append(l1, l2)
[ = append(l[1, l

[
2), for all l1, l2 in λPhx.

Proof: By straightforward inductions on l and l1. ¥

Proposition 10 If t1 → t2 in λPhx, then t[1 →∗ t[2 in λPh.

Proof: The claim is proved together with the claim that if l1 → l2 in λPhx,

then l[1 →∗ l[2 in λPh, by simultaneous induction on t1 → t2 and l1 → l2. Cases

according to Definition 7.
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Case b1.

((λx.t)(u · []))[ = (λx.t[)(u[ · [])
→β1 subst(u[, x, t[)

= (t{x := u})[ .

Case b2.

((λx.t)(u · (v :: l)))[ = (λx.t[)(u[ · (v[ :: l[))

→β2 subst(u[, x, t[)(v[ · l[)
= (t{x := u}(v · l))[ .

Case h.

((t(u1 · l1))(u2 · l2))[ = (t[(u[
1 · l[1))(u[

2 · l[2)
→h t[(u[

1 · append(l[1, u
[
2 :: l[2))

= t[(u[
1 · append(l[1, (u2 :: l2)

[))

= t[(u[
1 · append(l1, (u2 :: l2))

[), by Lemma 29,

= (t(u1 · append(l1, u2 :: l2)))
[

Case x1. (x{x := v})[ = subst(v[, x, x) = v[.

Case x2. (y{x := v})[ = subst(v[, x, y) = y = y[.

Case x3.

((λy.t){x := v})[ = subst(v[, x, λy.t[)

= λy.subst(v[, x, t[)

= (λy.t{x := v})[ .

Case x4.
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(t(u · l)){x := v})[

= subst(v[, x, t[(u[ · l[))
= subst(v[, x, t[)(subst(v[, x, u[) · subst(v[, x, l[))

= subst(v[, x, t[)(subst(v[, x, u[) · sub(v, x, l)[), by Lemma 29,

= (t{x := v})[((u{x := v})[ · sub(v, x, l)[)

= ((t{x := v})(u{x := v} · sub(v, x, l)))[ .

Case MidCut1. Suppose t[3 →∗ t[4. We want (t3{x := u})[ →∗ (t4{x := u})[.

Now,

(t3{x := u})[ = subst(u[, x, t[3)

→∗ subst(u[, x, t[4), by part 1. of Lemma 24,

= (t4{x := u})[ .

Case MidCut2. Similar, by part 2. of Lemma 24.

The remaining cases are by IH. ¥

Corollary 5 λPhx is a conservative extension of λPh, i.e. t →∗ t′ in λPh iff

t →∗ t′ in λPhx, for all t, t′ in λPh.

Proof: By Propositions 8 and 10 and Lemma 28. ¥

Proposition 11 t →∗
x t[, for all t in λPhx.

Proof: The claim is proved together with the claim that l →∗
x l[, for all l in λPhx,

by simultaneous induction on t and l. The only interesting case is t = t0{x := v0}.
In this case,
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t = t0{x := v0}
→∗

x t[0{x := v[
0}, by IH1,IH2,

→+
x subst(v[

0, x, t[0), by Lemma 27,

= (t0{x := v0})[

= t[

The cases t = x and l = [] are immediate and the remaining cases are by IH. ¥

Corollary 6 If λPh is confluent, so is λPhx.

Proof: By Propositions 10 and 11. ¥

Lemma 30 If t1 →x t2 in λPhx, then t[1 = t[2.

Proof: It suffices to look at the proof of Proposition 10. ¥

Corollary 7 In λPhx, →x is confluent.

Proof: By Proposition 11 and Lemma 30. ¥

Therefore, we may refer to the normal-form mapping ↓x.

Corollary 8 For all t in λPhx, t[ =↓x (t).

Proof: From Proposition 11 and the fact that each t in λPh (as a term in λPhx)

is x-normal. ¥
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Appendability and substitutivity

Lemma 31 In λPhx:

1. If l1 → l′1, then append(l1, l2) → append(l′1, l2).

2. If l2 → l′2, then append(l1, l2) → append(l1, l
′
2).

Proof: Exactly as in Lemma 23. ¥

Lemma 32 In λPhx:

1. If l → l′, then sub(u, x, l) → sub(u, x, l′).

2. If u → u′, then sub(u, x, l) → sub(u′, x, l).

Proof: 1. By straightforward induction on l → l′.

2. By straightforward induction on l. ¥

3.4 A fully explicit system

The calculi λP , λPh and λPhx are the systems that will deserve our attention

in the following chapters. Nevertheless, we conclude this chapter by identifying

one further calculus, named λPhx, that happens to be outside the canonical

fragment. The point is that λPhx is a fully explicit system, in the sense that the

whole cut-elimination procedure is done by means of local rules, without appeal

to meta-operators. It is obtained from λPhx simply by making explicit operators

append and sub. The corresponding new constructors are l(u · l′) and l{x := u}.
The latter binds x in l. By variable convention, x does not occur in u.

As we will be dealing with fully explicit system, we briefly compare λPhx

with Herbelin’s original λ-calculus. It will become clear that a fully explicit right

protocol defined over the canonical fragment requires inter-permutations 44 and

22 to be added to λ. Moreover, the simulation of λPhx by λ3 will allow the reuse

of the strong normalisability of λ3.

The λPhx-calculus is defined on Table 3.9. Typing rules are in Table 3.10.
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Table 3.9: The λPhx-calculus

(Terms) u, v, t ::= x |λx.t | t(u · l) | t{x := v}
(Lists) l, l′ ::= [] | t :: l | l(u · l′) | l{x := u}

(b1) (λx.t)(u · []) → t{x := u}
(b2) (λx.t)(u · (v :: l)) → t{x := u}(v · l)

(h) (t(u · l))(u′ · l′) → t(u · (l(u′ · l′)))

(x1) x{x := v} → v

(x2) y{x := v} → y, y 6= x

(x3) (λy.u){x := v} → λy.u{x := v}
(x4) (t(u · l)){x := v} → (t{x := v})((u{x := v}) · (l{x := v}))

(h1) [](u′ · l′) → u′ :: l′

(h2) (u :: l)(u′ · l′) → u :: (l(u′ · l′))

(x41) []{x := v} → []

(x42) (u :: l){x := v} → (u{x := v}) :: (l{x := v})
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Table 3.10: Typing rules for λPhx

V ar
Γ, x : A;− ` x : A

Right
Γ, x : A;− ` t : B

Γ;− ` λx.t : A ⊃ B
x /∈ Γ

HeadCut
Γ;− ` t : A ⊃ B Γ;− ` u : A Γ; B ` l : C

Γ;− ` t(u · l) : C

MidCut
Γ;− ` v : A Γ, x : A;− ` t : B

Γ;− ` t{x := v} : B
x /∈ Γ

Ax
Γ; A ` [] : A

Lft
Γ;− ` t : A Γ; B ` l : C

Γ; A ⊃ B ` t :: l : C

AuxHeadCut
Γ; D ` l : A ⊃ B Γ;− ` u′ : A Γ; B ` l′ : C

Γ; D ` l(u′ · l′) : C

AuxMidCut
Γ;− ` v : A Γ, x : A; C ` l : B

Γ; C ` l{x := v} : B
x /∈ Γ
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Definition 8 (Compatible closure) Given a pair R of binary relations, the

first on Terms and the second on Lists, the compatible closure →R is the least

pair of relations →, the first on Terms and containing the first relation of R, the

second on Lists and containing the second relation of R, closed under:

Right t → t′
λx.t → λx.t′

HeadCut1 t → t′
t(u · l) → t′(u · l)

HeadCut2 u → u′
t(u · l) → t(u′ · l) HeadCut3 l → l′

t(u · l) → t(u · l′)

MidCut1 t → t′
t{x := v} → t′{x := v} MidCut2 v → v′

t{x := v} → t{x := v′}

Lft1 u → u′
u :: l → u′ :: l

Lft2 l → l′
u :: l → u :: l′

AuxHeadCut1
l0 → l′0

l0(u · l) → l′0(u · l)

AuxHeadCut2 u → u′
l0(u · l) → l0(u

′ · l) AuxHeadCut3 l → l′
l0(u · l) → l0(u · l′)

AuxMidCut1 l → l′
l{x := v} → l′{x := v} AuxMidCut2 v → v′

l{x := v} → l{x := v′}

Relating λPhx and λPhx

First, we show that λPhx simulates λPhx.

Lemma 33 In λPhx, the following holds:

1. l(u′ · l′) →+

h1,h2
append(l, u′ :: l′), all l, u′, l′ in λPhx.

2. l{x := v} →+
x41,x42 sub(v, x, l), all l, v in λPhx.

Proof: Both by straightforward induction on l. ¥

Proposition 12 If t → t′ in λPhx, then t →+ t′ in λPhx.

Proof: The claim is proved together with the claim that, if l → l′ in λPhx,

then l →+ l′ in λPhx, by simultaneous induction on t → t′ and l → l′. Cases
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Table 3.11: From λPhx to λPhx

x◦ = x

(λx.t)◦ = λx.t◦

(t(u · l))◦ = t◦(u◦ · l◦)
(t{x := v})◦ = t◦{x := v◦}

([])◦ = []

(u :: l)◦ = u◦ :: l◦

(l1(u · l2))◦ = append(l◦1, u
◦ :: l◦2)

(l{x := v})◦ = sub(v◦, x, l◦)

according to Definition 7. We just show the interesting base cases, the remaining

being routine.

Case h. (t(u · l))(u′ · l′) →h t(u · (l(u′ · l′))) →+

h1,h2
t(u · (append(l, u′ :: l′))),

where the steps →h1,h2 are by Lemma 33.

Case x4. (t(u · l)){x := v} →x4 (t{x := v})(u{x := v} · l{x := v}) →+
x41,x42

(t{x := v})(u{x := v}·sub(v, x, l)), where the steps →+
x41,x42 are by Lemma 33. ¥

We now consider a mapping ( )◦ from λPhx to λPhx. Its definition is given

in Table 3.11. Auxiliary cuts are translated to calls to append and sub.

Proposition 13 (Correctness of ( )◦)

1. If λPhx derives Γ;− ` t : A then λPhx derives Γ;− ` t◦ : A.

2. If λPhx derives Γ; C ` l : A then λPhx derives Γ; C ` l◦ : A.

Proof : Let π1 be a derivation in λPhx of Γ;− ` t : A and π2 be a derivation in

λPhx of Γ; C ` l : A. One proves by simultaneous induction on t (with induction
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hypothesis IH1) and l (with induction hypothesis IH2) that there are derivations

π∗
1 and π∗

2 in λPhx of Γ;− ` t◦ : A and Γ; C ` l◦ : A respectively. We only do

the interesting cases. The remaining cases are routine.

Case l = l0(u0 · l1). Then there are π′
1, π

′
2, π

′′
2 , B1, B2 such that π2 has the form

π′
2···

Γ; C ` l0 : B1 ⊃ B2

π′
1···

Γ;` u0 : B1

π′′
2···

Γ; B2 ` l1 : A
AuxHeadCut

Γ; C ` l0(u0 · l1) : A

Since (l0(u0 · l1))
◦ = append(l◦0, u

◦
0 :: l◦1), we want a derivation π∗

2 of Γ; C `
append(l◦0, u

◦
0 :: l◦1) : A. Take π∗

2 as

π+
2···

Γ; C ` l◦0 : B1 ⊃ B2

π+
1···

Γ;` u◦
0 : B1

π++
2···

Γ; B2 ` l◦1 : A
Lft

Γ; B1 ⊃ B2 ` u◦
0 :: l◦1 : A

Lemma 25
Γ; C ` append(l◦0, u

◦
0 :: l◦1) : A

where π+
1 is given by IH1 and π+

2 , π++
2 are given by IH2.

Case l = l0{x := u0}. Then, there are π′
1, π

′
2, B such that π2 has the form

π′
1···

Γ;− ` u0 : B

π′
2···

Γ, x : B; C ` l0 : A
AuxMidCut

Γ; C ` l0{x := u0} : A

and x /∈ Γ. Since (l0{x := u0})◦ = sub(u◦
0, x, l◦0), we want a derivation π∗

2 of

Γ; C ` sub(u◦
0, x, l◦0) : A. Take π∗

2 as

π+
1···

Γ;− ` u◦
0 : B

π+
2···

Γ, x : B; C ` l◦0 : A
Lemma 26

Γ; C ` sub(u◦
0, x, l◦0) : A

where π+
1 and π+

2 are given by IH1 and IH2, respectively. ¥
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Lemma 34 t◦ = t, for all t in λPhx.

Proof: Immediate. ¥

Proposition 14 If t1 → t2 in λPhx, then t◦1 →∗ t◦2 in λPhx.

Proof: The claim is proved together with the claim that if l1 → l2 in λPhx,

then l◦1 →∗ l◦2 in λPhx, by simultaneous induction on t1 → t2 and l1 → l2. Cases

according to Definition 8.

Cases b1, b2, h, x1, x2, x3 and x4. One step of these in λPhx is mapped by

( )◦ to a step of the same kind in λPhx.

Cases h1, h2, x41 and x42. One step of these is collapsed in λPhx by ( )◦.

Case AuxHeadCut1. Follows by part 1. of Lemma 31.

Cases AuxHeadCut2 and AuxHeadCut3. Follow by part 2. of Lemma 31.

Case AuxMidCut1. Follows by part 1. of Lemma 32.

Case AuxMidCut2. Follows by part 2. of Lemma 32.

All the remaining cases follow by IH. ¥

Corollary 9 λPhx is a conservative extension of λPhx, i.e. t →∗ t′ in λPhx iff

t →∗ t′ in λPhx, for all t, t′ in λPhx.

Proof: By Propositions 12 and 14 and Lemma 34. ¥

Proposition 15 t →∗
R t◦, for all t in λPhx, and R = h1, h2, x41, x42.

Proof: The claim is proved together with the claim that l →∗
R l◦, for all l in

λPhx and same R, by simultaneous induction on t and l. Only two cases deserve

attention.

Case l = l1(u0 · l2). Then
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l = l1(u0 · l2)
→∗

R l◦1(u
◦
0 · l◦2), by IH1, IH2,

→+

h1,h2
append(l◦1, u

◦
0 :: l◦2), by Lemma 33,

= (l1(u0 :: l2))
◦

= l◦ .

Case l = l0{x := v0}. Then

l = l0{x := v0}
→∗

R l◦0{x := v◦
0}, by IH1, IH2,

→+
x41,x42 sub(v◦

0, x, l◦0), by Lemma 33,

= (l0{x := v0})◦

= l◦ .

¥

Corollary 10 If λPhx is confluent, so is λPhx.

Proof: By Propositions 14 and 15. ¥

Lemma 35 If t1 →R t2 in λPhx, R = h1, h2, x41, x42, then t◦1 = t◦2.

Proof: It suffices to look at the proof of Proposition 14. ¥

Corollary 11 In λPhx, →R is confluent (R = h1, h2, x41, x42).

Proof: By Proposition 15 and Lemma 35. ¥

Therefore, we may refer to the normal-form mapping ↓R.
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Table 3.12: From λPhx to λ3

xo = x[]

(λx.t)o = λx.to

(t(u · l))o = to(uo :: lo)

(t{x := v})o = to{x := vo}

([])o = []

(u :: l)o = uo :: lo

(l1(u0 · l2))o = lo1(u
o
0 :: lo2)

(l{x := v})o = lo{x := vo}

Corollary 12 For all t in λPhx, t◦ =↓R (t) (R = h1, h2, x41, x42).

Proof: From Proposition 15 and the fact that each t in λPhx (when regarded

as a term in λPhx) is R-normal. ¥

Comparison with Herbelin’s system

The λPhx-calculus is sufficiently close to the original λ-calculus to allow an easy

comparison. At the level of syntax, the difference is that the former has construc-

tors x, t(u · l) and l(u · l′), whereas the latter has xl, tl and ll′. Hence, λ seems

a little bigger. However, in order to simulate reduction rules h and x4 of λPhx,

one needs to adjoin permutations 44 and 22 to λ. A mapping from λPhx to λ3

is suggested in Table 3.12.

Proposition 16 (Correctness of ( )o)

1. If λPhx derives Γ;− ` t : A then λ3 derives Γ;− ` to : A.
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2. If λPhx derives Γ; C ` l : A then λ3 derives Γ; C ` lo : A.

Proof : This is by the usual simultaneous induction. Here we are going to be

sketchier. We show how to “simulate” in λ3 typing rules V ar, HeadCut and

AuxHeadCut of λPhx.

V ar:

Ax
Γ; A ` [] : A

Der
Γ, x : A;− ` x[] : A

HeadCut:

Γ;− ` to : B ⊃ C

Γ;− ` uo : B Γ; C ` lo : A
Lft

Γ; B ⊃ C ` uo :: lo : A
HeadCut

Γ;− ` to(uo :: lo) : A

AuxHeadCut:

Γ; D ` lo1 : B ⊃ C

Γ;− ` uo
0 : B Γ; C ` lo2 : A

Lft
Γ; B ⊃ C ` uo

0 :: lo2 : A
AuxHeadCut

Γ; D ` lo1(u
o
0 :: lo2) : A

¥

Proposition 17 If t1 → t2 in λPhx, then to1 →+ to2 in λ3.

Proof: The claim is proved together with the claim that, if l → l′ in λPhx, then

l →+ l′ in λ3, by simultaneous induction on t → t′ and l → l′. Cases according

to Definition 8. We just show three base cases. Non-base case are routine.

Case h.

((t(u1 · l1))(u2 · l2))o = (to(uo
1 :: lo1))(u

o
2 :: lo2)

→22 to((uo
1 :: lo1)(u

o
2 :: lo2))

→31 to(uo
1 :: (lo1(u

o
2 :: lo2))

= (t(u1 · (l1(u2 · l2))))o .
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Case x1.

(x{x := u})o = (x[]){x := uo}
→41 uo([]{x := uo})
→52 uo[]

→20 uo .

Case x4.

(t(u · l){x := v})o = to(uo :: lo){x := vo}
→44 (to{x := vo})(uo :: lo){x := vo}
→51 (to{x := vo})((uo{x := vo}) :: (lo{x := vo}))
= ((t{x := v})(u{x := v} · l{x := v}))o .

¥

Hence, strong normalisability of typable terms may flow from λ3 to λPhx.

Corollary 13 Let S ∈ {λP , λPh, λPhx, λPhx}. If t is typable in S, then t is

strongly normalising.

Proof: From Theorem 1 and Propositions 16, 17, 12, 8 and 3. ¥



Chapter 4

Normalisation as cut-elimination

The goal of this chapter is to prove that λP is isomorphic to λ 1. We do this by

defining an intermediate calculus, named λN , and the following isomorphisms

λP ¾ Ψ

Θ
- λN ¾ N

| |
- λ

The calculus λN may be seen as a presentation of λ with a separation between

the normal subcalculus and a single constructor for β-redexes. The true nature

of λN will only become clear in the next chapter.

4.1 A presentation of λ

A somewhat unusual treatment of λ-calculus is presented in Table 4.1. We name

this calculus the λN -calculus. Typing rules are in Table 4.2. This is a presenta-

tion in which the normal fragment is obtained by simply omitting one constructor,

very much in the style of sequent calculus. Another characteristic is a distinction

between applicative terms app(A) and applications A ∈ Apps. Actually, there

are three kinds of applications. Two of them are value applications (xN and

(λx.M)N); we call the third (AN) an applicative application (because A is not

a value).

1The isomorphism between λP and λ was announced for the first time in
[Esṕırito Santo, 2000].

91
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Table 4.1: The λN -calculus

(Terms) M,N ::= x |λx.M | app(A)

(Apps) A ::= xN | (λx.M)N |AN

(β1) app((λx.M)N) → M [N/x]

(β2) ((λx.M)N)N ′ → M [N/x]@N ′

where

x[N/x] = N

y[N/x] = y, y 6= x

(λy.M)[N/x] = λy.M [N/x]

(app(A))[N/x] = app(A[N/x])

(xM)[N/x] = N@M [N/x]

(yM)[N/x] = yM [N/x], y 6= x

((λy.M)M ′)[N/x] = (λy.M [N/x])M ′[N/x]

(AM)[N/x] = A[N/x]M [N/x]

x@N = xN

(λx.M)@N = (λx.M)N

(app(A))@N = AN
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Table 4.2: Typing rules for λN

V ar
Γ, x : B ` x : B

V Elim
Γ, x : B ⊃ C ` N : B
Γ, x : B ⊃ C ` xN : C

Intro
Γ, x : B ` M : C

Γ ` λx.M : B ⊃ C
x /∈ Γ Redex

Γ, x : B ` M : C Γ ` N : B
Γ ` (λx.M)N : C

x /∈ Γ

App Γ ` A : B
Γ ` app(A) : B

AElim Γ ` A : B ⊃ C Γ ` N : B
Γ ` AN : C

The syntactic class Apps is ranged over by A. Unfortunately A also ranges over

types. So, when typing λN -terms, we will only use the meta-variables B,C,D.

Care is needed for distinguishing between the two operators of substitution: for

each N, x, there are substitution operators [N/x] : Terms → Terms and [N/x] :

Apps → Apps.

A surprisingly interesting exercise is to define β in this setting. The problem

with (λx.M)N → M [N/x] is that the redex is in Apps whereas the contractum

is in Terms. We can fix this by proposing

(β1) app((λx.M)N) → M [N/x] .

However, with β1 alone, we cannot reduce app(((λx.M)N)N ′). The solution is

to also consider the notion of reduction

(β2) ((λx.M)N)N ′ → M [N/x]@N ′ .

Here the operator @ : Terms × Terms → Apps (see again Table 4.1) makes

available the application between two λN -terms, a non-primitive construction in

λN . Relation β1 is a relation on Terms whereas relation β2 is a relation on

Apps.

Definition 9 (Compatible closure) Given a pair R of binary relations, the

first on Terms and the second on Apps, the compatible closure →R is the least
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Nx = x

N (λx.M) = λx.N (M)

N (MN) = app(N (M)@N (N))

Table 4.3: From λ to λN .

pair of relations →, the first on Terms and containing the first relation of R, the

second on Apps and containing the second relation of R, closed under:

Intro M → M ′
λx.M → λx.M ′ App A → A′

app(A) → app(A′)

V Elim N → N ′
xN → xN ′

Redex1 M → M ′
(λx.M)N → (λx.M ′)N

Redex2 N → N ′
(λx.M)N → (λx.M)N ′

AElim1 A → A′
AN → A′N

AElim2 N → N ′
AN → AN ′

For instance, for defining →β, take R = (β1, β2) in Definition 9. That is, in λN
we set

β = (β1, β2) .

One can also define →β1 (resp. →β2) by taking R = (β1, ∅) (resp. R = (∅, β2).

We now prove that λN and λ are isomorphic.

First we define a mapping N : λ → λN in Table 4.3. If N (V ) = V ′ (where

V is a value) and N (Ni) = N ′
i , then N sends V N1...Nk to app(V ′N ′

1...N
′
k). For

instance, N ((xy)z) = app(app(Nx@N y)@N z) = app(app(xy)@z) = app((xy)z),

whereas N (x(yz)) = app(Nx@app(N y@N z)) = app(x@app(yz)) = app(x app(yz)).

Lemma 36 If λN derives Γ ` M : C ⊃ B and Γ ` N : C, then λN derives

Γ ` M@N : B.
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Proof: Let π and π0 be derivations of Γ ` M : C ⊃ B and Γ ` N : C,

respectively. We prove by case analysis of M that there is a derivation π∗ of

Γ ` M@N : B.

Case M = x. Then M@N = xN and π has the form

V ar
Γ′, x : C ⊃ B ` x : C ⊃ B

and Γ = Γ′, x : C ⊃ B. We want a derivation of Γ′, x : C ⊃ B ` xN : B Take π∗

as

π0····
Γ′, x : C ⊃ B ` N : C

V Elim
Γ′, x : C ⊃ B ` xN : B

Case M = λx.M0. Then M@N = (λx.M0)N and π has the form

π1····
Γ, x : C ` M0 : B

Intro
Γ ` λx.M0 : C ⊃ B

We want a derivation of Γ ` (λx.M0)N : B. Take π∗ as

π1····
Γ, x : C ` M0 : B

π0····
Γ ` N : C

Redex
Γ ` (λx.M0)N : B

Case M = app(A). Then M@N = AN and π has the form

π1····
Γ ` A : C ⊃ B

App
Γ ` app(A) : C ⊃ B

We want a derivation of Γ ` AN : B. Take π∗ as
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π1····
Γ ` A : C ⊃ B

π0····
Γ ` N : C

AElim
Γ ` AN : B

¥

Proposition 18 (Correctness) If λ derives Γ ` M : B then λN derives Γ `
N (M) : B.

Proof: Let π be a derivation of Γ ` M : B in λ. One proves by induction on

M that there is a derivation π∗ of Γ ` N (M) : B in λN . Cases M = x and

M = λx.M0 are straightforward. Let M = M0N0. Then π as the form

π1····
Γ ` M0 : C ⊃ B

π2····
Γ ` N0 : C

Elim
Γ ` M0N0 : B

Since N (M) = app(N (M0)@N (N0)), take π∗ as

π∗
1····

Γ ` M−
0 : C ⊃ B

π∗
2····

Γ ` N−
0 : C

Lemma 36
Γ ` N (M0)@N (N0)

App
Γ ` app(N (M0)@N (N0))

where π∗
1, π

∗
2 are given by IH. ¥

We now define, in Table 4.4, the inverse mapping, from λN to λ. Mapping

| | (absolute value) sends the different kinds of application in λN to application

in λ and erases app. It is a forgetful mapping.

Proposition 19 (Correctness) The following holds:

1. If λN derives Γ ` M : B, then λ derives Γ ` |M | : B.
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|x| = x

|λx.M | = λx.|M |
|app(A)| = |A|

|xN | = x|N |
|(λx.M)N | = (λx.|M |)|N |

|AN | = |A||N |

Table 4.4: From λN to λ.

2. If λN derives Γ ` A : B, then λ derives Γ ` |A| : B.

Proof: Let π1 and π2 be derivations in λN of Γ ` M : B and Γ ` A : B,

respectively. We prove, by simultaneous induction on M and A (with induction

hypothesis IH1 and IH2, respectively) that there are in λ derivations π+
1 and π+

2

of Γ ` |M | : B and Γ ` |A| : B, respectively.

Case M = x. Immediate.

Case M = λx.M0. Immediate, by IH1.

Case M = app(A). Then π1 has the shape

π′
2····

Γ ` A : B
App

Γ ` app(A) : B

Since |M | = |A|, we want a derivation π+
1 of Γ ` |A| : B. By IH2, there is a

derivation π′+
2 of Γ ` |A| : B. Take π+

1 = π′+
2 .

Case A = xN . Then π2 has the shape
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π′
1····

Γ′, x : C ⊃ B ` N : C
V Elim

Γ′, x : C ⊃ B ` xN : B

where Γ = Γ′, x : C ⊃ B. Since |A| = x|N |, we want a derivation π+
2 of Γ′, x :

C ⊃ B ` x|N | : B. By IH1, there is a derivation π′+
1 of Γ′, x : C ⊃ B ` |N | : C.

Take π+
2 as

V ar
Γ, x : C ⊃ B ` x : C ⊃ B

π′+
1····

Γ′, x : C ⊃ B ` |N | : C
Elim

Γ′, x : C ⊃ B ` x|N | : B

Case A = (λx.M)N . Then π2 has the shape

····
Γ, x : C ` M : B

····
Γ ` N : C

Redex
Γ ` (λx.M)N : B

Since |A| = (λx.|M |)|N |, we want a derivation π+
2 of Γ ` (λx.|M |)|N | : B. Using

IH1 twice, we build π+
2 as the traditional Intro followed by Elim.

Case A = A0N . Follows easily by IH1 and IH2. ¥

We now prove the isomorphism between λN and λ at the level of terms.

Proposition 20 N|M | = M and N|A| = app(A), for all M and A in λN .

Proof: By simultaneous induction on M and A, with induction hypotheses IH1

and IH2, respectively.

Case M = x. N|M | = N|x| = N (x) = x = M .

Case M = λx.M0.

N|M | = N|λx.M0|
= N (λx.|M0|), by def. of | |,
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= λx.N|M0|, by def. of N ,

= λx.M0, by IH1,

= M .

Case M = app(A).

N|M | = N|app(A)|
= N|A|, by def. | |,
= app(A), by IH2,

= M .

Case A = xN .

N|A| = N|xN |
= N (x|N |), by def. of | |,
= app(N (x)@N|N |), by def. of N ,

= app(x@N|N |), by def. of N ,

= app(x@N), by IH1,

= app(xN), by def. of @,

= app(A) .

Case A = (λx.M)N .

