Games for Modal and Temporal Logics

Martin Lange

Doctor of Philosophy
Laboratory for Foundations of Computer Science
School of Informatics

University of Edinburgh
2002

Abstract

Every logic comes with several decision problems. One of them istiael checking
problem: does a given structure satisfy a given formula? Another isatigfiability
problem: for a given formula, is there a structure fulfilling it?

For modal and temporal logics; tableaux, automata and games are commonly accepted
as helpful techniques that solve these problems. The fact that these logics possess
the tree model property makes tableau structures suitable for these tasks. On the
other hand, starting with hi's work, intimate connections between these logics and
automata have been found. A formula can describe an automaton’s behaviour, and
automata are constructed to accept exactly the word or tree models of a formula.

In recent years the use of games has become more popular. There, an existential and
a universal player play on a formula (and a structure) to decide whether the formula
is satisfiable, resp. satisfied. The logical problem at hand is then characterised by the
guestion of whether or not the existential player has a winning strategy for the game.

These three methodologies are closely related. For example the non-emptiness test
for an alternating automaton is nothing more than a 2-player game, while winning
strategies for games are very similar to tableaux.

Game-theoretic characterisations of logical problems give rise to an interactive
semantics for the underlying logics. This is particularly useful in the specification
and verification of concurrent systems where games can be used to generate
counterexamples to failing properties in a very natural way.

We start by defining simple model checking games for Propositional Dynamic Logic,
PDL, in Chapted. These allow model checking for PDL in linear running time. In
fact, they can be obtained from existing model checking games for the alternating free
p-calculus. However, we include them here because of their usefulness in proving
correctness of the satisfiability games for PDL later on. Their winning strategies are
history-free.

Chapter5 contains model checking games for branching time logics. Beginning
with the Full Branching Time Logic CTLwe introduce the notion of focus game
Its key idea is to equip players with a tool that highlights a particular formula in

a set of formulas. The winning conditions for these games consider the players’
behaviours regarding the change of the focus. This proves to be useful in capturing
the regeneration of least and greatest fixed point constructs iri.CDeciding the
winner of these games can be done using space which is polynomial in the size of the
input. Their winning strategies are history-free, too.

We also show that model checking games for CTarise from those for CTL by
disregarding the focus. This does not affect the polynomial space complexity. These
can be further optimised to obtain model checking games for the Computation Tree
Logic CTL which coincide with the model checking games for the alternating free
p-calculus applied to formulas translated from CTL into it. This optimisation improves
the games’ computational complexity, too. As in the PDL case, deciding the winner
of such a game can be done in linear running time. The winning strategies remain
history-free.

Focus games are also used to give game-based accounts of the satisfiability problem
for Linear Time Temporal Logic LTL, CTL and PDL in Chapté: They lead

to a polynomial space decision procedure for LTL, and exponential time decision
procedures for CTL and PDL. Here, winning strategies are only history-free for the
existential player. The universal player’s strategies depend on a finite part of the history
of a play.

In spite of the strong connections between tableaux, automata and games their
differences are more than simply a matter of taste. Complete axiomatisations for LTL,
CTL and PDL can be extracted from the satisfiability focus games in an elegant way.
This is done in Chapter by formulating the game rules, the winning conditions and
the winning strategies in terms of an axiom system. Completeness of this system then
follows from the fact that the existential player wins the game on a consistent formula,
l.e. it is satisfiable.

We also introduce satisfiability games for CThased on the focus approach. They
lead to a double exponential time decision procedure. As in the LTL, CTL and
PDL case, only the existential player has history-free winning strategies. Since these
strategies witness satisfiability of a formula and stay in close relation to its syntactical
structure, it might be possible to derive a complete axiomatisation for @ these

iv

games as well.

Finally, Chapter9 deals with Fixed Point Logic with Chop, FLC. It extends
modal p-calculus with a sequential composition operator. Satisfiability for FLC is
undecidable but its model checking problem remains decidable. In fact it is hard for
polynomial space.

We give two different game-based solutions to the model checking problem for FLC.
Deciding the winner for both types of games meets this polynomial space lower
bound for formulas with fixed alternation (and sequential) depth. In the general case
the winner can be determined using exponential time, resp. exponential space. The
former result holds for games that give rise to global model checking whereas the
latter describes the complexity of local FLC model checking. FLC is interesting for
verification purposes since it — unlike all the other logics discussed here — can describe
properties which are non-regular.

The thesis concludes with remarks and comments on further research in the area of
games for modal and temporal logics.

Acknowledgements

First of all, I wish to thank my supervisor Prof. Colin Stirling for the support and
guidance | got from him. His supervision was nothing less than excellent, mainly
because he gave me the freedom to choose the topic that | wanted to work on and
broadened my horizon by getting me interested in problems related to it. He was
always able to supply me with new and good ideas whenever | got stuck on a problem
that seemed unsolvable for me at that moment. It only took the first few months of
work with him in Edinburgh to make me realise that | need not worry about producing
a PhD thesis in reasonable time.

| also would like to thank Prof. Javier Esparza and Prof. Mogens Nielsen for agreeing
to examine this thesis. | hope they do not regret it once they have read through all of
this.

Further thanks go to LFCS which provided a nice and good research environment for
my time at Edinburgh. Although | began to like Edinburgh a lot after surviving a
dark and unpleasant winter | am very grateful to LFCS for letting me visit BRICS in
Arhus, Denmark. Again, they provided a nice and good research environment during
my three months stay as a Marie Curie Fellow there as well. | would like to thank Prof.
Mogens Nielsen again, this time for the hospitality | received there. The same holds
for Uffe Engberg. Claus Brabrand did his best to provide me with a social life there,
too. Special thanks go to Jesper Henriksen for initiating my stay, for making me feel
welcome there, for not wasting my time on difficult and uninteresting problems and,
finally, for giving me special thanks credit in his thesis.

| also wish to thank various people at LFCS who became more than just colleagues. |
had a great time with my office mate Marco Kick, with Alex Simpson, Tom Chothia,
Daniele Turi, Martin Grohe and Markus Frick.

Prof. Colin Stirling and Prof. Martin Hofmann deserve to be thanked for agreeing on
a deal that enabled me to take up a position in Munich before finishing this thesis.

Then, | want to thank my parents who have always supported me in every way. Without
their help | would not have had the chance to go to Edinburgh, to study for a PhD or
to study at all. Equally, I wish to thank my non-academic friends for not losing touch

Vil

with me after | went to Scotland.

Finally, | wish to express my utmost gratitude to my wife Becky who has been very
understanding and helpful whenever composing this thesis required it. | especially
thank her for her long-distance support during my timeditus and, while | am
writing this, my time in Munich. She is without a doubt the best side-effect that my
PhD studies in Edinburgh have produced.

viii

Declaration

| declare that this thesis was composed by myself, that the work contained herein is
my own except where explicitly stated otherwise in the text, and that this work has not
been submitted for any other degree or professional qualification.

Chapter5 has been published ilL$02K, preliminary versions appeared dsS0(
and Lan0(]. Sections6.1, 6.2, 7.1 and7.3 have been published irL§01]. A
slightly different version of Sectiof.1 can be found inllS02g. Section9.2 has
been published inlan024j.

(Martin Langg

To those who do not dedicate
their thesis to themselves.

Xi

Table of Contents

Introduction

Preliminaries

2.1 Mathematical Logics.
22 FixedPoints
2.3 Labelled Transition Systems
24 TemporalLogiCS. e e
25 ModallLogics.
2.6 Games
2.7 Winning Strategies.
2.8 Algorithms e e

Background

3.1 Tableaux
3.2 Automata.
3.3 Games

3.4 OVEIVIEWS. o o e e e e e
Model Checking Games for Propositional Dynamic Logic

Model Checking Games for Branching Time Logics

5.1 Focus Games and Setsof Formulas.

Xiii

12
16
20
27

50
52

57
57
60
67
71

79

93

5.2 Model Checking GamesforCTL.
5.3 Model Checking GamesforCTL.
5.4 Model Checking GamesforCTL.
5.5 Model Checking GamesforBLTL

Satisfiability Games for LTL, CTL and PDL

6.1 Satisfiability Gamesfor LTL.
6.2 Satisfiabiity GamesforCTL
6.3 Satisfiability GamesforPDL

Complete Axiomatisations for LTL, CTL and PDL
7.1 A Complete Axiomatisationfor LTL
7.2 A Complete AxiomatisationforCTL

7.3 A Complete AxiomatisationforPDL

Satisfiability Games for CTL*

Model Checking Games for Fixed Point Logic with Chop
9.1 Global Model Checking GamesforFLC.
9.2 Local Model Checking GamesforFLC

10 Further Research

Index

Bibliography

Xiv

135
135
152
164

177
179
186
193

201

239
239
251

267

275

281

2.1

3.1
3.2
3.3
3.4

4.1
4.2
4.3

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9

6.1

List of Figures

The transition system for Exam@®8&. 38
The history of model checking.. 72
The history of satisfiability checking.. 74
The model checking and satisfiability checking complexities.. . . 75
Expressiveness in the family of modal and temporal logics.. . . . 77
The rules for the PDL model checkinggames. 81
The fullgame tree for Examp#. 83
The rules for extensionsof PDL.. 91
The model checkinggamesrulesforCTL. 97
The unfolding rules for the CTLmodel checking games.. 98
The transition system for Exam@é. 101
The game tree for playerof Example57. 102
The transition system for Exam@e&. 103
The plays without focus of Exampd®. 104
The winning conditions for the CTLmodel checking games.. . . . 106
The rules for the CTL model checkinggames. 124
The rules for the CTL model checkinggames. 128
The satisfiability game rulesfor LTL.. 137

XV

6.2 The interesting part of the game tree of Exangde 139
6.3 The satisfiability gamerulesforCTL. 154
6.4 The PDL satisfiability game rules for formulas.. 165
6.5 The PDL satisfiability game rules for programs. 166
/.1 A complete axiomatisationfor LTL.. 184
7.2 A complete axiomatisation for LTL fronQPSS8Dp 185
7.3 Acomplete axiomatisationfor CTL. 191
7.4 A complete axiomatisation for CTL frorEH8Y. 192
7.5 Acomplete axiomatisationforPDL. 197
7.6 The Segerberg axiomatisationforPDL.. 198
8.1 The CTL satisfiability game rules for boolean operators. 204
8.2 The game rules for path quantified formulas.. 205
8.3 The game rules for propositions.. 207
8.4 The unfolding rules for the CTLsatisfiability games. 208
8.5 The next-step and focus rules for the ChHames. 209
8.6 Player's winning play of Examplel59. 213
8.7 A simplified version of the game tree for Exampt, 215
8.8 AmodelTfor A1,E21. 227
9.1 The rules for the global FLC model checking games. 241
9.2 The game tree for playerfrom Examplel8z 243
9.3 The rules for the local FLC model checking games. 252
9.4 Played's winning play of Examplé9& 254
9.5 Played's game tree of Exampl20% 264
10.1 A sketch of playes’s game tree for Exampl209 273

XVi

Chapter 1

Introduction

What do you need that for, Dude?

THEODOREDONALD

KARABOTSOS

Formal Verification

Computers and electronic devices play an important role in our world today. People
constantly rely on the fact that they work correctly. One wants to be sure that a digital
alarm clock goes off exactly at the time it is set for. A phone call should be directed
only to the number that was dialed. Failure of these features of course is not life
threatening. But there are examples where computers perform tasks that simply must
not go wrong.

Take an airplane’s control for example. Many aspects of steering an airplane are

automated, especially those that take effect in a dangerous situation when a machine’s
precision or speed are preferred over human action. If the actions taken by the

2 Chapter 1. Introduction

computer are wrong it may leave the pilot in a situation without control over the aircraft
which can have hazardous effects.

It is therefore necessary kmowthat a computeworks It is not within our powers to
ensure that a computer physically works. This is left to engineers and the hope that the
computer at hand is not hit by a bomb.

Instead, we deal with the question of whetherspecificatiorof an electronic device

or a piece of software functions correctly. Several mechanisms that abstract the
behaviour of a computer from the physical device have been developed in computer
science. These specification languages can be seen as programming languages whose
semantics is a mathematical structure which denotes such a behaviour.

Feasibility is not the only reason for dealing with specifications rather than real
applications. Developing costs for any products need to be kept low. Thus, it is
desirable to create correct specificatidreforethey are turned into a real product.
This avoids producing several versions most of which will be thrown away because of
faults in their specifications.

Next there is the question of determining whether a specification does what it is
supposed to do. Itis too vague to say that it should function correctly. In the case of the
alarm clock this might be obvious. For the telephone network it is already less clear. If
the person whose number is dialed redirects calls then the property mentioned above
is not fulfilled. However, this should not be regarded as a failure of the underlying
system.

In the example of the airplane it is entirely unclear what it should mean for the control
software to function correctly. Therefore, formalisms are needed that allow us to
specify correctness properties. Mathematics, as a precise science that does not leave
space for interpretations, provides a framework for this: logics.

Logics formalise statements that are made about abstract mathematical structures.
This can be used for the formal verification of properties of real systems if their
specifications are given as such abstractions. Needed for this are automatic procedures
that check for example whether a given structure has a certain property which is
given by a logical formula. Such algorithms are calleddel checkers They are

used inverification toolslike SpiN, [Hol97], SMV, [CGL9Y, the EDINBURGH
CONCURRENCYWORKBENCH, [Mol92], HY TECH, [HHWT97], TRUTH, [LLNT99],
and many more.

These programs typically allow a system to be modelled in a certain specification
language and automatically generate the mathematical structure from it. The latter is
normally a transition system, i.e. a labelled directed graph with nodes being interpreted
asstatesthat the underlying system can be in and edges as transitions between states
in time. This temporal aspect is a natural interpretation of the behaviour of a computer
program. Note that the operational semantics of a program is nothing more than such
a transition system. For a program that is modelled with such a transition system
the states can denote different evaluations for the set of variables that are used in the
program. Transitions between these states are then given by the program’s control
structures like variable assignments.

Consequently, these verification tools typically allow properties to be formalised in a
logic which captures temporal aspects of transition systems and to automatically check
whether it satisfies the property. Such logics are, not surprisingly, temporal logics
like Pnueli's Linear Time Temporal Logic LTL,Anu7], Emerson and Halpern’s
Computation Tree Logic CTLHH8E|, and the Full Branching Time Logic CTLby
Emerson, Halpern and Sistl&H8€E, [ES84. Typical statements that can be made in
these logics concern the question of whether or not something holds on all reachable
states or along a path through the transition system.

Modal logics which have their origin in philosophy and which are a superclass of
temporal logics are suitable for this task as well. This is because they are interpreted
over structures consisting of differemtorlds where something can be true in one
world but false in another. Clearly, transition systems as abstractions of programs are
examples of such structures since different states need not have the same properties.
We will only deal with those modal logics that have gained interest in computer
science, namely Fischer and Ladner’s Propositional Dynamic Logic FBEIL7Y],

Kozen’s modalp-calculusL,, [Koz83, and Miller-Olm’s Fixed Point Logic with

Chop FLC, MO99).

Logics can also be used as a specification formalism. Going back to the airplane

4 Chapter 1. Introduction

example, a system may be considered correct if it satisfies several properties. These
may interact, for example if a sensor’s signal should cause the plane to automatically
descend while the autopilot tries to keep it on a certain level.

Suppose each aspect of correctness is given by a logical formula, i.e. the one stating
correct behaviour of a single part. Then global correctness is given by the conjunction
of all these formulas. Itis important to have automatic procedures that test satisfiability
of such formulas since some of the properties may exclude each other which causes
unsatisfiability of the conjunction. In this case the specification would be considered
incorrect.

It is desirable to have verification tools that do more than simply check whether or not
a specification satisfies a formula or a logical specification is satisfiable. If the answer
is yes then of course the specification and verification task is completed. However, if
the answer is no, i.e. the system at hand is incorrect with respect to some property, then
the error needs to be repaired. Thus, it is helpful to have verification tools that provide
guidance in finding the reasons for incorrectness, i.e. that show thevbsezor why

a certain property fails.

Gamegprovide a natural framework for this feature. This thesis contains two types of
games:. model checking games and satisfiability checking games. Both are played
by two players on a certain game board. One of them has the task to show that
a specification is correct with respect to a certain property, resp. that a logical
specification does not contain a contradiction. The other player is given the opposite
task.

The outcome of a single play against each other provides little information about the
correctness of a specification. It carries even less information than a test run. Testing
cannot show the absence of errors, at least it can reveal their presence. Generally, a
single play cannot do either of these.

However, we define these games in a way such that they characterise the model
checking or satisfiability checking problem for a modal or temporal logic in terms of
strategies. Thus, a transition system has the property described by a formula if and only
if the player whose task it is to show this hagi@ning strategyfor the corresponding
game. In the satisfiability checking game she has a winning strategy if and only if the

underlying formula is satisfiable, i.e. does not contain a contradiction.

Model checking or satisfiability checking is then equivalent to finding a winning
strategy for this player. In most cases, certainly for the logics we introduce here and
for the class of finite transition systems, this is decidable. Hence, it can be automated.

So far, the game-based method does not reveal any advantage over other methods like
tableaux or automata for example. In fact, in computer science automata-theoretic
methods are widely believed to be the most efficient for verification purposes and,
hence, best.

However, a game-based model checker or satisfiability checking algorithm needs to
compute a winning strategy for one of the players in order to determine whether a
player has one. Suppose a transition system fails to have a desired property. The
corresponding game-based model checker computes a strategy for the player whose
task it was to show this. This strategy then witnesses the failure of the property and
can be used to prove this failure to the user of a verification tool.

This can be done by letting them play iauteractive playagainst the tool which takes

its choices according to the winning strategy it has computed. By definition, regardless
of the user’s choices the tool will win the resulting play. Typically the play follows a
path of a transition system and the syntactical structure of the formula representing the
desired property. Thus, each play that is won by the tool reveals at which moment in
the underlying system’s temporal behaviour which part of the property fails.

With game-based satisfiability checking the situation is similar. Here, a play reveals
which parts of the formula exactly cause the unsatisfiability, i.e. which parts exclude
each other.

Outline of this Thesis

The goal of this thesis is to give game-based characterisations of the model checking
and satisfiability checking problem for the modal and temporal logics mentioned
above. It is organised in the following way.

Chapter2 contains the definition of transition systems and the modal and temporal
logics that are studied here. It also recalls basic results about fixed points which are

6 Chapter 1. Introduction

necessary to understand the games of the following chapters since all the logics we
deal with feature constructs whose semantics is given as the solution to a certain fixed
point equation. 2-player games are formally introduced as well.

Chapte(3 surveys other methods that have been used to tackle the model checking and
satisfiability checking problem for modal and temporal logics. Among thabieaux
andautomatahave been established as methodologies, i.e. classes of methods, that are
useful for these purposes. For almost every logic mentioned here there is a tableau
procedure and an automata-theoretic characterisation for the model checking and the
satisfiability checking problem. Other techniques like graph-theoretic algorithms or
resolution methods only seem to be useful or applicable in special cases. We also
sketch areas in computer science that have benefitted from the use of games. This
thesis proposes the idea that games are another useful methodology for the logical
problems at hand.

The technical part of this thesis starts with Cha@erhich contains model checking
games for PDL. This characterisation in terms of games is straight-forward and not
very complicated. In fact, it can easily be derived from Stirling’s model checking
games for the alternation-freecalculusC?, [Sti95. However, there are three reasons

for including them here. First, for the sake of completeness since, to the best of our
knowledge, they have not been published anywhere else. Second, because of their
simplicity they prepare the reader for the following chapters. The third and most
important reason is the fact that they serve as a helpful tool for proving correctness
of the PDL satisfiability games in Secti@n3 later on.

ChapterS contains model checking games for branching time logics. Beginning with
CTL* the notion of afocusgame is introduced. It is simplified to obtain model
checking games for CTi’s fragments CTL and CTL. As with PDL, the CTL model
checking games are straight-forward and derivable frorrﬁ&games. However, the

fact that a simplification of the CTLgames leads to such natural games can be seen
as an argument in favour of the focus game idea which makes them a natural approach
to the CTL* model checking problem.

Focus games are shown to be useful for satisfiability checking in Chéptieat
contains games for LTL, CTL and PDL. Chapfércontains a side-effect of these

games. We show how to extract axiom systems from the games that are easily proved to
be complete. This chapter can be seen as an argument for the usefulness of satisfiability
focus games or as an application of them.

Focus games are used again in ChaBter obtain a game-based characterisation of
CTL*’s satisfiability problem. It is presented in a different chapter separated from the
other satisfiability games because the games are more complex and, as a conseqguence,
a complete axiomatisation is not easily derived.

Finally, Chapter9 is concerned with the model checking problem for FLC. Two
different game-based approaches to this problem are presented: a global and a local
one. These games are not focus games. The local approach is a generalisation of
Stirling’s £, model checking games just as FLC is an extensiof,pf

Apart from the definitions of the games, all chapters contain their respective
correctness proofs, examples and analyses of the complexity of deciding which player
has a winning strategy for a given game.

The thesis concludes with remarks on further research in the area of games for
modal and temporal logics. In particular, extensions of the logics dealt with here are
mentioned for which it might be interesting to have game-theoretic characterisations
of their model checking or satisfiability checking problem as well.

Chapter 2

Preliminaries

Mathematics is the art of giving
the same name to different things.

HENRI POINCARE

2.1 Mathematical Logics

A relational structures a tupleK = (U, Ry,...,Ry) whereU is a set called thaniverse
of K andRy,...,R, are relation symbols of arities, . . ., a,. This means that for every
i=1,...,nwe have
RCUx...xU
b-\,—/
a times

A logic L is a set of formulas. These are interpreted over a class of structuogs
the |= relation. Letd € L be a formula with fredirst-order variablesxs, ..., Xy, i.e.
variables for elements of a relational structure’s universe. For every structarg@

10 Chapter 2. Preliminaries

and everyn-tupleky, ..., ky of elements oK,

Kakla"wkn):q)()(la"'yxn)

Is written to denote that the structukehas the property described pywhere each
variablex; is interpreted byk;, i € {1,...,n}. In the second-order case, variables
ranging over relations are allowed, too.

We will only consider a few special logics, namehodalandtemporal logics They
are also interpreted over certain structures only, cdiéelled transition systems
[Plo8]]. These will be defined in Secti¢ha.

Most modal and temporal logics can be translated into First-Order or Second-Order
Predicate Logic. The resulting formula is not closed but has one free variable. An
elements of a structureK has a modal or temporal properdyiff K satisfies the
translated propert§i(x) where the free variabbeis interpreted bys.

K,sF=6(x) (2.1)

Thus, not only a structuré butK together with an elemetof its universe satisfies a
modal or temporal formuld,

K.sk o

Note that the modal or temporal formufiadoes not have any free variables in the sense
of (2.1). Often, we will consider the underlying to be fixed and omit its |= ¢.

Themodel checking problefior a modal or temporal logi€ and a class of structures
Ris: givenK € R, an elemens of K and¢ € £, doesK,s}|= ¢ hold?

The satisfiability checking problerfor a modal or temporal logi€. and a class of
structuresf is: given ap € L, isthere &K € R and amse K, s.t.K,s=$?

The syntaxof a logic is usually given as a context-free grammar. Hence, formulas
are words over a certain alphabet. This enables the easy substitution of formulas into
formulas. With¢[p/x] we denote the formula that arises frapby replacing every
occurrence oK in ¢’s syntax tree byp.

All the logics defined later subsume propositional boolean logic. Their syntactical
definitions will not include negation since games usually require negation to be

2.1. Mathematical Logics 11

eliminated. But we will show that negation is implicitly present in most cases. We will
also use constructs like> from propositional boolean logic appealing to its definition
usingV and negation closure.

Thesemantic®f a logic will be given in one of two possible ways. Either directly, i.e.
in the styleK, x = ¢ describing when a given structukewith an elemenk satisfies a
givend. Or indirectly in the styld[¢] which describes the set of adlof a structureK
that satisfyp. The satisfaction relation is then easily derived as

sk=¢ iff se[¢]

In both cases the context-freeness of the logic’s syntax allows the semantics to be
defined inductively.

A fragment of a logic is simply a subset of all its formulas. In many cases this will be a
syntactical fragment, i.e. the question of whether orgnb&longs to this fragment only
depends on the syntactical structurepofThese fragments usually impose restrictions

on the occurrence of certain constructs of the logic because they permit more efficient
decision procedures than the general case.

Each logic also has important semantical fragments. These will of course depend on
the class of structuref the logic is interpreted over. One such fragment is the set
of all satisfiableformulas, i.e. thos@ for which there is &K € & and ans € K s.t.

K,s = ¢. Another important fragment considers the same question but universally
guantified: the set of all formulas that are satisfied by e¥ery & and everys € K.

These formulas are calledlidities To indicate that is valid we write|= ¢.

Two formulasé, P of L areequivalentover &, written ¢ = , iff [¢] = [W] for all
K € R, i.e. they are satisfied by the same structures and elements. If the semantics is
given directly then

d=y iff forall Ke RandseK: K,;s=¢iff K,;sE Y

In other words$ and essentially describe the same property. The semantics of a
logic should always be defined such thats a congruence. This allow a subformula

Y of ¢ for example to be substituted by an equivalent formula without changing the
meaning of.

12 Chapter 2. Preliminaries

Definition 1 We say that a logic is negation closedf for every ¢ € L there is a
§ € L s.t. for evernK € 8 and everys € K:

Ksk¢ iff Ksko

Note that a formula is satisfiable iff its negatiof is not valid.

A logic itself is a mathematical construct and, hence, has or lacks certain properties.
Important properties for modal and temporal logics are

¢ thetree model propertyif ¢ is satisfiable then it has a model which is a tree.
¢ thefinite model propertyif ¢ is satisfiable then it has a model of finite size.

¢ the small model propertythere is a functionf : N — N, s.t. if ¢ is satisfiable
then it has a model of sizE(|§|), where|$| denotes the syntactical lengthdpf

Note that, if a logic has the tree model property and the finite model property, it does
not necessarily mean that every satisfiable formula is satisfied by a finite tree.

Another important aspect of a logic is iexpressive power £ subsumesl’ in
expressive power ovet if for every ¢ € L' thereis ap € L s.t.¢ = Y over K.

One of the most important modal logics is theodal p-calculus £, defined in
[Koz89. Its importance is based on the fact that it subsumes semantically most other
propositional modal and temporal logics. In fact, it does so for all logics defined in
Sections2.4and2.5 apart from FLC which is itself an extension bf,. The relations
between all the logics used here afg are depicted in Figur3.4 at the end of
Chaptel3.

[EFT94 contains a good introduction to the theory of mathematical logics. For
an overview of temporal and modal logics in particular consiané9(), [Sti9Z],
[Sti96K and BSO01].

2.2 Fixed Points

It is well known that addingquantifiersto a logic usually increases its expressive
power. The degree of this increase is of course dependant on the kind of quantification.

2.2. Fixed Points 13

First-order quantifiers that speak about the existence or non-existence of elements
of the underlying domain are weaker than second-order quantifiers that speak about
relations between elements.

The increased expressive power goes hand in hand with an increase in the complexity
of decision problems associated with these logics and might even result in these
problems becoming undecidable. Therefore, compromises have been sought and
found which allowrestricted quantificationOne example iguarded first-order logic
[AvBN98], which features existential and universal first-order quantifiers over certain
elements only.

Another way of restricting the power of general quantification is by uBkagl points
Mathematically, a fixed point of a functiohsatisfies the equation

f(X) =X

[Tar55 has shown that this concept is particularly useful if the funcfio® monotone
and applied to members of a complete lattice with bottom elemeamd top element
T. Inthis case there are two distinguished fixed points with nice algorithmic properties.

Definition 2 Let (M, <) be a set which is partially ordered bys.t.

1. forallx e M: x < x (reflexivity)
2. forallx,y,ze M: if x<yandy < zthenx <z (transitivity)

3. forall x,y e M: if x<yandy < xthenx=y (anti-symmetry)

The element is amaximumof x andy if x < zandy <z If z<xandz<ythenz
Is aminimumof x andy. Thesupremunis the least maximum of two elements and is
denotedkJy while the greatest minimumny is calledinfimum

A partially ordered sefM, <) is called alattice if xLIy andxy exist inM for all
X,y € M. Itis calledcompleteif | | X and[| X exist for allX C M. In this case there
are two distinguished elements:=[|0 and L :=| |0 s.t. forallxe M: x< T and
1 <x

14 Chapter 2. Preliminaries

Theheightof a lattice(M, <) is the maximal number of elementsMfin a chain

X1 < X < ... < X1 < X

Note that, ifM is not finite, it is possible to have such chains whose lengths can only
be measured using ordinat3rd, beyond the natural numbers.

A function f : M — M is calledmonotoneff
forallx,ye M: x<y implies f(x)< f(y)
x is apre-fixed poinbf f iff f(x) <xand apost-fixed poinof f iff x < f(x).

Theorem 3 (Knaster—Tarski)[Tar55 Let(M, <) be a complete lattice, anfi: M —
M a monotone function. The least fixed pointfpfienoteduf, exists uniquely and is
the infimum of all pre-fixed points.

uf == [[{xeM|f(x)<x}
Dually, the greatest fixed point is the supremum of all post-fixed points.

vi = [|[{xeM|x<f(x)}

For a proof seeWin93] or [Sti0]] for example. However, there is a more efficient way
to evaluate fixed points other than to calculate the infimum of all pre-fixed points for
example.

Supposef is monotone. Thenf can be applied iteratively starting with to obtain a
sequence., f(L), f(f(L)),... of elements oM. By monotonicity

L < f(L) < f(f) < ... < i) < .. (2.2)
It is easy to show that
fi(L) = (L) implies f'(L) = fl(L)forall j >i

Thus, if the underlying lattice has finite heightc N the sequence will eventually
become stationary with the valdé(_L).

2.2. Fixed Points 15

Dually, one obtains a monotonically decreasing sequence of elements of the lattice if
this iteration is started withi .

T > f(T) > f(f(T) > ... > f(T) > ...

Again, the sequence becomes stationary if{fi") or even earlier.

For general lattices with heights given by an ordianake defineapproximantsof f’'s
least fixed point for every ordinfll < a.

o) = 1, L) = f(fPw)) .,) = |])
B<A
with 3,A € Ord andA being a limit ordinal. Dually, approximants of the greatest fixed
point of f are given by

fOT) = T, YT = f1(tB(T)) . NT) = [] F(T)
B<A
Lemma 4 Let (M, <) be a complete lattice with heiglat € Ord, andf : M — M a
monotone function. Then

uf=f9(L) and vf=f%T)

PROOF fO(L)= L < uf by the definition ofL. Thenfl(L) = f(L) < f(uf) <pfby
monotonicity and the fact thaitf is a pre-fixed point of . Iterating this yield§"(1) <
puf for all n € N. The claim holds for ordinals in general by transfinite induction.
SupposefB(L) < ufforall <A, i.e.ufisamaximum for alff(_L). Thenf?(L) <
uf because? (L) is the least maximum of them all. The case\Vdris dual. n

This means that in case the height of the underlying lattice is finite, least and greatest
fixed points off can be found iteratively. This iterative nature has led to the idea of
using fixed point operators as quantifiers. All the logics introduced in the following
sections feature fixed point constructs. Most of them do this in an implicit way: they
have constructs which can be regarded as solutions to an equation in the above sense.
One of the logics allows explicit fixed point quantification, i.e. formulas virde
variablesare interpreted as functions on elements of a certain lattice while fixed point
operators quantify exactly over those elements that are fixed points of these functions.

16 Chapter 2. Preliminaries

For further reading on the use of fixed points in mathematical logics cortSa8y.
[GW9Y shows properties of the guarded fragment with fixed points which can be seen
as a generalization of modal and temporal logics with extremal fixed points. Finally,
[BSO]] provides an introduction into fixed points for modal logics.

2.3 Labelled Transition Systems

Definition 5 Let P = {tt,ff,q,q,...} be a set of propositional constants, i.e. unary
relation symbols, that is closed under complementation: for egefyP there is a
g€ P. Moreover,q = qandtt = ff. Let A = {a,b,...} be a set of action names. A
labelled transition systeph TS, is a triple

T=(8{%]acA}L)
where

e S={st,...} is aset of states,
e -2, for eacha € A is a binary relation on states, and

e L:8 — 27 labels the states in a maximally consistent manner. This means for
everyse § and evenyg € P eitherg € L(s) orq € L(s). Furthermorett € L(s)
for everyse 8.

If we mention a labelling of a certain state explicitly we will often ontitsince it is
included by default.

We will use infix notations-2+t instead of(s,t) € -2. To indicate that there is no
s.t.s-&t we will write s72>, ands 4 if shas no successor at all.

If the set of action names is a singletoh = {a}, we omit the explicit mentioning of
the action and write—t instead ofs-2-t. In this case a transition system is denoted
T=(8,—,L).

A pathof a transition systerfi = (8,{-2s| ac A},L) is a maximal sequence of states
Tl=SS1... s.t. for alli there is arg, € A with 5 -2-5.1 if 5 is not the last state of

2.3. Labelled Transition Systems 17

this sequence. Maximality means the path cannot be prolonged. This is the case if itis
infinite or a finite sequenc®). ..s, ands, 4.

Let ¥ denote the suffix oftbeginning with thek-th state, i.e® = S¢S 1. ... Thek-th
statesy of Ttis denoted bytk),

A transition systen¥ = (8, —,L) is total if for every s € § there is at least onec S
s.t.s—t. Note that paths of total transition systems are necessarily infinite.

Definition 6 Let T = (§,{-%| a€ A},L) with 5 € §. The unravellingof T with
respect tay is an LTSRg, (T) = (8/,{> ' | ac A},L’) with state set

§ = {s...5] foralli<n:s-2 s, forsomeac A}

Transitions inRs,(7T) are defined as

.S Ss1 i si-Ssa

Finally, the labelling of the states is given by

L'(%0...5) = L(sn)

Symbolic Representations

It is useful to distinguish finite and infinite transition systems. The first reason for
this is decidability. The model checking problems for the logics introduced in the
next section are undecidable for arbitrary infinite transition systems because they can
express properties like reachability of a certain state for example. However, for finite
transition systems they are decidable.

The second reason for this distinction is the question of representing a transition
system. In the finite case it can be written down as a directed graph with labellings.
Arbitrary infinite transition systems obviously cannot be represented in this way.
However, there are classes of infinite transition systems that have finite representations.
Depending on the expressive power of a logic regarded over these classes the model
checking problem might still be decidable.

18 Chapter 2. Preliminaries

Representations of infinite transition systems can be process algebraic ones like Basic
Process Algebra BPA, Basic Parallel Processes BPP, Pushdown Automata PDA, etc.
For an overview of these classes and their decidability result38é86] for example.

[May0(q is about Process Rewrite Systems which subsume all these process algebras.

Other examples of process algebras are the Calculus of Communicating Systems
CCS, Mil80], Communicating Sequential Processes C&fa/8a Hoa78l), the
T-calculus, MPW9Z] and Petri-Nets Pet62 Rei85. However, in general all of these

give rise to arbitrary transition systems and not finite ones only. But the advantage of
using such process algebras is the fact that they allow model checking algorithms to be
local, see SectioB.8for explanations.

The idea of using process algebras to represent infinite transition systems is also
beneficial for finite ones. In verification tasks the underlying transition systems can
be very large and a process algebraic specification can be a much more succinct
representation of a transition system than the adjacency matrix of a graph for example.
Moreover, if transition systems specify a hardware circuit or a software module then it
Is often easier to find a process algebraic term that abstracts its behaviour.

The state-of-the-art formalism to represent finite transition systen@rdexed Binary
Decision Diagrams [Bry86]. They are compact acyclic graph representations of
boolean functions. The reason why they can be used to encode transition system is
the fact that an LTS = (8,{-2+| a€ A},L) is nothing more than a collection of
binary relations{ -2+ | ac A} each of which can be stored as an OBDD.

OBDDs are particularly useful for model checking modal and temporal logics since it
is relatively easy to evaluate boolean operators and to calculate fixed points on OBDDs,
[McM93]. Using OBBDs for model checking resulted in a major breakthrough
concerning the size of transition systems up to which model checking is practically
feasible. In fact, thessymbolictechniques enable model checking for transition
systems with more than 100 boolean variablBEMT92].

We will not be concerned with the question of how a given transition system is
represented. Generally, we will assume it to be present and represented in some way. If
it is known to be finite we will assume it can be represented in some process-algebraic
or other way that allows a construction to proceed state-by-state.

2.3. Labelled Transition Systems 19

For finite transition systems we will measure the complexity of deciding the winner of
a model checking game as a function of the formula size and the number of states a
transition system has.

Equivalences

There are a number of ways in which two stasesndt of a transition system can

be regarded as equivalent. One criterion is graph isomorphism of the subgraphs of
reachable states fromandt. This is far too strong if one uses transition systems to
describe program behaviour. A much weaker version consgderdt to be equivalent

if the transition system regarded as @dBi-automaton accepts the same language
regardless of whetherort is the starting state. In order to do so, every state of such an
automaton is considered to be final. Hence, every run of the automaton is accepting.

A useful equivalence between graph isomorphism and language equivalence is
bisimilarity, [Mil89, vB9€]. We mention this explicitly because Sect@r& introduces

the logic FLC and proves that, like all other logics appearing in the next two sections,
it does not distinguish bisimilar states of a transition system.

Definition 7 Let T = (8,{-%| a€ A},L). A bisimulationis a symmetric binary
relationR C 8 x & fulfilling the following.

e If (s;t) € Rands-2:< for someac A then thereis & € §, s.t.(3,t') € R.
e If (s;t) e Randq e L(s) thenq € L(t).

sandt are calledbisimilar, s~ t, if there is a bisimulatiofR s.t. (s,;t) € R.

A simulationis a relation with the same requirements as above but which is not
necessarily symmetri¢.simulatessiff there is a simulation relatingandt.

We say that a logid respects bisimulation if for alb € L, all transition systems
T=(8,{2|acA},L)andallsit € 8: s~timpliess|= ¢ iff t = ¢.

20 Chapter 2. Preliminaries
2.4 Temporal Logics

The temporal logics defined here do not make use of different action labels, i.e. they
are interpreted over transition systems of the farms (8, —,L). Furthermore, we
assume these transition systems to be total. This is a common approach but also avoids
a lot of technical detail.

Linear Time Temporal Logic

Temporal logics over linear structures have been studied for a long time. The most
important result regarding these logics is frokam6 where it is shown that a
temporal logic with amuntil operator and its dual for the pasince is equi-expressive

to first-order formulas with one free variable interpreted over linear orders. Because
of this, Linear Time Temporal LogitTL is believed to be a natural specification
formalism for temporal properties. Phu77 introduced LTL to computer science
and showed that it can be used for program verification purposes. For a detailed
introduction to LTL seeMP9Z]. Here we regard LTL with future operators only. Its
syntaxis given by the following grammar.

¢ = q[oVvVe [OAD [X0 | OUS | OR

whereq ranges ovef. X is thenextoperatorl theuntil, andR its dual, calledelease
The traditionaleventuallyandgenerallyoperators are abbreviated as

Fp := ttUp and G := ffR

LTL is interpreted over pathE = 5s; ... of a total LTS. We usually assume an LTS
to be fixed and writgt = ¢ instead ofJ, t|= ¢. Thesemanticof an LTL formula is
inductively defined as

m=q iff qeL(n?)
nE=ovy iff mEd or MW
nEoAY iff mME¢ andniEY

2.4. Temporal Logics 21

nE=x¢ iff e
= ¢uy iff thereisake N, s.t. €=y and
forall jeN: if 0<j<kthent =¢
= ¢ry iff forallkeN: €=y or
thereisaj e N st.0<j<k and 1l = ¢

The temporal operatotsandR can also be characterised by the recursive equations

Uy = WV (OAX(GUY))
ORY = WA(OVX($RY))

wheredUy is the least solution andiRy the greatest solution to the corresponding
equivalence. The right sides of these equations are calledhfieédingsof anU, resp.
aR.

As subformulaf a¢ € LTL we do not just consider formulas that occur in the syntax
tree ofd. Instead, the unfoldings have to be taken care of as well.

Suk{a) = {a}

Subpvy) = {¢Vvy} U Sul¢) U Suly)

SubpAY) = {dAY} U Suld) U Suly)

Sulx¢) = {X¢} U Sul9)

Suk(ouy) = {OUY,X(UY),d AX(SUY), PV (6 AX(GUY))}
U Sul{¢p) U Sulu)

Sub(orRY) = {ORY,X(ORY),d VX(ORY), YA (6 VX(ORY))}
U Sul{¢) U Sulu)

Lemma 8 (Negation closure) LTL is closed under negation.

PROOF For everyd € LTL we defined in the following way.

AP = VU oup = YRY
OVYy = 9AD RY = YUY
¥ = X9

22 Chapter 2. Preliminaries

Then,
nEd iff mEd

for all LTL formulas ¢ and all pathgt of all total transition system$. Note that the
equivalenc&¢ = X¢ in general does not hold on finite paths. m

For correctness proofs in later chapters we will need approximaitamdr formulas.

Definition 9 Letk € N. Approximantof ¢UY are defined as

oy = ff
UKy = PV (G AX(OURY))

Dually, approximants opRY are defined as

OROY = tt
PR IY = WA (§VX(RY))

Lemma 10 (Approximants) Lettibe a path of a total transition systeéfmand¢, P €
LTL.

a) = oUY iff thereis ak € N s.t.1t|= ¢UKy,

a)Tt=oRY iff forall ke N: 1t|= dRK.

PROOF a) Supposeat = ¢UP. Then there is & € N s.t. € |= @ and for all j < k:
10 = ¢. Thus,

n|:g>AX(¢AX(---d3/\XLU))

k—1times
ThenTt}= ¢UKY because
OUY = WV OAX(WV (OAX(... ¢ AXY)))) (2.3)
k1times

Suppose nowt = duky for somek € N. Take the least sudkh Again, by 2.3, Tl=
¢UY since every disjunction must be fulfilled by the disjunct contaidin@therwise,
k would not be least.

2.4. Temporal Logics 23

b) First we show by induction dkthatdr<y = ($UKP). This is true fork = 0. Suppose
it is true for an arbitrary.

OR Y = WA (dVX(OR Y))
= YA VX([GUR))

TV (@ AXGUD))
BV (@ AX@EUY)
— Uk

Now, Tt |= oRY iff T~ §UT iff for all k € N: Tt~ UK iff for all k € N: 1= ¢R (). @

Branching Time Logics

As in the case of LTL, branching time logics existed well before they found their way
into computer science. In this framework, the future of a moment is not unique, instead
there can be several possible future moments. l.e. states of models for branching time
logics have several successors in general. The question of which of these views on
time is preferable or more useful has been discussed by many peoplEHs# &énd

[Sti89 for example. War0]] is meant to be the final say in this controversial matter.

One of the first branching time temporal logics to be used in computer science is the
Computation Tree Logic CTL, introduced ikElH85 together with CTL". Similar
logics have been proposed IBAPM83], [EC8(and [Lam8(. Shorty afterwards,
[EH8€] defined the Full Branching Time Logic CTlwhich was meant to unify CTL

and LTL and allow them to be compared with one another.

Here, we build branching time logics from a set of operators similar to the ones of
linear time logic. In addition to that, they are able to quantify over paths and therefore
are interpreted over transition systems directly. These are assumed to be total, too. The
syntaxof CTL* is given by

¢ = qlove [dAd [X | ¢UG | ¢RO | AD | Ed

24 Chapter 2. Preliminaries

whereq ranges ovefp.

For a CTL formula¢ the set ofsubformulas Sulp) is defined in the same way as it
is for an LTL formula. Additionally,

Subad) = {Ad} U Sul¢)
SubEd) = {E¢} U Sul¢)

The semanticgs defined inductively using paths of a total transition systerfi =
(8,—,L).

mE=q iff qeL(n?)
nE=ovy iff mE¢ or MW
=AY iff mE¢ andmE=Y
= X iff ™E=d
= ¢uy iff thereisakeN, s.t. €=y and

forall jeN: if 0<j<kthentl =¢
m=¢Ry iff forallkeN: T€E=y or

thereisaj e N s.t.0<j<k and 1l = ¢
= Ad iff for all pathst’: if ™% =1 then ' = ¢
= Ed iff thereis a patht, s.t. M9 =@ and 7 = ¢

E andA are calledbath quantifiers

A CTL* formula ¢ is called astate formulaiff ¢ = Ad, andpath formulaotherwise.
We will consider state formulas only. Therefore, one can assume every §tate
formula to begin with ard. Note that

QQ1¢ = Qi forQq,Q2 < {AE}

The truth value of state formulas only depends on a single state. Is is therefore possible
towritesy = ¢ if T= ¢ for all m=55.. ..

Thepure branching time logi€TL is obtained as a fragment of CTby requiring the
path operator%, U andR to be preceded immediately by a path quantifier.

¢ = a[ove [oAd | QX | Q(UD) | Q(dRY)
Q == A|E

2.4. Temporal Logics 25

Although the set osubformulasof a CTL formula can be defined by regarding it as a
CTL* formula it is helpful to use a more specialised definition.

Sul{q) = {a}

Supvy) = {ovY} U Suld) U Suly)
SupAy) = {dAY} U Suld) U Suly)
Sul{Qx¢) = {QX¢} U Sul¢)

SUHQ(OUY)) = {Q(OU), QXQ(GUY), b A QRQUW), WV (§ A QXQ(GU))}
U Suli¢) U Sutiy)

SUHQ(ORY)) = {QORW). QXQORW). 6V QXQORY), WA (& V QXQ(ORY))}
U Sul¢) U Sutiy)

In CTL the following equivalences hold:

Qouy) = WV (¢ AQXQ(UY))
Q(oRY) = WA($VQXQ($RY))

CTL™" is the fragment of CTL that allows boolean combinations of path formulas in
the immediate scope of a path quantifier but forbids nesting of them.

¢ = alo¢ve [oAd | QU
U o= VU [UAY [X0 | U | dR
Q == A|E

Again, g € P. The set osubformulador a CTL" formula is given by the subformula
definition for CTL*. However, the CTL: unfolding of adUy or ¢RY is the same as
the one for CTL.

Lemma 11 (Negation closure) CTL*,CTL and CTL are closed under negation.

PROOF We define the complement of a branching time formula in the following way.

Ap = EP oUw = RO
E) = AP RO = PUP
AP = VU X = X0
VY = oA

26 Chapter 2. Preliminaries

This construction preserves the special structure of CTL and'Gdtmulas. n

LTL, as defined in this section, can be interpreted directly over total transition systems,
too. This is done by regardirgl paths that begin with a designated staté his is

the same as preceding an LTL formgdlawith the A path quantifier and regarding the
result as the CTLstate formulai¢ interpreted irs.

However, not every CTLformula can be represented in this way. Therefore, it is
useful to consider this fragment of CTlas a logic on its own. To avoid confusion
with the real linear time LTL, we call this logic theranching time version ofTL,
BLTL. Its syntaxis given by

¢ = AY
U= gl eve | WA | XY | YUY | YRY

whereq € P. The set osubformulaf an BLTL formula is given by regarding it as a
CTL* formula.

BLTL is not closed under negation according to Definitibtn By Lemmall, the
negation of a BLTL formula is of the fory wherey = ¢ for some¢ € LTL. Since

LTL is negation closed (Lemma@&) negation closure of BLTL would imply the fact

that every universally path quantified property can also be expressed as an existentially
guantified one. This is not the case.

Since the pure linear time part of BLTL, namely LTL, is negation closed one could
define negation in BLTL asd := Ad. But this results in the fact that it is possible for a
transition system to neither satisfy a formula nor its negation. At least it is impossible
for a transition system to satisfy both.

If negation closure is defined as
A¢ is satisfiable iff AQ is not valid

for an LTL formula¢ then BLTL is negation closed.

Example 12 A simple CTL formula isAGEXtt which says that no reachable state is a
deadlock, i.e. does not have any successor states. This is in fact a validity since CTL is
interpreted over total transition system, i.e. this property is always trivially fulfilled.

2.5. Modal Logics 27

An example of a CTLE formula is$:= E(QU(Gq)). It postulates the existence of an
infinite path with a finite prefix, s.t. no state on the prefix satigfji@shereas all other
states do.

Another example i$:= A(XqV X[). ¢ simply says that every path’s next state is either
labelled withg or g. This is not the most interesting property but a simple and good
example to illustrate the CTLmodel checking games in Chap®2. In fact, ¢ is
already a CTL" and a BLTL formula.

As a last example we considér:= E(Fq A GFqg). This is a genuine CTLformula

that postulates the existence of a path on wigdtolds infinitely often. It is not the
shortest formula that expresses this property but, again, will be useful to illustrate the
CTL* model checking games in Chapter

2.5 Modal Logics

Unlike temporal logics, modal logics distinguish transitions of an LTS with different
labels. Thus, they are interpreted over transition syst&mg$, {-2+|ac A},L).

Propositional Dynamic Logic

PDL, as introduced inHL79], augments basic modal logic with an infinite but regular
set of action names. They are usually calgdgrams Formulasp and programs
are mutually recursively defined as

¢ = al¢ve [oAd | (e | [a]d

a = alaua|oala| ¢?

whereq ranges oveff anda overA.

The transition relations®s of an LTS can be extended to program the following
way. In the case of th&est operator¢? it refers to the semantics @f. Since the
formula sizes get reduced this mutual recursion is well-founded.

28 Chapter 2. Preliminaries

s OBt iff st or s-Pot
a;B B

s—%t iff thereisanue §, s.t. s-%u and u-t
st iff thereisameN, st s-%5t where

0 k+1 . .~k
forallste §:s-%5s and s*—t iff s—29-t

s¥s iff s=¢

The subformulasof a PDL formula¢ depend on botlp’s formula structure and the
programs contained in it.

Suk{q) = {q}

Sudovy) = {$VUY} U Suld) U Suly)
SudoAy) = {$AY} U Suld) U Suly)
Sul{(a)¢) = {(2¢} U Sul{9)

Sul{[al¢) = {[&l¢} U Sul9)

Su{(auB)¢) = {{(aUB)d} U Sul{a)dV (B)9)

Sul{{a UBJ9) {lauBl¢} U Sul{[ale A[B]9)

Sul{(a; B)9) {{(a;B)o} U Sul(a)(B)¢)

Suli[a; B]) {la;Blo} U Sul[a][p]9)

Suf(a®)¢) = {{a")o,{(a){a")d,¢V (o)(a)d} U Sukd)
Suifa*]e) = {[a*]9,[a][0"]d,d Afal[a]é} U Suld)
Su((e?w) = {(¢?y} U Sul(¢) U Sulfy)
Su[p?w) = {[¢7Y} U Suld) U Suly)

This is also called th&ischer-Ladner closureTo maintain consistency with the other
logics we prefer the ternsulj$). The negatiorp of ¢, needed in the subformula
definition of [¢ 7] will be defined in Lemmd.3 later on.

Formulas of PDL are interpreted over states of an T'ihich need not be total. Thus,
paths ofJ can be finite or infinite. Again, we assume the LTS to be fixed and write
sk ¢ instead ofJ,s|= ¢ forse 8.

= iff gel(s)
sEovY iff sE¢ or sEW

2.5. Modal Logics 29

sEbAY iff sE¢ andskEUY
skE=(a)p iff thereisatc§ st s-%t andt=¢
skEo]e iff forallte§: if s-“t thent=¢

The implicit fixed point constructs of PDL ar@*)¢ and [a*]¢. They can be
characterised by the following equivalences.

S a
* X
=S S
Il Il
Q 9 Q
> <
Q a
_ o
s -
E=

As with the temporal logics, the first equivalence is to be taken as the least solution
and the second as the greatest.

Lemma 13 (Negation closure) PDL is closed under negation.

PROOF We define the complement of a PDL formula in the following way.

VY = DAY ()¢ =[]
AP = VY [alo = (a)o

Important equivalences of PDL formulas are

(@uB)e = (@)ov{P)o (@B = (P
[aUBle = [aloA[Bld ;B¢ = [a][Blo
@20 = oAY 970 = vy

Again, for the correctness proofs of the PDL games in Chabterd Sectiorb.3 we
need approximants of the implicit fixed point constructs in PDL.

Definition 14 Leta be a program¢ € PDL, andk € N. Approximants of(a*)¢ are
defined as

(@ = ff

(@ he = oV (a)(a)e

30 Chapter 2. Preliminaries

Dually,

@ = tt

ke == ¢ Ala][a¥d

are approximants db*|¢.

Lemma 15 (Approximants) LetT = (8,{-%+|acA},L)withsy€ § and¢ € PDL.
a)so = (0*)¢ iff thereisake N, s.t.so = (aX).
b) s = [a*]¢ iff forall ke N: 59 = [aX]6.

PROOF a) Supposes = (a*)¢. Then there is a patht = $S;...%_1... In T s.t.
s1-Ssforall l<i<kandsc. i =¢. Thus,s = (ak>¢. Note thatk = 0 is
impossible.

Suppose nowy = (aX)¢ for somek € N. Take the least sudh By definitionsy = ¢ or

so b= (a)(ak~1)¢. If the former is true thesg = (0*)¢. Suppose the latter holds. Then
there is as; € § s.t.s9-2+ 51 ands; = (a"—1>¢. This argument can be iterated until a
S_1 € Sisreached s.i5_1 = ¢ ors_1 = (a)(a®)¢. But (a)(a®) ¢ = f, hence, the
former must hold. But then the sequersgs; ... Sc_1 witnesses thady = (a*)¢.

b) sk iff sk~ a]e
iff so = ()P
iff forall BcOrd:s b~ (0P)§
iff forall BeOrd:s = [aPld

using part a), Definitiod4 and Lemmél3. n

Example 16 An example of a PDL formula is

¢ :=((@%a)")q

It expresses an existentially path quantifigdil property: “there is a path labelled
with as on whichqg does not hold until it holds”. Théa*)q makes sure thai holds
eventually on some path. The progr@fa forces every state before that on this path
not to satisfyq and to have aa-transition to the next state.

2.5. Modal Logics 31

Several extensions of PDL have been considered in the literature, for instaBteSt [

or [Str85. One example is the use @bnverse operators/hich allow formulas to
speak about the backwards-execution of a program. Formally, the set of programs is
defined as

a = alaua | oa|a|¢?| @

wherea ranges oven.

The semantic®f converse transitions is given by
s-%,t iff t-%s

It is sufficient to allow the converse operator to be applied to atomic programs only
since the following equivalences hold.

s OBt iff s 9By
s OBt iff s Pt

Another extension is PDIxwhich features a new formula construepeata) where
o is a program. Itsemanticss given by

S = repeata) iff there is an infinite patht=sps;... s.t.5 25,1 foralli € N

Fixed Point Logic with Chop

Fixed point logic with chopFLC, was defined inNIO99]. It extendsL,, and thus
features explicit fixed point constructs. Egntaxassumes the existence of a ¥et
{Z,Y,...} of propositional variablesand is given by

¢ = alzZ[t|[@|[@][¢vd[OAd | uZo [VvZh [$:0

whereqe P, Ze€V, andae A. We letcZ.¢ stand for eitherquZ.¢ or vZ.¢.
Furthermore, we assume formulas toval-namedi.e. different fixed point formulas
do not use the same variable to do quantification. In this case there is a fulipdtiar

32 Chapter 2. Preliminaries

maps every variablg to its defining fixed point formula, i.dp(Z) = oZ.y for some
. Thefixed point typef a variableZ is pif fp(Z) = pZ.y for somey andv otherwise.

The set osubformula®f an FLC formula is defined as follows.

Suk{q) = {a}
Sul{(z) = {2}
Sul(T) = {1}
Suf(a)) = {(@}
Suifal) = {[a}

Suovy) = {¢Vvy} U Suld) U Suly)
Sudo AY) = {dpAY} U Suld) U Suly)
Sukoz.9) = {0Z.¢} U Sul¢)

Subo;w) = {$;¢} U Suld) U Suly)

The set offree variablesof an FLC formula is given by

free(q) = 0
free(Z) = {Z}
free(t) = 0
free((a)) = 0
free([a]) =0

freedvY) = free(d) U freg(w)
freed AY) = free(d) U freg(w)
freg(0Z.¢) = free(¢p)—{Z}

)

free(dp;) = free(dp) U fregy)

A formula ¢ is closedif it contains no free variables, i.&ee(d) = 0.

In the following we will define syntactical fragments of FLC. Like mogdatalculus,

the alternation depth of a formula for example is an important factor for the efficiency
of a model checking algorithm. But it is not the only one. The number of times
variables occur sequentially composed to themselves is equally important.

