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Abstract

The Continuous Stochastic Logic (CSL) is a powerful means to state properties which
refer to Continuous Time Markov Chains (CTMCs). The verification of such proper-
ties on a model can be achieved through a suitable algorithm. In this doctoral thesis,
the CSL logic has been considered and two major aspects have been addressed: the
analysis of its expressiveness and the study of methods for a decomposed verification
of formuale. Concerning expressiveness, we have observed that the CSL syntax can
lead to formulae with a trivial semantics. As a consequence the idea of well-formed
CSL formula has been introduced. Furthermore, a simpler and equivalent syntax for
referring to ergodic CMTCs have defined as well as a brand new event-bounded Until
operator. With respect to compositionality, we havereferred our study to a specific type
of decomposed CTMCs, namely the bidimensional Boucherie framework. A number
of basic properties concerning the Boucherie framework have been demonstrated and,
relying on this, a compositional semantics for a subset of the CSL syntax has been
derived. The considered subset is obtained by disallowing nesting of probabilistic
path-formulae, something whose impact on the ability to state useful propertiesislow.
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Chapter 1
Introduction

The continual advances in technology, result in the development of ever more com-
plex systems. Forma modelling is conceived as a means to help in optimising and
guiding the design phase. This is achieved by construction of a model of the sys-
tem, whose analysis alows for the study of the system’s behaviour. Different kinds
of analysis can be performed on amodel referring to different aspects of the system’s
behaviour. For example, with respect to computer systems, one could be interested in
the evaluation of performance characteristicslike, the benefit of increasing the number
of CPUs in a multiprocessor system or the impact of a scheduling agorithm on the
CPU’s throughput, or in verifying qualitative properties, like, checking that a mutual
exclusion protocol is deadlock-free. Dependability studies are also amongst the rele-
vant types of analysiswhich one would like to perform on a system’s model. With this
respect, indices like the mean time to failure of a system’s component can be assessed
when the system’sreliability is of interest.

A moddl is an abstract representation of the system. Often the system’s behaviour
can be described in terms of the statesit can occupy and by specifying how it can move
from one state to another in time. Thistype of models are referred to as discrete-event
state-based models and this work refers to them. The model’s dimension depends on
the system’s complexity and on the details it captures. Clearly complex systems can
easily result in very large models which turn out to be intractable. In the literature,
this is often referred to as the state-space explosion problem, a well known issue the
treatment of which isof major interest in research. Compositionality is seen asameans
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2 Chapter 1. Introduction

to tackle the state-space explosion problem. In substance, compositionality is a mod-
elling strategy which is meant to help both in modelling and analysing complex sys-
tems. The basic idea is to obtain a decomposed representation of the model, in terms
of anumber of (smaller) sub-models. The model of interest (composed model) can be
retrieved by the application of a compositional rule to the sub-models. The purpose
of adecomposed analysistechniqueisto draw information regarding the performance
and/or reliability of the composed model, by combining the results of the analysis of
the component models (sub-models). This allows huge, hence intractable, models to
be studied by means of smaller, tractable, sub-models.

When the future evolution of a system depends only on its current state, the system
can be represented by means of aMarkov process (Markov chainswhen the state-space
is discrete). The most common type of analysisfor Markov chains concerns the evalu-
ation of the probability of being in agiven state either inthelongrun (i.e. at infinity) or
at agiven timeinstant t. When timeis considered as an enumerable quantity, then we
refer to Discrete Time Markov Chains (DTMCs). On the other hand if timeis consid-
ered continuous, we refer to Continuous Time Markov Chains (CTMCs). CTMCs have
become avery popular/ widely used formalism for modelling purpose in many diverse
areas, not only in computer science. One possible type of analysisof CMTCsis given
by model-checking. Generally speaking, model-checking is atechnique which permits
the verification of properties against a given model. Properties are given in terms of
formulae of some temporal logic, while a model, in essence, is expressed as a graph
whose paths represent the possible evolutions of the system. An algorithm (model-
checker) is then supplied with both the system’s model and the formula of interest
and returns either a positive answer, if the model fulfils the property represented by
the formula, or a counterexample (a system evolution) which contradicts the formula.
Different types of model-checking have been defined in the last decades, referring to
different types of systems and featuring different types of expressivity. The model
checking for CTMCs takes its name from the temporal logic it is based on, which is
the Continuous Stochastic Logic. Hence it isreferred to as CSL model-checking.

With respect to model -checking, compositionality regards the study of decomposed
equivalences. If a certain property is to be verified with respect to a decomposed



model, it is of interest to investigate whether thisis equivalent to checking a number
of derived formulae with respect to the sub-models. By means of such an approach
the verification of alarge model can be replaced by the verification of smaller models.
In the model-checking literature few works regarding the study of a compositional
approach can be found, and, to the best of our knowledge, none at all with respect to
CSL model-checking.

In this work CSL model-checking is considered and two major contributions are
presented. The first one concerns a study of the CSL expressiveness. Some syntac-
tical bounds are identified in order to characterise sensible CSL formulae. Moreover
a simplified syntax is introduced for referring to a subclass of CMTCs. Secondly, a
compositional way to check CSL formulae is studied. A decomposed approach for
CSL model checking, referring to a specific compositional framework for CTMCs,
namely the Boucherie framework, is derived. Thisresult isbased on proving a number
of equivalences which show that the verification of a certain CSL formulawith respect
to a bidimensional Boucherie process, corresponds to the verification of a number of
derived formulae with respect to the component’s processes.

The remainder of the thesisis organised as follows.

In Chapter 2 some background material and definitions are presented. An overview
of the principa types of temporal logics and of the corresponding model checking
methods s provided. The CSL syntax and semantics are thoroughly described as well
as the existing algorithms for checking its formulae against a given CTMC. The Bou-
cherie compositional framework for CMTCs is then introduced together with an ex-
ample (running example) which will be used throughout the other chaptersin order to
show the correctness of the derived semantic equivalences.

The syntax and semantics of the logic CSL are meant to refer to arbitrary CMTCs.
However, in Chapter 3, it will be shown that when dealing with ergodic CTMCs
(CTMCs which correspond to a strongly connected graph), a simpler and equivalent
syntax can replace the original one. Moreover well-formed CSL formulae are char-
acterised and proved to be the only sensible type of formulae which one would be
interested in. In this chapter we aso introduce a new, event-bounded version of the
Until operator for which a verification method is defined.
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In Chapter 4, the bidimensional Boucherie framework is considered in more detail
and some basic definitions and properties are provided. This constitutes the basis on
which the decomposed semanticsrelies. A partition of the CSL formulae which refer
to abidimensional Boucherie processis characterised: single component formulae are
those which refer to features of one component’s process only; general formulae, in-
stead, involve both components. A compositional semanticsfor both single-component
and general non-path formulae (i.e. formulae which involve neither the Next nor the
Until connective) isthen proved.

In Chapter 5 Next formulae referring to a bidimensional Boucherie process are
considered and a compositional semantics is derived for both the single-component
and general case. It will be proved that checking a“simple” single-component bounded
Next for a probability bound p with respect to a bidimensional Boucherie process is
equivalent, in the worst-case, to checking the same formula, for a derived probability
bound p’ with respect to the component it refers to, or, in the best-case, to verifying
asimpleinequality. Relying on this, it will also be proved, that the verification of the
steady-state probability of a“simple” single-component bounded Next formula against
abound p is equivalent to the verification of the steady-state probability of a derived
formula with respect to a derived probability bound p’ on the component the original
formularefer to. Findly, for the general case, we will show that, checking a general
bounded Next formulaagainst the Boucherie process, boils down to checking n derived
single-component bounded Next formulae for each of the two component’s process.

In Chapter 6, the characterisation of a decomposed semantics for Until formulae
which refer to a bidimensional Boucherie process is addressed. The relationship be-
tween paths of the composed process (bidimensional paths) and of the components
processes are assessed and some basic properties are demonstrated. Essentially each
path of the product process is given by interleaving of a pair of paths on the compo-
nents (projection paths). It will be shown that the probability measure of a bidimen-
sional path can be factored in terms of the probability measure of its projection paths.
Thisallowsfor proving that checking a single-component Until formulafor a bound p
against the product-process is equivaent to checking the same formula for a derived
bound p’ and against the component processiit refers to.



Finally, in Chapter 7, a summary of the results of thiswork is presented, together
with an analysis of directionsfor future work.

The thesis also includes two appendices. Appendix A contains the formal proof of
somelemmas and propositionson which the compositional semantics of Next formulae
(Chapter 5) relies. Appendix B, instead, contains a number of definitions and propo-
sitions concerning the properties of bidimensional paths. The results there proved are
those on which the compositional semantics for Until formulae (Chapter 6) is based.






Chapter 2

Background

2.1 Introduction

This chapter contains the background material for this thesis. A compact survey of
the model-checking methodol ogies, ranging from the non-probabilistic framework to
the probabilistic one, is provided in the next section. Section 2.3 describes thoroughly
the model-checking technique for the Continuous-Time Markov Chains, which is the
class of stochastic models we are concerned about in this work. Section 2.4 provides
an overview of the idea of compositionality in general, in performance modelling and
in particular in the model-checking framework. Since this work focuses on the study
of a compositional approach for model-checking of Continuous-Time Markov Chains
we need to consider a compositional framework for that type of stochastic process.
Section 2.5 is devoted to describing the Boucherie product-form framework, a compo-
sitional method for CTMCs featuring a very useful (de)compositional expression for
the steady-state distribution of the composed Markov Chain.

2.2 Model-Checking: a survey

Model checking is a methodology for testing a system’s model against properties ex-
pressed in terms of some temporal logic formulae. A model checker isan agorithm (a
program) which takes a model/system M and a formula ¢ as inputs (Figure 2.1) and

-



8 Chapter 2. Background

returns either YES if ¢ issatisfied in M or NO if it is not, providing, in such acase, a
counter-example of the checked property.
property (LTL,CTL, PCTL, CSL)

@ YES
ME ¢
MODEL

CHECKER | NO
M ¢

MODEL (LTS,DTMC, CTMC, MDP)

Figure 2.1: Model checking a formula ¢ against a model M

The existing model-checking techniques may be classified with respect to the type
of model they refer to. In this sense we can distinguish between two large classes of
models:

e non-probabilistic models. referring to systems whose behaviour can be deter-
ministically determined.

e probabilistic models: referring to systems whose behaviour can be stochasti-
cally determined.

Non-probabilistic systems are modelled in terms of Labelled Transition Systems
(LTS) (i.e. labelled graphs).