N|A| = N|(λx.M)N |
= N ((λx.|M |)|N |), by def. of | |,
= app(N (λx.|M |)@N|N |), by def. of N ,

= app((λ.N|M |)@N|N |), by def. of N ,

= app((λx.M)@N), by IH1,

= app((λx.M)N), by def. of @,

= app(A) .

Case A = A0N0.

N|A| = N|A0N0|
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= N (|A0||N0|), by def. of | |,
= app(N|A0|@N|N0|), by def. of N ,

= app(app(A0)@N0), by IH1 and IH2,

= app(A0N0), by def. of @,

= app(A) .

¥

Lemma 37 |M@N | = |M ||N |, for all M , N in λN .

Proof: By case analysis of M . Variables and λ-abstractions are uninteresting.

If M = app(A) then

|M@N | = |app(A)@N |
= |AN |, by def. of @,

= |A||N |, by def. of | |,
= |app(A)||N |, by def. of | |,
= |M ||N |.

¥

Proposition 21 |N (M)| = M , for all M in λ.

Proof: By induction on M . Variables and λ-abstractions are straightforward. If

M = M0N0, then

|N (M)| = |N (M0N0)|
= |app(N (M0)@N (N0))|, by def. of N ,

= |(N (M0)@N (N0))|, by def of | |,
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= |N (M0)||N (N0)|, by Lemma 37,

= M0N0, by I.H.,

= M .

¥

Now it comes the proof of the isomorphism at the level of reduction.

Lemma 38 The following holds:

1. |M [N/x]| = |M |[|N |/x], for all M , N in λN .

2. |A[N/x]| = |A|[|N |/x], for all A, N in λN .

Proof: By simultaneous induction on M and A, with induction hypotheses IH1

and IH2, respectively . There are only two interesting cases.

Case M = app(A). Then

|M [N/x]| = |app(A)[N/x]|
= |app(A[N/x])|, by def. of [N/x] in λN ,

= |A[N/x]|, by def. of | |,
= |A|[|N |/x], by IH2

= |app(A)|[|N |/x], by def. of | |,
= |M |[|N |/x] .

Case A = xM . Then,

|A[N/x]| = |(xM)[N/x]|
= |N@M [N/x]|, by def. of [N/x],

= |N ||M [N/x]|, by Lemma 37,

= |N |(|M |[|N |/x]), by IH1,
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= (x|M |)[|N |/x], by def. of [N/x] in λ,

= |xM |[|N |/x], by def. of | |,
= |A|[|N |/x] .

¥

Corollary 14 N (M [N/x]) = N (M)[N (N)/x], for all M , N in λ.

Proof:

N (M [N/x]) = N (|N (M)|[|N (N)|/x]), by Proposition 21,

= N|N (M)[N (N)/x]|, by Lemma 38,

= N (M)[N (N)/x], by Proposition 20.

¥

The following is the first half of the isomorphism.

Theorem 2 If M1 →β M2 in λN , then |M1| →β |M2| in λ.

Proof: The claim is proved together with the claim that if A1 →β A2 in λN , then

|A1| →β |A2| in λ, by simultaneous induction on M1 →β M2 and A1 →β A2 (with

induction hypotheses IH1 and IH2, respectively). Cases according to Definition

9.

Case β1:

|app((λx.M)N)| = (λx.|M |)|N |, by def. of | |,
→β |M |[|N |/x]

= |M [N/x]|, by Lemma 38.

Case β2:
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|((λx.M)N1)N2| = ((λx.|M |)|N1|)|N2|, by def. of | |,
→β |M |[|N1|/x]|N2|
= |M [N1/x]||N2|, by Lemma 38,

= |M [N1/x]@N2|, by Lemma 37.

Case Intro: Suppose |M1| →β |M2| (IH1). Then,

|λx.M1| = λx.|M1|, by def. of | |,
→β λx.|M2| (*)

= |λx.M2|, by def. of | |,

where step (*) is by IH1 and closure of →β in λ under Intro.

Case App: Suppose |A1| →β |A2| (IH2). Then,

|app(A1)| = |A1|, by def. of | |,
→β |A2|, by IH2,

= |app(A2)|, by def. of | |.

Case V Elim: Suppose |N1| →β |N2| (IH1). Then,

|xN1| = x|N1|, by def. of | |,
→β x|N2| (*)

= |xN2|, by def. of | |,

where step (*) is by IH1 and closure of →β in λ under Elim2.

Case Redex1: Suppose |M1| →β |M2| (IH1). Then,

|(λx.M1)N | = (λx.|M1|)|N |, by def. of | |,
→β (λx.|M2|)|N | (*)

= |((λx.M2)N |, by def. of | |,
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where step (*) is by IH1 and closure of →β in λ under Intro and Elim1.

Case Redex2: Similarly, by IH1 and closure of →β in λ under Elim2.

Case AElim1: Suppose |A1| →β |A2| (IH2). Then,

|A1N | = |A1||N |, by def. of | |,
→β |A2||N | (*)

= |A2N |, by def. of | |,

where step (*) is by IH2 and closure of →β in λ under Elim1.

Case AElim2: Similarly, by IH1 and closure of →β in λ under Elim2. ¥

Lemma 39 The following holds in λN :

1. If M →β M ′, then M@N →β M ′@N .

2. If N →β N ′, then M@N →β M@N ′.

Proof: 1. Suppose M →β M ′. We proceed by case analysis of M .

Case M = x. Vacuous.

Case M = λx.M0. Hence there is M ′
0 such that M ′ = λx.M ′

0 and M0 →β

M ′
0. Then, M@N = (λx.M0)@N = (λx.M0)N →β (λx.M ′

0)N = (λx.M ′
0)@N =

M ′@N (here we used the fact that →β in λN is closed under Redex1).

Case M = app(A). There are two subcases.

Subcase 1: A →β A′ and M ′ = app(A′). Then M@N = app(A)@N =

AN →β A′N = app(A′)@N = M ′@N (here we used the fact that →β in λN is

closed under AElim1).

Subcase 2: A = (λx.M0)N0 and M ′ = M0[N0/x]. Then, M@N = app(A)@N =

AN = ((λx.M0)N0)N →β M0[N0/x]@N = M ′@N .

2. Suppose N →β N ′. We proceed by case analysis of M .

Case M = x. Then, M@N = x@N = xN →β xN ′ = x@N ′ = M@N ′ (here

we used the fact that →β in λN is closed under V Elim).



Chapter 4. Normalisation as cut-elimination 105

Case M = λx.M0. Then, M@N = (λx.M0)@N = (λx.M0)N →β (λx.M0)N
′ =

(λx.M0)@N ′ = M@N ′ (here we used the fact that →β in λN is closed under

Redex2).

Case M = app(A). Then, M@N = app(A)@N = AN →β AN ′ = app(A)@N ′ =

M@N ′ (here we used the fact that →β in λN is closed under AElim2). ¥

The second half of the isomorphism is:

Theorem 3 If M1 →β M2 in λ, then N (M1) →β N (M2) in λN .

Proof: By induction on M1 →β M2. Cases according to Definition 1.

Case β:

N (λx.M)N) = app((λx.N (M))@N (N)), by def. of N ,

= app((λx.N (M))N (N)), by def. of @,

→β N (M)[N (N)/x]

= N (M [N/x]), by Corollary 14.

Case Intro: suppose N (M1) →β N (M2) (IH). Then,

N (λx.M1) = λx.N (M1), by def. of N ,

→β λx.N (M2) (*)

= N (λx.M2), by def. of N ,

where step (*) is by IH and closure of →β in λN under Intro.

Case Elim1: suppose N (M1) →β N (M2) (IH). Then,

N (M1N) = app(N (M1)@N (N)), by def. of N ,

→β app(N (M2)@N (N)) (*)

= N (M2N), by def. of N ,
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where step (*) is by IH and 1. of Lemma 39 and closure of →β in λN under App.

Case Elim2: Similarly, by IH and 2. of Lemma 39 and closure of →β in λN
under App. ¥

Corollary 15 (Isomorphism)

1. M1 →β M2 in λ iff N (M1) →β N (M2) in λN .

2. M1 →β M2 in λN iff |M1| →β |M2| in λ.

Corollary 16

1. λN is confluent.

2. If M is typable in λN , then M is strongly normalising.

3. λN satisfies subject reduction.

Proof: Because these properties hold of λ and may be easily transferred from λ

to λN with the help of N and | |. ¥

4.2 Mappings Ψ and Θ

Translations Ψ and Θ between λN and λP are given in Tables 4.5 and 4.6.

The idea of Ψ (recall Chapter 2) is to “turn the main branch upside down”.

Roughly, if Ψ(V ) = v (where V is some value) and Ψ(Ni) = ui, then Ψ sends

app(V N1N2...Nk) to v(u1 · [u2, ..., uk]). Θ does precisely the inverse.

The following propositions were firstly proved for the cut-free fragment in

[Dyckhoff and Pinto, 1998].

Proposition 22 (Correctness of Ψ)

1. If λN derives Γ ` M : B then λP derives Γ;− ` Ψ(M) : B.
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Ψ(x) = x

Ψ(λx.M) = λx.ΨM

Ψ(app(A)) = Ψ′(A, [])

Ψ′(xN, l) = x(ΨN · l)
Ψ′((λx.M)N, l) = (λx.ΨM)(ΨN · l)

Ψ′(AN, l) = Ψ′(A, ΨN :: l)

Table 4.5: From λN to λP

Θ(x) = x

Θ(x(u · l)) = Θ′(xΘu, l)

Θ(λx.t) = λx.Θt

Θ((λx.t)(u · l)) = Θ′((λx.Θt)Θu, l)

Θ′(A, []) = app(A)

Θ′(A, u :: l) = Θ′(AΘu, l)

Table 4.6: From λP to λN .
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2. If λN derives Γ ` A : C and λP derives Γ; C ` l : B then λP derives

Γ;− ` Ψ′(A, l) : B.

Proof: We prove by simultaneous induction on M and A (with induction hy-

potheses IH1 and IH2, respectively) that: i) if π1 is a derivation in λN of

Γ ` M : B, then there is in λP a derivation π∗
1 of Γ;− ` Ψ(M) : B; and ii)

if π2 is a derivation in λN of Γ ` A : C, then, for all l such that λP derives

Γ; C ` l : B, there is in λP a derivation π∗
2 of Γ;− ` Ψ′(A, l) : B.

Case M = x: Then there is Γ′ such that π1 has the form

V ar
Γ′, x : B ` x : B

and Γ = Γ′, x : B. Since Ψ(M) = Ψ(x) = x, we want a derivation π∗
1 of

Γ′, x : B;− ` x : B. Take π∗
1 as one application of the V ar rule.

Case M = λx.M ′: Then there are π′
1, B1, B2 such that π1 has the form

π′
1···

Γ, x : B1 ` M ′ : B2
Intro ,

Γ ` λx.M ′ : B1 ⊃ B2

B = B1 ⊃ B2 and x /∈ Γ. Since Ψ(M) = Ψ(λx.M ′) = λx.Ψ(M ′), we want a

derivation π∗
1 of Γ;− ` λx.M ′ : B1 ⊃ B2. Take π∗

1 as

π+
1···

Γ, x : B1;− ` Ψ(M ′) : B2
Right

Γ;− ` λx.M ′ : B1 ⊃ B2

where π+
1 is given by IH1.

Case M = app(A): Then there is π′
2 such that π1 has the form

π2···
Γ ` A : B

App
Γ ` app(A) : B

Since Ψ(M) = Ψ(app(A)) = Ψ′(A, []) we want a derivation π∗
1 of Γ;− ` Ψ′(A, []) :

B. Now λP derives Γ; B ` [] : B and, hence, by IH2, there is a derivation π+
2 of

Γ;− ` Ψ′(A, []) : B. Take π∗
1 = π+

2 .
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Case A = xN : The there are π′
1, Γ

′, D such that π2 as the form

π′
1···

Γ′, x : D ⊃ C ` N : D
V Elim

Γ′, x : D ⊃ C ` xN : C

and Γ = Γ′, x : D ⊃ C. Let π3 be a derivation in λP of Γ; C ` l : B. Since

Ψ′(A, l) = Ψ′(xN, l) = x(ΨN · l), we want a derivation π∗
2 of Γ′, x : D ⊃ C;− `

x(ΨN · l) : B. Take π∗
2 as

π+
1···

Γ′, x : D ⊃ C;− ` ΨN : D

π3···
Γ; C ` l : B

Left
Γ′, x : D ⊃ C;− ` x(ΨN · l) : B

where π+
1 is given by IH1.

Case A = (λx.M)N : Then there are π′
1, π

′′
1 , D such that π2 has the form

π′
1···

Γ, x : D ` M : C

π′′
1···

Γ ` N : D
Redex

Γ ` (λx.M)N : C

and x /∈ Γ. Let π3 be a derivation in λP of Γ; C ` l : B. Since Ψ′(A, l) =

Ψ′((λx.M)N, l) = (λx.ΨM)(ΨN ·l), we want a derivation π∗
2 of Γ;− ` (λx.ΨM)(ΨN ·

l) : B. Take π∗
2 as

π+
1···

Γ, x : D;− ` Ψ(M) : C

π++
1···

Γ;− ` Ψ(N) : D

π3···
Γ; C ` l : B

KeyCut
Γ;− ` (λx.ΨM)(ΨN · l) : B

where π+
1 and π++

1 are given by IH1.

Case A = A′N : Then there are π′
1, π

′
2, D such that π2 has the form

π′
2···

Γ ` A′ : D ⊃ C

π′
1···

Γ ` N : D
AElim

Γ ` A′N : C
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Let π3 be a derivation in λP of Γ; C ` l : B. Since Ψ′(A, l) = Ψ′(A′N, l) =

Ψ′(A, ΨN :: l), we want a derivation π∗
2 of Γ;− ` Ψ′(A, ΨN :: l) : B. Observe

that

π+
1···

Γ;− ` ΨN : D

π3···
Γ; C ` l : B

Lft
Γ; D ⊃ C ` ΨN :: l : B

is a derivation in λP of Γ; D ⊃ C ` ΨN :: l : B, where π+
1 is given by IH1. Hence,

by IH2, there is a derivation π+
2 of Γ;− ` Ψ′(A, ΨN :: l) : B. Take π∗

2 = π+
2 . ¥

Proposition 23 (Correctness of Θ)

1. If λP derives Γ;− ` t : B then λN derives Γ ` Θt : B.

2. If λN derives Γ ` A : C and λP derives Γ; C ` l : B then λN derives

Γ ` Θ′(A, l) : B.

Proof: We prove by simultaneous induction on t and l (with induction hypotheses

referred to by IH1 and IH2, respectively) that i) if π1 is a derivation in λP of

Γ;− ` t : B, then there is in λN a derivation π∗
1 of Γ ` Θt : B; and ii) if π2 is a

derivation in λP of Γ; C ` l : B, then for all A such that λN derives Γ ` A : C,

there is in λN a derivation π∗
2 of Γ ` Θ′(A, l) : B.

Case l = []: Then B = C. Let π3 be a derivation of Γ ` A : C. Since

Θ′(A, l) = Θ′(A, []) = app(A), we want a derivation π∗
2 of Γ ` app(A) : B. Take

π∗
2 as

App

π2

...

Γ ` A : B

Γ ` app(A) : B
.

Case l = u′ :: l′: Then there are π′
1, π

′
2, C1, C2 such that π2 has the form
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Lft

π′
1
...

Γ;− ` u′ : C1

π′
2
...

Γ; C2 ` l′ : B

Γ; C1 ⊃ C2 ` u′ :: l′ : B

and C = C1 ⊃ C2. Let π3 be a derivation of Γ ` A : C1 ⊃ C2. Since Θ′(A, l) =

Θ′(A, u′ :: l′) = Θ′(AΘu′, l′), we want a derivation π∗
2 of Γ ` Θ′(AΘu′, l′) : B.

Observe that

AElim

π3

...

Γ ` A : C1 ⊃ C2

π+
1

...

Γ ` Θu′ : C1

Γ ` AΘu′ : C2

is a derivation in λN of Γ ` AΘu′ : C2, where π+
1 is given by IH1. Hence, by

IH2, there is a derivation π+
2 of Γ ` Θ′(AΘu′, l′) : B. Take π∗

2 = π+
2 .

Case t = x: Then there is Γ′ such that π1 has the form

V ar
Γ′, x : B;− ` x : B

and Γ = Γ′, x : B. Since Θt = Θ(x) = x, we want a derivation π∗
1 of Γ′, x : B `

x : B. Just take π∗
1 as an application of the V ar rule.

Case t = x(u · l): Then there are π′
1, π

′
2, Γ

′, D such that π has the form

Left

π′
1
...

Γ′, x : D ⊃ C;− ` u : D

π′
2
...

Γ′, x : D ⊃ C; C ` l : B

Γ′, x : D ⊃ C;− ` x(u · l) : B
.

and Γ = Γ′, x : D ⊃ C. Since Θt = Θ(x(u · l)) = Θ′(xΘu, l), we want a derivation

π∗
1 of Γ′, x : D ⊃ C ` Θ′(xΘu, l) : B. Observe that

V Elim

π+
1

...

Γ′, x : D ⊃ C ` Θu : D

Γ′, x : D ⊃ C ` xΘu : C
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is a derivation in λN of Γ′, x : D ⊃ C ` xΘu : C, where π+
1 is given by IH1. By

IH2, there is a derivation π+
2 of Γ′, x : D ⊃ C ` Θ′(xΘu, l) : B. Take π∗

1 = π+
2 .

Case t = λx.t′: Then there are π′
1, B1, B2 such that π1 has the form

Right

π′
1
...

Γ, x : B1;− ` t′ : B2

Γ;− ` λx.t′ : B1 ⊃ B2

and B = B1 ⊃ B2. Since Θt = Θ(λx.t′) = λx.Θt′, we want a derivation π∗
1 of

Γ ` λx.Θt′ : B1 ⊃ B2. Take π∗
1 as

Intro

π+
1

...

Γ, x : B1 ` Θt′ : B2

Γ ` λx.Θt′ : B1 ⊃ B2

where π+
1 is given by IH1.

Case t = (λx.t′)(u′ · l′): Then there are π′
1, π

′′
1 , π

′
2, D,E such that π1 has the

form

KeyCut

π′
1
...

Γ, x : D;− ` t′ : E

π′′
1
...

Γ;− ` u′ : D

π′
2
...

Γ; E ` l′ : B

Γ;− ` (λx.t′)(u′ · l′) : B

and x /∈ Γ. Since Θt = Θ((λx.t′)(u′cdotl′)) = Θ′((λx.Θt′)Θu′, l′), we want a

derivation π∗
1 of Γ ` Θ′((λx.Θt′)Θu′, l′) : B. Observe that

Redex

π+
1

...

Γ, x : D ` Θt′ : E

π++
1

...

Γ ` Θu′ : D

Γ ` (λx.Θt′)Θu′ : E

is a derivation in λN of Γ ` (λx.Θt′)Θu′ : E, where π+
1 and π++

1 are given by

IH1. Hence, by IH2, there is a derivation π+
2 of Γ ` Θ′((λx.Θt′)Θu′, l′) : B. Take

π∗
1 = π+

2 . ¥
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4.3 The isomorphism theorem

We prove that Ψ and Θ are mutually inverse. This establishes the isomor-

phism between λP and λN at the level of proofs. The method is taken from

[Dyckhoff and Pinto, 1998].

Proposition 24 Θ ◦ Ψ = id and Θ ◦ Ψ′ = Θ′.

Proof: We prove ΘΨM = M and ΘΨ′(A, l) = Θ′(A, l) by simultaneous induction

on M (respec. A) with induction hypothesis IH1 (respec. IH2).

Cases M = x and M = λx.M ′ are straightforward.

Case M = app(A):

ΘΨM = ΘΨ(app(A))

= ΘΨ′(A, [])

= Θ′(A, []), by IH2,

= app(A) .

Case A = xM :

ΘΨ′(A, l) = ΘΨ′(xM, l)

= Θ(x(ΨM · l))
= Θ′(x(ΘΨM), l)

= Θ′(xM, l), by IH1.

Case A = (λx.M)N :

ΘΨ′(A, l) = ΘΨ′((λx.M)N, l)

= Θ((λx.ΨM)(ΨN · l))
= Θ′((λx.ΘΨM)(ΘΨN), l)

= Θ′((λx.M)N, l), by IH1.
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Case A = A′M :

ΘΨ′(A, l) = ΘΨ′(A′M, l)

= ΘΨ′(A′, ΨM :: l)

= Θ′(A′, ΨM :: l), by IH2,

= Θ′(A′(ΘΨM), l)

= Θ′(A′M, l), by IH1,

= Θ′(A, l) .

¥

Proposition 25 Ψ ◦ Θ = id and Ψ ◦ Θ′ = Ψ′.

Proof: We prove ΨΘt = t and ΨΘ′(A, l) = Ψ′(A, l) by simultaneous induction

on t (respec. l) with induction hypothesis IH1 (respec. IH2).

Cases t = x and t = λx.t′ are straightforward.

Case t = x(u · l):

ΨΘt = ΨΘ(x(u · l))
= ΨΘ′(xΘu, l)

= Ψ′(xΘu, l), by IH2,

= x(ΨΘu · l)
= x(u · l), by IH1,

= t .

Case t = (λx.t′)(u · l):

ΨΘt = ΨΘ((λx.t′)(u · l))
= ΨΘ′((λx.Θt)Θu, l)

= Ψ′((λx.Θt)Θu, l), by IH2,
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= (λx.ΨΘt)(ΨΘu · l)
= (λx.t′)(u · l), by IH1,

= t .

Case l = []:

ΨΘ′(A, l) = ΨΘ′(A, [])

= Ψ(app(A))

= Ψ′(A, [])

= Ψ′(A, l) .

Case l = u :: l′:

ΨΘ′(A, l) = ΨΘ′(A, u :: l′)

= ΨΘ′(AΘu, l)

= Ψ′(AΘu, l), by IH2,

= Ψ′(A, ΨΘu :: l)

= Ψ′(A, u :: l), by IH1.

¥

Now we establish some preliminary properties that will be useful later in

proving the isomorphism between the normalisation procedures in λN and λP .

The first results relate insert and append in λP with @ in λN .

Lemma 40

1. insert(ΨN, l, ΨM) = Ψ′(M@N, l), for all M,N in λN and l in λP.

2. insert(u′, l′, Ψ′(A, l)) = Ψ′(A, append(l, u′ :: l′)), for all A in λN and u′, l, l′

in λP.
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Proof: By a simultaneous induction on M and A, with induction hypotheses

IH1 and IH2, respectively.

Case M = x.

insert(ΨN, l, ΨM) = insert(ΨN, l, Ψx)

= insert(ΨN, l, x)

= x(ΨN · l)
= Ψ′(xN, l)

= Ψ′(x@N, l)

= Ψ′(M@N, l) .

Case M = λx.M ′.

insert(ΨN, l, ΨM) = insert(ΨN, l, Ψ(λx.M ′))

= insert(ΨN, l, λx.ΨM ′)

= (λx.ΨM ′)(ΨN · l)
= Ψ′((λx.M ′)N, l)

= Ψ′((λx.M ′)@N, l)

= Ψ′(M@N, l) .

Case M = app(A).

insert(ΨN, l, ΨM) = insert(ΨN, l, Ψ(app(A)))

= insert(ΨN, l, Ψ′(A, [])))

= Ψ′(A, append([], ΨN :: l)), by IH2,

= Ψ′(A, ΨN :: l)

= Ψ′(AN, l)

= Ψ′(app(A)@N, l)

= Ψ′(M@N, l) .
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Case A = xM :

insert(u′, l′, Ψ′(A, l)) = insert(u′, l′, Ψ′(xM, l))

= insert(u′, l′, x(ΨM · l))
= x(ΨM · append(l, u′ :: l′))

= Ψ′(xM, append(l, u′ :: l′))

= Ψ′(A, append(l, u′ :: l′)) .

Case A = (λx.M)N :

insert(u′, l′, Ψ′(A, l)) = insert(u′, l′, Ψ′((λx.M)N, l))

= insert(u′, l′, (λx.ΨM)(ΨN · l))
= (λx.ΨM)(ΨN · append(l, u′ :: l′))

= Ψ′((λx.M)N, append(l, u′ :: l′))

= Ψ′(A, append(l, u′ :: l′)) .

Case A = A′M :

insert(u′, l′, Ψ′(A, l)) = insert(u′, l′, Ψ′(A′M, l))

= insert(u′, l′, Ψ′(A′, ΨM :: l))

= Ψ′(A′, append(ΨM :: l, u′ :: l′)), by IH2,

= Ψ′(A′, ΨM :: append(l, u′ :: l′))

= Ψ′(A′M,append(l, u′ :: l′))

= Ψ′(A, append(l, u′ :: l′)) .

¥

The following is an immediate consequence of part 2. of Lemma 40, when

l = []. Compare with equation Ψ(app(A)) = Ψ′(A, []), which belongs to the

definition of Ψ.
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Corollary 17 insert(u, l, Ψ(app(A))) = Ψ′(A, u :: l), for all A in λN and u, l

in λP.

Corollary 18

1. Θ(insert(u, l, t)) = Θ′(Θt@Θu, l), for all u, t, l in λP.

2. Θ′(A, append(l, u′ :: l′)) = Θ′(Θ′(A, l)@Θu′, l′), for all A in λN and u′, l, l′

in λP.

Proof: 1.

Θ(insert(u, l, t)) = Θ(insert(ΨΘu, ΨΘl, ΨΘt)), by Proposition 25,

= ΘΨ′(Θt@Θu, l), by Lemma 40,

= Θ′(Θt@Θu, l), by Proposition 24.

2.

Θ′(A, append(l, u′ :: l′)) = ΘΨ′(A, append(l, u′ :: l′)), by Proposition 24,

= Θ(insert(u′, l′, Ψ′(A, l))), by Lemma 40,

= Θ(insert(ΨΘu′, l′, ΨΘ′(A, l))), by Proposition 25,

= ΘΨ′(Θ′(A, l)@Θu′, l′), by Lemma 40,

= Θ′(Θ′(A, l)@Θu′, l′), by Proposition 24.

¥

Next results relate substitution in λN with the operator subst of λP .

Lemma 41

1. Ψ(M [N/x]) = subst(ΨN, x, ΨM), all M , N in λN .

2. subst(ΨN, x, Ψ′(A, l)) = Ψ′(A[N/x], subst(ΨN, x, l)), all N , A in λN , l in

λP.
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Proof: By simultaneous induction on M and A with induction hypothesis re-

ferred to as IH1 and IH2, respectively. Whenever convenient, we write s for

subst.

Cases M = x and M = λy.M ′ are straightforward.

Case M = app(A):

Ψ(M [N/x]) = Ψ(app(A)[N/x])

= Ψ(app(A[N/x])), by def. of [N/x],

= Ψ′(A[N/x], []), by def. of Ψ,

= Ψ′(A[N/x], subst(ΨN, x, [])), by def. of subst,

= subst(ΨN, x, Ψ′(A, [])), by IH2,

= subst(ΨN, x, Ψ(app(A))), by def. of Ψ,

= subst(ΨN, x, Ψ(M)) .

Case A = xM :

subst(ΨN, x, Ψ′(A, l))

= subst(ΨN, x, Ψ′(xM, l))

= subst(ΨN, x, x(ΨM · l)), by def. of Ψ,

= insert(subst(ΨN, x, ΨM), subst(ΨN, x, l), ΨN), by def. of subst,

= insert(Ψ(M [N/x]), subst(ΨN, x, l), ΨN), by IH1,

= Ψ′(N@M [N/x], subst(ΨN, x, l)), by Lemma 40,

= Ψ′((xM)[N/x], subst(ΨN, x, l)), by def. of [N/x],

= Ψ′(A[N/x], subst(ΨN, x, l)) .

Case A = (λy.M)M ′:

s(ΨN, x, Ψ′(A, l))

= s(ΨN, x, Ψ′((λy.M)M ′, l))

= s(ΨN, x, (λy.ΨM)(ΨM ′ · l)), by def. of Ψ,
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= (λy.s(ΨN, x, ΨM))(s(ΨN, x, ΨM ′) · s(ΨN, x, l))), by def. of subst,

= (λy.Ψ(M [N/x]))(Ψ(M ′[N/x]) · s(ΨN, x, l)), by IH1,

= Ψ′((λy.M [N/x])(M ′[N/x]), s(ΨN, x, l)), by def. of Ψ,

= Ψ′(((λy.M)M ′)[N/x], s(ΨN, x, l)), by def. of [N/x],

= Ψ′(A[N/x], s(ΨN, x, l)) .