We say thaZ depends ol in ¢, writtenZ <4 Y, if Y € free(fp(Z)). We writeZ <4 Y
iff (Z,Y) is in the transitive closure oky. Thealternation depthof ¢, ad(¢), is the

2.5. Modal Logics 33

maximal numbek in a chain of variableZy <¢ Z1 <4 ... <¢ Zk S.t.Zi_1 andZ; are of
different fixed point types fod < i < k.

Informally thesequential deptlof a formula measures the number of times a variable
occurs in a sequence of formulas that are sequentially composed.

Definition 17 The sequential depth gfis defined as

sd¢) := max{sd:(fp(2)) | Z € Sulf¢) }

where
sdz(Y) = 0 ifgePu{(a),la,t}
sdz(¢ V) = max{sdz(9) sdz(y)}
sdz(¢AP) = max{sdz(9) sdz(y) }
Stz (¢;W) = sdz()+sdz(W)
sdz(oY.9) = sdz(9)

Important syntactical fragments of FLC are those with fixed alternation and sequential
depth because they allow model checking algorithms to be more efficient than those for
the general FLC. However, this usually comes at the expense of a reduced expressive
power. The question of whether or not the hierarchy of levels with fixed alternation,
resp. sequential depth is strict, is open.

FLCk" := {¢ eFLC|ad($) <k,sd¢)<n}
FLCK = | FLCK"

neN
FLCOM = J FLCK

keN

Definition 18 Thetail of a variableZ in a formulad, tlz, is a set consisting of those
formulas that occur “behindZ in fp(Z). In order to define it technically we use
sequential composition for sets of formulas in a straightforward way:

{bo,....0n}¥ = {doW,...,n; P}

34 Chapter 2. Preliminaries

We also use the eponymous functibn: Sul(¢) — 25U9%) where

tiz(q) = {a}

tiz(T) = {1

tiz((@) = {@;}

tiz(fa) = {[a]}

tiz(ovy) = tiz(¢) U tlz(Y)

tz(oAg) = tiz($) U tiz(Y)

tlz(oY.@) = tlz(w)

R
tz(p;w) = THUT

with

_ {ﬂz(d));LIJ if Z € Suk(d)
T, =

{t} 0.W.

_ {uz(w) if Z € Sul(y)
T, =

{t} 0.W.

The tail ofZ in ¢ is simply calculated a7 := tlz(fp(Z)).

Another important syntactical fragment of FLC is the one containing those formulas
whose variables have trivial tails only.

FLC™ = {¢eFLC|tlz={1}forallZe Sul9) }

Note that FLC subsumed<,, [MO99]. It is the fragment of FLC considered here
which permits the most efficient model checking procedure. This is basically because
it does not bear an essential difference to meelculus.

FLC is interpreted over transition systeffis= (§,{-2+| ac A},L) which need not be
total. Thesemantic®f an FLC formula is a monotorsate transformeff : 25 — 25,
To allow an inductive definition one needs to hangjenformulas. This is done using

2.5. Modal Logics 35

an environmentwhich is a functionp : V — (2% — 2%) that maps variables to state
transformersp[Z — f] is the function that map& to f and agrees witlp on all other
arguments. The semantifg]? : 25 — 25 of an FLC formula, relative t@ andp, is

a monotone function on subsets of states with respect to the inclusion orderig on
These functions together with the partial order given by

fCg iff forall XC8: f(X)Cg(X)

form a complete lattice with supremaand infimarn. By Theorem3, the least and
greatest fixed points of functionas: (2° — 2%) — (2% — 2%) exist. They are used to
interpret fixed point formulas of FLC. We ugenotation for functions.

Wz¢ll, = [1{f:2°—2%|f monotone[$], 1 C f}
vZ.¢ll, = L{f:25—25|f monotonef C [0]pz 1}
o:u, = [9lpolwl,

o, = M A{seS|qelL(s)}

111, = p(2)

[1], — AXX

(@], = AX{se8|3teX, s.t.s-2:t)

[[all, = MX.{sc§|vteS§,if s-2:tthent € X}
[ovwll, = AX[o],(X)U[w],(X)

[drwl, = AX[o],(X) N [W],(X)

I

I

I

Given aT = (8,{-%| a€ A},L), a states € § satisfies a formulas =, ¢, if s€

[[q)]]g(S). Note that an environment is not needed it closed.

Lemma 19 [MO99] Let$ € FLC be closed. Thefj¢] is monotone, i.e. for all
STCS8ofanLTST = (8,{-%:|ac A},L): if SC T then[[¢](S) C [¢](T).

Two formulasp andy areequivalent$ = ¢, iff their semantics are the same, i.e. for

everyT and eveny: [¢]7 = [@]3. This equivalence is a congruence and thus permits

substituitivity. There is no FLC formulé that does not contamas a subformula, s.t.

d=T.

36 Chapter 2. Preliminaries

For model checking purposes it is useful to consider a weaker equivalgrexed
are calledweakly equivalentwritten ¢ ~), iff they are satisfied by the same states,
i.e.s|=p ¢ iff s|=p Y for any states of any transition systerfi and everyp. Note that
weak equivalence is not a congruence as the next example shows.

Example 20 Consider the two FLC formulaga) and (a);tt. They are weakly
equivalent because both say that a state haa-taansition to any other state. Now
take the context; (a).

In this context the second formula still requires a state to haveadrasition whereas
the first now says that two successadransitions must be possible.

In [MO99] it is shown how to embed, into FLC by using sequential composition.
For instance{a)¢ becomesay); ¢. Therefore, we will sometimes omit the semicolon

to maintain a strong resemblance to the syntak pfFor example(a)Z(a) abbreviates
(@);Z;(a).

Again, for correctness proofs we need to introduce approximants of FLC fixed point
formulas. However, unlike the LTL and PDL cas&sdoes not suffice. Instead, one
has to use ordinals.

Definition 21 (Approximants) Letfp(Z) = puZ.¢ for some and leta, A € Ord where
Ais a limit ordinal. Then
%=1, Z%"=¢[z%z, Z'=\/Z"
a<A
For greatest fixed points the approximants are defined duallyfp(8} = vZ.¢ for
some¢ and, againg,A € Ord with A being a limit ordinal. Then
%=, Z%=¢[z%z], Z'=N\Z°
a<A
Note thatuZ.¢ = VycorgZ® andvZ.¢ = AgcorgZ®. If only finite transition systems
are considere@rd can be replaced bM. If the underlying transition system is fixed
then its size is an upper bound on the number of approximants needed to calculate
fixed point formulas.

2.5. Modal Logics 37

Example 22 Let A = {a,b} and
¢ := VY.[bJff A[a](VZ.[b] A[a](Z;2)); (([a]£f A [b]£f) VYY)

¢ expresses “on every path at every moment the numbles sb far never exceeds the
number ofas so far”. This property is non-regular and, hence, is not expressible in
L. This is an interesting property of protocols wheeandb are the actionsendand
receive

The subformulap = vZ.[b] A [a](Z; Z) expresses “there can be at most bmaore than
there areas”. This is understood best by unfolding the fixed point formula and thus
obtaining sequences of modalities and variables. Replacihgvih a [b] decreases
the number oZs whereas replacing it with the other conjunct adds a dew the
sequence. The games of Chap®will provide a better way of explaining what
property is expressed by a given FLC formula.

Then,[b]ff A [a]W postulates that at the beginning bds possible and for eveny as
there can be at mostbs. Finally, theY in ¢ allows such sequences to be composed or
finished in a deadlock state.

Among the logics presented in this and the previous section, FLC is without a doubt
the least known. Therefore, we present a few basic results pertaining to FLC in order
to get the reader acquainted with it and to show that FLC is indeed a modal logic in
the sense that it has the properties a modal logic is expected to have.

Theorem 23 [MO99] Satisfiability of FLC formulas is undecidable.

This is proved by reduction from the simulation equivalence problem for BPA
processes. For a BPA process Q one can construct FLC formgquug,(pg S.t.

PE @ Iiff P~Q
P E ¢ iff PsimulatexQ
P = @, iff Pissimulated byQ

A consequence of this is the following.

Theorem 24 [MO99] FLC does not have the finite model property.

38 Chapter 2. Preliminaries

Q a a N _a /7~ a
b b b oo o
b b b
N N

Figure 2.1: The transition system for Example [25.

The finite model property would imply that every BPA process is bisimilar to a finite
state transition system.

Next, we give an example of an FLC formula that is satisfiable but does not have a
finite model.

Example 25 Let A = {a,b} and
¢ = (vZ.(&)ZA1);([b]A(b))); ([al£f A [b]£f)

The formula postulates the existence of an infiaHgath, s.t. after every prefix of as
exactlyn bs are possible. The body of the fixed point formula can be rewritten as

(@ (([b] A (b)) A Z; ([b] A (b))

This expresses that there must be a path with transition labelsthe beginning and
all suchbs lead to states that have similar properties. Moreover, aftea there is
another path of the same style with one mioi the end.

¢ has an infinite model like the one depicted in Figdt& Supposed has a finite
model, too. This could be regarded as a finite automatomith final states being
the deadlock states. Bt would accept the context-free and non-regular language
L={a"" | neN}.

For model checking purposesnverse modalitiethat allow formulas to speak about
predecessors of states can be integrated without causing any difficulties. Note that in
general this does not hold for satisfiability checking problems.

2.5. Modal Logics 39

The syntax of FLC can be extended with primiti@$ and[a] wherearanges oveA.
Their semantics is

(@] = AX.{se8|3teX, stt-s}
@] = AX.{sec§|vtes§t-Ls=tecX}

But note thatin gener@+# [(a); ()] (9), i.e.[(a)] is not the inverse function df(a)]].
As a counterexample take the transition system with stgte® 3} and transitions
1-%:3and2-2:3. Then{3} = [(@)] ({1}) but{1,2} = [(a)] ({3}).

This extension of FLC is capable of definingiform inevitability which means
propertyy holds on all paths of a transition system at the same momenEne87]
it is shown thatC,, cannot do this.

Example 26 Let A = {a} and

b = LYdAY V(WA (VZIES(ZAT);E)v)

¢ is an instance of aeventuallyformula of L, i.e. pY.{(a)Y VvV {/ says that there is

ul
a path on which}’ eventually holds.(vZ.[a]; (Z A T);[a]); W says that at every state
that can be reached by a sequenca a$ backwards and themas forwardsy holds.

Composing these two formulas achieves uniform inevitability.

Lemma 27 (Equivalences)

a)lf ¢=y then ¢ ~ .

b)If ¢~y then ¢;tt = ;tt.

)¢ ~ ¢;tt.

d) Letd C Ord. (Vieg9i); P = Vieg(disp) and (Ajeg 9i); P = Aieg(di54)
e)To=0=9¢;T.

Ngd=q forqgeP.

PROOF a) If ¢ = Y then[[¢]],(S) = [W],(8) for everyp and every set of state3C 3,
in particularS= 8. Thereforep ~ .

b) [[0;tt], = [¢], 0 [tt], = AX.[9],(X) 0 AX.S = [$] ,(S) for any transition system
with state setS and anyp. But ¢ ~ y means[¢],(S) = [W],(S) and therefore

40 Chapter 2. Preliminaries

d;tt = ; tt.

c) Trivial.

d) [Viesdi)iwl, = Uiesl9illp) o W, = AX.Uieg[9i],(X)) o [W], =
(AX.Uier [9illo(IWIo(X))) = Uiea([9illp © [Whp) = [Viea(disw)],- The case of

distributivity for conjunctions is similar.
e)-f) Trivial. m

Theorem 28 (Bisimulation invariance) LetT = (§,{-%|ac A},L) ands;t € 8. If
sandt are bisimilar,s~t, then for all closed) € FLC: s|=¢ iff t = ¢.

PROOF Let ¢ € FLC be closed. ¢ is equivalent to a’ of infinitary FLC without

fixed point operators and variables, uspidy =\ qcorgZ* andvZ.y = AgcorgZ°-

Note that each approximant has a finite representation. Leyhe says thaty’ is
weakly equivalent t@’; tt. Using parts d)—f) of Lemma7, one can transfornp’; tt

into a formulaa that does not contain and which is a (possibly infinitary) boolean
combination of sequences of the fogor (a); W or [a]; W wherey again is of the
described form. Every, obtained in such a way, is equivalent to an infinitary modal
formulaq or (a)y or [a]y, where equivalence means being satisfied by the same states.
But a formula of infinitary modal logic cannot distinguish between bisimilar states and
weak equivalence preserves this property. n

An immediate consequence of Theor@fis the tree model property.

Corollary 29 (Tree model property) FLC has the tree model property.

Theorem 30 (Approximants) LetT = (§,{-%|ac A},L) be finite withse §,SC 8.
a)se [HZY]3(9) iff 3k< (8| s.t.se [Z]3(S).
b)se [VZY)3(S) iff vk<|[S|: se [Z¥]5(S).

PROOF a) The “if” part is trivial. For the “only if” part consider the general
approximant characterisation of fixed point formulas. It implies the existence of a
o € Ord that makes € [Z°],(S) true. To show that it is bounded we introduce a new
propositiongs s.t.[as], = AX.S. Thens € [UZY],(S) iff s= (LZY);ds. According

to Theoren8, (LZ.¢);gs can be translated into a sghy, | o € Ord} of formulas of

2.5. Modal Logics 41

infinitary modal logic. We show by induction on the fixed point depth of the formula
at hand that finitary modal logic suffices.

Supposep does not contain angY.. In this case every; is a formula of finitary
modal logic. Consider now the functioh: ¢g — ¢y, for everya € Ord. f is
monotone sincéy, , ; arises fromp;, by variable substitution and transformations that
preserve equivalence. Then,

0 = [06) C 04 < .
Thus, ifs€ [[¢,] for somek thense [[¢/] for all j > k. Therefore] sll= (5] for all
j > |8]. This means that = (UZ.); gs implies the existence of la< |§| s.t.s = ¢y.
But thens € [ZK](S).
Suppose now thap has fixed point deptin+ 1 and everyoY.@ € Sul{¢) has fixed
point depth at most and can therefore be translated into a formula of finitary modal
logic. Replacing every sughY.y in ¢ by \/Lﬂozk, and everwY. with /\Liozk yields
a formulag¢’ of fixed point depth 1 that is equivalent¢o The latter substitution uses
part b) of the lemma on a smaller formula. The same argument as above holds now for
translatinguZ.¢’ into a sequencédy | k <|8|}.

b) Here, the “only if” part is trivial. The “if” part is dual to the “only if” of part a) m

In [MO99], Muller-Olm has shown that FLC model checking is undecidable for BPA
processes already. We improve this result slightly.

Theorem 31 FLC model checking is undecidable for normed deterministic BPA.

PROOF Based on an early result from language theoriFm76] it is shown in [GH94

that the simulation problem for deterministic normed BPA is undecidable. Given a
BPA procesQ one can construct an FLC formulg, s.t. P |= ¢q iff P simulates

Q. The construction for arbitrary BPA processes is shownM®99] and works in
particular for normed deterministic BPA. n

Modal p-Calculus

With FLC being defined it is possible to introduce Kozen's mogalalculusL,,
[Koz83, as a fragment of FLC. It formulas the left argument of a sequential

42 Chapter 2. Preliminaries

composition operator is always a modality. Conversely, modalities can only occur at
these positions. Theyntaxof £, is given by the following grammar.

o = qlZ|[@:¢][[a;¢]oVed | A | pZo [VZH
whereq ranges ove®, Z overV anda overA. Note thatt is not anl,, formula.

Since sequential composition i, formulas is only used in this restricted form we
omit the semicolon and write)$ and[a]$ instead.

Theorem 32 [MO99] FLC is strictly more expressive thal),.

In fact, the FLC formulas of ExampléZ2 and25 are not expressible i,. This is
becausel,, can only express properties that are definable in the bisimulation invariant
fragment of Monadic Second-Order LogicdW9€¢. However, these properties are
“regular” in the sense that the language of strings formed by the actions along paths
of a model for al, formula is regular. However, the formulas of Exam@&and25
express context-free properties. An attempt to measure FLC’s exact expressive power
has been made irL&dn024d showing that on linear models FLC can express exactly
those properties that are definable by alternating contextfrg@mmars with a parity
generation condition. There are context-sensitive properties which cannot be defined
in FLC unless PTIME=PSPACE.

The definition of subformulas and alternation depth fok aformula can easily be
derived from the definitions for FLC formulas. We do not include them here since the
following chapters do not contain games fgy. As for FLC,L{‘1 denotes the fragment

of £, which contains formulas of alternation depth at mostly. We only usel,, to

link together the modal and temporal logics that we introduce games for.

For an introduction tol,, see Koz83. Model checking games fof, have been
defined in [Bti9Y already. L's satisfiability problem was addressed IWW97] in
a game-based way.

CTL and PDL can easily be embedded itg. Thus, games for these logics could
be obtained from the corresponding gamesgapplied to translated formulas. The
PDL and CTL model checking games of Chaptend Sectioib.3 are essentially the
same as thé€ , model checking games fron®ti9g with the following translations.

2.5. Modal Logics 43

The translation : PDL— £8 is defined inductively as follows.

t(a) = q

t(Y) =Y

toVvy) = t($)Vvi(w)
tdAY) = t($)At(w)
t((2)9) (@t(o)

t([alo) [a]t(d)
t{aup)e) = t({a)o)vt((B)¢)
t([aUBo) t([ald) At([Bl9)
t{asB)d) = t((a)(B)o)
t(lo;Bld) = t((al[Bl)
t((w29) = tWAt(d)
t((w7d) = (@) Vi)
t({a*)9) = HYi(9) Vi((a)Y)
t([a*]9) = VY.it(9) At([alY)

wherea is an atomic program ang € P. Note that PDL’s syntax does not contain
variables. But since the translation introduces variables in the scope of a modality the
translation function must be defined for them as well.

CTL does not distinguish different action names. Therefore we use the abbreviations
(=) = V@¢ and [-]¢ = Al
acA acA

The translationt : CTL — Lﬁ is given by

t(a) = q

tove) = t(¢)Vt(y)

toAp) = t(d)At(Y)

t(AX0) = [-t¢)

t(EX}) = (=)t¢)

tAGUY) = HZEY) V(D) A (=)t A[=]X)
tEGUY) = HZtY) V() A(=)X)

44 Chapter 2. Preliminaries

tA(GRY)) = VZHW)A (L) V((—)teA[=]X))
LEGRY) = VZHW)A (L) V(—)X)

The (—)tt formulas are needed to take into account the fact that CTL udljkes
interpreted over total transition systems only. They require each state in which the
formula is examined to have a successor state.

CTL* can be translated intbﬁ, [Dam94. However, this translation is not as simple as
the two above since it does not map subformulas to subformulas. Therefore, we will
not try to compare the CTLmodel checking games that will be presented in Chépter

to theL,, model checking games applied to translated formulas. Consequently, we will
not present this translation here.

2.6 Games

The games of the following chapters are played by players calledv andd. Other
usual names for them are | and AbelardandEloisg refuter andverifier, opponent
andplayer, pessimisandoptimist etc. We will write p to denote either of them, arfl

to denotep’'s opponent. Furthermore, we will use personal pronouns according to the
genders oAbelardandEloisg i.e. playerv will be male and playes will be female.

Definition 33 A gameg§ is a quintuple(C,A,Co, P, W) where

C is a set ofconfigurationsalso known as thgame board

A : € — {V,3} assigns to each configuration a player, namely the one who makes
the next move,

Co is the starting configuration,

P, the set ofplays is a prefixed closed set of finite and infinite sequences of
configurations starting witly. A play P is calledfinishedif it is maximal in P,
i.e. there is nd® € P s.t.Pis a genuine prefix oP’.

2.6. Games 45

e W assigns to each finished play a winner, i.e.

W:P—{V,3}, W(P)=undef iff Pis not finished

Even though according to this definition one of the players formally has a choice in the
last configuration of a finished play this choice can be ignored since there is nothing to
be chosen.

Prefix closure makes it possible to regard a game as a tree, with a play being a branch
in this tree.

Itis more convenient to use a slightly specialised definition for the games in this thesis.
For example, it is possible to finitely represent the plays and winning assignments.

We will usually introduce a game as a quadruf®eCp, R,W) whereC is the set of
configurations as above withy being the starting configuratiorik is a finite set of
ruleswhich determined and?® from above.W is a finite set ofwinning conditions
which replaces the winning assignment above.

In this notation, a play is a maximal finite or infinite sequence of configurations
Co,Cq,... iff

e Cp is the starting configuration, and
e every pair(C;,Ci11) is an instance of a rulec R.

The winner of a play is determined by the finite ¥étof winning conditions. Each
condition is a scheme of a play, i.e. a play either fulfills a winning condition or not. It
is part of the correctness proof of the games to show that every play fulfils at least one
condition and that there is no play which fulfils two conditions that assign different
winners to the play.

Definition 34 Thegame graplof § = (C,Co,R,W) is a directed grapkV,E) whose
set of nodes is the set of configurationsgofi.e.V = C. Edges in the game graph are
given by

(C,CheE iff (C,C') isaninstance of arulec R
The game trees the tree of all plays, and is also obtained as the unravelling of the
game graph.

46 Chapter 2. Preliminaries

Definition 35 A game § = (C,Co,R,W) is called finite if the underlying set of
configurationg is finite, |G| < co.

It is called ofperfect informationif at every moment of the game both players have
full knowledge about the actual configuration and the history of the play. This means
their strategies can make use of the entire history.

Note that our definition of games does not allow hiding of information. We do not
formalise this since all the games in this thesis are of perfect information. All of them
are finite provided that underlying transition systems are finite apart from the ones of
Sectior9.2.

The definition of the winner of a play gives rise to the winner of a game: plpysr

said to win a particular game if p can enforce a play that is winning for herself. In
other terms, winning a game is short-hand for having a winning strategy for that game.
Note the crucial difference between winning a play and winning a game.

Definition 36 A winning strategyfor p in a game§ = (C,A,Co, P,W) is a partial
functionn : €™ — @ satisfying

e if (Co,...,Cn) € PandA(Cy) = pthenn(Cy,...,Cp) is defined, and

e if p always chooseq(Cy,...,Cy) at this moment then he or she wins every
possible resulting play regardless of their opponent’s moves.

If p has a winning strategy for G then thegame tree for playep is derived from the
full game tree in the following way.

e For every finite prefixCo,...,C, of a play s.t.A(C,) = p discard all subtrees
except the one starting with(Co, ... ,Cy).

e Retain all other nodes.

The game tree for playgr can be seen as either a determinisationp'sfrole in the
game, or a representation of the winning strategy

2.6. Games a7

A class of games has the propertyd#terminacyif for every possible game of this
class one of the players has a winning strategy. Note that by definition at most one can
have a winning strategy.ermelo’s Theorefran important general theorem that proves
determinacy for most games of the following chapters is one of the earliest results in
game theory. Actually, Zermelo was concerned with the question of whether or not
there is a winning strategy for a chess player.

Theorem 37 [Zerly Letg be a 2-player game of perfect information, s.t. every play
is of finite length and has a unique winner. Then one of the players has a winning
strategy forg.

Much stronger results have been found since, mostly relaxing the requirement that
plays can only be of finite length. See the Gale-Stewart Theo®856]}, and Martin’s
Theorem, Mar74, for example.

We introduce two different types of gameastodel checking gamesnd satisfiability
games A model checking gamé&<(s,¢) is played on the set of states of an LTS
T=(8,{2| ac A},L) with sc 8, and the set of subformulas of a formupaof
one of the logics introduced in SecticBgl and2.5. It is playerV'’s task to show that
T,s = ¢ whereas played tries to show thaf,s = ¢.

A satisfiability gameG(¢) is played on the set of subformulasdaf Playery attempts
to show thatp is not satisfiable whereas playés task is to show thap is satisfiable.

The goal of the following chapters is to characterise model checking and satisfiability
checking problems for the logics of Sectidghd and2.5in a game-theoretic way. This
means the rules and winning conditions of the games need to be defined such that a
player has a winning strategy for a particular game iff the semantical property he or
she intends to show is true.

In general the correctness proofs split up into two parts: soundness and completeness.
A class of games for a logic and possibly a class of structures is sound if, whenever
player 4 wins a game then the corresponding semantical property holds. This is
equivalent to saying that play&rwins if the semantical property fails. It is complete

if the converse holds: playérwins if the semantical property is true.

48 Chapter 2. Preliminaries

Definition 38 A class of model checking games for a logiand a class of structures
XK is closed undedual gamesf the logic is closed under negation and

e for every rule that requires play@rto make a choice on a formufathere is a
dual rulein which playerp makes a choice on the negated formfijand

e for every winning condition for playep there is adual winning conditiorfor
playerp s.t. every occurrence of a formufeis replaced by its negatiap

Then for everyS+(s,¢) of this class of games there is the dual gagpés,) for the
negated formula.

Theorem 39 (Duality principle) LetSs(s,¢) be a model checking game of a class of
games which is closed under dual games. Playesins G5 (s, ¢) iff player p wins the

dual gameS+(s,§).

PROOF Suppose playep wins G5(s,9), i.e. there is a strategy fqy which enforces

a winning play forp regardless ofp’s choices. Therp can use this strategy in the
gameSq(s,¢) because whenever he has to make a choice then by duality there is a
corresponding rule which requirggo make a choice i§+(s,¢). This way, regardless

of playerp’s choices, he is able to enforce a winning play for himself, namely one that
is dual to a winning play fop in S5(s,$). Thus, he or she wingy(s,). -

Fixed Point Constructs and Unfolding

The way fixed point operators are handled in the games of the following chapters is
calledunfolding Whenever a fixed point construct occurs it is simply replaced by its
defining equation. This ifcally correct because a fixed point can by definition be
replaced with its defining equation without changing its semantics. Howgladral
correctnessnust also be obeyed which distinguishes least from greatest fixed points.

If a fixed point constructX gets replaced by a formul&(X) then at some point
later in a playX can occur again since game rules follow the syntactical structure of
formulas. In this case we call regeneratingf its second occurrence stems from the

2.6. Games 49

unfolding. Note that sometimes configurations are setsXanduld get unfolded but
then disappear since the play might follow another path in the syntax trigeXof On

the other handX might appear in a later configuration again if it occurs as a subformula
of another formula in there. In this caXes not regenerating.

A least fixed point is only found if the corresponding construct is not unfolded infinitely
often. Suppose it is, i.e. there is an infinite play in which a certain configur@tion
occurs infinitely often. Moreover, suppo€efeatures a least fixed point construct.
Since the game rules follow the syntactical structure of formulas and fixed point
constructs are unfolded the situation at hand can be interpreted in the following way.

The truth value of the least fixed point construct in a certain context depends on itself.
Note that the context is given by everything els€imhich can be other formulas, a
state of a transition system, etc. In other words, the truth value gtthenfolding of

the construct is actually determined by tkth unfolding whera < j. This argument

can be iterated down the sequen2g). At the end of this sequence there is the bottom
elementl of the underlying lattice. For model checking and satisfiability checking, the
lattices can be regarded as boolean in some way, i.e.. teaisually the booleafalse

Thus, an infinite unfolding of a least fixed point construct indicates that, regardless of
where one starts in the sequeng2€), it is always_ that determines the truth value of

the fixed point construct. Hence, it is not fulfilled.

The same argument applied to greatest fixed points shows that an infinite unfolding
corresponds to the construct being true in the actual context since the top eleEment
will be the booleartrue in some way.

Greatest fixed points are in every way dual to least fixed point. Thus, in order to refute
a property described in terms of an explicit or implicit greatest fixed point constructor
one must eventually leave the unfolding.

This has consequences for model checking and satisfiability checking games.
Depending on the nature of configurations of a game, one of the players will have
the task to explicitly show the regeneration of a least or greatest fixed point construct.
For instance, if configurations are sets of formulas that are interpreted conjunctively
then playeiv will win if he is able to show the regeneration of a least fixed point in this

set. If there is a regenerating one then it will be false according to the argumentation

50 Chapter 2. Preliminaries

above. By the nature of these configurations they will be false which is what pfayer
wants to show. On the other hand, regenerating greatest fixed points are uninteresting
in such a situation since they are fulfilled which does not determine the truth value of
a conjunction.

2.7 Winning Strategies

The history of a prefixCo,...,C, of a play which is in the actual configurati@gy
Is the sequenc€y,...,C,_1. Remember that in general winning strategyis a
partial functionn : €t — €. A winning strategyn is called history-freeiff for all
sequence§y,Cy,...,C,andCo,Cy, . .., Cp, and configuration€: n(Co,C; ...,Cy,C) =
N(Co,Cy,...,Cn,C). Thus, it can be seen as a function of the typeC — € since the
player’s choices only depend on the actual configuration.

If winning strategies for a game are history-free, then game trees can be represented
as a graph. The graph representation simply results from the tree representation by
identifying nodes in the tree that represent syntactically equal configurations. Since

the winning strategies for the underlying game are assumed to be history-free, the

winning player’s choices only depend on the actual configuration. Thus, the choices

are always the same regardless of the position in the tree. The choices made by the
loser of the game are all preserved anyway.

This has an important consequence for finite games. In this case the graph
representation of a winning strategy is always finite even though a tree representation
of the same winning strategy might be infinite. If this is the case then winning
conditions can be simplified. A play of the for@,...,Cy,...,Cny,... with C, =Cy,

can be terminated aft€,, since the winner of this play is already determined at this
moment.

When considering a game as a tree, namely its game tree, the notiosubfame

comes for free. Itis given by a subtree in the whole game tree. As well as a game can
be composed of several subgames, a strategy for a game can be composed of strategies
for subgames in a natural way if they are history-free.

2.7. Winning Strategies 51

Suppose the set of configuratiof®f a game is partitioned int8;, Co, ... S.t. eackt;
represents a subgame. Moreover, suppose there are straegies .., ni: G — C,

I.e. a strategy can require a player to move into another subgame. Then they extend to
a strategyn : € — C by

n(C)=C" iff Ce @ forsomei andn;(C)=C

Fact 40 The union of history-free strategies is a history-free strategy.

This thesis features history-free as well as history-dependent games. However, in the
latter case the contained games are not fully history-dependent in the sense that one
of the player’s choices depends on more than the actual configuration but not on the
entire history of the play so far. They depend on a finite amount of information about
the history of a play.

In fact, the history-dependence is even more restricted. The player’'s choices only
depend on the order in which a finite number of configurations has been visited, but
not on the number of times a certain configuration occurred in the play. This idea is
captured by the definition oflatest visitation record VR, [McN93,/IGH8Z. For a set

I C € of “interesting configurations”, at any moment of the play, it contains the order
in which the elements dfhave appeared in the history of the play.

Definition 41 Let € be the set of configurations of a game wiith . A LVRover|
is a sequenck=C;,...,C, of configurations with

e Cielforalli=1,...,n and
e G#Cjforall1<i<j<n,and
e n< |l

Let J denote the set of all LVRs ovér An LVR winning strategys a strategyn :
C x J — Cthat is winning in the above sense.

52 Chapter 2. Preliminaries
2.8 Algorithms

The games introduced in the following chapters characterise the model checking and
satisfiability checking problem for various logics (and classes of transition systems).
This means they provide results like ‘is satisfiable iff playerd wins the game
associated witlh”. The games alone do not yield an automatic procedure to check
satisfiability of a formula for example. However, the soundness and completeness
results of the next chapters can be used to construct algorithms which decide the winner
of a game and thus solve the logical problem.

We assume the reader to be familiar with the notion of a deterministic and a
nondeterministic Turing Machine, and thus the basic complexity classes DT(ME
DSPACHS(n)), NTIME(t(n)) and NSPACEs(n)). For technical definitions and an
introduction seePap94. The complexity classes that will be mentioned here are
defined using these basic classes in the following way.

LINTIME = Uyey DTIME(K-n)
PTIME = Uken DTIME(RY)
NP = Uken NTIME (0K
PSPACE = Uyeny DSPACENY)
NPSPACE := gy NSPACHNY)
EXPTIME = Uyey DTIME (2K
EXPSPACE := [Jyy DSPACH2KM)
2-EXPTIME := [y DTIME(22D)

Furthermore, the class, of the so-called polynomial-time hierarchy consists of all
problems that can be solved in polynomial time by a deterministic Turing Machine
with an NP oracle. Se&lko7€ for further details on the polynomial-time hierarchy.

Note that PSPACE = NPSPACE according &al69.

Another class that will be mentioned in Chapfdds co-NP. In general, the co-class of
a complexity clas€ contains all the complements of language€.in

co€ = {L]|Lee}

2.8. Algorithms 53

Alternating Algorithms

The theory of alternating algorithmsproves to be helpful for analysing the
complexities of game-based algorithms. Remember that nondeterministic algorithms
are allowed to guess the next right step in a computation, i.e. the one that leads to
an accepting configuration. Co-nondeterministic algorithms, also catédersal

have the ability to guess the next wrong step, i.e. the one that leads to a rejecting
configuration. An alternating algorithm can do both. It is nothing more than a game
played by two players of which one tries to reach an accepting configuration in a
Turing Machine’s computation by choosing successor configurations of existential
ones. The other player tries to reach a refuting configuration by choosing successors of
universal configurations. This gives rise to the basic complexity classes AT(MIE(

and ASPACE$(n)). Classes like APTIME or APSPACE are constructed just like their
deterministic counterparts.

Alternating algorithms and the corresponding complexity classes have been studied
in [CKS8J]. The results concerning us are the relationships between alternating
and deterministic complexity classes. If a problem can be decided by an alternating
algorithm using timef (n), then it can be decided by a deterministic algorithm using
space(f(n))?. On the other hand, alternating spat@) can be embedded into
deterministic time2°(f(W)_ Similar results hold for the converse inclusions. This yields
the following useful equalities of complexity classes.

ALOGSPACE = PTIME

APTIME = PSPACE
APSPACE = EXPTIME
AEXPTIME = EXPSPACE
AEXPSPACE = 2-EXPTIME

We will make use of these results to give upper bounds on the complexity of deciding
the winner of the games in the next chapters. The size of the input for a model checking
algorithm will always be the number of states of the underlying transition syStemal

the size of the formulg where

9] = [Suk¢)|

54 Chapter 2. Preliminaries

Note that the number of subformulasgofs linear in its syntactical length.

Local Algorithms

Regarding the model checking problem we distinguish between two different kinds of
algorithms: global andlocal ones. A model checking algorithm is local if it fulfills

two conditions:

1. It must be local with respect to the formula. This means it does not necessarily
exploit the entire game graph of a game because the evaluation of disjunctions
and conjunctions ison-strict if a disjunct evaluates to true then the other can
be ignored. The condition is dual for conjuncts.

2. It must be local with respect to the transition system. This means it avoids
necessarily exploiting the entire game graph by constructing the transition
systemon demand If the evaluation of a subformula on a successor state
determines the truth value of a superformula on the predecessor state then other
successor states are not examined anymore.

The second condition implies that the algorithm does not “jump” to arbitrary states in
the transition system at hand. Any model checking algorithm not satisfying these two
conditions will be called global.

This is just one definition of locality and by no means the only possibility.

For verification purposes local algorithms are desirab@/WY91]. Since the
transition systems used there tend to be very large it is helpful to use algorithms that do
not need to allocate space for the entire game graph at the beginning of their execution.

Note that an algorithm can be local and still construct a game graph completely. This
is for example the case with universal properties for which there is no counterexample.

The Subformula Property

Another requirement for model checking and satisfiability checking algorithms is the
subformula propertyln order to make these algorithms useful for verification purposes

2.8. Algorithms 55

they should only work on subformulas of the input formula. Suppose plédiger
winning strategy in a model checking game is used to illustrate that a transition system
fails to have a certain property given by the input formula. The subformula property
guarantees that the overall failure is linked to playsrmoves in the game. This is
because the syntax and the semantics of formulas are defined inductively.

One way of defining games for the temporal logics introduced in Se@idis to
translate them into the modgaicalculusl , as was shown irDam94 for CTL*. Then,

the L, model checking games fron$ti9g] can be applied to the translated formulas.
This violates the subformula requirement and makes it hard for the user of a verification
tool to understand why a certain property fails if the failure is demonstrated to the user
by letting him play against the tool’s winning strategy.

Chapter 3

Background

| can’t believe it! Reading
and writing actually paid off!

HOMER J. SMPSON

3.1 Tableaux

A tableauis simply a tree whose nodes are labelled in some way. The name suggests
that originally they were table-like structures. When using tableaux to decide the model
checking or satisfiability checking problem for modal and temporal logics the node
labellings are usually formulas or sets of formulas or one of these plus states of a
transition system. A branch of a tableau tree comes with the notion of being successful,
and a tableau is successful if all its branches are.

Branches are sequences of configurations which are built from a set of rules in a very
similar way to game rules. Usually, existential constructs in the underlying logic are
reflected by choices in the tableau rules while universal constructs cause a branching

58 Chapter 3. Background

in the tree. Fixed point constructs are unfolded and can potentially lead to infinite
branches.

A tableau-based model checker or satisfiability checker attempts to build a successful
tableau for a formula, resp. a formula and a state of a transition system.

The logical problem at hand is characterised by the question of whether there exists a
successful tableau for a formula (and a state of a transition system). While a successful
tableau witnesses a positive instance of the problem at hand, there is usually no witness
for a negative answer. For example, a formula is satisfiable if there is a successful
tableau for it. Hence, it is unsatisfiable if all possible tableaux fail to be successful. I.e.
unsatisfiability is a universal property which in this way cannot easily be illustrated to
hold.

Tableaux, as they are used nowadays, have two different roots, a syntactic and a
semantic one. The history of syntactic tableaux dates back to the work of Gentzen
who used tableaux for syntax-directed proofs in classical log&snB%. His work

has been extended to modal logics, for exampl€urbz, Kan57].

Tableaux systems with a semantic flavour are rooted in the work of Beth who was
also studying classical logicsB&t55. With the introduction of Kripke semantics,
these tableau systems became interesting for modal logics askvé&B]. Moreover,
Hintikka structures, Hin69], which are based on Smullyan’s semantical tableaux,
[Smu9Y, have been used to decide modal and temporal logics as &&l8].

These two routes merged later on when it was realised that they are essentially the
same, Zem73 Rau79Fit83]. Nowadays, syntactic tableaux have their applications in
proof theory while semantic tableaux are mostly used for automated reasoning, i.e. to
decide whether a given formula is valid for instance.

Tableaux have been used to solve model checking and satisfiability checking problems
for modal and temporal logicsGor99. One of the reasons for the usefulness of
tableaux for these logics is the tree model property which all the logics discussed in
this thesis possessPia8() for example used tableaux to decide satisfiability of PDL.

A successful tableau basically incorporates a model for the formula at hand.

Recently, tableaux have also been used to decide satisfiability of LTL formulas, for

3.1. Tableaux 59

example in [LPOQ and SGL97. The latter construction uses intervals of points in

a possible model for the formula. In contrast to this, the tableaux BO(] work

on subformulas of the input formula only. They also are used to obtain a complete
axiomatisation.

The advantage that tableau-based satisfiability checking offers is the close connection
between the syntactical structure of the input formula and the tableau which witnesses
a semantical property. Tableaux could be used to construct complete axiomatisations
for various logics. This is because completeness of an axiom system is a connection
between syntax and semantics: every consistent formula must be satisfiable, see
Chapter7 for details.

[EH8E gives a tableau-like decision procedure for satisfiability of CTL formulas and
uses the tableaux to prove completeness of a certain axiomatisation. This usually
involves a processing of the tableaux in order to construct a model for the formula
at hand. Other tableau approaches to decide the satisfiability problem for branching
time logics can be found irtHC82, BAPM83]. [Eme8% states that they are essentially

the same together with the maximal model construction¥@{86b, SVW83.

The completeness of PDL was shown in a similar way, based on the satisfiability
tableaux from/Pra8(), see KT90] for details.

Atableau model checker for BLTL was given IoR8E]. Its running time is exponential

in the size of the formula but linear in the size of the underlying transition system.
This was the reason to believe that despite the relatively high complexity LTL model
checking can efficiently be done since formulas tend to be small while a transition
system usually forms the biggest part of the input to a model checker when the number
of states is taken as the size of a transition system.

A local tableau model checker for CTlwas given in BCG94. In fact it is a model
checker for BLTL which is not surprising since it has been observed that model
checking for LTL and CTE is basically the same. This means both problems are
easily reducible to each other. A CTormula can be seen as a collection of BLTL
formulas.

In general, a CTEmodel checker has to determine whether a path quan@iiedolds

60 Chapter 3. Background

in a certain stats of a transition system. This only dependssandy. Doing this
inductively one can assumjeto be free of path quantifiers. Thus, in cas€Xf A the
input is a transition system and a BLTL formula.Qf= E then one can model check
the BLTL formulaAQ and negate the result to establish whether the state satgfies
We will also make use of this observation in Seciig.

3.2 Automata

An automatonis a simple technical device that takes an input, runs on it and outputs
either yes or no. According to Church’s Thesis, Turing Machines are the most
general automata. Several downgraded versions of them — usually called automata
for short — have been defined since, mainly to capture levels of the Chomsky hierarchy
algorithmically.

In the setting of linear time temporal logic one regards automata over strings or words.
A string is a finite or infinite sequence of symbols over an alphabetet >* denote
the set of all finite strings ovex andZ® the set of all infinite strings over.

In general, an automaton consists of a finite set of states with a distinguished starting
state, an acceptance condition, a memory and a transition function. Its behaviour is
determined by the transition function which, applied to a current state, a position in the
input string and the state of the memaory, yields the next actual state, a possible change
of the memory and a new position in the input word.

A run of an automaton is a sequence of configurations consisting of the actual state,
the content of the memory and the position in the input word. An automaton accepts a
word if, beginning in the starting state, the run induced by the transition function meets
the acceptance condition. The set ofwlE >*, s.t. automatomd acceptsw is called
thelanguage accepted by and denoted.(A). The same holds of course fat.

Several different acceptance conditions for automata on infinite structures that lead to
different types of automata have been used. The mostimportant ones are the following.

e Biichi automataA run must visit at least one state of a given set infinitely often.

3.2. Automata 61

e Rabin automata In a given set of pair¢F,Gi), i = 1,...,n, there is a pair of
sets of stateghk, Gy) s.t. at least one state @ is visited infinitely often while
states in are only visited a finite number of times.

e Streett automataln a given set of pairéF,G;), i =1,...,n, every pair(F,G;)
satisfies the following. A state iG; is visited infinitely often or all states iR
are only visited a finite number of times.

e Muller automate For a given set of sets of statég ..., F, there is an s.t. K
contains exactly those states which are visited infinitely often in a run.

e Parity automata Each state is assigned a natural number called the parity index.
The least index which is seen infinitely often in a run must be even.

Biichi used finite automata to obtain a decision procedure&sémond-Order Logic

of One Successor Functid®lS, a generalisation of Presburger ArithmeiRreR9.

The acceptance condition of these memoryless automata is, as it is stated above, the
existence of a certain state that is visited infinitely often in a run. In particular, he
showed that for every formul@ of Monadic Second-Order Logic with a Successor
Relation over Infinite StringMSO[<], there is a finite-state automataiy s.t.

L(Ag) = {weZ® w0}

An infinite stringw can be regarded as a mathematical structure whose universe is the
set of natural numbers representing the positions of the string. Monadic predicates are
interpreted as labels on the positions, resp. letters of the string.

Furthermore, the converse inclusion also holds. For every automaton there is a formula
whose models are exactly the words accepted by the automaton. Thus<M&nes
exactly the regular languages.

Star-free languages, a genuine subclass of regular languages, were shown to coincide
exactly with the class of languages definabld=irst-Order Logicwith a successor
relation over strings FO,Tho79. In [Kam6§ it was shown that LTL with past
operators is expressive complete, i.e. that it defines exactly those properties that are
expressible in FO. This is based on the observation that an infinitapatis; . . . of

62 Chapter 3. Background

an LTS where thes are labelled with elements &% is nothing more than an infinite
string over the alphabéf’.

Automata for Linear Time Temporal Logic

Since all these results relating to automata and temporal formulas are constructive
then finite-state automata can be used to decide the model checking and satisfiability
checking problem for LTL. Given @& € LTL one can build the corresponding
automatonAy that accepts exactly the models ¢f Model checking for a worav

and ¢ is done by testing whether the run inducedwys accepting. Satisfiability
checking is done by testing whether the language acceptégi iy non-empty.

In order to decide LTL the nondeterministic version of thsehi-automatgproved

to be helpful, YW86¢&, SVW83. These guess truth values of subformulas at every
position of the path, and their transition function is used to check whether the guesses
are correct. The non-emptiness problem for these automata can be decided using
polynomial space Mar9€g.

To do model checking for BLTL, i.e. to test whether all paths of a given total
transition system satisfy a linear time formula, the transition system is interpreted as
a Bichi-automatorm” as well. This is done by regarding every state as final. Hence,
every run of the transition system is an accepting one since it necessarily visits a final
state infinitely often.

T is then paired with the automaton for the negation of the input formula. The product
automatoriJ x Ay simulates runs off and.Ag in parallel. Model checking BLTL

Is then reduced to checking for language inclusion between these automata which is
nothing more than an emptiness test on the product automaton.

forall pathsmof T: mi=¢ iff L(7) CL(Ay) iff L(TxAy) =0

Again, this is possible using polynomial space.

The translation from LTL formulas into nondeterministicéiéhi-automata can yield
automata that are exponentially larger than the formula at hand. However, the
non-emptiness problem foriBhi-automata is just NLOGSPACE-complet&\W94].

3.2. Automata 63

On the other hand,Mar9€ gives a linear translation from LTL formulas into
alternating Bichi-automata

A nondeterministic automaton allows existential choices in its transitions. Technically,
the transition function is in fact a relation. Thus, an input word generally induces
several runs. The acceptance condition then quantifies over these runs existentially,
l.e. aword is accepted by the automaton if there is an accepting run.

It is easy to imagine universal quantification which results in co-nondeterministic
automata. Alternating automata on the other hand allow both choices on the level
of a transition. This means there are some configurations which are accepting iff there
is a successor configuration which is accepting, and others which are accepting iff
all possible transitions lead to an accepting configuration. The run of an alternating
automaton is a tree of configurations which is nothing more than a system of boolean
equations. It is accepting iff the corresponding system has a solution. For this
correspondence configurations are regarded as boolean variables, nondeterministic
choices are translated into disjunctions while co-nondeterminism is modelled by
conjunctions.

This approach is more natural when translating formulas into automata since they
usually feature existential and universal constructs. Thus, it is not surprising that
the translation from LTL into alternatingBhi-automata given irMar9€¢| basically
follows the syntactical structure of the formula. Disjunctions are translated into
nondeterministic choices, conjunctions into co-nondeterministic ones, fixed point
constructs are unfolded, etc.

Since these automata are more succinct, their non-emptiness problem is expected to
be harder than the one for nondeterministiccBi-automata.Var9€] showed that it is
PSPACE-complete.

The route via alternating automata promises better efficiency than the one using
nondeterministic automata because the costly operation is applied after the cheap
one: emptiness test after translation. For nondeterministic automata the former is
easy while the latter is hard. Generally, the composition of an exponential function
with a polynomial yields a function which is asymptotically worse than a polynomial
composed with an exponential function. Consider for example the two functions

64 Chapter 3. Background

f(n) = 2" andg(n) = n?. Thengo f = o(f o g) becausggo f)(n) = (2")? = 22"
and(f og)(n) = 2.

Automata for Branching Time Temporal and Modal Logics

For branching time logics as well as modal logics, automata over strings are not
applicable. This is simply because models of branching time formulas are not strings.
However, the general idea of using automata to decide the model checking and
satisfiability checking problem for these logics is still admissible. The right machinery
in this case are automata over trees.

Rabin noticed that Bchi's work on Monadic Second-Order Logic with One Successor
Function can be extended to MSO with several successor relations. This is the natural
logical framework for trees instead of strings where sons of a node are considered to
be ordered different successors of the node.

The technicalities for automata over strings carry over to automata overIreessp.

39, gets replaced by the set of all finite, resp. infinite, trees with nodes labell&d by
The run of an automaton is necessarily a tree of configurations and is accepting if some
condition on its branches is met.

[Rab69 showed that finite state automata over trees accept exactly those languages
of trees that can be defined by MSO with several successor relations. This defines a
notion of aregular tree languages. Similar to LTL’s expressive completeness result
a fragment of MSO with several successors could be identified that coincides exactly
with CTL*. [HT87] showed that CTL can be translated infdonadic Path Logic over
infinite binary treesMPL and vice-versa. The name “Path Logic” indicates that this
fragment of MSO allows second-order quantification over paths only. Later, it could
be shown that the requirement of regarding binary trees only can be relaxed, but then
CTL* only corresponds to the bisimulation-invariant fragment of MIMIRPS].

Using the observation that a CTormula is simply a collection of existentially and
universally path quantified linear time formulas one can extend the approach taken for
LTL to CTL*. The first attempts to use tree automata for testing satisfiability of &8 CTL
formula yielded a decision procedure whose running time is quadruple exponential in

3.2. Automata 65

the size of the formula. The reason for the high complexity is the need to determinise
automata in an inductive process and the testing for non-emptiness. Determinisation is
necessary because of the following.

Consider two paths with a finite common prefix and a CTarmulaA¢. Even if ¢
holds on both paths the automaton in general has to guess which path it is going to
follow while it is still processing the common prefix.

One of the four nested exponents in this approach results from the translation
of LTL formulas into nondeterministic automata over strings with an acceptance
condition using pairs. Then using McNaughton’s construction for the determinisation
of these automata causes a double exponential blow-up of the automaton’s size,
[Bic62 McN66]. Finally, checking for non-emptiness of these automata needs
exponential time.

In several attempts the complexity could be pushed down to deterministic triple
exponential time, ES84, nondeterministic double exponential tim&nhe8%, and

finally deterministic double exponential tim&JO0(. These optimisations exploit the

fact that automata resulting as a translation from Cliive a very special structure
such that complementation and non-emptiness test can be done more efficiently than it
is possible in the general cas8af88 MS9L, Tho9q. In [VS8Y it was shown that the

last result is optimal.

The downside of this automata-theoretic approach is the fact that determinisation
only preserves the semantical connection between a formula and an automaton. The
syntactical relationship, however, is destroyed. This is the reason why automata for
example are believed to be of no use in constructing a complete axiom system for
CTL*.

There is one thing that distinguishes the branching time from the linear time framework
conceptually. For linear time logics the model checking problem as well as the
satisfiability checking problem can be reduced to the inclusion problem for languages
of infinite words. Remember that automata-based model checking for BLTL is done
by checking language inclusion between twiacBi-automata.

In the branching time setting, the model checking problem cannot easily be reduced

66 Chapter 3. Background

to a language inclusion problem. Instead, formulas are translated into automata that
accept trees, i.e. to check whether a given tree satisfies a fogmatee has to test for
membership of the tree in the language accepted by the automaton correspoigding to
This holds of course for general transition systems as well which can be unravelled to
atree.

TskEo iff Re(T) € L(Ap)

whereRs(T) is the unravelling ofl with respect to the state

This conceptual difference has consequences regarding the efficiency of the
automata-theoretic approach to branching time model checking.

The model checking problem for CTL for example is PTIME-complet€E$83

gives a decision procedure that runs in linear time in both the size of the transition
system and the formula. The satisfiability checking problem on the other hand is
EXPTIME-complete.

The gap for CTE is even wider: model checking is PSPACE-completel87],
while satisfiability checking is 2-EXPTIME-complete. For CTithe model checking
problem was shown to bAs-complete, LMSO01]. The satisfiability problem is in
2-EXPTIME and EXPTIME-hard. There are known exponential lower bounds for the
translation of CTL" formulas into CTL, Wil99, Al01].

These results make the approach taken for linear time formulas seem unfeasible for
branching time logics. Solving the model checking problem by building automata
used for satisfiability testing cannot lead to optimal decision procedures unless the
translation yields suitably small automata.

Another technical problem dates back to Rabin’s work on tree automata. Remember
that they were originally used to decide MSO withsuccessor relations) € N.
Therefore, those tree automata work on trees in which every node has exaotig.

For satisfiability checking this is no impediment since all the logics discussed here
preserve bisimulation. Thus, if a formula has a tree model in which every node has
at mostn sons then it is also satisfied by the tree which results from the original one
by duplicating subtrees such that every node has exacigns. This is, however,

not possible in model checking where the underlying tree is derived from a transition

3.3. Games 67

system in which states can have arbitrary and different out-degrees.

[KG9€6] uses automata with flexible transition relations that adapt to various
out-degrees of a node of a transition system. It also ssealtaneous treewhich

allow different nodes of a path to be visited simultaneously. The CTL model checking
problem is then reduced in linear time to the non-emptiness problem for these automata
and trees which can be checked in quadratic time.

Later, KVWO0O0] used alternating automata over trees to decide the model checking
problem for CTL. It is observed that the linear translation from CTL formulas into
alternating automata yields automata of a special structure, so-vadbdalternating
automataalready identified inMSS8§. The product of these with a transition system

IS an even more special structure, a so-calleditant alternating automatorModel
checking CTL is then reduced to the 1-letter non-emptiness problem for these automata
which can be decided in space linear in the size of the formula and polylogarithmic in
the size of the transition system.

The same approach works for CThs well. Not surprisingly, the automata resulting

from this translation admit a less efficient non-emptiness che®B00] describes

how non-emptiness checking for these automata can be seen as a game which can be
implemented efficiently.

[VW86hL] showed that Bchi automata on infinite trees can be used to decide
satisfiability of PDL formulas as well.

3.3 Games

In computer science games have often been used to provide an understandable account
of a certain problem. It is maybe because games are part of everyday life that
game-based solutions are considered accessible. In fact, many situations besides
obvious games can be defined in terms of two players and the notion of a play which is
won by one of them. An exam is nothing more than a game between the examiner and
a candidate in which the candidate wins iff he or she is able to produce correct answers
to at least half of the examiners questions regardless of what exactly they are.

68 Chapter 3. Background

Besides the area of logics in computer science, games have also proved useful in other
fields like combinatorics DemQ7, or programming languages semantics for example,
[Abr97].

Probably the most commonly known example of a logical game is that of an
Ehrenfeucht-Fr@$ game which is played on two mathematical structures in order
to establish whether a formula of a certain logic can distinguish them from each other,
[Ehr63, Frab4.

In Ehrenfeucht-Fr@s games two players take turns in colouring or picking elements
of one of the structures such that playelways has to reply to play&fs moves in the
other structure. The moves are designed for a certain lbdaobtain a result of the
following form. Playerd wins the game of length on X1 andXs iff for all n-tuples

kq of K1 andk; of K and all formulash(xy, . .., %n) € £ with n free variables

Kkt Ed(x,.... %) iff Ko ke = d(xa,..., %)

Remember that a model checking game is played on a structure and a formula
in order to establish whether the structure satisfies the formula. In this respect,

an Ehrenfeucht-Fia®e game can be seen as two model checking games that are

synchronised on the formula component. If one of the model checking players makes a
move in one structure then this is guided by the underlying formula. Thus, for the other

structure to also (not) satisfy the formula at hand, the same move must be possible in
the other structure.

Ehrenfeucht-Frig@$ games have mostly been used for classical logics like First- or
Second-Order Logics and fixed point extensions of them. This is because they have
become the main tool to separate logics from each other in terms of their expressive
power. This is done by finding two structures such that playdras a winning
strategy for the game corresponding to one logic while playwins all the games
corresponding to the other logic.

Separation results for these logics are important in Finite Model Theory since many
complexity classes have logical characterisation. NP for example corresponds to the
existential fragment of Second-Order Logi¢, [Fag74, and on ordered structures
PSPACE is characterised by First-Order Logic with Partial Fixed Points FO+PFP,

3.3. Games 69

[Imm82, AVV97], while First-Order Logic with Least Fixed Points FO+LFP captures
PTIME, [Imm8€, Var8Z. For surveys sedinm89 and [EF94.

Ehrenfeucht-Frg$ games for modal and temporal logics have not been studied with
such intensity. This might be because it is easier to obtain separation results for these
logics in a direct way, see the section on their expressive powers at the end of this
chapter.

On the other hand, Ehrenfeucht-Fs# games for logics with extremal fixed point
constructs are interesting because they provide insight into the question about the
differences between fixed point and general quantifiers. Ehrenfeudst-games

for L, can be found in'$ti964. For basic modal logics, i.e. modal logics without
any recursion mechanism like fixed points in FLC B or the Kleene-Star in

PDL programs, Ehrenfeucht-Rs# games coincide with simple bisimulation games,
[Sti964.

In computer science, modal and temporal logics are widely used for program
specification and verification purposes. Not surprisingly, games for these logics deal
with problems arising in this area as well. Besides the model checking and satisfiability
checking problem there is program synthesis for exambleo95.