Definition 2.2.1 (Labelled Transition Systems (LTS)) A Labelled Transition System
isatupleM = (SR,L) where

e Sset of states
e R C Sx Sset of arcs
e L:S— 227 Jabelling function

where AP is a set of Atomic Propositions.
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Given astatesof aLTS M = (SR,L), we will denote ats the conjunction of all
atomic propositions with which sislabelled. In essence:

ats = /\ q
a€L(s)

Aswewill see, ats uniquely identifiesthe state sit refersto (i.e. theformulaatsisvalid
only ins).

A pathfromagiven LTSM represents a possi ble execution of the system modelled
by M . Formally,

Definition 2.2.2 (Path over aLTS) Let M = (SR,L) bea LTS Aninfinite path ¢ is
a sequence of statessp — s1 — ... such that for anyi € N, (si,s+1) € R.

Remark 2.2.1 LetM = (SR,L) beaLTS Afinite path ¢ denotesthe set of all infinite
paths of M whose common prefix isG.

Given amodel M and a state s we will assume the following notations concerning
paths:

e PathM () isthe set of all possible paths of M .
e PathM (s) isthe set of all possible paths of M starting at s.

Wherever it is unambiguous the superscript M is omitted from the above notations.

2.2.1 Linear Time Logic model-checking

TheLinear TimeLogic (LTL) [37] isalanguage to reason about the future considering

time as extending in alinear fashion. Modelsare LTS and formulae are evaluated with

respect to paths extracted from the LTS. Two basic temporal connectives allow one to

refer to the future: the next operator, denoted (X) and the until operator, denoted (U).
The complete syntax for the formulae ¢ of the LTL isasfollows:

o:=altt| -0 oAd[Xd[oUd (22.1)

where a € AP and AP being the set of atomic propositions of the considered LTS.
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The semantics of LTL isdefined in terms of arelation, denoted by =, which asso-
ciates paths 6 € PathM and LTL formulae

o =tt forall cePathM o= ¢ AQ" iff o= Ac=0"
o l=a iff aeL(o[0]) clE=X0o iff o[l F¢

cE—¢ iff 6l£0 G):q)’U(b” iff 3i>0:0]i ):d)"/\Vj<i,G[j]):¢’
So Sh Sy Sa Sy
_ (, AN NS
o= (oo )=t )~}
i) olkaldb w)o =X c
it) oFEbUa w) oFEaldd

Figure 2.2: Semantics of next and until formulae

Example 2.2.1 Figure 2.2 provides an example of the semantics of next and until for-
mulae. Case i) shows an example of an until formula ¢ = aUb which is satisfied by
the path . In fact ¢ is such that there exists a future state (sg) on which b istrue and,
furthermore, a is satisfied in all the predecessors of s3 (i.e. s, S1 and sp). Smilarly
caseii) (0 = bU a) is meant to show that an until formula is satisfied in any path ¢
whose initial state 6[0] satisfies the target argument (i.e. ain ¢ = b U a) of the until,
independently by the satisfiability of the first argument (b). Case iii) exemplifies the
next semantics: ¢ = Xc is satisfied by ¢ as the next argument (c) is satisfied on the
successor of ¢ initial state (6[1] = ¢). Finally case iv) shows that ¢ does not satisfy
¢ =aU d. Infact, even if there is a future state satisfying the target d (s4 = d), itisnot
the case that for all its predecessors the first argument (a) is satisfied (indeed sz |~ a).

From now on given an until formula (¢'U ¢”) we will refer to the arguments of the
until operator as the premise, ¢’ and the target, ¢".
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Remark 2.2.2 The set of propositional and temporal connectives described by 2.2.1
isadequate. (i.e. all the others propositional and temporal connectives can be derived

fromthem).
V : disjunction o' V" = (—¢' A-¢")
Vv :implication O =0 =-0'vo'
¢ : sometimein the future op=ttUo
O : alwaysin the future 0o =-0-¢

2.2.2 Computational Tree Logic model-checking

The Computational Tree Logic (CTL) [12] is a temporal logic which alows one to
deal with non-deterministic behaviour. While in LTL the time is seen as evolving in
a single linear way (hence formulae are evaluated with respect to single paths), in
branching time logic the model of timeisatree-like structure in which the future is not
determined: there can be many different paths in the future, any one of which might
be the actual one. The ability to consider non-determinism in the future behaviour
of a system is syntactically achieved by the introduction of two path quantifiers, E
(existential) and A (universal), which are coupled with the temporal connectives next
and until.
The syntax of CTL formulae is the following:

o:=altt|[-0| OAO[EXO|AXO[E(OU 0) |A(9 U 0) (22.2)

Intuitively, the semantics of a path quantified CTL formulaE (@) or A(¢), where ¢ ::=
X | o’U¢”, isthefollowing:

e E(p) (existential) is setisfied in a state sif and only if there exists at least one
path ¢ starting from swhich satisfies ¢.

e A(o) (universal) is satisfied in a state sif and only if any path ¢ starting from s
satisfies o.
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Formally the CTL semantics requires formulae to be evaluated with respect to
states and not to paths. The satisfiability relationship = for CTL is a direct conse-
guence of the LTL one, except for the (path quantified) next and until formulae. Hence
letM = (SR,L) beaLTSand s Sastate, =C Sx ¢ isdefined as follows:

sk=tt foral seS sEO'AY" iff sE AsEQ!

sk a iff aeL(s) sE -0 iff siEd

sk EX(¢) iff Jo € Path(s):o[1l] E ¢ sk AX(¢) iff Vo € Path(s): o[1] = ¢

sk=E(¢'U¢") iff Jo € Path(s): sE AU iff Vo e Path(s)
Si>0:0fi] £ o/AV) <iolj] Fi>0:cfi] = 0"AV)<i.olj] o

Example 2.2.2 Figure 2.3 depicts examples showing the semantics of the path quan-
tified next and until formulae of CTL. In case i) we have that the state s satisfies the
existentially quantified until formula aU b. In fact the tree-like structure shows that
there exists at least one path from s satisfying aUb. On the other hand in case i) we
have that s satisfies the universally quantified until formula ¢ = A(aU b) since all the
paths starting at s satisfy aU b. Finally cases iii) and iv) provide similar examples
though referring to path quantified next formulae.

2.2.3 Probabilistic Computational Tree Logic model-checking

The Probabilistic Computational Tree Logic (PCTL) [20] provides means for verifica-
tion of quantitative properties, like time deadlines on real-time systems.

While both LTL and CTL refer to an untimed type of models (LTS), hence fo-
cusing on verification of correctness and qualitative analysis of the modelled system,
PCTL relates to probabilistic models which incorporate timing information. In partic-
ular PCTL refersto Discrete-Time Markov Chains (DTMC). Markov process analysis
techniques allow for computation of typical overall average performance measures,
such as throughput of a certain activity or average response time of a given service.
PCTL improves the analysis capability of DTMC by introducing the possibility for
verification of soft deadlines properties of the type: “the probability of a service Sto
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Figure 2.3: Semantics of path quantified CTL formulae

be carried out within 2 secondsis at least 98 percent”. In this sense PCTL can be seen
asalogic for stating and verifying soft deadlines.

The PCTL syntax is defined in the following way:

d:=altt| 0| ¢AD|P<p(o) (state-formulag) (2.2.3)
¢ :=oUo (path-formulag) (2.2.4)

whereac AP, p€ [0,1],t € N* U{e} and <€ {>,>,<, <} (i.e. aisan atomic propo-
sitionandt isany positive integer or o).

Probabilistic CTL is a branching time logic, thus formulae are evaluated with respect
to asingle source state by considering al the possible evolutions of the system starting
from that state. The existential and universal path quantifiers of CTL are replaced by
asingle continuous path quantifier, namely Pp. Intuitively a path quantified formula
Pap(o) is satisfied in a state s if and only if the probability measure of the paths o
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validating ¢ is < p.

Definition 2.2.3 Alabelled DTMC M isatuple (S P,L) with

o Sfinite set of states
e P:SxS—|0,1]isthetransition probability matrix and it is such that

Y P(ss)=1 VseS
geS

e L:S— 24P jsthelabelling function.

From a practical point of view DTMC are directed graphs with an arc between
each pair of states (s,s') whose correspondent transition probability is greater than
zero: P(s,s) > 0. Each arc s— S is labelled with the value P(s,s') while each node
se Sislabelled with L(s). Thevalue P(s,s') represents the probability of the transition
from sto ' to take place in one time unit given that sisthe current state.

Definition 2.2.4 (pathinaDMTC) Let M = (S P,L) be a DTMC, a path ¢ from
state 59 is an infinite sequence

SS9 —~>... >S5 —~ ...
such that Vi € N, P(s,5+1) >0

Given a path o, o[k| denotes the k-th element of c.

Remark 2.2.3 (n-th prefix of a path) Givenapath 6 fromaDTMC M, ¢ 1 n denotes
its n-th prefix:

octnN=K—>S—>... >S5
wherec =% —>S1— ... > S = Sir1 — - -

Remark 2.2.4 (n-th suffix of a path) Givena pathc froma DTMC M, n1 ¢ denotes
its n-th suffix:

NTG=S—S+1—--.

wherec=9—>S1— ... > SH > S1— ---
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Definition 2.2.5 (probability measure of a path) Let M = (S P,L) bea DTMC then
the probability measure of the set of (infinite) pathsc withctn=sp—S — ... > &

is given by the product
n—1

Prob(c tn) =[] P(s,s+1)
i=0
We introduce the following notation concerning sets of paths:

e Prob(s): probability measure of al paths ¢ starting at state s. (i.e. Prob(s) =
ZGEPath(S) PI‘Ob(G)).

e Prob(s,¢): probability measure of al paths ¢ starting at state s satisfying the
path formula .

The PCTL semantics of state-formulae is exactly the same asthe CTL ones but for
the path quantified formulae, for which it is given by:

sk Pap() iff Prob(s,¢) < p
While the bounded formulae, defined with respect to a given path ¢ is given by:
o Eo'USy” iff Ji<t:ofi]E0o"AVj<i,olj]=¢

Example 2.2.3 Figure 2.2.3 points out examples of the semantics of PCTL continu-
ously path quantified formulae. On the left hand side (case i) we have that the prob-
ability measure of the paths from Path(s,(a U b)) is somewhere within the bound
of 0.8 which we are interested to verify (we pinpoint in bold the subset of paths
Path(s,(a U b)): clearly the probability measure of the whole set Path(s) is equal
to 1 for any states).

On the other hand, the right hand side of Figure 2.2.3 shows the case where
Path(s,a U b) = Path(s) (i.e. any path out of sis a path satisfying (a U b)). Clearly
the probability measure of Path(s,a U b), in such a case, is equal to 1, hence the
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formula P>1(a U b) is satisfied in s. This example is also meant to highlight the fact
that PCTL enriches CTL expressiveness with respect to path quantification: indeed
P-1(a U b) is equivalent to the universally quantified CSL formula A(a U b), while
P-o(a U b) isequivalent to the existentially quantified CSL formula E(a U b).