Case A = A′M :

subst(ΨN, x, Ψ′(A, l))

= subst(ΨN, x, Ψ′(A′M, l))

= subst(ΨN, x, Ψ′(A′, ΨM :: l)), by def. of Ψ,

= Ψ′(A′[N/x], subst(ΨN, x, ΨM :: l)), by IH2,

= Ψ′(A′[N/x], subst(ΨN, x, ΨM) :: subst(ΨN, x, l))), by def. of subs,

= Ψ′(A′[N/x], Ψ(M [N/x]) :: subst(ΨN, x, l))), by IH1,

= Ψ′(A′[N/x]M [N/x], subst(ΨN, x, l))), by def. of Ψ,

= Ψ′((A′M)[N/x], subst(ΨN, x, l)), by def. of [N/x],

= Ψ′(A[N/x], subst(ΨN, x, l)) .

¥

Corollary 19

1. Θ(subst(v, x, t)) = Θt[Θv/x], all t, v in λP.

2. Θ′(A[Θu/x], subst(u, x, l)) = Θ′(A, l)[Θu/x], for all A in λN and u, l in

λP.

Proof: 1.

Θ(subst(v, x, t)) = Θ(subst(ΨΘv, x, ΨΘt)), by Proposition 25,

= ΘΨ(Θt[Θv/x]), by Lemma 41,

= Θt[Θv/x], by Proposition 24.
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2.

Θ′(A[Θu/x], subst(u, x, l))

= ΘΨ′(A[Θu/x], subst(ΨΘu, x, l)), by Propositions 24 and 25,

= Θ(subst(ΨΘu, x, Ψ′(A, l))), by Lemma 41,

= Θ(subst(ΨΘu, x, ΨΘ′(A, l))), by Proposition 25,

= Θ(Ψ(Θ′(A, l)[Θu/x])), by Lemma 41,

= Θ′(A, l)[Θu/x], by Proposition 24.

¥

Lemma 42 In λP, if l →βi l′, then Ψ′(A, l) →βi Ψ′(A, l′) (for all A in λN ,

i ∈ {1, 2}).

Proof: By induction on A.

Case A = xN . Ψ′(xN, l) = x(ΨN · l) →βi x(ΨN · l′) = Ψ′(xN, l′), where the

reduction step is by l →βi l′ and closure of →βi in λP under Left2.

Case A = (λx.M)N . Similarly, but by closure of →βi in λP under KeyCut3.

Case A = A′N . Ψ′(A′N, l) = Ψ′(A, ΨN :: l) →βi Ψ′(A, ΨN :: l′) = Ψ′(A′N, l′),

where the reduction step is by I.H., as l →βi l′ and →βi in λP is closed under

Lft2. ¥

Lemma 43 In λN , if A →βi A′, then Θ′(A, l) →βi Θ′(A′, l) (for all l in λP,

i ∈ {1, 2}).

Proof: By induction on l.

Case l = []. Θ′(A, []) = app(A) →βi app(A′) = Θ′(A′, []), where the reduction

step is by A →βi A′ and closure of →βi in λN under App.

Case l = u :: l′. Θ′(A, u :: l′) = Θ′(AΘu, l′) →βi Θ′(A′Θu, l′) = Θ′(A′, u :: l′),

where the reduction step is by I.H., as A →βi A′ and →βi in λN is closed under
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AElim1. ¥

The first half of the promised isomorphism of normalisation procedures is the

following

Theorem 4 Let i ∈ {1, 2}. If M →βi M ′ in λN then ΨM →βi ΨM ′ in λP.

Proof: We prove the claim and also that

if A →βi A′ in λN , then Ψ′(A, l) →βi Ψ′(A′, l) in λP , for all l in λP ,

by simultaneous induction on M →βi M ′ and A →βi A′. Cases correspond to

closure rules, according to Definition 9. We prove both cases i = 1, 2 at the same

time.

Case β1:

Ψ(app((λx.M)N)) = Ψ′((λx.M)N, []), by def. of Ψ,

= (λx.ΨM)(ΨN · []), by def. of Ψ,

→β1 subst(ΨN, x, ΨM)

= Ψ(M [N/x]), by Lemma 41.

Case β2:

Ψ′(((λx.M)N)N ′, l) = Ψ′(((λx.M)N), ΨN ′ :: l), by def. of Ψ,

= (λx.ΨM)(ΨN · (ΨN ′ :: l)), by def. of Ψ,

→β2 insert(ΨN ′, l, subst(ΨN, x, ΨM))

= insert(ΨN ′, l, Ψ(M [N/x])), by Lemma 41,

= Ψ′(M [N/x]@N ′, l), by Lemma 40.

Case Intro: Suppose Ψ(M) →βi Ψ(M ′) (IH1).



Chapter 4. Normalisation as cut-elimination 123

Ψ(λx.M) = λx.Ψ(M), by def. of Ψ,

→βi λx.Ψ(M ′) (*)

= Ψ(λx.M ′), by def. of Ψ,

where the reduction (*) step is by IH1 and closure of →βi in λP under Right.

Case App: Suppose Ψ′(A, l′) →βi Ψ′(A′, l′), all l′ (IH2).

Ψ(app(A)) = Ψ′(A, []), by def. of Ψ,

→βi Ψ′(A′, []), by IH2,

= Ψ(app(A′)), by def. of Ψ.

Case V Elim: Suppose ΨM →βi ΨM ′ (IH1).

Ψ′(xM, l) = x(ΨM · l), by def. of Ψ,

→βi x(ΨM ′ · l) (*)

= Ψ′(xM ′, l), by def. of Ψ,

where the reduction step (*) is by IH1 and closure of →βi in λP under Left1.

Case Redex1: Suppose ΨM →βi ΨM ′ (IH1).

Ψ′((λx.M)N, l) = (λx.ΨM)(ΨN · l), by def. of Ψ,

→βi (λx.ΨM ′)(ΨN · l) (*)

= Ψ′((λx.M ′)N, l), by def. of Ψ,

where the reduction step (*) is by IH1 and closure of →βi in λP under KeyCut1.

Case Redex2: Similarly, but by closure of →βi in λP under KeyCut2.

Case AElim1: Suppose Ψ(A, l′) →βi Ψ(A′, l′), all l′ (IH2).
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Ψ′(AM, l) = Ψ′(A, ΨM :: l), by def. of Ψ,

→βi Ψ′(A′, ΨM :: l), by IH2,

= Ψ′(A′M, l), by def. of Ψ.

Case AElim2: Suppose ΨM →βi ΨM ′ (IH1).

Ψ′(AM, l) = Ψ′(A, ΨM :: l), by def. of Ψ,

→βi Ψ′(A, ΨM ′ :: l) (*)

= Ψ′(AM ′, l), by def. of Ψ,

where the reduction step (*) is by Lemma 42, IH1 and closure of →βi in λP under

Lft1. ¥

The second half of the isomorphism is as follows.

Theorem 5 Let i ∈ {1, 2}. If t →βi t′ in λP then Θt →βi Θt′ in λN .

Proof: We prove the claim and also that

if l →βi l′ in λP , then Θ′(A, l) →βi Θ(A, l′) in λN , for all A in λN ,

by simultaneous induction on t →βi t′ and l →βi l′. Cases correspond to closure

rules, according to Definition 5. We prove both cases i = 1, 2 at the same time.

Case β1:

Θ((λx.t)(v · [])) = Θ′((λx.Θt)Θv, []), by def. of Θ,

= app((λx.Θt)Θv), by def. of Θ,

→β1 Θt[Θv/x]

= Θ(subst(v, x, t)), by Corollary 19.

Case β2:
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Θ((λx.t)(v · (u :: l))) = Θ′((λx.Θt)Θv, u :: l), by def. of Θ,

= Θ′(((λx.Θt)Θv)Θu, l), by def. of Θ,

→β2 Θ′((Θt[Θv/x])@Θu, l), by Lemma 43,

= Θ′(Θ(subst(v, x, t))@Θu, l), by Corollary 19,

= Θ(insert(u, l, subst(v, x, t))), by Corollary 18.

Case Left1: Suppose Θu →βi Θu′ (IH1).

Θ(x(u · l)) = Θ′(xΘu, l), by def. of Θ,

→βi Θ′(xΘu′, l) (*)

= Θ(x(u′ · l)), by def. of Θ,

where the reduction step (*) is by Lemma 43, IH1 and closure of →βi in λN
under V Elim.

Case Left2: Suppose Θ′(A, l) →βi Θ′(A, l′), all A (IH2).

Θ(x(u · l)) = Θ′(xΘu, l), by def. of Θ,

→βi Θ′(xΘu, l′), by IH2,

= Θ(x(u · l′)), by def. of Θ.

Case Right: Suppose Θt →βi Θt′ (IH1).

Θ(λx.t) = λx.Θt, by def. of Θ,

→βi λx.Θt′ (*)

= Θ(λx.t′), by def. of Θ,

where the reduction step (*) is by IH1 and closure of →βi in λN under Intro.

Case KeyCut1: Suppose Θt →βi Θt′ (IH1).
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Θ((λx.t)(u · l)) = Θ′((λx.Θt)Θu, l), by def. of Θ,

→βi Θ′((λx.Θt′)Θu, l) (*)

= Θ((λx.t′)(u :: l)), by def. of Θ,

where the reduction step (*) is by Lemma 43, IH1 and closure of →βi in λN
under Redex1.

Case KeyCut2: Similarly, but by closure of →βi in λN under Redex2.

Case KeyCut3 Suppose Θ′(A, l) →βi Θ′(A, l′), all A (IH2).

Θ((λx.t)(u · l)) = Θ′((λx.Θt)Θu, l), by def. of Θ,

→βi Θ′((λx.Θt)Θu, l′), by IH2,

= Θ((λx.t)(u · l′)), by def. of Θ.

Case Lft1: Suppose Θu →βi Θu′ (IH1).

Θ′(A, u :: l) = Θ′(AΘu, l), by def. of Θ,

→βi Θ′(AΘu′, l) (*)

= Θ′(A, u′ :: l), by def. of Θ,

where the reduction step (*) is by Lemma 43, IH1 and closure of →βi in λN
under AElim2.

Case Lft2: Suppose Θ′(A, l) →βi Θ′(A, l′), all A (IH2).

Θ′(A, u :: l) = Θ′(AΘu, l), by def. of Θ,

→βi Θ′(AΘu, l′), by IH2,

= Θ′(A, u :: l′), by def. of Θ.

¥
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Corollary 20 (Isomorphism) Let i ∈ {1, 2}.

1. M →βi M ′ in λN iff ΨM →βi ΨM ′ in λP.

2. t →βi t′ in λP iff Θt →βi Θt′ in λN .

Corollary 21 λP, λPh, λPhx and λPhx are confluent.

Proof: First, λP is confluent from Corollary 20 and confluence of λN . Then,

confluence of the other calculi follows from Corollaries 2, 6 and 10. ¥



Chapter 5

Gentzen versus Prawitz

In this chapter we continue the analysis of the relationship between cut-elimination

in the canonical fragment and normalisation. We recall two mappings of natu-

ral deduction into sequent calculus, one due to Gentzen and the other due to

Prawitz. We show that they both are isomorphisms, and that the isomorphic

image of λ by Prawitz’s mapping P is λP . Then, a comparison of mappings Ψ

and P as mappings for “turning the main branch upside down” suggests that the

advantage of λN over λ is that λN includes a built-in distinction between head

and tail applications. Finally, we study (an extension of) the inverse of P , named

Q. This mapping is the restriction to the canonical fragment of the good old ϕ.

5.1 Gentzen’s mapping

In the original paper where sequent calculus was introduced [Gentzen, 1935]1,

Gentzen proposed the well-known mapping of NJ derivations into sequent calcu-

lus derivations that, essentially, translates assumptions as axioms, introduction

rules as right rules and elimination rules as cuts plus left rules. For instance,

elimination of ⊃ becomes (ignoring contexts)

1The origin of natural deduction precedes Gentzen’s paper [Prawitz, 1965].

128
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... ` A ⊃ B

... ` A
Ax

..., B ` B
Left

..., A ⊃ B ` B
Cut

... ` B

Therefore, every elimination rule becomes a cut and, in general, normal proofs

are not mapped to cut-free derivations.

Let us call this translation G and let us restrict ourselves to implication. An

immediate observation is that, in a derivation in the range of G: (1) every instance

of the left rule is canonical. Actually, the active formula of the right premiss of

each left inference is main in an axiom. (2) the right cut formula of every cut

instance is main in such an instance of the left rule. These observations suggest

that Gentzen’s mapping may be written as the following mapping from λ into

λPh:

Gx = x

G(λx.M) = λx.GM

G(MN) = GM(GN · []) .

Application may be seen as a very particular kind of head-cut, namely a head-cut

in which the list of extra arguments is empty.

The origin of this mapping as a translation of logical systems guarantees its

correctness.

Proposition 26 (Correctness of G) If λ derives Γ ` M : A, then λPh derives

Γ;− ` G(M) : A.

Proof: By induction on M . The only interesting case is M = M0N0. Suppose λ

derives Γ ` M0N0 : A. Then λ derives Γ ` M0 : B ⊃ A and Γ ` N0 : B, for some

B. By induction hypothesis, there are derivations in λPh of Γ;− ` G(M0) : B ⊃
A and Γ;− ` G(N0) : B. These are combined with an application of the head-cut

rule:
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····
Γ;− ` G(M0) : B ⊃ A

····
Γ;− ` G(N0) : B

Ax
Γ; A ` [] : A

HeadCut
Γ;− ` G(M0)(G(N0) · []) : A

¥

As we may observe, there are no instances of the left rule in derivations of

Γ;− ` GM : A in λPh. They are “absorbed” in head-cuts. Actually, G maps

into the ::-free fragment of λPh, that is

t, u ::= x |λx.t | t(u · l)
l ::= []

In this fragment, lists are really residual. Let us write t(u · []) as t[u] 2, and

let us rewrite the previous grammar as

t, u ::= x |λx.t | t[u] .

This is very much like λ-calculus. Such impression is fully confirmed.

As to typing rules, in this fragment sequents have the form Γ;− ` t : A,

typing rules for variables and λ-abstraction are as usual, and t[u] is typed as an

application by the rule

Γ;− ` t : A ⊃ B Γ;− ` u : A

Γ;− ` t[u] : B

which should be seen as an abbreviation of the head-cut

Γ;− ` t : A ⊃ B Γ;− ` u : A
Ax

Γ; B ` [] : B
HeadCut

Γ;− ` t(u · []) : B

As to reduction, only rule β1 makes sense in this fragment, as both β2 and h

require ::. In the fragment, β1 reads

2Recall from the relation between λPhx and λ3 that t(u · []) may be seen as t(u :: []) anyway.
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(λx.t)[u] → subst(u, x, t) ,

where subst is the operator subst of λPh. Now, the calculation

subst(v, x, t[u]) = subst(v, x, t(u · []))
= subst(v, x, t)(subst(v, x, u) · subst(v, x, []))

= subst(v, x, t)(subst(v, x, u) · [])
= subst(v, x, t)[subst(v, x, u)]

shows two things. First, that the ::-free fragment is indeed a fragment of λPh

because it is closed for subst and β1. Second, that the restriction of subst to this

fragment behaves exactly as λ-calculus’ substitution (the calculation is enough

because the other cases in the definition of subst did not raise any doubt).

Therefore, the ::-free fragment of λPh is simply a rephrasing of λ, where ap-

plication is written t[u], substitution is written subst and sequents are written in

the form Γ;− ` t : A. Furthermore, Gentzen’s mapping G is trivially an isomor-

phism between λ and this fragment, because G is a mere rephrasing mapping.

This justifies the following terminology.

Definition 10 The ::-free fragment of λPh is denoted λG.

As a by-product, we get the following gentle addition to the theory of the rela-

tionship between cut-elimination and normalisation [Gentzen, 1935, Prawitz, 1965,

Zucker, 1974, Pottinger, 1977, Ungar, 1992]:

Theorem 6 Gentzen’s mapping G is an isomorphism from normalisation in λ

to cut-elimination in λG.
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5.2 Prawitz’s mapping

With the purpose of showing cut-elimination as a corollary of normalisation in

natural deduction, Prawitz proposed in [Prawitz, 1965] a mapping from normal

NJ proofs to cut-free derivations in a sequent calculus. Hence, Prawitz’s mapping

is an improvement over Gentzen’s translation w.r.t preservation of normality (see

also §6.3 in [Troelstra and Schwitchtenberg, 2000]). This optimisation makes use

of the structure of normal proofs, a structure which Prawitz had just uncovered.

The new mapping (call it P) translates again assumptions as axioms and

introductions as instances of the right rule. Now suppose our normal proof M

is an elimination. If we go upwards through the main branch [Prawitz, 1965] of

M , we visit the main premiss of successive elimination rules until we stop at an

assumption. Hence, M has the form (ignoring contexts)

V ar
..., x ` x : A1 ⊃ ... ⊃ Ak ⊃ B

····
... ` N1 : A1

Elim
..., x ` xN1 : A2 ⊃ ... ⊃ Ak ⊃ B······

..., x ` xN1...Nk−1 : Ak ⊃ B

····
... ` Nk : Ak

Elim
..., x ` xN1...Nk : B

for some k ≥ 1 (if k = 1, A2 ⊃ ... ⊃ Ak ⊃ B is just B). We now extract from

this proof two smaller proofs. The first is just

····
... ` N1 : A1

whereas the second is
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V ar
..., z1 ` z1 : A2 ⊃ ... ⊃ Ak ⊃ B

····
... ` N2 : A2

Elim
..., z1 ` z1N2 : A3 ⊃ ... ⊃ Ak ⊃ B······

..., z1 ` z1N2...Nk−1 : Ak ⊃ B

····
... ` Nk : Ak

Elim
..., z1 ` z1N2...Nk : B

where z1 is free in no Ni. In the case k = 1, this proof consists solely of the

assumption

V ar
..., z1 : B ` z1 : B

Now apply P to these two smaller proofs. If P is correct, we get two cut-

free derivations of sequents ... ` P(N1) : A1 and ..., z1 : A2 ⊃ ... ⊃ Ak ⊃ B `
P(z1N2...Nk) : B. Finally, conclude with an application of the left rule:

····
... ` P(N1) : A1

····
..., z1 : A2 ⊃ ... ⊃ Ak ⊃ B ` P(z1N2...Nk) : B

Left
..., x : A1 ⊃ A2 ⊃ ... ⊃ Ak ⊃ B ` P(xN1...Nk) : B

If we borrow from Chapter 2 the notation for proofs in a generic sequent

calculus, Prawitz’s mapping is defined by

P(x) = Ax(x)

P(λx.M) = R((x)P(M))

P(xN1...Nk) = L(x,P(N1), (z1)P(z1N2...Nk))

As an algorithm for performing the translation, this recursive definition is

rather inefficient because, each time we have to calculate P(MN), we need to

match MN with xN1...Nk, which means inspecting M without reusing previous
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inspections or saving information for subsequent calculations. Is there a defi-

nition of P with which we travel through a main branch xN1...Nk just once?

Another issue, like in the case of G, is whether the derivations in the range of

this translation are of a particular form. It turns out that these two questions

are related.

Let us go back to the derivation of

..., x : A1 ⊃ A2 ⊃ ... ⊃ Ak ⊃ B ` P(xN1...Nk) : B

and let us unfold the derivation of

..., z1 : A2 ⊃ ... ⊃ Ak ⊃ B ` P(z1N2...Nk) : B .

We obtain

····
... ` P(N1) : A1

····
... ` P(N2) : A2

····
... ` P(Nk) : Ak

Ax
..., zk : B ` P(zk) : B

Left
..., zk−1 : Ak ⊃ B ` P(zk−1Nk) : B

····
..., z2 : A3 ⊃ ... ⊃ Ak ⊃ B ` P(z2N3...Nk) : B

Left
..., z1 : A2 ⊃ ... ⊃ Ak ⊃ B ` P(z1N2...Nk) : B

Left
..., x : A1 ⊃ A2 ⊃ ... ⊃ Ak ⊃ B ` P(xN1...Nk) : B

Again, we may observe that each displayed left inference is canonical be-

cause each zi is fresh. Therefore, each Left occurrence, except the lower one,

is indeed a Lft-inference and corresponds to the :: constructor, and the right

subderivation may be represented by [P(N2), ...,P(Nk)]. As to the lower in-

ference, it corresponds to the constructor x(u · l). Hence, P(xN1N2...Nk) =

x(P(N1) · [P(N2), ...,P(Nk)]).

We would like to consider the range of P to be in λP instead of λPh because

in the latter x(u · l) is a cut and hence preservation of normality is lost. But

the decisive argument concerns the shape of the inevitable cuts in the range of P
when one translates non-normal proofs. In such generalised Prawitz’s mapping,

the translation of an application requires again a walk through the main premiss
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of successive instances of the elimination rule. However, such walk may now end

in the conclusion of an introduction rule. The new case in the definition of P is

then P((λx.M)N1N2...Nk). It is rather natural to define this to be the key cut

(λx.P(M))(P(N1) · [P(N2), ...,P(Nk)]. We do not need any other kind of cut in

the range of P .

Summing up, P is a mapping from λ to λP defined by the clauses

P(x) = x (5.1)

P(λx.M) = λx.P(M) (5.2)

P(xN1N2...Nk) = x(P(N1) · [P(N2), ...,P(Nk)]) (5.3)

P((λx.M)N1N2...Nk) = (λx.P(M))(P(N1) · [P(N2), ...,P(Nk)]) (5.4)

This definition is somewhat informal because of the implicit decomposition of

an application MN . What recursion is being used? What is, after all, P(MN)?

We will try to shed some light at the above questions by studying other mappings

from λ to λP that we met before.

Theorem 7 (λ-square) The following square commutes3:

λG ¾ G
λ

λP

( )−

?
¾ Ψ

λN

N
?

Proof: We prove Ψ(NM) = (GM)− by induction on M . Cases M = x and

M = λx.M0 are straightforward. Let M = M0N0. Then,

Ψ(NM) = Ψ(N (M0N0))

= Ψ(app(N (M0)@N (N0))), by def. of N ,

3An observation similar to this in spirit is due to Curien and Herbelin, and may be found if
one reads intuitionistically the second half of Proposition 2.3 of [Curien and Herbelin, 2000].
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= Ψ′(N (M0)@N (N0), []), by def. of Ψ,

= insert(Ψ(N (N0)), [], Ψ(N (M0))), by Lemma 40,

= insert((GN0)
−, [], (GM0)

−), by IH,

= (GM0(GN0 · []))−, by def. of ( )− and []− = [],

= (G(M0N0))
−, by def. of G,

= (GM)− .

¥

Let us clarify the situation after Theorem 7. Since G; ( )− is an isomorphism

(because it is the composition of two isomorphisms), we have

M →β N iff (GM)− → (GN)− . (5.5)

When restricted to the codomain of G, ( )− is bijective (because G; ( )− also is).

Moreover, by

GM →β1 GN iff M →β N

and (5.5), it is also an isomorphism of normalisation procedures. Therefore, in the

above square (which we refer to as the λ-square), the four vertices are isomorphic

systems.

From Theorem 7, the two compositions of arrows in the λ-square that lead

from λ to λP are one and the same mapping. Let us call this mapping the

diagonal of the λ-square. Now it comes the official definition of P .

Definition 11 (Prawitz’s mapping) Prawitz’s mapping P is the diagonal of

the λ-square.

That is, P(M) = (GM)− = Ψ(N (M)), for all M in λ. Let us see informally that

this definition agrees with definition given by clauses (5.1)-(5.4). As to variables

and λ-abstractions, the situation is clear. As to applications, the calculations
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Ψ(N (xN1N2...Nk)) = Ψ(app(xN (N1)N (N2)...N (Nk)))

= Ψ′(xN (N1)N (N2)...N (Nk), [])

= Ψ′(xN (N1), [Ψ(N (N2)), ..., Ψ(N (Nk))])

= x(Ψ(N (N1)) · [Ψ(N (N2)), ..., Ψ(N (Nk))])

and

(G((λx.M)N1N2...Nk))
−

= ((λx.GM)[GN1][GN2]...[GNk])
−

= insert((GNk)
−, [], ...insert((GN2)

−, [], insert((GN1)
−, [], λx.(GM)−))...)

= insert((GNk)
−, [], ...insert((GN2)

−, [], (λx.(GM)−)((GN1)
− · []))...)

= insert((GNk)
−, [], ...(λx.(GM)−)((GN1)

− · [(GN2)
−])...)

= (λx.(GM)−)((GN1)
− · [(GN2)

−, ..., (GNk)
−])

give enough evidence.

In the next result, one finds an answer to the question of what P(MN) is.

Proposition 27 Prawitz’s mapping is the unique mapping P : λ → λP such

that:

Px = x

P(λx.M) = λx.PM

P(MN) = insert(PN, [],PM)

Proof: Because ( )− ◦ G satisfies these equations. ¥

The clause for applications explains the difference between G and P . G(MN)

is simply the cut GM [GN ], whereas P requires, in addition, the complete left

permutation of this cut, performed by insert.
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Theorem 8 (Gentzen vs Prawitz) Prawitz’s translation of a proof is obtained

from Gentzen’s translation of the same proof by the complete left permutation of

every cut occurring in the latter.

Proof: Sum up the following facts: (1) P = ( )−◦G. (2) Mapping ( )− : λG → λP
is the restriction to λG of ( )− : λPh → λP . (3) The latter is the same as ↓h. (4)

In λPh, a term is a h-redex iff it is a left-permutable cut. ¥

Finally, because P is a composition of isomorphisms, the following holds:

Theorem 9 Prawitz’s mapping P is an isomorphism from normalisation in λ to

cut-elimination in λP.

5.3 The nature of λN
In terms of derivations, one of the effects of Prawitz’s mapping is to turn the

main branch upside down, so to speak. Here “main branch” may have its usual

sense in normal proofs, or a suitably generalised sense that even applies to non-

normal proofs. Observe how the uppermost instance of the elimination rule in

the main branch corresponds, in the translated derivation, to the lowest instance

of the left rule; and how the instance of the elimination rule just below the former

corresponds to the instance of the left rule just above the latter, and so on. This

effect can be described in terms of bracketing. The term (...((xN1)N2)...Nk),

which is bracketed to the left, is translated as x(PN1 · (PN2 :: ...(PNk :: [])...)),

which is bracketed to the right.

Mapping Ψ is another example of a translation into λP which maps applica-

tions in a similar way, by turning main branches upside down. We might say that

Ψ and P are based on the same idea, but that they differ because they translate

two different formulations of the λ-calculus, namely usual λ and λN . Our goal is,

by comparing the two mappings Ψ and P , to understand the difference between

the two formulations of the λ-calculus, and particularly what is the “nature” of

λN . Along the way, we exploit the relation between Ψ and P , as we did before

with the relation between P and G.
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The first thing we want to do is to give another definition of P , but one that

is close to the spirit of Ψ. With this purpose, we introduce a new inductive

definition of the λ-terms.

Definition 12 The sets T and Ap are defined by the following simultaneous in-

duction:

x ∈ T

M ∈ T

λx.M ∈ T

(M,N) ∈ Ap

MN ∈ T

N ∈ T

(x,N) ∈ Ap

M ∈ T N ∈ T

(λx.M,N) ∈ Ap

(M1,M2) ∈ Ap N ∈ T

(M1M2, N) ∈ Ap

Lemma 44 If M ∈ T and N ∈ T , then (M,N) ∈ Ap and hence MN ∈ T .

Proof: By a case analysis of M . Case M = x. Since N ∈ T , (x,N) ∈ Ap. Case

M = λx.M ′. Since M ∈ T , it follows M ′ ∈ T . From this and N ∈ T , it follows

(λx.M ′, N) ∈ Ap. Case M = M1M2. Since M ∈ T , it follows (M1,M2) ∈ Ap.

From this and N ∈ T , it follows (M1M2, N) ∈ Ap. ¥

Proposition 28 M ∈ T iff M is a λ-term.

Proof: “If”: By induction on a λ-term M . Case M = x. x ∈ T . Case M =

λx.M ′. By IH, M ′ ∈ T and, thus, λx.M ′ ∈ T . Case M = M ′N . By IH, M ′ ∈ T

and N ∈ T . By Lemma 44, M ′N ∈ T .

“Only if”: We prove that, for all M ∈ T , M is a λ-term, and that, for all

(M,N) ∈ Ap, both M and N are λ-terms, by simultaneous induction on M and

(M,N), with induction hypotheses IH1 and IH2, respectively.

Case M = x. x is a λ-term.

Case M = λx.M ′. By IH1, M ′ is a λ-term. Hence, λx.M ′ is a λ-term.

Case M = M ′N . Then (M ′, N) ∈ Ap. By IH2, both M ′ and N are λ-terms.

Hence, M ′N is a λ-term.