The basis for most of the games in this thesiSiBJE where a game-based approach to
L,'s model checking problemis presented. In these games the players essentially move
one pebble through the underlying transition system and one through the syntax tree of
the formula at hand. Moves are guided by the formula, and players do not necessarily
take turns to move. The winner of a play is determined by an atomic formula, or
a situation in which one of the players cannot move anymore, or a condition on the
visited formulas in an infinite play.

This condition concerns the occurrence of fixed point constructs. In fact, the winner
is decided by the fixed point type of the outermost variable occurring infinitely often.
This is where the strength of games for modal and temporal logics can be seen. The
winning condition is very natural to the underlying logic and not too hard to understand
for those who are reasonably familiar with least and greatest fixed point in general.

Computationally£L 's model checking problem is relatively hard since no polynomial

70 Chapter 3. Background

time algorithm has been found for it so far. However, the problem’s complexity is
entirely captured by the task of finding a winning strategy for one of the players.
Checking which player wins a particular play is easy. But it is the definition of a
play rather than a game which provides understanding of the property expressed by a

formula.

Games have also been used in a less direct way for two other problems concerning
the logics dealt with here MB0OQ] defines games to determine whether the language
accepted by a CTLmodel checking automaton is empt\W97] builds tableaux for

L, formulas and uses games to test whether particular branches of these tableaux are
successful.

Comparisons

Tableaux, automata and games are not entirely different techniques. Often, it is
possible to turn one of them into another.

The easiest transition is made from games to tableaux. Given a model checking or
satisfiability game as the ones in the following chapters, the game tree for player
nothing more than a tableau for a formula (and a state of a transition system). The
duality property of the games automatically yields refuting tableaux. These are player
¥’s winning strategies. To define a tableaux system formally from a given game one
would usually replace the notion of a play with a tree in a way that plaigechoices
remain as they are while playéis choices correspond to a branching in the tree. Thus,

a play would be a branch of the resulting tree. A branch of this tree is successful iff it
fulfils one of played’s winning conditions.

The transition from tableaux to games is not much harder. Given a tableau system for
a logic it can be turned into a game in which playechooses the form of successor
configurations to the actual one while playéselects the path to follow through the
tableau. The notion of a successful branch must be translated into a winning condition
for player3 while playerV’s winning conditions need to be made complementary to
them such that a branch is not successful iff it corresponds to a winning play for player
v.

3.4. Overviews 71

Often, alternating automata are seen as games. In fact, it is the non-emptiness test of
the language accepted by an alternating automaton which is a 2-player game. The
configurations are the automaton’s states while playerwinning conditions are
derived from the automaton’s acceptance condition. An accepting run can then be
seen as a game tree for player

Conversely, playek’’s game trees, i.e. witnesses for the failure of a property, are
accepting runs of the dual automaton in which nondeterministic and universal choices
are swapped, and the acceptance conditions are dualised. This is particularly easy if the
automaton is of a type whose acceptance conditions are closed under complementation,
for example Rabin or parity automata. This is why games correspond more closely to
these kinds of automata rather thaindBi automata,Eme96EJSO].

Finally, there is a close connection between automata and tableaux as well. The
transition table of an alternating automaton is in fact a tableau. Note that from an
existential point of view an automaton chooses the next state nondeterministically if
the actual one is existential, but spawns off copies that run simultaneously in a universal
state. This corresponds exactly to the idea underlying tableau rules described above.
See Eme8Y for details.

3.4 Overviews

Model Checking

Figurel3.1 lists the most important publications in the area of model checking for
the logics used in this thesi€, and Lﬂ are included for the sake of completeness.
Moreover, because of embeddings some of the result§ fararry over to PDL for
example. To the best of our knowledge automata-based model checking for PDL has
not explicity been published but it can easily be obtained from automat@ﬁfoﬁ'he
complexity remains the same.

The empty fields in thélﬁ row are due to the fact that tableaux or gamespican
easily be simplified to yield tableaux and games ﬂ@r Again, as far as we know

72 Chapter 3. Background
logic tableaux automata games others
[LP8H .
BLTL [BCGYY [3 Sectior5.5
[VW86¢]
[GPVW9Y
CES8:
CTL [BCG9Y [) Sectior5.3 [QS8]
[BVW94]
BVW94
CTL* [BCG9Y [J Section5.2
[VBOQ]
CTL™ Sectiors.4 [LMSO01]
[FL77]
PDL Chapteid
[AIOQ]
FLC [LS024 Chapte©
SW9J
Ly !] [BVW94] [Sti9g [Eme9]
[Cle9q
. [And94
0 [MSS97 [CS92
il y:
[BVW94]
[BCoq

Figure 3.1: The history of model checking.

3.4. Overviews 73

the model checking problem for CTLhas only been addressed iMS01] using a
reduction technique.

We do notinclude LTL in this table since model checking for linear time temporal logic
is only really interesting if it is interpreted over all paths of a total transition system,
i.e. if BLTL is considered in fact.

Remember that for branching time logics the detour via satisfiability checking
automata is not feasible for model checking. In the FLC case it is not even possible
since satisfiability checking is undecidable. Consequently, the right automaton model
for FLC formulas is one whose membership problem is decidable although the
emptiness checking problem is undecidable. Se@i@mwill suggest that alternating

tree pushdown automata could serve as the right choice for automata-based FLC model
checking. This is also hinted ilL&n024 where a translation from FLC interpreted
solely over linear models into alternating pushdown automata over finite and infinite
words is given.

Satisfiability Checking

Figure3.2 lists the most important publications concerning the satisfiability checking
problem for these logics. Here, there is no distinction between LTL and BLTL since
a model for an LTL formula is also a model for the corresponding BLTL formula.
Conversely, every path of a model for a BLTL formula is also a model for the
corresponding LTL formula. Thus, a BLTL formula is satisfiable iff its LTL pendant is
satisfiable.

The empty tableaux for CTLfield is due to a conjecture stated by Emerson that
determinisation is essential for checking satisfiability of CTarmulas. Therefore
there would be no tableau-based decision procedure for*CTrhis is refuted in
Chaptel8. The winning strategies for the games introduced there can easily be seen as
tableaux for CTL.

The empty fields in the games column will be addressed at the end of this thesis
regarding further work. It is not entirely clear whethBiWV97] should be listed under
tableaux or games or both. In fact, the method proposed there builds tableaijx for

74 Chapter 3. Background
logic tableaux automata games others
[LPOQ [SVW83 . ,
LTL Section6.1 [Fis9]]
[SGL9Y [VW86¢]
[CE8]] .
CTL [VW86¢] Section6.2 [EH8Y
[BAPM83]
[ES84
CTL* [Eme8Yj Chaptei8
[EJOQ
CTL*
) [FL77]
PDL [Pra8([VW86é] Section6.3
[Pra79
[SE84
Ly [NW97] [EJ9]
[EJOQ
Lo [BVW94]

Figure 3.2: The history of satisfiability checking.

3.4. Overviews 75

logic model checking satisfiability checking
PDL PTIME-complete EXPTIME-complete
LTL PTIME-complete PSPACE-complete
BLTL PSPACE-complete PSPACE-complete
CTL PTIME-complete EXPTIME-complete
CTL™ Mo-complete EXPTIME-hard,c 2-EXPTIME
CTL* PSPACE-complete 2-EXPTIME-complete
FLC PSPACE-harde EXPTIME undecidable
FLCK PSPACE-complete undecidable

Ly PTIME-hard,e NPNco-NP EXPTIME-complete
LY PTIME-complete EXPTIME-complete

Figure 3.3: The model checking and satisfiability checking complexities.

formulas which are only pre-witnesses for the satisfiability of a formula. To obtain
witnesses a game is played on these tableaux. This can be simplified to obtain a
decision procedure foﬁ:ﬁ on the same basis.

Again, to the best of our knowledge, the only known decision procedures for CTL
are based on regarding the input as a Clidrmula or translating it into CTL.

Complexities

Figure3.3 shows known lower and upper bounds for the computational complexities
of these logics. Again, we includg,, andL'ﬁ to allow comparisons. Note that FKC
andLﬁ denote all fragments of arbitrary but fixed alternation depth.

PTIME-hardness of the model checking problems follows trivially from the

76 Chapter 3. Background

PTIME-hardness of the evaluation problem for boolean formulas. Note that all the
logics featured here subsume propositional boolean logic.

PSPACE-hardness of BLTL's model checking and LTL’s satisfiability checking
problem was shown in9C8%. The former also proves that CTLmodel checking

is PSPACE-hard. PSPACE-hardness of FLC’s and & @odel checking problem
was shown inlLS024. A different but unpublished proof was found byiiMer-Olm
earlier on.

CTL™’s lower bound for model checking was found bMSO01] together with its
upper bound. All the other upper bounds result from complexity analyses of the work
summarised in Figurd.l

EXPTIME-hardness of PDL’s satisfiability problem was proved [fL77]. Lﬁ’s

and L,'s EXPTIME-hardness is a consequence of this. The proof of CTL’s
EXPTIME-hardness is not a consequence of this but proceeds along the same lines.
This makes it a lower bound for the complexity of CTk satisfiability problem, too.

2-EXPTIME-hardness of CTLs satisfiability problem was shown ivVE85. [MO99
proved that FL& and with it FLC and FL& are undecidable for ak € N.

Membership in EXPTIME of PDL'’s satisfiability problem was shown [Prd79.
Again, the other results providing upper bounds can be found in Fidre

Expressiveness

Figure3.4 shows how the logics discussed here relate to each other in terms of their

expressive powers.

PDL is easily seen to be embeddable inﬁ) [KT90]. The translation is uniform and,
hence, even preserves the subformula property to some extend. The same holds for the
translation of CTL into&ﬂ, as well as the translation frof, into FLC, [MO99].

A translation from CTL into Lﬁ is given in Dam94. It does not preserve the
subformula property. This is not surprising if one considers the complexities for these
logics. Clearly, an embedding that preserves the syntactical structure of a formula
gives rise to a polynomial reduction from one logic’s satisfiability checking problem

3.4. Overviews 77

FLC
‘ \ —— syntactical fragment
FLC™ 1
; ,_FLC syntactical fragment with
‘ same expressive power
Ly FLC® .
‘ ‘ —————— semantical fragment
Ll]i FLCOL semantical fragment
: \ ; with uniform translation
CTL*
0
| L
cTLy 7
BLTL CTL PDL

Figure 3.4: Expressiveness in the family of modal and temporal logics.

to the other’s. But the fact that there is a double exponential lower bound for deciding
CTL* and the membership df,’s satisfiability problem in EXPTIME show that every
translation from CTE to £, has to produce certain formulas of exponential length.

Chapter 4

Model Checking Games for

Propositional Dynamic Logic

Though this be madness,
yet there is method in it.

PoLONIUS

Model checking games for PDL are played on an ITS (8,{-%+| ac A},L) with
starting states € § and a PDL formulap. Playerd wants to show that = ¢ whereas
playerV tries to shows [~ ¢. The set of configurations of the garfig(s, ¢) is

C = SxSuld)

A configuration is writtert - Y wheret € 8 andy € Sul{¢).

The game rules are given in Figudel. They are usually written

C
C/

(r) pc

80 Chapter 4. Model Checking Games for Propositional Dynamic Logic

and to be read as: If the actual configurati®mn a play is of the fornC then playemp
performs a choice and the next configuratio@ . 1 is C’ with the same instantiations
as those fo€. (r) is the name of the rule. A player/choice combination kkeneans
that playerv chooses anfrom a domain which should become clear by inspecting
andC'.

One of the reasons for calling the play&randd becomes apparent in this moment.
A notation like Ji can be read as “playet chooses an” but also as “if the upper
configuration is true then there exists iathat makes the lower configuration true”.
The same holds for a player/choice combination Yikéor example.

An empty p ¢ means the rule is deterministic. In this case it does not matter which
player makes the next move since the outcome would be the same. Therefore, we omit
player names in deterministic rules.

Another possible game rule pattern is

"o T o o P

Here, if the actual configuratio; is an instance o€ then playerp has the choice
whether the next configuratia®), ; will be an instance of’ or C".

A disjunction is easy to prove, therefore it is playks task to choose a disjunct with

rule (V). A conjunction is easy to refute. This is done by playen rule (A). Rules

(U, (WD), (6), (BD (), ([40), ((2)) and([?]) simply apply the equivalences for

PDL formulas with modalities given in Secti@hS to obtain formulas or programs of
smaller size. Some of these equivalences yield boolean combinations. In these cases
the following choice using rulév) or (A) has been built into the modality rule already.

Finally, if the actual configuration contains a modality with an atomic program one of
the players has to choose a successor state that is reachable along a transition labelled
with the program at hand. This is reflected in rulés)) and([a]).

There are three different types of plays. An atomic formula can be reached in which
case no rule applies. One of the players can get stuck by being unable to choose a
successor state. Or the play can proceed ad infinitum.

81

V) skdoVdr 5) sk oAy vi
st ¢i st oi
Sk <GOU01>¢ . S"[GOUGIMJ
((U) SF (b di () s [ald
st (0p;01)¢) st [ap;a1]d
st (ao)(a1)¢ sk [aol[aa)o
sk (a*)¢ st [o*]$
* 3 * Y
() sko | sk (o){a)¢ () sk¢ | sk [al[a*]d
sk {(po?)¢1 st (W7
ke ® 5| sre
st (a)0 a st [al¢ a
(@) o 7 st ([a)) o vV st

Figure 4.1: The rules for the PDL model checking games.

PlayerV wins the playCo,Cy, .. . iff

1. thereisameNs.t.C, =tk-q and gq¢L(t), or

2. thereisameNst. G, = t-(ay and t-5, or

3. there are infinitely manye Ns.t. G; = tj - (a*){ for somet; € S.
Playerd wins the playCo,Cy, ... iff

4. thereisame Nst.Cy = t-q and qeL(t), or

5. thereisame Ns.t. Cy = t+[a)y and t 5, or

82 Chapter 4. Model Checking Games for Propositional Dynamic Logic

6. there are infinitely manye Ns.t. G = t - [a*]¢ for somet; € S.

Example 42 Let T be the transition system consisting of stafes} with transitions
s-%t andt -2-t. The labelling of the states igs) = {g} andL(t) = {q}. The formula
to be checked is

¢ = ((@%a)")q
¢ says “there is a path labelled wit#ts on whichq does not hold until it holds”, see

also Exampleél6. T with starting states satisfiesp. The full game tree is given in
Figure4.2. The players’ choices are annotated at the right side of the rules.

PlayerV wins the plays ending witls - q andt - g because of condition 1. The
rightmost path results in an infinite play that visits the configuration

tH((@”a)%)q

infinitely often. Thus, it is won by player, too. Playerd wins the other plays with
winning condition 4. She has a winning strategy since she can force the game into the
positiont - q unless playe¥ has forced it into a defeat for himself beforehand.

We remark that applying the model checking gamegifpfrom [Sti9 to translations
of PDL formulas intoLE’1 results in basically the same games as the PDL model
checking games of this chapter.

Correctness

Fact 43 Rules(V), (A), ((U)), ([U]), ((?), ([?), ((a)) and ([a]) reduce the size of
the actual configuration. Rul€sx)) and([«]) can both decrease or increase it. Rules
((;)) and([;]) reduce the size of a program occurring in the actual configuration.

Lemma 44 Every play ofS+(s,¢) has a uniquely determined winner.

PROOF A play can either be of finite or infinite length. Suppose it is of finite
length. Note that there is a rule for each type of formula except atomic propositions
g. Furthermore, all rules apart frorf{a)) and ([a]) are always applicable in a

83

3
stq sk (g?;:a)((@?a)")d
sk (@?)(@){(@”a)")q
v
skQ sk (a)((@?a)")q
Js-2,t

Figure 4.2: The full game tree for Example |42,

corresponding configuration since the players only choose subformulas. (Railes
and([a]) may not be applicable in case there is no corresponding transition to choose
in the underlying transition system.

Thus, a finite play must end in a configuration of either of the formsy, t - (a)W

ort - [a]y. In the second case, winning condition 2 determines the winner. Winning
condition 5 does the same for the third case. For the first case, note thageithé¢t)

orq ¢ L(t). Therefore, the winner is uniquely determined by winning condition 1 or 4,
too.

Suppose now that the play at hand is of infinite length. According to &3cthis

is only possible if rule((x)) or ([x]) is played infinitely often since all other rules
genuinely decrease the size of the configuration or a program occurring in it. Moreover,
the players must choose the option that increases the size of the actual configuration
infinitely often.

84 Chapter 4. Model Checking Games for Propositional Dynamic Logic

Note that, if played choosesp in the unfolding of(a*)¢ for example,(a*)¢ cannot
occur in the play again. Otherwise it would be a genuine subformula of itself. The
same holds for player and[o*]¢.

Thus, in an infinite play they will almost always chooge (a*)¢, resp.[a][a*|¢, in
applications of ruleg(x)) and ([x]). Suppose both are played infinitely often, i.e.
there arga*)¢$ and[B*|y that occur infinitely often in a play. One of them must be a
subformula of the other, sd@*|w € Sulid). But if player3 always choose&) (0*)d

in an application of rulé («)) then will never occur as the formula component of a
configuration in the play. Consequentl§;]y cannot either.

Hence, in every infinite play either @*)¢ or a[o*|¢ occurs infinitely often and the
winner of this play is uniquely determined by winning condition 3 or 6. n

Definition 45 LetT = (8,{-%|ac A},L) withs;t € 8, ¢ € PDL andy € Sul{¢). A
configuratiort - Y of the gameS(s,) is calledtrueif t = Y andfalseotherwise.

Lemma 46 Playerd preserves falsity and can preserve truth with her choices. Player
V preserves truth and can preserve falsity with his choices.

PROOF First consider rulg\/). Take a configuration

C = tkdoVoe

Suppos€&€ is false, i.et [~ ¢ andt = ¢1. Regardless of whichplayer3 chooses, the
configuratiort + ¢; will be false. On the other hand, supp@3es true. Then = ¢ or

t = ¢1, and played can preserve truth by choosingccordingly. The proofs for rules
(A), ({(U)) and([U]) are similar or dual. The cases of rulgs)), ([]), ((?)) and([7])
can be reduced to the boolean connectives.

Consider now a configuration
C = tH{(ay

SupposeC is false. Then either 2 or for everyt’ € S: if t-2:t' thent’ k= . le. if

t has ama-successor then playércannot make the following configuration true.tIf
does not have aasuccessor then there will be no next configuration and consequently
playerd cannot make it true either.

85

Suppose now thal is true. Then there isd € § s.t.t -2+’ andt’ = Y. By choosing
thist’, player3 can preserve truth. The case of rga)) is dual. m

Note that the deterministic rulés;)) and([;]) preserve both truth and falsity.

Preserving truth, resp. falsity, is going to play an important role in the following proofs
of soundness and completeness, Theordthand49. Consequently, it is going to

be an important part of playefs, resp. playek’s, winning strategies. However, this
alone is not enough as the next example shows.

Example 47 Take the transition systefhconsisting of one stateonly with ana-loop
to itself, i.e.s-%>s. Consider the formula

¢ = (@) (@

which postulates the existence of a finite path whose transitions are labelleglamith
which has at least two states.

The gameSs(s,¢) only consists of unfoldingd and choosing the only possible
transitions-2:s. Note thats = for all ¢ € Sul{¢), i.e. regardless of playet's
choices with rulg(x)), she will always preserve truth. However, in order to win she
needs to choos@)tt at some point, otherwise playgmwould win with his winning
condition 3.

Therefore it is part of both players’ strategies to choose the smaller of two formulas if
both preserve truth, resp. falsity.

Theorem 48 (Soundness) If T,s~ ¢ then playeV winsG+(s, ¢).

PROOF If s}~ ¢ then the starting configuration of every play®f(s,¢) is false. We

build a game tree for playéf preserving falsity. I.e. whenever a rule requires him to
make a choice the tree will contain the successor configuration that preserves falsity
according to Lemmde. All of player 3's choices are contained in the tree.

Player3 cannot win a finite play of this tree since she only wins finite plays that end in
true configurations. Suppose she wins an infinite play. Then it must contain infinitely

86 Chapter 4. Model Checking Games for Propositional Dynamic Logic

many false configurations of the for@ =t; - [a*]y for i = 0,1,.... Consider the first
of these. By falsity

to & [a]y
According to Lemm@d.5 of Chaptei2, there must be a smalldst N s.t.

to f£ [a¥w
If C; =t1 F [a*]W is reached it can be interpreted as
trk [a Yy

The argument is iterated witBy.

By preservation of falsity the play must eventually reach a false configur&jon
interpreted as
te - [a%y

But [a®)y = tt, i.e.C, cannot be false.

We conclude that the assumptiorntef- [o*| being false was wrong and that therefore
player3d cannot win an infinite play either. Hence, playewins S5(s,¢). n

Theorem 49 (Completeness) If 7,s|= ¢ then playe3 winsS5(s,).

PROOF According to Lemmal3, PDL is closed under negation. Furthermore, the
class of PDL model checking games is closed under dual games since for every game
rule there is a dual rule and for every winning condition there is a dual winning
conditions, too.

Suppose now thdl,s = ¢, i.e. T,s [~ . According to Theorend8, playerV wins
G(s,@). But then played wins §(s,¢) by TheorenB9, the duality principle. g

Theorem&l8 and49 show that the PDL model checking gamesa@e&erminedi.e. for
every game one of the players has a winning strategy.

Corollary 50 (Determinacy) Player V wins Gg(s,¢) iff player 3 does not win

97(57(1))'

87

Theorem 51 (Winning strategies) The winning strategies for the PDL model
checking games are history-free.

PRoOOF Consider playe#’s winning strategies. According to the proof of Theorég,
she needs to preserve truth. Note that the truth value of a configuration only depends
on its state and its formula component and not on the history of a play.

Furthermore, if she has the choice between two different successor configurations and
both are true, she chooses the smaller one. But the size of a successor configuration
does not depend on the history either.

The situation for playel/ is dual. Thus, his winning strategies are history-free as
well. [

PDL over Finite State Transition Systems

The completeness proof of the PDL satisfiability games that will be presented in
Sectior6.23depends on the fact that satisfiable PDL formulas have finite models.

Theorem 52 (Finite model property) PDL has the finite model property.

PROOF Supposeho € PDL is satisfiable. Then it has a modek (8, {-2+|ac A},L)
with 59 € 8. Furthermore, there is a successful game Trder playerd and the game
S7(s0,$0). We construct another tréE' and show that it is a successful game tree
for playerd as well. Note that for every infinite bran&@y,Cy,... in T there is a
[0*]w € Sul{do) s.t. the branch contains infinitely many configurati@nsCi, , . . . with

G, = tjF[a*]y for sometj €

To obtain a grapiT; from T we do the following. For every such branch Thwe
discard the entire subtree beginning w@ih and add an edge frof,_; toCj,. Let T’
be the unravelling oT; with respect to the starting configuratiGp:

T = Rey(Th)

In order to show thafl’ is a game tree we need to consider the added edges from
aCj,—1 to aCj,. Regardless of which rule was applied@q_; to obtainC; , the

88 Chapter 4. Model Checking Games for Propositional Dynamic Logic

pair (Ci,—1,Ci,) is a valid instance of this rule as well. This is because the formula
components of;, andC;, are the same.

Moreover, T’ is also a game tree for playér Note that she has a winning strategy for
the subgames starting in any configuratioif pin particulatCj, andC;, for any branch.
According to Theorenbl, winning strategies are history-free. Thus, the subgame
starting withC;, can be replaced by the subgame starting @jgtwithout effecting the
winner of the entire game.

Note that there are only finitely many different state§ afccurring in a configuration
of T'. Thus, it is possible to define a finite transition systge: (8, {>'|ac A},L)

by
8 = {te§|thereisap e Sul{dy) s.t.t - Y is a configuration ifl; }
with transitions given by

th >ty iff there is a configuratioty - (a)y ort; - [a]y, and
a configuratiori - P s.t. rule({(a)) or ([a]) was played
between them

The labelling of the states is taken from their respective labellings in

In fact, T is a successful game tree for playgérand the game&q(sp, ¢o). Then
J’,50 E 0o by Theoren¥8, i.e. §o has a finite model. n

If the underlying transition system is finite the winning conditions can be modified to
result in finite plays only. The game rules remain the same. Playéns the play
Co,...,Cy iff

1.Cy =tkq and q¢L(t), or
2.Ch=t-(ay and t2, or

3. C, =t (a*)y and thereis & withi < nandC =C,.

Playerd wins the playCo, .. .,Cy iff

89

4. C, =tkqg and qeL(t), or
5.C, =tk[ay and t2, or

6. Ch = t+[0*]p and there is & with i < nandC; =C,.

The new winning conditions are simplified versions of the ones for arbitrary transition
systems. Winning conditions 1,2,4 and 5 are just the same. By Theaftewinning
strategies are history-free, and the new winning conditions 3 and 6 result from the old
ones by regarding plays in the game graph instead of in the game tree, see/3&ction

Complexity

One way of analysing the complexity of finding winning strategies in the PDL model
checking games is to use the results on alternating complexity classes. It is not hard
to see that a play of a gan$e-(s,¢) can be played using space that is logarithmic in

the size of the input only. This is done by encoding a configuration using two pebbles.
One of them is placed on a state of the transition system, the other on a subformula of
the input formula. The pebbles can be stored as counters which need logarithmic space
in the size of the transition system and the formula.

Therefore, the winner df+(s,¢) can be decided in alternating LOGSPACE which is
the same as PTIME according {6KS8]]. However, using a more explicit analysis
this result can be improved.

Theorem 53 (Complexity) Deciding the winner of a PDL model checking game is
in LINTIME.

PrROOF We sketch a global algorithm that decides the winneiSgfs, ¢). Since
winning strategies are history-free the game can be represented by the game graph.
The algorithm simply labels nodes of this graph with either 4 depending on which
player can win the game starting with the configuration at hand. This is done in a
bottom-up manner.

The game graph can be partitioned into blocks and these blocks can be enumerated
s.t. every path of the graph either stays in one block or leaves a block into another one

90 Chapter 4. Model Checking Games for Propositional Dynamic Logic

whose index is strictly greater than the first one’s. This block structure is induced by
the formula component of a configuration only. A block is in fact a strongly connected
component of the graph. And strongly connected components can be computed in
linear time using Tarjan’s algorithm for exampld&af72).

Remember that most rules of the games reduce the size of the formula at hand.
Exceptions are formulas of the forfu*)y and [o*|. These can cause the game
graph to have loops. Paths cannot lead back into a block they have been in because
once a play reaches a formula, séy;)W it can never reach a proper superformula of

it again. Furthermore, each block can only have loops of one tyfe’,)g or a[a*|.

Thus, the graph of blocks is directed and acyclic. It can be processed starting at those
blocks which are furthest away from the starting configuration

Co = sH¢

The configurations in such a block can be labelled in the following way. Terminal
configurations, i.e. those that end a play with winning conditions 1,2,4 or 5 are labelled
with the corresponding winner. The last configuration of a path that exhibits a repeat
is labelledV if the type of this block is(a*)y and with 3 otherwise. The other
configurations can be labelled in a bottom-up manner depending on which player has a
choice in the configuration at hand and whether there is a successor configuration that
is labelled with their name already.

The algorithm only needs to visit each node of the game graph once. For a transition
system with state s&tand a formulap the size of the game graph|& - |¢|. Thus, the
claim follows. -

This is essentially the same technique that is used to show that model checking for the
alternation frequ—calculus&ﬁ can be done in linear time as welAhd94, CS92 BC9€|.
Extensions of PDL

The PDL model checking games can be extended in a straight-forward way in order to
capture extensions of PDL like Converse-PD&irB]], and PDLA, [Str8Y, as defined
in Sectiori2.5.

91

sk (aUB)¢ sk [aUBJ$ CHOL
sk (@UB)¢ st [aUB] st (B;a)¢
st [B;alo sk (@)¢ sk [a’]¢
sk (@b ¢ sk [aé vis st repeata)
tHd tHod st (a)repeata)

Figure 4.3: The rules for extensions of PDL.

To allow converse of programs and the repeat operator in the PDL model checking
games one simply has to add the rules of Figuz They mimic the equivalences for
converse programs and use the unfolding characterisation oépeatconstruct as
given in Sectior.5.

The winning conditions have to be extended, too. There are two for the case of the
converse of an atomic program which cannot be executed in a particular state. I.e.
playerV wins the playCo, . .. if there is an € N s.t.

Ch = tE{@u

for somet andy and there is no stags.t.s-2:t. Consequently, playerwins if player
V gets stuck in a configuration

and there is n@s.t.s-2:t.

The repeat construct requires an additional winning condition for play&he wins
an infinite play if there are infinitely many configuratioig, Cs, ... and a progranu
S.t.

C = ti repeata)

92 Chapter 4. Model Checking Games for Propositional Dynamic Logic

for somet; € S and every € N.

These extensions do not effect the complexity of game-based PDL model checking. It
Is still possible in linear time.

Chapter 5

Model Checking Games for Branching

Time Logics

But | remembered a voice from my past
‘Gambling only pays when you’re winning’

GENESIS

5.1 Focus Games and Sets of Formulas

Some of the games in this and the following chapters will use a special tool called
focus Mathematically, the focus simply is a function from a set to its elements. It
is used to highlight, resp. focus on one particular element in a set of formulas. A
focus gamas a model checking or satisfiability game that makes use of a focus. A
configuration in such a game involves a focus on a set of formulas. This is for example

written as

o]0

94 Chapter 5. Model Checking Games for Branching Time Logics

and is to be understood in the following wag: is a single formula® is a set of
formulas. The configuration at hand is, or at least contains, the disjoint éniofip }
as a set of formulas in whiop is highlighted.

Confluence is a potential problem for the games whose configurations contain or are
sets of formulas. The rules of all the games in this thesis however deapuiritiple
formulas there is usually one formula in a configuration which gets replaced by a
subformula of it in an application of this rule. The other formulas which are present at
this moment get discarded or copied into the next configuration. However, when using
sets, there are several candidates for a principle formula and, hence, more than one rule
might be admissible at a certain moment.

Informally, a game is callec¢onfluentif the order in which admissible rules are
applied does not effect the outcome of a play. The games of the following chapters
are confluent because of a simple argument. One only needs to consider possible
conflicts between rules that require different players to choose a particular subformula
of a possible principle formula. By doing so, another subformula might be discarded.
Later this could turn out to have been a bad choice since the other player discarded a
subformula of another principle formula of this moment which might be necessary for
the first player to win. On the other hand, if the first player had performed a different
choice, the opponent might have reacted differently as well.

This is, however, not possible for the games of the following chapters which use sets
of formulas since it is always at most one player who has the possibility to discard
formulas.

As it was mentioned in Sectidh € already, regenerating fixed point constructs play an
important role in games that use sets of formulas.

Definition 54 In a play Cp,C1,... of a game, a formulap is called regenerating
betweerCy andC,, for k < niiff

e ¢ is a fixed point construct, i.e. there isjee Sul{d) s.t.¢ € Suy), and

e ¢ € Cxandd € C, and for alli with k <i < n: (C;,Ci;1) is an instance of a rule
that either preservedl, resp. its unfolding, or replaced it by a subformula of it.

5.2. Model Checking Games for CTL* 95

The fixed point construa gets regeneratedfinitely oftenin a playCo, ... if there is
ani € N s.t.¢ gets regenerated betwe€nandC, for all n > i.

5.2 Model Checking Games for CTL *

Given atotal LTSI = (8,—,L), se S and a CTL formula¢, the CTL* model checking
gameS+(s,¢) is afocus gamén the above sense. Playgéwants to show thdl,s}= ¢
whereas playey tries to show thaf, s |~ ¢.

The set of configurations & (s, 9) is
€ = $x{EA}xSukd) x 25U1®)

A configuration is written
t Q] 5.1)

wheret € §, Q € {E,A}, Y € Sul{d) andd C Sulfd). With such a configuration we
associate a playgrcalled thepath player Thisisp:=Vif Q=Aandp:=3Jif Q=E.
The path player’s opponemptwill also be called théocus player

We will simply writet - Q(®) if there is ap € ® in focus that does not need explicit
mentioning.

The intuitive meaning of the configuration iB.0) is as follows: The path playgp
constructs a patitin J starting witht in a state-by-state manner. The focus plager
tries to highlight a particular formuld from the set of all formulas in this configuration
strEYif p=V,andnE=Yif p=3.

In other words, ifQ = E, then played wants to show that there is a pati*=t... s.t.

mEwAAD
e
although playek believes thatt [~ Y. If Q = A then playelv wants to show that there
is a pathrt=t... s.t.

T v\ 6

dcd
although played believes thatt = .

96 Chapter 5. Model Checking Games for Branching Time Logics

Theside formulasi.e. those that are not in focus, can be seen as an insurance for the
focus player to redo a move that she has done before. This is necessary because the
path player is allowed to choose the path stepwise along which a formula is examined.

At each configuration the set of side formulas together with the formula in focus can
be understood as a disjunction, resp. conjunction, of formulas in case the path player
is playerV, resp.d. This is also justified by the equivalences

E(Q V) =EVEY and A(bAY)=AdAAY
Each play ofS+(s, ¢) begins with the configuration
s-A([¢])

Note thath as a starting formula is a state formula and therefore equivalegt tBule

(A) would set the path player toanyway. If¢p = EY, as it will be in Examplé7 later
on, rule(E) sets the path player té in the next move. This reflects the equivalence
AEY =EU.

From then on, the play proceeds according to the rules given in Figuresd5.2. In
addition to the rule schemes introduced in Chagtere will use another one. A rule
of the form

is to be read as follows: playgrcanplay this rule in a configuration that match@és
but does not have to.

We will motivate the CTEE model checking game rules in the following. Suppose
playerd is constructing a pati and there is ao V ¢1 in the actual configuration.
Since played believes thatt = ¢V ¢1 she can choose one of the disjuncts and the
other one can be discarded. This is formalised in r(#$g]) and(EV).

Suppose there is o A §1. PlayerV believes thatt [~ ¢o A ¢1 and has to pick the
conjunctd; that fails by setting the focus to it, see rdEA]). However, since he does

not know which path playet is going to choose, the other conjuigat ; is preserved.
Consequently, if the conjunction was not in focus there is no choice at all, see rule
(EA). Later rule(FC) will allow him to pick outds_; if player 3 was constructing a

5.2. Model Checking Games for CTL* 97
skA([oond1].®) sFE(|60v 1) @)
(A[A]) Vi (E[V]) i
ska([o],@) sE([¢i].@)
st ([0 4] @) s E([9o/ b1, ®)
(A[V]) 3i (E[A]) vi
st ([6i]011.®) sEE(|6i,01-1,®)
SI—A([UJ},(I)O/\(I)L(D) _ SFE([UJ},CI)O\/d)l,q’) _
(AN) vi (EV) i
SI—A([QJ},(I)i,CD) Sl—E([llJ}aq)i,cD)
sk A([W] .60V 01, @) sE(|W]. 00/ 01,®)
(AV) (EA)
st A([lIJ],d)o,d)l,CD) sk E([LU} ,00,01,P)
sk Q([Ad)}) sk Q([E¢] ,®)
(4) (E)

s a([o]) s-E(|9))
s-Q([¢].a®) s-Q([o].Quo)
s-afe].o) s-Q([o]. 0

s-Q([¢].w.®) s Q([X¢o] X1, X
(FC) P p s—t

s Q([y].6,®)

tHQ([4)0} ,01,...,dK)

Figure 5.1: The model checking games rules for CTL*.

98 Chapter 5. Model Checking Games for Branching Time Logics

sk Q([¢Uw} ,®P)

([u)
SEQ(|WV (9 AX(4UY)|,)

s Q(|¢ry|,®)
st QWA (@ V(R ®)

(R])

s Q([x].0uy, @)

(U)
s Q([X| WV (0 AX(9U)),)

s Q([x| . orw, ®)
s Q([X| WA (0 VX(9RY)),)

(R)

Figure 5.2: The unfolding rules for the CTL* model checking games.

path on whichp; actually holds. Rule$A[A]), (A[V]), (AA), and(AV) cover the dual
situations.

Once the focus player has decided to prove, resp. refute, a path quantified formula
a new pathrt needs to be chosen. The new path player depends on the new path
quantifier. The set of side formulas will be discarded since they were only relevant for

the old path, see ruldd) and(E).

Rule(d) allows the path player to discard propositions if they do not prove, resp. refute,
the current disjunction, resp. conjunction, of formulas. The same is possible for path
quantified formulas using rul@)).

Using the fixed point characterisation of the temporal operat@sdR they simply
get unfolded with ruleg[u]), ([R]), (U), and(R).

Applying these rules consecutively can result in a configuration in which every formula
is of the formXy, i.e. speaks about the next state of the underlying path. Thus, the path

5.2. Model Checking Games for CTL* 99

player has to choose the next state and the according formulas are examined on this
one, see rulg€X). Note that thep in this rule denotes the actual path player which
depends 0Q.

Finally, the focus playep — again depending on th@ of the actual configuration —is
allowed to reset the focus at any moment of the play using (fg¢¢. This might be
necessary whenever the path player reveals a further state of the path he or she is going
to choose. The focus player is always given the chance to reset the focus, particularly
beforea play is finished. Note that there are situations in which a play can get stuck if
he does not change it.

Definition 55 A configuration is callederminalif it is of the form
s Q([q] ,®)

for someq € P and somed, and the focus player refuses or is unable to use rule
(FC). If ® = 0 then the focus player is unable to use r(#e). Moreover, remember

that he or she is given the chance to reset the focus after every application of another
rule. Thus, they refuse to change the focus if they do not make use of this possibility.
This is useful if the configuration at hand makes the focus player win the current play.
Therefore there is no need to change the focus.

Definition 56 A formula$uy is calledpresentn a configuratiors - Q(®) iff
{ QUY, YV (DAX(GUY)), P AX(OUY), X(OUY) } N & # 0
A ¢RU is calledpresentn a configuratiors Q(®) iff
{ ORY, WA (¢ VX($RY)), O VX(ORY), X(RY) } N @ # O
Playerv wins the playCo,Cy, ... of G(s, do) iff

1. it reaches a terminal configuratio®, = tF Q([q] ,®) andqg¢L(t), or

2. there is apU € Sul{¢o) and infinitely many configurations;,,C;,,... s.t. for
everyj € N:

100 Chapter 5. Model Checking Games for Branching Time Logics

e G, =t~ E(®) for somet;j; € 8 and®, and
° [¢UL|J} is in focus in eveng;;, and

e afterCj, playerV has not used rul&cC), or

3. there are infinitely many configuratioi@,,Ci,, ... s.t. for all j € N there are
ti; € Sand® C Sul{¢p) and G, =t A(®), and either

e playerd has used rul¢rC) infinitely often, or

e there is apUy that is present and in focus in infinitely ma@y.
Player3 wins the playCo,Cr, . .. of G5 (s, do) iff

4. it reaches a terminal configuratio@, = t F Q([q] ,®) and gqeL(t), or

5. there is apRY € Sulido) and infinitely many configurations;,,Ci,, ... s.t. for
everyj € N:

e G, =t A(P) for sometj; € § and®, and
° [(])RL]J} is in focus in evenC;;, and

e afterCj, playerd has not used ruléc), or

6. there are infinitely many configuratioi@,,Ci,,... s.t. for all j € N there are
ti; € S and® C Sul{dp) and Cj; = tj; FE(®), and either

e playerV has used rul¢rC) infinitely often, or

e there is apRY that is present and in focus in infinitely ma@y.

The motivation for the conditions for infinite plays is the following. Condition 2 is
winning for playerv because in this situation he managed to show the regeneration of
anU formula along a path that playérchose. Condition 3 is winning for him since
playerd failed to show the regeneration ofeaformula along a path he chose. The
conditions for played are dual.

5.2. Model Checking Games for CTL* 101

O W00
{a} {a}

Figure 5.3: The transition system for Example 57.

To illustrate the games we give an example that makes use of an abbréViatedila.
The simplified game rules for this construct and foFegnrmula can easily be derived
from rules([U]), ([R]), (U) and(R) and are

s Q([Fq;],q:) sk Q([Gq;],q:)
SI—Q([(I)VXF(I)],GJ) SPQ([(I)/\XGq)},(D)
s Q([xy|.Fo.®) sk Q([x].co.®)
Sk Q([xw},q)vxm,qa) Sk Q([xw},q)/\xcq),d:)

Example 57 Let T be the transition system of Figu®3 The formula under

consideration is
¢ = E(qu(cq))

The property described by is: “There exists a path with a finite prefix and an
infinite suffix. On the prefixq never holds, on the suffix it always does.” Confer also
Examplel2. T with starting states satisfiesp. The game tree for playeris depicted

in Figure5.4. Note that in the second configuration playdoecomes the path player
which makes playey the focus player.

Since plays are of infinite length we can only depict them partially. Here, all plays
feature a repeating configuration. Later we will prove that winning strategies are
history-free. Thus, we can argue in the following way.

102 Chapter 5. Model Checking Games for Branching Time Logics

st~ a([E(qu(ca))))
st £([qu(ea)])
s E(|6aV (AAX(@U(ca)))))
s E([gAX(qu(ca))))
st E([a] x(@u(ca)) sk £([x(a })
s+ ([x(@v(cq))] 0 = E<[a)))
st &([x(@(ca)) tHE(v >]>
tre([a(cq)|) t+E([eqv @AX(@U(ea)])
t+E([eqv (@AX(@(ea)))]) tE([ca))
tI—E([Gq}) IFE([OI/\XGQ})
tHE([q/\XGq]) tHE([q] ,XGQ) tFE([XGq] ,q)
tHE([q] ,XGQ) tHE([ch] ,q) tHE([xcq} ,q) tHE([XGq])
tHE([xc;q} ,0) tHE([xcq]) tHE([xc;q}) tHE([Gq])
t - E([xcq}) tFE([Gq]) tFE([Gq}) :

tI—E([Gq})

Figure 5.4: The game tree for player 3 of Example 57.

5.2. Model Checking Games for CTL* 103

(Jio)m(s)=

{a} {a}

Figure 5.5: The transition system for Example 58.

Playerd wins the plays that proceed like the leftmost branch or the second from the
right with winning condition 6 since playéf changes focus. She wins the others, i.e.
the rightmost path and the second from the left with winning condition 6 as well. Here,
playerV is not able to show the regeneration ofiaformula along the path playet
selects.

Before we proceed to prove correctness of the games we give two further examples
that illustrate why a configuration in the model checking game needs to be a set of
formulas and, moreover, why the focus on this set is needed, too.

Example 58 Consider the CTL formula

¢ = A(XqVXq)

from Examplel2. ¢ says that every path’s next state is labelled with either T.

¢ is a tautology, so playev should not win the game on any transition system, in
particular the one shown in FiguBeEt. Note that the labelling of is unimportant for
this example.

However, if we require configurations to contain one formula only, playamnot win
97(s,¢) anymore. This is because play¢has to choose one of the disjunbisfore
playerV chooses a transition frosto tj, i € {0,1}. If player3 selectsxq for example

he would choos#) and vice versa. Thus, configurations containing one formula only
can make the path player too strong provided paths are chosen stepwise.

Example 59 This example justifies the use of the focus structure on sets of formulas.
Consider

¢ = E(FqQAGFQ)

104 Chapter 5. Model Checking Games for Branching Time Logics

sk E(Fg,XGFQ) st E(Fqg,GFQ)

sk E(Fq,XGFQ) st E(Fq,GFQ)

Figure 5.6: The plays without focus of Example 59.

from Examplel2 and the two following transition system$; andJ> consist of one
statesand one transitios— sonly. The labelling function of; assigng)to swhereas
the one ofJ, assigngjtos.

T1,S= ¢ but T2, s~ ¢ sinced postulates the existence of a path which visits a state
satisfyingq infinitely often. However, without an additional structure like the focus on
the set of formulas the gam§s; (s,¢) andSy, (s,) would look like the ones depicted

in Figure5.6.

The difference betwee§y, (s,¢), depicted on the left, andy, (s, ¢) is the generation
of Fg. In the first case it is generated from th& q above, in the second it regenerates
itself. Hence, in that case playércan keep the focus arg and explicitly show this
regeneration.

Correctness

Fact 60 Rules(AN), (EV), (d), (@) and(X) reduce the size of the actual configuration.
Rules(AV) and (EA) reduce the number of connectives in the actual configuration.
Rules(A[A]), (E[V]), (A[V]) and (E[A]) reduce the size of the formula in focus and,
hence, the size of the entire configuration. Ruylesand (E) reduce the number of
path quantifiers in the actual configuration and, hence, its size. R{U€s ([R]), (V)

and (R) increase the size of the actual configuration. R{#e) is the only one that
preserves both the size and the number of connectives in a configuration.

5.2. Model Checking Games for CTL* 105

Lemma 61 The path player can only change a finite number of times in a play.

PROOF The path player can only change with the rulgsand(E). But these discard
the entire set of present sideformulas. QgtQ € {A,E} with Q1 # Q2. Suppos&);¢

is in focus and the path player changes. If after @ap gets into focus to change the
path player again, theQ.U is a genuine subformula d@fand thus is shorter tha@; ¢.

But the formula to start with is of finite length. Hence, this can only occur finitely
often. n

Note that Lemm#1 can be generalised slightly by considering all applications of rule
(A) and(E) and not just those that change the path player.

Theorem 62 Every play has a uniquely determined winner.

PROOF A play is either finite or infinite. It is only finite if it ends in a terminal
configuration

s + Q([OI],CD)

Then eitherg € L(s) in which case playes wins orqg ¢ L(s) in which case playeY
wins.

Consider now an infinite play. According to Lemrgd, the path player can only
change finitely many times, therefore in every infinite sequence of configurations one
of the players can only occur finitely many times as the path player. Thus we can speak
of the path player for a particular infinite play as the player who is almost always the
path player in a configuration. Note that this also determihefocus player.

Moreover, for a play to be of infinite length there must be a formula of the fipig

or pRY that gets regenerated infinitely many times. Note that according tcoEaat

least one of the rulegu]), ([R]), (U) and(R) must be played infinitely often since the
starting configuration is of finite size and all other rules reduce at least a component
of the configuration. But then there are only finitely many possibilities forax R
formula to get unfolded with these rules.

Thus, in every infinite play there is Uy or a $RY that is present infinitely many
times. Now, the focus player can change the focus finitely or infinitely many times. In

106 Chapter 5. Model Checking Games for Branching Time Logics

focus player | (FC) infinitely often | present formulal| winner | condition
duUY \ 2
no
PRY = 6
v
yes 3 6
PRY = 5
no
oUY \ 3
=
yes v 3

Figure 5.7: The winning conditions for the CTL* model checking games.

the latter case no or R formula ever needs to occur in focus since the focus player can
always avoid it. However, in the former casep@p or apRyY must almost always be
present and in focus for otherwise F&€tshows that the size of the formula in focus
would infinitely often get reduced.

Figureb.7 depicts this as a nested case distinction and shows which winning condition
determines the winner in which case. Every possible infinite play is covered by one
of the cases. The first case distinction is on the player who eventually becomes and
remains the focus player. The second is on the question of whether he or she uses
rule (FC) infinitely often or not. Finally, the third case split concerns the question of
whether there is @U or adpRY that is present infinitely often. Note that this becomes
irrelevant if the focus is changed infinitely often since this behaviour determines the
focus player as the loser of the play already. n

The next result reestablishes an observation fr&i8[7] in terms of games: CTL
model checking can be polynomially reduced to LTL model checking. However, it
needs a technical definition first.

Definition 63 Let T = (§,—,L) with s€ 8. A block of a game graph for a game
G(s,¢0) is a subseB C € of the configurations ofi+(s, o) s.t. either

5.2. Model Checking Games for CTL* 107

e forallCe B: C =tFA(P) forsomet € S and® C Suli¢o), or
e forallCe B: C = tHE(®) forsomet € § and® C Sulido).

Lemma 64 Let T = (§,—,L) with se€ §. The game graph fo6+(s,$) can be
partitioned into a finite set of blockB1,..., B, s.t. every play never leaves a bldck
into a blockj with j < i. Moreovern < %'

PROOF We sketch an algorithm that finds this partition. It is basically the same as the
standard algorithm for finding a topological order on the set of connected components
of a directed graph.

At the beginning let := 1 and addCg to B. Do the same repeatedly with its successor
configurations unless one of them is reached via an application ofEuler (4). If
so, then increasieby 1 and continue with the respective successors.

According to Lemme6l, on every path through the game graph the path player
eventually remains the same, in fact no further application of (Bleor (A) is
encountered. Note that even if the underlying transition system is not image-finite,
only a finite number of blocks is needed to cover the entire game graph. This is because
an infinite branching in the transition system is only reflected in the game graph at a
position in which rule(X) is played. However, there the actual configuration and its
successors are put into the same block.

No transitions from a block with a higher index to one with a lower index are possible
as they would correspond to an application of a game rule that strictly increases the
number of path quantifiers in a configuration. According to B&¢this is impossible

since there is no such rule.

Finally, ¢ can contain at mosﬂ%' irredundant path quantifiers because of the
equivalence1 Qo = Qo for all Q1, Q2 € {A,E}. -

Rules () and (¢d) suggest that path quantified formulas bear a similarity to
propositions in the way they are treated in a game. Indeed, since an application of
rule (A) or (E) discards all present sideformulas, processing path quantified formulas
can be seen as starting a new subgame. Each of these subgames can be regarded as a
game for an LTL formula, either universally or existentially path quantified.

108 Chapter 5. Model Checking Games for Branching Time Logics

Definition 65 Take a states of a transition systen¥” and an ordered sequence
§1,...,¢n of formulas. Assume that

S = E(P1A...AQn)

i.e. no pathrt starting withs satisfies allp;. With each¢; and each such statewe
associate a S‘ﬂ{n (s) of finite prefixes of paths starting within the following way. Let
o0 = s...t be a finite sequence of stateslin SinceT is assumed to be totad, is not
maximal.

o€ Py (s) iff thereisapathn= o1 s.t. T}~ ¢

Let R (s) C P/(s) be defined by

o€Py(s) iff oePy(s)andforallj<i:o¢P (s

Informally, Pé,i(s) consist of all finite prefixes of a path starting srwhich can be
extended to an infinite path not satisfyifg Py, (s) is the subset oIPé,i(s) containing
all those finite prefixes that do not occur irPa(s) for a smaller index already. This
makes

{ P¢|<S) | I € {17-'-7n} }
a partition on the set of finite sequences of paths startiisg in

Next we show that a finite sequence of statesn never occur in a set with a smaller
index than those containing prefixes @f This gives the focus player an optimal
strategy in a CTE model checking game.

Lemma 66 Take two formulagi,$; of an ordered sequence of formulas. bgtos
be finite prefixes of a path starting 81s.t.0> = 010 for someo. If o1 € Py, (s) and
02 € P¢j(s) thenj > 1.

PROOF Suppose@; € Py, (s) for somei, o, € Py, (s) for somej andj < i. By definition
0> can be extended to a path= 0>... s.t. Tt~ ¢; for the accordingp;. But theno
can be extended tmas well and therefore; € Pé,j (S). Thus,o1 € Py, (s) is impossible

sincei > j is assumed. -

5.2. Model Checking Games for CTL* 109

The next lemma shows that it does not matter whether thePsé$$ are calculated
at the beginning and the focus is set according to these sets or whether they are
recalculated after every application of ryte.

Lemma 67 Take formulaxéq,...,X¢, and two states,t of a transition systerfi s.t.
s—t. Consider the setBxg,(S),...,Pxp,(S) and Py, (t),...,Py,(t). Leto’ =t... be
some finite sequence of states and so’. If 0 € Pxy;(s) anda’ € Py, (t) thenj > i.

PROOF Supposeo € Py, (s), 0’ € Py, (t) andj <i. Thenao’ can be extended tod
S.t. T}~ ¢j. But then taket:= sit. Clearly, tj= X¢;. Thereforeo € Py, (s) which
contradicts the assumption that Py, (S). n

The main correctness proof of the CTinodel checking games proceeds by induction

on the path quantifier depth of the input formula. The next two theorems form the
induction base case, i.e. we will prove soundness and completeness for input formulas
¢o of the formAd or Ed where¢ is a pure linear time formula.

Theorem 68 (Soundness) LetT = (8,—,L) withsp € S anddg € CTL* s.t.do = QP
foraQ € {E,A} and a¢ not containing any path quantifiers. 4§ = ¢ then playev
wins G(so, $o)-

PROOF There are two distinguishable cases depending on the path quantifigr of
First, letdg = Ad. This means there is a path= 55, ... S.t. T}~ ¢. We construct a
game tree for player using this path. Note that disjuncts are preserved and conjuncts
are chosen since playeis the path player, i.e. the set of formulas of the configuration
at hand is interpreted disjunctively.

Whenever rul€X) has to be played play&rchooses the next stageof Tt It is not hard
to see that the following invariant holds true: if the play visits a configuragiom (®)
then for ally € ®: 11 (- .

Remember that at the beginning there is aplyhich is not fulfilled byt Unfolding
U andRr formulas does not change this. Both disjuncts of a disjunction are not satisfied,
otherwise the disjunction would be satisfied on the remaintef the path chosen at
the beginning. And if
m o XP1V...VXPn

110 Chapter 5. Model Checking Games for Branching Time Logics

then
n B Qv v,

Thus, applications of ruléx) preserve this invariant. Whenever a conjunction occurs
he chooses the false conjunct. If both are false he chooses the smaller one.

It is impossible for played to win with winning condition 4 since this requires a
formula to be present that is fulfilled on the remaining path.

Suppose playef wins a play of this game with her winning condition 5, i.e. she
eventually keeps the focus orxay. More precisely, there is a configuration

C=-stkh A([wa},q’)

after which she does not use rylec) anymore. According to the invariant described
abovet = XRY. By Lemmal0 of Chaptei2 there is &k € N s.t.

T xR

At some point, playel/ will choose the next statg,1 of Tt when playing rule(X).
Since played keeps the focus ogxRU it will still be present in the configuration

s b oA(XRY], @)
and
T XRY

holds by the invariant. But

XRW = WA (XVX(XR)

Remember that in case of two false conjuncts playerthooses the smaller one.
Clearly, @ is smaller tharx v X(xRW@). But we can assume that he did not choose

P since it would immediately contradict the assumption that playains with her
winning condition 5. Therefore we can assume the other conjunct to be false. Then,
by definition of the approximants

Tli+l l# Xkaqu

5.2. Model Checking Games for CTL* 111

This argument can be iterated until the st&ig is reached with the condition

But xR% = tt which is satisfied byt K. We conclude that playét cannot win with
her winning condition 5.

Playerd cannot win a play of this game with her winning condition 6 since it requires
her to be the path player which she is not.

The second case ifsp = E. Sincesy [~ ¢o, every pathii= s5... does not satisfy

¢. Now, playerd is the path player and thus, conjuncts are preserved and disjuncts
are chosen. Setting the focus is the only thing that playleas control over. We use
LemmateE as a basis for player's strategy.

At any point in the play, playet will have outlined a finite prefix = 5...5 of a path
starting withsy. The invariant we use in this case is the following: there is always at
least onapj in the actual configuratiog - E(®) s.t. Py, (s) # 0.

At the beginning¢ is such a formula. Note that no path satisf@es Thus, if a
disjunction occurs playefi cannot choose a disjunct and a corresponding path that
satisfies it. If a conjunction occurs then one of the conjuncts must be false regardless
of which path played is going to follow. Unfoldingu andRr formulas preserves this
invariant.

Hence, at any stager E(W1, ...,) of the play there is at least odg € ® s.t. player
3 cannot find a patht= s ... with Tt}= ;. In other wordsPy, (s)) # 0.

PlayerY sets the focus to thig;. Since at any later point playérwill have outlined

an extension oy . .. s, Lemme66 applies. It shows that play&ronly needs to change
the focus finitely many times because there are only finitely many subformulas of
and, hence, only finitely many sef, (s) for anys € 8. Remember the lemma says
that playerv can change the focus in such a way that the indeRpfalways gets
increased.

This shows that playet cannot win a play with the first part of her winning condition 6
because this requires playeto change the focus infinitely often. To avoid defeat with
the second part of this winning condition, playemust eventually keep the focus on a

112 Chapter 5. Model Checking Games for Branching Time Logics

XUWy. Again, if the focus remains on a particular formula then it must be a regenerating
one. Thus, it can only be @Uy or xRy. Suppose the latter is true, i.e. there is a
configuration

s F E([XRHJ] ,®)

after which playelvy does not change focus anymore. As in the first case of this proof
one can show that there is a path=§... s.t. 1= XRY. Therefore xRy was not a
false formula, and there must have been a different one that playarld have set the
focus to.