S S
1 1
aldb
0.8
i) s = P<os(a U b) it) s EP>i(aUd b) = A(a U b)

Figure 2.4: Continuously quantified path formulae in PCTL

2.3 Model-Checking for Continuous-Time Markov Chains

In this work we are concerned with model-checking techniques for verification of
CTMCs. In[1] Aziz et al haveintroduced atemporal logic, named Continuous Stochas-
tic Logic (CSL), for expressing properties of systems modelled in terms of CTMCs.
An agorithm for checking such properties has also been provided. The original defi-
nition has then been extended by Katoen et al in [6, 4, 5] and revised algorithms have
been defined.

The CSL, basically, enrichesthe standard analysis capability of CTMCs(i.e. steady-
state and transient-state analysis) with the ability of specifying possible evolutions(i.e.
paths) amongst the factors characterising the states of interest (these properties are
usually referred to as path properties). Statements like ”the probability for aservice S
to be carried out withintimet is at least 98 percent”, wheret is a generic positive real
timeinstant (i.e. t € R>o), can be verified through the CSL model checking algorithm.

Amongst other things, CSL model checking strongly relies on the definition of the
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probability measure of a CMTC’s path. Thus before going through the description
of the syntax and semantics of the CSL formulae we need to provide some formal
definitions which will be the basis for the characterisation of such measures. The
definitions, theorems and a gorithmsincluded in the remainder of this section are taken
from [5].

Basically, CTMCs differ from DTMCs in that time is considered as a continuous
quantity whereas in the discrete-time framework timeis seen as an infinite but enumer-
able set of instants. Formally alabelled CTMC is defined as:

Definition 2.3.1 (labelled CTMC) Alabelled CTMC M isatuple (S Q,L) with
e Sfinite set of states
e Q:SxS— Ry istherate matrix

e L :— 2°P isthelabelling function.

where Q(s,s) = Yg45Q(s,S).

The binary relation Q is expressed in terms of a matrix namely, the infinitesimal gen-
erator matrix. Thetransition rate Q(s,s’) > 0 if and only if there is a transition from
sto . Furthermore, as a consequence of the memoryless property of Markov pro-
cesses (see for example [42],[17]), the probability that the transition s — s’ takes place
withint time units(i.e. within the closed interval [0, t]) isgiven by 1— eQ(SS)t, meaning
that the delay of atransition s— s’ is governed by an exponential distribution whose
parameter isthe transitionrate Q(s, ).

Any state s such that Q(s,s') = 0 for all s’ € Sis caled absorbing. The sum of
the outgoing transition rates from a state s is called the total rate or the emanating
rate of s and it is denoted by E(s) = Y¢sQ(s,S) (clearly the emanating rate of an
absorbing state is zero). Whenever Q(s,s') > 0 for more than one state s, then a
competition between different transitions from s exists (race condition). In such a case
the probability that atransition from sto s’ (s# s') occurs within't time unitsis given

by

P(s,t) = Qé?;) . (1_8,5(5)1)
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The above result relies on the fact that the minimum of n exponentialy distributed
random variables is an exponentialy distributed random variable whose parameter is
equal to the sum of the parametersA = Y ; A;. Hence 1— e E(9t isthe probability for

atransition out of sto occur with timet, while P(s,s') = QE(F"; L isthe probability that
the delay of going from sto s’ finishes before the delay of any other transition from
state s.

Embedded discrete-time Markov Chain: givenaCTMC M = (S Q,L), the matrix
P isknown as the transition matrix of the embedded discrete-time Markov chain of M

which we denoteasM = (S,P,L).

Embedded Labelled Transition System: givenaCTMCM = (S Q,L), we can con-
sider the embedded LTS of M whichisdefined asM —= (SR,L), whereforals s eS
(s,s) e R<=Q(s,s) > 0.

Definition 2.3.2 (initial-state distribution) Let M beaMarkov chainwith state-space
S a function o : S — [0,1] is an initial-state distribution for M, given that

ZSES(X(S) =1

Definition 2.3.3 (Path of aCTMC) Let M = (S Q,L) be a labelled CTMC. An infi-
nite path 6 on M isan infinite sequence

to €] th-1 th
SH— S ... — S — ...

whereVi € Ns € Sand Q(s;,S+1) > 0andt; € R . Afinite path ¢ isafinite sequence
-0 s s g wheres isan absorbing state.

Leto=g i>sl i>sz t”ﬁsn i> ... be apath over aCTMC M. The fol-
lowing notations concerning CMTC's paths are widely used throughout the remaining
part of thiswork.

e oli]: isthe (i + 1)-th state of path o, wherei € N.
e J(o,i): time spent by the path ¢ in the state s;.

e c@t: statewhichthepath c isinat timet, wheret € R>q
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e 0=9—% — ... — S —... . istheembedded untimed path of G (i.e.
the sequence of states ¢ consists of). From definition 2.3.3 it clearly follows that
G is a path over both the embedded discrete-time Markov Chain M aswell as
over the embedded L abelled Transition System M.

Generator (untimed) path: intheremaining part of the thesisthe k-th prefix of a path
C=%—51—9...— S — ... over the embedded LTSM , iIsasoreferred asthe
generator of any cylinder-set C(so, lo, S1,- - -, lIk_1,5) where (lg,l1,...,lx_1) isany k-
tuple of positive real intervals. We will use ¢ to denote the generator
C=%—>S — ... — & A generator ¢ characterises all the timed paths de-
termined by the sequence of states G consists of.

Generally speaking when we consider the execution represented by a path o,
ti = 6(o, i) isthetime spent by the systeminitsi-th state (c]i]). Besidesthe systemisin
statec(i] intheinterval [a;, bj] whereaj = Yo 8(0, j) and bj = ¥o<j<i (o, j), which
means that, the system enters the state 6[i| at time a; and leavesit at time b; = & +t;.

The next definition shows how the probability measure of CTMC'’s paths is ob-
tained as a function of the initial-state distribution c.

Definition 2.3.4 (Borel space) Given a sequence of states s, . .., froma CTMC M
such that Q(s;,s+1) > 0(0 <i < k) and a sequence of non empty intervals|lo, ..., lk_1
in R>o then C(sg, lo,S1,- - -, lk—1,5) denotes the cylinder set containing all the paths
0 o, Si... ﬂ s such that 8(o,i) € I; Vi < k. Let F (Path) denote the smallest
c-algebra containing all cylinder sets C(sg, lo, S1,- - -, k-1, ), then any initial distri-
bution o yields a probability measure Pr ! on F (Path), inductively defined on k in the
following manner:

o(So) iff k=0
Pra(C(SOa |0' L) lk—l)S()) —

Pro(C(s0,l0,S1,-- -,k 2,% 1))"
P(Sc-1,5) - (e*E(Skfl)'a— e*E(S"l)'b> it k>0

\

where a=inf(ly_1) and b = sup(lx_1) (ifb=coand A > 0, let e = 0).

lwith only oneinitial state s (i.e. o(s) = 1), then we adopt the notation Pr ¢ instead of Pr,.
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Intuitively we have that, given aCTMC M, then any path G = sy, ..., S over the em-
bedded LTS interleaved with a sequence of intervals|ly,...,lx_1 characterises a set of
paths over M (i.e. the paths going through the states G consists of within t; time units
where each t; fallsin the interval I;). The definition of Borel space tells us that, pro-
vided aninitial distribution o has been given, the probability measure of the set of paths
characterised by the sequence of states G and the sequence of intervalslo, ..., lx_1 de-
pendson the probability of each stepin G aswell ason the dimension of each interval 1.

Steady-state probability and transient-state probability

CTMC:s are characterised by two major types of probabilities which concern states.
The steady-state probability of a state sindicates the likelihood of the system of being
in state s on the long run, which is, when we imagine observing the system behaviour
for an infinite time. On the other hand the transient-state probability of astate sat time
t provides an indication of how likely it is for the modelled system to be in state s at
timet.

The computation of the steady-state and transient-state distributions of a given
CTMC are basic results in the Markov Chains' theory, exhaustively treated in the lit-
erature: see for example, [17],[42],[44].

Both transient-state and steady-state probabilities can be expressed in terms of a
probability measure of sets of paths, in the following way:

™ (0, 9,t) = Pro{o € PathM|c@t = s}  transient-state

where ™ (., S, t) denotes the probability of being in state ' at timet when the initial
distribution for the statesof M is o, while

™ (a,9) = tlimn'\’I (0,8,t) steady-state

—>00

is the probability of being in state ' when the time tends to infinite, given an initial
distribution c.

In its first definition ([1],[3]) CSL syntax included a single type of probabilistic
operator (P<p) and asingle type of path operator, the time-bounded Until. In [6, 4, 5]
Kaoten et al. have enriched the original CSL expressiveness by adding a second prob-
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abilistic operator, namely S, allowing reference to be made to steady-state measures,
plus a second path operator, the time-bounded Next.

In this work we are going to refer to the “extended”, version of the CSL whose
syntax isformally defined as follows:

Definition 2.3.5 (CSL syntax) The syntax of CSL state-formulae (¢) and path-formulae

() isinductively defined as follows with respect to the set of atomic proposition AP:
p:=altt| 0| 670 |Sap(0) | Pap(¢) (state-formulae)
o:=X"oloU'o (path-formulae)

wherea € AP, p € [0,1] isareal number, <e {<,<,>,>} and| € R>g isanon empty

interval.