Case (M,N) = (x,N ′). On the one hand, x is a λ-term. On the other hand,

N ′ ∈ T . By IH1, N ′ is a λ-term.
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Case (M,N) = (λx.M ′, N ′). On the one hand, M ′ ∈ T and, by IH1, M ′ is a

λ-term. Hence λx.M ′ is a λ-term. On the other hand, N ′ ∈ T . By IH1, N ′ is a

λ-term.

Case (M,N) = (M ′M ′′, N ′). On the one hand, (M ′,M ′′) ∈ Ap and, by IH2,

both M ′ and M ′′ are λ-terms. Hence M ′M ′′ is a λ-term. On the other hand,

N ′ ∈ T . By IH1, N ′ is a λ-term. ¥

Corollary 22 (M,N) ∈ Ap iff M and N are λ-terms.

Proof:“Only if”: see the the “only if” part of the proof of last Proposition. “If”:

If M and N are λ-terms, then M and N are in T (by last Proposition) and

(M,N) ∈ Ap (by Lemma 44). ¥

The definition of N : λ → λN needs an adjustment, if one takes the new

definition of λ-terms. We define ( )n, where n is mnemonic for N .

Definition 13 The mapping ( )n : λ → λN is defined by:

xn = x

(λx.M)n = λx.Mn

(MN)n = app((M,N)n)

(x,N)n = xNn

(λx.M,N)n = (λx.Mn)Nn

(M1M2, N)n = (M1,M2)
nNn

Actually, this defines a mapping sending M ∈ T to some λN -term and another

mapping sending (M,N) ∈ Ap to some application A in λN .

Proposition 29 Mn = N (M) and (M,N)n = N (M)@N (N), for all M,N in

λ.
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Proof: By simultaneous induction on M and (M,N), with induction hypotheses

referred to by IH1 and IH2, respectively.

Cases M = x and M = λx.M0: straightforward.

Case M = M0N0:

Mn = (M0N0)
n

= app((M0, N0)
n), by def. of ( )n,

= app(N (M0)@N (N0)), by IH2,

= N (M0N0), by def. of N ,

= N (M) .

Case (M,N) = (x,N0):

(M,N)n = (x,N0)
n

= xNn
0 , by def. of ( )n,

= xN (N0), by IH1,

= x@N (N0), by def. of @,

= N (x)@N (N0), by def. of N ,

= N (M)@N (N) .

Case (M,N) = (λx.M0, N0). Similar.

Case (M,N) = (M1M2, N0):

(M,N)n = (M1M2, N0)
n

= (M1,M2)
nNn

0 , by def. of ( )n,

= (N (M1)@N (M2))N (N0), by IH1,IH2,

= app(N (M1)@N (M2))@N (N0), by def. of @,

= N (M1M2)@N (N0), by def. of N ,

= N (M)@N (N) .
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¥

Here is the promised new definition of P , with recursion according to the new

inductive definition of λ-terms.

Proposition 30 Prawitz’s mapping is the unique mapping P : λ → λP such

that:

Px = x

P(λx.M) = λx.PM

P(MN) = P ′(M,N, [])

P ′(x,N, l) = x(PN · l)
P ′(λx.M,N, l) = (λx.PM)(PN · l)
P ′(M1M2, N, l) = P ′(M1,M2,PN :: l)

Proof: P ′(M,N, l) is to be understood as P ′((M,N), l), with (M,N) ∈ Ap.

Recall that, by definition, PM is Ψ(N (M)), which is the same as Ψ(Mn), by

Proposition 29. In this proof we let P denote the mapping defined by the above

recursive definition. We prove PM = Ψ(Mn) and P ′(M,N, l) = Ψ′((M,N)n, l)

by simultaneous induction on M and (M,N), with induction hypotheses IH1 and

IH2, respectively.

Cases M = x and M = λx.M0: straightforward.

Case M = M0N0:

PM = P(M0N0)

= P ′(M0, N0, []), by def. of P ,

= Ψ′((M0, N0)
n, []), by IH2,

= Ψ(app(M0, N0)
n), by def. of Ψ,

= Ψ((M0N0)
n), by def. of ( )n,

= Ψ(Mn) .
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Case (M,N) = (x,N0):

P ′(M,N, l) = P ′(x,N0, l)

= x(PN0 · l), by def. of P ,

= x(Ψ(Nn
0 ) · l), by IH1,

= Ψ′(xNn
0 , l), by def. of Ψ,

= Ψ′((x,N0)
n, l), by def. of ( )n,

= Ψ′((M,N)n, l) .

Case (M,N) = (λx.M0, N0). Similar.

Case (M,N) = (M1M2, N0):

P ′(M,N, l) = P ′(M1M2, N0, l)

= P ′(M1,M2,PN0 :: l), by def. of P ,

= P ′(M1,M2, Ψ(N−
0 ) :: l), by IH1,

= Ψ′((M1,M2)
n, Ψ(N−

0 ) :: l), by IH2,

= Ψ′((M1,M2)
nNn

0 , l), by def. of Ψ,

= Ψ′(((M1M2), N0)
n, l), by def. of ( )n,

= Ψ′((M,N)n, l) .

¥

This proposition, which allows a comparison between P and Ψ, should be

contrasted with Proposition 27, which allowed a comparison between P and G.

The proposition also contains a new way of calculating P(MN).

We also need to adjust mapping | | : λN → λ to the new inductive definition

of the λ-terms. The new mapping is denoted ( )a, with a mnemonic for “absolute

value”.
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Definition 14 The mapping ( )a : λN → λ is defined by:

xa = x

(λx.M)a = λx.Ma

app(A)a = let (M,N) be Aa in MN

(xN)a = (x,Na)

((λx.M)N)a = (λx.Ma, Na)

(AN)a = let (M1,M2) be Aa in (M1M2, N
a)

Actually, this defines a mapping that sends a λN -term to some M ∈ T and

another mapping that sends each A in λN to a (M,N) ∈ Ap. Notice the use of

an informal “let” notation. We now see that this definition agrees with | |.

Proposition 31 For all M in λN , Ma = |M |. For all A in λN , let Aa =

(M,N) and |A| = M ′N ′. Then M = M ′ and N = N ′.

Proof: By simultaneous induction on M and A, with induction hypotheses re-

ferred to as IH1 and IH2, respectively.

Cases M = x and M = λx.M0: straightforward.

Case M = app(A). Let Aa = (M,N) and |A| = M ′N ′. By IH2, M = M ′ and

N = N ′. Hence, MN = M ′N ′. Then, Ma = app(A)a = MN = M ′N ′ = |A| =

|app(A)| = |M |.
Case A = xN0. Then, Aa = (x,Na

0 ) and |A| = x|N0|. On the one hand,

x = x. On the other hand, Na
0 = |N0|, by IH1.

Case A = (λx.M0)N0. Similar.

Case A = A0N0. Then, |A| = |A0||N0|. Let Aa
0 = (M1,M2). Then,

Aa = (M1M2, N
a
0 ). We want M1M2 = |A0| and Na

0 = |N0|. The latter fol-

lows by IH1. As to the former, let |A0| = M ′
1M

′
2. Then, by IH2, M1 = M ′

1 and

M2 = M ′
2. Then, M1M2 = M ′

1M
′
2 = |A0|. ¥

We now check that ( )n and ( )a are indeed mutually inverse.
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Proposition 32 Mna = M and (M,N)na = (M,N), all M and (M,N) in λ.

Proof: Two proofs are possible. The first is a direct proof, by simultaneous

induction on M and (M,N). The second, which we do next, uses the fact that

N and | | are mutually inverse.

Mna is |N (M)| by Propositions 29 and 31, and the latter is M by Proposition

21. As to the second assertion, let A = (M,N)n. By Proposition 29, A =

N (M)@N (N). Now, by Proposition 31, there are M ′ and N ′ such that Aa =

(M ′, N ′) and |A| = M ′N ′. On the other hand,

|A| = |N (M)@N (N)|
= |N (M)||N (N)|, by Lemma 37,

= MN , by Proposition 21.

Therefore, MN = |A| = M ′N ′ and thus M = M ′ and N = N ′. Finally,

(M,N)na = Aa = (M ′, N ′) = (M,N). ¥

Proposition 33 Man = M and Aan = A, all M and A in λN .

Proof: Again, two proofs are possible. The first is a direct proof, by simultaneous

induction on M and A. The second, which we do next, uses the fact that N and

| | are mutually inverse.

Man is N|M | by Propositions 29 and 31, and the latter is M by Proposition

20. As to the second assertion, by Proposition 31, there are M,N such that

Aa = (M,N) and |A| = MN . Hence, Aan = (M,N)n = N (M)@N (N), by

Proposition 29. On the other hand,

app(A) = N|A|, by Proposition 20

= N (MN)

= app(N (M)@N (N)), by def. of N .
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Hence, app(A) = app(N (M)@N (N)) and thus A = N (M)@N (N). Therefore,

both Aan and A are N (M)@N (N). Thus Aan = A. ¥

Definition 15 Mapping P−1 is denoted Q.

Hence Q = ( )a ◦ Θ. We will now prove an explicit definition of Q.

Proposition 34 The inverse of Prawitz’s mapping is the mapping Q : λP → λ

defined by:

Qx = x

Q(λx.t) = λx.Qt

Q(x(u · l)) = Q′(x,Qu, l)

Q((λx.t)(u · l)) = Q′(λx.Qt,Qu, l)

Q′(M,N, []) = MN

Q′(M,N, u :: l) = Q′(MN,Qu, l).

Proof: Again Q′(M,N, l) stands for Q′((M,N), l). In this proof we let Q denote

the mapping defined by the above recursive definition. We prove (Θt)a = Qt and

Θ′(A, l)a = let (M,N) be Aa in Q′(M,N, l) (5.6)

by simultaneous induction on t and l, with induction hypotheses referred to by

IH1 and IH2, respectively .

Cases t = x and t = λx.t0: straightforward.

Case t = x(u · l):

(Θt)a = Θ(x(u · l))a

= Θ′(xΘu, l)a, by def. of Θ,

= let (M,N) be (xΘu)a in Q′(M,N, l), by IH2,
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= let (M,N) be (x, (Θu)a) in Q′(M,N, l), by def. of ( )a,

= let (M,N) be (x,Qu) in Q′(M,N, l), by IH1,

= Q′(x,Qu, l)

= Q(x(u · l)), by def. of Q,

= Q(t) .

Case t = (λx.t0)(u · l): similar.

Case l = []:

Θ′(A, l)a = Θ′(A, [])a

= app(A)a, by def. of Θ,

= let (M,N) be Aa in Q′(M,N, []), by def. of ( )a,

= let (M,N) be Aa in Q′(M,N, l) .

Case l = u0 :: l0:

Θ′(A, l)a

= Θ′(A, u0 :: l0)
a

= Θ′(AΘu0, l0)
a, by def. of Θ,

= let (M,N) be (AΘu0)
a in Q′(M,N, l0), by IH2,

= let (M,N) be (let (M1,M2) be Aa in (M1M2, (Θu0)
a) in Q′(M,N, l0),

by def. of ( )a,

= let (M1,M2) be Aa in Q′(M1M2, (Θu0)
a, l0)

= let (M1,M2) be Aa in Q′(M1M2, Qu0, l0), by IH1,

= let (M1,M2) be Aa in Q′(M1,M2, u0 :: l0), by def. of Q,

= let (M1,M2) be Aa in Q′(M1,M2, l) .

¥
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It is revealing that mapping Q, as defined in Proposition 34, could have been

shown to be the inverse of P in the same way as we proved that Θ is the inverse

of Ψ. Indeed, one proves Q◦P = id and Q◦P ′ = Q′ by a simultaneous induction

similar to the one we find in the proof of Proposition 24; and one proves P◦Q = id

and P ◦ Q′ = P ′ by a simultaneous induction similar to the one we find in the

proof of Proposition 25. The parallel between P and Q, on the one hand, and

Ψ and Θ, on the other hand, is quite tight. We recapitulate the situation in the

following diagram:

λ

ª¡
¡

¡
¡

¡
P

¡
¡

¡
¡

¡

Q

µ

λP
@

@
@

@
@

Θ

R

I@
@

@
@

@
Ψ

λN

( )a

6

( )n

?

Let us look again at Definition 12, which allowed this parallel between P and

Ψ. Another presentation of the same inductive definition of the set of λ-terms is

T ::= x |λx.t | app(A)

A ::= (x, T ) | (λx.t, T ) | (app(A), N)
(5.7)

This may be obtained by unfolding T1 in

T ::= x |λx.t | app(A)

A ::= (T1, T2)

and this, in turn, is just the usual syntax of the λ-calculus

T ::= x |λx.t | app(T1, T2) .

Hence, every A in (5.7) and every Ap in Definition 12 may be seen as an appli-

cation with look ahead .
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As promised, the difference between (5.7) and λN

M,N ::= x |λx.t | app(A)

A ::= xN | (λx.M)N |AN

is best seen by comparing how P and Ψ translate V N1...Nk, where V is a variable

or a λ-abstraction and k ≥ 1. That is, we compare how they turn a main branch

“upside down”.

P calls P ′((M,Nk), []), for some M , and now a decision has to be taken as

to what to do with Nk. If k > 1, then M = M ′Nk−1, for some M ′, and Nk is,

so to speak, pushed on top of the second argument. The computation continues

with P ′((M ′, Nk−1),PNk :: []). If k = 1, then M = V and P ′ does not produce

another occurrence of constructor ::, instead it either returns x(u·l) or (λx.t)(u·l),
according to whether V is a variable or a λ-abstraction. Now, how does P make

up its mind? The constructor (M,Nk) per se does not tell anything. P ′ has to

check whether M is an application or some V , that is P ′ has to look ahead.

As to Ψ, the situation is different. Ψ′(A, []) is called, for some A. But now the

topmost constructor of A tells everything Ψ′ needs to decide the dilemma above.

If k > 1, A is of the form A′Nk and Ψ′ immediately knows (without checking

what A′ is) that this application is not a value application. The computation

resumes with Ψ′(A′, ΨNk :: []). If k = 1, then A is of the form xNk or (λx.M)Nk

and some x(u · l) or (λx.t)(u · l) is returned.

It seems that the dilemma P ′ and Ψ′ are faced with is whether the application

they have to translate is value or not. The true dilemma is slightly more general:

it is whether the application they have to translate is a head application or not

and the distinction between P and Ψ is that, while (M,N) does not tell P ′ this

information, A does tell Ψ′.

In order to see this, recall again the process of turning the main branch upside

down. The main branch contains k instances of the elimination rule. Each of these

instances, except the topmost one, corresponds, in the resulting derivation, to an

instance of Herbelin’s left rule (the Lft rule, or constructor ::). The topmost

one either corresponds to a Left inference (the constructor x(u · l)), when the

topmost formula of the main branch is an assumption, or corresponds to a cut
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(the constructor (λx.t)(u · l)), when the topmost formula is the conclusion of an

introduction (recall that in λPh, x(u · l) and (λx.t)(u · l) are particular cases of

head -cut t(u · l)). Therefore, the k instances of the elimination rule are not of

the same kind, from the point of view of sequent calculus. There is a distinction

between the topmost one, which we call the head instance (hence the terminology

head application), and the remaining instances, which we call tail instances (and

which correspond to tail applications).

The difference between λ and λN becomes conspicuous. In λN , the distinc-

tion between a head and a tail application is built-in and reflects the distinction

between the two kinds of constructors they correspond to in λP . This is the

nature of λN .

With this understanding of λN , we can re-interpret ( )n and ( )a. Observe

how (M,N)n is defined as a different kind of application (head or tail), according

to what kind of term M is. Conversely, Aa forgets the kind of application A is

and always returns a (M,N). Moreover, since P = Ψ ◦ ( )n, Prawitz’s mapping

can be implemented as a two-pass translation. The first goes through the proof

and classifies each instance of elimination as head or tail. The second turns main

branches upside down without looking ahead.

5.4 Mapping Q
In this section we define and establish the properties of a mapping Q from λPh

to λ that extends the inverse of P . This mapping Q is important for two main

reasons: (1) it embodies part of the computational interpretation of λPh (and, in

particular λP) in the style of Curien and Herbelin [Curien and Herbelin, 2000].

Indeed, when one reads λPh-terms as λ-terms, it is mapping Q that is being

applied. This will be seen in Chapter 7. (2) Q is nothing else but the traditional

assignment ϕ [Prawitz, 1965, Zucker, 1974] of natural deduction proofs (or λ-

terms) to sequent calculus, when sequent calculus is restricted to the canonical

fragment. This will be seen at the end of this section.

We also study the difference between λG and λP as subsystems of λPh, and,
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in particular, the difference between ( )− and f , the projections from λPh to λP
and λG, respectively. Of course, f is basically the same as Q.

Properties of Q : λP → λ

We start by proving some properties of Q (the inverse of P), namely how it

maps subst, insert and append of λP . Direct proofs could be provided from the

definition of Q contained in Proposition 34. Nevertheless, we will show how to

reuse similar properties of Θ proved before (Corollaries 18 and 19), having in

mind that Q is the composition of Θ with ( )a. In view of Propositions 29 and

31, we will freely shift between N and ( )n and between | | and ( )a.

We start by giving a more manageable characterisation of Q′(M,N, l) than

that of (5.6).

Lemma 45 Q′(M,N, l) = Θ′(Mn@Nn, l)a, for all M,N in λ, all l in λP.

Proof: Observe that

|Mn@Nn| = |Mn||Nn|, by Lemma 37,

= MnaNna

= MN .

Therefore, by Proposition 31,

(Mn@Nn)a = (M,N) , (5.8)

and

Θ′(Mn@Nn, l) = let (M0, N0) be (Mn@Nn)a in Q′(M0, N0, l), by (5.6),

= let (M0, N0) be (M,N) in Q′(M0, N0, l), by (5.8),

= Q′(M,N, l) .

¥
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Lemma 46

1. Q(insert(u, l, t)) = Q′(Qt,Qu, l), for all t, u, l in λP.

2. Q′(M,N, append(l, u′ :: l′)) = Q′(Q′(M,N, l), u′, l′), for all M,N in λ, all

u′, l, l′ in λP.

Proof: 1.

Q(insert(u, l, t)) = Θ(insert(u, l, t))a

= Θ′(Θt@Θu, l)a, by Corollary 18,

= Θ′((Θt)an@(Θu)an, l)a

= Θ′((Qt)n@(Qu)n, l)a

= Q′(Qt,Qu, l), by Lemma 45.

2.

Q′(M,N, append(l, u′ :: l′))

= Θ′(Mn@Nn, append(l, u′ :: l′))a, by Lemma 45,

= Θ′(Θ′(Mn@Nn, l)@Θu′, l′)a, by Corollary 18,

= Θ′(Θ′(Mn@Nn, l)an@(Θu′)an, l′)a

= Θ′(Q′(M,N, l)n@(Qu′)n, l′)a, by Lemma 45,

= Q′(Q′(M,N, l),Qu′, l′), by Lemma 45.

¥

Lemma 47

1. Q(subst(u, x, t)) = Q(t)[Q(u)/x], for all u, t in λP.
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2. Q′(M [Qu/x], N [Qu/x], subst(u, x, l)) = Q′(M,N, l)[Qu/x], for all M,N in

λ, all u, l in λP.

Proof: 1. Since Q is the composition of Θ and | |, it follows from Corollary 19

and Lemma 38.

2.

Q′(M [Qu/x], N [Qu/x], subst(u, x, l))

= Θ′(M [Qu/x]n@N [Qu/x]n, subst(u, x, l))a, by Lemma 45

= Θ′(Mn[Θu/x]@Nn[Θu/x], subst(u, x, l))a, by (*) below,

= Θ′((Mn@Nn)[Θu/x], subst(u, x, l))a, by (**) below,

= (Θ′(Mn@Nn, l)[Θu/x])a, by Corollary 19,

= Θ′(Mn@Nn, l)a[(Θu)a/x], by Lemma 38,

= Q′(M,N, l)[(Θu)a/x], by Lemma 45.

(*) For all M0 in λ,

(M0[Qu/x])n = (M0[(Θu)a/x])n

= Mn
0 [(Θu)an/x], by Corollary 14,

= Mn
0 [Θu/x] .

(**) For all M1,M2, N in λN , (M1@M2)[N/x] = M1[N/x]@M2[N/x]. This

follows by a straightforward case analysis of M1. ¥

Two subsystems of λPh

Observe the situation



Chapter 5. Gentzen versus Prawitz 154

λPh

I@
@

@
@

@

i

λG ¾ G
λ

ª¡
¡

¡
¡

¡
( )−

¼©©©©©©©©©©©©

P
λP

( )− =↓h

?

Calculi λG and λP are, respectively, Gentzen’s and Prawitz’s isomorphic copies

of λ as a sequent calculus. They are also subsystems of λPh. In the following we

explain the differences between the two copies of λ by explaining the differences

between them while subsystems of λPh.

Recall that terms in λPh are defined by

t, u, v ::= x |λx.t | t(u · l)
l ::= [] |u :: l

and that: (1) terms in λG are those of λPh where :: does not occur; (2) terms in

λP are those of λPh such that t in t(u · l) is always some x or some λx.t0. The

difference between the two syntaxes is best seen when one tries to write down

an applicative term. In λG this is done by means of iterated cuts: t[u1][u2]...[uk]

(recall that t[u] abbreviates t(u · [])). In λP , provided t itself is not an applicative

term and, therefore, is some value, the applicative term is written t(u1·[u2, ..., uk]).

In terms of λPh, the application to the first argument is always a cut, but then

there are two ways of expressing application to further arguments: either by

further cuts or by ::.

Mapping ( )− from λG to λP amounts to the unfolding of t[u1][u2]...[uk] as

t(u1 · [u2, ..., uk]). It is generalised by mapping ( )− from λPh to λP , which is

determined by the clause (t(u · l))− = insert(u−, l−, t−), and is the same as the

normal form mapping ↓h.
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Conversely, the inverse of ( )−, that goes from λP to λG and which we will

denote by ( )+, folds t(u1 · [u2, ..., uk]) as t[u1][u2]...[uk]. From Theorem 7 and

Q = P−1, the following is immediate.

Lemma 48 The inverse of ( )− : λG → λP is G ◦ Q.

Therefore, the two mappings from λP

λG ¾ G
λ

¡
¡

¡
¡

¡
( )+

µ

©©©©©©©©©©©©

Q

*

λP
are the same up to G, which, in turn, is simply a rephrasing of λ-terms with

syntax t ::= x|λx.t | t[t′]. Hence, having in mind the definition of Q, it is clear

that ( )+ is defined by

x+ = x

(λx.t)+ = λx.t+

(x(u · l))+ = (x, u+, l)+

(λx.t)(u · l))+ = (λx.t+, u+, l)+

(t1, t2, [])
+ = t1[t2]

(t1, t2, u :: l)+ = (t1[t2], u
+, l)+

where the ternary operator (t1, t2, l)
+ is defined for all t1, t2 in λG and l in λP .

Of course, a direct proof that this ( )+ is really G ◦ Q is possible. One proves

G−1(t+) = Qt , (5.9)

for all t in λP , and
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G−1((GM,GN, l)+) = Q′(M,N, l) , (5.10)

for all M,N in λ and l in λP , by simultaneous induction on t and l.

We propose next a mapping for folding cuts in λPh.

Definition 16 The mapping f : λPh → λG is defined by:

fx = x

f(λx.t) = λx.ft

f(t(u · l)) = f ′(ft, fu, l)

f ′(t1, t2, []) = t1[t2]

f ′(t1, t2, u :: l) = f ′(t1[t2], fu, l)

Observe that f ′(t1, t2, l) is defined for all t1, t2 in λG and l in λPh. Our goal now

is to show that f generalises ( )+, that is, ft = t+, for all t in λP . This will

follow from ft = (↓h (t))+, which we prove next. We start with a rephrasing of

part 1. of Lemma 46.

Corollary 23 (insert(u, l, t))+ = (t+, u+, l)+, all t, u, l in λP.

Proposition 35

1. ft = (↓h (t))+, for all t in λPh.

2. f ′(t, u, l) = (t, u, ↓h (l))+, for all t, u in λG and l in λPh.

Proof: By simultaneous induction on t and l, with induction hypotheses IH1 and

IH2, respectively . In this proof, we write ht and hl instead of ↓h (t) and ↓h (l).

Below, when we justify an equality with “h = ( )−”, we mean that we are using

the definition of ( )− : λPh → λP and the fact that the latter is the same as ↓h.

Cases t = x and t = λx.t0: straightforward.

Case t = t0(u0 · l0):
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ft = f(t0(u0 · l0))
= f ′(ft0, fu0, l0), by def. of f ,

= f ′((ht0)
+, (hu0)

+, l0), by IH1,

= ((ht0)
+, (hu0)

+, hl0)
+, by IH2,

= (insert(hu0, hl0, ht0))
+, by Corollary 23,

= (h(t0(u0 · l0)))+, as h = ( )−.

Case l = []:

f ′(t, u, l) = f ′(t, u, [])

= t[u], by def. of f ,

= (t, u, [])+, by def. of ( )+,

= (t, u, h[])+, as h = ( )−,

= (t, u, hl)+ .

Case l = u0 :: l0:

f ′(t, u, l) = f ′(t, u, u0 :: l0)

= f ′(t[u], fu0, l0), by def. of f ,

= (t[u], fu0, h(l0))
+, by IH2,

= (t[u], (hu0)
+, h(l0))

+, by IH1,

= (t, u, hu0 :: hl0)
+, by def. of ( )+,

= (t, u, h(u0 :: l0))
+, as h = ( )−,

= (t, u, hl)+ .

¥
Therefore, f is a projection, because it is the composition of a projection with an

isomorphism.
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Corollary 24 ft = t+, all t in λP.

Proof: Let t ∈ λP . Then ft = (↓h (t))+, by Proposition 35. But ↓h (t) = t,

because t ∈ λP and by Lemma 16. Hence ft = t+. ¥

Thus, f is an extension of ( )+ to λPh.

Corollary 25 ft = t, all t in λG.

Proof: Let t ∈ λG. For emphasis, let i(t) be t seen as a λPh term. Then

ft = (↓h (i(t)))+, by Proposition 35. But ↓h (i(t)) = t− (here ( )− is the mapping

with domain in λG) and, thus, ft = t−+ = t. ¥

It is also immediate that ↓h (t) = (ft)−, for all t in λPh.

Let us sum up in a diagram the situation regarding Gentzen’s and Prawitz’s

subsystems of λPh:

λPh

ª¡
¡

¡
¡

¡
↓h= ( )−

@
@

@
@

@

( )+ = f

R

λP
( )+

-¾
( )−

λG

The bridge between λP and λG is a pair of mutually inverse mappings ( )+

and ( )−. So to speak, the former performs folding whereas the latter performs

unfolding of cuts. The projection ↓h is an extension of the unfolding map, whereas

the projection f is an extension of the folding one. The fact that ft = t, for t in

λG, can be seen as saying that terms in λG are fully folded and, similarly, terms

in λG can be seen as fully unfolded.

However, the situation is absolutely asymmetric w.r.t cut elimination. Pro-

jection ( )− is the normal form mapping w.r.t. reduction rule h of λPh, that is,

λPh is internally conservative over λP . Moreover, h is necessary for the simula-

tion in λPh of cut elimination of λP . Therefore, unfolding (which is, of course,



Chapter 5. Gentzen versus Prawitz 159

another name for left permutation) is a part of cut elimination in both λP and

λPh. All this fails for folding. λPh is conservative, but not internally conser-

vative, over λG, and β-reduction in the latter is just β1-reduction in the former.

Hence, even if we added to λPh a reduction rule for folding (a suggestion is

t(u · (v :: l)) → t[u](v · l)), this rule would remain unnecessary for the simulation

of λG.

In the following chapter we will show that a similar asymmetry exists, in

the “natural deduction side”, between λ and λN , this time w.r.t. a suitably

generalised notion of normalisation.

Mapping Q : λPh → λ

Consider again the diagram

λPh

@
@

@
@

@

f

R

λG G−1
- λ

¡
¡

¡
¡

¡
( )+

µ

©©©©©©©©©©©©

Q0

*

λP

↓h= ( )−

?

For the moment, we denote by Q0 mapping Q : λP → λ. This is so because we

want to define a mapping Q : λPh → λ that will turn out to be an extension of

Q0. Q is just the following rephrasing of f

Qx = x

Q(λx.t) = λx.Qt

Q(t(u · l)) = Q′(Qt,Qu, l)

Q′(M1,M2, []) = M1M2
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Q′(M1,M2, u :: l) = Q′(M1M2,Qu, l)

That is, we have

Qt = G−1(f(t)) (5.11)

Q′(M,N, l) = G−1(f ′(GM,GN, l)) , (5.12)

for all M,N in λ, all t, l in λPh. Q′(M1,M2, l) is defined for all M1, M2 in λ (or,

equivalently, for all (M1,M2) ∈ Ap - recall Definition 12) and all l in λPh.