Playerd cannot win with her winning condition 4 since it requireg @ be presentin
a terminal configuratiows; - E([q} , @) s.t.qge L(s). ButthenPy(s) = 0 since every
extension of this finite sequence of states trivially satigfiess. Therefore playey
would not have ended up with the focus @m the first place.

Playerd cannot win a play with winning condition 5 either, since it requires player
to be the path player which he is not.

Since playetv has strategies for both cases of path quantified formulas that disable
winning plays for playe& he must win the gamgs (o, ¢o). m

Completeness of the CTLmodel checking games can be proved using the duality
principle Theoren89, and the soundness Theoré@ However, since this is based on
Definition'65 and Lemm&bE it is necessary to dualise these first.

Definition 69 Take a states of a transition systent and an ordered sequence
d1,...,¢n of satisfiable formulas. Assume thel= A(¢1V ...V dp), i.e. every pathr
starting withs satisfies at least orgg. With each; and each such stasave associate
a setPy, (s) of finite prefixes of paths starting witin the following way. Leto =s. ..t

be a finite sequence of statesJin

oc Py (s) iff thereisapatht= ot s.t.t|= ¢
Let R (s) C P/(s) be defined by

o€Py(s) iff oePy(s)andforallj<i:ogPy(s)

5.2. Model Checking Games for CTL* 113

Here,Pé,i (s) consist of all finite prefixes of a path startingswhich can be extended to
an infinite path satisfying;. Again, Py, (s) is its subset containing only those elements
that are not included in a set with a smaller index.

The next lemma is proved exactly in the same way as Leiéfar the soundness
part.

Lemma 70 Take two formulagi,¢$; of an ordered sequence of formulas. ogto,
be finite prefixes of a path starting 81s.t.0> = 010 for someo. If o1 € Py, (s) and
02 € Py (s) thenj > i.

Theorem 71 (Completeness) LetT = (S, —,L) withsp € S and¢g € CTL* s.t.$o =
Q¢ foraQ € {E,A} and a¢$ not containing any path quantifiers.sf = ¢o then player
F wins S (S0, $o)-

PROOF Note that CTL is closed under negation and that the class of Cirlodel
checking games is closed under dual games. Furthermore, the negatid ofith
one path quantifier at the top-level position only iggof the same form.

Suppose now thaty = ¢o, i.e. S = §o. According to Theoren68, playerV wins
97(s0,90). But then played wins S4(o, $o) according to Theorelf9. n

The next theorem proves general correctness of the*@iadel checking gamegg
can be an arbitrary CTLformula now.

Theorem 72 (Correctness) LetT = (8, —,L) withse 8. Player3 wins G (s, o) iff
sk= do.

PROOF This is true if ¢o is an atomic proposition. For formulas with one path
quantifier only the claim is proved in Theorer8 and71. Supposedy has path
quantifier depttk. By induction the claim is true for formulas with path quantifier
depth less thak.

In general Gy (s, ¢o) has configurationst- Q' (d) with aQ¢ € ®. Q¢ is a state formula
with a path quantifier depth strictly less théig's because it is a genuine subformula
of ¢o. Since itis a state formula, eithef= Q¢ ort [~ Q¢ holds. By hypothesis either
of the players has a winning strategy for the gainét, Qd).

114 Chapter 5. Model Checking Games for Branching Time Logics

Suppose it is the one who is also the focus player at the current moment in the game
at hand. He or she can set the focusQ with rule (FC) and play rule(E) or (A)
depending oQ. Note that the resulting configuration is of the same form as a general
starting configuration. Furthermore, Lemi®4 shows that in the following a repeat

on an earlier configuration cannot occur anymore. Thus, in fact they play the game for
t andQ¢. By hypothesis playes wins this one ifft = Q¢. Thus, if the actual focus
player wins this game he or she also has a strategy for the gapg on

Suppose the focus player does not Win(t,Qd). Then he or she can discard it by
playing rule(@). The following configuration corresponds to a state formula with path
quantifier depth strictly less thaa Thus, the claim follows by hypothesis as weljg

As in the PDL case, Theorei® shows that for every CTLmodel checking game one
of the players has a winning strategy.

Corollary 73 (Determinacy) Player V wins G5(s,¢) iff player 3 does not win
97(37(1))'

The proofs of Theorem88 and71 show that the games can be simplified regarding
the positioning of the focus.

e |t suffices to allow focus change moves immediately after an application of rule
(X) only.

e PlayerV only needs to consider formulas that contaipia) to set the focus to.
Dually, playerd can do the same with formulas containingra.

Theorem 74 (Winning strategies) The winning strategies for the CTLmodel
checking games are history-free.

PROOF Again, first we regard formulas with one path quantifier only which is at the
top-level position. Consider play#is winning strategies. Suppose the formula at hand

is o = Ad. Then he is the path player. One part of his strategy consists of choosing a
pathTtin the underlying transition system that does not satisfyT his path does not
depend on the play.

5.2. Model Checking Games for CTL* 115

Furthermore, whenever a conjunction occurs he chooses the conjunct that is not
satisfied byrtor its remaining suffix. If both conjuncts are false he chooses the smaller
one. This is necessary farformulas that are not fulfilled along the path that a play
follows. Note thathRy unfolds to a conjunction in whiclp is one of the conjuncts.
Supposet = ¢RY whereTtis the path he is going to choose for the remainder of the
play. Thenrt = Y but alsortj= ¢ v X(¢RY), i.e. playerv has no choice but to preserve
falsity. However, only the first choice guarantees him to win. If he infinitely often
postpones to refuty, i.e. always makes the second choice, then playisrgoing to

win with her winning condition 5 since she can leave the focuRp.

The choices of this strategy only depend on the formula and state component of the
actual configuration, but not on the history of a play. Thus, this strategy is history-free.

Suppose nowo = E¢. Playery’s actions are reduced to setting the focus to a formula
which he believes is not satisfied by the path that playisrgoing to reveal. He can
order all possibly occurring subformulas at the beginning of the play, s.t.

$i € Sul¢;) implies j>i
where apUuy or a¢RY is identified with their unfoldings. Then, at any point

t F E(LIJl,...,ljJn)

during the play he can compute the sBjs(t), ..., Py, (t) according to Definitior65.

His strategy simply tells him to set the focus to the formula with the least index
whose corresponding set is non-empty. LenBidahows that even if he forgets and
recalculates these sets each time fulgis played, this still guarantees that he does

not need to change the focus back to a formula as long as he preserves the order of the
subformulas he chose at the beginning. According to the proof of The@8ehe only

needs to change the focus after an application of (Xjei.e. whenever he calculates

the sety, (t).

Between applications of rul&) he might have to set the focus to a particular conjunct.
Suppose the actual configuration is

tF E(|WiAY].@)

116 Chapter 5. Model Checking Games for Branching Time Logics

with path set®y; (t) andPy, (). Setting the focus to either of these will at most increase
the index of the associated set since both conjuncts are obviously subformulas of the
conjunction. Therefore it is safe for playérno set the focus to the conjunct with the
smaller index according to the order he chose at the start of the game. This choice does
not depend on the history of the play either.

By duality, playerd’s winning strategies are history-free, too.

Finally, strategies for games involving formulas with more than one path quantifier

can be composed inductively in the same way as subgames are in the proof of
Theorem72. Correctness of this construction is guaranteed by the hypothesis of

having a history-free winning strategy for subgames on formulas with a smaller

guantifier depth. More importantly, the composition of history-free winning strategies

is history-free. m

In order to prove the small model property for LTL and CTL in Chajidrased on
their satisfiability games we show that CThossesses the finite model property. It is
based on the following lemma.

Lemma 75 LetT = (8, —,L) withse § andRs(T) be its unravelling with respect to
s. Thenforallp € CTL*: T,s= ¢ iff Rs(T) = ¢.

PROOF For every path if¥ there is a path itRs(7) with the same state labellings and
vice versa. Moreovef] ~ Rg(7T) and CTL' cannot distinguish bisimilar states. g

This lemma is in fact nothing more than the tree model property for*Gidcording
to Sectior2. 1

Lemma 76 Let T = (8,—,L) with s € 8, ¢o € CTL", s.t. T,5 = ¢o. LetT be a
successful game tree for playerand the gaméjs(so, ¢o). Then there exists a finite
tree prefixT’ of T, s.t. every maximal brandd= Cy, ..., C, throughT’ satisfies one of
the following properties.

1. C,is terminal, or

2. Ch = tFHQ([(I)RLU],(D) and thereisan <ns.t. G = sk Q([q)RLp} ,®) and

there is no application of rulérC) betweerC; andC,, or

5.2. Model Checking Games for CTL* 117

3.Cy =tk E(M ,®) andthereisan <ns.t. C = sk E(M ,®) and there
is an application of rulgFC) betweerC; andC,.

PROOF T is a successful game tree for player Thus, every path through is a
winning play for her. The finite tree prefik’ can be constructed by cutting paths at
appropriate positions.

If the corresponding play is won with condition 4 then it is finite and includel irt
fulfils the first condition of the claim.

Suppose it is won with condition 5, i.e. from some point on play&eeps the focus
on adrY. By finiteness ofSulido) this play can be cut to fulfil the second condition
of the claim.

Finally, if it is won with condition 6 there must be a moment after which playkas
used rulg(FC) and the play can be cut to satisfy the third condition of the claim. Or he
left the focus on &R in which case the second condition of the claim can be fulfilled.

Note that, if T is finite then every path in it fulfils condition 1 above and therefbre
itself is the required finite tree prefix already. n

Theorem 77 (Finite model property) CTL* has the finite model property.

PROOF Supposapg € CTL* is satisfiable. Then it has a mod&l= (S,—,L) with
S € 8. By Theoremi72 there is a game treE for playerd for the game5(sp, $o). If
|8| < oo then the claim is proved already.

Suppose therefore théd| = . In general,T will be infinite as well. According to
Lemmarg, there is a finite tree prefik; of T. We will amend this to an infinite game
tree and show that it is a successful game tree for player

According to Lemm&6, every path inl; either ends in a terminal configuration orin a
leafC, that has a companidD, i < n, that differs fromC,, only in the state component.

In the next step we remove each such and add a transition fron€,_; to the
companionC; instead. Note that this represents a valid application of a game rule
since the formula componentsGfandC, are equal.

118 Chapter 5. Model Checking Games for Branching Time Logics

This construction yields a finite grapff with loops. Consider now its unravelling
Re, (T') with respect to the starting configurati@p. Every path irfRc,(T’) represents
a play of a gam& (s, do) whereT’ = (8',{>'|ac A},L) is defined by

8’ = {te§]|thereis a configuration- Q(®)in T’}
with transitions given by

ty >ty iff there are configurationg - Q(XWx,...,XWm)
andtz F Q(Ws,...,Ym) in T s.t. rule(X)
was played between them

The labelling of the states is taken from their respective labellings in

It remains to be seen th&,(T') is a successful game tree for playerEvery finite
path inRc,(T’) fulfils her winning condition 4 since it is taken from her successful
game tre€l. Each infinite path i’ is eventually cyclic and was constructed to fulfil
winning condition 5 or 6 depending on which condition of Lem#&the underlying
finite part fulfils.

As Rc,(T') is a successful game tree for play®rJ’ with starting states; must be a
model for¢g, according to Theorei®8. ButJ’ consists of those states only that occur
in the finite tree prefixy. Thus,$o has a finite model. n

CTL™ over Finite State Transition Systems

Similar to the model checking games for PDL from Chagténe winning conditions
for the CTL* model checking games can be simplified if the underlying transition
system is finite. Then, play&twins the playCo, ...,Cn of G5(s, ¢o) iff

1.Ch =tHQ([q],d)) is terminal andy ¢ L(t), or
2. thereisaré <n,t €8, ¢,P € Sulido) andP C Sul{do) S.t.

e G =GC, = tkE([q)UqJ},(D), and

e betweerC; andC, player¥ has not used rulé&cC), or

5.2. Model Checking Games for CTL* 119

3. there ard < n,t €8, ¢ € Sufdg) andd C Sulfdg) s.t. C, = tH A(M , D)
andC; = C,, and either
e playerd has used rulérC) betweerC; andC,, or

e ¢ is of the formyuy.
Player3d wins the playCo, .. .,Cy, of (s, o) iff
4. Ch, = tHQ([q],CD) is terminal andj € L(t), or

5. thereareg <n,t €8, ¢, P € Sul{dpp) and® C Sulf¢o) s.t.

¢ G =Cp = tl—A([(I)leJ},CD), and

e betweerC; andC, playerd has not used rulé&cC), or

6. there ard < n,t € S, ¢ € Sulddpp) and®d C Sulfdo) s.t. Cy = t+ E(M , D)
andC; = C,, and either

e playerV has used rulérC) betweerC; andCy, or

e ¢ is of the formxRU.

The new winning conditions for finite transition systems are equivalent to the old
ones for arbitrary transition systems. If the underlying transition system is finite then
there are only finitely many possible configurations. Since the winning strategies are
history-free, see Theoreifd, the game tree can be represented as a graph according
to Sectior2.7. The new winning conditions then simply are a reformulation of the old
ones on graphs.

We can give an upper complexity bound for game-based*Gmadel checking that
matches the upper bound fro@ES83 and the lower bound from§C84.

Lemma 78 LetT = (8,—,L) be finite withse S and¢ € CTL". Every play o§+(s,¢)
according to the winning conditions for games with underlying finite transition systems
has length at mog8| - || - 2%/ + 3.

120 Chapter 5. Model Checking Games for Branching Time Logics

PROOF There are$|- |¢|- 21/ many different configurations for the gare (s, ¢).

Note that the two different possibilities for tHg component of a configuration are
annulled by the fact that there are o@§!~ many possible sets of subformulasqof

not containing the actual formula in focus. Hence, every play of length more than this
must repeat on a configuration.

This does not meet the requirements in the winning conditions 2 and 5 exactly. The
formula in focus can possibly be the unfolding o @r aR formula. In this case at
most three more steps are necessary to obtain a situation to which one of the winning
conditions applies. n

Theorem 79 (Complexity) Deciding the winner of a CTLmodel checking game is
in PSPACE.

PROOF An alternating algorithm can easily be extracted from the games by letting
player 3 make nondeterministic choices and playeuniversal ones. However, this
would result in an alternating PSPACE procedure which, ®K$81]], can only be
transformed into a deterministic EXPTIME algorithm. This would be suboptimal
because CTt. model checking is PSPACE-complete. To obtain a PSPACE procedure
we need to determinise one of the player’s choices without using more than polynomial
space.

First, we describe a nondeterministic algorithm that decides whether or not the path
player has a winning strategy for a game on a formpgawith one top-level path
quantifier only.

Supposeabg = EY, i.e. playerd is the path player. The algorithm nondeterministically
chooses disjuncts and successor states wheneve(Bjwp, (EV) or (X) is played.
Remember that playéfs choices in such a game are reduced to setting the focus and
finding a configuration with an formula that gets repeated upon s.t. he did not change
the focus between the two occurrences of this configuration.

First we describe how to determinise the positioning of the focus. The only formulas
that are interesting for him are of the fopy. The algorithm maintains a list of all

U subformulas of the input formula. At the beginning the formulas occur in the list in
decreasing order of size. At any point in the play, the focus is placed on thétipst

5.2. Model Checking Games for CTL* 121

formula in the list that is present in the actual configuration. Once plagescards it

by choosing) after the unfolding, it is moved to the end of the list. The focus is placed
onto the present formula that is next in the new list. Whenever there is a conjunction in
focus, he puts it onto the conjunct that contains the ddermula from the list. This
strategy guarantees that every possibly reoccutriftgmula occurred in focus before

the play can perform a repeat. Moreover, it is deterministic.

We let the algorithm store two configurations: the actual one which gets overwritten
each time a game rule is played, and a configurafioto find a repeat upon. At the
beginningC; is set to the starting configuration.

The algorithm needs to store a binary flag to indicate whether or not the focus has been
changed after a possibly repeating configuration was stored. At last, it needs to store
a counter that measures the length of the play at hand to terminate it in case the play
does not repeat d@;. The maximal length of a play without a repeat is

S| |bo| - 2% + 3
according to Lemm@d8. Thus the size of the counter is bounded by

|bo| + log|8| + log|do| + const

Furthermore, the actual value of the counter is stored whefgusrset.

The algorithm returnsV” if at some point the actual configuration equals the stored
one and the focus change flag is set to false. It returns "?” if in this situation the flag is
true or the counter reaches its maximal value. In this case the game is restart€d with
and the stored counter value, i&.gets overwritten by the next configuration and the
algorithm attempts to show that there is a repeat on the@ewf the counter value
stored withC,; reaches the maximal value

S| |bo| - 2% + 3
it outputs ‘9”. In this case, there was no chance for playeto show that he could

enforce a play with a regeneratipg), hence, playesi wins with condition 6.

If the input formula is of the formpo = AY then the algorithm to be used is simply
the dual of the one described. It universally chooses conjuncts, and the maintained list
consists oR formulas. The return values are swapped.

122 Chapter 5. Model Checking Games for Branching Time Logics

Both algorithms are either nondeterministic or co-nondeterministic and use space
which is polynomial in the size of the input: two configurations, two counters and
a flag. By Savitch’s Theorem, there is also a deterministic PSPACE procedure that
decides the winner @+ (s, ¢o), [Sav69.

For arbitrary formulas the appropriate algorithm above can be called for every block of
the game graph. There can onlyﬂ;é[irredundant path quantifiers gp. Thus, there
canonly be|\¢—2°‘ blocks in the game graph, and the algorithms need to be called at most
@ many times. The space they need can be reused for every call. Hence, deciding the
winner of §¢(s, ¢o) is in PSPACE for arbitrargo. m

Comparing Automata and Games for CTL * Model Checking

[KVWO0O0] uses hesitant alternating automatddAA to do space-efficient model
checking for CTL.

It is possible to view the games of this section as automata as well. Configurations
of the games correspond to states of an automaton and winning conditions become
acceptance conditions. However, the winning conditions proposed here depend on the
position of the focus which is not easily translatable intolelld acceptance condition

for example. The reason for this is the fact théicBi acceptance conditions are only
concerned with states but do not consider what happens in an automaton’s run between
two visits of a certain state.

Another difference between the games of this section and the HAKWN\OOQ] is

the fact that configurations of the games are sets of formulas whereas states of the
automata are single subformulas only. It is known that alternating automata can be
transformed into nondeterministic ones at the cost of an exponential blow-up. For
alternating automata with single formulas as components of their states this means the
nondeterministic version will have states featuring sets of formulas.

The games of this section compare to something between alternating and
nondeterministic automata. One of the player’s choices regarding boolean connectives
have been eliminated by using sets of formulas. Alternating automata branch
nondeterministically or universally at these points. However, the games are not like

5.3. Model Checking Games for CTL 123

nondeterministic automata either since not all of one player’s choices have been
determinised. Instead, the problem of detecting whether there is a regenerating fixed
point construct has been built into the games as a task for one of the players. For
automata, this question is answered on the level of deciding non-emptiness of the
accepted language.

The acceptance condition for HAAs is a combination of a Rabin and a Streett
condition, especially tailored to the requirements of model checking branching time
logics. The idea of using a mixture of two different acceptance conditions can be
found in the games as well where they appear as winning conditions for two different
players.

There is one thing that the games of this section and the HAAs have in common.
Beinghesitantmeans the automaton’s state set can be partitioned into blocks such that
transitions only lead to blocks with a lower index and each block is either existential
or universal. This idea was in essence formulated in Lerhalt is also used in
tableau-based model checking for CTib [BCG9E. In fact, this property is a feature

of the logic rather than the method with which model checking is decided, and the key
to the observation that LTL and CTlmodel checking are polynomially interreducible.

5.3 Model Checking Games for CTL

In the case of a model checking game on a CTL formula no sets of formulas and hence
no focus are needed. Since every temporal operator is immediately preceded by a path
quantifier situations like the ones in Exampk and59 cannot occur. Moreover,
whenever a temporal operator is handled the corresponding quantifier would cause all
side formulas to be erased from a configuration anyway. Thus, the model checking
game rules can be simplified vastly for the CTL case. In this sec§igfs, ¢) denotes

a model checking game according to the rules presented in Fagfire

The set of configurations for a game ®n= (S, —,L),s€ S and$o € CTL is
C = 8xSulddo)

Every play begins withCy = sk ¢o. Playery wins the playCo,Cy, ... iff

124 Chapter 5. Model Checking Games for Branching Time Logics

sk oA vi sk¢oV 1 .
sk &; sk &;
Sk AXd v st Sk EXd 3 st
th ¢ th ¢
sk Q(ouY) st Q(¢RrY)
sk V(6 AQXQ(OUY)) sEYA (6 VQXQ(PRY))

Figure 5.8: The rules for the CTL model checking games.

1. thereisame Ns.t.Cy =t qandq ¢ L(t), or

2. there are infinitely many configuratio®@,,Ci,,... and¢, € Sul¢o) s.t. for
alljeN: G, =t + Q(¢uy) for sometj; € 8.

Playerd wins the playCo,Cy, .. . iff

3. thereisame Ns.t.C, =t qgandqe L(t), or

4. there are infinitely many configuratio®,,Ci,,... and¢,y € Sul{do) s.t. for
aljeN: G, =t F Q(¢RY) for somet;; € 3.

Lemma 80 Every play has a uniquely determined winner.

PROOF The winning conditions are mutually exclusive, i.e. a play can be won by at
most one player. Moreover, formulas of the fo@idUP) and Q(dRY) are exactly
those that do not reduce the size of the actual configuration. Thus, every play must
either reach an atomic proposition in which case it either holds or does not hold in
the actual state. Or it proceeds ad infinitum with one of these formulas being visited
infinitely often. []

5.3. Model Checking Games for CTL 125

Theorem 81 (Correctness) LetT = (S,—,L),s€ 8, ¢ € CTL.T,s|= ¢ iff player3

winsG(s,¢).

PROOF Every rule in a CTL game can be seen as a combination of rules of & CTL
game, and the winning conditions are simply amended to these combined rules and
simplified configurations.

Note that the CTL winning conditions are the same as the winning conditions for the
CTL* games if configurations only contain the formula in focus. In this case the focus
itself can be discarded of course.

If the CTL* game rules are applied to CTL formulas then no sideformula can persist.
In fact, whenever they occur they will be discarded immediately. Take a conjunction
for example that occurs in a CTlgame configuration

tE Qwony) @

If Q= A then playerv chooses one of the conjuncts like he does in a CTL game. If
Q =Ethen he chooses are {0,1} and the focus is set 1p; while Y;1_; is added to the
sideformulas. But is a CTL formula, too, i.e. it is of the forr@'x with Q' € {E,A}.
Rule(E) or (A) causes the sideformulas includigg_; to be discarded in the next step.
Thus, in the CTE game the next configuration would be Q'(x) which is written as

t - Qx inthe CTL game.

All the other cases are similar or dual to this one. m

Corollary 82 (Determinacy) Player V wins G(s,¢) iff player 3 does not win

9‘3’(374))'

History-freeness of the winning strategies carries over from the*@iadel checking
games.

Corollary 83 (Winning strategies) The winning strategies for the CTL model
checking games are history-free.

126 Chapter 5. Model Checking Games for Branching Time Logics

CTL over Finite State Transition Systems

If the underlying transition system is finite, the winning conditions can be reformulated
as in the CTL case. PlayeY wins the playCy,...,Cy iff

1.C, =tkHq andq¢L(t),or

2. thereisan <nandat € §s.t.C; = C, = t+- Q(¢uy) for somed, P and
Qe {AE}.

Playerd wins the playCo,...,Cy iff

3.Cy = tkq andgeL(t),or

4. thereisan <nandat e 8s.t.C = Cy = t+ Q(¢rY) for somed, Y and
Qe {AE}

Correctness of these winning conditions follows from Theorédand81.

Regarding a CTL formula as a CTlformula does not result in an optimal model
checking procedure. Considering the fact that no focus changes occur and that every
configuration is of size linear in the input formula would still result in a PSPACE
procedure. However, this does not take into account the special structure of CTL
formulas. In particular, every block of the game graph is of constant size.

Using the alternation results fronr@KS8]] it is easy to see that the winner of a CTL
model checking game can be determined in polynomial time. Again, the games give
rise to an alternating algorithm that needs logarithmic space only. However, this can
be improved even further by using a more explicit approach.

Theorem 84 (Complexity) Deciding the winner of a CTL model checking game is
in LINTIME.

PROOF It makes more sense to use the same notiobladk as it was introduced in
Chapter4 for PDL model checking. Here, blocks of the game graph are given by
the formula component s.t. every path traverses blocks in increasing order of index and

5.4. Model Checking Games for CTL™ 127

eventually remains in one block only. Note that the index of a block basically measures
how far it is away from the starting configuration.

This is possible since formulas of the fo@i¢Uw) andQ($RY) are the only ones that

do not reduce the size of a configuration. Also, blocks can have loops induced by one
of these formulas only. Thus, each block has a typ® R. The global CTL model
checking procedure works bottom-up just like the one for PDL. It also needs to visit
each node of the game graph at most once. Remember that the size of the game graph
is|8]- || for a transition system with state seaind a formulap. m

Comparing Automata and Games for CTL Model Checking

Similar to the CTL case, hesitant alternating automathave also been used in
[KVWO0Q] to decide the model checking problem for CTL basedr@ak alternating
automataWAA, [MSS8§. Their state set is partitioned into blocks like those of HAA.
However, they accept with a simplaiBhi condition.

Given that the CTL model checking games feature single formulas in their
configurations only, there is a certain similarity between them and the WAA for
CTL model checking. Also, the choices made by the two players correspond to the
nondeterministic and universal branches in an alternating automaton. It is not hard to
see that the winning conditions of the CTL model checking games can be modelled by
a Buchi condition. The configurations that can be visited infinitely often are exactly
those of the fornt - Q(GRY).

This similarity is not surprising since the main difference between games and HAA is
due to the use of the focus, but the CTL model checking game is not a focus game.

5.4 Model Checking Games for CTL

Since CTL" is known to be exponentially more succinct than CTWIilR9, Al01],

one cannot expect the same radical simplifications from ‘GJdmes to CTL games.
Example58 suggests that configurations in a model checking g&mis,¢) for a
CTL™ formula¢ must contain sets of subformulas. However, since the formula of

128 Chapter 5. Model Checking Games for Branching Time Logics

() sk A(Go A1, D) i) st Q(oUY, ®)
sk A(¢i, ®) sk QY V (o A QXQ(¢UY)), P)
) = E(GoV01,®) _ ®) st Q(¢RY, ®)
sk E(¢j, ®) sk QWA (¢ VQXQ($RY)), D)
vy S AoV 1, ®)) =" Qo X0 o
Sk A(do,¢1,P) t=Q(do,...,dk)
(E/\) SI‘E((I)O/\(I)]_,(D) (q) M ke
st E(do, p1, P) skQ(®)
st Q(Ad, ®) sk Q(Ap,®) .
W~ ao) " W =5 Qo) rero
stk Q(E¢, D) sk Q(E), d) _
(E) SEE) p (E) SF Q@) p,if ®#£0

Figure 5.9: The rules for the CTL™ model checking games.

Example59 that justifies the use of the focus is not in CTthe question of whether
a focus is needed for CTLgames is reasonable to ask. CTHoes not allow nested
temporal operators, therefore the answer is no.

Configurations of a CTt model checking game are
€ = 8x{AE}x 25U

containing at least one subformula.

The game rules are given in FiguseS. In addition to the rule schemes introduced in
Chapted and Sectioib.2, a rule of the form

C
(r) o PS d

5.4. Model Checking Games for CTL™ 129

is only applicable if the conditiod is met in the actual configuration.

Here, this applies to rulegg) and(E). Note that there are two cases for each of them.

A gquantified formula or an atomic proposition can only be discarded if least one side
formula is present. There is no requirement for discarding sideformulas. However,
in both cases the rule operates on the same formula. Therefore, we consider them to
be one rule only. The other rules result from the Chhodel checking game rules in
Figure5.1 by disregarding the focus.

Every play ofG5(s,¢) starts with Co = sk A(¢). LetT = (S,—,L) with 5 € S.
PlayerV wins the playCo,Ci, ... of G3(So, $o) iff

1. thereisameNs.t. C, = tFQ(q,®) andqg¢ L(t), or

2. there are infinitely many configuratio@y,,C;,, ... and¢, P € Suli¢o) s.t. for all
jeN: G = ti, FE(¢UY, @) for sometj; € S and®.

3. there are infinitely many configuratio®@,,Ci,, ... and® C Sulio) s.t. for all
jeN:

e G, =t - A(P) for sometj; € 8, and

e no formula of the fornkRy is present ird.
Playerd wins the playCo,Cy, ... of G5(So, $o) iff
4. thereisameNs.t. Cy = tFQ(q,®) andqge L(t), or

5. there are infinitely many configuratio@y,Ci,, ... and¢, P € Suli¢o) s.t. for all
JjeN: G =t - A(RY,P) for sometj; € § andP.

6. there are infinitely many configuratio®,,Ci,, ... and® C Suli¢o) s.t. for all
jeN:
e G = tj, FE(®) for sometj; € 8, and

¢ no formula of the formxUy is present ind.

Note that the path player's opponent must be allowed to discard atomic propositions
beforeone of the winning conditions can apply.

130 Chapter 5. Model Checking Games for Branching Time Logics
Theorem 85 (Correctness) LetT = (8,—,L) withse 8 andd € CTL". T,s}= ¢ iff
player3 winsSGy(s,9).

PrRoOF The game rules and winning conditions for the CTgames arise from the
CTL* games by removing the focus. Thus, it suffices to show that, whenever a play
Is infinite, there is no ambiguity about the regeneratioll of R formulas. Assume a
play like

sk A(9)

tF EXUP, ©)

U F B,)

We will show that in this casgUy in the lower configuration can only stem from itself

in the upper one. Suppose it does not, i.e. thergisad s.t.xUY € Sul{¢’). Between
these two configurations rul&) has been played at least once, otherwise nothing has
been done tUY and it trivially stems from itself.

Remember that CTL does not allow temporal operators to be nested. Therefoie,
occurred in the scope of a path quantifieor A in ¢’. In order forxUy to appear

in the lower configuration, rul¢g) or (A) must have been played between the two
configurations at hand. But they either cause & or all present sideformulas

to be discarded. In particulad/ cannot have regenerated itself. Thus, either it is
wrong to assume thap occurs again, or there is a superformulapbthat generated

¢’ again. But then the argument applies to this one and there are only finitely many
superformulas of a formula. Therefore iy occurs infinitely often it must be the
case that it regenerates itself. The same holds of coursexitpa n

Corollary 86 (Determinacy) Player ¥V wins Gg(s,¢) iff player 3 does not win
97(57(1))'

The winning conditions can be simplified as in the CTand the CTL case if the
underlying transition system is finite.

5.5. Model Checking Games for BLTL 131

Again, since the CTLL games are only a special case of the CThodel checking
games their winning strategies are history-free as well.

Corollary 87 (Winning strategies) The winning strategies for the CTLmodel
checking games are history-free.

Deciding the winner of a CTt model checking play can be at most as hard as it is
for CTL* formulas. However, simply ignoring the focus in a CTinodel checking
game to obtain a CTL model checking does not effect the complexity of deciding the
winner.

Theorem 88 (Complexity) Deciding the winner of a CTL model checking game is
in PSPACE.

This is slightly worse than the known upper and lower boundpofrom [LMSO01].

It seems like a far more explicit analysis of the structure of a CThhodel checking

graph etc. is needed to obtain a better game based complexity bound than PSPACE. Just
ignoring the focus also does not make use of the special structure of @Finulas

as opposed to arbitrary CTlformulas.

To the best of our knowledge, the model checking problem for Cliés not attracted

a great deal of attention. In particular, there is no special class of automata which have
been shown to be applicable directly to the CTinodel checking problem without
translation CTL" formulas into CTL first. Note that the upper complexity bound in
[LMSO01] has been established by a reduction technique.

5.5 Model Checking Games for BLTL

Since BLTL formulas can contain arbitrary nestings of path operators together with
boolean connectives the focus approach on sets of formulas is needed in that case, too.
However, according to Lemm@d, the game graph for an BLTL formula consists of

one block only. Therefore it is not necessary to memorise the path player explicitly.
Rules(4), (E), (@) and (¢) never apply, and in rul¢X) it is always playery who
chooses the next state from the transition system.

132 Chapter 5. Model Checking Games for Branching Time Logics

These optimisations do not provide better complexity results of game based BLTL
model checking compared to CTimodel checking. The proof of the next theorem is
the same as the proof of Theor&® The fact that the model checking procedure only
needs to be called once does not affect the space complexity of the problem. Again,
this result matches the known lower and upper bounds.

Theorem 89 (Complexity) Deciding the winner of a BLTL model checking game is
in PSPACE.

Comparing Automata and Games for BLTL Model Checking

The automata-theoretic approach to BLTL model checking has been studied in detalil,
for example in YW86¢]. First, nondeterministic Bchi automata were used for this
task based on the observation that BLTL formulas can be translated into these at the
cost of an exponential blow-up. This is not suboptimal since BLTL model checking
is PSPACE-complete and, hence, is very likely to require exponential time. The
non-emptiness problem for these automata, to which BLTL model checking is reduced
Is decidable in polynomial time and nondeterministic logarithmic space.

A different approach is taken ivar9€] which proposes the use of alternating automata
for this task as well. Similar to automata-theoretic CTrhodel checking, a BLTL
formula is translated into an alternatingi&hi automaton which is possible in linear
time. However, this translation makes the non-emptiness problem for these automata
PSPACE-hard. In fact it is PSPACE-complete.

Comparing these automata with the BLTL games leads to the same conclusions as
those that were made for CTlin Sectior5.2. The two main differences between the
games and the automata are the following.

e The automata feature more alternation by branching universally at conjunctions
and nondeterministically at disjunctions. The games however determinise one
of these by using sets of formulas for disjunctions.

e The question of whether or not a run of an alternating automaton is accepting
is decided on top of the automata. It is done graph-theoretically by solving a

5.5. Model Checking Games for BLTL 133

certain reachability problem. For the games this is implicitly done by giving
playerd control over the focus and making the focus setting behaviour a part of
the winning conditions. The algorithmics used for deciding whether there is a
successful game tree is simpler than the one used for automata.

Having the same conclusions as those for CiBlnot surprising since the CTlgames
basically consist of several BLTL games played consecutively. This is reflected on the
automata side as well. For BLTL, normal alternating automata suffice. The property of
being weak or hesitant is only needed for branching time logics since the linear time
logic does not impose a block structure on the game graph, resp. the automaton.

Chapter 6

Satisfiability Games for
LTL, CTL and PDL

Let no one ignorant of
Mathematics enter here.

PLATO

6.1 Satisfiability Games for LTL

Given an LTL formulapo thesatisfiability game5(¢o) is played to determine whether
¢o has a model or not. Itis playels task to show that it does, whereas playevants
to show that there is no pathof any total transition system stt.= ¢o.

Configurations o6(¢o) are nonempty sets of subformulas¢efwith a focus like the
one in Chapteb,

C = Sul{¢g) x 25U%0)

136 Chapter 6. Satisfiability Games for LTL, CTL and PDL

Every play ofG(¢o) starts withCo = [¢o} . Itis always playel’ who has control over
the position of the focus.

There are two possibilities for ¢ to be unsatisfiable. Either it inevitably forces a
state of a possible model to be labelled withor a propositiorg and its complement

g, or it does not enable a least fixed point operator, i.eU &rmula, to be fulfilled

at some point. The inevitability of one of these situations is reflected in a possible
winning strategy for playey. The situations themselves are modelled by the winning
conditions.

A configuration[q)UqJ} , @ is to be read as: Playerwants to build a model for

(dup) A A x
XeP
while playerY tries to show thapUy does not get fulfilled along the play. Playeér
is allowed to set the focus to formulas of other forms. This is obviously necessary if
there is napUy present in the actual configuration.

The game rules are given in FiguBel. Rules([V]) and(V) are justified by the fact that

a disjunction is satisfiable iff one of the disjuncts is satisfiable. For a conjunction to be
satisfiable the combination of both conjuncts must be satisfiable. Thus(jujesnd

(A) simply flatten conjunctions to sets. Fixed point operators are unfolded with rules
([U]), (U), (|Rr]) and(R). Finally, playerv controls the position of the focus with rules
(FC) and([A]).

Definition 90 A configuration isterminal if it is of the form [q} ,® and playerv
refuses or is unable to move the focus.

Next we define the outcome of a play. Playewins the playCy,...,C, iff

1.C = [q],CD is terminal andy = ff org e @, or

2.C, = [(I)Ul]J] ,® andthereis anc N, s.t.i < nandC; = C,, and playew has
not used ruléFC) betweerC; andC,.

6.1. Satisfiability Games for LTL 137

{4’0\/4)1],‘13 . [UJ],¢0\/¢17¢ .
(V) ———=—di (V) Ji
[d)i],cb [UJ],CI)i,CD
|:¢0/\¢l:|>q) _ |:l-|Ji| 7¢0/\¢17CD
([A]) ——=———Vi (A)
|:¢i],¢1,i,q3 |:LIJ]7¢07¢LCD
(1) o] 0 (IR #ri] 0
WV (e Ax(gUY)|. @ WA VX(GRY)| @
x] . dup,0 x] ory, 0
(U) (R)
x| W (0 Ax(uw), @ x| WA (@ vx(orY), @
[X¢l}>---ax¢k>Q1a---,Qn |:¢:|7LIJ7CD
(X) (FC) ———V
|:¢1:|a--'7¢k [LIJ}(I),CD

Figure 6.1: The satisfiability game rules for LTL.

Playerd wins the playCo, .. .,C, iff
3.C, = [q} ,® is terminal,q # ff andq ¢ ®, or
4, C, = [q)] ,® andthereis ane N, s.t.i < nandC; = C,, and playet’ has used
rule (FC) betweerC; andC,.

5.C, = [d)R.ljJ] ,® andthereis ane N, s.t.i < nandC; =C,, and playew has
not used ruléFC) betweerC; andC,.

To illustrate the satisfiability games we consider a formula that is very similar to the
CTL* formula of Examplé&S which was used to justify the use of a focus. Again, itis

138 Chapter 6. Satisfiability Games for LTL, CTL and PDL

very easy to extend the game rules to handle abbreviatediG formulas explicitly.
The rules are

o]0 64].0
EXZIRe 0 Ax60], 0
y]Fe.0 4].ce.0

[w},q)vxm,cb [w},q),xcqa,cb

Example 91 Let

¢ = FQAGF(Q

¢ is satisfiable as Exampl9 shows. An excerpt of the full game tree is depicted

in Figurel6.2. Since playet is allowed to use rul¢rFC) at any moment in the game

the entire game tree has more branches. We only include “sensible” choices for the
positioning of the focus, i.e. those that do not make him lose immediately.

Indeed, played has a winning strategy for this game. It consists of enforcing either
the leftmost play or the right one of the pair in the middle. She wins both of these with
winning condition 4 since player had to change the focus at some point. The left
play of the two in the middle and both plays at the right side are won by ptaweth
winning condition 2. This is because playenever fulfilled therFq although she could
have and, hence, it stayed in focus.

Correctness

Before we can prove correctness of the games we need to establish a few facts about
the rules and prove a few lemmas.

Fact 92 (FC) is the only rule that maintains the size of a configuration. R{le$),
(V), ([A]), (A) and (X) reduce the number of connectives in a configuration, while
rules([U]), (U), ([R]) and(R) increase the number of connectives.

6.1. Satisfiability Games for LTL 139

[Fq/\GFq]
[q\/XFq} ,FQ,XGFQ
a]-av rea.xorg xeq] P x0Rq
[q: ,XFq, XGFq [q} ,XGF(q ’ [XFq} ,qV XFq, XGF(
afed e qferd | [wa|.axerq [wwa]aorq
£q).or6] Fa.crq [ra].Fg
[Fq/\XGFq}
[Fq} ,XGF(q

[q V XFq] ,XGFq i

[q} ,XGF(Q [XFq} ,XGFQ

o [rorq] [ra] cFg

Figure 6.2: The interesting part of the game tree of Example 91.

Lemma 93 Every play of5(¢) has finite length less tha| - 21¢/ 4 3.

PROOF |¢|- 2%l is the maximal number of possible different configurations in a play
of §(¢). Therefore, every play of length more tha - 2%/ must have a repeat on a
configuration.

There are two possibilities for such a play. Either, playéias used rul¢FC) between

the two occurrences of a repeating configuration. Or he has not use@ra)lén
between. But then at least one other rule must have been played. E9Z-afitother

rules either reduce or increase the number of connectives in a configuration. Thus, one
of the unfolding ruleg[U]), (U), (|R]) or (R) must have been applied to obtain a repeat.
Note that arU or aRr is guarded by ai in its unfolding. Thus, there must have been

140 Chapter 6. Satisfiability Games for LTL, CTL and PDL

at least one application of rul&) between the repeating configurations. This reduces
the size of the formula in focus.

Since the focus change rule has not been used [jleor ([R]) must have been played
in fact. This means that the focus has been kept ol anaR and their respective
unfoldings. Then there also are configurations of the f(%qmlp} , @, resp. [cl)Rlp} , P
that the play repeats on.

The repeat on these configurations must occur at Bsi&tps later because the formula
in focus can be at mo&tconnectives larger thandauy or ¢RY. n

Lemma 94 Every play has a uniquely determined winner.

PROOF A play either ends in a terminal configuration or performs a repeat. In the first
case, winning conditions 1 and 3 determine the winner. Note that they are mutually
exclusive and cover all possible scenarios.

In the second case playér either has used ruléFC) between the repeating
configurations or not. If he has, playérwins with winning condition 4. If he has
not, then the winner is determined by the formula that remained in focus while being
regenerated. According to the proof of Lem®3 it is either apuyp or adrRY. In

the first case he wins with winning condition 2, in the second case playns with
condition 5. n

Corollary 95 (Determinacy) PlayerV wins§G(¢) iff player 3 does not wirj(¢).

PROOF The “only if” part is trivial. The “if” part follows from Theorem37 of
Sectior2.6 and Lemma®3 and94. -

Lemma 96 The game rules preserve unsatisfiability.

PROOF PlayerV preserves unsatisfiability since his moves are only concerned with the
position of the focus.

Playerd preserves unsatisfiability with her moves as well since the only thing she does
is to choose disjuncts. Suppose

(WoVr) AP

6.1. Satisfiability Games for LTL 141

is unsatisfiable. Then so aye A ® andy; A . Consequently, playet cannot force
the play into a satisfiable configuration.

Unfolding U andR formulas preserves unsatisfiability because they are replaced by a
logically equivalent formula.

Finally, consider an application of rul&). Supposep; A ... A Y is satisfiable, i.e. it
has a modeft Suppose furthermore thgi A ... A gy is satisfiable. Lett := st for
some statswith L(s) = {qs,...,0n}. Then,

T E XQi,..., XUk, 01, .., 0n

In other words, ifX{1,...,Xx,d1,...,0n IS unsatisfiable then so ig,...,qn Or
Y1,...,Pk. In the first case playey can change the focus to theg that causes
unsatisfiability and the resulting terminal configuration is unsatisfiable. In the latter
case rulgX) is applied deterministically and the next configuration is unsatisfiable as
well. n

Next we describe a strategy for playérand the gamej(¢o) and prove that it is
optimal.

Definition 97 (Priority list strategy) Let!| be apriority list of all U subformulas of
the input formulabg in decreasing order of size, i.e.

| = ¢1ULIJ17 ce 7¢HULIJH
with
¢iUP; € Sul(dp;up;) and ¢iUY; # d;UuP; implies j<i
In that case ;U is said to have higher priority thagUy;.

We say thathUy is present in a configuratidd if
{ oUW, YV (O AX(OUY)), dAX($UY), X(9UY) } N C # O

PlayerV starts with the focus omg. If the formula in focus is @Ry formula and
there is a'Uy’ € Suly) thenV sets the focus tg when¢Ry gets unfolded with rule
([R]) or (R). If the formula in focus is a conjunction th&hchooses the conjunct that

142 Chapter 6. Satisfiability Games for LTL, CTL and PDL

contains the& formula with the highest priority ihif possible. If the focus remains on
aR formula or ends up on a propositional constant tiiehanges focus to avoid defeat
by winning condition 3 or 5. He sets the focus to the formula with highest priority in
or a superformula of it.

If the focus is on @Uy then he keeps it there until it becomes “fulfilled”, i.e. player
chooses the disjundt when it is unfolded$Uy is then moved to the end bfand gets
the lowest priority. Again, player changes focus to the formula with highest priority
that is present in the actual configuration if possible.

If at any point the actual configurati@contains an atomic contradiction, i.e. there is
ag e C and aqg € C then playetv immediately sets the focus to one of them and wins
with condition 1. The same holds forfa € C.

Lemma 98 (Optimality) If playerV winsG(¢o) then he wins it with the priority list
strategy.

PROOF Suppose he win§(¢o), i.e. he is always able to enforce a play that is winning
for himself. If he wins it with his winning condition 1 then he does so with the priority
list strategy since it requires him to check at any moment whether he can do so.

Suppose therefore that it is won with his winning condition 2,¢gcontains apuy

that does not get fulfilled during the play. W.l.0.g. we assume that it is the biggest, i.e.
there is no superformula of it which is anformula as well and which does not get
fulfilled either. At the beginningdUuy is inserted into the priority list. Note that the
formulas before it in the list can be assumed to be superformulpynf

PlayerY’s optimal strategy tells him to set the focus to the earliest element of the list
that is present in the actual configuration and to keep it there. By assumptiot, this
formula gets fulfilled at some point and he changes focus to the next one. ¢gigce

is assumed to regenerate it must be present at any time and therefore, there must be a
moment when player sets the focus to it. Since it does not get fulfilled he leaves the
focus there and, by Lemn$, wins eventually with his winning condition 2.

Note that he never changes the focus back to tnat has been in focus already before
he has tried all other presentformulas. This is because fulfilled formulas get
appended to the end of the priority list. n

6.1. Satisfiability Games for LTL 143

Definition 99 (Minimal formula) Let P =Cy,...,C, be a play ofG(¢g). Assume
everyC; is unsatisfiable and given as a sequence of formulas in increasing order of
size, i.e.

C = ¢io,..-,0in With ¢ij € Suld¢; k) impliesj <k

for eachi € {0,...,n}. Letxc denote thep; « in G s.t.

/\ ¢ij is satisfiable, but /\ ¢;; is unsatisfiable.

j<k j<k
Theminimal formula causing unsatisfiability P is the syntactically smallest formula
that occurs first among thg: for everyG;.

Xp = X StVi=0,...,n:|Xq|<[Xc|andvj <k:|Xc| < [Xgl

Lemma 100 Let ¢o be unsatisfiable an® be a play ofg(¢o). Thenxp exists and is
unique.

PROOF According to Lemmef6, all configurationsC; of P must be unsatisfiable.
Thus, eachyc exists. The syntactically smallest among them exists but may not be
unique. However, the indices of the configurations are linearly orderedyarsdthe

Xc with the smallest among them. Thus, it is unique. n

Lemma 101 Let¢g be unsatisfiable and be a play of5(¢o). Thenxp is either atomic
or of the formdU.

PROOF Let P = Cy,...,C,y and G = &; with some formula in focus. For a
configurationC; whose elements can be ordereddas, ..., ¢in and withxc, = ¢;
for somek according to Definitior®9 we let®; denote the smallest satisfiable part of
G, l.e.

@ = N oij

j<k

Note that= ®; — Xc for everyi =0,...,n.
Letk=min{i| xp € G } be the index of the earliest configuration containypg We
will show the claim by case analysis ggp.

144 Chapter 6. Satisfiability Games for LTL, CTL and PDL

Supposexp = 0. = Pk — g only if g€ ®x. Note thatg could occur in another
formula of ®y, for example®y, = grg. But then there would be a smaller formula,
namelyq, which causes unsatisfiability since the game rules remove connectives whilst
preserving unsatisfiability. The smallest such formulgiself since it occurs within

the scope of no connective, ige Py.

Supposegp = YoV P1. = Dk — (Yo V Y1) only if =y — o and = i — Pz. But if
rule ([Vv]) or (V) was applied tapo \V Y1 the following configuration will contain either
Wo or Y1 which are both syntactically smaller thgp and cause unsatisfiability.

Supposeip = WoAY1. Thenk &y — g or = P — 1. Note that conjuncts are
preserved with rule§A]) and(A). Thus,xp cannot be the smallest formula occurring
earliest that causes unsatisfiability.

Supposegp = XY. Either®y consists of atomic propositions and formulas of the form
Xy’ only, or there is a later configuration that does. This is because the game rules
eventually produce a configuration to which r@lg is applicable. But

|:Xl.|J1,...,XLIJm,q:|_,...,C]| HW

only if
):Lljlw"vl'pm_)qj

Hence, the configuration following the next application of r(#¢ contains a smaller
candidate forp.

Supposegp = ORY. RY = dUYP. Thereforel= dx — GRY only if = P — HUP. Note
that rules([R]) and(R) unfold xp to a conjunction in which is one of the conjuncts.
Conjuncts are preserved which means thas present and the other conjunct will
either generate after the next application of rulg) or get replaced bg. In the first
case there will be a configuratidBy, = Y, Py, s.t.m> k and= @, — P which shows
thatxp was not smallest. In the second cadg = ¢, P, with m> kandl= & — §.
Again, there would be a smaller formula thgsnthat causes unsatisfiability.

Finally, supposgp = ¢UY. = P — dUY means either there is an> k s.t.

E®On— VU but EO; —¢ forallk<j<m

6.1. Satisfiability Games for LTL 145

or forallm> k:

In the first case botth andy are smaller formulas thgg and cause unsatisfiability as
well. Remember that as long @84 is unfolded eithed or | occurs in a configuration.
As long as it occurs it must result from the unfoldingyet

However, the second case does not contradict the assumptiogptigasyntactically
smallest. It results from a play in which playgnever fulfilspUuy s.t.¢ occurs between
each two unfoldings bup never does. n

Theorem 102 (Soundness) If ¢ is unsatisfiable then play&twinsG(¢o).

PROOF Assumedy is unsatisfiable. We show that playémwins G(¢o) by using the
priority list strategy.

Take any playo, .. .,C, of §(¢o). By Lemme96, eachC; is unsatisfiable, in particular

Cn. Thus, played cannot win this play with her winning condition 3 since it requires
the last configuration of the play to be satisfiable if playas unable to change the
focus. Itis impossible for him simply to refuse to do so even though he would be able
to as this is excluded by his priority list strategy.

Sincedg is assumed to be unsatisfiable, Lemb@d applies. Regardless of which play
is played,xp is either atomic or aw formula. LetCy be the earliest configuration
containingxp S.t.

Ck = Xp,Px and = ®— Xp

If xp = gthenq must implicitly be present i®y, e.g. in the fornrgrg. But the rules
remove connectives whilst preserving unsatisfiability gednnot be in the scope of a
X. Note that & is the only unary connective of LTL. Therefore, after at mogtido|
steps the priority list strategy causes playeo win the play since he will set the focus
to eitherqg or g onceqg becomes present.

Supposexp is of the form¢uUy. If playerV sets the focus tgp whenCy is reached
then he wins the resulting play with his winning condition 2. Note that playean
never fulfil xp by assumption. Thus, playgrcan leave the focus on it.

146 Chapter 6. Satisfiability Games for LTL, CTL and PDL

Suppose this is not the case, i.e.
Ck = [¢'},XP,¢

¢’ is anU formula as well since playéf's strategy only allows him to set the focus to
a formula other than that if n@ formula is present. Butp is going to remain present

since playerd cannot fulfil it. Moreoverxp is a member of the priority list at this

moment.

We can assumég’ to get fulfilled at some point. If it does not then playéewill win
with condition 2 just as he does in the preceding case.

The moment it gets fulfilled it is moved to the end of the priority list and playersets

the focus to theJ formula which has highest priority and is present. Note Kais
present and that two formulas only swap their priority order if the one with the higher
priority gets fulfilled. Therefore, there are only finitely manjormulas other thagp

the focus can be set to. As soon as one of them persists, playegrs with winning
condition 2. Eventually, this will bgp unless another one did beforehand.

Note that this argumentation holds for every play5dbo). Thus, playelv will win
each play with his winning condition 1 or 2 if he uses his priority list strategy. m

Theorem 103 (Completeness) If ¢¢ is satisfiable then playet winsG(¢o).

PROOF If ¢g is satisfiable then it has a modek s9,s;,.... The LTL formula¢g can

be regarded as a CTlpath formula interpreted over the transition systemSince

Tt consists of a single path only, it is also a model for the proper ddotmulaEdo.
According to Theorerii 7, tcan be assumed to be a finite representation of an infinite
path, and according to Theoren2, playerd wins the CTL' model checking game
9n(s0,Ed0). We will use this game to construct a winning strategy for player the
satisfiability game5(¢o).

Edo contains one CTL path quantifier only, therefore each play stays in one single
block according to Lemm@4. Playerd is the path player but her choices with model
checking game ruléx) are deterministic since every stagehas a unique successor
s+1. PlayerV has control over the focus in the satisfiability game and the model
checking game.

6.1. Satisfiability Games for LTL 147

The model checking game starts with ryle) which removes the existential path
guantifier and yields the configuration

o F E([¢o})

From then on, every move in the satisfiability game is guided by the model checking
game. IfG(¢p) reaches a configuration with a disjunction then playeauses her
winning strategy inGn (s, $o) to choose a disjunct and makes the same choice in
G(¢o). Conjunctions are flattened in both games. However, pleysan set the focus

in G(¢o) to a different formula than the one in focus§r(so, §o). But the rules of the
model checking game allow him to reset the focus at any point. This means that there
is a position in the model checking game tree for playavhich corresponds to the
actual position inG(¢o), s.t. playerd has a winning strategy for the game continuing
with this configuration.

Suppose the model checking play visits a configuration

s E(w].)

after it visited

s F K M ,P)
This is not a repeat since these configurations differ in the state component. However,
such a play would correspond to a repea§ipo). To maintain a full correspondence

between the model checking and the satisfiability game we restart the construction of
player3's game tree fo6 (o) at the first occurrence of the position

o]

Note that this is only done if the model checking play visits two configurations with
different state components.

Then there is a repeat §(do) iff there is a repeat irSr(s, ¢o). By assumptionst

is a finite representation of an infinite path, therefore the model checking play will
eventually perform a repeat. Thus, the restarting process for the satisfiability play will
eventually terminate.

148 Chapter 6. Satisfiability Games for LTL, CTL and PDL

PlayerY cannot win a play of(¢o) with his winning condition 2. Remember that this
means he is able to keep the focus apug until the play performs a repeat. But this
would only be possible if he was also able to do thi$jis, ¢o) which contradicts
the assumption that playeris the winner of this.

He cannot win by condition 1 either since this would enable him to win the model
checking play by setting the focus to a proposition that is not satisfied by the actual
state. Remember that state labellings are total, i.e. for ayery’ and every stats
eitherg € L(s) or g € L(s). But his winning condition 1 requires both of them to be
present in a configuration which cannot occur in playsmmodel checking game tree

for Gn(so, $o)-

By Corollary95, player3 wins G(¢o). n

Theorem 104 (Small model property) If ¢o € LTL is satisfiable then it has a model
of size less thattg| - 21%l.

PROOF Supposedg is satisfiable. By Theorerd03 player 3 wins G(¢g). Let
Co,...,Ch be the resulting play. We define a finite representation of a possibly infinite
pathtt of a transition system in the following way. The statesrodire equivalence
classegCi| of the set of all occurring configuratio®, . ..,C, under the equivalence
relation

Ci ~C; iff betweenC; andC; there is no application of rulg).
Then[G] := {C; | C; ~ G;}. Transitions inmare defined as
[Ci] =[G iff Ci#Ckandthereis g e Ns.t.C ~CjandCjq ~ Cy.
The labelling of the states afis defined as
qe L([G]) iffthereisajcNs.t.Ci~CjandqgeC;.

mis an eventually cyclic finite representation of an infinite path if the corresponding
play was won with winning condition 4 or 5. It is a finite path if it was won with
winning condition 3. In that case add an arbitrary loop to its end to fulfil the totality

requirement.

6.1. Satisfiability Games for LTL 149

Lemma93 shows that the size of this representationtig bounded byo| - 2/%!.

We claim thatrtis a model fordo. Let T{{G)) denote the suffix oft that begins with
[Ci]. We show by induction on the formula structure that fori gjll< n:

&) = ¢y foral weC; if G~C;

This is true for atomic propositiong because of the way the labellings of the states
were chosen. Suppose it is true §oandy.