The semantics of CSL is defined in terms of a twofold relationship denoted by |-,
which relates states of a given CTMC to state-formulae (¢) and paths to path-formulae
(¢). LetM = (S,Q,L) bealabelled CTMC then therelation = for both state-formulae
and path-formulae is defined as follows:

Definition 2.3.6 (CSL state-formulae semantics) Let Sat(0) = {s€ S| s ¢}. The
relation |= for the CSL state-formulaeis defined by

sktt forall seS sE' A iff sSEO ASE Q!
sEa iff aeL(s) SE ¢ iff sE¢
S Sap(0) iff 7 (sSat(9)) Ip  sf=Pap(e) iff Prob™ (s.p) < p

wherese Sand ProbM (s, @) denotesthe probability measure of all pathsc € PathM (s)
satisfying ¢ when the system starts from state s:

ProbM (s, @) = Prs{c € PathM (s) | o |= ¢}

Definition 2.3.7 (CSL path-formulae semantics) The relation = for the CSL path-
formulae is defined by

ok=X'¢ iff o[1] isdefined and 6[1] = 0 A 8(5,0) € |
o E=o'U'e” iff tcl:o@t = ¢" AVt €[0t),0@t' = o
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where o € PathM .,

Alternatively the timed-until semantics can be defined as follows:

o E=o'U'e"” iff Ji>0: [(G[i] =o' A" Ala,bi]N1 #0) v (ofi]E—-0'Ad" Aay€1)
A Jolil = 0.V <i]o@ 6" A (' < [0.0).0@Y o

meaning that a path ¢ satisfies the timed-until ¢’U'¢” if there exists a future state o[i]
in which either

e the premise and target of the until formula are satisfied in o[i] and some of the
time instants spent at o[i] do satisfy the bound 1.

e thetarget but not the premise of the until formulais satisfied in ofi] and the time
instant at which ofi] isentered, t = &;, fallsintothe bound | (a € 1). We observe
that in this case the only relevant timeinstant to care about isthetime ¢ entersthe
state where —¢' A ¢ is satisfied (i.e. o[i]). Infact, according to the semantics of
the until formula, there must beatimeinstantt € | at which ¢ satisfies the target
¢” and such that for any preceding timeinstant t’ < t, ¢ satisfies the premise ¢'.
Since here we are assuming the premise ¢’ to be not satisfied in o[i], then clearly
the only possiblet € [a;, bi] ist = a; (infact Vt € (&, b;j] we havethat V' € [a;,1),
oc@t' |~ ¢).

From the semantics of CSL formulag, we note that with the empty interval | = 0 any
time-bounded path formulais clearly not satisfiable. Furthermore, we notice that the
usual untimed version of the next and until can be obtained as a special case of the
bounded ones by taking | = [0, ). For the sake of simplicity we will omit | = [0, )
from the notation, hence the unbounded next and until formulae will be simply denoted
by X¢ and (¢'U ¢") respectively.

Remark 2.3.1 Let ¢ be a path over a CTMC M satisfying the timed-until (¢'U'¢"),
o € PathM (s,¢/U'¢"), then the embedded untimed path G satisfies the corresponding
untimed-until, 5 € PathM (s, ¢'U¢").

The above remark is a direct consequence of the semantics of timed-until formulae.
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2.3.1 Model-checking CSL formulae

The model-checking algorithm for CSL formulae worksthe sameway asthe CTL ones
for all the non-probabilistic state-formulae: the set Sat(¢) is recursively computed as
the fixed-point of afunction which marks the states of M with sub-formulae of ¢ [12].
The computation of Sat(¢) for the probabilistic state-formulae requires instead a spe-
cific treatment.

Computing steady-state measures. From the CSL semantics (definition 2.3.6), we
know that the steady-state formula Sqp(0) is satisfied in a state s if and only if the
probability measure of pathsc € Path(s) starting from sand satisfying ¢ at timeinfinite
is < p, whichisn(s,Sat(¢)) < p.

If G isthe underlying directed graph of a CTMC M then a subgraph B is a bot-
tom strongly connected component (BSCC) of G if it isamaximal strongly connected
component with no edges outside its vertices (i.e. Reach(s) = B for al s€ B). Let
B(M ) denote the set of BSCC of M . The computation of r(s, Sat(¢)) is based on the
following proposition:

Proposition 2.3.1 Let M = (SQ,L) beaCTMCandse S, S C S then

n(sS)= Y (Prob(s,oatB)- v nB(s’)>

BcB(M) $€BNS
where () isthe steady-state probability of s’ in BSCC B and atg = \/¢g ats.

Algorithm for Sqp(¢). Relying on proposition 2.3.1 it is possible to characterise an
agorithm for the computation of n(s, Sat(¢))

1. the set of states satisfying ¢, is recursively determined.

2. the set of BSCC of M (i.e. B(M)) is computed by means of some existing
algorithm (e.g. [43]).

3. for each B € B(M) the steady-state distribution ©B is computed. This implies
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the solution of the system of linear equations

Zn Q(s,8) =n(s)- Y -Q(s9)

seB

S#g s#¢

> m(s) =

scB

unlessB = {s'} in which case, trividly, nB(s) = 1.

4. the steady-state probability of each state s' € Sat(¢) is then obtained by weight-
ing the steady-state probability nB(s'), given that §' € B, by the probability of
reaching B from s. Such probability, denoted Prob(s, ¢atg), is given by the solu-
tion of the following system of linear equation:

if s atg

Prob(s, catg) = _
Y« P(s,§) - Prob(s,catg) otherwise

If M consists of asingle BSCC, namely B, then
= 2, n(s)
scS

wheren(s') standsfor nB(s), the steady-state probability of s’ with respect to thewhole
CTMC (i.e. B=M).

Computing probabilistic path measures. The verification of probabilistic path for-
mulae like P<p(@) with respect to a state s, relies on the characterisation of the mea-
sure Prob(s, @) (see definition 2.3.6). A distinction is needed between timed-next and
timed-until formulae. Proposition 2.3.2 characterises the measure of the paths satisfy-
ing atimed-next formula. Theorem 2.3.1 concerns the measure of the paths satisfying
atimed-until formula. As a consequence of proposition 2.3.2 and theorem 2.3.1, pro-
cedures for model checking time bounded Next and Until, respectively, are given.

Proposition 2.3.2 For se Sand interval | C R>o witha=infl, b = supl and a CSL
state-formula ¢:

Prob(s, X '¢) = (e*a'E(S) e PEG). Y P(sd)
s=¢
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Proof. Isadirect consequence of the Borel-space construction (see definition 2.3.4).

0
The truth of proposition 2.3.2 with respect to a generic type of interval | € Rx>q (i.e.
either open or closed), relies on the fact that

Prob(s,»’'U'¢") = Prob(s,¢'U(g")
Prob(s, X '¢) = Prob(s, X @(¢)

where cl (1) isthe closure of |. Thisis a conseguence of the fact that the probability
measure of acylinder-set C(so, lo, S1, - - - Ik—1, S) does not change when some of itsin-
tervals|; (i < k) are replaced by their closure.

Algorithm for ng(x'q)). Relying on proposition 2.3.2 the following algorithm for
computing Sat (P qp(X'0)) is defined:

1. the set Sat(¢) isrecursively determined.
2. the state vector by, is computed, where

o ( ) e—E(s)~ian _e—E(s)~supI if se Sat((]))
A 0 otherwise

3. the state vector Prob(X'¢) = (...,Prob(s, X'¢),...) is computed by multiplica-
tion of P by by,
Prob(X'9) = P- by

4. finally, astate sis added to Sat(P<p(X'6)) if and only if its correspondent ele-
ment of Prob(X'¢) satisfies the bound p, which is Prob(s, X '¢) < p.

The following theorem provides arecursive algorithm to compute the probability mea-
sure of the paths satisfying a timed-until formula (¢'U' ¢). Path(s, 1) and Prob(s, 1)
denote, respectively, the set of pathsstarting at sand satisfying the timed-until (¢'U ¢”)
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and its probability measure (i.e. Prob(s,1) = Prob(s,¢’U' ¢”)). Furthermore | © x de-
notestheset {t —x |t € | At > x}.

Theorem 2.3.1 (Time Bounded Until probability measure) For s S and interval
| CRsowitha=infl andb= supl and ¢’ and ¢" CSL state-formulae. The Prob(s, ¢'U'¢")
isrecursively defined as follows:

Prob(s,¢'U'¢") =

;

\

1 iff sE= 0" A—¢f
and a=0

1O gesT(s,9,%) - Prob(s, ¢’'U'%p")dx  iff sj= ¢ A -0

efE(s)~a_'_
J§3gesT(s.9,X) - Prob(s, o’U'™%")dx iff sk= ¢/ Ad”

0 otherwise
(2.3.1

where T(s, 8, x) = P(s,s) - E(S) - e (9 denotes the density of moving from state s to

state s’ in x time units.

Proof. see[5].

O

The formal proof of the above theorem is out of the scope of thiswork, neverthelessit

is relevant to provide an intuitive explanation of the different cases characterising the
function Prob(s,¢'U'¢").

1. a=0and sk —0' A¢”. In such a case any path starting at s clearly satisfies

(0’U'¢"). Thisis the case since s satisfies ¢” and also because trivially each

path starting at sisindeed in s at timet = 0, which, in this case, is the infinum
of the considered interval 1. Therefore Prob(s, ¢’'U'¢”) = 1.

2. sk= ¢/ A—¢" then Path(s, |) consists of all the paths ¢ of the form 6 = s > ¢’
with 0 < x < b and ¢’ € Path(s, I ©x), which is: if we are in a state s which
satisfies ¢ but not ¢” then the paths we have to account for are those ones that
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leave s within b time units, say at X, to reach a state s’ from which they will
satisfy the until formulawithin atimey such that the sum x+yisin|.

3. sk= ¢/ A¢" thenPath(s, | ) consistsof all the paths o of theform 6 = s> ¢’ where
either 0 < x<aand ¢’ € Path(s,l ©x) or x> a. In fact, since we are assuming
sE o' A¢”, we have to consider not only the paths which leave s within a time
unitsto reach astate s’ from which they will satisfy the until formulawithin time
y such that x+yisin| but also those ones which leave s after a time units have
elapsed. Since ¢ isassumed to betruein s(i.e. the corresponding untimed-until
is satisfied in s) then staying in sfor atime greater then a ensures that the until
is satisfied within the given bound I .

4. Any other case different from the above ones leads to a probability measure
equal to zero, as either the corresponding untimed-until is not satisfiable in the
source state s or the time bound | is unmatchable.

Corollary 2.3.1 (Unbounded path formulae probability measure) For se Sand¢’, ¢”
C3aL state formulae

1. Prob(s,X¢') = Yo' P(S S).

2.
(1 iff sj= ¢

Prob(s,¢'U'6") = { TycsP(s8)-Prob(s,¢’Ug") iff s ¢ Ao

0 otherwise

(2.3.2)

Proof. Trivia from proposition 2.3.1 and theorem 2.3.1 with | = [0, o).
U

The resultsin Corollary 2.3.1 are identical to discrete-time framework’s ones: the
probability for satisfying next and until formulae in the logic PCTL are determined in
the same way ([20]).
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Algorithm for Pqp(X¢). Corollary 2.3.1 suggests the following algorithm for deter-
mining Sat (P<p(X¢)):

1. the set Sat(¢) isrecursively determined and, as a result, the vector i, given by
1 ifs

ol5) = -
0 otherwise

IS computed.

2. the vector Prob(X¢) = P-i,, is computed.

3. astatesisin Sat(P<p(X¢)) if and only if Prob(X¢)(s) < p.