Lemma 49

1. Qt = Q0(↓h (t)), all t in λPh.

2. Q′(M,N, l) = Q′
0(M,N, ↓h (l)), all M,N in λ, all l in λPh.

Proof: 1.

Qt = G−1(f(t)), by (5.11),

= G−1(↓h (t)+), by Proposition 35,

= Q0(↓h (t)), by (5.9).

2.

Q′(M,N, l) = G−1(f ′(GM,GN, l)), by (5.12),

= G−1(GM,GN, ↓h (l))+, by Proposition 35,

= Q′
0(M,N, ↓h (l)), by (5.10).

¥

Since ↓h collapses →h steps (t →h t′ implies ↓h (t) =↓h (t′)), so does Q.

Moreover, Q is indeed an extension of Q0 because ↓h (t) = t and ↓h (l) = l when

t and l are in λP .

Let us see how Q interprets operators subst and append of λPh. We want to

“lift” Lemmas 46 and 47.
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Lemma 50 Q′(M,N, append(l, u′ :: l′)) = Q′(Q′(M,N, l),Qu′, l′), for all M,N

in λ, all u′, l′ in λPh.

Proof: From Lemmas 46, 17 and 49. ¥

Lemma 51

1. Q(subst(u, x, t)) = Q(t)[Q(u)/x], all u, t in λPh.

2. Q′(M [Qu/x], N [Qu/x], subst(u, x, l)) = Q′(M,N, l)[Qu/x], all M,N in λ,

all u, l in λPh.

Proof: From Lemmas 47, 18 and 49. ¥

The return of ϕ

Consider a generic term notation for sequent calculus, as the one employed in

Chapter 2. The traditional assignment of λ-terms to sequent calculus proofs is

defined by

ϕ(Ax(x)) = x (5.13)

ϕ(R((x)L)) = λx.ϕ(L) (5.14)

ϕ(L(x, L1, (y)L2) = ϕ(L2)[xϕ(L1)/y] (5.15)

ϕ(Cut(L1, (x)L2) = ϕ(L2)[ϕ(L1)/x] (5.16)

Consider a right-permuted cut Cut(L1, (x)L(x, L21, (y)L22)). The right cut

formula is main and linear. Hence, x /∈ L21, L22. This cut is mapped as follows:

ϕ(Cut(L1, (x)L(x, L21, (y)L22))

= ϕ(L(x, L21, (y)L22))[ϕ(L1)/x]

= ϕ(L22)[xϕ(L21)/y][ϕ(L1)/x]

= ϕ(L22)[ϕ(L1)ϕ(L21)/y], as x /∈ L21, L22.

(5.17)
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Now we are ready to restrict ϕ to λPh.

ϕ(x) = x

ϕ(λx.t) = λx.ϕ(t)

ϕ(t(u · l)) = ϕ(l, w)[ϕ(t)ϕ(u)/w], w fresh

ϕ([], w) = w

ϕ(u :: l, w) = ϕ(l, z)[wϕ(u)/z], z fresh

The clause for t(u · l) is in accordance with (5.17). Since formulas in the stoup

do not have a variable, we also have to pass a fresh variable when mapping a list

l, as in ϕ(l, w). The clauses for x and [] are as (5.13), the clause for :: as (5.15).

Proposition 36

1. Qt = ϕt, all t in λPh.

2. Q′(M,N, l) = ϕ(l, w)[MN/w], w fresh, all M,N in λ, all l in λPh.

Proof: By simultaneous induction on t and l, with induction hypotheses IH1

and IH2 . Cases t = x and t = λx.t0 are straightforward.

Case t = t0(u0 · l0).

Qt = Q(t0(u0 · l0))
= Q′(Q(t0),Q(u0), l0)

= ϕ(l, w)[Q(t0)Q(u0)/w], by IH2,

= ϕ(l, w)[ϕ(t0)ϕ(u0)/w], by IH1,

= ϕ(t0(u0 · l0))
= ϕt .
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Case l = [].

Q′(M,N, l) = Q′(M,N, [])

= MN

= w[MN/w]

= ϕ([], w)[MN/w]

= ϕ(l, w)[MN/w]

Case l = u0 :: l0.

Q′(M,N, l) = Q′(M,N, u0 :: l0)

= Q′(MN,Q(u0), l0)

= ϕ(l0, z)[(MN)Q(u0)/z], by IH2,

= ϕ(l0, z)[(MN)ϕ(u0)/z], by IH1

= ϕ(l0, z)[wϕ(u0)/z][MN/w], as w is fresh,

= ϕ(u0 :: l0, w)[MN/w]

= ϕ(l, w)[MN/w] .

¥



Chapter 6

Extensions of natural deduction

In this chapter, we construct systems of natural deduction that stand for λPh

and λPhx as λN stands for λP . The idea of built-in distinction between head

and tail elimination is the key ingredient to obtain the counterpart of λPh. Then,

we obtain the counterpart of λPhx by making substitution explicit.

We also discuss at length the logical status of explicit substitutions, having in

mind that they serve as counterpart to explicit right permutation of cuts.

Finally, we extract some conceptual and taxonomical consequences of the fact

that usual λ-calculus is in the intersection of two degenerate fragments, the ::-free

fragment of sequent calculus, and the tail-application-free fragment of extended

natural deduction.

6.1 Head and tail eliminations

In Section 5.3, by an analysis of Prawitz’s mapping, we observed that, from the

point of view of sequent calculus, not all instances of the elimination rule have the

same nature, and that indeed the distinction between head and tail applications

built in the syntax of λN (and which does not exist in λ) matched the distinction

in λP between a cut t(u · l) (more precisely, a left inference x(u · l) or a key-cut

(λx.t)(u · l)) and a Herbelin left inference :: . Moreover, recall that Ψ is an

isomorphism between βi in λN and λP , for i = 1, 2, whereas β-reduction in λ,

when rephrased by G, corresponds solely to β1-reduction in λPh. Therefore, λN

164
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also improves over λ in matching certain aspects of cut-elimination in λP and

λPh, namely left permutation of cuts. The natural challenge is then to define

an extension of λN that stands for this calculus as λPh stands for λP and,

in particular, that captures in the natural deduction “space” general head-cuts

t(u · l) and their complete left permutation.

Such calculus, named λNh, exists and produces in the natural deduction

“space of calculi” a perfect counterpart to the situation involving the calculi

λPh, λP and λG (recall Section 5.4), as illustrated in the following diagram.

λPh ¾ Ψ
λNh

I@
@

@
@

@

i
I@

@
@

@
@

ι

λG ¾ G
λ

ª¡
¡

¡
¡

¡

( )−
ª¡

¡
¡

¡
¡

N
λP

↓h

?
¾ Ψ

λN

↓h

?

(6.1)

The λNh-calculus

The λNh-calculus is defined in Table 6.1. Typing rules are in Table 6.2. Notice

again the separation between applicative terms app(A) and applications A ∈
Apps.

Corresponding to full head-cuts t(u · l) (in which t is not necessarily a variable

or λ-abstraction), we generalise applications of λN by

A ::= xN | (λx.M)N | app(A)N |AN ,

which will simply be defined as

A ::= MN |AN .
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Table 6.1: The λNh-calculus

(Terms) M,N ::= x |λx.M | app(A)

(Apps) A ::= MN |AN

(β1) app((λx.M)N) → M [N/x]

(β2) ((λx.M)N)N ′ → M [N/x]N ′

(h) app(A)N → AN

where

x[N/x] = N

y[N/x] = y, y 6= x

(λy.M)[N/x] = λy.M [N/x]

(app(A))[N/x] = app(A[N/x])

(M1M2)[N/x] = M1[N/x]M2[N/x]

(AM)[N/x] = A[N/x]M [N/x]
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Table 6.2: Typing rules for λNh

V ar
Γ, x : B ` x : B

Intro
Γ, x : B ` M : C

Γ ` λx.M : B ⊃ C
x /∈ Γ

App Γ ` A : B
Γ ` app(A) : B

HdElim Γ ` M : B ⊃ C Γ ` N : B
Γ ` MN : C

TailElim Γ ` A : B ⊃ C Γ ` N : B
Γ ` AN : C

An application of the form MN (resp. AN) is called a head (resp. tail) ap-

plication. The corresponding typing rules are named head and tail elimination,

respectively. It is clear that tail application corresponds to the constructor :: or,

in other terms, tail elimination correspond to Herbelin’s left rule. As to head

application, it subsumes the constructors xN and (λx.M)N of λN in the same

way as head-cut in λPh subsumes the constructors x(u · l) and (λx.t)(u · l) of λP .

In λNh we still have to split β in two cases but we no longer need @ in (β2)

(as we did in λN ). In addition to (β1) and (β2), we only require the simple

(h) app(A)N → AN ,

which will play the role of counterpart to complete left permutation of cuts. A

h-redex is an head application that is not a value application.

Definition 17 (Compatible closure) Given a pair R of binary relations, the

first on Terms and the second on Apps, the compatible closure →R is the least

pair of relations →, the first on Terms and containing the first relation of R, the

second on Apps and containing the second relation of R, closed under:
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Intro M → M ′
λx.M → λx.M ′ App A → A′

app(A) → app(A′)

HdElim1 M → M ′
MN → M ′N

HdElim2 N → N ′
MN → MN ′

TailElim1 A → A′
AN → A′N

TailElim2 N → N ′
AN → AN ′

For instance, for defining →β, take R = (β1, β2) in Definition 17. That is, in

λNh we also set (as we did in λN )

β = (β1, β2) .

One can again define →β1 (resp. →β2) by taking R = (β1, ∅) (resp. R = (∅, β2)),

or define →h by taking R = (∅, h).

There is an injection ι between λ and λNh that simply sends MN in λ to

app(MN) in λNh.

ιx = x

ι(λx.M) = λx.ιM

ι(MN) = app(ι(M)ι(N))

It is immediately seen to be correct.

Proposition 37 If Γ ` M : B in λ, then Γ ` ι(M) : B.

Proof: By induction on M . Only case M = M0N0 matters. Suppose λ derives

Γ ` M0N0 : B. Then λ derives Γ ` M0 : C ⊃ B and Γ ` N0 : C, for some C.

By induction hypothesis, there are derivations in λNh of Γ ` ι(M0) : C ⊃ B and

Γ ` ι(N0) : C. Conclude with

····
Γ ` ι(M0) : C ⊃ B

····
Γ ` ι(N0) : C

HdElim
Γ ` ι(M0)ι(N0) : B

App
Γ ` app(ι(M0)ι(N0)) : B
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¥

Now a situation very similar to that of mapping G : λ → λPh is now observed

in mapping ι : λ → λNh. The range of ι is the tail-application-free fragment of

λNh, which is

M,N ::= x |λx.M | app(A)

A ::= MN

or, equivalently,

M,N ::= x |λx.M | app(MN) .

This is very much like λ-calculus, but with application written app(MN). Actu-

ally, this constructor is typed by

Γ ` M : C ⊃ B Γ ` N : C

Γ ` app(MN) : B

which should be seen as an abbreviation of

Γ ` M : C ⊃ B Γ ` N : C
HdElim

Γ ` MN : B
App

Γ ` app(MN) : B

As to reduction, only rule β1

app((λx.M)N) → M [N/x]

makes sense in this fragment, as both β2 and h require tail elimination. Now,

the calculation

(app(M ′N ′))[N/x] = app((M ′N ′)[N/x])

= app(M ′[N/x]N ′[N/x])
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shows two things. First, that the tail-application-free fragment is indeed a frag-

ment of of λNh because it is closed for substitution and β1. Second, that the

restriction of substitution of λNh to this fragment behaves exactly as λ-calculus’

substitution.

Therefore, the tail-application-free fragment of λNh is simply a rephrasing

of λ, where application is written app(MN). Furthermore, mapping ι is triv-

ially an isomorphism between λ and this fragment. This justifies the following

terminology.

Definition 18 The tail-application-free fragment of λNh is denoted λι.

For simplicity, in the remainder of this section we will not separate λ and

λι and, therefore, we will regard λ as being the tail-application-free fragment of

λNh. We will come back to λι in the next section.

There is a simple mapping ( )− from λNh to λN , defined in Table 6.3. The

idea is an adaptation of mapping N from λ to λN . When mapping a head

application MN (where M may be some app(A′)) down to some A in λN , we

make use of operator @ for assuring that the head application of A is a value

application. The following is simple.

Proposition 38 N (M) = (ι(M))−, for all M in λ.

Indeed, mapping from λ to λN , being inductively determined by the clause

N (MN) = app(N (M)@N (N)), is the composition of ι, that sends each MN

to app(ι(M)ι(N)), with the mapping from λNh to λN inductively determined

by (MN)− = M−@N−.

One sees at once that, in λNh, →h is terminating and weakly confluent.

Therefore, →h is confluent. It is also easy to see that ( )− from λNh to λN is

nothing but the normal form mapping ↓h w.r.t. h in λNh.

Proposition 39 M− =↓h (M), all M in λNh.

Proof: One proves by simultaneous induction on M and A that M →∗
h M− and

M− is h-normal, and that A →∗
h A− and A− is h-normal, for all M and A in λNh.
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x− = x

(λx.M)− = λx.M−

app(A)− = app(A−)

(MN)− = M−@N−

(AN)− = A−N−

Table 6.3: From λNh to λN

All cases are straightforward, the only interesting one being A = app(A0)M0.

Then, A− = app(A−
0 )@M−

0 = A−
0 M−

0 . By the induction hypotheses, both A−
0 and

M−
0 are h-normal and, since a tail application cannot be a h-redex, A− itself can-

not be a h-redex. Therefore A− is h-normal. Moreover A = app(A0)M0 →h A0M0

and now, by the induction hypotheses, A0M0 →∗
h A−

0 M−
0 = A−. ¥

Mappings Ψ and Θ are naturally extended to λNh and λPh by

Ψ′(MN, l) = ΨM(ΨN · l)
and

Θ(t(u · l)) = Θ′(ΘtΘu, l) .

This definition is coherent with the former definition of Ψ′(xN, l) and Ψ′((λx.M)N, l),

on the one hand, and with the former definition of Θ′(x(u·l)) and Θ′((λx.t))(u·l)),
on the other hand. Therefore, the following is immediate.

Proposition 40 If i denotes both the inclusion of λN in λNh and of λP in

λPh, then Ψ(i(M)) = i(ΨM) and Θ(i(t)) = i(Θt), for all M in λN and t in λP.

Proposition 41 (Correctness of Ψ)



Chapter 6. Extensions of natural deduction 172

1. If λNh derives Γ ` M : B then λPh derives Γ;− ` Ψ(M) : B.

2. If λNh derives Γ ` A : C and λPh derives Γ; C ` l : B then λPh derives

Γ;− ` Ψ′(A, l) : B.

Proof: By the same simultaneous induction as in the proof of Proposition 22.

Instead of cases A = xN and A = (λx.M)N , one has

Case A = MN . Then there are π′
1, π

′′
1 , D such that π2 has the form

π′
1···

Γ ` M : D ⊃ C

π′′
1···

Γ ` N : D
HdElim

Γ ` MN : C

Let π3 be a derivation in λPh of Γ; C ` l : B. Since Ψ′(A, l) = Ψ′(MN, l) =

ΨM(ΨN · l), we want a derivation π∗
2 of Γ;− ` ΨM(ΨN · l) : B. Take π∗

2 as

π+
1···

Γ;− ` Ψ(M) : D ⊃ C

π++
1···

Γ;− ` Ψ(N) : D

π3···
Γ; C ` l : B

HeadCut
Γ;− ` ΨM(ΨN · l) : B

where π+
1 and π++

1 are given by IH1. ¥

Proposition 42 (Correctness of Θ)

1. If λPh derives Γ;− ` t : B then λNh derives Γ ` Θt : B.

2. If λNh derives Γ ` A : C and λPh derives Γ; C ` l : B then λNh derives

Γ ` Θ′(A, l) : B.

Proof: By the same simultaneous induction as in the proof of Proposition 23.

Instead of case t = x(u · l) and t = (λx.t′)(u′ · l′), one has

Case t = t′(u′ · l′). Then there are π′
1, π

′′
1 , π

′
2, D,E such that π1 has the form
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HeadCut

π′
1
...

Γ;− ` t′ : D ⊃ E

π′′
1
...

Γ;− ` u′ : D

π′
2
...

Γ; E ` l′ : B

Γ;− ` t′(u′ · l′) : B

Since Θt = Θ(t′(u′ · l′)) = Θ′(Θt′Θu′, l′), we want a derivation π∗
1 of Γ `

Θ′(Θt′Θu′, l′) : B. Observe that

HdElim

π+
1

...

Γ ` Θt′ : D ⊃ E

π++
1

...

Γ ` Θu′ : D

Γ ` Θt′Θu′ : E

is a derivation in λNh of Γ ` Θt′Θu′ : E, where π+
1 and π++

1 are given by IH1.

Hence, by IH2, there is a derivation π+
2 of Γ ` Θ′(Θt′Θu′, l′) : B. Take π∗

1 = π+
2 . ¥

Now, Ψ keeps transforming applications into head-cuts by turning them “up-

side down”. In particular, if the application consists of a single head application,

like app(MN), the result is a head-cut with a single argument, namely ΨM [ΨN ],

as witnessed by the calculation Ψ(app(MN)) = Ψ′(MN, []) = ΨM(ΨN :: []) =

ΨM [ΨN ]. But this is how G would have translated the application MN in λ.

Having in mind that λ may be embedded into λNh, this means that Ψ is coherent

with G. This is expressed in the following proposition.

Proposition 43 Ψ(ι(M)) = G(M), for all M in λ.

Proof: By induction on M . The only interesting case is M = M0N0. On the

one hand, GM = GM0[GN0]. On the other hand,

Ψ(ι(M)) = Ψ(app(ι(M0)ι(N0)), by def. of ι,

= Ψ(ι(M0))[Ψ(ι(N0))], by the discussion above,

= GM0[GN0], by IH.
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¥

Thus mapping Ψ : λNh → λPh generalises both G : λ → λG and Ψ : λN → λP .

Having in mind that the latter may be seen as Prawitz’s mapping, when this is

defined in λN and not in λ, mapping Ψ from λNh to λPh is coherent with both

Gentzen’s and Prawitz’s way of mapping natural deduction to sequent calculus:

(1) with the former because a head elimination (all eliminations in λ are head) is

mapped to a head-cut (and head-cuts is what left inferences and key cuts of λP
are in λPh). (2) with the latter because tail eliminations are mapped to Herbelin

left inferences (in accordance to Prawitz) and this necessarily agrees with Gentzen

because Gentzen does not map tail eliminations.

Given that Ψ generalises G, the following theorem generalises Theorem 7 and

gives another commutative square in diagram (6.1), if one bears in mind that

( )− =↓h.

Theorem 10 Ψ(M−) = (ΨM)−, for all M in λNh.

Proof: We prove the claim together with the claim that Ψ′(A−, l−) = (Ψ′(A, l))−,

for all A in λNh, by simultaneous induction on M and A, with induction hy-

potheses IH1 and IH2 respectively. The cases M = x and M = λx.M0 are

straightforward.

Case M = app(A).

Ψ(M−) = Ψ((app(A))−)

= Ψ(app(A−)), by def. of ( )−,

= Ψ′(A−, []), by def. of Ψ,

= (Ψ′(A, []))−, by IH2 and []− = [],

= (Ψ(app(A)))−, by def. of Ψ,

= (ΨM)− .

Case A = MN .
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Ψ′(A−, l−) = Ψ′((MN)−, l−)

= Ψ′(M−@N−, l−), by def. of ( )−,

= insert(Ψ(N−), l−, Ψ(M−)), by Lemma 40,

= insert((ΨN)−, l−, (ΨM)−), by IH1,

= (ΨM(ΨN :: l))−, by def. of ( )−,

= (Ψ′(MN, l))−, by def. of Ψ,

= (Ψ′(A, l))− .

Case A = A0N0.

Ψ′(A−, l−) = Ψ′((A0N0)
−, l−)

= Ψ′(A−
0 N−

0 , l−), by def. of ( )−,

= Ψ′(A−
0 , ΨN−

0 :: l−), by def. of Ψ,

= Ψ′(A−
0 , (ΨN0)

− :: l−), by IH1,

= Ψ′(A−
0 , (ΨN0 :: l)−), by def. of ( )−,

= (Ψ′(A0, ΨN0 :: l))−, by IH2,

= (Ψ′(A0N0, l))
−, by def. of Ψ,

= (Ψ′(A, l))− .

¥

Now we get correctness of ( )− : λNh → λN as a corollary of correctness of

( )− : λPh → λP

Corollary 26 If λNh derives Γ ` M : A, then λN derives Γ ` M− : A.

Proof:

λNh derives Γ ` M : A
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implies that λPh derives Γ;− ` ΨM : A, by Proposition 41,

implies that λP derives Γ;− ` (ΨM)− : A, by Proposition 4,

implies that λP derives Γ;− ` Ψ(M−) : A, by Theorem 10,

implies that λN derives Γ ` ΘΨ(M−) : A, by Proposition 23,

implies that λN derives Γ ` M− : A, by Proposition 24.

¥

Another isomorphism

We move to the proof of λPh ∼= λNh, a generalisation of both the trivial λG ∼= λ

and of λP ∼= λN .

Proposition 44 Θ ◦ Ψ = id and Θ ◦ Ψ′ = Θ′.

Proof: The proof is exactly as the proof of Proposition 24. We just do the new

case.

Case A = MN :

ΘΨ′(A, l) = ΘΨ′(MN, l)

= Θ(ΨM(ΨN · l))
= Θ′((ΘΨM)(ΘΨN), l)

= Θ′(MN, l), by IH1,

= Θ′(A, l) .

¥

Proposition 45 Ψ ◦ Θ = id and Ψ ◦ Θ′ = Ψ′.

Proof: The proof is exactly as the proof of Proposition 25. We just do the new

case.
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Case t = t0(u0 · l0):

ΨΘt = ΨΘ(t0(u0 · l0))
= ΨΘ′((Θt0Θu0), l0)

= Ψ′((Θt0Θu0), l0), by IH2,

= ΨΘt0(ΨΘu0 · l0))
= t0(u0 · l0), by IH1

= t .

¥

Lemma 52

1. Ψ(M [N/x]) = subst(ΨN, x, ΨM), all M , N in λNh.

2. Ψ′(A[N/x], subst(ΨN, x, l)) = subst(ΨN, x, Ψ′(A, l)), all A,N in λNh and

all l in λPh.

Proof: By the same simultaneous induction as in the proof of Lemma 41. All the

cases stay unchanged, except that instead of cases A = xM and A = (λy.M)M ′,

we have case A = M0N0. Then, writing s for subst,

s(ΨN, x, Ψ′(A, l))

= s(ΨN, x, Ψ′(M0N0, l))

= s(ΨN, x, ΨM0(ΨN0 · l)), by def. of Ψ,

= s(ΨN, x, ΨM0)(s(ΨN, x, ΨN0) · s(ΨN, x, l)), by def. of subst,

= Ψ(M0[N/x])(Ψ(N0[N/x] · s(ΨN, x, l))), by IH1,

= Ψ′(M0[N/x]N0[N/x], s(ΨN, x, l)), by def. of Ψ,

= Ψ′((M0N0)[N/x], s(ΨN, x, l)), by def. of [N/x],

= Ψ′(A[N/x], s(ΨN, x, l)) .
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¥

It turns out that the proof of this lemma becomes considerably simpler than the

proof of Lemma 41 because substitution in λNh does not call the operator @ and

similarly subst in λPh does not call the operator insert.

Corollary 27

1. Θ(subst(v, x, t)) = Θt[Θv/x], for all v, t in λPh.

2. Θ′(A[Θu/x], subst(u, x, t)) = Θ′(A, l)[Θu/x], for all A in λNh, all u, t in

λPh.

Proof: It follows from Lemma 52 and Propositions 45 and 44 in the same way

as Corollary 19 follows from Lemma 41 and Propositions 25 and 24. ¥

The following lemma and corollary may be seen as an adaptation to λPh and

λNh of part 2. of Lemma 40 and of Corollary 17, respectively.

Lemma 53 Ψ′(A, l)(u′ · l′) →h Ψ′(A, append(l, u′ :: l′)), for all A in λNh, all

u′, l, l′ in λPh.

Proof: By induction on A.

Case A = MN .

Ψ′(A, l)(u′ :: l′) = Ψ′(MN, l)(u′ · l′)
= (ΨM(ΨN · l))(u′ · l′), by def. of Ψ,

→h ΨM(ΨN · append(l, u′ :: l′))

= Ψ′(MN, append(l, u′ :: l′), by def. of Ψ,

= Ψ′(A, append(l, u′ :: l′) .

Case A = A′N ′.
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Ψ′(A, l)(u′ :: l′) = Ψ′(A′N ′, l)(u′ :: l′)

= Ψ′(A′, ΨN ′ :: l)(u′ :: l′), by def. of Ψ,

→h Ψ′(A′, append(ΨN ′ :: l, u′ :: l′)), by IH,

= Ψ′(A′, ΨN ′ :: append(l, u′ :: l′)), by def. of append,

= Ψ′(A′N ′, append(l, u′ :: l′), by def. of Ψ,

= Ψ′(A, append(l, u′ :: l′) .

¥

Corollary 28 Ψ(app(A))(u · l) →h Ψ′(A, u :: l), for all A in λNh, all u, l in

λPh.

Proof: Immediate from Lemma 53, when l = []. ¥

The following two lemmas are generalisations of Lemmas 42 and 43. Observe

that in these lemmas what matters is not the notion of reduction R, but instead

the definition of Ψ and Θ and the closure rules with which →R is defined.

Lemma 54 In λPh, if l →R l′, then Ψ′(A, l) →R Ψ′(A, l′) (for all A in λNh,

R ∈ {β1, β2, h}).

Proof: By an induction on A similar to that of Lemma 42. Case A = A′N is as

before, because →R in λPh is also closed under Lft2.

Case A = MN . Ψ′(MN, l) = ΨM(ΨN · l) →R ΨM(ΨN · l′) = Ψ′(MN, l),

where the reduction step is by l →R l′ and closure of →R in λPh under HdCut3.

¥

Lemma 55 In λNh, if A →R A′, then Θ′(A, l) →R Θ′(A′, l) (for all l in λPh,

R ∈ {β1, β2, h}).
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Proof: Identical to the proof of Lemma 43. ¥

There are two ways of understanding next lemma. The first is by observing

that the LHS and RHS, so to speak, of the h-step it claims are exactly the images

under Θ of the LHS and RHS, respectively, of the h-step proved in Lemma 53.

Then second is as an adaptation to λNh of part 2. of Corollary 18.

Lemma 56 Θ′(Θ′(A, l)Θu′, l′) →h Θ′(A, append(l, u′ :: l′)), for all A in λNh,

all u′, l, l′ in λPh.

Proof: By induction on l.

Case l = [].

Θ′(Θ′(A, l)Θu′, l′) = Θ′(Θ′(A, [])Θu′, l′)

= Θ′(app(A)Θu′, l′), by def. of Θ,

→h Θ′(AΘu′, l′), by Lemma 55,

= Θ′(A, u′ :: l′), by def. of Θ,

= Θ′(A, append([], u′ :: l′)), by def. of append,

= Θ′(A, append(l, u′ :: l′)) .

Case l = u0 :: l0

Θ′(Θ′(A, l)Θu′, l′) = Θ′(Θ′(A, u0 :: l0)Θu′, l′)

= Θ′(Θ′(AΘu0, l0)Θu′, l′), by def. of Θ,

→h Θ′(AΘu0, append(l0, u
′ :: l′)), by IH,

= Θ′(A, u0 :: append(l0, u
′ :: l′)), by def. of Θ,

= Θ′(A, append(u0 :: l0, u
′ :: l′)), by def. of append,

= Θ′(A, append(l, u′ :: l′)) .

¥

Now the first half of the isomorphism.
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Theorem 11 Let R ∈ {β1, β2, h}. If M →R M ′ in λNh then ΨM →R ΨM ′ in

λPh.

Proof: We prove the claim and also that

if A →R A′ in λNh, then Ψ′(A, l) →R Ψ′(A′, l) in λPh, for all l in λPh,

by simultaneous induction, similar to the proof of Theorem 4, on M →R M ′ and

A →R A′, with induction hypotheses IH1 and IH2, respectively. Cases correspond

to closure rules, according to Definition 17.

Case β1: as in Theorem 4, but by Lemma 52, instead of Lemma 41.

Case β2:

Ψ′(((λx.M)N)N ′, l) = Ψ′(((λx.M)N), ΨN ′ :: l), by def of Ψ,

= (λx.ΨM)(ΨN · (ΨN ′ :: l)), by def of Ψ,

→β2 subst(ΨN, x, ΨM)(ΨN ′ · l)
= Ψ(M [N/x])(ΨN ′ · l), by Lemma 52,

= Ψ′(M [N/x]N ′, l), by def of Ψ.