If ¢ vy € C; for somej then game rule§V]) and(V) guarantee that there isGawith
Ci ~ C; and eitherp € C; or € ;. But thentd@)) = ¢ or illS) = g by hypothesis
and, hencer'lG) = ¢ v . The cases af A Y andx¢ are similar.

If $UY € C; for somej then playerd’'s winning strategy guarantees that there is a
Cx with g € C, because she has fulfilled all occurriigormulas. Otherwise player

vV would have won the corresponding play with his winning condition 2 according to
Lemma98. The induction hypothesis yields/C) = Y. Furthermore, for everywith

j <i < kK wherek is chosen least s€ ~ Cy, there is an’ s.t.C; ~ Cy and¢ € C;.

But thenri) |= puy.

Finally, the case ofRY < C; is similar. Now note thado € Co andt/®)) = 1t Thus,
T[): ¢0. |

History-freeness of playef’s winning strategy carries over from the CTimodel
checking game to the LTL satisfiability game. The situation for playisrdifferent.

Theorem 105 (Winning strategies)
a) Playerd’s winning strategies are history-free.
b) PlayerY’s priority list strategies are LVR strategies.

PROOF Player3’s winning strategy fo6(¢o) with a satisfiablébg consists of choosing

a modelrmtfor ¢g and playing according to her strategy for the CThodel checking
game Gn(so,Edo). The choice of the model does not depend on the play, and by
Theorem74, her winning strategy fo6nr(So,E¢o) is history-free. Hence, so is her
winning strategy fo§(¢o).

150 Chapter 6. Satisfiability Games for LTL, CTL and PDL

Playery’s winning strategy fol§(¢o) with an unsatisfiabléy is different. Remember
that he is only concerned with the position of the focus. His priority list is in fact a
latest visitation record. According to DefinitigHl of Chapter2, the set of interesting
configurations for him is the set of all possible configurations of the f{rpn‘w} , P

for every$Uy € Suli¢o).

The priority list of Definition97 is a succinct representation of this LVR. Note that it
is essential but also sufficient for playeéto keep the focus on @uy. Maintaining a
priority list of all configurations would not give him more information than is needed
to win.

Player¥ only moves elements from positions in the list to its end. At the beginning,
no element occurs twice. Thus, the requirements for a LVR are fulfilled. n

Complexity

The close correspondence between Ciirlodel checking games and LTL satisfiability
games is reflected in the analysis of its complexity. The proof of the following theorem
is similar to the one of Theoref@g.

Theorem 106 (Complexity) Deciding the winner of an LTL satisfiability game is in
PSPACE.

PROOF A game based satisfiability checking algorithm for LTL can make use of the
priority list strategy described in the proof of Theor&@Z. This determinises player

¥’'s moves. What remains is a nondeterministic game since the existential player is left
with some choices. To find a winning play for play&the algorithm needs to store
two configurations: the actual one which gets overwritten each time a game rule is
played, and one which is used to find a repeat on.

Itis up to playerv to find a repeat on a configuratir{rl)UqJ} , @ without changing focus
between the two occurrences. Therefore, he would at some point universally choose
to store such a configuration. However, the result would be an alternating procedure
which will not have optimal complexity. Therefore, we determinise plaggichoice

of the configuration to repeat on, similar to the proof of Theoi®mn

6.1. Satisfiability Games for LTL 151

Let ¢ be the input formula. The algorithm maintains a counter to measure the length
of the play at hand. It starts by storing the first configuration. With this it stores
the counter value. It proceeds to check whether there is a play that repeats on this
configuration. A simple flag is used to indicate whether the focus was changed in
between or not. If there is a repeat and the focus was not changed it rétasthe
winner. If there is no repeat then a counter is used to terminate the play at hand. The
algorithm returns ? as soon as the counter value reddphe®® + 3 which is justified

by Lemma93. Then it restarts with the successor of the stored configuration and the
stored counter value increased by one.

If the stored counter value reach@lg - 21/ 4 3 then the algorithm terminates and
returnsd as the winner.

The size of the counter is polynomial in the size of the input. The size of the
memory needed to store two configurations is polynomial in the size of the input as
well. Therefore, LTL satisfiability checking can be done in nondeterministic PSPACE.
According to Bav69, there is a deterministic PSPACE algorithm for this problem as
well. n

Comparing Automata and Games for LTL Satisfiability Checking

The first automata to be used for deciding satisfiability of LTL formulas were
nondeterministic Bchi automata. There is of course an obvious difference to the
games of this section since 2-player games correspond to alternating rather than
nondeterministic automata. However, as Theofdt shows, applying the priority

list strategy determinises play@s moves and leaves a nondeterministic game.

These nondeterministic automata guess truth values for each subformula of the input
formula at each state of a possible model and verify these guesses with their transition
relation. The games of this section are more flexible in this respect since configurations
only contain necessary subformulas. The verification of the correctness of the
automaton’s choices can be seen as the automata-theoretic counterpart to @@mma
which states that unsatisfiability is preserved.

There is an intimate relationship between the model checking problem for CTL

152 Chapter 6. Satisfiability Games for LTL, CTL and PDL

and the satisfiability checking problem for LTL. This is not only reflected in their
computational complexities — both are PSPACE-complete — but also in the similarities
between the BLTL model checking games of Chajieand the LTL satisfiability
games of this section. Remember that a Chhodel checking games is in fact a
collection of BLTL model checking games.

The proof of Theoreni03 is based heavily on the close relationship between these
games. In fact, an LTL satisfiability game is a BLTL model checking game without the
state component in a configuration.

Since these relationships are merely a feature of the games but a property of the logics,
the automata that have been used for BLTL model checking can also be used for
LTL satisfiability checking. This means that the alternating automata f\arOg
are useful for the satisfiability problem as well, see the comparisons in S&cfion

Again, the games of this section can be seen as an intermediate step between the
alternating automata and their translation into nondeterministic ones. Remember that
the alternating automata’s states consist of single formulas only.

The question of whether there is a regeneratindormula is answered in the
non-emptiness test of the language accepted by the automaton. This problem is
PSPACE-complete. For the games this question is easier to answer as the proof of
Theorem106 shows. It is simply done by querying the value of a boolean flag.
However, it is only easier since a game’s configuration is more complex than an
automaton’s state. But it is the size of a configuration in a game that causes the
PSPACE complexity.

6.2 Satisfiability Games for CTL

The satisfiability gameS(¢o) for a CTL formuladg is defined along the lines of
Section6.1. Playerd attempts to show thafip has a model, whereas playertries
to show that there is none. Here, a model is a total transition sy$teirhe set of
configurations of the focus gan¥¢o) is

€ = Suk{dg) x 25Ut0)

6.2. Satisfiability Games for CTL 153

The game rules are depicted in Figi@& Boolean combinators are handled in the
same way as they are in the LTL games, and so is the focus. R@8p, ([QR]),
(QU) and(QR) are justified by the unfoldings of the temporal operators in CTL.

Because of the path quantifiers, applying the above rules will result in a configuration
in which every formula is either propositional or of the foE®y or AX{y). Such

a configuration postulates the existence of several successor states, each of them
satisfying all of the universally quantified formulas and at least one existentially
guantified formula, s.t. eveXx¢ is covered by one successor state. This is modelled

in the rules(EX) and(AX).

The winning conditions for the CTL games are similar to those for the LTL games, and
so is the definition of a terminal configuration. Playawins the playCo,...,C, iff

1. G = [q} ,® isterminal andy= ff org e @, or

2.Cy = [Q(d)ULLI)} ,® for someQ € {E,A} and there is ame N, s.t.i <nand
Ci =C,, and playelv has not used rulé&C) betweerC; andC,.

Playerd wins the playCo, ... ,C, iff

3.C, = [q} ,® isterminal,q+# £f andq ¢ @, or

4. C, = M ,® andthereis anc N, s.t.i < nandC; = C,, and playeiv has used
rule (FC) betweerC; andC,.

5.C, = [Q((I)RLIJ)} ,® for someQ € {E,A} and there is ame N, s.t.i < nand
Ci = Cy, and playeiv has not used rulé&C) betweerC; andC,,.

Correctness

As in the LTL case we need to establish a few facts and lemmas before we can proceed
to prove the games correct.

154 Chapter 6. Satisfiability Games for LTL, CTL and PDL
boves] 0 Q(ouy)] @
(VD) A ([Qu])
.o WV (0AQKQoUY))|, @
[4’0A ¢1} ® [Q(‘PRQJ)] ,®
([A]) vi ([QR])
(0], 01,0 WA 0V QrQ(erY)) | @
W] dovese x].Q(ouy),
(V) Ji (Qu)
|0 X)WV (A QxQ(oUW)), @
N W].60n 01,0 o [x].Q(orY), ®
(W] 00,01, @ x| A (6 v QxQ(orY)), @
AXYy,..., AXYm, [EX(I)]_] EX¢k, q1, - - -, On [(I)} P, P
(EX) (FC) v
l'lJl 77777 L|Jm, [(I)l} [l-l"}) ¢7 ®
[Axml] AXUm, EXQ1,... . EXQk, 01,00
(AX) Vi

qu7¢i

.....

Figure 6.3: The

satisfiability game rules for CTL.

6.2. Satisfiability Games for CTL 155

Fact 107 (FC) is the only rule that maintains the size of a configuration. Rley),
(V), ([A]), (A), (EX) and (AX) reduce the number of connectives in a configuration,
while rules([QU]), (QU), ([QR]) and (QR) increase the number of connectives.

Lemma 108 Every play of5(¢) has finite length less tha®| - 2%/ +-3 and a uniquely
determined winner.

This is proved exactly like Lemmée&3 and94 for LTL. Consequently, determinacy
follows for the CTL satisfiability games in the same way.

Corollary 109 (Determinacy) PlayerV¥ winsS(¢) iff player 3 does not wirG(¢).

Lemma 110 Playerd preserves unsatisfiability with her rules. Playécan preserve
unsatisfiability.

PROOF The rules for boolean connectives and the focus change rule are present in the
LTL games as well. Since playéronly chooses disjuncts the claim follows for her
from Lemme96 already.

Preservation of unsatisfiability with the deterministic unfolding rulggu]), (QU),
([QR]) and (QR) follows from the unfolding characterisation tbfandR formulas in
CTL which was presented in Secti@.

The only new cases are those of ru(g%) and(AX). They do not need to be looked at
separately. Suppose

LIJla"'?LIJm;q)i

is satisfiable for everg;, i = 1,...,k. Thus each has a mod#&] with a states s.t.
s = ¢; ands = yj for j =1,....m. Define a new LTS as the disjoint union over
all 7 with a new states’ s.t.s — s for eachi = 1,... k. Lets be consistently labelled
with L(S') = {0d,...,0n}. Then,

7,8 | AXUs,...,AXUm, EX$1,. .., EXOk,G1, - ., 0n

Thus, this formula is satisfiable. Therefore, if it is unsatisfiable then one of the
di,W1,...,Pn must be unsatisfiable as well. In rul@X) playerV can choose it
accordingly and preserve unsatisfiability.

156 Chapter 6. Satisfiability Games for LTL, CTL and PDL

In order to preserve unsatisfiability with rulEX) he might have to change focus to the
EX¢; that causes the unsatisfiability before the rule is played. Note that he is allowed
to change focus at any moment in the play. n

As in the LTL case, we will describe a priority list strategy for playei he difference
to Definition97 is the fact that playev has to use several lists in a gagi@o).

Definition 111 (Priority list strategy) Let| be apriority list of all U subformulas of
¢o in decreasing order of size, i.e.

I = Qu(¢1U¢1),...,Qn(dnlyn)
with
Qi(¢iUYi) € SulQj(¢;Uwj)) and Qi(¢iUyi) # Qj(¢;Uyj) implies | <i

In that caseQj(¢;Uy;) is said to have higher priority tha@;($;iUy;). We say that
Q(dUY) is present in a configuratidd if

{ Q(UY), WV (6 AQXQ($UY)), ¢ AQXQ($UY) € C, QXQ(¢pUY) } N C # 0

PlayerV uses the priority list as it is described in Definiti®d. He attempts to set

the focus to they formula with the highest priority that is present or a superformula

of it. Here, anu formula means a formula of the fora{¢pUWY) or A(¢UY). Fulfilled U
formulas get appended to the end of the list. At any moment he checks whether he can
win by setting the focus to an atomic proposition.

Note an essential difference between the LTL and the CTL satisfiability games. In
the LTL case playelv only chooses the position of the focus. This is entirely
determinised by the priority list strategy. Here, playealso makes choices with rule

(AX). This is unaffected by the priority list strategy. His overall strategy is therefore
composed of several priority list strategies, each corresponding to a certain sequence
of choices he makes with rul@X) in a play. In addition, whenever this rule has to be
played he chooses ti¢; that preserves unsatisfiability if the actual configuration is
unsatisfiable. If it is satisfiable he can choose any formula.

6.2. Satisfiability Games for CTL 157

Thus, in a game tree for playér player¥ will have used several priority list strategies
since the presence of anformula generally depends on the choices made with rule
(AX).

We will speak ofthe priority list strategy to denote his overall strategy that combines
the priority list idea with the preservation of unsatisfiability.

The next lemma is proved in the same way as Ler@&#or the LTL games.

Lemma 112 (Optimality) If playerV wins§G(¢o) then he wins it with the priority list
strategy.

The minimal formulaxp causing unsatisfiability in a plal of a CTL satisfiability
game is defined just as it is in Definiti@ for LTL. xp is the syntactically least
formula that causes unsatisfiability and that occurs earliest in a configuration of

Lemma 113 Let ¢ be unsatisfiable anB be a play ofG(¢o) in which playerv uses
his priority list strategy. Therxp is either atomic or of the forn@(¢uy) for a Q €

(E,A}.

PROOF This is proved by case analysis gp as well. Note that the cases of atomic
propositions, disjunctions and conjunctions are the same as the ones in the proof of
LemmalOl

Xp = EXy is impossible as well agp, = AXY since rules(EX) and (AX) produce the
syntactically smalletp in the latter case anyway and in the former case if the priority
list strategy is used.

The cases okp = Q(¢RY) are similar to the case of & formula in the proof of
Lemmal0Ol. Regardless o), the syntactically smalleg will always be present in
later configurations and eventually cause unsatisfiability urflekses.

The remaining cases are thosexpf= Q(¢UW), Q € {E,A}. LetCy = Xp, Pk be the

first configuration inP containingxp, s.t. = ®x — Q(¢UY). Again, P denotes the
satisfiable part o€ in the sense of LemmB01. Then either there is am > k s.t.

=®n— VP but Ed;—¢ forallk<j<m

158 Chapter 6. Satisfiability Games for LTL, CTL and PDL

or forallm> k:
In the first case botlp andy are smaller formulas thayy and cause unsatisfiability

as well. Remember that as long @¢$Uy) is unfolded eitherp or Y occurs in a
configuration. As long as it occurs it must result from the unfoldinggof

Again, the second case does not contradict the assumptiorxghiat syntactically
smallest. It is found in a play in which playernever fulfils Q(¢UY) s.t. ¢ occurs
between each two unfoldings bjitnever does. n

Theorem 114 (Soundness) If §¢ is unsatisfiable then playétwins G(¢o).

PROOF Assumedg is unsatisfiable. As in the proof of Theoreldz, we show that
player¥ wins S(¢o) by using his priority list strategy.

Consider a playCo,...,Cy of G(¢o). By Lemmal96, eachC; is unsatisfiable, in
particularC,. Thus, played cannot win this play with her winning condition 3 since

it requires the last configuration of the play to be satisfiable. Remember that the case
of playerV simply refusing to continue to play is excluded by using the priority list
strategy.

Since¢g is assumed to be unsatisfiable, LemkE applies. Regardless of which
play P is played,xp is either atomic or of the forn@(¢uy). Let Cy be the earliest
configuration containingp s.t.

Cc = Xp, Pk and = ®c—Xp

If xp = g then the priority list strategy causes playeto win the play since he will
set the focus to eithayor g. Note thatg must either be present @ or occur at most
log|do| steps later.

Supposep is of the formQ(¢UY). If playerV sets the focus tgp whenCy is reached
then he wins the resulting play with his winning condition 2. Note that playean
never fulfil xp by assumption. Thus, playgrcan leave the focus on it.

Suppose this is not the case, i.e.

C = [4)/} ,Xp, @

6.2. Satisfiability Games for CTL 159

¢’ is anU formula as well since playér’s strategy only allows him to set the focus to
a formula other than that if n@ formula is present. But if th& formula is of the form
A(¢UW) thenxp is going to remain present since playkstannot fulfil it. Moreoveryp

is a member of the priority list at this moment. If it is of the foBf$UWY) then it could
theoretically be discarded by an application of r{##). But since playeY is assumed
to preserve unsatisfiability it would not be tge for the playP at hand. Hence, player
3 cannot fulfil it either and it is also a member of the priority list.

We can assumé’ to get fulfilled at some point. If it does not then playéwill win
with condition 2 just as he does in the preceding case.

The moment it gets fulfilled it is moved to the end of the priority list and plajyersets

the focus to the& formula which has highest priority and is present. Note jtats
present and that two formulas only swap their priority order if the one with the higher
priority gets fulfilled. Therefore, there are only finitely manjormulas other thagp

the focus can be set to. As soon as one of them persists, playegrs with winning
condition 2. Eventually, this will bg&p unless another one did beforehand.

Note that the argumentation above holds for every plag@fy). Thus, playerv
will win each play either with his winning condition 1 or 2 if he uses his priority list
strategy. m

Similar to the proof of Theorem03 we will relate the satisfiability games for CTL

to its model checking games of Sectibr? and obtain completeness in this way.
However, one satisfiability play must be related to several model checking plays since
configurations of the latter contain single formulas only.

Theorem 115 (Completeness) If ¢q is satisfiable then playet winsSG(¢o).

PROOF Suppose)g is satisfiable, i.e. it has a mod&l= (8, —,L) with 5 € S s.t.
S E ¢o. §o is also a CTE formula. Thus, by Theorend?, T can be assumed to
be finite. Played’s moves inG(¢o) will be guided by her moves in the CTL model
checking gameS§;(s,) wherese 8§ andy € Suli¢p). Remember that the CTL model
checking game is not a focus game.

The starting positions for both plays al[ebo] and so - ¢o. Suppose the actual
formula in focus is a disjunction. Then playér uses her winning strategy in

160 Chapter 6. Satisfiability Games for LTL, CTL and PDL

S7(s0,90) to choose the disjunct that guarantees her to win the remaining play. In
the satisfiability game she chooses the same disjunct. Unfolding of temporal operators
is deterministically done in the same way in both plays.

The only interesting case is the one of a conjunctior§ihg). Consider the first
occurrence of such a situation$iio). At this moment no sideformula can be present.
Let therefore[lpo A LIJl} be such a configuration. This must correspond to a position

s F Yoy

in the model checking play. Since players assumed to have a winning strategy

for this game she must have winning strategies for s, Wo) and G5(s,Y1).

In G(do) playerV sets the focus to one of the conjuncts, gay Then all choices
regarding formulas in focus are matched by choiceS;ifs, Yp), whereas all choices
regarding sideformulas correspond to choice§diis, W1). Thus, at any moment in

the satisfiability game a configuration containimgormulas is matched by model
checking plays. Furthermore, the state component of all model checking plays is
always the same. Changing focus does not alter the situation on the model checking
side at all.

Finally, if the satisfiability play reaches a configuration

AXY1, ..., AXUpm, [EXd)]_] R ,EX(I)k,ql, .eo»0n

the model checking plays correspondingExi,, ..., EX¢y are discarded. Playet
chooses a successor stata the play forEX¢;. By assumption she has winning
strategies for the remaining model checking games

97<t7¢1>7 97(t7w1)7 ceey 97(t7wm)

The same argument holds for a configuration with the focus onxan the only
difference being playey who determines the model checking play in which player
3 chooses a successor state.

It is possible for the satisfiability play to perform a repeat on a configurz{ﬂmﬂ\,db
while the set of model checking plays does not. et Yy,...,Ps. Whenever the
model checking plays are at stages

t F oy fori=1,...,n

6.2. Satisfiability Games for CTL 161

after they were at stages- (;, ands# t, and the focus is on the same formula, then
the satisfiability game is restarted at the first occurrenc%tpa},ql This is not done
if s=t.

Suppose now that playé&t wins the satisfiability game. If he does so with winning
condition 1 then there must be two configurations

t kg and t +F Q

in the set of model checking plays. Playecannot win both of the model checking
plays as she is assumed to. Suppose therefore that playies with condition 2. But

a repeat with @Q(¢UY) in focus corresponds to a model checking play that repeats on
Q(¢uy) as well and would be won by playgr too.

We conclude therefore that playecannot win any play of(¢o) and by Corollarnd09
that playerd must have a winning strategy f§f¢o). n

Theorem 116 (Small model property) If ¢o € CTL is satisfiable then it has a model
of size less thaitg| - 2/%0.

PROOF Supposehg is satisfiable. By Theorerlf, playerd has a winning strategy
for the gameS(¢p). We extract a transition systemfrom player3's game treeT will

be a tree-like structure. A play in the game tree will be transformed into a braoth
T. For each playy,Cy,...,C, the brancht consists of states which are equivalence
classedC;] of the set of all occurring configuratio® under the equivalence relation

Ci ~C; iff betweenCj andC; there is no application of rulgex) or (AX).
Then[Gj] := {Cj | Cj ~Ci}. Transitions inJ are defined as
[Ci] =[G iff Ci%Ccandthereisg e Ns.t.C ~CjandCj;q ~ Cy.
The labelling of the states &fis defined as

qe L([G]) iff thereisaj € Ns.t.C ~CjandqgeC;.

162 Chapter 6. Satisfiability Games for LTL, CTL and PDL

Eachrtis an eventually cyclic finite representation of an infinite path unless it resulted
from a play which is won by playet with her winning condition 3. In that casecan
be made into an eventually cyclic path model by appending anotherGtatg with

Gl =[Cnia] and [Cnia] =[Crid

The paths can be put together to obtain a finite representawdan infinite tree. Note
that each path starts with[Co.

Since there are onlypo| - 2/%! many different configurations @(¢o) this is also an
upper bound on the number of equivalence clagésind, hence, the size 6t

It remains to be seen that [Cy| is a model fordp. In fact, the following stronger
proposition holds for ali, j < n:

Gl E w forall peCj if G ~C;j

This is done by induction oy similar to the proof of Theorerh04for LTL. Note that
the cases oy = EX¢ andy = AXd hold because all of player's choices with rule
(AX) are contained in playef's game tree.

Finally, ¢ € Cp and, thus|Co| = ¢o. m

A consequence of this proof is the tree model property for CTL. However, it also
follows from Lemmar5 which shows the tree model property for CTL

Corollary 117 (Tree model property) CTL has the tree model property.

For two LVRsI; andl, the interleavingof |1 andl, is a sequence containing each
element ofl; andl, exactly once such that the order of the elementy iandl; is
preserved.

Lemma 118 The interleaving of two disjoint LVRs is an LVR.

PROOF Let | = Cy,...,C, be the interleaving of; andl, which are LVRs over the
disjointly andly. ThenGi e IyUlx foreveryi=1,....n.G #Cjforall1<i< j<n

6.2. Satisfiability Games for CTL 163

becausé; N1y = 0. Finally,

n = [lif+lz2] < [la|+]l2] = [l2Ul3|

Thus,| is an LVR. -

Theorem 119 (Winning strategies)
a) Playerd’s winning strategies are history-free.
b) PlayerV’s winning strategies are LVR strategies.

PROOF Player I's winning strategy forG(¢o) with a satisfiabledpo consists of
choosing a modeT = (§,—,L) for ¢o and playing according to her strategies in the
corresponding CTL model checking ganfgss,) for s€ 8 andy € Suli¢p). The
choice of the model does not depend on the play, and by The8B82rher model
checking winning strategies are history-free. They add up to a history-free strategy for
G(do) since there is no interaction between the model checking games.

Player¥'s winning strategies are latest visitation record strategies. Note that he uses
essentially the same strategy as in the LTL games. The fact that his overall strategy
consists of using one priority list for each sequence of applications of fakgsand

(EX) does not change this. All the lists can be interleaved to one overall list in which
the origin of eaclv formula is used as an annotation to fulfil the requirements of being

a LVR.

Note that he simply ignores unimportant parts of the LVR because he always changes
focus to preserit formulas only. According to Lemm&lg, the result is a LVR, too.

The only conceptual difference to the LTL games is the additional choice he has with
rule (AX). Choosing arEX¢; determines the state of his priority list. In terms of the
proof of Theoreml14 it determines which list to continue his strategy with. But all
he needs to do with rulgX) to win the remaining game is to preserve unsatisfiability.
This choice does not depend on the history of the play.

Thus, his overall strategy consisting of preserving unsatisfiability and maintaining a
priority list is a LVR strategy. n

164 Chapter 6. Satisfiability Games for LTL, CTL and PDL

Complexity

Theorem 120 (Complexity) Deciding the winner of a CTL satisfiability game is in
EXPTIME.

PRoOOF Unlike the proofs of Theorem&3 and106€, here playeiv’s moves cannot be
determinised using the priority list strategy described in the proof of Thed/in
The reason is game rul@X) which requires playe¥ to make a choice other than
positioning the focus.

An alternating algorithm only needs to store two configurations and a counter to find
a winning play for one of the players. Again, the configurations are the actual one and
one chosen by playéf on which he tries to find a repeat. The counter is bounded by
] .29l 4 3 and, hence, requires space which is polynomial in the size of the gnput
Therefore, checking whether a CTL formula is satisfiable is in APSPACE which is the
same as EXPTIME QKS8]]. -

6.3 Satisfiability Games for PDL

The set of configurations of theatisfiability game5(¢o) for a PDL formuladg is
C = Sukdg) x 25Ut¢o)

Again, S(¢o) is a focus game like the ones of Secti@$and6.2 with the difference
that the modell = (8,{-2:| ac A},L) for ¢o which player3 implicitly attempts to
construct need not be total.

The presentation of the game rules is split into two sets. The first set deals with boolean
combinators and modalities with atomic programs. They can be found in Fagdire
Rules([V]), (V), ([A]) and(A) are the usual ones for disjunctions and conjunctions.
There also is the focus change rdie) that playery can use at any point in a play.
Rules((a)) and([a]) are parametrised by the actiarand are the PDL counterparts

to the CTL rulegEX) and(AX). Note that PDL, unlike CTL, distinguishes transitions
with different labels. Therefore only those formulas that speak about successor states

6.3. Satisfiability Games for PDL 165

boves|. 0 LI o] o
(V1) W Ji) MMCD vi (FC) Mdiq) v
W] 6over® b].001 61, @
(V) i (A)
)61 W], 60.62,0

()01 .. (@) b, (D)W, . [Prn] i, G-
9]

((a1))

where foralli =1,....m: y; e Wiff bj = a3

(a2}, (8n)bn, [0 ol GG
(lai) vi
¢i> |:lu1:| 7Lp

whereg; = by and forallj =2,... . m:; € Wiff bj =by

Figure 6.4: The PDL satisfiability game rules for formulas.

which can be reached with the same atomic program are included in an application of

rule ((a)) or ([a]).

The second set of rules deals with non-atomic programs. Basically, they apply the

equivalences given in Secti¢h5 to obtain formulas with smaller programs. Rules
(KWY]), ({L)), ([[U]]) and(][U]) have been optimised in the sense that the corresponding
equivalences yield a disjunction or a conjunction, and the following choice by one of

the players has been built into the rule already. Note hat rules ([[7]]) and([?])
denotes the complement gfaccording to Lemma3 of Sectior2.E.

166 Chapter 6. Satisfiability Games for LTL, CTL and PDL

[<00U01>¢ () ' [[O(OUOMN)},‘D .
((®) Si () vi
(@i)o],® i)]. [az-i]6. ®
|:LIJ_ ’ <GOUG1>¢7CD) |:l.|J:| s [GOUG1]¢7¢
() == Si (V)
W) ()o@] [aoo. [ou]6,
(aoan)] @ (w29 x]. W20,
() () ((2)
|:<G0><a1>¢:| 7CD LIJ7 [¢:| 7(D |:X:| ,lIJ,(I),cD
R [CEA R W20, X)W, @
(1) (12 ()
[[GO][GJ.M)} ® |:qjv¢]7q) [X]quvq)vq)
"). (aoian)p, @ .], [ao; oz, ®
T RESICHERS (] [wolaje, @
(a)g]. @ (o]0, @
([6)) 3 (@)
0.0 | [@a)e|.@ 0 [a]la]], @

3 ([+)

Figure 6.5: The PDL satisfiability game rules for programs.

6.3. Satisfiability Games for PDL 167
Definition 121 A configurationC of §(¢o) is calledterminalif
o C= [l [an)n, ..., G, Or

e C= [q] ,® and playelv refuses or is unable to move the focus with r(#e).

The slightly different definition of a terminal configuration compared to those in LTL
or CTL games is due to the fact that models of PDL formulas are not required to be
total.

The winning conditions for the PDL games are similar to those for the CTL games.
Playery wins the playCo, .. .,C, iff

1. G = [q} ,® isterminal, andy= ff orq e @, or

2.C, = [(a*>¢] ,® andthereisane N, s.t.i < nandC; = C,, and playelv has
not used ruléFC) betweerC; andC,.

Playerd wins the playCo, .. .,C, iff

3. Cyisterminal, andf ¢ C and for everyge C: g ¢ C, or

4. C, = M ,® andthereis ane N, s.t.i < nandC; = C,, and playet’ has used
rule (FC) betweerC; andC,.

5 Ch = [[a*]q)] ,® andthereisane N, s.t.i < nandC; = C,, and playelv has
not used ruléFC) betweerC; andC,.

Correctness

Again, finiteness of every play and uniqueness of their winners are proved in the same
way as they are for LTL and CTL, see Lemnf3; 94 and10& The same holds for
determinacy.

168 Chapter 6. Satisfiability Games for LTL, CTL and PDL

Fact 122 (FC) is the only rule that maintains the size of a configuration. R(iles]),
((x)), ([[*]])) and([#]) increase the number of connectives in a configuration. All other
rules either reduce the number of connectives in a prognaonthe number of boolean
connectives and modalities in a formula.

Lemma 123 Every play ofG(¢) has finite length less tha| - 2!%! + 3 and a uniquely
determined winner.

Corollary 124 (Determinacy) PlayerY wins§(¢) iff player 3 does not wirG(¢).

Lemma 125 Playerd preserves unsatisfiability with her rules. Playécan preserve
unsatisfiability.

PROOF The cases of the rules for boolean connectives have been dealt with in the LTL
or CTL version of this lemma already (Lemm&6 and110). All the deterministic
rules preserve unsatisfiability because the apply equivalences for PDL formulas.

Note that playerd’s choices are all special instances of configurations containing
disjunctions. PlayeY’s choice with rule([[U]]) is an instance of a conjunctive choice.
Preservation of unsatisfiability with ru[&C) is trivial.

For the remaining cases of rul¢sa)) and ([a]) suppose thati, i 1,...,Pim is
satisfiable for everg; withi € {1,...,n}. Then each of them has a modgls s.t.

T, E diAWiIA... APy, forallie{l,...,n}

We defineJ” as the disjoint union over &l; with a new states and transitions-2- s,
s.t.aj # aj if i # j, and a consistent labellings) = {qs,...,q }. Then

sbz/\q.A/\ ¢.A/\ &)
i=1 j=1
The conjuncts can be permuted into the form that is presented ii(ai)¢ or ([a]).

Conversely, if this formula is unsatisfiable then there must biesafil, ..., n} s.t.

¢i7 qu,1> teey LIJi,m

is unsatisfiable. This shows that playjecan preserve unsatisfiability with rulés;])
and with rule({a;)) by possibly changing focus accordingly before it is applied.n

6.3. Satisfiability Games for PDL 169

As in the CTL case, we describe a priority list strategy for playefgain, the actual
list during a play depends on play€s choices with game rulfa]).

Definition 126 (Priority list strategy) Let | be apriority list of all subformulas of
do of the form(a*) W for some prograna in decreasing order of size, i.e.

I = (apDws,.... (ap)dn

with
(o)Wi € Sul(aj)y;) and (of)di # (aj)d; implies j<i

In that case(a})y; is said to have higher priority thafu;") ;. We say thato™)y is
present in a configuratio@ if (a*)y € C or (a)(a*)P € C.

PlayerV uses the priority list as it is described in Definiti®d. He attempts to set
the focus to théa ™)y with the highest priority that is present or a superformula of it.
(o*)W gets appended to the end of the list when playehoosesp in the unfolding
instead of(a)(a*)Ww. At any moment playeY checks whether he can win by setting
the focus to an atomic proposition.

The next lemma is proved in the same way as Ler@&#éor the LTL games. Note
that, as in the CTL case, we speaktbé priority list strategy as his overall strategy
that includes the preservation of unsatisfiability according to Leh2a

Lemma 127 (Optimality) If playerV wins§G(¢o) then he wins it with the priority list
strategy.

The minimal formulaxp causing unsatisfiability in a plal of a PDL satisfiability
game is defined just as it is in Definitid@®8 for LTL. Xp is the syntactically least
formula that causes unsatisfiability and that occurs earliest in a configuration of

Here,(a)¢ counts as smaller thafs)w if the number of connectives im is less than

the number of connectives i The same holds for formulas of the fof¢. This is
important for applications of rulg(;)]) for example that replace formulas with others
that have the same number of connectives but with a reduced number of connectives
inside a modality.

170 Chapter 6. Satisfiability Games for LTL, CTL and PDL

Lemma 128 Let ¢o be unsatisfiable an& be a play of5(¢o) in which playery uses
his priority list strategy. Thexp is either atomic or of the fornio*) .

PROOF This is proved by case analysis oq». Note that the cases of atomic
propositions, disjunctions and conjunctions are the same as the ones in the proof of
LemmalOl

Thus,xp can only be of the form3)¢ or [B]¢. The following cases are excluded:

(dpUa1)d, [aoUa]d, (W26 and [W7o

They can all be reduced to the case of a disjunction or a conjunctionyPgr note
thatQ is of the same size aj.

If B = afor somea c A then rule((a)) or ([a]) will eventually remove the modality
from ¢ which is then a better candidate fgs. Compare this case also to the case of a
X¢ in LTL and aQX¢ in CTL.

Next, there are the cases @fp;a1)¢ and[ao; a1]¢. Game ruleg[(;)]), (), ([;]])
and([;]) applied to a formula of this form produce a semantically equivalent formula
that is smaller by convention since the sequential composition operator is removed.
Thus, they cannot be minimal formulas causing unsatisfiability either.

The two remaining cases a&*|¢p and(a*)$. The former can be excluded again since
it only causes unsatisfiability if the smallgicauses unsatisfiability later on in the play.
Note that the unfolding ofo*|¢ guaranteeg or a subformula of it to be present at any
moment in the play.

Finally, supposegp = (a*)¢. Thus, there is a configuratioBy = xp, Pk in the play
s.t.

= ®x— (00

This meang= @y — [a*|§. Remember rulé¢(x)) for the unfolding of(a*)¢. Player3
chooses eithap or (a)(a*)¢. In the first cased contradicts the assumption that is
of the form(a*)¢ sinced is syntactically smaller. This is because

@] = dA[a][o"]p

6.3. Satisfiability Games for PDL 171

and, hence,

= ®—0

However, the case where playealways choose&)(a*)¢ instead does not contradict
the assumption sinc@)(a*)¢ is not syntactically smaller thata*)¢. In this case,
(a*)¢ is the smallest formula causing unsatisfiability. n

Theorem 129 (Soundness) If ¢ is unsatisfiable then play&twinsG(¢o).

PROOF Assumedg is unsatisfiable. As in the proofs of Theoret8z and114
we show that playeY wins G(¢o) by using his priority list strategy and preserving
unsatisfiability.

Let the two players play a plagy,...,C, of G(¢o). By Lemmal25 eachGC; is
unsatisfiable, in particuldZ,. Thus, playerd cannot win this play with her winning
condition 3 since it requires the last configuration of the play to be satisfiable.

Since¢g is assumed to be unsatisfiable, Lemi€ applies. Regardless of which
play P is played,xp is either atomic or of the formja*)¢. Let Cx be the earliest
configuration containingp S.t.

Ck = xp,®% and | ®—Xp
If xp = gthen the priority list strategy causes playeio win the play since he will set

the focus to eitheg or gin Cy or at mostog|¢o| steps later.

Supposexp is of the form(a*)¢. If playerV sets the focus tgp whenCy is reached
then he wins the resulting play with his winning condition 2. Note that playean
never fulfil xp by assumption. Thus, playgrcan leave the focus on it.

Suppose this is not the case, i.e.
Ck = [q)/} 7XP7CD

¢’ is of the form(a*)¢ as well since playeY’s strategy only allows him to set the
focus to a formula other than that if Ho*)¢$ formula is present. Bugp is going to
remain present since playeicannot fulfil it. Moreoveryp is a member of the priority
list at this moment.

172 Chapter 6. Satisfiability Games for LTL, CTL and PDL

We can assumég’ to get fulfilled at some point. If it does not then playewill win
with condition 2 just as he does in the preceding case.

The moment it gets fulfilled it is moved to the end of the priority list and player
resets the focus to th@*)¢ formula which has highest priority and is present. Note
thatxp is present and that two formulas only swap their priority order if the one with
the higher priority gets fulfilled. Therefore, there are only finitely many formulas of
the form (a*)¢ other thanyp that the focus can be set to. As soon as one of them
persists, playe¥ wins with winning condition 2. Eventually, this will bgp unless
another one did beforehand.

Note that the argumentation above holds for every plag@fy). Thus, playerv
will win each play either with his winning condition 1 or 2 if he uses his priority list
strategy. m

Similar to the proofs of TheoreniD3and115 we will relate the satisfiability games

for PDL to its model checking games of Chap#iand obtain completeness in this
way. Again, one satisfiability play must be related to several model checking plays
since configurations of the latter contain single formulas only.

Theorem 130 (Completeness) If ¢ is satisfiable then playet winsS(¢o).

PROOF Supposeg is satisfiable. Then it has a modek= (8, {-2:| ac A},L) with

S € 8. By Theorenb2, T can be assumed to be finite. Playér moves inG(¢o) will

be guided by her winning strategies in the PDL model checking g&sesy) where

se § andy € Sulddo). Remember that a PDL model checking game is not a focus
game.

The starting positions for both plays al[epo] and s - ¢o. Suppose the actual
formula in focus is a disjunction. Then player uses her winning strategy in
97(s0,90) to choose the disjunct that guarantees her to win the remaining play. In
the satisfiability game she chooses the same disjunct. Unfolding of temporal operators
Is deterministically done in the same way in both plays.

The only interesting case is a conjunctiondfg). Consider the first occurrence of
such a situation i§(¢o). At this moment no sideformula can be present. Let therefore

6.3. Satisfiability Games for PDL 173

[qu A l]Jl} be such a configuration. This must correspond to a position

s F Yoy

in the model checking play. Since players assumed to have a winning strategy

for this game she must have winning strategies for @s Yo) and Gy(s,Y1).

In G(do) playerV sets the focus to one of the conjuncts, gay Then all choices
regarding formulas in focus are matched by choiceSsifs, Yp), whereas all choices
regarding sideformulas correspond to choice§diis, Y1). Thus, at any moment in

the satisfiability game a configuration containimgormulas is matched by model
checking plays. Furthermore, the state component of all model checking plays is
always the same. Changing focus does not alter the situation on the model checking
side at all.

Finally, if the satisfiability play reaches a configuration

(@)1, (@0}, [P, .. [, .

the model checking plays corresponding#) ¢; are discarded for all=2,...,n, as
well as those fofbj|y; for all j = 1,...,mwith bj # a;. Playerd chooses a successor
statet of sin the play for(a;)¢1. This guarantees that a transitiorL- t exists.

By assumption she has winning strategies for the remaining model checking games
Sq(t,01) and Gy (t,Y;) for all j = 1,...,mwith b; = a;. This is becausse-2-t and
player3 wins the model checking gamés (s, [bj]W;).

The same argument holds for a configuration with the focus dbjya, the only
difference being playeY who determines the model checking play in which player
3 chooses a successor state.

It is possible for the satisfiability play to perform a repeat on a configura{ﬂm}u,qb
while the set of model checking plays does not. et g,...,yn. Whenever the
model checking plays are at stagées y;, fori = 1,...,n, after they were at stages
sk i, ands#t, and the focus is on the same formula, then the satisfiability game
is restarted at the first occurrence[o] ,®. This is not done is=1t. SinceT is
assumed to be finite this iteration process will eventually terminate.

174 Chapter 6. Satisfiability Games for LTL, CTL and PDL

Suppose now that player wins the satisfiability game. If he does with winning
condition 1 then there must be two configuratiorisq andt - g in the set of model
checking plays. Playef cannot win both of the model checking plays as she is
assumed to. Suppose therefore that playaevins with condition 2. But a repeat
with a (a*)¢ in focus corresponds to a model checking play that repeatsioip as
well and would be won by playet, too.

We conclude therefore that playe@cannot win any play ofi(¢o) and by Corolland09
that playerd must have a winning strategy f6(¢o). m

Theorem 131 (Small model property) If ¢o € PDL is satisfiable then it has a model
of size less thaiwg| - 2/%0.

PROOF Supposepg is satisfiable. By Theorerh3(playerd has a winning strategy

for the gameS(¢p). Her game tree is used to build a modeffor ¢o. Let two
configurations that occur in the same play be equivalent if they denote the same state
in a model.

Ci ~C;j iff there is no application of rulé(a)) or ([a]) in between

Again, [G] is the equivalence class Gf. States ofl" are collapsed configurations under
the relation~. Transitions inJ are defined by

[C]-%[C iff thereisaj € Ns.t.G ~Cj,Cji1 ~Cyand
betweerC; andCj, 1 rule ((a)) or ([a]) has been played

The states ir7” are labelled as follows.

g€ L([G]) iff thereis aj € Ns.t.Cj ~ Cj andq € C;

As in the proofs of Theorem$04 and/116€ it is possible to show the following by
induction on the structure af for all i, j < n:

Gl E forall peCj if G ~C;j

6.3. Satisfiability Games for PDL 175

Again, the fact thaf arises from playef’s game graph guarantees that this holds for
formulas of the form(a)$ and[a]$, and that eacka*)¢ gets fulfilled inT. Thus,

[Co] = do.
Lemmal23shows that the size of the constructed model is boundégighy2/%ol since
this is the maximal number of different configurationsjif®o). m

Corollary 132 (Tree model property) PDL has the tree model property.

Theorem 133 (Winning strategies)
a) Playerd’s winning strategies are history-free.
b) Player¥’s winning strategies are LVR strategies.

PROOF This is proved in the same way as Theoigh®for CTL. Playerd’s winning
strategy forS(¢o) with a satisfiableg consists of choosing a model fgg and playing
according to her strategies in the corresponding PDL model checking dares))

for se § andy € Sulido). By Theorenbl, her model checking winning strategies are
history-free.

PlayerY’s winning strategies are latest visitation record strategies since he uses the
same strategy as he does in the CTL games. n

Complexity

The proofs of soundness and completeness show that the satisfiability problem for
PDL is very similar to the satisfiability problem for CTL. This is reflected in their
computational complexities as well.

Theorem 134 (Complexity) Deciding the winner of a PDL satisfiability game is in
EXPTIME.

PROOF As inthe proof of Theorerti2(, playery’s moves cannot be determinised at no
additional cost. The priority list strategy from the proof of TheoiE2§is applicable
but leaves choices with rulga)).

As in the CTL case, an alternating algorithm only needs to store two configurations
and a counter to find a winning play for one of the players. Again, the configurations

176 Chapter 6. Satisfiability Games for LTL, CTL and PDL

are the actual one and one chosen by playen which he tries to find a repeat. The
maximal counter value is bounded by

0-2° + 3

Thus, the counter requires space polynomial in the size of the putherefore,
checking whether a CTL formula is satisfiable is in APSPACE which is the same as
EXPTIME, |[CKS8]]. m

Chapter 7

Complete Axiomatisations
for LTL, CTL and PDL

And now for something
completely different ...

MONTY PYTHON

This chapter provides an example of the usefulness of satisfiability games. By using
a different technique to prove completeness in Theorg&@® 115 and/ 130 we can
extract complete axiomatisations for LTL, CTL and PDL from the satisfiability games.

In all cases, complete axiomatisations already exist. The axiom systems presented

and developed here do not have any advantages over the existing ones as such. It is
the game-based approach to satisfiability checking which bears advantages over other
approaches because it provides a uniform way of creating complete axiomatisations

for different logics.

We will make use of the fact that LTL, CTL and PDL are closed under negation.
However, here we prefer the semantical notatignof the negation ob.

178 Chapter 7. Complete Axiomatisations for LTL, CTL and PDL

Definition 135 An axiom system for a logicL is a set olaxiomsandrules, s.t. every
axiom is of the form ¢ fora¢ € L, and every rule is of the form

if F¢ then HY
In both casesp andy are allowed to contain formula variables. In this case they are

interpreted as formula schemes.

An A-proof of a formula¢ € L is a finite sequencéo,...,¢p, of formulas ofL, s.t.
¢ = ¢npandforalli=0,...,n:

e ¢ is an instance of an axiom i or
e thereis aj <i s.t.¢; follows from; as an instance of a rule &

We will write -, ¢ to indicate thatp is provable inA. If the axiom system can be
derived from the context we drop the index and simply wkitg. A formula$ whose
negation cannot be provedMt/, —¢, is calledA-consistenbr consistentor short.

An axiom system is calledoundif every provable formula is valid, i.e.
¢ implies ¢
for every¢ € L. Itis calledcompletaf the converse holds, i.e.

E¢ implies +¢

for every¢ € L.

Completeness of an axiomatisation is an important property since it guarantees that
every validity of a logic can be captured syntactically. Note that being valid is a
semantical property.

Soundness is equally important since an axiomatisation that allows non-valid formulas
to be proved is not very useful. Soundness is often very easy to establish. The standard
technique is rule induction on the structurefof

Completeness is usually harder to prove. One possibility is proof by contraposition. If
the underlying logic is closed under negation then completeness can be rephrased as

/—=¢ implies [~ —d

7.1. A Complete Axiomatisation for LTL 179

This means if every consistent formula is satisfiable then the axiom system is complete.

In the following sections we will give alternative proofs of the completeness of the
satisfiability games in the previous chapter. This technique will not make use of a
model of a formula. Instead it changes the games slightly to rule out plays in a game
tree for played that are won by playev. In these modified games, play@rcannot

win a single play on a satisfiable formula.

The task is completed by extracting axioms from the game rules and winning
conditions such that the rules preserve consistency. Then, plagarnot win a play

on a consistent formula which, by soundness of the games, means that the formula
must be satisfiable. Hence, the axiomatisation is complete.

Finally, the axiom systems need to be proved sound which is very easy in all three
cases.

7.1 A Complete Axiomatisation for LTL

In this sectionG(¢) always refers to a satisfiability game for an LTL formglan the
sense of Secticf.1.

Lemma 136 If x A (¢UW) is satisfiable then
XA WV (@ AX((A=X)U(WA=X))))
is satisfiable.

PROOF Suppose there is a modefor x A ($UY), i.e.TT}= X andtt}= ¢UY. Then there
is ak € Ns.t.7€ = g and for allj < k: 70 = ¢. Suppose furthermore, that

XA WV (OAX((9A=X)U(WA—X))))
Is not satisfiable. This means
F X—= (WA (=0 V(=9 VX)R(-WVX))))
k= 0is impossible since = x impliestt|= —. But if k > O thentt|= ¢ and therefore

T = X((-¢VX)R(-YVX))

180 Chapter 7. Complete Axiomatisations for LTL, CTL and PDL

But this meanst = -V X, and

™ = —dvx or T EX((—0VX)R(-PVX))

If 7t |= x thentt! = —. But e = ¢ because oft}= ¢UY, and therefore

™ E X((~$ VX)R(-YVX))

by the assumed validity. Ift j~ x then a contradiction tat = Uy is reached
immediately.

This argument can be iterated starting withinstead ofitnow. At some pointr® must

be reached. By assumptiatf = (, and the iteration yielded = x. But the latter
implies T€ = —~ which contradicts the assumption. We conclude that the validity
above cannot hold and that therefore

XA WV (O AX((dA=X)U(WA=X))))

must be satisfiable. n

Now we change the LTL satisfiability games from Seci#ohslightly. The goal is the
following: player¥ should not be able to win a single play on a satisfiable formula
anymore. Note that with the original games this is possible, for example if player
delays the fulfilling of aru formula for too long.

We allow playerd to subscriptU formulas in a very restricted way. Whenever a play
of G(¢o) reaches a configuratio['q)UqJ] , @ she takes a note of the contaktat theU
after it has been unfolded. This means the next configuration will be

WV (O AX(GUoY))| @

Since configurations in the satisfiability games are understood conjunctively we simply
write =® to denote~ Aycq ¢. The subscripted formul@Ue s is to be interpreted as

(G A-®)U(PA-P)

Note that multiple subscripts are possible, i.e. a subscriptddrmula can be
subscripted again.

7.1. A Complete Axiomatisation for LTL 181

There are two reasons for using subscripts instead of spelling the formulas out. A
play according to the amended game rules should be finished if and only if the
corresponding play without subscripts is finished. If the strengthening Gfamula

is spelled out then a repeat on a configuration does not necessarily occur at the same
moment anymore. |.e. an occurrence of a configura@nﬂpw} ,® should count as a

repeat if for example the configuratic[q)UqJ} ,® was visited before.

Moreover, once a formula is subscripted with & for example, it should not be
possible anymore to changethrough the game rules, i.e. to play on it.

Formally, the amended LTL satisfiability game is obtained from the one of Se&tlon
by replacing rulg[u]) with

[¢leIJ] @
WV (@A X($Upow))], @

([v)

and by adding the following instance to rulc)

[¢Uw4’] X, P

oo

(FC)

The winning conditions are the same except thatUaformula can be arbitrarily
subscripted.

Lemma 137 Player 3 can preserve satisfiability with the rules of the amended LTL
games. PlayeY preserves satisfiability.

PROOF PlayerV preserves satisfiability since he is only concerned with the position
of the focus. Suppose

(boV o) AP

Is satisfiable, then eithgip A ® or ¢1 A P is satisfiable which shows that playéican
preserve satisfiability by choosing disjuncts accordingly.

Suppose
XPr A AXWURAQLA ... Ak

182 Chapter 7. Complete Axiomatisations for LTL, CTL and PDL

is satisfiable, i.e. it has a model Thentt is a model fo1 A . .. A, which shows that
rule (X) preserves satisfiability, too. So does unfoldinqRdbrmulas andJ formulas
that are not in focus.

Unfolding U formulas in focus and subscripting preserves satisfiability, too, as it is
shown in Lemmd. 36 n

Theorem 138 (Completeness Il) If ¢¢ is satisfiable then playet wins G(¢o).

PROOF Suppose)g is satisfiable. According to LemmiE37, playerd can play in a
way such that every reached configuration is satisfiable. Whenever pagts the
focus to aru formula in a configuration

Uy, o
she adds the sideformulas to the index ofttadter it has been unfolded. The indices

are dropped if playev removes the focus from thisformula.

By Lemmal37, playerV cannot win a play with his winning condition 1 since the final
configuration of this play would be unsatisfiable. However, if the starting formula is
satisfiable then he cannot win a play by a repeat ou fammula in focus either.

Suppose a play visits a positi({lq)Uq,l] ,® twice such that playeY has not changed
focus in between. Then, at the second time this configuration is

C = [pUo, 0] 0

where®,,..., ®y for somek € N are all the sets of sideformulas that were present
every timepUy was unfolded. Therefore thereig & {1,...,k} s.t.® = ®;. But then
C is unsatisfiable since

}: (q)/\—\q)l/\.../\—!q)k)U(LIJ/\—\(D]_/\,,,/\ﬁCDk) — —|(])j

forall j =1,...,k But this contradicts the assumption according to Lerd®a We
therefore conclude that playgmust winG(¢o). n

All that remains to be done in order to obtain a complete axiomatisation for LTL is
to extract an axiom system from the game rules. This is done rule by rule such that
Lemmal37holds if “satisfiability” is replaced by “consistency”.

7.1. A Complete Axiomatisation for LTL 183

Example 139 We will exemplarily do this for rulgX). The goal is the following
proposition. Ifdp1 A ... A ¢k is inconsistent bud A ... A gy is consistent then

KO AL AXOAQLA ... A (7.2)

Is inconsistent. Suppose there is a proof of

FdaA... APk — —P1

First of all we need to put ar in front. Therefore we need a rule lik&&en). Then
we can prove

FX(P2A .. Ak — 1)

With (MP and the two axioms 4 and 5 we are able to prove
FXPp2A ... AXPk — X—bg

By propositional reasoning we can add a consistent set of propositional constants and
prove
FOQuA...AQnAXO2 AL AXDx — X1

Finally, we need an axiom that switches the position ofithed the- symbol, namely
axiom 3. Then we can prove

LA AQnAXD2 AL AXDK — —XOg

which means we have a proof of the inconsistency of the formu/@.i). (

The axiom system that results if this is done to all the rules is presented in Fidure

Lemma 140 Let A be the LTL axiom system of Figurel. The game rules of the
amended LTL satisfiability games presefveonsistency.

PROOF Preservation of consistency by rufe) is trivial. Supposedo V ¢1,P is
consistent. By axiom 1 and rulb, ¢;,® is consistent for somee {0,1}. The
unfolding of aR or anU formula that is not in focus preserves consistency using axiom
2 and 3.

Preservation of consistency by ryle) was already shown in Exampl&9

Finally, rule Rel) and axiom 7 are used to capture play&rwinning strategy and to
prove that indexing formulas preserves consistency too. n

184 Chapter 7. Complete Axiomatisations for LTL, CTL and PDL

Axioms:

'_\

. any propositional tautology
2. QU — YV (G AX($UY))
ORY — WA (¢ VX(ORY))

—X¢ «— X—¢

> W

5 XOAXY — X(OAY)
6. X(¢ — W) — X — X
7. =(6UY) < (—0)R(-W)
Rules:

MPB if Fé and ¢ — ¢ then Fy
(XGen) if F¢ then X¢
(Rel) if EX—WA(@VX((9VXRWVX))) then X — ORY

Figure 7.1: A complete axiomatisation for LTL.

Theorem 141 (Completeness) The LTL axiom syste#of Figure7.1is complete.

PROOF Supposed is A-consistent. PlayeB wins the gameSG(¢) because every
winning position for playerv is A-inconsistent. By Lemmd4(C ¢ can only be
A-consistent if all winning positions are. By Theordi®Z, ¢ is satisfiable. n

Theorem 142 (Soundness) The LTL axiom syste#of Figure7.1is sound.

PROOF Validity of axiom 1 is trivial. Validity of the other axioms has been shown
in Section2.4 already. RuleNIP preserves validity. Suppo$é X¢. Then—X¢ has a
modelrts.t. T = —¢. Thus,}~ ¢ which proves preservation of validity in rul¥@en).
Finally, Lemmel36€shows that ruleRel) preserves validity. n

Another axiom systenbUXfor LTL was proposed inGPSS8D It is presented in
Figure7.2. Its completeness was shown using maximal consistent sets of formulas.

7.1. A Complete Axiomatisation for LTL 185

Al. ffR(¢ — U) — (ffRO — £fRUY)
A2, —X¢p <~ X-d

A3. X(§ — W) — X — X

A4, ffRO — ¢ AX(ffRO)

A5. ffR(OAXP) — (¢ — ffRO)

Ul. Uy — FY

U2. oUp — PV (¢ AX(OUY))

R1. any propositional tautology

R2. if ¢ and ¢ — ¢ then F |
R3. if F{y then + ffRY

Figure 7.2: A complete axiomatisation for LTL from [GPSS80].

Soundness ddUXand completeness éfensure that if-pyx ¢ then , ¢, i.e. every
formula that is provable iDUXis also provable irA. This holds in particular for the
axioms and rules ddUX Nevertheless, we will show how they can be derived.in

Theorem 143 Forall ¢ € LTL: if Fpyx ¢ then k, ¢.

PROOF We show that th®UXaxioms are provable iA and that thédUXrules can be
simulated irA.

A2,A3,U2,R1 and R1 are present M1 A4 is an instance of axiom 3 and U1 simply
reflects our abbreviation ofaformula.

R3 can be simulated as follows. We use induction on the length of a prdafXn
Suppose there is a proof using R3. Then there is a shorter praofjoin DUX By
hypothesisl-, Y. Instantiate ruléRel) with x = tt and$ = ff. Then

Fa ffRY if Fa PAXtt

But this is provable using the hypothesis, axiom 1 and (Xéen).