Algorithm for P4, (¢'U ¢). Corollary 2.3.1 also suggests the following a gorithm for
determining Sat(P<p(¢’ U ¢")):

1. the matrix P defined as

P(s,§) if sE=d' A0
0 otherwise

P(s,g) = {

is computed.

2. thevector Prob(¢' U ¢”) iscomputed as the least solution of the system of linear
eguations

So far the algorithms for checking Next formulae (either bounded or unbounded) and
Until formulae (unbounded only, i.e. | = [0,)), have been presented. Verifying a
Next formula, essentially, implies the computation of a matrix-vector product. In con-
trast, the verification of an unbounded Until requires the solution of a system of linear

equations.

Time-bounded Until by means of transient analysis.
Asaconsequence of Theorem 2.3.1, the computation of the state vector Prob(¢’ U ¢”),
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for a bounded Until formula, requires the solution of a Volterraintegral equation sys-
tem. This can be done by means of some (computationally expensive) numerical tech-
niques. Alternatively, in [5], the authors, show a number of correctness-preserving
transformations by means of which the model-checking problem for time-bounded
Until formulae reducesto atransient analysis of atransformed CTMC. In essence, itis
proved that computing the probability measure for a time-bounded Until with respect
to acertain CMTC M is equivalent to computing the transient probability of certain
states with respect to a CMTC M’ obtained by making some states of M absorbing.
The formalisation of these preserving transformations is provided in the following
definition and proposition.

Definition 2.3.8 LetM = (S Q,L) beaCTMC and ¢ a CSL stateformula. The CMTC
obtained by making all ¢-statesin M absorbing is denoted M [6]. M [¢0] = (S Q’,L)
where

o) :{ Qlss) if siEo

0 otherwise

It should be noted that M [¢/][¢"] = M [¢' v ¢"]. Relying on the definition of trans-
formed CMTC M [¢], the following properties can be proved.

Proposition 2.3.3 Let ¢',0” be two CSL state formulae and M a CMTC whose ¢"
statesare absorbing (i.e. M = M [¢"]), then:

PrObM (S, q)l U (0] q)ll) _ PrObM [—0' A—=¢"] (S,O[t’t] q)ll)
— z M [70'A-0"] (s,5',t)
/=g

Proof. The proof can be foundin [5].

The above proposition, shows that on a CMTC M, the probability measure for an
Until formula (¢’ U ¢”) bounded by the interval [0,t], is equivalent to the transient
probability at timet, of the ¢” states onthe CMTC obtained by M from making every
(¢’ A—0") state absorbing.
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Theorem 2.3.2 Let M beanarbitrary CMTC and ¢/, ¢" two CSL state formulae, then:

PI’ObM (S, q)/ U[O,t] q)ll) — PI’ObM [(I)"} (S, q)/ U[O,t} q)ll)
= z ﬂ:M [ﬁ‘l)'\/d)"] (S, S/I,t)
S0
Proof. See[9].

The above theorem shows that also for an arbitrary CMTC M, the verification of a
bounded Until formula (¢’ U' ¢) with bounding interval | = [0, t], is equivalent to a
transient probability analysis, at timet, on amodified CMTC (i.e. M [—=¢ v ¢"']).

Theorem 2.3.3 Let M be an arbitrary CMTC and ¢/, ¢” two CSL state formulae and
t,t’ two timeinstant such that 0 < t <t’, then:
Prob¥ (s ¢' U ") = 3 3 aM¥(s ¢ t) aMEOvel(d "t )
S’ s" o
Proof. See[5].

Corollary 2.3.2 Let M beanarbitrary CMTC and ¢/, ¢" two CSL state formulae then:
Prob™ (5,0’ Ut 9"y = Y aMI¥(s ¢t
g =0/A0"
Proof. See[9].

Finally, the above theorem proves that also in the case of a bounding interval whose
infinum is greater than zero (i.e. | = [t,t'] and 0 <t <t’), the bounded-until model-
checking problem on an arbitrary CMTC M boils down to the combined transient
analysis of two modified CTMCs, namely: M [—¢'] and M [-¢’ A ¢"]. Moreover, when
the bounding interval coincides with apoint (i.e. | = [t,t]), asimilar result holds (the
abovecorollary): inthat case the verification of the bounded Until formulacorresponds
to the transient analysis of the modified CMTC M [—¢/].

The major consequence of the above propertiesisthat they show that the time-bounded
Until model-checking problem (in any possible case) with respect to an arbitrary CMTC
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can be replaced by the transient analysis of certain modified CMTCs. Hence, the so-
lution of the Volterra integral equation system associated with a time-bounded Until
formulais not actually needed. Instead the transient distribution for a derived CTMC
can be solved. Formally this is achieved as a solution of the Chapman-Kolmogorov
differential equations (see [42]). However, easily implementable methods, such as
Uniformisation ([42]), can be applied in order to obtain an approximate solution of the
transient distribution.

2.4 Compositionality and Model-Checking

In this section the idea of compositionality applied to model-checking techniques is
described. Before that, an introductory overview on compositionality, in genera, is
provided.

2.4.1 Formal modelling and compositionality

Formal methods for systems’ verification concern the development of methodologies
for the analysis of the behaviour of real systems, in particular computer and telecom-
munication systems.

The basic idea is to provide a means through which an abstract representation of
the system, a model, can be built. A model has to enclose those bits of information
which are relevant to capture the aspects of the system’s behaviour one is interested
to analyse. As a result a model comes with a set of parameters which have to be
instatiated with proper valuesin order for a performance study to be carried out.

The model’s evaluation is obtained either via the solution of a set of equations
leading to analytical results (analytical models) or viasimulation, leading to statistical
results (a concise but complete course on simulation can be found in see [39]).

High-level modelling formalisms like Petri Nets, Process Algebras and Queueing
Networks, easily lead to huge and complex models the solution of which turns to be
unfeasible. As a consequence, compositional approaches to performance modelling
have increasingly gained interest as means to face the tractability of models which
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Figure 2.5: A decomposable model M

have a large dimension. These approaches decompose the system into a number of
smaller and more easily modelled subsystems, as depicted in figure 2.5. The am is
twofold: helping model construction as well as model solution of large and complex
systems, meaning, in the latter case, that the performance evaluation of a big system
can be retrieved by the analysis of the subsystems it consists of. In the following a
brief introduction to these three modelling formalismsis provided.

Petri Nets. Petri Nets are a formalism appropriate for modelling systems with con-
currency. Formally a Petri Net is a bipartite, oriented graph characterised by two class
of nodes. places and transitions. Places are connected to transitions and vice versa.
Places are filled with tokens. Transitions normally represent activities of the modelled
system. A transition is enabled whenever each of its input places contains enough to-
kens. When more than one transition is enabled a competition between the activities
they represent takes place. The system’sdynamicis captured by transition firing: when
an enabled transition fires, tokens from itsinput places are removed and tokensinto its
output places are created; as a result the set of enabled activities can possibly vary.
Since their first definition [10], a plethora of different variants of Petri Nets have
been developed. An interesting survey on the classification of Petri Nets can be found
in [30]. Different types of structural bounds allow to refer to different types of system.
For example placesin Conditions/Events Nets[19] are meant to represent boolean con-
ditions, hence they can contain at most one token in any possible marking and, more-
over, tokens represent unstructured values. Place/Transition Nets, instead, allow places
to be marked with any (positive) integer number of tokens, where again tokens repre-
sent unstructured values. High-level Petri Netslike Coloured Petri-Nets (CPN)[ 25, 26]
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and Well-formed Nets (WN) [18] alow oneto represent structured information: places
contain multi-sets of typed tokens.

Concerning performance evaluation analysis, Petri Nets can be classified with re-
spect to the assumptions characterising the duration of the activity modelled by the
net’s transitions. Timed Petri Nets (TPN) allow one to represent timed activities. De-
terministic TPN are suitable to model systems whose activities' duration is supposed
to be deterministically known. On the other hand Stochastic Petri Nets (SPN)[35]
and their Generalised evolution (GSPN)[33], assume the activity duration to be an
exponentially distributed random variable. Although in the literature Petri Nets with
non-Markovian stochastic behaviours have been widely studied, the most relevant type
of stochastic process underlying a (stochastic) Petri Net are CTMCs. Hence Petri Nets
are a high-level language for specification of CTMCs.

Though Petri Nets do not come with an inherent compositional rule, many tech-
nigques have been developed to build a Petri Nets model by combination of a number
of submodels. There are two main ways for composing Petri Nets, either by transitions
superposition or by place superposition. An example of a compositional framework
for GSPN, based on transition superposition, is given by [41]

Process Algebras. Process Algebras are mathematical theories which model con-
current systems by their algebra. Examples are the Calculus of Concurrent Systems
(CC9Y)[34], Communicating Sequential Processes (CSP)[11] and the Algebra of Com-
municating Processes (ACP) [24].

Process Algebras differ from Petri-Nets in that they lack of a notion of entity or
flow within the model. On the other hand Process Algebras come with an inherent
compositional reasoning: the model is given by composition of terms or processes
(submodels) through a defined set of operators. Each component is characterised by
the set of actions it undertakes. A component’s behaviour is described by means of
combinators like the prefix, allowing the specification of the first action a component
takes, the choice, allowing the specification of an alternative between two possible
actions and the cooperation which permits characterisation of the interaction between
two different components.
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Pure process algebras do not allow consideration of time: they are meant to de-
scribe the behaviour of a system as the set of possible sequences of actions, disregard-
ing the time. Timed extensions of process algebras like TCCS [16] have been realised,
providing a means to associate a determined delay to the system’s actions.

Stochastic process algebras like, for example, PEPA[21] and EMPA[7], permit the
replacement of the nondeterministic choice which comes with pure and timed process
algebras with a probabilistic one. The operational semantics of such algebras describe
the CTMC which underlies the model. Stochastic process algebras are a useful means
which naturally allows for a compositional specification of aCMTC.

In [22] an interesting overview on how the inherent compositionality of stochastic
process algebras can be exploited for the solution of the underlying Markov processis
given.

Queueing Networ ks. Queueing Networks are alanguage for modelling systemswhich
consist of a number of customers competing to access a number of services. Formally
a Queueing Network is an oriented graph whose nodes, usually also called service
centres, are queues. A queue is characterise by an arrival process, a buffer where the
customers queue for the service and one or more servers representing the resources
customers are about to use. A queue is described by five factors, denoted by means of
a5-tupleA/S/c/m/N:

A the arrival process, where M is used to denote a Markov process, while G and D
denote, respectively, ageneral and a deterministic distribution.

S isthe service process and the above notations M,G and D are again used as distribu-
tion identifiers.

c isthe number of serversthe queue consists of.
m isthe buffer capacity
N isthe customer population

where infinite is the default assumption for both the buffer capacity and customers
population. Hence M/M/1 denotes a single-server queue whose customers' arrival
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time and service time are both Markovian.