Case h:

Ψ′(app(A)N, l) = Ψ(app(A))(ΨN :: l), by def. of Ψ,

→h Ψ′(A, ΨN :: l), by Corollary 28,

= Ψ′(AN, l), by def. of Ψ.

Case Intro: As in Theorem 4, by closure of →R in λPh under Right.

Case App: As in Theorem 4.

Case HdElim1: Suppose ΨM →R ΨM ′ (IH1).
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Ψ′(MN, l) = ΨM(ΨN · l), by def. of Ψ,

→R ΨM ′(ΨN · l) (*)

= Ψ′(M ′N, l), by def. of Ψ,

where the reduction step is by IH1 and closure of →R in λPh under HdCut1.

Case HdElim2: Similarly, but by closure of →R in λPh under HdCut2.

Case TailElim1: As in Theorem 4.

Case TailElim2: As in Theorem 4, but by Lemma 54 and closure of →R in

λPh under Lft1. ¥

Finally, the second half of the isomorphism.

Theorem 12 Let R ∈ {β1, β2, h}. If t →R t′ in λPh then Θt →R Θt′ in λNh.

Proof: We prove the claim and also that

if l →R l′ in λPh, then Θ′(A, l) →R Θ(A, l′) in λNh, for all A in λNh,

by simultaneous induction, similar to that of Theorem 5, on t →R t′ and l →R l′.

Cases correspond to closure rules, according to Definition 6.

Case β1: As in Theorem 5, but by Corollary 27 instead of Corollary 19.

Case β2:

Θ((λx.t)(v · (u :: l))) = Θ′((λx.Θt)Θv, u :: l), by def. of Θ,

= Θ′(((λx.Θt)Θv)Θu, l), by def. of Θ,

→β2 Θ′((Θt[Θv/x])Θu, l), by Lemma 55,

= Θ′(Θ(subst(v, x, t))Θu, l), by Corollary 27,

= Θ(subst(v, x, t)(u :: l)) .

Case h:
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Θ((t(u · l))(u′ · l′)) = Θ′(Θ(t(u · l))Θu′, l′), by def. of Θ,

= Θ′(Θ′(ΘtΘu, l)Θu′, l′), by def. of Θ,

→h Θ′(ΘtΘu, append(l, u′ :: l′)), by Lemma 56,

= Θ(t(u · append(l, u′ :: l′))), by def. of Θ.

Case Right: As in Theorem 5, by closure of →R in λNh under Intro.

Case HdCut1: Suppose Θt →R Θt′ (IH1).

Θ(t(u · l)) = Θ′(ΘtΘu, l), by def. of Θ,

→R Θ′(Θt′Θu, l) (*)

= Θ(t′(u · l)), by def. of Θ,

where the step (*) is by Lemma 55, IH1 and closure of →R in λNh under

HdElim1.

Case HdCut2: Similarly, but by closure of →R in λNh under HdElim2.

Case HdCut3: Suppose Θ′(A, l) →R Θ′(A, l′), all A (IH2).

Θ(t(u :: l)) = Θ′(ΘtΘu, l), by def. of Θ,

→R Θ′(ΘtΘu, l′), by IH2

= Θ(t(u :: l′)), by def. of Θ.

¥

Corollary 29 (Isomorphism) Let R ∈ {β1, β2, h}.

1. M →R M ′ in λNh iff ΨM →R ΨM ′ in λPh.

2. t →R t′ in λPh iff Θt →R Θt′ in λNh.

Corollary 30
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1. λNh is confluent.

2. If M is typable in λNh, then M is strongly normalising.

3. λNh satisfies subject reduction.

Proof: Because these properties hold of λPh and may be easily transferred from

λPh to λNh with the help of Ψ and Θ. ¥

We can, so to speak, reuse conservativeness of λPh over λP through isomor-

phisms Ψ and Θ.

Corollary 31 λNh is internally conservative over λN .

Proof: Conservativeness is by

M →∗ M ′ in λN
iff ΨM →∗ ΨM ′ in λP , by Corollary 20,

iff i(ΨM) →∗ i(ΨM ′) in λPh, as λPh is conservative over λP ,

iff Ψ(i(M)) →∗ Ψ(i(M ′)) in λPh, by Proposition 40,

iff ΘΨ(i(M)) →∗ ΘΨ(i(M ′)) in λNh, by Corollary 29,

iff i(M) →∗ i(M ′) in λNh, as Θ ◦ Ψ = id.

Internal conservativeness is by Proposition 39. ¥

6.2 Explicit substitutions

In the last section, we built in the natural deduction side a perfect counterpart

to the relationship between λPh and λP . Now we want to do the same for

calculi λPhx and λPh. It turns out that the problem is now simpler. λPhx

stands for λPh as the λx-calculus [Rose, 1996b, Bloo, 1997] (a calculus of explicit

substitutions) stands for λ. To illustrate this, we briefly recall λx.
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The definition of λx is given in Table 6.4. The calculus may be seen as

a version of λ in which substitution is internalised. A new constructor, called

explicit substitution and written M〈x := N〉, is added and rule β is replaced by

rule b, which, instead of calling substitution, generates an explicit substitution.

Extra rules for the explicit, stepwise performance of substitution are included

(rules x1, ..., x4). The typing rule for explicit substitution used here (and also in

[Bloo, 1997]) is straightforward1, in that we simply internalise the admissible rule

for substitution in λ

Γ ` N : A Γ, x : A ` M : B

Γ ` M [N/x] : B
x /∈ Γ .

Now, in λPhx, rules β1 and β2 of λPh are replaced by rules b1 and b2 in

which the call of operator subst (a substitution operator in λPh) is replaced by

a mid cut, a new constructor of the calculus that acts as an explicit subst. The

performance of subst is internalised in λPhx by means of new reduction rules

x1, ..., x4.

We will come back later (see subsection “Completing the picture”) to this

analogy between how λx stands for λ, on the one hand, and how λPhx stands

for λPh, on the other hand. For the moment, as we said above, we are interested

in finding the calculus that is the natural deduction counterpart to λPhx. The

obvious guess now is that such calculus is a version of λNh in which substitution

is made explicit.

Explicit substitutions for λNh

We define a version of λNh with explicit substitutions, named λNhx, in Table

6.5. Typing rules are in Table 6.6. The definition is straightforward. A con-

structor for substitution is added to the syntax and old reduction rules calling

meta-substitution are replaced by similar rules generating explicit substitution.

Rules for the stepwise performance of substitution are added. Similarly to λPhx,

an operation remains in the meta-language, namely the operation sub that dis-

1A slight variations of this typing rule has appeared in [di Cosmo and Kesner, 1997].
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(Terms) M,N ::= x |λx.M |MN |M〈x := N〉

V ar
Γ, x : B ` x : B

Intro
Γ, x : B ` M : C

Γ ` λx.M : B ⊃ C
x /∈ Γ Elim Γ ` M : B ⊃ C Γ ` N : B

Γ ` MN : C

ExSubst
Γ, x : C ` M : B Γ ` N : C

Γ ` M〈x := N〉 : B
x /∈ Γ

(b) (λx.M)N → M〈x := N〉

(x1) x〈x := N〉 = N

(x2) y〈x := N〉 = y, y 6= x

(x3) (λy.M)〈x := N〉 = λy.M〈x := N〉
(x4) (MM ′)〈x := N〉 = (M〈x := N〉)(M ′〈x := N〉)

Table 6.4: The λx-calculus
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Table 6.5: The λNhx-calculus

(Terms) M,N ::= x |λx.M | app(A) |M〈x := N〉
(Apps) A ::= MN |AN

(b1) app((λx.M)N) → M〈x := N〉
(b2) ((λx.M)N)N ′ → M〈x := N〉N ′

(h) app(A)N → AN

(x1) x〈x := N〉 = N

(x2) y〈x := N〉 = y, y 6= x

(x3) (λy.M)〈x := N〉 = λy.M〈x := N〉
(x4) (app(A))〈x := N〉 = app(sub(N, x,A))

where

sub(N, x,M1M2) = M1〈x := N〉M2〈x := N〉
sub(N, x,AM) = sub(N, x,A)M〈x := N〉

tributes a substitution through an application A. Constructor M〈x := N〉 binds

x in M . By variable convention, x does not occur in N .

Definition 19 (Compatible closure) Given a pair R of binary relations, the

first on Terms and the second on Apps, the compatible closure →R is the least

pair of relations →, the first on Terms and containing the first relation of R, the

second on Apps and containing the second relation of R, closed under:
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Table 6.6: Typing rules for λNhx

V ar
Γ, x : B ` x : B

Intro
Γ, x : B ` M : C

Γ ` λx.M : B ⊃ C
x /∈ Γ

App Γ ` A : B
Γ ` app(A) : B

ExSubst
Γ, x : C ` M : B Γ ` N : C

Γ ` M〈x := N〉 : B
x /∈ Γ

HdElim Γ ` M : B ⊃ C Γ ` N : B
Γ ` MN : C

TailElim Γ ` A : B ⊃ C Γ ` N : B
Γ ` AN : C

Intro M → M ′
λx.M → λx.M ′ App A → A′

app(A) → app(A′)

ExSubst1 M → M ′
M〈x := N〉 → M ′〈x := N〉 ExSubst2 N → N ′

M〈x := N〉 → M〈x := N ′〉

HdElim1 M → M ′
MN → M ′N

HdElim2 N → N ′
MN → MN ′

TailElim1 A → A′
AN → A′N

TailElim2 N → N ′
AN → AN ′

For instance, for defining →b, take R = (b1, b2) in Definition 19. That is, in

λNhx we set b = (b1, b2). One can define →b1 (resp. →b2) by taking R = (b1, ∅)
(resp. R = (∅, b2)), or define →h by taking R = (∅, h). The definition of →xi

(i = 1, 2, 3, 4) is by choosing R = (xi, ∅). We will also let

x = x1 ∪ x2 ∪ x3 ∪ x4

and, thus, →x is defined by taking R = (x, ∅).
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x[ = x

(λx.M)[ = λx.M [

(app(A))[ = app(A[)

(M〈x := N〉)[ = M [[N [/x]

(MN)[ = M [N [

(AN)[ = A[N [

Table 6.7: From λNhx to λNh

By analogy with mapping ( )[ : λPhx → λPh, there is a mapping ( )[ :

λNhx → λNh, defined in Table 6.7, that replaces explicit substitution by meta-

substitution in λNh.

Mappings Ψ and Θ, between λNh and λPh, are extended to mappings be-

tween λNhx and λPhx by

Ψ(M〈x := N〉) = ΨM{x := ΨN}
Θ(t{x := u}) = Θt〈x := Θu〉 .

Given the correctness of Ψ and Θ between λNh and λPh, and given the typing

rules for explicit substitutions and mid-cuts, the correctness of these extensions

is routine.

Explicit substitutions are mapped to mid-cuts and vice-versa. The following

proposition is even simpler than Proposition 40.

Proposition 46 If i denotes both the inclusion of λNh in λNhx and of λPh in

λPhx, then Ψ(i(M)) = i(ΨM) and Θ(i(t)) = i(Θt), for all M in λNh and t in

λPh.

Proposition 47 (Ψ(M))[ = Ψ(M [), for all M in λNhx.
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Proof: One proves the claim and also (Ψ′(A, l))[ = Ψ′(A[, l[), for all A in λNhx

and all l in λPhx, by simultaneous induction on M and A, with induction hy-

potheses IH1 and IH2, respectively.

Case M = app(A):

(Ψ(M))[ = (Ψ(app(A)))[

= (Ψ′(A, []))[, by def. of Ψ,

= Ψ′(A[, [][), by IH2,

= Ψ′(A[, []), by def. of ( )[,

= Ψ(app(A[)), by def. of Ψ,

= Ψ((app(A))[), by def. of ( )[,

= Ψ(M [) .

Case M = M0〈x := N0〉:

(Ψ(M))[ = (Ψ(M0〈x := N0))
[

= ((ΨM0){x := (ΨN0)})[, by def. of Ψ,

= subst((ΨN0)
[, x, (ΨM0)

[), by def. of ( )[,

= subst(Ψ(N [
0), x, Ψ(M [

0)), by IH1,

= Ψ(M [
0[N

[
0/x]), by Lemma 52,

= Ψ((M0〈x := N0〉)[), by def. of ( )[,

= Ψ(M [) .

The remaining cases are straightforward. ¥

Corollary 32 If λNhx derives Γ ` M : A, then λNh derives Γ ` M [ : A.

Proof: Obtained from correctness of ( )[ : λPhx → λPh (Proposition 9) by the

method of Corollary 26. ¥

Now we lift the isomorphism λNh ∼= λPh.
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Yet another isomorphism

The goal is now to prove λNhx ∼= λPhx. We will try to follow closely the develop-

ments that led from Proposition 44 to Corollary 29, emphasizing the differences.

Proposition 48

1. Θ ◦ Ψ = id and Θ ◦ Ψ′ = Θ′.

2. Ψ ◦ Θ = id and Ψ ◦ Θ′ = Ψ′.

Proof: The novelty relatively to Propositions 44 and 45 is the cases of explicit

substitution and mid cut. The result follows because one constructor is mapped

to the other and vice versa. ¥

Since there are no substitution operators in λNhx and λPhx, there are no

analogues of Lemma 52 and Corollary 27. Instead, we need the following two

results.

Lemma 57 Ψ′(A, l){x := ΨN} →x4 Ψ′(sub(N, x,A), x, sub(ΨN, x, l)), for all

A,N in λNhx, all l in λPhx.

Proof: By induction on A.

Case A = M ′N ′.

Ψ′(A, l){x := ΨN}
= Ψ′(M ′N ′, l){x := ΨN}
= (ΨM ′(ΨN ′ · l)){x := ΨN}, by def. of Ψ,

→x4 ((ΨM ′){x := ΨN})(((ΨN ′){x := ΨN}) · sub(ΨN, x, l))

= (Ψ(M ′〈x := N〉))((Ψ(N ′〈x := N〉)) · sub(ΨN, x, l)), by def. of Ψ,

= Ψ′((M ′〈x := N〉)(N ′〈x := N〉), sub(ΨN, x, l)), by def. of Ψ,

= Ψ′(sub(N, x,M ′N ′), sub(ΨN, x, l)), by def. of sub,

= Ψ′(sub(N, x,A), sub(ΨN, x, l)) .
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Case A = A′N ′:

Ψ′(A, l){x := ΨN}
= Ψ′(A′N ′, l){x := ΨN}
= Ψ′(A′, ΨN ′ :: l){x := ΨN}, by def. of Ψ,

→x4 Ψ′(sub(N, x,A′), sub(ΨN, x, ΨN ′ :: l)), by IH,

= Ψ′(sub(N, x,A′), ((ΨN ′){x := ΨN}) :: sub(ΨN, x, l)), by def. of sub,

= Ψ′(sub(N, x,A′), (Ψ(N ′〈x := N〉)) :: sub(ΨN, x, l)), by def. of Ψ,

= Ψ′(sub(N, x,A′)(N ′〈x := N〉), sub(ΨN, x, l)), by def. of Ψ,

= Ψ′(sub(N, x,A′N ′), sub(ΨN, x, l)), by def. of sub,

= Ψ′(sub(N, x,A), sub(ΨN, x, l)) .

¥

One way of understanding next lemma is by observing that it asserts a reduc-

tion between two terms that are the images under Θ of the two terms involved

in the reduction asserted by the previous lemma.

Lemma 58 Θ′(A, l)〈x := Θv〉 →x4 Θ′(sub(Θv, x, A), sub(v, x, l)), for all A in

λNhx, all v, l in λPhx.

Proof: By induction on l.

Case l = [].

Θ′(A, l)〈x := Θv〉
= Θ′(A, [])〈x := Θv〉
= app(A)〈x := Θv〉, by def. of Θ,

→x4 app(sub(Θv, x, A))

= Θ′(sub(Θv, x, A), []), by def. of Θ,

= Θ′(sub(Θv, x, A), sub(v, x, [])), by def. of sub,

= Θ′(sub(Θv, x, A), sub(v, x, l)) .
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Case l = u′ :: l′.

Θ′(A, l)〈x := Θv〉
= Θ′(A, u′ :: l′)〈x := Θv〉
= Θ′(AΘu′, l′)〈x := Θv〉, by def. of Θ,

→x4 Θ′(sub(Θv, x, AΘu′), sub(v, x, l′)), by IH,

= Θ′(sub(Θv, x, A)(Θu′〈x := Θv〉), sub(v, x, l′)), by def. of sub,

= Θ′(sub(Θv, x, A)Θ(u′{x := v}), sub(v, x, l′)), by def. of Θ,

= Θ′(sub(Θv, x, A), (u′{x := v}) :: sub(v, x, l′)), by def. of Θ,

= Θ′(sub(Θv, x, A), sub(v, x, u′ :: l′)), by def. of sub,

= Θ′(sub(Θv, x, A), sub(v, x, l)) .

The following five results are an immediate lifting of, and have exactly the

same proofs as the corresponding results we have seen before.

Lemma 59 Ψ′(A, l)(u′ · l′) →h Ψ′(A, append(l, u′ :: l′), for all A in λNhx, all

u′, l, l′ in λPhx.

Corollary 33 Ψ(app(A))(u · l) →h Ψ′(A, u :: l), for all A in λNhx, all u, l in

λPhx.

Proof: From Lemma 59. ¥

Lemma 60 In λPhx, if l →R l′, then Ψ′(A, l) →R Ψ′(A, l′) (for all A in λNhx,

R ∈ {b1, b2, h, x1, x2, x3, x4}).

Lemma 61 In λNhx, if A →R A′, then Θ′(A, l) →R Θ′(A′, l) (for all l in λPhx,

R ∈ {b1, b2, h, x1, x2, x3, x4}).

Lemma 62 Θ′(Θ′(A, l)Θu′, l′) →h Θ′(A, append(l, u′ :: l′)), for all A in λNhx,

all u′, l, l′ in λPhx.
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Proof: Using Lemma 61. ¥

Finally, we are ready for the isomorphism theorems.

Theorem 13 Let R ∈ {b1, b2, h, x1, x2, x3, x4}. If M →R M ′ in λNhx then

ΨM →R ΨM ′ in λPhx.

Proof: We prove the claim and also that

if A →R A′ in λNhx, then Ψ′(A, l) →R Ψ′(A′, l) in λPhx, for all l in λPhx,

by simultaneous induction, similar to the proof of Theorem 11, on M →R M ′ and

A →R A′, with induction hypotheses IH1 and IH2, respectively. Cases correspond

to closure rules, according to Definition 19.

Case b1:

Ψ(app((λx.M)N)) = Ψ′((λx.M)N, []), by def. of Ψ,

= (λx.ΨM)(ΨN · []), by def. of Ψ,

→b1 (ΨM){x := ΨN}
= Ψ(M〈x := N〉), by def. of Ψ.

Case b2:

Ψ′(((λx.M)N)N ′, l) = Ψ′(((λx.M)N), ΨN ′ :: l), by def. of Ψ,

= (λx.ΨM)(ΨN · (ΨN ′ :: l)), by def. of Ψ,

→b2 ((ΨM){x := ΨN})(ΨN ′ · l)
= Ψ(M〈x := N〉)(ΨN ′ · l), by def. of Ψ,

= Ψ′(M〈x := N〉N ′, l), by def. of Ψ.

Case h: Exactly as in Theorem 11, but using Corollary 33 instead of Corollary

28.

Cases x1, x2 and x3: Straightforward.
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Case x4:

Ψ(app(A)〈x := N〉) = Ψ(app(A)){x := ΨN}, by def. of Ψ,

= Ψ′(A, []){x := ΨN}, by def. of Ψ,

→x4 Ψ′(sub(N, x,A), sub(ΨN, x, [])), by Lemma 57,

= Ψ′(sub(N, x,A), []), by def. of sub,

= Ψ(app(sub(N, x,A))), by def. of Ψ.

Case Intro: As in Theorem 11, by closure of →R in λPhx under Right.

Case App: As in Theorem 11.

Case HdElim1: As in Theorem 11, by closure of →R in λPhx under HdCut1.

Case HdElim2: As in Theorem 11, by closure of →R in λPhx under HdCut2.

Case TailElim1: As in Theorem 11.

Case TailElim2: As in Theorem 11, by closure of →R in λPhx under Lft1,

but by Lemma 60 instead of Lemma 54.

Case ExSubst1: Suppose ΨM →R ΨM ′ (IH1).

Ψ(M〈x := N〉) = (ΨM){x := ΨN}, by def. of Ψ,

→R (ΨM ′){x := ΨN} (*)

= Ψ(M ′〈x := N〉), by def. of Ψ,

where the reduction step (*) is by IH1 and closure of →R in λPhx under MidCut1.

Case ExSubst2: Similarly, by closure of →R in λPhx under MidCut2. ¥

Theorem 14 Let R ∈ {b1, b2, h, x1, x2, x3, x4}. If t →R t′ in λPhx then Θt →R

Θt′ in λNhx.

Proof: We prove the claim and also that

if l →R l′ in λPh, then Θ′(A, l) →R Θ(A, l′) in λNhx, for all A in λNhx,
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by simultaneous induction, similar to that of Theorem 12, on t →R t′ and l →R l′.

Cases correspond to closure rules, according to Definition 7.

Case b1:

Θ((λx.t)(u · [])) = Θ′((λx.Θt)Θu, [])by def. of Θ,

= app((λx.Θt)Θu)by def. of Θ,

→b1 Θt〈x := Θu〉
= Θ(t{x := u})by def. of Θ.

Case b2:

Θ((λx.t)(v · (u :: l))) = Θ′((λx.Θt)Θv, u :: l), by def. of Θ,

= Θ′(((λx.Θt)Θv)Θu, l), by def. of Θ,

→R Θ′((Θt〈x := Θv〉)Θu, l), by Lemma 61,

= Θ′(Θ(t{x := v})Θu, l), by def. of Θ,

= Θ((t{x := v})(u :: l)), by def. of Θ.

Case h: Exactly as in Theorem 12, but using Lemma 62 instead of Lemma

56.

Cases x1, x2 and x3: Straightforward.

Case x4:

Θ((t(u · l){x := v}))
= Θ(t(u · l))〈x := Θv〉, by def. of Θ,

= Θ′(ΘtΘu, l)〈x := Θv〉, by def. of Θ,

→x4 Θ′(sub(Θv, x, ΘtΘu), sub(v, x, l)), by Lemma 58,

= Θ′((Θt)〈x := Θv〉(Θu)〈x := Θv〉, sub(v, x, l)), by def. of sub,

= Θ′((Θ(t{x := v})Θ(u〈x := v}), sub(v, x, l)), by def. of Θ,

= Θ((t{x := v})(u{x := v} · sub(v, x, l))), by def. of Θ.
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Case Right: As in Theorem 12, by closure of →R in λNhx under Intro.

Case HdCut1: As in Theorem 12, by closure of →R in λNhx under HdElim1,

but by Lemma 61 instead of Lemma 55.

Case HdCut2: As in Theorem 12, by closure of →R in λNhx under HdElim2.

Case HdCut3: As in Theorem 12.

Case MidCut1: Suppose Θt →R Θt′ (IH1).

Θ(t{x := u}) = Θt〈x := Θu〉, by def. of Θ,

→R Θt′〈x := Θu〉 (*)

= Θt′{x := Θu}, by def. of Θ,

where the reduction step (*) is by IH1 and closure of →R in λNhx under ExSubst1.

Case MidCut2: Similarly, but by closure of →R in λNhx under ExSubst2. ¥

Corollary 34 (Isomorphism) Let R ∈ {b1, b2, h, x1, x2, x3, x4}.

1. M →R M ′ in λNhx iff ΨM →R ΨM ′ in λPhx.

2. t →R t′ in λPhx iff Θt →R Θt′ in λNhx.

Corollary 35

1. λNhx is confluent.

2. If M is typable in λNhx, then M is strongly normalising.

3. λNhx satisfies subject reduction.

Proof: Because these properties hold of λPhx and may be easily transferred

from λPhx to λNhx with the help of Ψ and Θ. ¥

The next two results are proved in view of obtaining a third, asserting internal

conservativeness of λNhx over λNh. The idea of proofs is, as it were, to reuse

known properties through isomorphisms Ψ and Θ.
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Proposition 49 →x in λNhx is confluent.

Proof: Suppose M0 →∗
x M1,M2 in λNhx. By Theorem 13, ΨM0 →∗

x ΨM1, ΨM2

in λPhx. By Corollary 7, there is t in λPhx such that ΨM1, ΨM2 →∗
x t. Then,

by Theorem 14, and since ΘΨM = M , we get M1,M2 →∗
x Θt. ¥

Therefore, we may refer to the normal-form mapping ↓x.

Proposition 50 M [ =↓x (M), for all M in λNhx.

Proof: Since M [ is x-normal, it suffices to prove M →∗
x M [. Now, by Proposi-

tions 11 and 47, ΨM →∗
x (ΨM)[ = Ψ(M [). Therefore, by Theorem 14, we get

M = ΘΨM →∗
x ΘΨ(M [) = M [. ¥

Corollary 36 λNhx is internally conservative over λNh.

Proof: Conservativeness is by

M →∗ M ′ in λNh

iff ΨM →∗ ΨM ′ in λPh, by Corollary 29,

iff i(ΨM) →∗ i(ΨM ′) in λPhx, as λPhx is conservative over λPh,

iff Ψ(i(M)) →∗ Ψ(i(M ′)) in λPhx, by Proposition 46,

iff ΘΨ(i(M)) →∗ ΘΨ(i(M ′)) in λNhx, by Corollary 34,

iff i(M) →∗ i(M ′) in λNh, as Θ ◦ Ψ = id.

Internal conservativeness is by Proposition 50. ¥

Completing the picture

Recall from section 5.1 that Gentzen’s mapping G is an isomorphism between λ

and λG, the latter being the ::-free subsystem of λPh, in which, therefore, only
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reduction rule β1 makes sense. The isomorphism amounts to the rephrasing of

application as the head-cut t[t′] (this is short for t(t′ · [])).
Now, the same fragment exists in λPhx. Terms are of the form

t, u, v ::= x |λx.t | t[u] | t{x := u} ,

reduction rules b2 and h are dropped (as they require ::) and all the remaining

rules b1, x1, x2, x3, x4 are retained. The fragment is indeed closed for these rules.

Only rule x4 requires a verification:

(t[u]){x := v} = (t(u · [])){x := v}
→x4 (t{x := v})(u{x := v} · sub(v, x, []))

= (t{x := v})(u{x := v} · [])
= (t{x := v})[u{x := v}] .

This fragment, named λGx, is nothing but a rephrasing of λx2. Application

is rephrased as before and explicit substitution is rephrased as mid-cut. Typing

rules are the same, except that, in λGx, sequents have the form Γ;− ` t : A. The

rephrasing mapping G : λx → λGx is an extension of G : λ → λG defined by

G(M〈x := N〉) = GM{x := GN} .

By analogy with mapping ( )[ : λPhx → λPh, let us define mappings ( )[ :

λGx → λG and ( )[ : λx → λ simply by translating, in the first case, mid-cut as

substitution (or rather subst) in λG, and translating, in the second case, explicit

substitution as substitution in λ. The situation is as follows:

2Therefore, this may be regarded as a logical reconstruction of λx.
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λPhx ¾ i
λGx ¾ G

λx

(1a) (1b)

λPh

( )[

?
¾

i
λG

( )[

?
¾

G λ

( )[

?

(6.2)

Square (1b) is commutative because rephrasing G clearly commutes with ( )[. As

to square (1a), recall that ( )[ : λPhx → λPh is determined by the translation

of mid-cut as subst in λPh. Consider the restriction of this mapping to λGx. Its

range is not the whole λPh but only λG. This is so because λG is closed for subst

of λPh. Since subst in λG (in terms of which we defined ( )[ : λGx → λG) is the

restriction to λG of subst in λPh, the commutativity of (1a) follows.

Let x = x1∪x2∪x3∪x4. From the construction of diagram (6.2) and Corollary

8, it is clear that →x is confluent in each λPhx, λGx and λx, and that ( )[ =↓x, for

each ( )[. We could also infer, from diagram (6.2) and conservativeness of λPhx

over λPh, the conservativeness of λGx (resp. λx) over λG (resp. λ). Anyway,

conservativeness of λx over λ is not new [Rose, 1996b].

Now we prove that square

λPhx ¾ Ψ
λNhx

λPh

( )[

?
¾ Ψ

λNh

( )[

?

(6.3)

(which is the back face of (6.5) below) generalises square (1b) of diagram (6.2)

(which is the front face of (6.5) below). This is interesting because it shows

that the perfect match between mid-cuts in λG and explicit substitutions of λx

extends from the ::-free and tail-application-free fragments to include, on the one

hand, full head-cuts and left permutation, and, on the other hand, the distinction
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between head and tail eliminations and the associated new notion of reduction h.