186 Chapter 7. Complete Axiomatisations for LTL, CTL and PDL

Axioms Al and A5 are more complicated to proveAinWe will show that playek/
wins §(—A5). The negation of axiom A5 is

¢ A (££R(O A X)) A (£6U—0)

Letd’ = ¢ A (££R(d AXd)). The winning play for playeY is

0, ££R(§ A XD), [t£U—0 |
0. X, X(EER(D A XD)), | -0 VX(ttUy)]
0, X0, X(EER(9 A X)), [X(s:Ug—0) |
o, ££R (O A XD), [ttuq,mq)}

The game rules used for this play &rg, ([U]) with indexing,([Vv]) and(X). Therefore
the axioms and rules needed to prove A5 are 1 @m] for ([V]), 2 and 3 for the
unfoldings, 4 — 6 andXGen) for (X), 7 for the negation of A5, anfRel) to describe
the winning condition.

Axiom Al can be shown to be provableAin the same way. n

7.2 A Complete Axiomatisation for CTL

In this sectionG(¢) always refers to a satisfiability game for a CTL formglan the
sense of Sectiof.Z.

Lemma 144
a) If X AE(¢UY) is satisfiable then so igx A (WV (¢ AEXE((d A =X)U(W A —X)))).
b) If X AA(dUY) is satisfiable then so igx A (WV (¢ AAXA((® A =X)U(PA=X)))).

PROOF a) Suppose there is a modEk (S, —,L) for x AE(¢UWY), i.e. there is a state
se 8 s.t.sE=x ands = E(¢Uy). Then there is a patii= s9,51,... in T s.t.so=sand
for somek € N: s¢ = ands;j = ¢ for everyj < k. Suppose furthermore, that

XA (WV (@ AEXE((9 A —X)U(WA—X))))

7.2. A Complete Axiomatisation for CTL 187

is not satisfiable, i.e.

F X—= (WA (=9 VAXA((=6 VX)R(-W VX))))
k = 0 is impossible sincey = x implies sp = —W. But if k > 0 thensy = ¢ and

therefore
S F AXA((=9 VX)R(-W VX))
But this means thay = -y Vv x, and

st E odvx or s = AXA((2 VX)R(-P VX))
If 51 =X thens; = - ands; = ¢ because oft = ¢UY. But then

st = AXA((=9 VX)R(-W VX))
by the assumed validity. I§; ~ x then a contradiction tet = ¢UY is encountered
immediately.

This argument can be iterated alomg At some point,s; must be reached. By
assumptiors, = Y, and the iteration yields, = X. But the latter implies, = -
which contradicts the assumption. We conclude that the validity above cannot hold
and that therefore

XA WV (@ AEXE((@ A =X)U(WAX))))
must be satisfiable.

b) Suppose there is a modEl= (S,—,L) for X AA($UWY), i.e. there is a statey € S
s.t.so = X andsy |= A(GUY). This meangt = ¢uy for every pathrt with 1% = .
Suppose furthermore, that

XA WV (6 AAXA((O A=X)U(WA=X))))
is not satisfiable, i.e.
F X— (WA (=6 VEXE((=¢ VX)R(-WVX))))

S = Y because of = xX. Then,sp = ¢ because ofy = A(¢UY). But from the
validity above follows

S F EXE((=¢ VX)R(—-WVX))

188 Chapter 7. Complete Axiomatisations for LTL, CTL and PDL

l.e. there is a statg s.t.5p— S1 and
s1 E E((7¢ VX)R(-W VX))
Then,s; = -y VY, and
st F 2ovx or s [EXE((-¢ VX)R(-WVX))
If 51~ X thens; = - and
St EXE((=¢ VX)R(-@VX))
sinces; = ¢ is impossible. Ifs; = x then by the assumed validity, = -y and
st = EXE((=¢ VX)R(-@ VX))

holds, too. Now this argument can be iterated with staies, ... s.t.5 = — for all

I € N. Buts — 51 for alli € N. By limit closure,:= 5,51,S, ... is a path inJ s.t.

T~ oUW which contradicts the assumption. We conclude that the assumed validity
cannot be true and that therefore

XA WV (0 AAXA((@ A =X)U(WA=X))))

must be satisfiable. -

Now we amend the CTL satisfiability games from Sec#of Again, the goal is to
disable winning plays for playef on a satisfiable input formula.

We allow player3 to subscriptQ(¢uy) formulas in the same way as in Sectdi.
Whenever a play ofi(¢o) reaches a configuratio[rQ(q)UqJ)] ,® she takes a note of the
context® at theU after it has been unfolded. This means the next configuration will be

WV (0 A QIQ(BUY)) |, @

Changing focus discards the collected indices.

7.2. A Complete Axiomatisation for CTL 189

Lemma 145 Player 3 can preserve satisfiability with the rules of the amended CTL
games. PlayeY preserves satisfiability with his choices.

PROOF Most of this was already proved in Lemr8&87 for the amended LTL games.
Suppose
EXQy A ... AEXOn AAXPL A ... AAXUmA QLA ... A Gk

is satisfiable. According to Corollaid/l7, it has a tree modé€l. This must contain
subtrees which are models for

i APLA . APm
for eachi = 1,...,n, which shows that ruléEX) preserves satisfiability as well as rule
(AX) regardless of player’s choice.

Preservation of satisfiability with the new rule for indexing unfoldetbrmulas in
CTL is shown in Lemmad.44. -

Theorem 146 (Completeness Il) If ¢ is satisfiable then playet wins G(¢o).

PROOF Supposebg is satisfiable. According to LemmiB45, playerd can play in a
way such that every reached configuration is satisfiable. Whenever plagts the
focus to aQ(¢puw) formula in a configuration

QouY)|, @
she adds the sideformulas to the indices oftladter it has been unfolded. They are
dropped if playel’ removes the focus from thisformula.

By Lemmal45, playerV cannot win a play with his winning condition 1 since the final
configuration of this play would be unsatisfiable. However, if the starting formula is
satisfiable then he cannot win a play by a repeat Qf¢UW) in focus either.

Suppose a play visits a position
QouY)|,®

twice such that playev has not changed focus in between. Then, at the second time
this configuration is

190 Chapter 7. Complete Axiomatisations for LTL, CTL and PDL

C— [Q((])anl,...,CDkLU) , P

where®,,..., ®y for somek € N are all the sets of sideformulas that were present
wheneveiQ(¢Uy) has been unfolded. Therefore there i@ {l,...,k} s.t.® = ®;j.
But thenC is unsatisfiable since

E QUAN-PIA...A=D) U (PA-DPLA...ADy)) — D

forall j =1,...,k. But this contradicts the assumption according to Lerdda We
therefore conclude that playgmust winG(¢o). N

To obtain a complete axiomatisation for CTL we need to translate the game rules into
an axiom system. Again, the axiom system must be chosen such that L’lbfaimalds
if “satisfiability” is replaced by “consistency”. It is presented in Figur&.

Lemma 147 Let A be the CTL axiom system of Figure2 The game rules of the
amended CTL satisfiability games presefveonsistency.

PROOF Preservation of consistency by rule) and(V) is the same as in the proof of
Lemmal4C The same holds for the rules that unf@dduw) andQ(¢RY).

Suppose now thajio, ..., ¢k is inconsistent, i.e.
F din...Adk — —bo

By rule (AXGen)
= AX(d1A ... Adk — —bo)

Then
F AXd1A...AAXdx — —EXdo

by rule MP and axioms 4,6 and 7. This proves preservation of consistency by rules
(AX) and(EX). Axiom 5 is used instead of 4 if there are Bxy formulas in the actual
configuration.

Finally, rule Rel) and axioms 8 and 9 are used to capture play@winning strategy
and to prove that indexing formulas preserves consistency too. n

7.2. A Complete Axiomatisation for CTL

191

1.
2.
3.

(Rel)

AXioms:

any propositional tautology
Q(¢pUY) — YV (¢ AQXQ(OUY))
Q(¢RY) — WA (¢ VQXQ(ORY))

. —AX$ < EX—0

. AX—d — —AX

. AXO AAXY — AX (D AY)

. AX(¢ — @) — AXd — AXY
. —A(QUY) < E(=d)R(-)
. “E(QUY) < A(~¢)R(—Y)
Rules:

(MP

if ¢ and F¢ - then Hy
(AXGen if F¢ then F AXd
if EX—WA(GVQXQ((¢ VX)R(WVX))) then X — Q(¢RY)

Figure 7.3: A complete axiomatisation for CTL.

Theorem 148 (Completeness) The CTL axiom systefof Figure7.3is complete.

PROOF Supposep is consistent. Then playerwins the gamej(¢). This is because

all of player ¥’s winning positions inG(¢) are A-inconsistent.
Lemmall47, ¢ can only be consistent if all winning positions fi{¢) are.
Theoremll14, ¢ is satisfiable in this case.

Theorem 149 (Soundness) The CTL axiom systeof Figure7.3is sound.

PROOF This is proved in the same way as Theoig4z: the axioms are valid and the

But according to

By

rules preserve validity. The only interesting case of the latter part is Letdda n

192 Chapter 7. Complete Axiomatisations for LTL, CTL and PDL

Ax1. any propositional tautology
Ax2. E(ttUy) < EFY

Ax3. A(ttUY) < AFY

Ax4. EX(¢VU) < EXdVEXY
AX5. AX¢ < —EX—¢

Ax6. E(QUY) « PV (¢ NEXE(GUY))

AX7. A(GUY) — PV (¢ AAXA(GUY))
AX8. EXtt AAXtt

R1. if ¢ — ¢ then - EX¢ — EXY

R2. if FxX— WAEXX then kX — E(ffRY)

R3. if FX— WAAX(XVA(ORYX)) then Fx — A(PRUY)
R4. if ¢ and ¢ — ¢ then Fy

Figure 7.4. A complete axiomatisation for CTL from [EH85].

Another axiom syster for CTL was proposed irHEH8Y. Itis presented in Figuré.4.
Soundness @& and completeness éfensure that if-z ¢ thent, ¢, i.e. every formula
that is provable irB is also provable i\. This holds in particular for the axioms and
rules ofB.

Theorem 150 For all § € CTL:if Fg¢ then F, ¢.

PRoOOF We show that théB axioms are provable ih and that theB rules can be
simulated irA.

Axioms Ax1l, Ax5, Ax6 and Ax7 as well as rule R4 are presentAinWe have
introduced Ax2 and Ax3 as abbreviations. Aiproof of Ax8 is the following.

tt, AXtt, AXtt — —AXff, —AXff, —AXff — EXtt, EXtt, AXtt AEXtt

It uses axioms 1, 4 and 5 and rul@®) and (AXGen). In a similar way, axioms 1 and
6 — 9, and rulegMP) are needed to prove Ax4. R2 is an instance of f&kel) with
Q=Eand¢ = ff. R1is simulated usinAXGen), 9, (MP) and 7.

7.3. A Complete Axiomatisation for PDL 193

Finally, R3 is simulated using rul@el) with Q = A. By hypothesis there is aaproof
for

F X — WAAX(XV A(GRY))
It is used to obtain a proof for

WA (G VAXA((OVX)R(WVX)))

using 1, 3 andMP). Then,- x — A(¢RY) follows with rule (Rel). m

7.3 A Complete Axiomatisation for PDL

Here,5(¢) always refers to a satisfiability game for a PDL formgilén the sense of
Sectior6.3

Lemma 151 If x A (a*)¢ is satisfiable then

XA (@ V(o) (((=X)?:a)) (& A =X))
is satisfiable.

PROOF Suppose there is a modél= (8,{-2+| ac A},L) for x A (a*)¢, i.e. there
is a states€ § s.t.s|=x ands}= (a*)¢. Then there is a pathi= s,s1,... in T s.t.

so = sand for somé € N: 5 = ¢, ¢ = —x and for everyj < ki sj-%sj.1. Suppose
furthermore, that

XAV (@) {((=x)?:a)")($ A =X))
is not satisfiable, i.e.
F X = (=6 Ala][((=x)?7:0)"] (=9 VX))
Thus,s = X impliesso = ¢ and
S E [of[(=x)Z:0)"](=¢ VX))

Then,
st [((=x)7:0)] (=9 VX)

194 Chapter 7. Complete Axiomatisations for LTL, CTL and PDL

becausey—2+s, i.e.s1 = —¢ ors; =X, and

st b= (=) A[((=X)?:0)"] (= VX)

This is equivalent t@; = X or
st [a][((=x)20)] (-9 VX)

Thus, ifs; I X thens; = —¢ and
si E [a][((=x)?70) (= VX)

On the other hand, & = x then, by the assumed validity; = ~¢ and
s1 = [a][((=x)?70) (= VX)

holds, too. Thuss; i ¢ and, in particular,

2 E [(=X)2%0)7](=0 VX)

This argument can now be iterated along the pasihowing thats = ¢ for all i € N.
But this contradicts the assumpticp = ¢ for somek € N. We conclude that the
assumed validity cannot be true and that therefore

XA (@ V(@) (((=X)250) ") (9 A=X)
must be satisfiable. -
Again we amend the PDL satisfiability games from Sectofh We allow playerd

to take a note of the sideformulas in a configurat[c(m*>¢] , ® after (a*)$ has been
unfolded to

0V (o) (@)ot) @
In such a cas€po™)p¢ will be interpreted as
(=®)Z;0)") (9 A D)

Again, adding new subscripts to already existing ones is allowed. We interpret multiply
subscripted formulag™) o, . o,¢ as

7.3. A Complete Axiomatisation for PDL 195

Lemma 152 Player 3 can preserve satisfiability with the rules of the amended PDL
games. PlayeY preserves satisfiability with his choices.

PROOF The cases of ruleg/A]) and ([V]) as well as(A) and (V) are proved as in
Lemmal37or/145 The cases of unfolding @*)¢ if it is not in focus or ala*|¢ are

trivial. So are all the cases that deal with game rules for programs. This is because the
game rules are derived from the PDL equivalences introduced in S&&om some
cases, a following choice of a disjunct is built into the rule already. This does not affect
preservation of satisfiability.

Rules((a)) and([a]) remain to be analysed. Suppose that a configuration

C = <a1>¢17) <an>¢n, [bl]wlv SRR [meJmﬂl» -0

Is satisfiable in which the position of the focus does not matter. Then its readahn
LTS 7 must have successor states for evgyd; € C. These states must be reachable
through a-2- transition and must satisfly;. Furthermore for everja;|; these states
must satisfyp;. Note thata; = b; for somej < mis possible. Therefore, the following
configurationgi, Yj,, ..., Yj, will be satisfiable regardless of playeis choice with
rule ([a]).

Finally, preservation of satisfiability by the amended unfolding ¢d8¢ was proved

in Lemmal5lalready. n

Theorem 153 (Completeness Il) If ¢ is satisfiable then playet wins G(¢o).

PROOF Supposeg is satisfiable. According to LemnikbZ, playerd can play in a
way such that every reached configuration is satisfiable. Whenever plagts the
focus to ala*)¢ formula in a configuration

[(a)0].®

she adds the sideformulas to the indeXaf)¢ after it has been unfolded. The indices
are dropped if playey removes the focus from this formula.

By Lemmal5Z playerV cannot win a play with his winning condition 1 since the final

196 Chapter 7. Complete Axiomatisations for LTL, CTL and PDL

configuration of this play would be unsatisfiable. However, if the starting formula is
satisfiable then he cannot win a play by a repeat *ain focus either.

Suppose a play visits a positit{nﬁa*}d}] ,® twice such that playev has not changed
focus in between. Then, at the second time this configuration is

C = [(@)o,.00]@

where®,,...,®, for somek € N are all the sets of sideformulas that were present
whenever(a*)$ has been unfolded. Therefore there iga {1,...,k} s.t. ® = @;.
But thenC is unsatisfiable since

(@Yo, 00 = (GA-DPIA. A-Dy) V

(—|q31 A AP A <G><G*>¢1’,._7¢k¢)

Hence,
F (@)oo — @

which means the final configuration of such a play is not satisfiable. But this
contradicts the assumption according to Lemidt. We therefore conclude that
player3 must winG(¢o). n

All that remains to be done in order to obtain a complete axiomatisation for PDL
is to translate the game rules into an axiom system. Again, it must be chosen such
that Lemmel52 holds if “satisfiability” is replaced by “consistency”. The result is
presented in Figuré.5.

Lemma 154 Let A be the PDL axiom system of FigureS. The game rules of the
amended PDL satisfiability games presefAveonsistency.

PROOF Preservation of consistency by rulgs]), ([V]), (A) and(V) is the same as in
the proofs of Lemmag40and147. Axioms 1,2,6 and ruleMP are used to prove that
an unfolding of &a*)¢ which is not in focus and fx*|¢ preserves consistency.

The other rules for PDL programs preserve consistency by axioms 1 and 3 — 6 and rule

(MP.

7.3. A Complete Axiomatisation for PDL 197

AXioms:

1. any propositional tautology

2. ~(a)¢ < [a] =6

3. (AUR)¢ < ()¢ v (B)o
4. (aB)d < () (B)o

5. ()¢ — ¢V {a)(a*)d
6. (W26 < WAD

7. (@A @l — [al(dAY)
8. [&(¢ — W) — [a]¢ — [aw
Rules:

MP if V¢ and Fd — ¢ then H U
(Gen) if ¢ then I[al¢p foranyac A
([0*]) if Ex—=¢Aa][((=x)?a)](¢VX) then X — [o*]d

Figure 7.5: A complete axiomatisation for PDL.

Suppose now thajio, ..., ¢k is inconsistent, i.e.

FooiA...Adk— —do

By rule (Gen)
Fo@(diA... Adx — —bo)

foranyaec A. Then

= [algiA. . Alaldk — —(@)do
by rule MP and axioms 2,7 and 8. This proves preservation of consistency by rules
((a)) and([a)).
Finally, rule Rel) and axioms 7 and 8 are used to capture play@winning strategy
and to prove that indexing formulas preserves consistency too. n

198 Chapter 7. Complete Axiomatisations for LTL, CTL and PDL

S1. any propositional tautology

S2. (pAfajw— () AY)
S3. (@) (¢ V) < () Vv (a)y
S4. B)d < (o Vv (B)d
S5, (o;B)¢ = (o) (B)o

S7. ¢V {(a)(a*)o — (a*)d

S8. (a)d — &V (a*)(—d A (a)d)

R1. if ¢ and ¢ — ¢ then F Y
R2. if -¢ then +[a]¢p foranya

(a
(a
{au
(a;
S6. (Yp—PYAd
¢
{

Figure 7.6: The Segerberg axiomatisation for PDL.

Theorem 155 (Completeness) The PDL axiom syste#of Figure7.5is complete.

PROOF Suppose} is consistent. Then playerwins the gaméj(¢). This is because
all of player¥’s winning positions inG(¢) are A-inconsistent. But according to
Lemmal54 ¢ can only be consistent if all winning positions§i¢) are. According
to Theoreni 29 ¢ is satisfiable in this case. n

Theorem 156 (Soundness) The PDL axiom systeof Figure7.5is sound.

PROOF This is proved in the same way as Theoretdg and14S the axioms are
valid and the rules preserve validity. The only interesting case of the latter part is
Lemmal5l m

Another axiom systent for PDL was proposed ingeg77, usually called the
Segerberg axiom systelthis presented in Figuré.€.

Soundness & and completeness éfensure that if-s ¢ thent, ¢, i.e. every formula
that is provable ir6 is also provable irA. This holds in particular for the axioms and
rules ofS. Nevertheless, we will show how they can be deriveA.in

7.3. A Complete Axiomatisation for PDL 199

Theorem 157 For all ¢ € PDL:if Fs¢ then F, ¢.

PROOF Axioms S1, and S4 — S7 as well as rule R1 are preseAt B2 and S3 are
proved using axioms 1,2,7,8 and rMP). Note the difference between tBeule R2
and(Gen) in A. To prove R2 for arbitrargt with (Gen) for atomica € A only one can
use induction on the structure af The casest = a1;02, 0 = a1U02 anda = Y?
need axioms 1,2, ruleg®P) and(Gen) and the corresponding axiom 3,4 or 6. For the
case ofx = 3%, rule ([a*]) is needed with the instantiatign= tt. It reduces to proving

= O ABII(E£7:B) et

under the hypothesis of having a proof forp. But the other conjunct is equivalent to
tt and can be derived iA. Note that by induction hypothesis [B]¢ if ¢ sincef
is syntactically smaller thaa.

To show thatA can derive axiom S8 we consider playés strategy forG(—S8). The
negation of axiom S8 is

(@)o A= A[a[(¢V[a]-0)

Let¢' :=—d Aa*](d Vv [a]—=). Playery’s winning play looks like

(o8], ~0, [a*)(® v [o]-0)
[0V (@) (e)d], 6,6 v [o] b, [a] o](6 V [a]-6)
(o) (@) g6~ [, [a] (o] (6 V [a]-6)
(b, 0, [07](6 v [a]-6)

The game rules used in this play &féx)]),([*]),(A),([V]),(V) and({a)) depending on
the exact structure af. The axioms and rules corresponding to these game rules are
listed in the proof of Lemma54. n

Chapter 8

Satisfiability Games for CTL *

This isn’t ’'Nam. This is
bowling. There are rules.

WALTER SOBCHAK

Satisfiability games for CTLare played by playey and3 in the same sense as the
games for LTL, CTL and PDL of Chapt&: Note that models of CTLformulas are
total transition systent$ = (S, —,L).

However, configurations of the CTLgames are more complicated. The
2-EXPTIME-hardness of the satisfiability checking problem for CTaroved in
[VS8Y suggests that simple sets of subformulas do not suffice. Instead, one has to
use sets of sets of formulas.

We will use the following abbreviationsf” and = are nonempty set§¢o,...,¢n}

of formulas that are interpreted conjunctivelyé denotes a possibly empty set
EX,,...,EZ, of suchZs preceded by existential path quantifiess.stands for either
the empty setor an(l"y;...;Mn) with n > 1. We will also use this notation with= 0

to denote the empty set. A semicolon is interpreted as a disjun€ii@ma maximally

202 Chapter 8. Satisfiability Games for CTL*

consistent finite set of atomic propositions, i.e. forcpdt Prop: tt € I, andq € I iff
qen.

To indicate that & or 2 consists solely of formulas of the fork we write XI', resp.
XZ. If XI" or XX occurs in a rule theh, resp.z, consists of allp s.t. Xy € XI', respXZ.

The basis for a configuratidd of the satisfiability gamé&(¢o) for a CTL" formuladg
IS a set of sets of formulas and is written

A(TL; .. iTn),ESq, ... ESm, M (8.1)

possibly using the abbreviations introduced above. [Tir@re permutable, and so are
theEZ;. For example,
A(rl; rz),Ezl,EZZ, Mn

Is not distinguished from
A(rz; Fl), E25,E>1,T1

As usual, we omit curly set brackets and wrjtg ..., ¢, instead of{§1,...,dn} as
well asly;...;Fminstead of{l"1;...;m}.

The meaning of a configuratidd like the one in8.1) is: if C is satisfiable then it is
satisfied by a stateof a transition systerfi s.t.sis labelled withl'l. There aren paths
T4,..., Ty Starting inss.t. 1 = 2 fori = 1,...,m. Furthermore, for all=1,...,m
thereisaj € {1,...,n}, s.t.g =T;.

Since every configuration of a game will be of this form it can be seenrasraal
formfor CTL* formulas.

Like the games of Chaptéd, the CTL" satisfiability games aréocus games We
omitted the focus in the sample configuration basid)(above because there are
several possible positions it can be placed onto. It can either be on a single formula of
a conjunction inside the universally path quantified part

A(M,l'l;...;l’m),Ezl,...,Ezmn
or on a single formula inside an existentially path quantified conjunction.

A(rl;...;rm),E([Lp} 51),. . En, I

203

Furthermore, it can be placed on thAepart of a configuration
[A(Fl; " rm)] JEZ3,...,EZn,

or on a disjunct inside of it.
A([rl] oo Tm) ES1, .. ESp, I

It can never be ofl, one of its elements, or on an entiE;.

For a configuratio® we write p € C if
C - A(rl,.,rm>7E217,EZn,n

andy € I for somei € {1,...,m}, or Y € 5 for somei € {1,...,n}, orP €. The
case of a[tp} € Cis defined analogously. Howeve{[p} € I is impossible.

To start a play ofj(¢o) player3 chooses a maximally consistent Beof propositional
constants and the first configuration is

[A(q)O)] ;1

Note that puttingdo into the universally path quantified part does not impose a
restriction on the formulas sinagy is a state formula by definition, and therefore
bo = Ado.

To reduce the number of rules we use trkbé construct. A rule containing this should

be read as at least two different rules.L ﬂI'he first rule is obtained by replacing every
r<|>1 with M The other rules result from this rule scheme by imagining any apher
\L/vthh ¥ # ¢ in the upper configuration to be in focus and remain there for the lower
configuration. For example,

A(I_(1)0/\(1);|_J ,F;...),E,I‘I

o v'
A(|_¢i_| 7¢1—ia r1 .- -)7 87 rl
abbreviates the following rules.
A([¢0A¢1]7r;---),8,ﬂ A(do Ay,), EX &

Vi and
A([q)i] 1T, 8 Ao, d1,T:";...),ES, &,

204 Chapter 8. Satisfiability Games for CTL*

A(dond1 ,T5..0). €N AE(doNG1 ,21),E,M
(AN) R vi (EN) R vi

A(L¢iJ O, 5., ALE(L¢iJ P1-i,21),E,T

A((I)o\/(I)l ,F;...),E,I‘I .A,E((I)o\/(l)]_ ,Z),S,I‘I
(AV) — - i (EV) e i

A(Ld)iJ i, I, E T ALE(L¢iJ ,2),€,M

Figure 8.1: The CTL" satisfiability game rules for boolean operators.

with a [LU} in ", " or Z, or the focus on thel part or on a disjunct inside. Note that
playerY’s choice becomes obsolete in the second caggAf¢; is not in focus.

The game rules are presented in Figuge% — 8.5 Figure8.1 contains the rules
for boolean connectives. RulésA), (EA) and (EV) are very similar to those of the
satisfiability games in Chapt& However, disjunctions inside aA are preserved.
Rule (Av) handles this and transforms the formulas insideto disjunctive normal

form. The reason for this preservation is the inequivalence

AGVY) # AGVAY

l.e. in order to construct a model far(¢ vV) it is not possible to discard one of
the disjuncts since some paths in the model might satjistyhile others satisfy.
Moreover, compare this to the model checking games for ‘GafLChaptei5 where
disjuncts are preserved if playéiis the path player.

Figure8.2 contains the rules for path quantified formulas. Basically, they are moved
outside and merged with an existifg resp.€, in order to maintain the normal form
and obtain a configuration in which all formulas inside these parts are preceded by a
operator.

Note that there are two rule schemata labellgd) for universally path quantified
formulas inside alEZ. Since they operate on the same formula in the same position

205

A(T1;...:Tn),E(AD ,Z),&.M

(EA) - 3 ifz£0
AG,T1;...; ¢ ,Tis...50,Tn),EX, E,N
A(TL...;Th),E(A),&,M
(EA) S i
A(¢7r11’ ¢ ,ri; .;¢,rn>,8,|_|
AE(EQ ,Z),&,M AE(ED),E,M
(EE) —— = 540 (EE) ——
AE(¢),EZ &M AE(¢),
ACES ,M:..),8.M ACEG)&,
(AE) —=—= 3 ifr#£0 (aE) —2
A(T;..),E(¢),&,N E(¢),&M
A(rEq)j ;.. &N
(AE) SRR 3 ifr#£0
AT;.)E(¢),&,M
ACAD \T1..;Th), &M ACAD),E,M
(AR) — = 3 ()
A(q) 7r1;---;¢7rn)787n A((I)),8,”
)y ACTE D8I o wler, o

AT;..0,&,N

Figure 8.2: The game rules for path quantified formulas.

206 Chapter 8. Satisfiability Games for CTL*

and only vary in the conditiok = 0, resp.Z # 0, we can regard them as one rule only.
Thus, whenever rulgEd) is used it will in fact be one of the two cases. Note that these
cases do not result in different configurations in the sense that the action performed on
the particulan¢ is the same.

Similarly, there are two cases for existentially path quantified formulas at these
positions, see ruléEE). These formulas are moved outside into the present
Depending ork, one of theE quantifiers might become redundant.

There are three cases for existentially path quantified formulas insidevaith rule

(AE). In the simplest case it is just moved outside and joins the cufrent there

are no other formulas in its disjunct then this disjunct disappears. If this is the case
and there are no other disjuncts, the entirdisappears. This reflects the equivalence
AE} = E¢.

Finally, if a universally path quantified formul&d appears insided then ¢ gets
distributed over all the present disjuncts. Note that this is a choice for ptay€he
reason for this is the following. If she believes the disjunct contaidigo be true

then all paths in a possible model for the entire configuration must satisfgardless

of which otherl"; they satisfy as well. If she believeg to be false then she can discard

the whole disjunct containing it with rul@). However, this is only possible if at least

one more disjunct is present. Otherwise she could make an unsatisfiable configuration
trivially satisfiable.

Again, there is a second case for ryket) in which no other formulas are present
inside.A. According to the equivalenceid = Ad, the outer path quantifier is simply
removed. In this case there is nothing to choose for playerither the position of
the focus nor whether to discard or keep the disjunct.

Figurel8.3 lists the rules that deal with atomic propositions occurring anywhere else
than in all. Here the basic consensus is: true propositions, i.e. those that occur
in the actualll, are removed fromd or € to obtain a configuration in which every
formula apart from the propositions I begins with ax operator. This is done with

all instances of rulegAg) and (Eq). Note that all rules are deterministic but only
applicable if the corresponding condition is met.

207

A(q,T;...),E,M
A ifgel, T#£0
(A9 Al;..0), &N q 7
A(g;T;...), €, _ A(g),e,Mm
A ifqe M, [#0 AQ) —2 1 ifqen
(ha) A(T;...), &, a 7 (hq) e.n a
A(g,l;T5..0,&60
ifgen, I'#£0
@ A(T;.00),€e,N q #
AES. &M ’ A€M

Figure 8.3: The game rules for propositions.

If there are no other formulas besides the atomic proposifiarits conjunction, resp.
in its disjunct and there are no other disjuncts, then the corresponding path quantifier
is removed together with theg This reflects the equivalencég = q = Eq.

False propositions, i.e. those that are not included in the aCtuahnnot simply be
discarded. If they occur inside &z then they witness the fact that tti& together
with I is unsatisfiable. However, if they occur ifanside.A which contains at least
one more’ thenl is unsatisfiable with the currefit and can be discarded with rule
(7). This does not make an unsatisfiable configuration satisfiable Einceght be
satisfiable together withl.

Figurel8.4 shows the rules regarding the temporal operat@aadR. They simply are
unfolded regardless of their position. Again, it is easy to extend the set of rules to
includeF andG formulas as primitives.

ACFO ,M5..),8,M AE(F ,%),&,M

ACOVXEG T8N AE(§VXFY ,5), &M

208 Chapter 8. Satisfiability Games for CTL*

AC QU LT, 8T

(AU) — .
A(LLIJ\/(d)/\X(d)Ul]J))J .)€

AE(QUy ,5),E.M
(EU) [|

AE(WV (OAX(OUY) ,3),EM

ACORY T), 8,

ACWA(GVX(ORY) JT3.),E0M

AE(ORY ,3),E,M

AE(WA VX(GRY)) .2),EM

Figure 8.4: The unfolding rules for the CTL" satisfiability games.

ACGH T8N AE(CH %), &M

ACOAXCH LT, 8N AE(OAXGH ,Z),E,M

Applying these rules consecutively will eventually result in a configuration in which
every formula inside thel and the€ part is of the formXy unless a false proposition

could not be discarded. Recalling the intended meaning of a configuration this situation
requires the game to construct successor states of the state at hand. If the focus is inside
a particulaiE then the prospective path satisfyiagnust be followed in order not to

lose the focus. This is formalised in rulgX) shown in Figure8.5. Note that theA

part can also be empty in this case.

If the focus is inside thel part then every possible path can be examined in the play
at hand. Thus, player selects one by choosing a particukr with rule (AX). After

209

AXTq;...; XIn), E([qu],xZ),Ele EXZm, M’
(EX) N, n>0 m>0
AT1;. i) E(M 5,1
A([XUJ] XMq;...;XM),EXZ, .. ., EXZm, M
(AX) Vi dan, n>1 m>1
A([Lp},rl;...;rn) E(Y, %),
A([xw],xrl;...,xrn) rn’
(AXE) I, n>1
A([W].Fai.) E), T
[A(F;...)} e,n A([cp,r}), &,
(FMy) ar (FMy) Vo
A([F];.)&, A([qa],r), &,
alwl,rrs.en A([q)],q;,r;...),s,n
(FCy) 3 (FCy) v
A(w,r;[r'];...),a,n A M,r), &,
A([q)},r;...),E(qJ,Z),e,n ALE(¢},¢,Z),8,n
(FCs) v (FCs) "
A(¢,r;...),E([Lp],Z),8,n ALE(9, [LU 5), &M
A,E([d)},Z),E(l]J,Z/),E,I'I A,E([q)],Z),e,n
(FCa) v (FGCs) v
A,E((]),Z),E([QJ],Z’),S,I’I [A},E(q),Z),e,n

Figure 8.5: The next-step and focus rules for the CTL* games.

210 Chapter 8. Satisfiability Games for CTL*

that, playerd chooses a maximal consistdt

Rule (AXE) takes into account a situation without aB¥ formulas. In this case we
imagine a singleE(Xtt) to be present. This reflects the requirement of transition
systems being total, i.e. every state has at least one successor.

In all cases playef chooses a new maximal consistent Bedf propositions which

will serve as the labelling of the new state. Note that in an application of axlpor

(AXE) the formula that is currently in focus gets duplicated into the chosen or created
EZ. We will illustrate the reason for this with an example later on. A justification for
the correctness of this move is the validity

= ADAEY — E(OAY)

The remaining rules formalise the changing and positioning of the focus. Remember
that every play o6(¢o) starts with the configuration

[4(90)] .1

for somell. If ¢ is a disjunction then playet can put the focus onto one of the
disjuncts with rule(FM1). She will choose the one that she believes is satisfied by
the path the play will outline in a possible model. A disjuiicitself is interpreted
conjunctively, thus player puts the focus onto one formula insibeising rule(FM,).

At last, both players have their chances to reset the focus in order to respond to the
other player’s moves accordingly. Playeis allowed to change her mind about which

I" inside A is satisfied by the path that the play at hand forms. This is necessary since
the path depends on play€s choices with rulgAX). However, in order not to make
playerd too strong she is only allowed to change the focus with (&€;) after an
application of rulg(AX) or (AXE).

PlayerV must be allowed to change the focus to respond to plaieerchoices of
disjuncts inside£ and her focus moves insidé. He can change the focus insid€ a
to any other formula using rulg=C;). He can also move it out o and place it onto
any formula inside€ with rule (FCz). Without this the duplication of formulas into an
EZ would become meaningless. Finally, he can move it fromExnmto another with
rule (FC4) or back ontoA with rule (FCs) to let player3 put it onto al” again.

211

Again, note that there are two instances of #€,). In both cases playéf changes
focus from ap to ay which both occur in th€ part of the actual configuration. There
is no need to distinguish the two cases in whicandy occur in two different or the
sameEZ. The important point is the fact that playeichanges focus at all. Therefore,
we list these two cases of a rule under one name.

Definition 158 A configurationC is calledterminalif

CZA([q],r;...),e,rl or c::A,E(M 38,0
and both players refuse to or are unable to move the focus.
PlayerV wins the playCo,Cy,...,C, iff

1.C, = A(M,F;...),S,I‘I or C,= A,E(M,Z),&I‘I, C, is terminal and
gell, or

2. there is an < ns.t.G = C, and a[q)UqJ} € C, and none of the rule&~G),
i=1,...,5, has been used betwe€nandC,.

3. there is an < ns.t.C; = C, and betwee; andC, playerd has used rul¢FCy)
and playetv has not used rulé=Cz), (FCy) or (FGCs).

Playerd wins the playCo,Cy, .. .,C, iff

4. C, = A(M,I‘;...),&I‘I or C,= A,E(M,Z),S,I‘I, C, is terminal and
qell, or

5. there is an < ns.t.CG = C, and a[d)leJ} € C, and none of the rules~G),
i=1,...,5, has been used betwe€nandC,.

6. there is an < ns.t.C; = C, and either

e playerd has not used rul¢FC;) but playerV has used one of the rules
(FC),...,(FCs), or

e playerd has used rul¢FC;) and playerv has used ruléFCs), (FCy) or
(FGs).

Winning conditions 1 and 4 are straightforward and similar to the winning conditions
for the LTL, CTL and PDL games concerning terminal configurations.

212 Chapter 8. Satisfiability Games for CTL*

Again, if the focus stays on d@hformula until a repeat is found play&rshould win
since he managed to show that this partictléormula regenerates itself and, hence,
that playerd did not fulfil it. Conversely, if the formula in focus isfand the focus
has not been changed then playes be the winner.

A player should also win a play in which they did not use their focus change rules
whereas their opponent did. This is formalised in the first part of winning condition 6
and, to some extent, in condition 3. Playeshould win if he uses rulé=C,) as long

as playerd uses(FC,). If the I" in which playerv changed focus was not false at this
moment then playet could have left the focus there in order to win with her winning
condition 6.

The motivation for the second part of winning condition 6 is the following. Rules
(FCs) and (FCs) can only occur in conjunction with each other between repeating
configurations since they switch the focus betweentlamd€ parts of a configuration.

If rule (FC4) was played but neithéFCs) nor (FCs) then played could not have used
her focus change rule. Suppose therefore, she has and plagsrchanged focus with
both rules(FCz) and(FCs).

He has either done so after playéchanged focus forth and back betweérand &

or beforehand. If it was afterwards he was reluctant to show thdt thikich player

3 has put the focus to does not get satisfied during the play. If it was beforehand he
refused to show unsatisfaction of anotiiérand played’'s focus change can be seen

as a response to that. Thus, in both cases she should be the winner of the underlying
play.

Remember that rulg@X) and(AXE) copy formulas from thel part of a configuration

into anEZ. Without this playe’ would be too weak. As in the model checking games
for CTL* of Section5.2 and the satisfiability games for LTL and CTL of Chapégr

he uses the focus to follow the unfolding@formulas. But, since disjuncts inside

are preserved, there is never a need for player fulfil a $UY formula. Instead, she

can always set the focus twand redo her choice A X(¢UW) whenevenp does not
guarantee her to win. However ditiy gets duplicated into ab> then playei has the
chance to follow the regeneration there.

213

[A(AFGq A EGFG)} .q

A({AFGq} ,EGFQ),q

A(|Feal). E(cFa).q

A(|6qV XFGq]). E(FG,XGF),

A(|9/\XGq; XFGA),E(QV XFO, XGFD),

A(d, | X6q|;XFGa), E(XFQ, XGFT),

A([xca]; XFeq), E(xFg, X6Fa), g

A([Gq} }FG), E(FT,GF, Ga),q

A(Ga; FGa), E(|Fa GFT, G0, g

A(d, XG0 GG XFGa), E(|9V XFQ| ,FO, XGFO, ,XGa), G

A(XGg; XFGQ), E([XFG} ,XGF,XGq),q

A(cq;Foq) . E(|Fa) GFa.Ga). g

Figure 8.6: Player ¥'s winning play of Example [159.

Example 159 Let
¢ = AGFQAEFGQ

¢ is unsatisfiable since
AGFq = EFGQ

Player¥’s winning play is depicted in Figui&.6. Not every move is shown explicitly.
If for example aG is unfolded we implicitly flatten the created conjunction. We

also omit configurations if two rules operate on different formulas and present the

application as one rule.

Assume played has chosen as the propositional part to start with. We also omnit
there since it is trivially part of th&l in any configuration of every play and game.

214 Chapter 8. Satisfiability Games for CTL*

First the formula at hand is brought into the correct form for the game. The temporal
operators are unfolded andnais removed. Then, playet has the choice whether to
put the focus ont@q or XFGg. She chooses the former because otherwise phayer
could exhibit a repeat on tlinside the latter.

Sinceq is present outside, playgrcan only set the focus ®Gq. For the same reason
playerd cannot choose to fulfil theq in the € part.

Note that, if playev had started with the focus EXFGQ) then playerd would have
chosenq for the propositional part at any time. She also would have fulfilledrthe
formula immediately. The same holds for the case where playdianges focus into
€ at some point. In any way, ttethat is not in the part containing the focus would not
get fulfilled and playe¥k would be unable to show this.

But now theGq in focus gets copied into th&and playei can change the focus to the
F inside of it. From now on, playet must always choosgfor the propositional part.
Otherwise, playeYy could simply change focus to tlhighat results from the unfolding
of Ggin &, and win with his winning condition 1.

But then she cannot fulfil theg in €& and playerv can keep the focus on it until a
repeat occurs and win with condition 2 since he does not change the focus between the
repeating configurations.

Example 160 Now, take the similar formula
¢ := AGEFQAEFGQ

This time, ¢ is satisfiable. The simplest possible motdbr ¢ consists of two states
sandt with L(s) = {g} andL(t) = {g}. The transitions of" ares—s, s—t andt —t.

S = ¢ because every path is either an infinite loop throsigheventually becomes an
infinite loop througkht. Thus, there is a patiion whichg holds infinitely often, namely
= ss.... On the other hand, every reachable state is the origin of a path on ghich
holds eventually.

A simplified version of the game tree for playeiis given in Figure8.7. Not every
application of a rule is listed explicitly in order to keep the size of the tree small. Also,
we omit to put the focus into the configurations. Instead we discuss what the players

215

A(GEFq),E(FGT),q

A(EFQ, XGEF (), E(GA),q

A(XGEFQ),E(XGQ), E(XFQ),q

A(GEFQ),E(GT, GEF(),q A(GEFQ),E(Fq),q

A(XGEFQ),E(XGQ, XGEFQ),E(FQ), A(XGEFQ),q

Figure 8.7: A simplified version of the game tree for Example [160.

can do about its position.

Playerd chooseg] at the beginning. This gives her the chance to fulfilkhg and get

rid of XFGQ in its unfolding. In the next step theg gets unfolded and, sin@gs present
outside, onlyXGQ remains. Insided, theEFq gets promoted to the outside since there
is only one disjunct, leavingGEFq. Playery does not set the focus @1 since player

v will always choosdj and he cannot win with the repeat 6g. Thus, he has to set

it to XGEFq at this point and choose one of thé . .). If he select€£(XGq) thenGEFq
gets copied into it, th@ formulas get unfoldedFq is put outside, etc. The resulting
configuration is almost the same as the one of the third row. The difference only lies
in theE(...). Since playelv has not won so far he could only by putting the focus
into E(XGQ, XGEFQ). However, the play proceeds in a similar way without ever giving
playerV a chance to win.

The path on the right corresponds to play&r choice ofE(XFQ). In this case player

J selectyy as the next propositional part and fulfils thg which disappears. Player
must keep the focus aXGEFQ. He cannot win on this formula anymore since player
3 can always choosg as the next proposition. The fact that in the next step another
E(GEFQ) is created does not change anything about this, since the formulasH(side

will always be present insidd as well.

216 Chapter 8. Satisfiability Games for CTL*

Correctness

Fact 161 Rules(AA), (EA), (AV), (EV), (EA), (AA) and (EX) reduce the number of
connectives in the actual configuration. Rul&g), (AQ), (d) and(I') reduce the size
of the actual configuration. Rulé&E) and (EE) reduce the size of the actudlor a =
in the actual configuration.

Rules(AX) and (AXE) can potentially increase the size of the actual configuration, but
they reduce the size of it§ part.

Rules(AU), (AR), (EU), (ER) increase the size and the number of connectives of the
actual configuration.

Rules (FM1), (FM2) and (FG), i = 1,...,5, preserve both size and number of
connectives in a configuration. RUlECs) puts anA into focus, while rulegFM;)
and (FMy) reverse this process by reducing the object in focus g gesp. a single
formula again.

Lemma 162 Every play has a uniquely determined winner.

PROOF Suppose a play does not visit a configuration twice. It can only be finished in
a terminal configuration. But then the focus must be gmwich is either insided or

€. Furthermoreq is either present in the actudlor not. These four cases are covered
by the mutually exclusive winning conditions 1 and 4.

Now consider a play with a repeating configuration. There are two possibilities for
such a repeat. Suppose the focus was not changed in between. This is only possible if
apuyP or apRY stayed in focus since a combination of rules that reduce and increase
the number of connectives in a configuration must have been played. But reducing the
number of connectives leads to a situation in which all formulas insidél thart and
everyEZ are preceded by xoperator. Then, ruléeX), (AX) or (AXE) must apply, i.e.

the formula in focus gets reduced as well. Only one of the unfolding rules can restore
the original formula in focus eventually which means it igtap or pRUY.

In the first case, player wins with his winning condition 2. In the second case player
3 wins the play at hand with her winning condition 5.

217

Suppose now that the focus was changed between the occurrences of a repeating
configuration. Consequently, one of the players must have used one of their focus
change rules. If playet did not use hers she wins with the first part of condition 6. If

she used hers but playedid not use any of his then he wins with condition 3. If both
have changed focus then it depends on which rules pky®rs used. He still wins

with the second part of condition 3 if it was onlfC,). If it was one of the others then
playerd wins with the second part of condition 6.

This shows that the winning conditions cover all possible situations and that the winner
of a play is uniquely determined. -

Lemma 163 Every play ofS(¢o) is of length less tha@(2¢ol . 22%0)),

PROOF There arep2®

possible sets of sets of subformulaspef Furthermore, the
focus can be on any formula which can be in any set, odam anyrl” insideA. Thus,
there are at most

(14 |o| + 2/%0l) . 22

possible different configurations i{$o) and every play of length or more must visit
a configuration twice.

This is an upper bound on the length of a play if it is won with winning condition 3 or
6. If the condition that applies is 2 or 5 then the additional requirement of the formula
in focus being apuy or ¢RY must be fulfilled. The proof of Lemm&62 shows that

in such a case a formula of this form must stay in focus. l.e. the moment the play
performs a repeat@uy or apRY must be present in focus. Note that this can be in the
form of an unfolding for instance. In any case, it can have at most three connectives
more than aUy or ¢RY. Therefore, after five more steps — three for the connectives
and two focus moves — a situation like the ones required for winning conditions 2 or 5
to apply must be reached. Thus,

1 oldoly . o(2%) — (200l . p(2%)
(1+ |do| +27) +5 = O()

is the maximal length of a play in the garféo). n

218 Chapter 8. Satisfiability Games for CTL*

Corollary 164 (Determinacy) PlayerY wins§(¢) iff player 3 does not wirG(¢).

PROOF By Lemmas162 and/163 every play ofG(¢) has a uniquely determined
winner and is of finite length. Then, Theore3i applies which says that for every
gameS () one of the players has a winning strategy. -

Lemma 165 Player 3 preserves unsatisfiability with her choices. Playércan
preserve unsatisfiability with his choices.

PROOF PlayerV is mostly concerned with the position of the focus. Those moves
preserve unsatisfiability. The only rule that requires him to make a genuine choice is
rule (AX). Suppose

AW, Tg;...5Tn),E(W, Z),MN

is satisfiable for everye {1,...,m}. Then each of them has a modek= (8;, —i,L;)
with ans € § s.t. there is a patit=g§ ... with

T E YA forevery ¢ € ;
Furthermore, for every pathi with M =5 thereis aj € {1,...,n} s.t.
n k¢ forallgel; and j=1 implies W = ¢

We assume the state sets of theo be pairwise disjoint. Take the transition system

7= (sbuUs U UL
i=1 i=1 i=1

with the additional transitions
so—s foreveryie{l,....m}
andL(sp) := M’ for some maximally consisteft’. Then,
S = ARXY,XMy;...;XMn),EXZg,... ,EXSm, 1’ (8.2)

i.e. this formula is satisfiable, too. Conversely, if this formula is unsatisfiablélars
maximally consistent then there iskaa {1,...,m} s.t.

AW,T ;.5), E(W, Z), M

219

is unsatisfiable. Note that, if the focus is ¥, playerV can apply ruleg(AX) to the
configuration in'8.2). By choosing the righit he can preserve unsatisfiability. This is
also possible it = 0. If the focus is in &; that is not the one to choose he can change
the focus with rulgFC,4) and then preserve unsatisfiability with ryix).

The rules that require playerto set the focus preserve unsatisfiability. So do those
that make her choose a disjunct. The cases of rilés and (EE) are given by the

equivalence§2Q1¢ = Q14 for Q1,Q2 € {E,A}.

Now consider ruléAE). Suppose there is a modg|s for
A(TC1;...;Tn),E(W),E,M
Then7,sis also a model for
ATy .. BRI .5 Tn), €,
for everyi = 1,...,n because every path startingssatisfies£ regardless of which

I it fulfils, too. The case of rulgaa) is similar.

Player 3 also preserves unsatisfiability with her choices of a set of propositional
constants in ruleAX), (EX) and(AXE).

Finally, note that the deterministic rules like unfolding of &nor a R preserve
unsatisfiability as well. n

Definition 166 An EX is called theimmediate descendanf EX’ in a playCy,...,Cn
of G(do) if there are two configurationg andCi ;1 s.t.

C = AL EY EZ,... EZ,, T
and
Ci1 = AEXEZ,...,EX,, T

and there is a rule that transformeg’ into EX. Bothn = 0 andn’ = 0 are possible
which is needed for applications of rulexX) or (AXE) for example.

EZ is adescendanof EY’ if they are elements of the transitive closure of its immediate
descendant relation.

220 Chapter 8. Satisfiability Games for CTL*

If there are two configurations andCi ;1 s.t.
C = A(;ry;..ry),ESq,.. . EZ,, 1
and
Ci1 = A(F; M...; Fn),EZ, E21,...,Exm, M1

and there is a rule that transformgdinto I' thenl is an immediate descendantldf
MoreoverA(;Iy;...; n) is animmediate descendantigf™’;%;...;T,). Again, the
descendant relation is given as the transitive closure of the immediate version.

An EZ is calledpersistingin a play at some point if it was not discarded in the last
application of rule(AX) or (EX) or was created in the last application of rylxz).
Formally, EZ is persisting in the configuratio; of the playCo,...,Cy, 0 <i < n, if
thereis aj <i s.t.

e betweenj andi none of the rule$AX), (EX) or (AXE) has been played, and
e (Cj_1,Cj) is an instance of ruleAX), (EX) or (AXE), and
e thereis nE&Y' € Cj_1, orEX is the descendant of &' € Cj_1.

Definition 167 (Top-level list strategy) For a set of formulas letls be apriority
list of all top-levelu subformulas ir%, i.e.

|Z = ¢1UUJ17 <o 7¢anJn

with ¢;Ug; € Zforalli=1,...,n. Alist Ir is defined for a seff of formulas in the
same way.

After each application of ruléFM;) or (FCy) with the actual configuration
A([FafisTo) B2y, B2

playerV creates the lisr, and plays according to the following strategy. He sets the
focus to the first elemenfi;UY1 of the list and leaves it there until playérsets the
focus toy, after it has been unfolded. Then playedeletes,;UP1 from I, and
changes focus with rul@=C,) to the next element df, .

221

If at some point playeB changes focus to anothEr with rule (FC;) he restarts this
strategy with the listr,. If his actual list is empty or no element of the list is present
anymore he calculatds for a persistingeZ if one exists, changes focus to the first
element ofis with rule (FC3z) and plays the same strategy there.

If it does not contain any top-levélformulas he puts the focus to the largest formula

in ¥ and leaves it there until sontebecomes top-level and calculatgesat this point.

If there is none than he changes focus to the next biggest formula at the moment when
the play is about to perform a repeat.

If Is becomes empty or all the top-levélformulas have been fulfilled he puts the
focus back onto the actual part with rule(FCs) and restarts the entire process with
the current configuration.

Of course, playe¥ checks at any point in the play whether he can change the focus
to an atomic proposition, s.t. g € I for the actual propositional pakt. This can be
done with rule(FCg) or (FCq) if g € X for some preseritX. It is also possible with

rule (FCy) inside ar if player 3 does not take the focus away from it. Finally, if all
present” contain such @ he can do so with rule¢FCs) and(FM>) since played has

to choose one of thes with rule(FM1) in between.

Lemma 168 (Optimality) PlayerV'’s top-level list strategy is optimal.

PROOF As in the proof of Lemm®8, we need to show that with this strategy player
v does not miss any formulas. This holds only if he selects the rigtk when using
rule (FCsz), namely the one that contains a regeneratirigrmula. Note that during a
play, EX components can get lost when rikx) or (EX) is played.

For the moment we assume that he nondeterministically makes the best choice when
using rule(FGCz).

Remember that a configuration represents a combination of conjunctions and
disjunctions. Therefore, not missing a regeneratirigrmula is to be interpreted in

the following way. If there is one in aBX then playeiv will eventually set the focus

to it. If all I'; and their descendants contain one then he will eventually keep the focus
on one of them.

222 Chapter 8. Satisfiability Games for CTL*

Suppose there is a regeneratintprmula. It must become top-level in its component
at some point. Suppose this is insideEn It remains there since playércannot
fulfil it. If the focus is already irnx it will be found unless there is another one which
does not get fulfilled either. If the focus is insidethen playelv chooses thig&Z or its
descendant when playing ruléX). Remember that we assume playeo be able to
guess which preseBE is best. Eventually, he will move the focus into thisfind the

U formula there and win with his winning condition 2.

Suppose now that all tHes inside the present contain a regeneratingformula that

Is top-level already. Player’s strategy makes him set the focusAowhen all the

formulas inside the persistirky have been fulfilled. Regardless of whiths chosen

by playerd the regenerating formula will be a member ofr. W.l.0.g. we assume
that it is the first of its kind in the list. Therefore, playéwill eventually put the focus
onto it.

Unlike the case of Uy formula in aZ, playerd can simply put the focus ontg
each time it gets unfolded. B¢iUY is regenerating, i.e. playétis assumed not to
be able to do so if the formula was inside&a This means playev would also win
with the focus inside th&€ now containing. This is possible if it contains another
regeneratin@ formula like itself for example which has now become top-level. This
reduces the argument to a smatldormula. Finally, the regeneration of @rformula
must be due to an atomic contradiction. But playsrstrategy will make him change
focus and win with his condition 1 if this is the case.

Therefore playes will at some point change focus with her rulEC;). Remember

that she can only set it to anothErwhich is assumed to contain a regenerating
formula as well. This holds in particular for the other descendant of thee focus

was in beforehand. With the same argument she will at some point be forced to change
focus again. Eventually, she will have created a repeat and pfaygrs this play with

his winning condition 3.

Now consider a strategy for playgrother than the top-level list strategy and suppose
that playerd has a winning strategy for the game at hand. An optimal strategy must
enable playeY to try to put the focus onto every possibléormula and avoid repeating
configurations for as long as possible in every play of playjggame tree.

223

Candidates for possible formulas are those inside &k that is present and those
inside al" that playerd has set the focus to. Lemri&Z shows that between repeating
configurations one of the rulé¢4X), (EX) or (AXE) must have been played. This will
select on&X as persisting for each of play®is choices that are present in playts
game tree.

Note that the top-level list strategy behaves like two interleaved priority list strategies
in the sense of Definitio®7. The first formulas in a priority list are those that are
top-level. If they have been processed playsistrategy switches to the other top-level
list which contains thosg formulas that would be first in a priority list for the actual

I, resp.2.

This interleaving guarantees playgto try all possibleU formulas before a repeat is
performed. Note that he also avoids repeats by changing focus in the last moment
before one occurs. -

Lemma 169 Supposél is satisfiable but
A(T1V...VIn) AEZ1A...AEZnAT

Is unsatisfiable. Then one of the following cases holds.

1. All 3 and at least ond'j is satisfiable fori = 1,...,mand j € {1,...,n}, but
thereisageMs.t. =2 —qg forsomei €{1,....m},or =I;—q forall
i=1...,n0r

2. there is ani € {1,...,m} s.t. EX; is unsatisfiable but A(T1 Vv ...V Iy) is
satisfiable, or

3. foreveryi =1,...,n: T'j is unsatisfiable buEz; A ... AEZ, is satisfiable, or
4. thereisan € {1,...,m}s.t. =A(T1V...VIp) — EZ,.