The queueing discipline determines how the customer in a queue are going to be
served. Typical serving policies are first-come-first-served (FCFS), where the longest
waiting customer is the first to be served or process sharing (PS) where the service
capacity is equally shared among the customers in the queue.

Customers in a queueing network can be partitioned in classes according to the
characteristic they exhibit. The state of a queueing network is typically given by the
number of customers of each class at each service centre. Henceastates= (s, ...,Sn)
of a network is completely described by the states s; (i € {1,...,n}) the individual
queuesit is made of arein.

Queueing networks may be closed if the number of customersisfixed, open whether
the population varies, or mixed if some classes of customers exhibit an open behaviour
while some other have a closed behaviour. More details on queueing networks can be
found for examplein [31, 32].

Solving a queueing network characterised by exponentially distributed times, re-
quires the computation of the long run distribution wt(s) In [15] it has been shown that
a large class of queueing networks allows for a compositional solution, aso termed
product form solution, of the steady-state distribution: the probability of being at state
S=(sy,...,S) onthelong run can be expressed in terms of the product of the proba-
bility of each individual queue to be in sub-state s;:

n(sl,...,sn):G-ﬁm(s)
i=1

where G is a normalising constant. This result allows for the computation of many
performance measures of agiven queueing network without resorting to the underlying
Markov process: only Markov processes of individual queues have to be solved.

In the literature on queueing networks a lot of effort has been put on identify-
ing classes of networks which allow for a product-form solution of the equilibrium
distribution [29, 15, 45]. Similarly a quite large number of works aiming to the char-
acterisation Petri Nets models whose underlying process has a product form solution
can be found (see for example [2, 46, 40]). In thisthesis the product form framework
for ergodic CTMCs described by Boucherie in [8] has been considered.
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2.4.2 Compositional Model-Checking

As a performance eval uation technique, model -checking suffers by the so-called state-
space explosion problem: complex systems result in models of huge dimension which
can not be treated by any existent computational resource. A considerable amount
of works aiming to increase the applicability of model-checking with respect to the
model’s dimension, can be found in literature.

Symbolic model-checking, concerns the study of techniques for a compact repre-
sentation of the state-space based on specific data structures like Binary Decision Di-
agrams (BDD)[38] or Multi Terminal Binary Decision Diagrams (MTBDD)[13]. The
symbolic approach has been applied to both non-probabilistic and probabilistic model-
checking showing a great improvement with respect to the tractability of big models.
In [27, 28], it has been shown that the use of BDD for the state-space representation
have allowed for the verification of CTL formulae over systems that would have oth-
erwise required 10%° states. Symbolic Model-checking for Markov-Chains [9, 23],
instead, relies on the use of both MTBDD, for representing the linear system’s matrix
involved in the verification of probabilistic formulae, and BDD for representing the
formulaitself.

On the other hand abstraction in model-checking, is meant to provide means to
build an abstract, hence reduced, version of the model of interest. 1n[14] Clarke et
al. have shown that the formulae belonging to the logic VCTL*, a subset of the CTL*
in which only the universal path quantifier (V) is allowed, can be verified against the
abstract model, while maintaining their truth value with respect to the original system.

Finally compositional verification of propertiesin agiven temporal logic, concerns
the analysis of the truth of a formula when the given model is obtained by composi-
tion of a number of submodels. The goal is to investigate the possibility of inferring
the truth of a formula ¢ by the verification of ¢ itself or some other formulae on the
component models. In [36], for example, Grumberg and Long define a compositional
rule for structures which are model for the VCTL* logic, proving that the validity of a
formula ¢ in a component M’ is preserved, through preorder, in any system built on
M’ (i.e. if ¢ istruein M’ then it is true in any model obtained through an iterative
compositional process which at some stage has involved M /).
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The godl of thisthesis, istolook for acompositional approach for model-checking
of CTMCs. Given a property ¢ we want to check against a CTMC M obtained by
composition of n submodels (M, ..., Mp), weaim to search for formulae ¢; determin-
ing a boolean combination of satisfiability conditions which turns out to be equivalent
to the satisfiability of ¢ in M. For example, suppose we are interested in verifying
¢ = a1V —ap with respect to aCTMC M given by composition of M1 and M, where
a; isan atomic proposition of M; withi € {1, 2}. Intuitively we have that

M ):al\/—laz <~ Ml)zlal\/Mzb&zaz

meaning that checking ¢ = a1 vV —a2 with respect to M is equivalent to verifying that
either a; isvalid with respect to M1 or az isnot validin M. Clearly the above example
is arather trivial one as it refers to a state-formula given by combination of atomic
propositions. The derivation of formulae which lead to an equivalent combination
of satisfiability conditions for a given ¢ is indeed not trivial whenever a probabilistic
connective like Sqp and P4p isinvolved. Chapter ?? is devoted to the study of such
derived equivaent formulae.

2.5 The Boucherie product-process

In [8], Boucherie establishes a form of CTMC which is susceptible to product form
solution. That result relies on the characterisation of an “independence condition” for
the components of a multi-dimensional CTMC which models a number of processes
competing over shared resources. The Boucherie framework characterisation relies on
two basicsideas:

e Mutual exclusion over resources. when one process holds a resource, other
processes cannot access the resource.

e Strong blocking: processes are subject to strong blocking conditions meaning
that they cannot evolve until the resource is released.

The Boucherie framework. A collection of K regular and irreducible CTMCs, la-
belled M, withk=1,...,K, at finite or countable state spaces S, is considered. Let
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dk(Nk, Ni,) denotes the transition rate of My where ny, i, € S.. Each Markov chain M
is assumed to posses a unique equilibrium distribution ty, and mx(n) is the probabil-
ity for My to be in state ny on the long-run. For this collection the product process
with state space S= $ x --- x & and transition rate in dimension k given by gy, is
introduced.

For such a product process it is assumed that in each transition the state in one
dimension only changes, that is: in any alowed change of state of the product process,
exactly one of the underlying Markov chains changes its state (i.e. synchronisation
between components is not permitted). Furthermore, competition over resources (i.e.
mutual exclusion) can be modelled as exclusion of parts of state space: the product
process can not enter acertain area A C S,

Under these circumstances, the “independence condition” which guarantee the
product form solution roughly states that if the product process is in state
n=(Ny,...,Nk-...,Nk) then if 7 = (n},....n,...,Nk) € Ais a state in the forbid-
denarea A (i.e. a state which breaks the mutual exclusion condition for a resource R;)
with n= ' except for component ny (i.e. N’ would be reachable fromnwith a transition
along k dimension) then Markov chain My can not change its state.

Thisideaisformalised by means of the following two definitions.

Definition 2.5.1 (Competition) Let | be an index set. For each k, let Acj,i €1, bea
set of mutually exclusive sets such that 0 # Acj C Scand Ui Axj = S, k=1,...,K.
CTMC k uses resource i if the CTMC isin state n € Acj. CTMCs k; and k, compete
over resource i if {ni, N, : Nk, € A i, Nk, € Ayi} = 0. Let G C {1,...,K} be the
CTMCs that compete over resource i with CTMC k.

Definition 2.5.2 (Boucherie product process) The CTMC on state space

K
s=[[s (2.5.1)
k=1
with transition rates
K K
a(n,n’) =Y a(nem) T 1(n 1(if ny € Ayj thenk ¢ Cyj) 2
k=1 1=1,0#k

21 isan indicator function: the value of 1(statement) is 1 if the statement is true and O otherwise.
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wheren=(ny,...,nk),n" = (n,...,n), iscalled the product process of the collection
of CTMCs 1,...,K, competing over resources|.

From the transition rate definition it should be noted that a move along dimension
k isnot allowed whenever component k is competing for aresource i with acomponent
£ which actually holdsi in the a current state of the process. On the other hand if kis
not competing for any of the resources detained by any other component in the current
state, then a move aong k dimension is permitted. Summarising: a process k in the
Boucherie framework is blocked in any state where at least one among the resources it
is competing on is occupied, whileit isfree to moveif none of them is busy..

Two components Boucherie product process. In the simplest case, which is what
we consider in the remaining of this thesis, the Boucherie CTMC M consists of two
sub-processes, M1 and My, and two notional resources. There is no competition over
the first resource, but the two processes compete over the second resource, which is
denoted by R. The competition over R has the effect of partitioning the state space of
each component process. If My (k= {1,2}) has state space &, then S« = §gU SR,
where § g denotes the set of states in which the resource is not needed, while Sr
denotes the set of states in which the resource is used. Figure 2.6 shows the areas
which the product processis partitioned in: Riee = S; g X S, g denotes the area where
neither processis using the resource; Ry = S r X Szﬁisthe areawhere M; isusing R;
whilstinareaR; = S g x SR, M, isusing R.

Transition rates of the product process imply that only one process can change
its state, and that process 1 is stopped whenever process 2 holds the resource and
vice versa. Thisis depicted in figure 2.6 where the lines indicate the direction along
with transitions can occur. As a consequence of this stopping mechanism the region
A2 X Agy, also denoted Sigr x SR, can not be entered. Therefore in the definition of the
Boucherie product process, the state space 2.5.1 can bereplaced by S= § x $/Sir ¥
Srandingenerd:

K K
S= k]‘[&\ (HH IT A xAj,i) (25.2)
=1

k=1li€l jeCy
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S
5% So.r
5.7 Rfree | R2
(17 % So7) (S, 7 % So.p)
Sy G
Sir Rl
(St % Sy 7 S

Figure 2.6: A two component Boucherie product process state-space.

Remark 2.5.1 (Trivial case) For | = {1} (i.e. a single resource is considered) we
have Ay = &. In this case the Markov chains are independent. In such a case ei-
ther {nk,, Nk, : N, € Aiy.1,Nk, € A1} = 0 for some pair (kg ko) or {ng, Nk, : N, €
A1, M, € Ay 1} # 0 for all (kg,kp). Inthefirst case S= 0 and the Boucherie product
process is not defined; in the second case all Markov chains operate without influence
of each others.

Theorem 2.5.1 (Product-form distribution) The product process of the collection of
CTMCs1,...K competing over resources | and with state space Sdefined as2.5.2 and
transition rates asin definition 2.5.2, has equilibrium distribution & given by

n(n) = Gﬁnk(nk) nes
k=1

where G is a normalising constant, determined by the exact form of S, and my(-) isthe
equilibrium distribution of process Sy.