Accordingly, the perfect match will be established by the not so trivial Ψ, instead

of mere rephrasing G.

First, observe that, since both Ψ and G send explicit substitutions to mid-

cuts, Ψ keeps being coherent with G (recall Proposition 43). The following is

immediate.

Proposition 51 Ψ(ι(M)) = G(M), for all M in λx.

Second, by analogy with square (1a) of diagram (6.2), regarding the ::-free

fragments of λPhx and λPh, there is a square

λNhx ¾ ι
λx

(2)

λNh

( )[

?
¾

ι
λ

( )[

?

(6.4)

regarding the tail-application-free fragments of λNhx and λNh. Mapping ι :

λ → λNh is lifted to a mapping ι : λx → λNhx by putting

ι(M〈x := N〉) = ιM〈x := ιN〉 .

What remains to be proved is that this last square commutes. By gluing it with

diagrams (6.3) and (6.2), we obtain the cube
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λPhx ¾ Ψ
λNhx

I@
@

@
@

@

i
I@

@
@

@
@

ι

λGx ¾ G
λx

λPh

( )[

?
¾ Ψ

λNh

( )[

?

I@
@

@
@

@

i
I@

@
@

@
@

ι

λG

( )[

?
¾ G

λ

( )[

?

(6.5)

We have seen that all faces of this cube, except one, commute. The bottom face

(resp. the top face) commutes by Proposition 43 (resp. Proposition 51). The front

face is square (1b) in diagram (6.2), whereas the back face is square (6.3), which

commutes by Proposition 47. Two faces remain: one is the commutative square

(1a) of diagram (6.2). The other is square (6.4), whose commutativity we seek.

This commutativity follows by a diagram chase and the fact that Ψ : λNh → λPh

is an isomorphism.

Logical content of explicit substitutions

The idea of making substitution explicit has a logical appeal that asks for the

understanding of the proof-theoretical status of calculi of explicit substitutions.

Yet, we could classify as computational the initial motivations and goals of explicit

substitution calculi. This is so because initially [Abadi et al., 1991] they intended

to serve as an intermediate formalism between usual λ-calculus and its actual

implementations 3.

3One is interested in actual implementations of the λ-calculus because the problem of imple-
menting real-world functional programming languages can usually be reduced to the problem
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In an implementation, on the one hand, substitution (and renaming of bound

variables) cannot be left in some informal limbo; on the other hand, if a calculus

is to reflect the extant practice, substitution has to happen in a controlled way. In

fact, in textbooks on (implementation of) functional languages [Henderson, 1980,

Peyton Jones, 1987, Field and Harrison, 1988], one finds, among others4, three

kinds of implementations: evaluation by an interpreter (this goes back to the first

paper on LISP [McCarthy, 1960]), compilation to an abstract machine like the

SECD-machine [Landin, 1964], or graph reduction, invented in [Wadsworth, 1971].

The first two techniques are environment-based, in that arguments of a function

are stored, together with the bound variable, in a separate list of bindings, called

an environment, rather than immediately substituted in the body of the function.

The second technique is based on the idea of substituting pointers (rather than

the actual arguments) for the formal parameters of a function. Common to these

techniques is the fact that substitution is delayed and copying of arguments is

avoided. The motivations for doing so are clear: copying is typically a waste of

space, and may be a waste of time if the copied arguments contain redexes whose

different copies will have to be reduced separately later.

Other computational motivations are the following facts: (1) the number of β-

steps is not a good measure of the cost of computation [Rose, 1996b]; (2) explicit

substitution is a way of recovering confluence of weak reduction5 in λ-calculus

[Curien et al., 1996].

Because of these computational goals, the earlier developments in explicit

substitution calculi had to introduce complications that, without destroying the

logical content behind explicit substitutions, actually by adding extra ingredients

to that content, made it less obvious and simple. The first complication is the use

of de Bruijn indices. Computationally, this means that, not only substitution, but

also renaming of bound variables is made explicit. This is what Rose calls “explicit

naming” in [Rose, 1996b] and “explicit binding” in [Rose, 1996a]. Logically, this

is related to an explicit management of weakening [Vestergaard and Wells, 1999].

of implementing the λ-calculus [Field and Harrison, 1988, Peyton Jones, 1987]
4E.g. compilation into combinators.
5In weak reduction, reduction under λ-abstractions is forbidden.
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The second complication is the introduction of a separate syntactical class of

substitutions, typical of the λσ-calculus [Abadi et al., 1991] and its descendants

[Lescanne, 1994]. A substitution s is typed with a list of types and a “closure”

t[s] is typed with a kind of simultaneous cut [Abadi et al., 1991, Pagano, 1998]

Γ ` s : A1, ...An A1, ..., An ` t : B

Γ ` t[s] : B

The logical impact of introducing explicit substitutions is best understood

in a simpler (perhaps the simplest) setting, namely the λx-calculus, where none

of these complications is present. This calculus adds two ingredients to natural

deduction.

The first ingredient is a new constructor, a form of cut,

Γ ` A Γ, x : A ` B

Γ ` B
x /∈ Γ , (6.6)

which is the logical content of the typing rule for explicit substitutions. Observe

that, as stressed in [Negri and von Plato, 2001], this is a very particular kind of

cut because formulas in the LHS of sequents are introduced only by axioms 6.

Nevertheless, the inclusion of such a constructor seems to have an advantage

(besides the fact that the relationship with sequent calculus improves). Natural

deduction is equipped with a way of reusing (or sharing) proofs. This is the old

idea that the cut-formula is like a lemma in informal proofs. Gentzen observed in

§2.2 of [Gentzen, 1935] that a sharing mechanism was missing in natural deduc-

tion, but this was the price to pay for keeping the tree format of natural deduction

proofs. Indeed, if natural deduction is defined, not in “sequent style”, but, in-

stead, with the traditional trees of formulas, then a rule like (6.6) (or rather its

formulation with trees of formulas) breaks the tree format because the conclusion

of the proof of A has to be “linked” to several assumptions in the proof of B, as

many as the elements in the assumption class Ax.

The second ingredient λx adds to natural deduction is a new normalisation

procedure, which is new, not only because the set of proofs it acts upon has

6The “strength” of the cut rule has nothing to do with the rule itself, but rather with the
system to which the rule is adjoined.
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changed, but also and mainly because it is a “small-step” procedure defined by

means of local transformations of derivations.

Traditionally [Gentzen, 1935, Girard et al., 1989, Gallier, 1993], the content

of cut-elimination proofs amounted to procedure consisting of local transforma-

tion of derivations7, whereas normalisation [Prawitz, 1965] called external rou-

tines (like substitution) for performing global transformations of proofs. Lately,

things have changed. In the sequent calculus side, starting with [Danos et al., 1997],

cut-elimination procedures were proposed containing global operations like the

complete, upward, right or left permutation of a cut, which were performed in

“natural deduction style”, that is, as if executed in one go by some external

routine. See also [Urban and Bierman, 1999, Esṕırito Santo, 2000]. Explicit sub-

stitutions in λx represent, in turn, an approximation of natural deduction to

the spirit of original cut-elimination procedures, with normalisation completely

internalised and broken down into local steps of reduction.

But there is more than an analogy between the spirit of normalisation in

λx and the spirit of small-step cut-elimination. The x-rules do perform cut-

elimination, where cut here is precisely the new constructor (6.6). This is true,

not only up to λGx ∼= λx, but also, crucially, and before anything else, by an

analysis in λx of the effect of reduction rules in derivations. Therefore, let us

emphasize that λx really adds to natural deduction a cut rule and a procedure

for its stepwise elimination, and this is de facto and not only up to interpretation.

All this holds of λNhx. The difference is that this calculus represents a

natural deduction system in which the two new ingredients introduced by λx

are combined with other new ingredients already present in λNh, namely the

distinction between head and tail elimination, together with the related new

notion of reduction.

7These procedures act on a system with a contraction rule and eliminate a gen-
eralisation of cut called multicut or mix. Recently [Dragalin, 1988, Dyckhoff, 1997,
Troelstra and Schwitchtenberg, 2000], procedures were defined for contraction-free system
which eliminate cut instead of mix. These procedures are defined in terms of local trans-
formations of derivations together with uses of admissibility of contraction. The latter hides
global transformations of derivations. Anyway, in both cases some atomic operations, which
may not be regarded as “local”, remain in the meta-language, like the duplication or the erasing
of an entire derivation.
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We are led to conclude the following: the inclusion of a cut rule, together with

reduction rules for its stepwise elimination, is a feature of “calculi of sequents”

like sequent calculus or natural deduction in “sequent style”. It is not exclusive

of sequent calculus. It does not tell sequent calculus from natural deduction.

Usually natural deduction is not recognised as having a cut rule because, in the

traditional presentation of natural deduction with trees of formulas, the cut rule

would break the tree format, as explained above. Yet, λx is a presentation of

natural deduction (but as a “calculus of sequents”) with a constructor - explicit

substitution - which acts logically as a cut.

Similarly, the inclusion of a constructor for explicit substitution, together with

rules for its stepwise propagation and performance, is a feature of term calculi,

e.g. term calculi associated with sequent calculus or term calculi associated with

natural deduction. Although the Curry-Howard correspondence traditionally as-

sociates a term calculus (possibly containing explicit substitutions) to a natural

deduction system, explicit substitutions are not an exclusive of natural deduction.

Usually sequent calculus is not recognised as having explicit substitutions because

traditional presentations of sequent calculus do not emphasize the related term

calculus, and, therefore, it becomes difficult to recognise that right permutation

of cuts is related to a substitution operator. Yet, this is what may be observed

in λPhx, a presentation of a sequent calculus (together with a term calculus) in

which the constructor for mid-cuts acts as an explicit subst, where subst is the

substitution operator of λPh.

Therefore, explicit substitution is not an issue in the relationship between

sequent calculus and natural deduction8. This is best seen by observing the cube

(6.5). Mappings G and Ψ mediate between the left face and the right face of the

cube, one corresponding to sequent calculus, the other to natural deduction. The

issue here (see Chapter 7) is how to represent applicative terms. Mappings i and

ι mediate between the front face and the back face. The former is a degenerate

case of the latter, corresponding to the ::-free and tail-aplication-free fragments.

Hence, the issue here is whether :: and tail-aplications occur or not. Finally,

8Although explicit substitution is an issue in the computational interpretation of sequent
calculus (and natural deduction!).
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mappings ( )[ mediate between the top face and the bottom face. The issue here

is, logically, whether a cut rule is included or not; and, at the term calculus level,

whether substitution is explicit or not. This applies equally to systems in the

sequent calculus side and to systems in the natural deduction side. It is an issue

which is, as it were, orthogonal to the sequent calculus versus natural deduction

divide.

6.3 A new landscape

Summing up

We pause to observe the proof-theoretical landscape resulting from gluing dia-

grams (6.1) and (6.5), as depicted in Fig.6.1.

In this Figure, if x (resp. h) labels an arrow, then the arrow stands for ↓x,
which is the same as ( )[ (resp. ↓h, which is the same as ( )−). Vertical arrows

represent projections, horizontal arrows represent isomorphisms. All squares and

triangles commute.

Let us refer to λN , λNh and λNhx as N -systems , and to λP , λPh and λPhx

as P-systems .

The resulting diagram may be seen as diagram (6.1) topped with a layer

of explicit substitutions (the topmost face). Another point of view shows the

diagram as consisting of a left half (corresponding to sequent calculus) and a

right half (corresponding to natural deduction), with Ψ, Θ, G and G−1 mediating

between these halves. Finally, the diagram may be considered as consisting of

the back-most squares, together with a degenerate layer (the front-most square,

where λ lives), corresponding to the ::-free and tail-application-free fragments.

Figure 6.1 is a visual summary of the main claims we are making in this

chapter, namely that the natural deduction “space of calculi” may be expanded

so as to provide perfect counterparts to calculi with different levels of explicitness,

pertaining to the canonical fragment of sequent calculus.

Natural deduction could have been expanded a little bit further, so as to

simulate auxiliary mid-cuts and their explicit elimination. That is, there is a
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λPhx ¾ Ψ, Θ - λNhx

I@
@

@
@

@

i
I@

@
@

@
@

ι

λGx ¾ G,G−1
- λx

λPh

x

?
¾ Ψ, Θ - λNh

x

?

I@
@

@
@

@

i
I@

@
@

@
@

ι

λG

x

?
¾ G,G−1

- λ

x

?

ª¡
¡

¡
¡

¡

( )−
ª¡

¡
¡

¡
¡

N
λP

h

?
¾ Ψ, Θ - λN

h

?

Figure 6.1: Natural deduction counterparts
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N -system corresponding to the system obtained from λPhx by making explicit

meta-operator sub. The idea is simply to make sub of λNhx explicit as well.

However, there seems to be a point to which the explicitness of cut-elimination

cannot be taken without breaking the perfect match between sequent calculus and

natural deduction. This is when auxiliary head-cuts l(u · l′) and their elimination

are made explicit, as they are in λPhx. That is, we do not see what the natural

deduction counterpart to the explicit and stepwise append of two list could be.

A distortion

Now we will argue that Fig. 6.1 contains a distortion relatively to the true

proof-theoretical landscape defined by the relationship between P-systems and

N -systems. Later we will make a proposal as to what the true landscape should

be.

To see this, we have to start by treating equally the embeddings G : λ → λPh

and ι : λ → λNh. In Fig. 6.1, the isomorphic copy of λ in λPh (λG) is visible,

whereas the isomorphic copy of λ in λNh (λι) is not. The simpler solution is to

hide λG and λGx in Fig. 6.1. The result is Fig. 6.2.

Alternatively, we can make λι and the new λιx visible in Fig.6.1 (as expected,

λιx is simply a rephrasing of λx, where application is written app(MN)). This

causes a long, yet straightforward, chain of refinements.

First, we have the commutative triangles

λNh λNhx

I@
@

@
@

@

ι
I@

@
@

@
@

ι

λι

i

6

¾
ι

λ λιx

i

6

¾
ι

λx

(6.7)

which are self-explanatory. Second, the commutative triangle asserted by Propo-

sition 38 has to be decomposed as
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λPhx ¾ Ψ, Θ - λNhxiPPPPPPPPPPPPPPPPPPP

G
I@

@
@

@
@

ι

λx

λPh

x

?
¾ Ψ, Θ - λNh

x

?

iPPPPPPPPPPPPPPPPPPP

G
I@

@
@

@
@

ι

λ

x

?

ª¡
¡

¡
¡

¡

N
λP

h

?
¾ Ψ, Θ - λN

h

?

Figure 6.2: The old landscape (simple version)
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λNh

I@
@

@
@

@

i

λι

ª¡
¡

¡
¡

¡

( )−

I@
@

@
@

@

ι

λN

( )−

?
¾

N λ

(6.8)

Mapping ( )− : λι → λN is simply the restriction to λι of mapping ( )− :

λNh → λN . Hence, the upper triangle in diagram (6.8) commutes. Since the

larger triangle of (6.8) commutes (by Proposition 38 and commutativity of the

left triangle in (6.7)), the lower triangle in (6.8) commutes as well.

Third, square (6.4) as to be decomposed, very much like diagram (6.2), as

follows:

λNhx ¾ i
λιx ¾ ι

λx

(2a) (2b)

λNh

( )[

?
¾

i
λι

( )[

?
¾

ι
λ

( )[

?

The proof that these two squares commute is exactly as the proof that the two

squares in (6.2) commute. Alternatively, use the commutativity of (6.4), the

trivial commutativity of square (2b) and the fact that ι is an isomorphism to get

commutativity of square (2a).

Fourth, define both G̃ : λG → λι and G̃ : λGx → λιx by

G̃ = G ◦ ι−1 ,

and both ι̃ : λι → λG and ι̃ : λιx → λGx by
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ι̃ = ι ◦ G−1 .

Hence, G̃ and ι̃ are mutually inverse. This gives the commutative triangles

λG ¾ G̃, ι̃ - λι λGx ¾ G̃, ι̃ - λιx
YHHHHHHHHHHHH

G

I@
@

@
@

@

ι

YHHHHHHHHHHHH

G

I@
@

@
@

@

ι

λ λx

Let us glue

λGx ¾ G
λx ¾ ι−1

λιx

(1b) (2b)′

λG

x

?
¾

G λ

x

?
¾

ι−1
λι

x

?

where (2b)′ is like (2b), but with ι−1 instead of ι. Since (2b)′ stays commutative,

and since G̃ and ι̃ are mutually inverse, we get the two commutative squares

λGx ¾ G̃, ι̃ - λιx

λG

x

?
¾ G̃, ι̃ - λι

x

?

Fifth, observe that the two squares in
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λG ¾ G
λ ¾ ι−1

λι

λP

( )−

?
¾ Ψ

λN

N
?

======= λN

( )−

?

commute. The left one is by Theorem 7 (it is the “λ-square”), the right one is by

the commutativity of the lower triangle in diagram (6.8). Since G̃ and ι̃, on the

one hand, and Ψ and Θ, on the other hand, are mutually inverse, the following

two squares commute

λG ¾ G̃, ι̃ - λι

λP

( )−

?
¾ Ψ, Θ- λN

( )−

?

Finally, the two squares in

λPh ¾ Ψ
λNh ====== λNh

λG

i

6

¾ G
λ

ι

6

¾ ι−1

λι

i

6

commute. The left one is by Proposition 43, the right one by the commutativity

of the left triangle in (6.7). Since G̃ and ι̃, on the one hand, and Ψ and Θ, on the

other hand, are mutually inverse, the following two squares commute
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λPh ¾Ψ, Θ- λNh

λG

i

6

¾ G̃, ι̃ - λι

i

6

Similarly, using Proposition 51 and the commutativity of the right triangle in

(6.7), one proves the commutativity of

λPhx ¾Ψ, Θ- λNhx

λGx

i

6

¾ G̃, ι̃ - λιx

i

6

We sum up these facts in Fig. 6.3, a detailed version of Fig. 6.1 in which all

squares and triangles remain commutative.

A proposal

We are now ready to propose an alternative architecture for the “space of calculi”.

Figures 6.2 and 6.3 do not treat the sequent calculus and the natural deduction

sides symmetrically. They are biased towards the natural deduction side. This

asymmetry is the graphical manifestation of a preconception, namely that the

calculi λN , λNh and λNhx are “natural deduction systems” in the same sense

that λ and λx are natural deduction systems, and, therefore, that the latter

should be “close” to the former.

However, we propose that λ (and λx, if substitution is to be explicit) is

“equidistant” to λP , λPh and λPhx, on the one hand, and to λN , λNh and
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λPhx ¾ Ψ, Θ - λNhx
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Figure 6.3: The old landscape (detailed version)
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λPhx ¾ Ψ, Θ - λNhx
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Figure 6.4: The new landscape

λNhx, on the other hand. Indeed, if λ, λι and λG are mere rephrasings of each

other, if they are the same object, why should one consider λ and λι to be “closer”

to N -systems than λG? Therefore, we think that the true proof-theoretical land-

scape (in its simple version) is as shown in Fig. 6.4.

If N -systems are regarded as “natural deduction” systems (as we do in this

thesis, because they prefer elimination rules to left rules), then λ and λx should

be regarded as systems of a neutral kind, belonging to the intersection of sequent

calculus and natural deduction. Notice that, with this taxonomy, λ belongs to

the natural deduction side as much as it belongs to the sequent calculus side -

something that sounds like a heresy 9.

9An alternative taxonomy is to consider as being “natural deduction” systems those cal-
culi whose purpose is to model informal reasoning (this is the sense of the word “natural” in
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Our proposal implies that there are pairs of systems and pairs of morphisms

with homologous (let us say “dual”) roles. For instance, the dual of Gentzen’s em-

bedding G is ι. The most interesting example concerns N and Prawitz’s mapping

P . Prawitz’s mapping is the “diagonal” of the λ-square

λG ¾ G
λ

ª¡
¡

¡
¡

¡
P

λP

( )−

?
¾

Ψ
λN

N
?

Similarly, there is a “dual” square

λ
ι - λι

@
@

@
@

@

N
R

λP

P
?

Θ
- λN

( )−

?

whose “diagonal” is N . Indeed, the lower triangle commutes because P = Ψ ◦N
and Θ ◦ Ψ = id, whereas the upper triangle is the lower triangle of (6.8).

[Gentzen, 1935, Prawitz, 1965]). In this case, λ and λx keep being natural deduction systems
(perhaps λx even more than λ, because of the presence of a form of sharing). However, similarly
to sequent calculus, N -systems become “unnatural” because the distinction between two kinds
of elimination rules seems artificial from the strict point of view of modelling informal reasoning.
With this taxonomy, natural deduction is simultaneously a fragment of sequent calculus and a
fragment of N -systems.



Chapter 7

Two applications

In this chapter we give computational applications for two of the contributions of

this thesis. First, we show that the new assignment Θ, particularly the extended

λ-calculi that constitute its range, provide a language with which one can refine

Curien and Herbelin’s interpretation of sequent calculi in the canonical fragment.

Second, we will show that the λ-calculi we defined for the canonical fragment

have a remarkable relation with call-by-name abstract machines.

7.1 Refinement of computational interpretation

In this section we consider the assignment Q (which amounts to the traditional

assignment ϕ - see Proposition 36) and the new assignment Θ, explaining what

new insights the latter brings to the computational interpretation of sequent

calculus.

We will focus on the relation between λPh and λP , on the one hand, and λNh

and λN , on the other hand. This is so because it is in the differences between

these systems that the distinction between sequent calculus and natural deduction

is expressed, particularly in the opposition between two ways of representing

applicative terms. As became clear in the preceding chapters, λ-abstraction and

mid-cuts (or explicit substitution) are constructors that exist in both kinds of

systems.

It is useful to situate ourselves with the following diagram

218
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λPh
Θ2 - λNh

@
@

@
@

@

Q2

R

λ

¡
¡

¡
¡

¡
Q1

µ

λP Θ1 - λN
where we distinguished mappings with the same name by means of indexes. Recall

that Q1 and both Θ1 and Θ2 are isomorphisms, but Q2 is not. Typically, Q2

collapses →h-steps.

We will adapt to λPh and λP the computational interpretation contained in

some remarks and insights due to Herbelin and Curien. Since these are in terms

of evaluation contexts, we explain the latter first.

An evaluation, or applicative, context is an expression generated by the gram-

mar

E ::= [−] |EN (7.1)

Informally, it is an applicative λ-term with a “hole” [−] in the head position.

These evaluation context are call-by-name, as opposed to call-by-value ones in

e.g. [Felleisen et al., 1986]. Filling the hole of E = [−]N1...Nk with M results

in the applicative term MN1...Nk of the λ-calculus, denoted E[M ]. A hole [−]

is itself a context. Given a context E and a term N , we can form another

context E[[−]N ] such that E[[−]N ][M ] = E[MN ]. Given contexts E,E′, there

is a context E ◦ E ′ satisfying (E ◦ E ′)[M ] = E ′[E[M ]].

Herbelin and Curien’s insights [Herbelin, 1995, Curien and Herbelin, 2000]

are as follows: (1) the interpretation of a list is an evaluation context. (2) []

is [−]. (3) u :: l is E[[−]N ], where E,N are the interpretations of l, u. (4) a

head-cut tl is interpreted as the result of filling the hole of E with M , if the

interpretation of l, t is E,M .
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In our setting, head-cuts are always of the form t(u · l), hence we refine (4)

as: a head-cut t(u · l) is interpreted as the result of filling the hole of E with the

application MN , if the interpretation of l, t, u is E,M,N . Therefore, we will only

fill holes with applications. Moreover, it is clear that append(l, l′) corresponds to

E ◦ E′.

Now, interpretation (4) of a head-cut t = t0(u1 · [u2, ..., uk]) is nothing but

Q(t). Indeed, if Qt0 = M and Qui = Ni then

Q(t0(u1 · [u2, ..., uk])) = Q′(M,N1, [u2, ..., uk])

= MN1N2...Nk

= ([−]N2...Nk)[MN1] .

(7.2)

But interpreting t0(u1 · [u2, ..., uk]) as MN1N2...Nk seems more like saying what

the head-cut is not. Indeed, if we stare enough at (7.2) we conclude that head-cut

t0(u1 · [u2, ..., uk]) is as if MN1N2...Nk was decomposed into the application MN1

and the evaluation context [−]N2...Nk. Thus λPh may be seen as a version of λ

which, instead of application, includes a construction

Q′(MN,E) , (7.3)

representing an applicative term. MN is its head application. E ranges over

expressions

E ::= [−] |N :: E

representing evaluation contexts (the meaning of N :: E is E[[−]N ]). The

head application MN and E contain the information needed for reconstruct-

ing the applicative term. The point of (7.3) is that the head application, deeply

buried in traditional syntax, is brought to the surface. This is a known theme

[Dyckhoff and Pinto, 1998]. We will also refer to MN in (7.3) as the focus .

We call (7.3) a Q-expression, and it would be an interesting exercise to rewrite

the definition of λPh with this new syntax for head-cuts.

When the focused application is not a value application, we say that the focus

is imperfect , and the Q-expression is of the form
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Q′(Q′(MN,E)N ′, E ′) .

This is precisely how a h-redex is written in this syntax. Then, a →h-step looks

like

Q′(Q′(MN,E)N ′, E ′) →h Q′(MN,E ◦ (N ′ :: E ′)) , (7.4)

which may be interpreted as improvement of focus, a necessary feature when

imperfect focus is allowed. However, by Lemma 50,

Q′(Q′(M,N, l),Qu′, l′) = Q′(M,N, append(l, u′ :: l′)) .

Actually, both members of this equation are one and the same λ-term

(MNN2...Nk)N
′N ′

2...N
′
m = MNN2...NkN

′N ′
2...N

′
m .

In λP , Q-expressions are restricted to the case when the focused applica-

tion is a value application. The isomorphism Q1 means that these are enough

and that, conversely, there is a canonical way of writing an application as a Q-

expression. Actually, λP may be seen as a formalisation of the vector syntax of

[Joachimski and Matthes].

With the interpretation of head-cuts as Q-expressions, we sum up four for-

mulations of the λ-calculus with applicative terms

λPh λNh

@
@

@
@

@

Q2

R ª¡
¡

¡
¡

¡
| |2

λ

¡
¡

¡
¡

¡
Q1

µ

ª..
..
..
..
..
..
..

P

..............
N

R

I@
@

@
@

@

| |1

λP λN
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In N -systems, applicative terms are of the form app(A). In P-systems, they

are Q-expressions. If an applicative term is mapped to an application MN in

λ, we say that the former is an unfolding of the latter. Unfoldings of the same

application may be linearly ordered: the smaller the head application, the bigger

the unfolding. Mappings P and N send each application to its maximal unfolding.

Commutative triangles

λ

¡
¡

¡
¡

¡
Q1

µ I@
@

@
@

@

| |1

λP ¾
Ψ1, Θ1

- λN

say that λP and λN are not only isomorphic, but also coherent as formulations

of λ with applicative terms. Indeed, if two (representations of) applicative terms

are related by Ψ, Θ, they are unfoldings of the same application. If we define | |2
as the composition of ( )− : λNh → λN with | |1 : λN → λ, and if we recall the

commutativity of

λPh ¾Ψ2, Θ2- λNh

λP

( )−

?
¾
Ψ1, Θ1

- λN

( )−

?

we get the commutativity of

λPh ¾ Ψ2, Θ2 - λNh

@
@

@
@

@
Q2

R ª¡
¡

¡
¡

¡

| |2
λ
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which says that λPh and λNh are not only isomorphic, but also coherent as

extensions of λ with applicative terms.

Summarising our quest for the computational ingredient that tells the canon-

ical fragment of sequent calculus from natural deduction: if the λ-calculus is the

only representative of the natural deduction world, then the formalisation of ap-

plicative terms that may be found in P-systems is entirely due to the change to

a sequent calculus format. If N -systems are allowed in the natural deduction

world, then the difference between P-systems and natural deduction is merely in

the representation of applicative terms, and what is typical of P-systems is the

focus on the head application.

Let us see yet another interpretation of P-systems. This time, head-cuts in

λPh and λP are interpreted as evaluation contexts, not for λ, but for λNh and

λN , respectively.

We define evaluation contexts for λNh and λN exactly as in (7.1), with the

proviso that EN is to be understood as tail application. We are supposed to fill

the hole of these contexts with head applications, and the result of filling MN1

in the hole of E = []N2...Nk is the applicative term app(MN1N2...Nk).

Then, if Θt0 = M and Θui = Ni,

Θ(t0(u1 · [u2, ..., uk])) = Θ′(MN1, [u2, ..., uk])

= app(MN1N2...Nk)

= ([−]N2...Nk)[MN1] .