PROOF A conjunction is unsatisfiable if and only if one of its conjuncts is unsatisfiable
or the combination of some of them imply the negation of another one. Note that the
latter case is not possible for two existentially quantified formulas since they can only
contradict each other in the propositional part. But then one of them has to contradict a

224 Chapter 8. Satisfiability Games for CTL*

g € N because of1's maximal consistency already. Note that the last case also covers
a situation in which both thé part and arEZ; are unsatisfiable on their own already.

Furthermore, theA part can only be unsatisfiable if all of its disjuncts are
unsatisfiable. n

The next lemma analyses how these cases of unsatisfiability occur in a play.

Lemma 170 Supposepg is unsatisfiable. Take a pladp, ...,Cn of G($o) in which
playerV uses his top-level list strategy and preserves unsatisfiability. Let

G = A&, M

fori =0,...,n. Then eithelC, is terminal and satisfies case 1 of Lemf&® or there
isajwithO< j<ns.t.

e A ATl is unsatisfiable for all with j <i <n, or

e there is an unsatisfiable> < C; that persists and remains unsatisfiable u@l
Moreover, a repeat can only occur aftéy.

PrROOF The existence of an unsatisfiable configurat@nis simply given by the
preservation of unsatisfiability. The fact that a repeat can only occurGftsrbased

on the observation that two configurations which satisfy different cases of Ldrééna
cannot be syntactically equal. But the claim states that eventually one of the cases will
hold generally.

SupposeC; is unsatisfiable according to the first case of Lenft6& If there is an

EX € & with =% — @ then there must be@ € > s.t.q € Sul{y). As in the proofs

of Lemmasl0land113 one can show that the game rules will create a configuration
with a descendar®’ of Z s.t.q € Z’. But then playek's top-level list strategy tells him

to set the focus tg immediately which makes the configuration terminal.

The other part of case 1 of Lemri&Sstates that=T; — ¢ forall I'; € Aj andq < ;.
The play need not reach a terminal configuration since playeay always be able
to change the focus insidé;. However, because of preservation of unsatisfiabiity,

225

will always occur in a descendant offa after finitely many steps. As this holds for
every[, player3 cannot discard them all with rul@) and one will remain. Game
rules (AX), (EX) and (AXE) can then not be played since there is no need for pldyer
to put the focus to a formula of the forrp. But then

= Ai—T
foralli with j <i<n.

Suppose now thad; is unsatisfiable because of case 2 or 3 of Lerd®& According
to Lemmel65 all G are unsatisfiable far> |.

Note that, if case 2 holds fd€; thenCiy1 can fulfil case 3 because of rul&A)

for example. Conversely, rul®AE) can swap unsatisfiability from thé part of a
configuration to arEZ. However, this can only happen if one of these parts contains

a path quantified formula. Thus, applying these rules alternatingly can only happen
at mostm times wherem is bounded by the quantifier depth ¢@f. Note that theA,;

are assumed to be satisfiable and unsatisfiable alternatingly. It is not possible for an
unsatisfiableZ to be regenerated fromRaformula insideA; for example because this
would causeAd; and all its descendants to be unsatisfiable.

Moreover, each application of rul&€A), i.e. each swap of unsatisfiability from &

to A; destroys a path quantifier in the actual configuration that cannot be regenerated.
Each application of ruléAE) reduces the number of path quantifiers inside the actual
A. Thus, a repeat is only possible in a part of a play where unsatisfiability remains
with eitherA; or anEx € &;.

This shows that eventually either the first case of the claim holds or@awmintains
an unsatisfiabl&% which does not become satisfiable anymore. But it is part of player
V’s strategy to let an unsatisfialii& persist.

What remains is case 4 of Lemrd®9 Suppose tha#l A EZ is unsatisfiable. If
both conjuncts are unsatisfiable on their own then BRewill persist and remain
unsatisfiable. Assume therefore that both conjuncts are satisfiable. Plagé&ategy
will make him move the focus intd once all the top-levell formulas inZ are
processed. Whenever ru(éX) is played he chooses the descendantdfas long
as the combination of this with the presefitis still unsatisfiable. Eventually, the

226 Chapter 8. Satisfiability Games for CTL*

important formulas fromd will have been copied into the descendankEnf This will
eventually make it unsatisfiable on its own and playevill move the focus into it at
some point. A repeat can only occur after that since the unsatisfiable desceng&ant of
must be syntactically different from a satisfiaBE.

However, at some point the conjunction of the presérdand the descendant a&
can become satisfiable. But this is only possible if anoHaémappeared such that the
currentA AEY is unsatisfiable. Then playgrcontinues with his focus strategy inside
A but choose&Z’ with rule (AX). Note that at this point he loses the copied formulas.

Suppose the play proceeds as follows. We will only consider configurations before and
after an application of ruléAX). Assume there are configurations of the form

AXMH . XYY EXS o Ex3;, 1

with successors
A(TE .. T, EZ, M

fori=1,...nand som& € N. Suppose that eadXZ; is the descendant @f; and
that each(XI'%;...;XI'") is the descendant af I ;;...;T"). As usualA; stands
for A(CL;...;T") while A¥ is used to denote(Xr'L;...;XI'"). Now suppose that every
A;j AEZ; is unsatisfiable whereas eveAf EXZ/ , is satisfiable. This captures the
situation mentioned above: evely that is unsatisfiable with the presefitbecomes
satisfiable while a ne®Z’ appears that is unsatisfiable with the currént

According to Lemmd63 a repeat on a configuration must eventually occur. W.l.0.g.
we assume that itis 0AY,EXZ;. I.e. the descendant BE, isEXZ4, and the descendant
of Ay is AY. Fori =1,...,k—1letk; denote the number of applications of r()

or (EX) betweenA;,E%; and AiXH,EXZi’,EXZiH plus 1. Note that rul¢AXE) cannot

be applied as there is always at least one present

Since everyAX AEXZ[, is satisfiable, it has a mod&l. EachT; is a possibly infinite
tree containing one path satisfyitig; ;, while this and every other path satisfies at
least oneXFij. Therefore, eachi; begins with one transition after which_1 or arij
might require the tree to branch. We paste thggegether to form an infinite tre®

that is finitely represented as shown in Fig8r&

227

K

K3

el Kkt
T2

T2,

Figure 8.8: A model T for A1,E2;.

A sequence of states of lengikh corresponds to a sequence of applications of rules
(AX) or (EX) in which the last persisting> was chosen. The labelling of each
state is the maximal consistelfitthat playerd chose for the corresponding block of
configurations. Here, a block is a part of the play in which neither (A¢ nor (EX)

was played.

We show that the transition system of Fig&& is a model forA; AEZ;. Remember
thatEZ; has the descendaBkX} which is fulfilled in T;. The same holds for every
otherEZ; that occurs during the play. Therefore, every occuriigis fulfilled in T
which also satisfies the correspondiag

Note that we have restricted ourselves to the case of onlyEivocomponents per
configuration. The argument can easily be extended to deal with more than two.

It remains to be seen that the paths from the origin to dashtisfy theA formulas.
Remember that the first part of length does not bear a contradiction ¥&; or any
occurringl in this part, for otherwise play&twould have won the corresponding play

228 Chapter 8. Satisfiability Games for CTL*

with condition 1. Moreover, the second part of lengthstarting from the root of;

does not exhibit a contradiction to the next persistiag and the corresponding’s.

Thus, it satisfies at least orﬁé%. But A» is the descendant of;. Therefore the paths
starting from the root intd, must satisfy at least ori'él, for if this was not the case
then the play would not have proceeded this way. Iterating this argument shows that
the infinite path connecting all the must satisfy one of thEil. Thus,A1,EZ1 cannot

be unsatisfiable.

Conversely, there is at least oRE which remains unsatisfiable. But then it is going to
persist according to playéfs strategy of preserving unsatisfiability. m

Theorem 171 (Soundness) If §¢ is unsatisfiable then playétwins G(¢o).

PROOF We let playerV use his top-level list strategy as it is described in
Definition'167. Furthermore, whenever an application of r@hX) or (EX) requires

him to choose aiEZ he selects the one that preserves unsatisfiability according to
Lemmal6ot

With the top-level list strategy a terminal configuration is only reached if it contains an
atomic contradiction which makes playéthe winner of the play at hand, or if there
are no non-atomic formulas that playecan set the focus to. But by preservation of
unsatisfiability the resulting configuration must be unsatisfiable, i.e. a win for ptayer
with winning condition 1.

According to Lemmd. 69 there are four possibilities for a configuration
A(T1;...;Tm),EZq,... ,EZ, I

to be unsatisfiable. Lemni&Z0shows that, if no terminal configuration is reached, the
A part remains unsatisfiable possibly in conjunction with the respective propositional
parts, or eventually an unsatisfialale must persist.

Remember that playetalways choosel to be satisfiable, and ifl is unsatisfiable in
conjunction with the&zZ; then playei’ can immediately win with his winning condition
1 by setting the focus to the appropriate proposition. If the conjunction ofitpart
and thell is unsatisfiable then playet can only change focus insidé but player
Vv can always play such that the focus reachasfar a g € . But then a repeat

229

will eventually occur and playet has used ruléFC;) whereas playeY has used at
most rule(FC;) since the focus did not leavé. Hence, he wins with his winning
condition 3 unless playet has left the focus on a particul&rin which case he wins
with condition 1.

Lemmal70shows that, if this is not the case, then eventually all configurations will
contain anEX which is either unsatisfiable or whose negation is implied by/Ahe
component. It also shows that eventually one of these must persist.

But unsatisfiability must be given by one or sevevalormulas which cannot get
fulfilled. If one of them occurs in the persistigx. then playen’ will eventually set
the focus to it according to Lemn6& If eachl” of the A part contains one then,
again by Lemmd.6§ playerV will eventually set the focus to one of them which gets
copied into the persistingz. Finally, playerV will change focus to it ire%Z and win
with condition 2. n

Next we recall Definitior69 and Lemma/Q of Chapter5. These form the basis for
playerd's winning strategy on a satisfiable formula in the completeness proof for the
satisfiability games.

Definition 172 Take a statgg of a transition systerf and satisfiable formulas
rl, ey rn

Assume thaty = A(l1 V...V Iy), i.e. every patht starting withsy satisfies at least
onerl;. With eachl’; we associate a st () of finite prefixes of paths starting with
S in the following way. Leto = 5. .. S be a finite sequence of states s.t» 51 for
alli=0,....k—1.

ocPr(so) iff thereisapathn=om s.t.m}=T;

Thus,Pr. (s) consist of all finite sequences of states starting witiat can be extended
to a path satisfyingi. In the next step we make these sets disjoint.R-gs) C P (s)
be defined by

oePr(s) iff oePr(s)andforallj<i:o¢Pt (s

230 Chapter 8. Satisfiability Games for CTL*

A path can never occur in a set with a smaller index than any of its prefixes. Thus,
s€ Pr (s) in any case.

Lemma 173 Leto1, 02 be finite prefixes of a path starting éns.t.o, = 0,0 for some
0. If 01 € Pri(s) andoz € Pr(s) thenj > i.

This is the same as Lemn7d of Chapter5, simply reformulated to take care of the
normal form for CTL' formulas needed in this chapter.

Definition 174 An extended configuratioof a CTL" satisfiability game5(¢o) and an
LTS T = (8,—,L) is of the form

t F AEN

wheret € § and A, &, is an ordinary configuration ofi(¢o). It is calledtrue if
t = A, &, M andfalseotherwise.

An extended gamis an ordinary satisfiability game with each configuration extended
in the following way. Ift is the state component of an extended configuration to which
rule (AX), (EX) or (AXE) is applied and’ is the state component of the successor
configuration thert —t’. Player3 is allowed to choose suchta All other rules
preserve the state component.

Note the intended similarity to a model checking configuration. It is only the*CTL
normal form that detains us from proving completeness by relating a satisfiability game
to one or several model checking games as it is done in Chépter

Lemma 175 Playerd can preserve truth in an extended game, playarust preserve
truth.

PROOF There is only one situation in which playemperforms a genuine choice on a
formula: that of a disjunction insid&. All the other rules requiring her to take a choice
deal with the position of the focus inside Suppose the actual extended configuration
IS

t - AEWoVYy,2),EM

231

Playerd simply chooses the; that is true. Note thet(Yo V Y1) = EYo V EYs.

Preservation of truth with the rules for the other boolean connectives, the focus moves
and changes, and the unfoldingib&ndR formulas is trivial.

The other interesting case is the one where fAlg, (EX) or (AXE) is played. Suppose
S E AXly;...;XMp),EXY4, ... ,EXEm, M
Then, for every =1,...,m, there mustbe a patly = ... s.t.
T = XX AXI

forsomej € {1,...,n}. Lets; := Tq(l). Playerd can choose; andlM’ :=L(s;) to make
the next extended configuration

st F A(Ty;...;Tn),EZ, I

true, too. Note that the position of the focus only determines which rule exactly is
played. m

Lemma 176 Consider the set of all setf that can occur inside and in a
configuration of§(¢o). It can be ordered ak =Ly,...,Lm, whereL; =T 1,...,Tin
foralli=1,...,ms..

e if " isadescendantof but ' is notadescendantdf’,and I € L;, " € L;
thenj >i.

e if [and "’ are descendants of each other, then there is an{1,...,m} s.t.
r,rel

PROOF The set of all such configurations together with the immediate descendant
relation forms a graph. Each pdrt of the list L represents a strongly connected
component of this graph. They can be sorted topologically to ohtain m

232 Chapter 8. Satisfiability Games for CTL*

Theorem 177 (Completeness) If ¢¢ is satisfiable then playet winsG(¢o).

PROOF Supposebg is satisfiable. Then there is a transition system (S, —, L) with
a statesp € 8 s.t. 59 = $o. Moreover,sy = Adg sincedg is a state formula. Consider
the extended game f&(¢$o) andT. Its first configuration

s+ A([$o)

is true.

Lemmal75 shows that all reached configurations will be true regardless of player
V’s choices. Thus, if a play reaches a terminal configuration she will win it with her
winning condition 4.

It remains to be described how playehas to set the focus inside @nin order to win
G(do). Since the extended play follows statesJimlong the— relation, there will be
a selected finite sequence= s . . . ¢ Of states at any moment in the play. Let

L - L]_,...,Lm - r17...,rn

be the sorted list of all' that can possibly occur if(¢o) according to LemmA76&
Furthermore, let

Pr.(s0); -, Pro(s0)

be the sets of finite sequences of states startiisg according to Definitioll72. Note
that at any moment in a play one of these finite sequences will have been selected.

Whenever the play has outlined the sequeaand playerv sets the focus tc[A},

then playerd sets it to thel; s.t.0 € Pr,(S). Note that at the beginning an eligible
one exists and, similar to the proof of Theor#y the rules preserve the following
invariant. At any moment in a play that has outlinee- 5. .. ¢ there is at least one
i present in the actual s.t.o € Pr, (). On the other hand, they are disjoint. Thus,
there is always exactly orfé- () that containg.

Suppose the actual extended configuration is

t + A([lpo\/lpl],r';...),&l'l

233

with I := oV Yy,I’, andrl € L; for somei € {1,...,m}. Playerd has to set the focus
to one of the two possible descendants. Assume she chgigdé’s Then eithell is a
descendant afip, I’ itself, in which casejg,I’ € L. OrT is not reachable fronpg, I’
anymore. Thenmo, [’ € L; for somej > i according to Lemma7&

Thus, she either remains in the currénor increases the index of the actual sublist
whenever ruléAv) is played.

Note that there is no need for playéto change focus betwedn andr j if both are
descendants of each other. Either they never occur in the same configuration in which
case a focus change is simply not possible. Or there is anbther bothl'j andT;

are descendants 6f and vice versa. If the focus was énand is onl; later on for
example although playef would like to change it td"j then she could have set the
focus accordingly earlier on. If it was not dnthen she can wait until it is oh and

then direct it td™j. In both cases she does not change focus.

Now consider an application of rul@X), (EX) or (AXE). Remember that after that,
playerd is allowed to change the focus. This might be necessary since the sequence of
stateso outlined so far is prolonged with another sttte

Suppose the focus was ih. Then we know that € Pr,(sp). Butat’ is an extension
of 0 and according to Lemmia73, ot’ € Pr;(so) only if j >i. If j =i then playerd
can leave the focus in the actiialOtherwise, the path that playeis going to choose
by selecting anotheiZz does not fulfill’;. Therefore, playet needs to change focus.
Lemmal7€shows that it increases the index of the actual subjist

If there is a[q} in the actuall then playery has to change focus since he would
inevitably lose at this point. Leb = 5...S be the prefix that has been selected so
far. Thenl = L(s) for the propositional part of the actual configuration. But also
0 € Pr,(so) for thel"; containing the focus and therefayes I.

If the focus is on ar{Ecb] then it is removed from playet’s control since th&¢ gets
promoted into the actudl part and with it the focus. Ifitis on aEAq)} the sets of s get
modified. Letl; = [Aq)} ,I" for somel” andl"; some other setinsidé. If 0 = 5...5

is the selected finite sequence for this moment tea Ad. But thentt|= ¢ for any
Tustarting withsy, in particular those paths which have a sequend@-jiso). Thus,

234 Chapter 8. Satisfiability Games for CTL*

playerd can continue with the focus inside the actlial

All in all, player 3 can change focus s.t. the index of the actual sublist always gets
increased. But this means she sets the focudtevhich cannot regenerate théthe

focus has been on before. Therefore a repeat is not possible as long as she changes
focus appropriately.

Whenever the extended play visits a configuragph C s.t. sj - C was visited before

ands¢ # sj then the satisfiability game is restarted at the first occurren€ with

the extended configuratiosx - C. This does not influence the choice of the focus
position since thd's insideA of C are the same. Therefore play&can choose the
position of the focus according to the pad..sj...s. If a repeat on an extended
configuration is detected such that the states are the same then the satisfiability game
is not restarted. Note that in this case one of the winning conditions applies at most 3
steps later according to Lemri&3a

This strategy guarantees playeto win G(¢o). PlayerV cannot win a play with his
condition 1 since this would imply an inconsistency in the labelling of a state in the
model. He also cannot win with condition 2 because Lerdmaensures that player

3 does not change the focus back tb6 avhere it was before. Moreover, since every
selected prefix of a path is guaranteed to be extendable to a path satisfying at least one
I, playerd can “fulfil” every ¢uy eventually. The satisfiability play cannot perform

a repeat before player choosesp in its unfolding since this would correspond to a
selected prefigy. S such that this cyclic path does not satighat any stateg

As in the cases of LTL, CTL and PDL, the small model property for Cthn be
derived from its satisfiability games.

Theorem 178 (Small model property) If g € CTL* is satisfiable then it has a model
(2/%0l)

of size less thagl%ol . 2%

PROOF Suppose)g is satisfiable. By Theorerh77, playerd has a winning strategy

for the game5(¢o). A transition systenT = (8, —, L) can be extracted from the game

tree in the same way as it is done for CTL in the proof of Thecidd States ofl

are equivalence classes of configurations, and transitions are given by applications of

235

rules(AX), (EX) and(AXE). The labelling of the states is taken from playés choices
of the maximal consistent sdtk

However, it is much simpler to consider the game tree of the extended game in the
proof of Theorenil77. Ignoring the state components of the extended configurations
results in a game tree for playerand the gamé&(¢o).

On the other hand, the state components alone form a transition systeith
transitions given by applications of rul¢sX), (EX) and (AXE). The fact that they
occur as state components in an extended game tree for plagleows thatJ is a
model fordo. Its size is bounded bgitol . 22*%) since this is the maximal number of
configurations in the (extended) game tree according to LefrGfia n

Corollary 179 (Tree model property) CTL" has the tree model property.

Theorem 180 (Winning strategies)
a) Playerd’s winning strategies are history-free.
b) PlayerV’s winning strategies are LVR strategies.

PROOF History-freeness of playet's winning strategies is proved in the same way as

it is for the LTL satisfiability games and, hence, for the CThodel checking games.

First of all, the strategy described in Theor&ii/ requires her to choose a model for

the underlying formula. This model does not depend on the history of a play. Then
she follows the states of the extended configurations in the model and uses the outlined
finite paths to put the focus onto a particulawhenever playey wants the focus to

be insideA.

Lemma67 of Chaptel5 proved for the CTE model checking games that playédoes
not need to remember whidhhe set the focus to. Instead, he can recalculate the sets

Pra(8), -5 Pro(9)

every time rule(AX) or (EX) is played. It is the fixed index ordering of thigs which
ensures that he can change focus in such a way that indices only get increased. But
the order of the formulas is chosen at the beginning, too, and does not depend on the
history of a play. The same holds of course for playén this case, too.

236 Chapter 8. Satisfiability Games for CTL*

On one hand, player's winning strategy foi§(¢o) with an unsatisfiablég tells him

to preserve unsatisfiability. This is history-free since unsatisfiability of a configuration
only depends on the configuration itself. On the other hand his strategy tells him how to
set the focus. Similar to the satisfiability games for LTL, CTL and PDL from Ch#bter

he can use a list af formulas.

The proof of Lemmal6§ states that playev’s top-level list strategy is obtained as
the interleaving of several priority list strategies according to Lerfihgor the LTL
satisfiability games for example. By Lemiha§ proved in Sectiol.2, an interleaving

of two disjoint LVRs is an LVR again. Note that the LVRs in this case consist of all
configurations containing formulas or, in a simplified version, of allformulas only.

EachEX andA of §(¢o) has its own LVR ofu formulas occurring in them. They can
easily be made disjoint be markitigormulas according to whichZ or A they come
from. Thus, playek’s winning strategies are LVR strategies. n

Complexity

Theorem 181 (Complexity) Deciding the winner of(¢) is in 2-EXPTIME.

PROOF An alternating algorithm can be used to determine the winner of the
satisfiability game5(¢). It simply needs to store three configurations: the actual one
and two (co-)nondeterministically chosen ones to find a repeat on. The size of each
configuration is exponential in the size of the input. The size of a set of subformulas
of ¢ is linear in the size o, and there can be exponentially many different sets of that
kind.

Each time one of the players uses their focus change rule their stored configuration
is deleted. Thus, if the play performs a repeat without focus change it is detected by
the algorithm. To detect repeats with focus change the algorithm stores a counter to
measure the length of a play. According to Lemb&g, its maximal size is

log ((1+¢]+2%)-22) 15 = o(l¢-2*)

Thus, deciding the winner &f(¢) can be done in alternating EXPSPACE which is the
same as 2-EXPTIMEQKSS8]]. n

237

Comparing Automata and Games for CTL * Satisfiability Checking

So far, automata have been the only successful tool that was used to automatically
decide satisfiability of CTLformulas. Since CTLis a branching time logic, automata
over trees are needed.

As with all the other logics, a CTLformula ¢ is translated into an automatoty,

and satisfiability checking is reduced to the non-emptinesd te&f) # 0. However,

in a naive approach the size of the automaton is doubly exponential in the spze of
and the non-emptiness test requires time which is double exponential in the size of the
automaton.

As outlined in Sectiof8.2, this has been optimised by inspecting both the structure of
CTL* formulas to obtain smaller automata, and by finding more efficient procedures
for the non-emptiness test. They make use of the fact that automata arising from this
translation are not arbitrary but have a special structure, too.

The first optimisation mainly deals with the complementation problem for these
automata. Complementation is necessary to handle embedded quantifiers. Note that
Ed = A$. Thus, an automaton for an existentially quantified subformula is obtained as
the complement of an automaton for a universally quantified subformula.

But complementation generally requires determinisation, i.e. deterministic automata
are easy to complement whereas nondeterministic are not. It is possible to complement
non-deterministic automata without explicitly transforming them into an equivalent
deterministic one. But this can also be seen as an implicit determinisation.

On the other hand, remember the close connection betwdgshi Bautomata

and LTL formulas as well as the relationship between CTarmulas and LTL
formulas. Deterministic Bchi automata are strictly weaker than nondeterministic
ones. Therefore, a translation into them is not even possible. The complementation
problem for Bichi automata generally requires an intricate construction using
combinatorial results.

This shows that the real work involved in automata-theoretic satisfiability checking for
CTL* is done on top of the automaton. Consequently, the resulting automata that have
undergone an optimised determinisation process bear no syntactic relationship to the

238 Chapter 8. Satisfiability Games for CTL*

original formula anymore.

This distinguishes them from the satisfiability games of this chapter completely. There,
the whole complexity of the problem at hand is simply captured by the size of a
configuration and, consequently, is expressed in the relatively high number of rules
compared to LTL or CTL satisfiability checking games. On the other hand, the
algorithm that decides which player has a winning strategy f6tds) is not more
complicated than the ones used for LTL and CTL in Theoré&f€tsand12C

As opposed to the automata-theoretic approach the games have the advantage of
yielding a structure which does have a close relationship to the input formula. In
fact, the game tree is entirely made up of its subformulas. In contrast, the automata for
CTL* formulas need to be regarded as an abstract graph of which a certain reachability
property needs to be checked.

Chapter 9

Model Checking Games for
Fixed Point Logic with Chop

Mad world! Mad kings!
Mad composition!

PHILIP THE BASTARD

9.1 Global Model Checking Games for FLC

For a finite transition systeffi= (8,{-2:| ac A},L) with sc § and an FLC formula
$o theglobal model checking gante- (s, $o) is played by players andd on the game
board

C = 8x2%xSuldo)

The intended meaning of a configuratisist ¢ is s € [¢]](S). Remember that the
semantics ob is a function from sets of states to sets of states. This is the reason for
the statesetin a configuration.

240 Chapter 9. Model Checking Games for Fixed Point Logic with Chop

Here, a play is a finite sequencCsg, .. .,C, of configurations withfCyo = s,8 - ¢o. This
takes into account the definition of therelation for FLC from Sectio2.5.

The rules for the global model checking games are presented in Ediiieules(A)
and(V) are like the rules for boolean connectives in the PDL model checking games
for example. RulgFP) is the usual unfolding for fixed point formulas. RUIeAR)
expresses the property of a fixed point being equivalent to its unfolding.

The mostinteresting rule {$). Here, played chooses & first. Then playe¥ chooses

at € T and decides whether to follow the left or the right of the lower configurations.
The motivation for this is as follows. Let S+ ¢; W be the actual configuration. Note
that its intended meaning $s= [¢] ([W] (S)). To prove this, playes has to name a set
Ts.t.T C[W](S). Then, playel’ who wants to show that

s¢ [¢1([wI(9)

has two possibilities to do so. Either he shoswg [¢](T). In this case, played’s
choice of T was not good enough. The best she can do4s Y] (S).

On the other hand he can decide to refute plajerclaim thatT C [W](S) in which
case he has to name & T of which he believes ¢ [W](S). Therefore the play can
continue with eithes, T - ¢ ort, Sk (.

Note that there are no restrictions on the choic& of S. This is the point where the
games violate the locality conditions stated in Secfdi

Playerd is allowed to choos@ = 0. In this case playeY has no choice with this
rule and the next configuration is necessasiff+ ¢. This is justified by the fact that
trivially 0 C @] (S) for anyy and anyS. Thus, playet’ could not refute this branch

anyway.
PlayerY wins the playCy, ... ,Cn of the gameS(s, ¢) iff

1.C, =t,THq andqg¢L(t),or
2.Ch=t,TFHT andt¢T,or

3.C, =t,TF(a) andforallt’ € §:ift-2:t'thent ¢ T, or

9.1. Global Model Checking Games for FLC 241

) S, SE do A1 vi V) S, S ¢oV 1
S,SE ¢; S, Sk ¢;
Sk oZ. Sz
(pp) 357920 (VAR) —>" % it tp(2) = 0Z.6
s,SHZ s,SH b
SH¢;
() SSEew STCSvteT

sTHo |v t,SHUY

Figure 9.1: The rules for the global FLC model checking games.

4.Cy = t,TH[a andthereis’ € §s.t.t-2t andt’ ¢ T, or
5.C, = t,T'"FY s.t.fp(Y) = pY.y for somey, and there is ane N, s.t.

e C =t,TFY withT' CT,and

e thereisncCj withi < j<nst C; =t S+Z forsomet’,S
with fp(Z) = vZ.g/" andY <4 Z.

Player3 wins the playCy, ... ,Cn of G5(s,) iff
6. C, = t,T+qg andgeL(t),or
7.Co =t,THT andteT,or
8.C, = t,TF(a) andthereis#& c T s.t.t-2:t/, or
9.C, =t,Tr[a andforallt’ € §:ift-2:+t'thent €T, or
10. C, = t,T'FY s.t.fp(Y) = vY.p for somey, and there is ane N, s.t.

e C =t TFY withT'DT,and

e thereisncCj withi < j<nst. C; =t ,S+Z forsomet’,S
with fp(Z) = pZ.¢’ andY <¢ Z.

242 Chapter 9. Model Checking Games for Fixed Point Logic with Chop

Example 182 Let T be the transition system consisting of staftes} with transitions
s-2t,t-2t andt 2 s. Consider the FLC formula

¢ = VY.[bjff A[a](VZ.]b] A[a](Z;2)); (([a)ff A [b]£f) VYY)

from Example22. ¢ requires the number df's that have been seen on every path
never to exceed the number ag that have been seen so far. Stté T satisfiesp.
The full game tree for playet is shown in Figur®.2. Lety :=vZ.[b] A [a](Z;Z) and

0 := ([aJff A [b]ff) VY.

She wins all the plays which end oria or [b] with her winning condition 9. She wins
the other plays with condition 10 since the only fixed point formulas occurriggaire
greatest ones.

Correctness

Fact 183 Rule(VAR) is the only rule that increases the size of the formula in the actual
configuration. All other rules decrease it.

Lemma 184 Every play ofS+(s,¢) has a uniquely determined winner.

PROOF Suppose the play at hand reaches an atomic formula. Then no further game
rule applies. The winner is uniquely determined since winning conditions 1 — 4 and 6
— 9 cover these cases and are mutually exclusive.

Now take a play that does not reach an atomic formula. According taliB&call the

game rules apart frorfVAR) decrease the size of the formula component in the actual
configuration. Therefore, there must be at least one variablbich gets replaced by

its defining fixed point formula each time it occurs in the actual configuration. Since
the underlying transition system is finite a configuration must eventually be reached
such that the first part of condition 5 or 10 is fulfilled. The second part will also be
fulfilled eventually since for every variabEthat does not regenerate itself there must
be another variabl¥ such thatZ <4 Y. But there are only finitely many variables

in a formula. Thus, one must be outermost. Its fixed point type determines whether
condition 5 or 10 applies. -

9.1. Global Model Checking Games for FLC 243

s{sti-¢

s, {st}rY

s, {s,t} - [b]£f A [a](P;)

S, {s,t} I [b]ff s, {s,t} - [a(y;d)
s,0+ [b] s.{t} [a] t.{st}-y;d
t,{s}- s{st}+9o
t,{s}+-2Z s, {st}FY

t.{s} kb la](Z;2)

t,{s}+ [b] t,{st+[a(Z;2)
t,{t} - [a t,{st+2;Z
t,{s}+-2Z s{st+-z

s, {s} - b A [al(2;2)

s, {s} I [b] s{s}+2;Z

s,{s}+Z s{stFz

Figure 9.2: The game tree for player 3 from Example [182.

244 Chapter 9. Model Checking Games for Fixed Point Logic with Chop

Lemma 185 Every play ofS+(s,¢) has length at mogt§| - 2/8!. |¢[)2d(®)+1,

PROOF This upper bound on the length of a play is proved by induction on the fixed
point depth of¢. Supposead(¢) = 0. Then the requirement of being outermost in
winning conditions 5 and 10 becomes void. In a configuratidnt Y there arg§|
many possibilities fot and|¢| many fory. There ar€/$l many possibilities to choose
subsetdy,..., Ty of 8 s.t. thatTi Tj, resp.Ty 2 Tj forall 1L <i < j <n.

Suppose novk := ad(¢) > 0. Let Z be the outermost variable witip(Z) = oZ.\.

ThenZ can be unfolded at mo#§|- 28! - |Suk{¢)| times. Each unfolding can result in
an embedded subplay starting wiphwhich has fixed point deptkh— 1. m

The next result follows from Lemmds34, /185 and Theoren37.

Corollary 186 (Determinacy) PlayerV wins G5(s,¢) iff player 3 does not win
9‘7(57(1))'

Generally, correctness proofs for model checking games split up into two parts:
soundness and completeness. According to The@®of Section2.€, one part can
easily be used to prove the other if

e the logic is closed under negation, i.e. for evérthere is @ s.t.s= ¢ iff s~ 9,
and

¢ the rules and winning conditions of the games are dual in the sense that player
can usep’s winning strategy frong+(s, ¢) to win G5(s,9).

This is given for the PDL model checking games in Chadtand the CTLE model
checking games in Sectidn?2.

For the FLC model checking games we have to prove both soundness and completeness
explicitly. The reason is the requirement of being closed under negation. Remember
that the = relation for FLC formulas is defined indirectly via the semantjgs
Therefore the right complement formupasatisfies

[®1(S) = S—[o](S) forall SCS

9.1. Global Model Checking Games for FLC 245

But according to this definition of complementation, FLC is not negation closed. A
simple counterexample is the formulavhich has no complement. This follows from
Lemmal9 of Section2.5 which states that the semantics of any FLC formula is a
monotone state transformer. But

[[] = AX.8—X (9.1)

is not monotone. Also, it is not obviously clear how to expr@3B with the operators
of FLC.

One solution to this problem would be to extend the syntax and semantics of FLC. In
fact, it would suffice to add as a new primitive. Then the complement of a formula
¢ can be defined a§ :=T;¢. But functionsAf.[¢(X)]x_.f; need to be monotone
for fixed points over these functions to exist. A simple criterion like the one used for
L, formulas where variables are required to occur in the scope of an even number of
negations does not seem to exist for FLC. Note that becaus® DHfthe following
holds.

PP = 9y
Thus, an occurrence of a variabledimon the right side of this has to take the negation
of ¢ into account as well. This means tbeopeof a negation symbol is not its subtree
in the formula’s syntax tree anymore.

The second way to repair negation closure of FLC is to consider complementation with
respect to weak equivalence. This means @nyg a candidate fop if for every state

sof every transition system|= ¢ iff s}~ holds. But there must be an effective way

to constructp from ¢ to meet the second requirement above. One possibility is to use
deMorgan’s laws, the duality of least and greatest fixed points, the complementation
closure of atomic propositions and the duality of the modal operators to eliminate
negation from formulas. But thenhas to be eliminated too, which can destroy the
original structure of the formula at hand. This will result in game$@nd¢ that are

not obviously dual to each other anymore.

Definition 187 A configurationt, T - @ in the gameSs(s,¢o) is called true if
t € [W](T) andfalseotherwise.

246 Chapter 9. Model Checking Games for Fixed Point Logic with Chop

Lemma 188 Player 3 preserves falsity and can preserve truth with her choices.
PlayerYV preserves truth and can preserve falsity with his choices.

PROOF First consider rulg\/). Take a configuration
C =1tT |—¢0\/¢1

SupposeC is false, i.et ¢ [do]] (T) andt ¢ [$1]](T). Regardless of which player
d chooses, the configuratidnT + ¢; will be false. On the other hand, suppd3eas
true. Thent € [[¢o] (T) ort € [[$1](T), and player can preserve truth by choosing
accordingly. The proof for ruléA) where playel’ makes a choice is dual.

Consider now a configuration
C =t,THHUY

SupposeC is true, i.et € [¢] ([W](T)). Then played can choosd’ = [W](T) and
the configuratiort, T’ - ¢ will be true. Moreover, for every € T’ the configuration
t’, T - g will be true, too. Therefore, play&t must preserve truth with his choice in
rule (;).

Suppose on the other hand tieais false, i.e.

t ¢ [o]([wI(T))

In the application of rulg;), player3 choosesl’ first. Assume she choosds =
[W](T). Then playetv can continue with the false configuratiofif’ F ¢. Assume
therefore, playes chooses any othél’ s.t.t € [¢]](T’). Then there must betae T’
s.t.t/ €[] (T) and playelv can continue with the false configuratitnT + y.

To prove this last claim assume thtC []|(T). By monotonicity of[¢]] we have

[61(T) < (9] ([wl(T))

But thent € [¢]](T’) contradicts the assumption that [¢] (W] (T)).

Note that both truth and falsity are preserved by application of the deterministic rules
(FP) and(VAR) if variables are interpreted by their approximants. n

9.1. Global Model Checking Games for FLC 247

For the correctness proofs it is helpful to consider a more flexible definition of a game.
In order to do so we will, overloading notation, denoteh8t+ ¢ the game starting
with the configuratiors, Sk ¢. An underlying transition system is implicitly assumed
so that played knows which set of states to choose from. The model checking game
G(s,¢0) in the original sense is simply the same as the gams & ¢o.

Theorem 189 (Soundness) PlayerV wins the game fois, Sk ¢g if s¢ [$o] (S).

PROOF Supposes ¢ [$o] (S), i.e. the configuratios, St ¢ is false. Preserving falsity

in the sense of LemmiB8E we will construct a game tree for playérWhenever rules

(V), (A) or (;) need to be played, continue with the false configurations as in the proof
of Lemmal8& Rules(FP) and(VAR) are applied deterministically.

This way, the game tree cannot contain a play which is won by playeith her
winning condition 6,7,8 or 9. These conditions require the last configuration of the
play to be true which is excluded by the preservation of falsity.

It remains to be shown that playgrcannot win a play with her winning condition 10
either. In order to do so we interpretvariables by their approximants. Suppose the
construction of the game tree reaches a configuration

C = t,THVZY

By preservation of falsityC is false as well as the following configurationT + Z.
There we interpre¥ as the least approximant that makes it false, i.e. ag'ttset.

t¢ [Z9(T) but te [ZH(T)
By the definition of approximantk = 0 is impossible. k € N since the underlying

transition system is assumed to be finite.
Note that the game rules follow the syntactic structure of formulas andzZthis
defined asp[zk~1/Z]. This means that the next time a configuration

C' = d,S+z

is reachedZ can be interpreted a8 ! to makeC’ false. This does not hold if the
computation obZ.y has been restarted in the meantime, i.e. a least fixed point variable
Y has been visited in between, Zt<y, Y.

248 Chapter 9. Model Checking Games for Fixed Point Logic with Chop

Suppose now the construction of the game tree reaches a config@@ationT’ - Z,
s.t.C andC’ fulfill the requirements of winning condition 10. Then there must have
been at least one unfolding &f with rule (VAR) betweenC andC’, and there is no
p-variableY on this path such tha <4, Y. Therefore, in the false configurati@, Z

will be interpreted aZ™ with m< k. Butift & [Z™](T’') andT’ 2 T thent & [Z™](T)

by monotonicity.

From this we conclude that there is no ldagtat makes, T + ZK false. By Theoreri30
of Sectiori2.5
t,THVZY

could not have been false either without contradicting the assumption. Thus, player
cannot win a single play in the game tree constructed in this way and, by Co/t8éry
playerV wins the game fos, St ¢o. m

Theorem 190 (Completeness) Player3 wins the game fors, St ¢ if s [¢o] (F).

PROOF Supposes € [¢o] (S), i.e. the configuratios, S ¢g is true. In a similar way

to the proof of Theorerd8S, we will construct a game tree for playérpreserving

truth. Starting with configuratios, S ¢o, whenever rulegVv), (A) or (;) need to be
played, continue with the true successor configurations as described in the proof of
Lemmal8& Again, rules(FP) and(VAR) are applied deterministically.

This way, the game tree cannot contain a play which is won by playeith his
winning condition 1, 2 or 3. These conditions require the last configuration of the play
to be false which is impossible by the preservation of truth.

It remains to be shown that play&rcannot win a play with her winning condition
4 either. This time we interprat-variables by their approximants. Suppose the
construction of the game tree reaches a configuration

C = t,TFuY.y

By preservation of trutke is true as well as the following configuratioyT Y where
Y is interpreted as the least approximant that makes it true, i.e. && e

te [Y(T) but tg [Y<I(T)

9.1. Global Model Checking Games for FLC 249

Again, by the definition of the approximarks= 0 is impossible.

With the same argument as used in the proof of Theol&§ the next time a
configurationC’ = §,S F Y is reachedy can be interpreted a&< 1 to makeC' true.
This holds of course only if no greatest fixed point variaBldias been visited in
between, s.tY <y, Z.

Suppose now the construction of the game tree reaches a config@atianT’ - Y,
s.t.C andC’ fulfill the requirements of winning condition 4. Then there must have been
at least one unfolding of with rule (VAR) betweerC andC’, andY is the outermost
variable on this path. Therefore, in the true configura@ny will be interpreted as
YMwith m< k. Butift € [Y™](T’) andT’ C T thent € [Y™](T) by monotonicity.

From this we conclude that there is no ldaitat makes, T + YX true. By Theoreri30,
t, T FvY. could not have been true either without contradicting the assumption. Thus,
playerV cannot win a single play in the game tree constructed in this way and, by
Corollary 186, playerd wins the game fos, S+ . n

Remember that preservation of truth and falsity plays an important role in the winning
strategies of the PDL model checking games. Here, the situation is similar. However,
unlike the least fixed point formulas in FLC, their PDL counterparts exhibit a very
simple structure. There is only one path through their syntax trees that leads from a
least fixed point construgt*)y via the subformula relation back to itself. This is the
reason why it is sufficient in the PDL case to choose the smaller formula of two that
both preserve truth. The same holds for greatest fixed point constructs and falsity of
course.

The syntax trees of FLC formulas however can have several different loops. Moreover,
the explicit use of propositional variables rules out the possibility of simply choosing
the smaller of two options since variables are smallest formulas. The following formula
is equivalent to the PDL propertg*) (a)tt used in Exampld7.

nY.(a);Y Vv (a);tt;Y

Note that theY in the right disjunct has no effect and could be left out without
changing the semantics of the formula. However, it shows that even a criterion which

250 Chapter 9. Model Checking Games for Fixed Point Logic with Chop

considers the occurrences of variables in disjuncts, resp. conjuncts, does not suffice. It
might, however, work foll, formulas. Instead, it is necessary for both players to use
approximants as done in the proofs of Theordi®8and190Q

Theorem 191 (Winning strategies) The winning strategies for the global FLC
model checking games are history-free.

PROOF PlayerY’s winning strategies for these games consist of preserving falsity with
his choices and annotating variables with their respective approximant indices. Then,
he cannot postpone showing falsity of a greatest fixed point formula infinitely often
since his task simply is to avoid a formuA in a play iffp(Z) = vZ.{s for somey.

But falsity and approximant indices only depend on the actual configuration, in
particular on the state components of the actual configuration and not on the history of
aplay.

The case for playef who preserves truth and attempts to avoPaf fp(Z) = pZ.y

for somey, is dual. Thus, her winning strategies are history-free, too. n

Complexity

Theorem 192 (Complexity) Deciding the winner of a global FLC model checking
game is in EXPTIME.

PROOF Let Gy(s,¢) be the game at hand. An alternating algorithm can determine the
winner using polynomial space only. As in the proofs of Theor>sand134, we let

the algorithm store the actual configuration, one for each player to recognise a repeat
in the sense of winning conditions 5 and 10, and a counter to stop a play that has not
found a repeat. The size of each configuration is polynomial in the size of the input,
and so is the space needed for the counter according to L&@4na

Furthermore, the algorithm needs to store a flag {p, v} to indicate the fixed point
type of the greatest variable w.rty that occurred after a configuration was stored.
This flag is also used to indicate whether a stored configuration can be overwritten if
the variable in it cannot be outermost in the play at hand anymore.

Again, alternating PSPACE is the same as EXPTIMEK§8]). n

9.2. Local Model Checking Games for FLC 251

Corollary 193 (Complexity) Deciding the winner of a global FLfamodel checking
game is in PSPACE for evekyc N.

PROOF The same algorithm as in the proof of Theord®2Z can be used in this
case. However, here we analyse the time the alternating algorithm needs. This is
proportional to the length of a play. Lemri&4 shows that the maximal length of a
play is polynomial in the size of the input if the alternation depth of the input formula
is fixed. But APTIME = PSPACE according t€KS81]. m

Global model checking games for FLC over infinite transition systems would result in
game trees with infinite out-degree even if the underlying transition system has finite
out-degree. The reason for this is the unrestricted choice pkyes in rule(;).
Therefore we resist the urge to amend the definition of the global games to capture
infinite-state transition systems as well.

9.2 Local Model Checking Games for FLC

Thelocal model checking gantr(s, ¢o) is played on an LTS = (8,{-%+|ac A},L)
with se § and an FLC formul#o. Here we do not restrict ourselves to finite transition
systems only. Playef tries to establish thatsatisfiesho, whereas/ tries to show that
S = do.
A play is a (possibly infinite) sequen€g,Cy, . .. of configurations, and a configuration
is an element of

C = SxSuld)* x Suld¢d)

It is written s,0 - Y whered is interpreted as a stack of subformulas with its top on
the left. The empty stack is denoted fiyWith a stackd = ¢g. .. ¢k we associate the
eponymous formuld := ¢o; .. .; ¢k while € is associated with the formuta

The intended meaning of a configuratiod - Wis: t € [W] ([[8]](8)). Thus, the stack
plays the role of the state set component in a global FLC model checking game. Note
that this condition is equivalent toc [[W; 8] (8).

252 Chapter 9. Model Checking Games for Fixed Point Logic with Chop

) S0 doV 1 S) S0 do NP1
S, 0 & S, 0 &
S0 aZ.¢ S,0HZ _
Bhalta i 2= iffp(Z) = oZ.
(FP) Sorz (VAR) 510 if fp(Z) = 0Z.¢
() Sa6|_¢0;¢1 ('[) S,l.lJél_T
7 s018F o X
s, Pd+ (a) a s, Yo+ [al a,
(<a>)W Jds—=t ([a]) 7t,6|—lb Vs—=t

Figure 9.3: The rules for the local FLC model checking games.

Each play ofS5(so, o) begins with
Co = so,€k¢o

A play proceeds according to the rules given in Fig@ré Rules(V) and(A) are
straightforward. Rule$VAR) and(FP) are justified by the unfolding characterisations

of fixed points:0Z.¢ = ¢[0Z.¢/Z]. If a formulad;y is encountered is stored on

the stack with rule(;) to be dealt with later on while the players try to prove resp.
refuted. Modalities cause either of the players to choose a successor state. After that,
rules((a)) and([a]) pop the top formula from the stack into the right side of the actual
configuration. Rulét) does the same without a choice by one of the players. In both
cases the last formula on the right-hand side has been proved and the next thing to do
is to prove, resp. refute, those formulas that have been collected on the stack.

Definition 194 Recall the tailtl; of a variableZ from Definition/18 of Section2.E.
A variableZ is calledstack-increasingn a playCo,Cy, ... if there are infinitely many
configuration<;,,C,, ..., S.t.

9.2. Local Model Checking Games for FLC 253

e ij<ijigforaljeN
e Ci; =s;j,dj - Z for somes;j andd;,

e forall j € Nexistsy € tlz s.t.8j11 = Ydj, whered = 10 for example.

Playerv wins the playCo,Cy, . .. of G5(s,) iff

1. thereisame Ns.t. C, = t,8F-q andq¢ L(t), or
2. thereisame Ns.t. Cy = t,5+ (a) andt 5, or

3. the play is infinite, and there is¥athat is the greatest, w.rt.y, stack-increasing
variable andp(Y) = pY.y for someu.

Player3 wins the playCo,Cy, . .. of Go(s,) iff

4. thereisameNs.t. Cy = t,dF-qg andge L(t), or

5. thereisameNs.t. C, = t,ekT1, or

6. thereisame Ns.t. C, = t,e (a) andthereis ac § witht-2:t/, or
7. thereisame Ns.it. Cy, = t,5F[a], andd=¢gort-2, or

8. the play is infinite, and there isAthat is the greatest, w.r.y, stack-increasing
variable andp(Z) = vZ.y for somey.

Winning conditions 1 and 4 suggest that game fulecan be refined. Whenever the
formula to be put on the stack isgee Propthen the existing stack can be discarded.

s,0-¢;q
s,q-¢

This does not effect the worst-case complexities, therefore we merely mention this
optimisation.

The following example illustrates the importance of being stack-increasing. Note that
in a L, model checking game the winner is determined by the outermost variable

254 Chapter 9. Model Checking Games for Fixed Point Logic with Chop

S,eF uY.(b) vV (a)vZ.Y;Z;Y
S eFY
s,et(b) Vv (a)vZ.Y;Z;Y
s,e- (a)v2.Y;Z;Y
SVZ.Y;Z)Y + (a)
t,e-vZY;Z)Y
t,e-Z
t,ekY;Z)Y
t.ZYFY
t,Z,Y F(b) vV (a)vZ.Y;Z;Y
t,Z;Y + (b)
t,YFZ
t,YFY;Z)Y
t,.Z,Y;YEY

Figure 9.4: Player d's winning play of Example [195.

that occurs infinitely often. There, if two variabl¥sandZ occur infinitely often and

Y <¢ Z for example, therp(Y) occurs infinitely often, too. Thus, two occurrences
of Y cannot be related to each other in terms of their approximants. FLC only
has this property for stack-increasing variables. But note also that according to
Definition 194 every variable of &, formula that gets unfolded infinitely often in

a play is stack-increasing.

Example 195 Take the formula
¢ = pY.(b)Vv(a)vZy;ZY

ad(¢) =1andsd(d) = 2. Let T be the transition system consisting of stafes} and
transitionss-2-t andt -2 t. s = ¢. The game tree for playétis shown in Figur®.4.

9.2. Local Model Checking Games for FLC 255

Since¢ does not contain any, [a] or [b], playerY does not make any choices and the
tree is in fact a single play.

BothY andZ occur infinitely often in the play. However, neithig(Y) norfp(Z) does.
Note thatZ <4 Y. Y gets “fulfilled” each time it is replaced by its defining fixed point
formula, but reproduced by. On the other hand(does not start a new computation
of fp(Z) each time it is reproduced. BMtis not stack-increasing wheress. AndZ
denotes a greatest fixed point, therefore playeins this play.

Correctness

Before we can prove soundness and completeness of the games we need a few technical
lemmas. LetT = (§,{-%| ac A},L), sc 8, ¢ € FLC, andC =sd § be a
configuration in a game fas and¢. As usual,C is calledtrue if s [¢] ([3](S)),
andfalseotherwise.

Lemma 196 Player 3 preserves falsity and can preserve truth with her choices.
PlayerY preserves truth and can preserve falsity with his choices.

PROOF The cases of disjunctions and conjunctions are similar to those of L&@€na
Consider a configuration
C = sWdtk (a)

If C is true then there is Bs.t.s-2+t andt € [y; 3] (8). By choosing thig, player3
can make the next configuratiord - true. IfC is false then there is no suttand
regardless of which transitiohchooses the following configuration will be false, too.

The proofs of the other cases are dual or similar to preservation of truth and falsity for
the global model checking games in Lem@&&&

Note that the rules which do not require a player to make a choice preserve both truth
and falsity if variables are interpreted via their approximants. n

Lemma 197 Let T = (8,{-%| ac A},L), s€ §, ¢ € FLC. In an infinite play
Co,Cy, ... for sand ¢ there is a unique greatest, with respect«g, stack-increasing
variableZ.

256 Chapter 9. Model Checking Games for Fixed Point Logic with Chop

PROOF Note that a finite play trivially cannot have a stack-increasing variable. Let
the play at handCy,Cy,... be infinite. Suppose first there are two stack-increasing
variablesZ andY. Then there must be two configurations

C =sd-Z and C; = t,d+Y

with i < j. EitherY has been generated from the unfoldingZzaf which case one of

them is greater than the other. The reason is that the stack only contains elements of
tly for some variable/ up to a fixed part at its bottom which is never popped. But

Y e tlz implies eitherY is free infp(Z) or fp(Y) € Sul{fp(Z)). Therefore they must be
comparable.

Supposed = dgYd;1. But thenZ has either been generated from the unfolding of

and they are comparable &f = §,Z8]. At every configuration the stack can only
hold a finite number of variables. Therefore, in such an infinite play it is not possible
that neither of the variables generates the other one infinitely often, and they must be
comparable.

It remains to be shown that at least one variable is stack-increasing. There must be a
variableZ that occurs infinitely often. Moreover, thismust generate itself infinitely
often. Letfp(Z) = 0Z.¢. This means that for every occurrenceZoi aCi = s, 0+ Z,
whenZ is replaced by, the play must follow the syntactical structure ¢gfto one
occurrence oZ in ¢. In order to pop an element frod an atomic formula inp

must have been reached, andh C; did not regenerate itself. Suppose it did and the
stack has been increased. Since (UkR) replaces a variablg with its defining fixed

point formula the additional part of the stack must consist of subformulajs aily.
Moreover, every subformula that occurs “beforeih ¢ must have been removed from

the stack befor& can be reached again. Therefore, the extension of the stack must be
an element oflz. -

One important property of an outermost stack-increasing variable is: If its occurrence
in a configurations,d - Z is interpreted as the approximagf then in its next
occurrence will denotez®~1. This is becausg is outermost in the play at hand and

the second occurrence stems from the first, i.e. the play has followed the syntactical

9.2. Local Model Checking Games for FLC 257

structure offp(Z) between these occurrences. Thus the computatifp(8j does not
get restarted.

Fact 198 Rules(V), (A), (FP), (1), ((a)) and ([a]) decrease the size of the actual
configuration. RulgVAR) increases it. Rul€;) maintains its size.

Lemma 199 Every play ofS+(s,¢) has a uniquely determined winner.

PROOF Suppose the play reaches a configuration to which no rule can be applied. This
is either because a proposition has been reached. But then eitherplajres with
winning condition 1 or playe#s wins with condition 4.

The other possibility to get stuck is to reach a configuratidnt- (a) ort,d+ [a] with
t 2. In the first case player wins with condition 2. In the second case plagewins
with condition 7.

Finally, the stack can become empty and the last formula on the right side is atomic.
If it is a T then played wins with condition 5, with condition 6 if it is da) and with
condition 7 if it is a[a].

If it never reaches such a configuration then it must be of infinite length. According to
Lemmal97, there is a unique outermost stack-increasing variable that determines the
winner with condition 3 or 8. m

Again, in order to prove soundness and completeness we generalise the notion of an
FLC model checking game. Overloading notation wes)ét- ¢ also denote the game

that starts with this configuration. Thef;(s,¢) is equivalent tcs, € - ¢ wheresis a

state of7J.

Theorem 200 (Soundness) LetT = (8,{-%+|ac A},L) withse § and¢,dy € FLC.
If s¢[d;00](S) then playe~ wins s,8o F ¢.

PROOF Supposes € [[¢] ([o] (8)). We construct a (possibly infinite) game tree for
V starting withs, 0o - ¢. If & = ¢o A P1, V chooses the; that makess, & - ¢; false.

If & =doV 1 then the game tree is extended with both false configuras@ns ¢;.
Similar arguments hold for the applications of ru(éa)), ([a]), and(t). Since falsity

258 Chapter 9. Model Checking Games for Fixed Point Logic with Chop

is preserved no finite path can be won by playesince a false leaf implies thatis
the winner of that particular play.

The game tree can be constructed such that plagannot win an infinite play either.
Let its construction reach a configuration

t,0 F vZ.y

s.t.Zis the unique stack-increasing variable according to Lerm@raln the following
configuratiort,d+ Z, Z is interpreted as the least approximafts.t.

t ¢ [Z°]([3)(8)) but te [Z°(B(S))

Note thata cannot be a limit ordinad sincet ¢ [Ag) ZP] () for anySC 8 implies
t ¢ [ZP] (S) for somef < A. The next time a configuratioth, & + Z is reached is
consequently interpreted Z8 1. Again, if a — 1 is a limit ordinalA, then there must
be a3 < A such that

t' & [Z°](187(8))
But ordinals are well-founded, i.e. the play must eventually reach a false configuration
t” 8" - Z in which Z is interpreted ag°. ButZ® = tt andt” ¢ [[tt](S) is not possible

for anySC 8. We conclude that there is no leasthat makes,d - Z® false and, by
Theorem3(, that thereforeé, d - vZ. could not have been false either.

Since played cannot win any play in the game tree that is constructed in the described
way playery must win the game 08 &g - ¢. n

Theorem 201 (Completeness) LetT = (8,{-2+] ac A},L) withse § and ¢, €
FLC. If se€ [¢;80](S) then playerd3 wins s,80 - ¢.

PrROOF This is dual to the proof of Theore20Q Assumings € [[¢] ([do] (S)) we

build a game tree for playet starting with the true configuratios &y - ¢ whilst
preserving truth. If the construction of the game tree reaches a leaf the corresponding
play must be won by since only she wins a finite play that ends in a true configuration.