Proof. see[8] O
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The result of theorem 2.5.1 holds because each process can either operate indepen-
dently of the other processes or it is blocked. For al n € S if process/ isin state n,
and / # k then process k either carries out atransition which is not in competition with
¢ with respect to resource i (1(if i :ny € S thenk ¢ Cy) = 1) or process k wants to
access the resource which £ occupies ( 1(if i : ny, € §j thenk ¢ C;) = 0). In either case
process k will satisfy its own global balance equations:

> {m(Mi) (N, M) — k(M) Ak (M, M) } = 0, M € Sk
=

these equationsaretrivially satisfied when the processis stopped and a so true when the
process is operating independently. It appears that the exclusion principle maintained
by the transition rates of the product process imposes a protocol on the behaviour of
the product process that ensures that the CTMCs in the collection behave as if they
are independent. For any process k, 1 < k < K, if the current state is in the subset
A it signifies that the process is presently using the resource i and no other process
j, such that j € Gy, can gain access to i and enter its subset of states Aj;. Thus the
competition and the setsCy; define areas of the state space of the product process which
areinaccessible. Thetransition rates of the product process are defined in away which
ensures this exclusion.

2.5.1 Therunning example

In the following weintroduce a practical example of atwo component Boucherie prod-
uct process. Thiswill be our running example, which we will exploit to show examples
of decompositional model checking throughout the remaining of this work.

Example 2.5.1 (Geographical I nformation System (GIS)) Let us consider a navi-
gational device consisting of a pair of sensors which maintain complementary data
about geographical location. In order to keep the sensors’ internal data structuresin
complementary states, they share data via a register they need to access in a mutually
exclusive fashion. Each sensor gains access to the register and locks it while it reads
the current data value; it then uses thisinformation to adjust the equipment it controls
while also recal culating a value for the shared register based on its own internal data
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structures. It then updates the value in the register and releasesiit. In addition, sensor
1 maintains an external monitor and will periodically gather data from this monitor
and use it to recalculate itsinternal data structures.

Each sensor consists of two components: one responsible for resetting the equip-
ment during each cycle, and one responsible for carrying out the data recalculation.
In sensor 1, the recal culation component is assumed to be also responsible for interac-
tion with the monitor. Sensors have a cyclic behaviour characterised by the sequence
of “ actions’ : idle-reading-resetting/recalculating , where resetting and recal culating
are simultaneous. In addition sensor 1 can be involved in gathering information from
its monitor, whenever itisidle.

Such a framework represents an example of a two component Boucherie process
where the two sensors are the processes competing over the shared register. The
labelled CTMCs representing the two sensors are shown in Figure 2.7. They ex-
hibit similar behaviours except for the gather action (state s11) which only sensor 1
can be involved in. States are labelled with elements of the atomic proposition sets
AP, = {idlej,reads, res;,recy, gat1 } and AP, = {idley, ready, resy, recs }, representing
the actions each sensor isinvolved in.

Fromthe starting state s10(S0), whereit isidle, the first(second) sensor reads data
at rate rq, entering state s12(Sp1). Alternatively, sensor 1 only, can gather data from
the monitor at rate rs, entering state s;1. When a sensor reads data it acquires the
resource (the register). Once it has read the data one of its component recalcul ates
(ratery) while the other resets (rater4). When both are ready the data is updated (rate
r3) and theregister isreleased. When data has been gathered from the monitor (sensor
1 only) a recalculation is necessary (rate r») before returning to the initial state. The
state space of each CTMC can be partitioned into two subsets: S;5 = {s10,S11} (no
resource held by sensor 1) and Sjr = {S12, S13, S14, S15}, being the partition for M; and
Sr = {20} and Sr = {21, S22, S23, 24}, being the partition for Mo.

Figure 2.8 depicts the Boucherie process, obtained by composition of sensors
CTMCs. Sates of Sjr x SR are not part of the Boucherie process as a consequence of
the competition over the shared register R. The three areas, Ryree, R1 @and R, which the
state space Sis partioned in, are pointed out: the register is not hold in any state of
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S15
recp, res;

Figure 2.7: State space of the two components M1 and M»,showing the states labelling

region Riee, Whilst it is detained by sensor 1, in any state of region Ry and by sensor
2, in any state of region Ro.

Considering the sensors in isolation we can deduce that their equilibrium proba-
bility distributions. The steady state distribution for sensor 1is:

m(S10) = rarara(rz+ra)/Ga
mi(S12) = rarararsa/Gy
mi(s13) = rirarz/Ga

mi(S1) = rirar3/Ga

Ti(S15) = rarara(rz+ra)/Ga
mi(S11) = rarars(r2+rs)/Ga

where G1 = (rara+ rfl) (rirp+rirg+rarz—+rars) + rlrgrg, while the steady state dis-
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Figure 2.8: State space of the product process M
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tribution for sensor 2is:

To(S0) = rarara(rz+ra)/Ge
T(S1) = rarararsa/Ge
ma(S2) = rirsrs/G;

ma(S3) = rirarz/Gz

To(S2a) = rarara(r2+ra)/Ge

where G = (rara+12)(rarg+rara+rarz) +rirar.

As a conseguence of theorem 2.5.1, the equilibrium distribution of the Boucherie
process can straightforwardly be derived from the sensors' ones.






Chapter 3

On CSL Expressiveness

3.1 Introduction

The syntax and semantics of the CSL logic, as described in the previous chapter, pro-
vide the user with powerful meansto state properties concerning CTMCs. Steady-state
and transient analysis of the system can be performed in terms of CSL state formulae,
as well as analysis of path-based properties. However there are some non-obvious
features of the CSL semantics which need to be addressed.

The tempora operators Next and Until allow us to refer to the future behaviour
of the system, though, in that respect, they feature different capabilities. A study of
their expressivenessis addressed in Section 3.2, where the idea of time quantification
as opposes to step quantification, as a feature of a temporal connective, is presented.
As aresult a step-bounded version of the Until operator is defined.

Section 3.3 concerns the study of some relevant consequences of the semantics
of CSL time bounded path formulae. The characterisation of sensible probabilistic
formulae isfaced in Section 3.4, where the definition of well-formed probabilistic for-
mulae is provided. The effects of the semantics of CSL steady-state formulae with
respect to ergodic models, is addressed in Section 3.5, where semantic equivalences
for formulae involving the steady-state operator are found, leading to a modified, but
equivalent, CSL syntax to refer to ergodic CTMCs.

a7
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3.2 Extending the Until expressiveness

In this section some considerations regarding the expressiveness capability of the two
basic temporal connectives, Next and Until, are presented.

Themain characteristic of temporal logics(i.e. LTL, CTL, PCTL, CSL), asameans
for specifying properties of asystem, isthat they allow oneto refer to future evolutions
(i.e. paths) of asystem, as*“criteria’ for selecting the states of interest. Thisisachieved
by means of two temporal connectives, namely Next and Until. Generally speaking,
with discrete-events state-based systems two types of quantification with respect to the
future appear to be sensible: a time quantification, by means of which the evolution
of the system is considered with respect to time elapsing, as opposed to a step quan-
tification or event quantification, through which the system’s evolution is considered
with respect to events occurrence. Clearly time quantification is sensible only when
elapsed time is captured in the modelling framework®. We observe that if time is seen
as a discrete quantity in the modelling framework, then, usually, time elapsing and
event elapsing coincide (the occurence of an event is assumed to “consume” one time
unit). Thus, when referring to such models (e.g. DTMCs), time quantification and
event quantification have the same meaning.

Both Next and Until allow us to refer to the future but with some differences.
Referring to their original (untimed) version, some observations can be made. The
Until operator U (and its derivative sometime in the future, i.e. o = (ttU¢)) permits
onetorefer to features of the system’ sbehaviour which oneisinterestedin observingin
an indefinitely long future (i.e. Until does not naturally imply any sort of quantification,
neither time nor step). Conversely, the Next operator X naturally implies a (very strict
one-transition only) step quantification: (X¢) identifies those evolutions for which ¢
happens to be true after exactly one transition from the present state.

When referring to timed models, either discrete-time (e.g. DTMCs) or continuous-
time (e.g. CTMCs), time quantification can be sensible.

In the PCTL logic (the temporal logic for DTMCs), an event-bounded version of
the Until operator (¢ U<" ) allows one to specify an upper bound (i.e. n) for the

1We will name timed those modelling frameworks which capture time elapsing and untimed those
other ones which do not capture time elapsing.



3.2. Extending the Until expressiveness 49

number of transitions/time instants within which the Until formulahas to be satisfied.

Conversely, when the time is continuous (as with CTMCs), time quantification
and event quantification are distinct. In the CSL logic, a time-bounded version of
both Next and Until is provided. It basically allows us to associate a continuous-time
quantification with the usual semantics. As a result, a time-bounded Until formula
(0 UD ) allows to refer to a behaviour of interest which has to happen in a time-
wise definite but step-wise indefinite future (i.e. a combined time/event quantification
is not supported by the time-bounded CSL Until operator). On the other hand, the
time-bounded Next, incorporates both types of quantification: a formula like (X [2Pl¢)
characterises those evol utions such that ¢ happensto be verified in atime-distance | =
[a, b] from the starting instant of observation (i.e. the time a state is entered) and also
within a (strict) step-distance of exactly onetransition. In this sense, the time-bounded
Next allowsfor astrict, combined time-step quantification of the future, where the only
possible value for the step quantificationis 1.

In the reminder of this section the definition of event-bounded Until is provided. It
extends the one which can be found in [20] by allowing the specification of a bound-
ing interval {ny,n2} with a positive, possibly non-null infinum. We will prove that,
contrary to the “standard” event-bounded Until ([20]) which refers to bounding inter-
vals like {0, n} only, the probability to satisfy an event-bounded Until which refers to
a single-point bounding interval (i.e. n1 = ny), can be computed as a function of the
transition probability matrix P rather than as afunction of atailored matrix M derived
from P.

Definition 3.2.1 (event-bounded Until) Let ¢’ and ¢” be two CIL state formulae,
Ny, N2 two natural numbers with ny < n, and ¢ a path on a given CTMC. The step-
bounded Until formula (¢’ Uy, ) ¢”) is a path-formula whose semantics, with re-
spect to ¢, is defined as:

o (0 Umuny 0) <= Jiim<i<miofi]=0"A(j <i)=olj] ¢
If n; = ny = nthe notation (¢’ Uy ¢") is used.

We recall here that the probability of satisfying an Until formula from a state s of a
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CTMC M isgiven by the probability of each path that, starting at s, satisfies the Until
formula, whichis: ProbM (s, OUpny v) = Prs{o € Path(s) : 6 = ¢ Uy w}. Wedenote
Path(s,¢ Uy ) the set of such paths.

The following theorem provides a method for computing the probability measure
of satisfying a step-bounded sometime in the future formula, ogm ¢ = (tt Ugyy ¢) from
astate s.