This suggests considering λPh and λP as versions of λNh and λN , respectively,

in which an applicative term (now in the formal sense of λNh and λN ) is decom-

posed into its head application (again in the formal sense of λNh and λN ) and an

evaluation context (for λNh or λN ). Head-cuts become expressions displaying

this information, which we name Θ-expressions and look like

Θ′(MN,E) . (7.5)

Both in the case of λNh and of λN there is a mapping, actually an isomor-

phism, that decomposes each applicative term in a canonical way, by putting in
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the focus the head application. This mapping is Ψ. The picture now looks like

λPh
Θ2 -

¾.....................
Ψ2

...................... λNh

ª¡
¡

¡
¡

¡
| |2

λ

I@
@

@
@

@

| |1

λP
Θ1 -

¾.......................
Ψ1

........................ λN

N -systems are now responsible for the formalisation of applicative terms. P-

systems are isomorphic versions of N -systems in which applicative are represented

with focus on the head application, with the meaning of “applicative term” and

“head application” given in each N -system.

A →h-step now reads

Θ′(Θ′(MN,E)N ′, E ′) →h Θ′(MN,E ◦ (N ′ :: E ′)) , (7.6)

but this is simply a →h-step in λNh written with Θ-expressions. Indeed, it

follows from Lemma 56 that

Θ′(Θ′(MN, l)Θu′, l′) →h Θ′(MN, append(l, u′ :: l′)) ,

which is, perhaps, more easily understood as the reduction step

app(app(MNN2...Nk)N
′N ′

2...N
′
m) →h app(MNN2...NkN

′N ′
2...N

′
m) . (7.7)

The interpretation of (7.6) as improvement of focus is now somewhat non-

primitive. We must not forget that what happens in (7.6) is the same as in

(7.7). That is, when we recognise that the head application of an applicative

term is not a value application, we are able to reorganise the applicative term
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so that the head application becomes simpler. The meaning of h in both λNh

and λPh is to simplify the head application and ultimately turn it into a value

application. However, in λNh, the effect is that the value application becomes

even more deeply buried (because the applicative term becomes longer). In λPh,

by the fortunate conjugation with the focus on the head application, the value

application is brought closer to the surface of the applicative term.

It is no surprise, then, that this effect of bringing the value application closer

to the surface has applications in the setting of weak head evaluation. This is

what we are going to study in the next section.

7.2 Call-by-name abstract machines

In this section, we show that the λ-calculi we have defined in Chapter 3 for the

canonical fragment have the remarkable property that their reductions rules may

be seen as transitions rules for call-by-name abstract machines. In the case of

λP and λPh, this is exactly so. An explanation for this is already present in

the observation that lists in Herbelin-style calculi model stacks in environment

machines [Curien and Herbelin, 2000]. In the case of λPhx, there is only a feature

that is not immediately modelled by a reduction rule of the calculus, namely the

search for a t buried inside a mid-cut like

t{x1 := u1}...{xn := un} .

Here it is easy to speculate that the problem lies in the fact that there is no

independent syntactic class for lists of bindings (i.e. environments) in λPhx, as

there would be if explicit substitutions in this calculus were in the style of the

λσ-calculus [Abadi et al., 1991].

Simple machines

We show what abstract machines are associated with λP and λPh. These ma-

chines will be simple, in the sense that if the program is not fully evaluated, then
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it is itself the redex to be reduced next. Therefore, redexes do not have to be

searched.

Definition 20 In λ, the weak head (or call-by-name) reduction (notation: →CBN)

is the least binary relation → on terms closed under

β
(λx.M)N → M [N/x]

Elim1
M → M ′

MN → M ′N

A λ-term is a weak head normal form (abbrev. whnf) if it is of the form

xN1...Nk or λx.M (any x,N1, ..., Nk,M in λ).

Relation →CBN is actually a partial function also named CBN . A λ-term M

is a whnf iff CBN(M) is undefined. We define the weak head (or CBN) reduction

of M as the repeated application of CBN starting from M . This process either

terminates with a whnf of M , or diverges. The following basic result asserts the

completeness of →CBN .

Theorem 15 In λ, if M →∗
β N and N is a whnf, then the weak head reduction

of M terminates (with a whnf of M).

Therefore, CBN may be seen as a rudimentary machine. We may use terminology

accordingly. For instance, we may say that CBN is loaded with M , meaning that

CBN is applied to M . Although rudimentary, the machine will always obtain

the whnf of a given term, if there is one to be found.

Definition 21 In λN , we define the weak head (or call-by-name) reduction

(notation: →CBN) over terms and over application as the least pair of binary

relations → closed under

β1
app((λx.M)N) → M [N/x]

App A → A′
app(A) → app(A′)

β2
((λx.M)N)N ′ → M [N/x]@N ′ AElim1 A → A′

AN → A′N

Definition 22 In λP, the weak head (or call-by-name) reduction (notation:

→CBN) is the least binary relation → on terms closed under
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β1
(λx.t)(u · []) → subst(u, x, t)

β2
(λx.t)(u · (v :: l)) → insert(v, l, subst(u, x, t))

A λP-term is a whnf if it is of the form x or x(u · l) or λx.t (any x, u, l, t in λP).

In λP , the weak head reduction is simply the notions of reduction βi, i.e. →βi

restricted to the “top level” or “empty context”.

Relation →CBN in λP is again a partial function also named CBN . A λP-

term t is a whnf iff CBN(t) is undefined. We define the weak head (or CBN)

reduction of t as the repeated application of CBN starting from t. This process

either terminates with a whnf of t, or diverges. Again, we regard CBN as a

rudimentary machine.

We now prove that the isomorphism between →β in λ and in λN restricts to

weak head reduction, and later we prove the same for →β in λN and λP .

To begin with, we need a restricted form of Lemma 39.

Lemma 63 In λN , if M →CBN M ′, then M@N →CBN M ′@N .

Proof: It is an adaptation of the proof of part 1. of Lemma 39, and is by case

analysis of M .

M = x and M = λx.M0 are vacuous cases. Let M = app(A). Then, again

there are two subcases.

Subcase 1: A →CBN A′ and M ′ = app(A′). Follows by closure under AElim1.

Subcase 2: A = (λx.M0)N0 and M ′ = M0[N0/x]. Follows by closure under

β2. ¥

Theorem 16 The following holds:

1. M1 →CBN M2 in λ iff NM1 →CBN NM2 in λN .

2. M1 →CBN M2 in λN iff |M1| →CBN |M2| in λ.
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Proof: 1. “Only if”: the proof is by induction on M1 →CBN M2 in λ, as in the

proof of Theorem 3. However, only first and third cases are relevant. The former

now follows by closure of →CBN in λN under β1, whereas the latter requires

closure under App and Lemma 63.

2. “Only if”: the claim is proved together with the claim that if A1 →CBN A2

in λN , then |A1| →CBN |A2| in λ by simultaneous induction on M1 →CBN M2

and A1 →CBN A2 in λN , as in the proof of Theorem 2. This time, only cases β1,

App, β2 and AElim1 are relevant. Cases β1 and β2 follow by closure of →CBN

in λ under β. Case AElim1 requires closure under Elim1 and IH2. Case App is

by IH2.

The “if” part of 1. follows from the “only if” part of 2. and |N (M)| = M ,

whereas part “if” of 2. follows from the “only if” part of 1. and N|M | = M . ¥

We now need a restricted form of Lemma 43.

Lemma 64 If A →CBN A′, then Θ′(A, l) →CBN Θ′(A′, l).

Proof: Again by a straightforward induction on l. Case l = [] requires closure of

→CBN in λN under App, whereas case l = u0 :: l0 requires closure under AElim1.

¥

Theorem 17 The following holds:

1. M →CBN M ′ in λN iff ΨM →CBN ΨM ′ in λP.

2. t →CBN t′ in λP iff Θt → Θt′ in λP.

Proof: 1. “Only if”: the claim is proved together with the claim that if A →CBN

A′ in λN , then Ψ′(A, l) →CBN Ψ(M ′, l) (all l) in λP , by simultaneous induction

on M →CBN M ′ and A →CBN A′, as in the proof of Theorem 4. This time, only

cases i, iii, iv and vii−a are relevant. Cases i and iv require top level →βH
-steps,

whereas case iii and vii − a follow by IH2.

2. “Only if”: As in case i of Theorem 5. Instead of Lemma 43, use Lemma

64.
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The “if” part of 1. follows from the “only if” part of 2. and ΘΨM = M ,

whereas part “if” of 2. follows from the “only if” part of 1. and ΨΘt = t. ¥

Recall that P : λ → λP is Ψ ◦ N and its inverse is denoted Q. Observe that

both P and Q send whnfs to whnfs. We say that they preserve whnf.

One may use CBN in λP for reducing λ-terms to whnf. Given M in λ, load

the machine of λP with P(M) and perform in λP the weak head reduction. If

this terminates with u, say, return Qu. Thus, the machine is correct.

Theorem 18 (Completeness) In λP, if t →∗
β u and u is a whnf, then the weak

head reduction of t terminates (with a whnf of t).

Proof: Since Q is an isomorphism and preserves whnf, Qt →∗
β Qu in λ and Qu

whnf. By completeness of →CBN in λ, the weak head reduction of Qt terminates.

By part 1. of Theorems 16 and 17, and the fact that P preserves whnfs, the weak

head reduction of t terminates. ¥

There is an advantage of CBN in λP over CBN of λ: in the former, we do

not have to search for the redex to be reduced next. If a term is not a whnf, the

term itself is the redex to be reduced next.

Now, how about λPh? Is there a simple weak head evaluator associated with

this calculus? The answer is affirmative.

Definition 23 In λPh, the weak head (or call-by-name) reduction (notation:

→CBN) is the least binary relation → on terms closed under

β1
(λx.t)(u · []) → subst(u, x, t)

β2
(λx.t)(u · (v :: l)) → subst(u, x, t)(v · l)

h
t(u · l)(u′ · l′) → t(u · append(l, u′ :: l′))

A λP-term is a whnf if it is of the form x or x(u · l) or λx.t (any x, u, l, t in

λPh).
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In λPh, the weak head reduction is simply the union of the notions of reduction

βi and h, i.e. →βi and →h restricted to the “top level” or “empty context”.

Relation →CBN in λPh is again a partial function also named CBN . A

λPh-term t is a whnf iff CBN(t) is undefined. We define the weak head (or

CBN) reduction of t as the repeated application of CBN starting from t. This

process either terminates with a whnf of t, or diverges. Again, we regard CBN

as a simple machine.

Recall mapping ( )− : λPh → λP .

Lemma 65 The weak head reduction of t in λPh terminates iff the weak head

reduction of t− in λP terminates. Moreover, if the former terminates with u, the

latter terminates with u−.

Proof: One goes back to Proposition 5 and Lemma 19 and checks that a →βi-

step in λPh (at the top level) is mapped by ( )− to a similar step in λP (at the

top level) and that a →h-step in λPh is collapsed by ( )− in λP . Moreover, ( )−

preserves whnf. This is sufficient for the “only if” part and the second statement.

As to the “if” part, first observe that, if t− →CBN v in λP , then there is tk

such that t →CBN tk in λPh and t−k = v. Indeed, if t− is not whnf, neither is t,

because ( )− preserves whnf. Since →h is terminating and ( )− collapses h-steps,

there is k ≥ 1 such that the weak head reduction of t looks like t = t0 →h ... →h

tk−1 →βi tk. Moreover, t−j = t−, when 0 ≤ j < k, and t−k−1 →CBN t−k . But →CBN

is a function, hence t−k = v.

Now, suppose the weak head reduction of t− in λP terminates. From the last

paragraph, it terminates with t−k , for some tk such that t →∗
CBN tk. Is tk a whnf

in λPh? If it is not, the weak head reduction of tk can at most perform →h-steps

(otherwise t−k would not be whnf in λP). But →h is terminating. ¥

Hence, we can use the machine of λPh to perform weak head reduction of λP .

Load the former with a λP-term t and perform weak head reduction in λPh. If

this terminates with u, return u−. This works because of the previous lemma and

t− = t. Thus, the machine is correct.
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Theorem 19 (Completeness) In λPh, if t →∗ u and u is a whnf, then the

weak head reduction of t terminates (with a whnf).

Proof: By the properties of ( )−, t− →∗ u− and u− is a whnf. By Theorem 18,

the weak head reduction of t− in λP terminates. Hence, by Lemma 65, the weak

head reduction of t in λPh terminates. ¥

Notice that the machine associated with λPh is very much like a Krivine

machine without environments [Krivine][Curien and Herbelin, 2000], except that

the former runs programs in λPh, whereas the latter runs programs in λ (i.e.

λG).

Similarly to λP , a term in λPh is either a whnf or is itself the redex to be

reduced next. In the machine for λP , this redex is always a βi-redex. In the

machine for λPh, this is not the case, it may be a h-redex. But the effect of

h-reduction is to bring the value application to the surface, that is, to bring the

applicative term closer to the form of a βi-redex.

A Herbelin-style abstract machine

Now we want to obtain the weak head reducer associated with λPhx. We will

present the definition of the weak head reduction in λPhx in the form of an

abstract machine, which we name the Herbelin-style abstact machine (HAM).

The states, or dumps, of the HAM are defined as follows (where Term is the

class of terms of λPhx):

Dump = Term × Environment × Stack

Environment = Binding∗

Stack = Term∗

Binding = V ar × Term

The main point is that dumps should be regarded as λPhx-terms. To make

this more apparent, we will use a notation for bindings, environments and stacks
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that makes the reading of dumps as terms easier. Environments are ranged over

by e, e′, etc. Bindings are written {x := t} and ranged over by b. The cons of

a new binding is written {x := t}e, the empty environment is written as a blank

or as − and append of environments as ee′. Stacks are ranged over by l, l′, etc.

Let d, d′, etc. range over dumps. The cons of a new term is written as u :: l and

the empty stack as []. The term associated to the dump

〈t, {x1 := u1}...{xk := uk}, l〉
is

(...(t{x1 := u1})...{xk := uk}) ¯ l

where

t ¯ [] = t

t ¯ (u :: l) = t(u · l) .

If we allow tb to represent a mid-cut (although, crucially, in λPhx there is no

separate syntactic class of bindings), then the reading of dump as terms is easily

specified by: read 〈t, b1...bk, l〉 as (...(tb1)...bk) ¯ l.

The transition rules of the machine may be found in Table 7.1. Each row,

except the rows defining the stopping or final states, defines a transition rule and

displays the states of the machine before and after the transition. We write d → d′

when d and d′ are related by some transition rule. In rule H3, if b = {x := v},
sub(b, l) means sub(v, x, l).

It should be clear that, when dumps are seen as λPhx-terms, there is a cor-

respondence between transition rules and reduction rules of λPhx as follows:

H1 − x2 H2 − x1

H3 − x4 H4 − h

H5 − x3 H6 − bj

Rule H7 corresponds to no reduction rule. As opposed to rule H4 (the other rule

that pushes an object on top of a list) the effect of H7 is not observed in λPhx.
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(H1) x {y := t}e l x e l

(H2) x {x := t}e l t e l

(STOP ) x l − − −

(H3) t(u · l) be l′ tb(ub · sub(b, l)) e l′

(H4) t(u · l) l′ t u :: append(l, l′)

(STOP ) λx.t e [] − − −
(H5) λx.t be u :: l λx.tb e u :: l

(H6) λx.t u :: l t {x := u} l

(H7) t{x := u} e l t {x := u}e l

Table 7.1: Transition rules for the Herbelin-style Abstract Machine

The reason is clear. The stack of arguments is a syntactic object of its own in

the syntax of λPhx, whereas the list of bindings is not. Rule H6 corresponds to

either b1 or b2 according to whether l is [] or not.

Contrary to the simple machines for λP and λPh, the redex to be reduced

next is not always found at the top level. However, observe that such desirable

situation only fails for transition rules that correspond to xi reduction rules.

Let us give some operational intuitions for the HAM. We have in mind starting

the machine with an initial state, i.e. a dump of the form 〈t,−, []〉, for some

λPhx-term t. A dump consists of a term, which we might call the program, a

list of bindings, called the environment, and a stack of arguments. The program

operates over the environment and the stack, but this is only a partially correct

metaphor because rules H3 and H5 use the program as a temporary store. What

is true is that, in the same way as we use the stack for storing arguments as we

go deeper in head-cuts (rule H4), we use the environment for storing bindings as

we go deeper in mid-cuts (rule H7). Rules H1 and H2 perform a look-up in the

environment. Rule H6 is the usual rule creating a new binding and popping the
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stack.

The peculiarity of the HAM is seen in rules H3 and H5 and it derives from

the fact that dumps must be interpreted as λPhx-terms, and in λPhx we cannot

separate the term and the bindings of a mid-cut. A transition H3 is a preliminary

step for H4. The point is that, if the environment is not empty, there is no single

reduction rule in λPhx that allows the argument to pass over the bindings. That

is why, by repeated application of H3, we “hide” the environment, performing at

the same time its duplication. Similarly, a transition H5 is a preliminary step for

H6. Before the application of H6 we have to hide the environment behind the λ

by repeated application of H5.

Given a dump d, at most one transition rule applies. We also want to apply

rules to λPhx-terms. This is done by fixing a canonical way of seeing a term t as a

dump d(t). Outer bindings and “arguments” go to the environment and the stack,

respectively. For instance (λx.t){y := u}(u · l) becomes 〈λx.t, {y := u}, u :: l〉.
Therefore, given a term, at most one of the rules H1 to H6 applies.

Definition 24 In λPhx, the weak head (or call-by-name) reduction (notation:

→CBN) is defined as follows: t →CBN t′ if d(t) →Hi d′, for some i ∈ {1, 2, 3, 4, 5, 6}
and d′ such that d′ is t′ when seen as a term. A λPhx-term is a whnf if it has

one of the forms x, x(u · l) or (λx.t)e (any x, u, l, t, e in λPhx).

Of course, (λx.t)e is an iterated mid-cut. Relation →CBN in λPhx is again a

partial function also named CBN . A λPhx-term t is a whnf iff CBN(t) is

undefined. We define the weak head (or CBN) reduction of t as the repeated

application of CBN starting from t. This process either terminates with a whnf

of t, or diverges.

This time, if we regard CBN as a machine, it is a version HAM’ of the HAM in

which H7 steps are silent. Of course, the HAM and the HAM’ are essentially the

same machine because the HAM can only perform a finite number of consecutive

H7 transitions and a H7 transition does not change the reading of the dump as

a term.

The difference between the HAM and the HAM’ is quite revealing. It shows
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that, contrary to λP and λPh, there is an ingredient missing in λPhx, namely

the immediate availability of the scope t of a “closure”

t{x1 := u1}...{xn := un} .

In the HAM’, the search for t is implicit. In the HAM, it is done by the rule H7,

which is not a reduction rule of λPhx.

We now prove correctness and completeness of the HAM’. The proofs are

analogous to Lemma 65 and Theorem 19. Recall mapping ( )[ : λPhx → λPh.

Let x = x1 ∪ x2 ∪ x3 ∪ x4. Then, →x is terminating. One sees this by going

to Chapter 3 and recalling how xi steps are mapped first to λPhx and later to

λ3 and finally reusing the termination result in [Dyckhoff and Urban, 2001] for

explicit substitution rules and commuting conversion.

Lemma 66 The weak head reduction of t in λPhx terminates iff the weak head

reduction of t[ in λPh terminates. Moreover, if the former terminates with u,

the latter terminates with u[.

Proof: One goes back to Proposition 10 and Lemma 30 and checks that a →βi

or →h step in λPhx (at the top level) is mapped by ( )[ to a similar step in

λPh (at the top level) and that a →xi-step in λPhx is collapsed by ( )[ in λPh.

Moreover, ( )[ preserves whnf. This is sufficient for the “only if” part and the

second statement.

As to the “if” part, first, by the same argument as in Lemma 65, using ter-

mination of →x, one proves that if t[ →CBN v in λPh, then there is tk such that

t →CBN tk in λPhx and t[1 = v.

Now, suppose the weak head reduction of t[ in λPh terminates. From the

last paragraph, it terminates with t[k, for some tk such that t →∗
CBN tk. Is tk a

whnf in λPhx? If it is not, the weak head reduction of tk can at most perform

→xi-steps (otherwise t[k would not be whnf in λPh). But →x is terminating. ¥

Hence, since t[ = t when t is in λPh, both the HAM and the HAM’ are correct

machines for performing weak head reduction of λPh.
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Theorem 20 (Completeness) In λPhx, if t →∗ u and u is a whnf, then the

weak head reduction of t terminates (with a whnf).

Proof: By the properties of ( )[, t[ →∗ u[ and u[ is a whnf. By Theorem 19, the

weak head reduction of t[ in λPh terminates. Hence, by Lemma 66, the weak

head reduction of t in λPhx terminates. ¥

One of the good characteristics of the HAM is its neat organisation. First,

the relation between head-cuts and the stack, and between mid-cuts and the

environment. Second, the understanding of rules H1, H3 and H5 as preliminary

steps for H2, H4 and H6, respectively.

Another characteristic is the proximity with λPhx, and hence with cut elimi-

nation. From a theoretical point of view, this is positive. From a practical point

of view, this brings inefficiency. Since environments do not constitute a separate

syntactic class in the syntax of λPhx, the duplication of the environment by H3

is stepwise and rule H6 requires the environment to be hidden (by rule H5), so

that it does not get in the way to the next argument.
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Conclusions

In this chapter we list the contributions of this thesis and propose future work.

8.1 Contributions

The contributions of this thesis are the following.

First, a systematic definition of calculi of cut-elimination for the canonical

fragment. We considered several right protocols of cut-elimination, with increas-

ing degree of explicitness and stepwise character, starting from λP - a new iso-

morphic copy of λ-calculus as a calculus of cut-elimination - and ending in λPhx.

When the remaining meta-operators of the latter calculus are internalised, we

obtain λPhx, a system close to Herbelin’s λ-calculus, but already outside the

canonical fragment. This systematic process identified in λPhx which (and a

small number of) inter-permutation of cuts are required for simulating full β-

reduction.

Second, a comprehensive study of the relationship between cut-elimination

for the canonical fragment and normalisation. Results here include the isomor-

phism between λP and λ, the identification of the ::-free fragment of the canonical

fragment, the definition of a generalisation of Prawitz’s mapping to non-normal

proofs, the fact that both Gentzen’s and Prawitz’s mappings establish an isomor-

phism between normalisation and a certain cut-elimination procedure, and the

identification of the relation between Prawitz’s mapping and Gentzen’s mapping.

237
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Third, the introduction of a new proof-theoretical tool, namely certain conser-

vative extensions of natural deduction (and corresponding extension of λ-calculus)

based on the idea of a built-in distinction between applicative term and appli-

cation, on the one hand, and between head and tail application, on the other

hand. We proposed a new conceptual organisation of proof-systems and λ-calculi

based on the observation that λ-calculus is in the intersection of the ::-free and

tail-application-free fragments.

Fourth, a reassessment of the relationship between cut-elimination in the

canonical fragment and normalisation, by virtue of the introduction of the men-

tioned conservative extensions of natural deduction. This included the definition

of a mapping Θ that may be seen as a new assignment of λ-terms, taken from

the extensions of the λ-calculus, to proofs in the canonical fragment of sequent

calculus. The main property of this assignment is to be an isomorphism, both in

the sense of sound bijection of proofs and isomorphism of normalisation proce-

dures. Moreover, we had to consider the issue of explicitness also in the natural

deduction side. The conclusion is that (the existence of) isomorphism Θ is insen-

sitive to a varying degree of explicitness in the cut-elimination and normalisation

procedures it bridges.

Fifth, a study of the proof-theoretical status of explicit substitutions, con-

cluding that the issue of explicit substitution in a term calculus is correlated with

the inclusion or not of a cut constructor in a proof-system, and that both issues

are orthogonal to the sequent calculus versus natural deduction divide.

Sixth, contributions to the computational interpretation of sequent calculus.

On the one hand, the λ-calculi for the canonical fragment were shown to be

extensions of the λ-calculus, with a constructor for applicative terms. Relatively

to calculi in the natural deduction side, the difference is that applicative terms

are built with the help of evaluation contexts, instead of tail applications; and

that, instead of being buried, the head application is available at the “surface”

of the applicative term. This structural difference explains that some reduction

rules of λ-calculi for the canonical fragment may be interpreted as transition rules

for abstract call-by-name machines.
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Seventh, from a strict λ-calculus point of view, the proposal of several exten-

sions based on the idea of applicative term, and the proofs of conservativeness,

subject reduction, confluence and strong normalisation of typable terms.

8.2 Future work

In this thesis, we restricted ourselves to (1) intuitionistic implicational logic.

(2) right protocols of cut-elimination. (3) the canonical fragment of sequent

calculus. Obeying such stringent constraints is methodologically correct. One

must be modular and separate the problems. Accordingly, the next step should

be to relax constraint (3) and study right protocols of cut-elimination on the

whole set of sequent calculus derivations for intuitionistic implicational logic. We

would be particularly interested in investigating whether there is an extension

of natural deduction matching this step, and whether the good properties of Θ

resist. Of course, when constraint (3) is relaxed, the permutability problem is

back again. However, we believe that a clearer understanding of the permutation-

free fragment will allow a fresh attack on that problem.

We regard the study of the computational interpretation of sequent calcu-

lus as a contribution to an useful, and perhaps unexpected, extension of the

Curry-Howard isomorphism. Unexpected, because we are not referring to the

“cross fertilisation” [Cardelli, 1997] between type theory and programming lan-

guages, by which strong logics offer sophisticated type systems and, conversely,

programming features like, say, concurrency, challenge a logical understanding.

The extension is of a different kind, observable even if we keep contenting our-

selves with simple types and intuitionistic implicational logic. It is an extension

from natural deduction to other kinds of proof-systems. What varies is not the

logic, it is the system in which we write the proofs and where the normalisation

procedure lives. And correspondingly, in the computational side, we seem to

find different, useful approaches to λ-calculus with benefits for its implementa-

tion. Think of Hilbert systems and combinators, think of the canonical fragment

of sequent calculus and environment machines, think even of linear logic and
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proof-nets, on the one hand, and graph reduction [Wadsworth, 1971] and sharing

graphs [Asperti and Guerrini, 1998], on the other hand. We believe that the most

important thing to do in the future is the full investigation of this new dimension

in the expansion of the Curry-Howard correspondence.
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properties of weak and strong calculi of explicit substitutions. Journal of the

ACM, 43(2):389–402.

[Curien and Herbelin, 2000] Curien, P.-L. and Herbelin, H. (2000). The dual-

ity of computation. In Proceedings of International Conference on Functional

Programming 2000. IEEE.

[Curry and Feys, 1958] Curry, H. B. and Feys, R. (1958). Combinatory Logic.

Noth Holland, Amsterdam.

[Danos et al., 1995] Danos, V., Joinet, J.-B., and Schellinx, H. (1995). LKQ and

LKT : sequent calculi for second order logic based upon dual linear decompo-

sitions of classical implication. In Girard, J.-Y., Lafont, Y., and Regnier, L.,

editors, Advances in Linear Logic, volume 222 of London Mathematical Society

Lecture Notes, pages 211–224. Cambridge University Press.

[Danos et al., 1997] Danos, V., Joinet, J.-B., and Schellinx, H. (1997). A new

deconstructive logic: linear logic. The Journal of Symbolic Logic, 62(2):755–

807.

[di Cosmo and Kesner, 1997] di Cosmo, R. and Kesner, D. (1997). Strong nor-

malization of explicit substitutions via cut elimination in proof nets. In Pro-

ceedings of LICS’97.

[Dragalin, 1988] Dragalin, A. (1988). Mathematical Logic: Introduction to Proof

Theory, volume 67 of Translations of Mathematical Monographs. American

Mathematical Society, Providence, Rhode Island.

[Dyckhoff, 1997] Dyckhoff, R. (1997). Dragalin’s proof of cut-admissibility for

the intuitionistic sequent calculi G3i and G3i’. Technical Report CS/97/8,

Computer Science Division, St. Andrews University.



Bibliography 243

[Dyckhoff and Pinto, 1998] Dyckhoff, R. and Pinto, L. (1998). Cut-elimination

and a permutation-free sequent calculus for intuitionistic logic. Studia Logica,

60:107–118.

[Dyckhoff and Pinto, 1999] Dyckhoff, R. and Pinto, L. (1999). Permutability of

proofs in intuitionistic sequent calculi. Theoretical Computer Science, 212:141–

155.

[Dyckhoff and Urban, 2001] Dyckhoff, R. and Urban, C. (2001). Strong normal-

isation of Herbelin’s explicit substitution calculus with substitution propaga-

tion. In Fourth International Workshop on Explicit Substitutions: Theory and

Applications to Programs and Proofs (WESTAPP’01).
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