Again, we show that player cannot win an infinite play either. Suppose there is a
configurationt,d - uY. with Y being stack-increasing and outermost according to

9.2. Local Model Checking Games for FLC 259

Lemmal97. In the next stepy is interpreted as the least approximafits.t.

te [YI(3](®) but t& [YH([3](S))

Again,a cannot be a limit ordinal. The next time a configuratta® Y is reached
it becomes true i is interpreted a¥®~1. If a — 1 is a limit ordinal then there is a
smaller one that makes the configuration true.

Because of well-foundedness of the ordinals every infinite play must reach a

configurationt”,8” - Y in which Y is interpreted a¥©. ButY° = £f and therefore
t”,&" F'Y cannot be true. Thus,d - Y. could not have been true either.

Since playelk/ cannot win any play of the game tree that is constructed in the described
way playerd must win the game starting wit)dg - ¢. n

From Theorem200and201follows that the model checking problem for FLC can be
rephrased as |~ ¢ iff player 3winss e+ ¢.

Corollary 202 (Determinacy) Player V wins G(s,¢) iff player 3 does not win
97(57(‘))'

The next theorem is proved in the same way as the history-freeness of winning
strategies for the global model checking games, see ThebgdmNote that, again,
winning strategies consist of preserving truth, resp. falsity, and using approximant
indices.

Theorem 203 (Winning strategies) The winning strategies for the local FLC model
checking games are history-free.

Complexity

Theorem 204 (Complexity) LetT = (8,{-2+| a€ A},L) be finite withs € § and
$,5 € FLC*". Deciding the winner of,5+ ¢ is in PSPACE for alk,n € N.

PROOF We can assumeé = € since the game fas,d F ¢ is equivalent to the game for
s, ¢;d. Note thatd; d has fixed alternation and sequential depth, too.

260 Chapter 9. Model Checking Games for Fixed Point Logic with Chop

If the underlying transition system is finite then the least approximants used in the
proofs of Theorem200 and 201 are bounded by§| according to Lemmé0. An
algorithm deciding the winner & € - ¢ can index variables occurring in a play as the
corresponding approximant. This means, r|®s and(VAR) are used as

s,0+ 0Z.¢ s,0F ZK
_— and
s, 5+ ZI8 s,5F ¢[zK1/z]

if fp(Z) = 0Z.¢

Then, configurations of the formd - Z° with fp(Z) = 0Z. for somey, d andt are
winning for playerd if o =v and winning for playe¥ if o = . Infinite plays are ruled
out.

Next we analyse the maximal length of a playscf - ¢. Supposead(¢) = 0. At most

S| -|0| steps are possible before a terminal configuration wiZf must be reached, if
the sequential depth ¢fis 1. However, if it is greater thaBthen at the beginning2®!
can be pushed onto the stack where it remains while anzthgets unfolded at most
|S| times before it might disappear. Then tAEl from the stack can be popped and
create the same situation by unfolding to more than@fle of which one remains
on the stack again. GenerallyfS|- |$])34®) is the maximal length of a play in this
situation.

Let nowad(¢) = k > 0. Take the outermost variabfthat occurs in the play at hand.
With each unfolding it can start a subplay on a formula with alternation depth.
Therefore the overall maximum length of the play is

(18] [p])>4#))20H+1 — (|| |g| Clscle)acle)

An alternating algorithm can decide the winneiscf - ¢ by simply playing the game

for it. For input formulasd, ¢ € FLCK" the alternation depth and sequential depth
are bounded. Thus, the time needed is polynomial in the size of the formula and the
size of the transition system. According ©©KS8]] there is a deterministic procedure
that needs space which is polynomial in the size of the formula and in the size of the
transition system. n

9.2. Local Model Checking Games for FLC 261

This argument, applied to formulas of arbitrary alternation or sequential depth, yields
an EXPSPACE procedure. This follows from the fact that the alternating algorithm
needs time exponential in the alternation and sequential depth of the input formula,
and AEXPTIME = EXPSPACE. To show that game-based model checking for FLC
can be done in EXPTIME an alternating algorithm must not use more than polynomial
space. Equally, a single play must be playable using polynomially bounded space.

We will leave it as an open question where there exists a local model checking
procedure for FLC which runs in exponential time. However, we illustrate the problem
of finding an EXPTIME procedure. First we consider a slightly different way of
proving soundness and completeness of the games which only applies if the underlying
transition system is finite. Remember that in the proofs of Theo/2d0sand201
variables are interpreted as approximants, and contradictions arise at configurations
t,& + Z°. Supposefp(Z) = uZy and the game tree is constructed preserving
truth. Then at its first occurrencg is interpreted as the leagk which makes the
configuration, say, & - ZX true. However, if later another true configuratio®’ + Z

is seen andd'] (8) C [0”](8) then this already contradicts the fact thkawas chosen

least. Compare this to the winning conditions of the global FLC model checking
games.

This occurs trivially afterS|- 28! . |¢| steps since there are onl§| many different
states an@/8/ many different sets of them. In most cases this situation will occur in a
stack of polynomial size already. However, there are cases in which the stack can grow
super-polynomially. This means there aneonfigurationss, d; - Z s.t.

[](8) £ [3j](8)
for j <i <mandmis not polynomially bounded by the input size.

Example 205 Let a,b € A. Taken pairwise different prime numbens, ..., p,. Let
Py=0andP = y'_; pj be the sum of the firstprime numbers fof = 1,...,n— 1.
We construct a transition systefh= (8,{-%:| ac A},L) with § = {0,...,P,—1}.
Transitions inJ are given by

j-2(j+1) forall j<P, st j#R—1forallic{1,...,n}

262 Chapter 9. Model Checking Games for Fixed Point Logic with Chop

and
(R-1)-2&P_y forallie{l,...,n}

Finally, ii>j iff j-2i. T consists ofn cycles of lengthpy,...,pn Which
can be traversed along-transitions, say, clockwise and throudktransitions
counterclockwise. Feel free to add as martyansitions ifc # a andc # b to makeT
connected. Finally, we use one propositipwhich holds on one state of each cycle
only.

gelL(j) iff j=nRforsomeie{0,....n—1}

The formula under examination is
¢ = (vZTA(8)Z(b));q

It says that there is an infinieepath s.t. after every sequencenadis anothem b's can

be made to a state which satisfigsO = ¢ which can also be seen using the games
of this section. PlayeY can never choose sinceO = g and every sequence af
a-transitions away fron) leads to a state that can do b-transitions back t®. But
then played wins because the play repeats oneariable. Her game tree is shown in
Figure9.5.

If approximants are used explicitly as suggested in the proof of The@@dnthe stack
cannot grow larger thaR,. This is not surprising sincg € FLC%1. However, let

& = {R|ie{0,....,n—1}}

be the set of all states satisfyingWe claim that

(). (B(S) # [b)--- (B)](S) f0ri»J’<_|j|0i, | #]

N ,
i times j times
and even
[[.~-]](3q) g [[:~-]](31) fori>j<i|1pi, I 7]
i times j times
because

). B = n foralli<[]n

i times

9.2. Local Model Checking Games for FLC 263

Take a state in thk-th cycle. It belongs to

i times

iff it is the (i mod py)-th b-predecessor d#_;. In other words, the sets

i times
can be defined by moving markers aloagransitions in each cycle starting wil.

Since the lengths of the cycles are pairwise different prime numbers the same set is
only marked afte[]i_, pi steps.

This means that the stacks
(0)...(b);q
i times
with i+ 1 elements,1 <i < ([7}_, pj), define pairwise incomparable sets of states.
Note that[]"_, pj & O(n¥) for anyk € N.

Corollary 206 (Complexity) LetT = (8,{-2+| a€ A},L) be finite withs € § and
¢,0 € FLC. Deciding the winner ok,0+ ¢ is in EXPSPACE.

The next theorem analyses the complexity of the games if appli€g formulas. In
this case it is helpful to start the game with an empty stack.

Theorem 207 (Complexity) LetT = (8,{-2+| a€ A},L) be finite withs € § and
¢ € FLC™. Deciding the winner ofs e - ¢ is in NPNco-NP.

PROOF The stack can never grow larger thinand will be empty each time a variable

is reached. The resulting games are essentially the same as the model checking games
for L, from [Sti9. It is known from [EJSO] for example that the winner of those
games can be decided in NBo-NP. The same technique applies here.

The game graph fos,€ - ¢ is finite and of size polynomial in the input. To decide
whether playerd wins s, € - ¢ a nondeterministic algorithm can guess annotations
(Kq,...,kn) for eachp-variableY. The meaning of such an annotationYshas to be

264 Chapter 9. Model Checking Games for Fixed Point Logic with Chop

0,e (VZ.TA(Q)Z(b));q
0,gF vZ.TA(a)Z(b)

0,qFZ
0,gF 1A (a)Z(b)
0.kt qu(a) (b)
0,ekq ,Z(b)gt- (a)
1, (b)gt-Z
1L (b)qkTA (@)Z(b)
L{b)gkt (b)atr (a)Z(b)
Lak) L (D)Z(b)ar (a)
oerq L0 2, (b)(b)q - Z

3, (b)(b)(b)qi-Z

4, (b)(b)(b) (b)qt-Z

Figure 9.5: Player J's game tree of Example [205.

unfoldedk, times at this moment and there are outer variaBles. .,Z,_1 of typev
which have to be unfoldekt, . .., k,_1 times. The maximal size of such an annotation

isO(ad(¢) -log|8|).

Finally, the algorithm has to verify that the order of the annotations is well-founded, i.e.
for everyp-variableY: if there is a path frons, 3 - Y with annotatiork = (ky,...,kn)
tot,d Y with annotatiork' = (K;, ..., K,) thenK is lexicographically smaller thak

This proves that deciding the winner g - ¢ is in NP. Inclusion in co-NP follows
from the fact that the same argument applies to playandv-variables to decide

whether he wins, € - ¢. n

9.2. Local Model Checking Games for FLC 265

This is not a contradiction to the PSPACE-hardness of FLC model checking proved in
[LS024. There, reductions from the validity problem for QBF and from the universal
acceptance problem for NFAs are presented. The latter is courtesult#rNDIm. In

both cases the constructed formulas are not in FLC

Even if the starting stack in the game of Theol2@¥ is non-empty, the semantics of
approximants will always be evaluated on the same set of states. However, if the stack
is 8 = Y& and deciding the winner df & @ is in the complexity clas€ for any

t € §, then deciding the winner &3 F ¢ is in (NPNco-NP)UC.

Theorem207 becomes interesting if applied to formulas in FL@hat are not a
translation of &, formula but are equivalent to a formulady),. One example is

vZ.({a0) A (Bo)); - - .5 ((a0) A (bo)); Z

which is exponentially more succinct than its equivalentjp see [S024.

Chapter 10

Further Research

Smokey my friend, you're
entering a world of pain.

WALTER SOBCHAK

Extensions of PDL

We have shown how to extend the PDL model checking games in order to handle
variations like PDL with the repeat construct or converse modalities. Another variant
of PDL that has attracted some attention because of its relationship to description logics
is PDL with intersection PDL-N, [Dan84. There, programs can contain an operator

o N B with the following semantics.

5908 iff s-%t and st

It is not obvious how to extend the PDL model checking games in order to handle this
operator, too.

268 Chapter 10. Further Research

PDL with intersection is known to be decidable. However, a direct decision procedure

has not been given yet. It remains to be seen whether focus games in the style of
Chapter6 can be used to decide this logic. It also remains to be seen whether such
focus games yield an axiomatisation of PDL with intersection.

One of the problems that comes with this logic is the loss of bisimulation invariance.
PDL-N can distinguish bisimilar models.

Example 208 Let T; be the transition system consisting of statgf,t; with
transitionss-2-t; and si>t2. Let 7> arise fromTJ; by collapsing statef andt,.
Clearly,T1 andT> are bisimilar. However, take the PDL.formula

¢ = (anb)tt

T1,S~= ¢ whereasl,, s = ¢.

This also comes with a loss of the tree model property depending on whethsestill
considered to be a tree. The satisfiability games of Chafiansl8 seem to work well
because of the tree model properties the considered logics have. This is why a model
for a satisfiable formula can easily be extracted from a game tree for playerthe

case of PDL with intersection the game structure might have to be a graph rather than
atree.

Logics with Past Operators

Another extension of PDL that the focus approach might be applicable to is PDL with
converse operators. In general, it remains to be seen whether focus games can decide
the satisfiability problem of modal and temporal logics with past operators and yield
complete axiomatisations for them.

In this setting it makes sense to distinguish LTL with Past from CTL and PDL with
their respective past or converse operators. In the linear time framework, forwards and
backwards operators cancel each other out, i.e.

XY = YX6 = ¢ (10.1)

269

whereY is the previousoperator which behaves likefor the past. Its semantics is
defined as

mTEYy if n'Euy
In a satisfiability game with past operators one cannot simply discard formulas that
speak about the present moment and make a step towards the next future moment with
arule like(X). They need to be preserved since formulas speaking about the future can
contain formulas speaking about the future’s past which can also be the present’s past.

However, because c10.]) it is not possible for a satisfiability play to create arbitrarily
large formulas that alternatingly speak about the past and the future. Another way of
seeing this is LTL with Past’'separation theoremevery formula can be transformed

into a boolean conjunction of three formulas, each speaking about the past, the present
and the future respectiveNGRb89.

In the branching time setting, arbitrarily large formulas can indeed be created. This is
reflected in general inequivalences of the form

@@ # ¢

However, some formulas can speak about the past and influence the present, like the
validity

= @[alo—¢
Thus, satisfiability games for these logics need to carry much more information around

than the games for LTL with Past. This can potentially result in an infinite set of
configurations.

Logics without Until Operators

Instead of extending logics and asking whether the focus idea is still applicable, it
is also possible to restrict logics and consider syntactic fragments in order to obtain
complete axiomatisations for them. One example is LTL or CTL withicandR butF

andG instead. Clearly, the satisfiability games from Secti6risand6.2 still work for

these fragments. However, the axiomatisations in Sec#diasnd?.3 heavily depend

on the presence of an

270 Chapter 10. Further Research

It remains to be seen whether there are different forms of Le/h8teand144 that
allow playerd to strengther formulas s.t. a repeat on such a formula is only possible
if the input formula is unsatisfiable. Note that the strengtheningdofwith a ,
considered as an abbreviation of@rbecomes

QYU A-p)

which is not expressible in LTL without, [Kam6§.

First-Order Temporal Logics

First-Order Temporal Logic$eature constructs of both temporal logics and predicate
calculi. There, the propositional part of a temporal formula is replaced by a fragment
of First-Order logic, seeHme9() for an introduction. In general, these logics are
undecidable, but depending on which fragment of First-Order Logic is used, the
resulting logic might be decidable.

As with their propositional counterparts one distinguishes linear and branching time
logics. For an overview over decidable fragments in general B&¥Z00] and
[HWZ02] for branching time logics in particular.

It would be interesting to see whether the elegance of the focus approach for
propositional temporal logics carries over to decidable predicate temporal logics as
well. Moreover, if it does it also remains to be seen whether this yields complete
axiomatisations in a relatively simple way, too.

*

A Complete Axiomatisation for CTL

The most obvious piece of further work based on this thesis is the extraction of
a complete axiomatisation from the CTlsatisfiability games in Chapté. The
existence of a complete axiom system for CThad been an open question for
approximately 15 years until recently. However, the completeness pro&eyOf]

is rather intricate and long. There is reason to believe that the focus games
for satisfiability of CTL" formulas would yield a much shorter proof of CT&

271

completeness. It remains to be seen what the right strengthening lemma fér CTL
along the lines of Lemme%36€, 144 and151 would be. Furthermore, parts of the
soundness proof of the games (Theo/®EM) need to be formalised as CTlaxioms,

in particular Lemmd.7Q

Other modal logics

The Linear Time p-Calculus p-LIN is L's counterpart interpreted over linear
structures only,/$ti92]. A model checking procedure ferLIN was given in BEM96]

for example. Similar to LTL, the fact that the underlying transition system is only built
state-by-state requires the use of sets of formulas. $ild8&l features explicit fixed

point operators it is reasonable to ask whether focus games can provide an elegant
characterisation gi-LIN’s model checking problem.

It also remains to be seen whether satisfiability gameg-tdiN can be defined along
the same lines as Secti@l and whether a complete axiomatisation can easily be
extracted from them.

Another way of getting beyond the restricted expressive powér,a$ by using fixed
point constructs other than just least and great&&K01] defined MIC, theModal
Iteration Calculus which extends multi-modal logic with simultaneous inflationary
fixed points. There, the semantics of a form@i(X) is not required to be monotone in
X anymore. Hence, it can feature negation. Approximants for inflationary fixed points
are defined as

X0 =0, X i=X"U[0X)xoxe, X = XO

a<A

Thus, the chain of approximants is always increasing. The inflationary fixed point is
found when this chain becomes stationary.

Since a variabl& is allowed to occur negatively ing(X), formulas of MIC are even
less easy to understand thap formulas. Therefore, a game-based account of MIC’s
model checking problem could help to make MIC more usable.

There is no point in trying to define satisfiability games for MIC since it is undecidable
as shown inDGKO1].

272 Chapter 10. Further Research

Satisfiability Games for L,

Another interesting issue this thesis has not touched at all is a game-based account of
the satisfiability problem fo£ ;. A tableau-based decision procedure that uses games
to determine successful branches has been givadWd/]. An axiomatisation came
already with the introduction o, in [Koz83 and was finally proved to be complete

in a series of papersWal93 Wal95 Wal9€], using these tableaux.

Comparable to the situation for CTlit might be desirable to have a simpler and more
intuitive proof of £ 's completeness. Moreover, it would be interesting to see whether
the focus game approach works f9f as well and how it might have to be tailored to
this specific logic.

One of the problems with focus games fgy is the fact that variables can occur more
than once in a fixed point formula. Thus, there are several different ways through the
syntax tree of a formula that lead to a variable. We will illustrate this with an example.

Example 209 Let A = {a, b}. Take thel,, formula
é = pYvZ.((@zZv(b)Z)A[aY A[blY

It stipulates the existence of an infinite path labelled véshor bs, such that from
any state on this path onwards only finitely maasy andbs are possible. Clearly,

¢ is unsatisfiable. Suppose satisfiability gamesQgrare defined along the lines of
Chapter6, i.e. configurations are sets of formulas which are interpreted conjunctively,
and playelv controls a focus. Then play@rcan winG(¢) in the way that is shown in
Figure10.1

Her strategy is the following: if playey sets the focus tda]Y then choose the
disjunct (b)Z and vice versa. Note that playgrhas to put the focus onto one of
the [—]-formulas because only they contain a least fixed point variable. This way,
playerd forces him to change focus in order to keep the play going once it reaches a
configuration in which all formulas begin with a modal operator.

Thus, if a repeat occurs playgrwill have changed focus and therefore should lose.
But none of the least fixed point formulas became fulfilled. Hence, playsould
indeed have lost the game.

273

(@zV (b)Z [[a]Y] b)Y (@zV (b)z,[aY, [[b]v]
(b)Z, [a]v} b)Y (@z, [alY [[b]v}
(b)Z, [aY, [[b]v} (@)Z [[a]v} lo]Y

Z, Y] z v
Z, [vz.(<a>z Vv (B)Z) A[alY A [b]v] z, [vz.(<a>z Vv (B)Z) A[alY A [b]v]
7 g
[(<a>z Vv (B)Z) A[alY A [b]v} [(<a>z Vv (B)Z) A [a]Y A [b]v}

(@2ZV (b)Z, [[a]Y] (b)Y (@zV (b)Z,[a)Y, [[b]Y]
(b)Z, [[a]v} [b]Y (@z,[alY, [[b]v}

(b)Z, [aY, [[b]v} @z, [[a]v} [o]Y
Z, M z. M

Figure 10.1: A sketch of player d's game tree for Example 209,

algorithm
alternating53
global,54
local,’54
alternation depth32
approximantl5
FLC,/36,40
LTL, 22
PDL, 30
automatong, 60
alternating63
Biichi, 60, 62

hesitant67,/122, 1127

Muller, 61
parity, 61
Rabin,61
Streettiol
weak /67,127
axiom,178
system17§
axiom system
Segerbergl98

bisimulation/19
invariancel40
block,/10€, 1127

Index

275

BLTL, 26

completeness
CTL* model checkingl113
CTL* satisfiability,232
CTL axiomatisation192
CTL satisfiability,159,/189
FLC model checking24€, 258
LTL axiomatisation184
LTL satisfiability,[14€, 182
PDL axiomatisation19¢
PDL model checking86
PDL satisfiability,172,/196

complexity
BLTL model checkingl3z2
CTL* model checking120
CTL* satisfiability,236
CTL™ model checkingl131
CTL model checkingl127
CTL satisfiability,163
FLCX model checking251
FLC model checking,250 1259,

263

LTL satisfiability,l150
PDL model checking89
PDL satisfiability,175

276

configuration44
extended230
false /84,230, 245, 255
terminal,99, 136,165 211
true,84, 230, 245,255
confluency94
consistencyl78
Converse-PDL31
correctness
CTL* model checkingl114
CTL™ model checking130
CTL model checkingl25
CTL*, 23
CTL™,25
CTL, 24

descendangl19
determinacy47
CTL* model checkingl114
CTL* satisfiability,218&
CTL™ model checking131
CTL model checkind125
CTL satisfiability,155
FLC model checking244, 259
LTL satisfiability, 140
PDL model checking86
PDL satisfiability,16&

environment35
equivalencell
FLC,35
eventually20, 39
expressive powef,2

finite model propertyl2
CTL*, 117
PDL, 87
First-Order TemporaR70
Fischer-Ladner closur28
fixed point,13
greatest14
least;14
post-,14
pre-,14
type,32
unfolding,48
FLC™,34
FLCKN, 133
FLCK,133
FLC,31
FO,61
focus,6,93, 103

INDEX

game 93,195, 136, 152, 164, 202

player,95
formula
closed 32
minimal,143 157, 169
open,34
path,24
persisting220
present99
principle,94
side,96
state 24
well-named 31

INDEX

game4, 44
board,44
dual,48
extended230
finite,l46
graph/45
tree,45, 46

generally 20

guarded FC13

history,50
-free,50

infimum,[13

L, 41
lattice,13
complete 13
height,14
p-LIN, 271
logic,9
modal,10
temporal |10
LTL, 2C
LTL with Past,26&
LTS,10,16
total, 17
LVR, 51

interleaving 162

maximum,13

MIC, 271
minimum,13
modalp-calculus|12

modality
converse38

model checking?, /10

model checking gam&y7
CTL*, 95
CTL™, 128
CTL,124
FLC,23¢ 251
PDL, 79

monotonicity,14

MPL, 64

MSO, 61

negation closurel2
CTL*, 125
CTL™, 25
CTL, 25
LTL, 21
PDL, 29
next,20
normal form/202

OBDD, /18
optimal strategy

CTL* satisfiability,220

CTL satisfiability,156
LTL satisfiability,141
PDL satisfiability/16&

path,16
player/95
quantifier;24
PDL, 27

277

278

PDL-N, 267
PDL-A, 31
perfect information46
play,44
interactive 5
player,44
previous 269
priority list,/141, 156 168§ 220
program 2/

guantifier,12

regeneratior48, 94

release20

rule, 45,178
dual,48

run, 60

S1S/61
satisfiability,10, 11
satisfiability game47
CTL*, 201
CTL, 152
LTL, 135
PDL,164
scopel245
semantics1l
Converse-PDL31
CTL*, 24
FLC,34
LTL, 20
PDL, 28
PDL-A, 31

INDEX

separation theorer269
sequential deptt83
simulation/19
simultaneous tree§.7
since,20
small model propertyl2
CTL*, 234
CTL, 161
LTL, 148
PDL,174
soundness
CTL* model checking109
CTL* satisfiability,228&
CTL axiomatisation192
CTL satisfiability,158
FLC model checking247, 257
LTL axiomatisation184
LTL satisfiability, 145
PDL axiomatisation19¢
PDL model checking85
PDL satisfiability,171
specification2
state 3
state transformeB4
structure
relational/9
subformula
BLTL, 26
CTL*, 24
CTL™,25
CTL, 25

INDEX

FLC,32
LTL, 21
PDL, 28
property,54
subgame50
supremumyl3
syntax,10
BLTL, 26
CTL*, 23
CTL",25
CTL, 24
FLC,31
L, 42
LTL, 20
PDL, 27

tableaul6, 57

test operatoi2/

tree model propertid 2
CTL*, 235
CTL, 162
FLC,40
PDL,174

unfolding,21

uniform inevitability, 39

universal53
universe9
unravelling,17
until, 20,30
top-level,220

validity, 11

279

variable
first-order)9
free,15,132
propositional 31
stack-increasing252
verification tool,3
EDIN. CONC. WORKB.,3
HYTECH,3
SMV, 3
SPIN, 3
TRUTH, 3

winning condition /45
dual,48

winning strategie4, 46, 50
CTL* model checkingl115
CTL* satisfiability,235%
CTL™ model checking131
CTL model checkindg126
CTL satisfiability,163
FLC model checking25(, 259
LTL satisfiability,l149
PDL model checking87
PDL satisfiability/175

Zermelo’s Theorend?7

[Abro7]

[AI00]

[Al01]

[And94]

[AVBNOS]

[AVVO7]

[BAPM83]

Bibliography

S. Abramsky. Game semantics for programming languages (abstract). In
|. Privara and P. Ruzicka, editoftoc. 22nd Symp. on Math. Foundations

of Computer Science, MFCS’9%olume 1295 ofLNCS pages 34,
Bratislava, Slovakia, August 1997. Springer.

N. Alechina and N. Immerman. Reachability logic: An efficient fragment
of transitive closure logid._ogic Journal of the IGPL8(3):325-338, May
2000.

M. Adler and N. Immerman. An! lower bound on formula size. IAroc.
16th Symp. on Logic in Computer Science, LICS'pages 197-208,
Boston, MA, USA, June 2001. IEEE.

H. R. Andersen. Model checking and Boolean gra@i3s 126(1):3-30,
April 1994.

H. Andréka, J. van Benthem, and l.éseti. Modal languages and
bounded fragments of predicate logidournal of Philosophical Logic
27(3):217-274, 1998.

S. Abiteboul, M. Y. Vardi, and V. Vianu. Fixpoint logics, relational
machines, and computational complexity. Journal of the ACM
44(1):30-56, January 1997.

M. Ben-Ari, A. Pnueli, and Z. Manna. The temporal logic of branching
time. Acta Informatica 20(3):207-226, December 1983.

281

282 Bibliography

[BCI6] G. Bhat and R. Cleaveland. Efficient local model-checking for fragments
of the modalu-calculus. In T. Margaria and B. Steffen, editdpspc. 2nd
Int. Workshop on Tools and Algorithms for Construction and Analysis
of Systems, TACAS’'98olume 1055 oL NCS pages 107-126. Springer,
March 1996.

[BCGY95] G. Bhat, R. Cleaveland, and O. Grumberg. Efficient on-the-fly model
checking for CTL. In Proc. 10th Symp. on Logic in Computer Science,
LICS'95 pages 388-397, San Diego, CA, USA, June 1995. IEEE.

[BCM™92] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang.
Symbolic model checking:10?° states and beyond.Information and
Computation98(2):142—-170, June 1992.

[BEM96] J. Bradfield, J. Esparza, and A. Mader. An effective tableau system for
the linear timeu-calculus.LNCS 1099:98-109, 1996.

[Bet55] E. W. Beth. Semantic entailment and formal derivabilityededelingen
van de Koninklijke Nederlandse Akademie van Wetenschappen, Afdeling
Letterkunde, N.R18(13):309-342, 1955.

[Bry86] R. E. Bryant. Graph-based algorithms for boolean function manipulation.
IEEE Transactions on Computer®5(8):677-691, August 1986.

[BSO01] J. Bradfield and C. Stirling. Modal logics amekcalculi: an introduction.
In J. Bergstra, A. Ponse, and S. Smolka, editbtandbook of Process
Algebra Elsevier, 2001.

[BUc62] J. R. Bichi. On a decision method in restricted second order arithmetic.
In Proc. Congress on Logic, Method, and Philosophy of Sciepages
1-12, Stanford, CA, USA, 1962. Stanford University Press.

[BVW94] O. Bernholtz, M.Y. Vardi, and P. Wolper. An automata-theoretic approach
to branching-time model checking. In D. L. Dill, edité?roc. 6th Conf.
on Computer Aided Verification, CAV’'94olume 818 ofLNCS pages
142-155, Stanford, June 1994. Springer.

Bibliography

[CE81]

[CES83]

[CGLO3]

[CKS81]

[Cle90]

[CS92]

[Cur52]

[CVWY91]

283

E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization
skeletons using branching time temporal logic. In D. Kozen, edfag.
Workshop on Logics of Programsolume 131 ofLNCS pages 52-71,
Yorktown Heights, New York, May 1981. Springer.

E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification
of finite state concurrent systems using temporal logic specifications. In
Proc. 10th Symp. on Principles of Programming Languages, PORL'83
pages 117-126. ACM, January 1983.

E. M. Clarke, O. Grumberg, and D. Long. \Verification tools for
finite-state concurrent systems. In J. W. de Bakker, W. P. de Roever,
and G. Rozenberg, editorBroceedings REX School/Symp. A Decade
of ConcurrencyNoordwijkerhout, The Netherlands, June 1993, volume
803 of LNCS pages 124-175. Springer, 1993.

A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer. Alternatidournal
of the ACM 28(1):114-133, January 1981.

R. Cleaveland. Tableau-based model checking in the propositional
p-calculus.Acta Informatica 27(8):725—-748, 1990.

R. Cleaveland and B. Steffen. A linear—time model-checking algorithm
for the alternation—free modgah-calculus. In K. G. Larsen and A. Skou,
editors, Proc. 3rd Int. Conf. on Computer Aided Verification, CAV91
volume 575 oLNCS pages 48-58, Berlin, Germany, July 1992. Springer.

H. B. Curry. The elimination theorem when modality is presdournal
of Symbolic Logicl7(4):249-265, 1952.

C. Courcoubetis, M. Y. Vardi, P. Wolper, and M. Yannakakis. Memory
efficient algorithms for the verification of temporal properties. In E. M.
Clarke and R. P. Kurshan, edito®roc. 2nd Conf. on Computer Aided
Verification, CAV'90 volume 531 ofLNCS pages 233-242, Berlin,
Germany, June 1991. Springer.

284

[Dam94]

[Dan84]

[DemO01]

[DGKO1]

[EC80]

[EC82]

[EF95]

[EFT94]

Bibliography

M. Dam. CTL* and ECTL' as fragments of the modgicalculus. TCS
126(1):77-96, April 1994,

S. Danecki. Nondeterministic propositional dynamic logic with
intersection is decidable. In A. Skowron, editéttoc. 5th Symp. on
Computation Theoryvolume 208 ofLNCS pages 34-53, Zabaow,
Poland, December 1984. Springer.

E. D. Demaine. Playing games with algorithms: algorithmic
combinatorial game theory. In J. Sgall, A. Pultr, and P. Kolman, editors,
Proc. 22nd Symp. on Math. Foundations of Computer Science, MFCS'01
volume 2136 oLNCS pages 18-32. Springer, 2001.

A. Dawar, E. Gédel, and S. Kreutzer. Inflationary fixed points in modal
logic. In L. Fribourg, editorProc. 15th Workshop on Computer Science
Logic, CSL'01 LNCS, pages 277-291, Paris, France, September 2001.
Springer.

E. A. Emerson and E. M. Clarke. Characterizing correctness properties of
parallel programs using fixpoints. In J. W. de Bakker and J. van Leeuwen,
editors,Proc. 7th Int. Coll. on Automata, Languages and Programming,
ICALP’80, volume 85 ofLNCS pages 169-181, Noordweijkerhout, NL,
July 1980. Springer.

E. A. Emerson and E. M. Clarke. Using branching time temporal
logic to synthesize synchronization skeletonsscience of Computer
Programming 2(3):241-266, December 1982.

H.-D. Ebbinghaus and J. FlumFinite Model Theory Perspectives in
Math. Logic. Springer, Berlin, 1995.

H.-D. Ebbinghaus, J. Flum, and W. ThomasMathematical Logic
Undergraduate Texts in Mathematics. Springer, Berlin, 2nd edition, 1994.

Bibliography 285

[EH85] E. A. Emerson and J. Y. Halpern. Decision procedures and expressiveness
in the temporal logic of branching timdournal of Computer and System
Sciences30:1-24, 1985.

[EH86] E. A. Emerson and J. Y. Halpern. “Sometimes” and “not never” revisited:
On branching versus linear time temporal logidournal of the ACM
33(1):151-178, January 1986.

[Ehr61] A. Ehrenfeucht. An application of games to the completeness problem
for formalized theoriesFund. Math, 49:129-141, 1961.

[EJO1] E. A.Emersonand C. S. Jutla. Tree automatealculus and determinacy.
In Proc. 32nd Symp. on Foundations of Computer Scienmages
368-377, San Juan, Puerto Rico, October 1991. IEEE.

[EJOOQ] E. A. Emerson and C. S. Jutla. The complexity of tree automata and logics
of programs. SIAM Journal on Computing29(1):132-158, February
2000.

[EJSO1] E. A. Emerson, C. S. Jutla, and A. P. Sistla. On model checking for the
p-calculus and its fragment3.CS 258(1-3):491-522, 2001.

[EL87] E. A. Emerson and C.-L. Lei. Modalities for model checking:
Branching time logic strikes backScience of Computer Programming
8(3):275-306, 1987.

[Eme85] E. A. Emerson. Automata, tableaux and temporal logics. In R. Parikh,
editor, Proc. Conf. on Logic of Programsolume 193 ofLNCS pages
79-87, Brooklyn, NY, June 1985. Springer.

[Eme87] E. A. Emerson. Uniform inevitability is tree automaton ineffable.
Information Processing Letter@4(2):77—-79, January 1987.

[Eme90] E. A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Sciengelume B: Formal Models
and Semantics, chapter 16, pages 996-1072. Elsevier and MIT Press, New
York, USA, 1990.

286

[Eme96]

[Eme97]

[ES84]

[Fag74]

[Fis91]

[Fit83]

[FL77]

[FL79]

[Fra54]

[Fri76]

Bibliography

E. A. Emerson Automated Temporal Reasoning about Reactive Systems
volume 1043 ofLNCS pages 41-101. Springer, New York, NY, USA,
1996.

E. A. Emerson. Model checking and tecalculus. In N. Immerman
and P. G. Kolaitis, editorsDescriptive Complexity and Finite Models
volume 31 ofDIMACS: Series in Discrete Mathematics and Theoretical
Computer Sciengehapter 6. AMS, 1997.

E. A. Emerson and A. P. Sistla. Deciding full branching time logic.
Information and Contrqgl61(3):175-201, June 1984.

R. Fagin. Generalized first-order spectra and polynomial-time
recognizable set€Complexity and Computatioid:43—73, 1974.

M. Fisher. A resolution method for temporal logic. In J. Mylopoulos and
R. Reiter, editorsProc. 12th Joint Conf. on Artificial Intelligen¢c@ages
99-104, Sydney, Australia, August 1991. Morgan Kaufmann.

M. C. Fitting. Proof Methods for Modal and Intutionistic LogicReidel,
Dordrecht, 1983.

M. J. Fischer and R. E. Ladner. Propositional modal logic of programs
(extended abstract). IiProc. 9th Symp. on Theory of Computing,
STOC'77 pages 286—294, Boulder, Colorado, May 1977. ACM.

M. J. Fischer and R. E. Ladner. Propositional dynamic logic of regular
programs. Journal of Computer and System SciencH3(2):194-211,
April 1979.

R. Frds£. Sur quelques classifications des egsts de relationsPubl.
Sci. Univ. Alger. 8r. A 1:35-182, 1954.

E. P. Friedman. The inclusion problem for simple languagd<s
1(4):297-316, April 1976.

Bibliography

[Gab8s9]

[Gen35]

[GH82]

[GH94]

[Gor99]

[GPSS80]

[GPVWO5]

[GS53]

[GW99]

[HHWT97]

287

D. Gabbay. The declarative past and imperative future: Executable
temporal logic for interactive systems. In B. Baniegbal, H. Barringer,
and A. Pnueli, editorsProc. Conf. on Temporal Logic in Specificatjon
volume 398 olLNCS pages 409-448, Berlin, April 1989. Springer.

G. Gentzen. Untersuchungdiber das logische SchliessenMath.
Zeitschrift 39:176-210,405-431, 1935.

Y. Gurevich and L. Harrington. Trees, automata, and gamed3rda. 14th
Symp. on Theory of Computing, STOG'®ages 60-65, San Francisco,
California, May 1982. ACM.

J. F. Groote and H. tttel. Undecidable equivalences for basic process
algebralnformation and Computatiqri15(2):354-371, December 1994.

R. Go€. Tableau methods for modal and temporal logics. In
M. D’Agostino, D. Gabbay, R. Hhnle, and J. Posegga, editdigndbook
of Tableau MethodXIuwer, Dordrecht, 1999.

D. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. The temporal analysis of
fairness. InProc. 7th Symp. on Principles of Programming Languages,
POPL’80, pages 163-173. ACM, January 1980.

R. Gerth, D. Peled, M. Vardi, and P. Wolper. Simple on-the-fly automatic
verification of linear temporal logic. IRrotocol Specification Testing and
Verification pages 3—18, Warsaw, Poland, 1995. Chapman & Hall.

D. Gale and F. M. Stewart. Infinite games of perfect informatiémn.
Math. Studies28:245-266, 1953.

E. Gradel and I. Walukiewicz. Guarded fixed point logic. Rrnoc. 14th
Symp. on Logic in Computer Science, LICS’P8ges 45-55. IEEE, July
1999.

T. A. Henzinger, P.-H. Ho, and H. Wong-Toi.HYTECH: A Model
Checker for Hybrid Systems. In O. Grumberg, edit®rpc. 9th Conf.

288

[HIn69]

[HM96]

[Hoa78a]

[Hoa78b]

[Hol97]

[HT87]

[HWZ00]

[HWZ02]

[Imm82]

Bibliography

on Computer Aided Verification, CAV’9¥olume 1254 ofLNCS pages
460-463. Springer, 1997.

J. Hintikka. Models for Modalities D. Reidel, Dordrecht, 1969.

Y. Hirshfeld and F. MollerDecidability Results in Automata and Process
Theory volume 1043 oL NCS pages 102-148. Springer, New York, NY,
USA, 1996.

C. A. R. Hoare. Communicating sequential processgsmmunications
of the ACM 21(8):666—677, August 1978. See corrigendirtod?78h.

C. A. R. Hoare. Corrigendum: “Communicating Sequential Processes”.
Communications of the ACN1(11):958-958, November 1978.

G. J. Holzmann. The Spin model checK&EE Transactions on Software
Engineering 23(5):279-95, May 1997.

T. Hafer and W. Thomas. Computation tree logic CTand path
qguantifiers in the monadic theory of the binary tree. In T. Ottmann, editor,
Proc. 14th Coll. on Automata, Languages and Programming, ICALP’87
volume 267 ofLNCS pages 269-279, Karlsruhe, Germany, July 1987.
Springer.

I. Hodkinson, F. Wolter, and M. Zakharyaschev. Decidable fragments
of first-order temporal logics. Annals of Pure and Applied Logic
106(1-3):85—-134, 2000.

I. Hodkinson, F. Wolter, and M. Zakharyaschev. Decidable and
undecidable fragments of first-order branching temporal logic®rda.
17th Symp. on Logic in Computer Science, LICS'pages 393—402.
IEEE, July 2002.

N. Immerman. Upper and lower bounds for first order expressibility.
Journal of Computer and System Scien@g1):76—98, August 1982.

Bibliography 289

[ImMm86] N. Immerman. Relational queries computable in polynomial time.
Information and Contrqgl68(1-3):86—104, 1986.

[ImMm89] N. Immerman. Descriptive and computational complexity. In
J. Hartmanis, editorComputational Complexity Theory, Proc. Symp.
Applied Math, volume 38, pages 75-91. AMS, 1989.

[JW96] D. Janin and I. Walukiewicz. On the expressive completeness of the
propositionaly-calculus with respect to monadic second order logic. In
U. Montanari and V. Sassone, editoRpc. 7th Conf. on Concurrency
Theory, CONCUR’96volume 1119 o NCS pages 263-277, Pisa, Italy,
August 1996. Springer.

[Kam68] H. W. Kamp. On tense logic and the theory of orddPhD thesis, Univ.
of California, 1968.

[Kan57] S. Kanger. Provability in Logic volume 1 of Stockholm Studies in
Philosophy Almqvist & Wiksell, Stockholm, 1957.

[KG96] O. Kupferman and O. Grumberg. Branching-time temporal logic and tree
automatalnformation and Computatiqri25(1):62—-69, February 1996.

[Koz83] D. Kozen. Results on the propositionacalculus. TCS 27:333-354,
December 1983.

[Kri59] S. A. Kripke. A completeness theorem in modal logidournal of
Symbolic Logic24(1):1-14, 1959.

[KT90] D. Kozen and J. Tiuryn. Logics of programs. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Sciengelume B: Formal Models
and Semantics, chapter 14, pages 789-840. Elsevier and MIT Press, New
York, USA, 1990.

[KVWO00] O. Kupferman, M. Y. Vardi, and P. Wolper. An automata-theoretic
approach to branching-time model checkingJournal of the ACM
47(2):312-360, March 2000.

200 Bibliography

[Lam80] L. Lamport. "Sometime” is sometimes "not never”: on the temporal
logic of programs. InProc. 7th Symp. on Principles of Programming
Languages, POPL'80pages 174-185, New York, USA, January 1980.
ACM.

[Lan00] M. Lange. A game based approach to CTrhodel checking. IrProc.
summer school MOVEP’2Nantes, France, June 2000.

[Lan02a] M. Lange. Alternating context-free languages and linear {irgalculus
with sequential composition. In P. Panangaden and U. Nestmann, editors,
Proc. 9th Workshop on Expressiveness in Concurrency, EXPRESS’02
volume 68.2 ofENTCS pages 71-87, Brno, Czech Republic, August
2002. Elsevier.

[Lan02b] M. Lange. Local model checking games for fixed point logic with chop. In
L. Brim, P. Jatar, M. Kfetinsky, and A. Kitera, editorsProc. 13th Conf.
on Concurrency Theory, CONCUR’Q2olume 2421 ofLNCS pages
240-254, Brno, Czech Republic, August 2002. Springer.

[LLNT99] M. Lange, M. Leucker, T. Noll, and S. Tobies. TRUTH — a
verification platform for concurrent systems. Tool Support for System
Specification, Development, and Verificatiohdvances in Computing
Science. Springer, 1999.

[LMS01] F. Laroussinie, N. Markey, and P. Schnoebelen. Model chedRihy"
andFCTLis hard. InProc. 4th Conf. Foundations of Software Science
and Computation Structures, FOSSACS\@lume 2030 o£NCS pages
318-331, Genova, Italy, April 2001. Springer.

[LP85] O. Lichtenstein and A. Pnueli. Checking that finite state concurrent
programs satisfy their linear specification. HRroc. 12th Symp. on
Principles of Programming Languages, POPL,8tages 97-107, New
York, January 1985. ACM.

Bibliography 291

[LPOO] O. Lichtenstein and A. Pnueli. Propositional temporal logics:
Decidability and completeness.ogic Journal of the IGPL8(1):55-85,
2000.

[LSO0] M. Lange and C. Stirling. Model checking games for CTLn Proc.
Conf. on Temporal Logic, ICTL'QQpages 115-125, Leipzig, Germany,
October 2000.

[LSO01] M. Lange and C. Stirling. Focus games for satisfiability and completeness
of temporal logic. InProc. 16th Symp. on Logic in Computer Science,
LICS’01, Boston, MA, USA, June 2001. IEEE.

[LS02a] M. Lange and C. Stirling. Model checking fixed point logic with chop. In
M. Nielsen and U. H. Engberg, editoBroc. 5th Conf. on Foundations
of Software Science and Computation Structures, FOSSAC&#ne
2303 ofLNCS pages 250-263, Grenoble, France, April 2002. Springer.

[LSO02b] M. Lange and C. Stirling. Model checking games for branching time
logics. Journal of Logic and Computatiori2(4):623—-639, 2002.

[Mar75] D. A. Martin. Borel determinacyAnn. Math, 102:363-371, 1975.

[May0O] R. Mayr. Process rewrite systemsinformation and Computatign
156:264—-286, 2000.

[McM93] K. L. McMillan. Symbolic Model Checking Kluwer Academic
Publishers, Norwell Massachusetts, 1993.

[McN66] R. McNaughton. Testing and generating infinite sequences by a finite
automatonInformation and Contrqgl9(5):521-530, October 1966.

[McN93] R. McNaughton. Infinite games played on finite grapAsnals of Pure
and Applied Logic65(2):149-184, December 1993.

[Mil80] R. Milner. A calculus of communicating systemdNCS 92, 1980.

292

[Mil89]

[MO99]

[Mol92]

[MP92]

[MPW92]

[MR99]

[MS95]

[MSS88]

[MSS92]

Bibliography

R. Milner. Communication and Concurrencyinternational Series in
Computer Science. Prentice Hall, 1989.

M. Miller-Olm. A modal fixpoint logic with chop. In C. Meinel
and S. Tison, editorsProc. 16th Symp. on Theoretical Aspects of
Computer Science, STACS;9%lume 1563 ofLNCS pages 510-520,
Trier, Germany, 1999. Springer.

F. Moller. The Edinburgh Concurrency Workbench (Version 6.1)
Department of Computer Science, University of Edinburgh, October
1992.

Z. Manna and A. PnueliThe Temporal Logic of Reactive and Concurrent
Systems Specificatio®pringer, 1992.

R. Milner, J. Parrow, and J. Walker. A calculus of mobile processes, | and
Il. Information and Computatiqri00(1):1-40,41-77, September 1992.

F. Moller and A. Rabinovich. On the expressive power of CTln Proc.
14th Symp. on Logic in Computer Science, LICS’pages 360-369.
IEEE, July 1999.

D. E. Muller and P. E. Schupp. Simulating alternating tree automata by
nondeterministic automata: New results and new proofs of the theorems
of Rabin, McNaughton and SafraCS 141(1-2):69-107, April 1995.

D. E. Muller, A. Saoudi, and P. E. Schupp. Weak alternating automata
give a simple explanation of why most temporal and dynamic logics are
decidable in exponential time. Froc. 3rd Symp. on Logic in Computer

Science, LICS’88ages 422-427, Edinburgh, Scotland, July 1988. IEEE.

D. E. Muller, A. Saoudi, and P. E. Schupp. Alternating automata, the
weak monadic theory of trees and its complexifyCS 97(2):233-244,
April 1992.

Bibliography 293

[NWI7] D. Niwinski and I. Walukiewicz. Games for thg-calulus. TCS
163:99-116, 1997.

[Pap94] C. H. PapadimitriouComputational ComplexityAddison-Wesley, New
York, 1994.

[Pet62] C. A. Petri. Fundamentals of a theory of asynchronous information
flow. In C. M. Popplewell, editorProc. IFIP Congress Information
Processing, pages 386—-391. North-Holland, August 1962.

[Plo81] G. D. Plotkin. A structural approach to operational semantics.
Technical Report DAIMI FN-19, Computer Science Department, Aarhus
University, Aarhus, Denmark, September 1981.

[Pnu77] A. Pnueli. The temporal logic of programs. Rroc. 18th Symp. on
Foundations of Computer Science, FOCS'péges 46-57, Providence,
RI, USA, October 1977. IEEE.

[Pra79] V. R. Pratt. Models of program logics. IRroc. 20th Symp. on
Foundations of Computer Science, FOCS'pages 115 — 122. IEEE,
1979.

[Pra80] V. R. Pratt. A near optimal method for reasoning about actioornal of
Computer and System Scienc2231-254, April 1980.

[Pre29] M. Presburger. Uber die Vollsindigkeit eines gewissen Systems
der Arithmetik ganzer Zahlen, in welchem die Addition als einzige
Operation hervortritt.Sprawozdanie z | Kongresu Matematikow Krajow
Slowcanskich Warszawa95:92-101, 1929.

[QS82] J. P. Queille and J. Sifakis. Specification and verification of concurrent
systems in CESAR. IRroc. 5th Symp. on Programmingolume 137 of
LNCS pages 337-371. Springer, 1982.

[Rab69] M. O. Rabin. Decidability of second-order theories and automata on
infinite trees.Trans. of Amer. Math. Sqcl41:1-35, 1969.

294

[Rau79]

[Rei85]

[Rey01]

[Saf8g]

[Sav69]

[SC85]

[SE84]

[Seg77]

[SGLI7]

[Smu95]

Bibliography

W. RautenbergKlassische und nichtklassische Aussagenloyileweg,
Braunschweig/Wiesbaden, 1979.

W. Reisig.Petri Nets (an Introduction)Number 4 in EATCS Monographs
on Theoretical Computer Science. Springer, 1985.

M. Reynolds. An axiomatization of full computation tree logimournal
of Symbolic Logic66(3):1011-1057, September 2001.

S. Safra. On the complexity ob-automata. InProc. 29th Symp.
on Foundations of Computer Science, FOC$'B&ges 319-327. IEEE,
October 1988.

W. J. Savitch. Deterministic simulation of nondeterministic Turing
Machines. InSymp. on Theory of Computing, STOCG f@ges 247248,
New York, May 1969. ACM.

A. P. Sistla and E. M. Clarke. The complexity of propositional linear
temporal logics. Journal of the Association for Computing Machinery
32(3):733-749, July 1985.

R. S. Streett and E. A. Emerson. The propositiopatalculus is
elementary. In J. Paredaens, editBroc. 11th Coll. on Automata,
Languages, and Programming, ICALP’8dolume 172 ofLNCS pages
465-472. Springer, Berlin, 1984.

K. Segerberg. A completeness theorem in the modal logic of programs.
Notices of the AMR4(6):A-552, October 1977.

P. H. Schmitt and J. Goubault-Larrecq. A tableau system for linear time
temporal logic. InProc. 3rd Workshop on Tools and Algorithms for the
Construction and Analysis of Systems, TACAS/®Iume 1217 o NCS
pages 130-144. Springer, Enschede, Netherlands, April 1997.

R. M. Smullyan. First-Order Logic Dover Publications, New York,
second corrected edition, 1995.

Bibliography 295

[Sti89] C. Stirling. Comparing linear and branching time temporal logics. In
B. Baniegbal, H. Barringer, and A. Pnueli, edito®roc. Conf. on
Temporal Logic in Specificatiorvolume 398 ofLNCS pages 1-20,
Berlin, April 1989. Springer.

[Sti92] C. Stirling. Modal and temporal logics. In S. Abramsky, D. M. Gabbay,
and T. S. E. Maibaum, editorlandbook of Logic in Computer Science
volume 2 (Background: Computational Structures), pages 477-563.
Clarendon Press, Oxford, 1992.

[Sti95] C. Stirling. Local model checking games. In I. Lee and S. A. Smolka,
editors,Proc. 6th Conf. on Concurrency Theory, CONCUR’'®b6lume
962 of LNCS pages 1-11, Berlin, Germany, August 1995. Springer.

[Sti96a] C. Stirling. Games and modpicalculus. In T. Margaria and B. Steffen,
editors, Proc. 2nd Int. Workshop on Tools and Algorithms for the
Construction and Analysis of Systems, TACAS/®time 1055 of. NCS
pages 298-312. Springer, 1996.

[Sti96Db] C. Stirling. Modal and Temporal Logics for Processeslume 1043 of
LNCS pages 149-237. Springer, NY, USA, 1996.

[Sti01] C. Stirling. Modal and Temporal Properties of Processedexts in
Computer Science. Springer, 2001.

[Sto76] L. J. Stockmeyer. The polynomial-time hierarchyTCS 3(1):1-22,
October 1976.

[Str81] R. S. Streett. Propositional dynamic logic of looping and converse. In
Proc. 13th Symp. on Theory of Computation, STOCj&lges 375-383,
Milwaukee, Wisconsin, May 1981. ACM.

[Str85] R. S. Streett. Fixpoints and program looping: Reductions from the
propositionaly-calculus into propositional dynamic logics of looping. In
R. Parikh, editorProc. Conf. on Logic of Programsolume 193 oL NCS
pages 359-372, Brooklyn, NY, June 1985. Springer.

296

[SVW83]

[SW91]

[Tar55]

[Tar72]

[Tho79]

[Tho95]

[Tho99]

[Var82]

[Var96]

[VarO1]

Bibliography

A. P. Sistla, M. Y. Vardi, and P. Wolper. Reasoning about infinite
computation paths. IProc. 24th Symp. on Foundations of Computer
Science, FOCS’'83ages 185-194, Los Alamitos, Ca., USA, November
1983. IEEE.

C. Stirling and D. Walker. Local model checking in the mogatalculus.
TCS 89(1):161-177, 1991.

A. Tarski. A lattice-theoretical fixpoint theorem and its application.
Pacific J.Math, 5:285-309, 1955.

R. E. Tarjan. Depth-first search and linear graph algorithi@AM J.
Computing 1:146-160, 1972.

W. Thomas. Star-free regular sets @fsequences. Information and
Control, 42(2):148-156, August 1979.

W. Thomas. On the synthesis of strategies in infinite gamelRrdo. 12th
Symp. on Theoretical Aspects of Computer Science, STAC®Rne
900 of LNCS pages 1-13, Munich, Germany, March 1995. Springer.

W. Thomas. Complementation of iBhi automata revisited. In
J. Karhunaki et al., editor, Jewels are Forever, Contributions on
Theoretical Computer Science in Honor of Arto Salonpmeges 109-122.
Springer, 1999.

M. Y. Vardi. The complexity of relational query languages (extended
abstract). IrProc. 14th Symp. on Theory of Computing, STOC{g&®es
137-146, San Francisco, CA, USA, May 1982. ACM.

M. Y. Vardi. An Automata-Theoretic Approach to Linear Temporal Logic
volume 1043 olLNCS pages 238-266. Springer, New York, NY, USA,
1996.

M. Y. Vardi. Branching vs. linear time: Final showdown. In T. Margaria
and W. Yi, editorsProc. 7th Int. Conf. on Tools and Algorithms for the

Bibliography

[VBO6]

[VBOO]

[VS85]

[VW86a]

[VW86b]

[VW94]

[Wal93]

[Wal95]

[Wal96]

297

Construction and Analysis of Systems, TACAS/0lume 2031 ot NCS
pages 1-22. Springer, April 2001.

J. van Benthem. Exploring Logical Dynamics CSLI Publications,
Stanford, California, 1996.

W. Visser and H. Barringer. Practical CTlmodel checking: Should
SPIN be extended?Int. J. on Software Tools for Technology Transfer
2(4):350-365, 2000.

M. Y. Vardi and L. Stockmeyer. Improved upper and lower bounds for
modal logics of programs. IRroc. 17th Symp. on Theory of Computing,
STOC'85 pages 240-251, Baltimore, USA, May 1985. ACM.

M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic
program verification (preliminary report). lIAroc. 1st Symp. on Logic

in Computer Science, LICS’8pages 332-344. IEEE, Washington, DC,
1986.

M. Y. Vardi and P. Wolper. Automata-theoretic techniques for modal logic
of programs. Journal of Computer and System Scienc&183-221,
1986.

M. Y. Vardi and P. Wolper. Reasoning about infinite computations.
Information and Computatiqril15(1):1-37, November 1994.

I. Walukiewicz. On completeness of tipecalculus. InProc. 8th Symp.
on Logic in Computer Science, LICS9Bages 136-146. IEEE, Los
Alamitos, CA, 1993.

I. Walukiewicz. Completeness of Kozen’s axiomatization of the
propositionalp-calculus. InProc. 10th Symp. on Logic in Computer
Science, LICS’95ages 14-24, Los Alamitos, CA, 1995. IEEE.

|. Walukiewicz. A note on the completeness of Kozen’s axiomatization of
the propositionajt-calculus. Bulletin of Symbolic Logic2(3):349-366,
1996.

208 Bibliography

[Wil99] T. Wilke. CTL" is exponentially more succinct than CTL. Rroc. 19th
Conf. on Foundations of Software Technology and Theoretical Computer
Science, FSTTCS’'9%olume 1738 ofLNCS pages 110-121. Springer,
1999.

[Win93] Glynn Winskel. The Formal Semantics of Programming Languages: An
Introduction. Foundations of Computing series. MIT Press, February
1993.

[Zem73] J.J. ZemanModal Logic / the Lewis-Modal Syster@xford University
Press, Oxford, 1 edition, 1973.

[Zerl3] E. Zermelo.Uber eine Anwendung der Mengenlehre auf die Theorie des
Schachspiels. IiProc. 5th Int. Congress of Mathematician®lume I,
pages 501-504. Cambridge University Press, 1913.