Theorem 3.2.1 (event-bounded Diamond) For a formula ogm ¢ = (tt Uy ¢) and a
state sof a CTMC,

;

iy(S) if n=0

Prob(s, oy ¢) = 1 Prob(s, X ¢) if n=1

| TsesP(s ) -Prob(s,om 13 0) if n>1

whereiy(s) =1if si= ¢ andiy(s) =0, if s = ¢.

Proof. We denote Path(s,o;m¢) the paths starting at s and satisfying ond and
Prob(s, o;m®) the measure of their probability. Similarly Path(s, X¢) denotesthe paths
starting at s and satisfying X¢ and Prob(s, X¢) the measure of their probability. Let us
consider the different cases.

Case 1. n=0. Inthis case either every path starting at s satisfies ¢, ¢ or none.
If s|= ¢ then Path(s, o;010) = Path(s), hence Prob(s, o(0,0) = 1 =i(s). If s~ ¢ then
Path(s, o10,0) = 0, hence Prob(s,¢;010) = 0=i4(s).

Case2. n= 1. Trivialy Path(s, o;1,0) =Path(s, X¢) hence Prob(s, o{1,¢) =Prob(s, X¢).

Case 3. n> 1. In this case Path(s,o;n¢) consists of al those paths ¢ of the form
s— o', where ¢’ € Path(s, o(,_1,0) (i.e. al those paths whose first order suffix satis-
fies¢p inn—1steps, (11 0) Fogn_110). Hence

Prob(s,oim®) =Y’ P(s,s) - Prob(s,o(n 1} ¢)
seS
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Corollary 3.2.1 (Prob(o{n} ¢) For aformula ogy ¢ and a CTMC M the state vector
Prob(ogm 0) is given by:

i if n=0

Prob(om; ¢) = ¢ Prob(X ¢) if n=1

[ P-Prob(eg_130) if n>1

Proof. Straightforward consequence of Theorem 3.2.1.

Corollary 3.2.1, shows that the computation of the probability state vector for a step-
bounded sometime in the future formula results in an iterative matrix-vector product.
In the next theorem a way of computing the probability measure for a step-bounded
Until formula, (¢ Uy, ) is described. It is based on the result for the step-bounded
sometime in the future operator.

Theorem 3.2.2 (event-bounded Until) For a formula (¢ Uy, v) and a state s of a
CTMC, the following holds:

e

iy(9) if Nn=0

Prob(s, (¢ Ugny w)) = ¢ iy(S) - Prob(s, X y) if n=1

[ 19(5) - ZgesP(s,s) - Prob(s, (¢ Upn_gy ) if n>1
Proof. Let us consider the different cases.
Case 1l n=0. Inthis case either every path starting at s satisfies (¢ U;q) w) or none.

If s =y then Path(s, (¢ Uyqy v)) = Path(s), hence Prob(s, (¢ Ujo, w)) = 1=1i,,(9). If
s}y Path(s, (0 Uggy w)) = 0, hence Prob(s, (¢ Ugoy w)) = 0= i, (9).
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Case2. n= 1. Theset Path(s, (¢ Uy, y)) iseither equal to Path(s, Xy) or empty. If
sk= ¢ then Path(s, (¢ Uy, y)) = Path(s, Xy). Hence, in this case,

Prob(s, (¢ U{l} V)) = Prob(s, Xy) = iy (s) - Prob(s, Xy)
If s |~ ¢, then Path(s, (¢ Uy1y w)) = 0. Hence, in this case,
Prob(s, (0 Upzy w)) = 0=1iy() - Prob(s, Xy)

Case3. n> 1. Theset Path(s, (¢ Uy v)) iseither empty, if s~ ¢, or it consists of all
those paths ¢ of theform s — ¢’, where ¢’ € Path(s, (¢ Ug,_1y v)), if s = 0. Hence,

Prob(s, (¢ U w)) =iy - [XsesP(s,s) - Prob(s’, (¢ Ugn_13 w)))].

Corollary 3.2.2 (Prob(¢ Uy y)) For aformula (¢ Uy, w) andaCTMC M the state
vector Prob(¢ U,y v) is given by:

(i, if n=0

Prob(¢ Ugny ) = ¢ i, - Prob(X ) if n=1

ig-[P-Prob(¢ Upn 1y y)] if n>1

\

Proof. Straightforward consequence of Theorem 3.2.2.

Corollary 3.2.2, showsthat, also for a step-bounded Until formula, the computation of
the probability state vector resultsin an iterative matrix-vector product.

In this section an event-bounded version of the Until operator has been formally
introduced. It allows usto specify a bounding interval in terms of number of eventsin
the executionsfulfilling an Until-like property. It has been shown that the computation
of the probability measure for an event-bounded Until, can be obtained via an iterative
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SoF ¢

S2fEPNAY s3= ¢

Figure 3.1: A simple arbitrary CMTC M

matrix-vector multiplication. This proves that, differently from its event-unbounded
counterpart, the model checking problem for event-bounded Until does not require the
solution of a system of linear equations.

Example 3.2.1 (event-bounded Until) Figure3.1lillustratesa simplefour-statesCMTC,
with transitions probability matrix P:

01
00
10
10

'U
I

O O Nk O

O O Nk O

Let ¢ and y betwo CSL state-formulae and let us assume that  is satisfied only in the
state sp, while ¢ isvalid in every state. Asa result:

. . 1
ip=(1,111) iy =(0,0,1,0)) Prob(X y) = (0,3,0,0)

By application of Corollary 3.2.2, the probability state-vectors Prob(¢ U, X ), for
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n e N, can be straighforwardly derived.

1
Prob(¢ Upiag v) = (0,5,0.0)
1
Pr_()t)(¢u{2+3k} W) = (E,O,O,O)
11

Prob(o Uz gq v) = (O’O’E’E)

with k € N. We observe that, for example, the probability of fulfilling the Until formula
in n =5 steps is non-null only for state sg. Thisiis, in fact, correct, as 5o is the only
state admitting some (in this case two, o, S1, S, S0, S1, S2 and S, S1, S3, S0, S1, S2) five step
paths satisfying (¢ U ). Furthermore the probabilty of each one such a path (which
is given by multiplying the probability of each step) isactually %1, hence their sumis %
The correctness of the other cases can be easily verified in a similar way. O

3.3 Semantics of single-point bounded path formulae

Proposition 2.3.2 and Theorem 2.3.1 allow for the computation of the probability mea-
sure of pathswhich, starting from a given state s, satisfy, respectively, a bounded Next,
and a bounded Until formula. The form of the bounding interval | = [a,b], either
single-point (a = b) or multiple-points (a > b), affects the probability measure of paths
satisfying a bounded Next and Until formul ae.

Bounded Next. The probability measure of each timed path starting at s and satis-
fying the Next formula (X ¢) within the time boundaries |, is given by the result of
Proposition 2.3.2. The following remark points out a peculiarity which arises when
the bounding interval | consists of a single time instant.

Remark 3.3.1 Let M = (S Q,L) be a labelled CTMC and ¢ a CSL state formula.
Whenever the considered time interval consists of a single point | = {a}, the proba-
bility measure Prob(s, X '¢) = 0, independently of the state s € S and of the formula

0.
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Proof. By substitution of a= b in the result of Proposition 2.3.2.
O

Remark 3.3.1 highlights the fact that reaching a ¢-state in one step from a stete s ex-
actly at timet = aisan impossible event. Thisis consistent with the fact that the delay
of any transition s— s ina CTMC is an exponentially distributed, hence continuous,
random variable X; thus its probability of assuming any specific value is zero (i.e.
Pr(X =a] =0, for al a € R).

Definition 3.3.1 (Well-formed bounded Next) Let ¢ be a CS. state formula and
| = [a,b] € R>o a bounding time interval, then the bounded Next formula ¢ = X' ¢
issaid to be well-formed if and only if a < b.

Definition 3.3.2 (Well-formed path formulae) A CSL time bounded path formula ¢
issaid to be well-formed if, in case it is a bounded Next formula it is also well-formed.

Definitions 3.3.1 and 3.3.2 allow us to rule out the bounded Next formulae which can-
not be satisfied in any state of the model.

Bounded Until. The value Prob(s,¢’U'¢"), defined by means of Theorem 2.3.1, rep-
resents the measure of the probability of each timed path starting at s and satisfying
the Until formula (¢’ U ¢”) within the time boundaries specified by |. Any timed path
S0 i> St i> ... M Sh i> ... belongs to the set characterised by its untimed em-
bedded generator 6 =) — S — ... — S — .... Inaway, we can say that
any timed path ¢ is generated by its untimed embedded generator.

As Remark 2.3.1 points out, whenever a timed path ¢ satisfies a bounded Un-
til (¢ U' y), then its untimed embedded generator G satisfies the correspondent un-
bounded Until (¢ U ).

In general, the set of paths satisfying an untimed Until formula (¢’ U ¢”) can be
partitioned by distinguishing between those paths having a future state which satis-
fies the target ¢” but not the premise ¢’ (Path(s, (¢’ A =¢")U (=¢' A ¢))) and those
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which allow for a future state satisfying both the target and the premise of the until
(Path(s, (¢'A=¢") U (6" A9"))).

Path(s,¢'U ¢") = Path(s, (6" A ~¢")U (=" A ¢")) UPath(s, (¢’ A—=¢") U (¢’ A ¢"))

The characterisation of that partition of Path(s,¢’U ¢”), alows us to formulate the
following remark which considers a subtlety implied by the result of Theorem 2.3.1.

Remark 3.3.2 Let (¢’ U' ¢") be a CSL bounded Until formula with | = [a, b].

a < b (multi-pointsinterval): the timed paths contributing with a non-null value to
the measure Prob(s,¢'U' ¢") can be generated by untimed paths of both
Path(s, (¢’ A =¢")U (—¢’' A¢”)) and Path(s, (¢’ A—¢") U (¢’ A9")).

a= b (single-point interval): the timed paths contributing with a non-null value to
the measure Prob(s,¢'U' ¢”) can be generated by untimed paths of
Path(s, (0" A —¢") U (¢’ A¢")) only.

The next example shows what Remark 3.3.2 is meant to point out.

® Sp

52

Figure 3.2: Paths unravelling from state Sg
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Example 3.3.1 Let us consider a state sp of a labelled CTMC M and the set of paths
starting at sp (Figure 3.2 depicts the unravelling of the paths starting at sp). For the
sake of simplicity, we are assuming that so has a single successor state, s;, which, itself,
has a single successor, namely s, (i.e. both sy and s; are states where no competition
takes place). Asa result the tree representing the unravelling of paths starting at sg is
given by appending the tree representing the unravelling of paths from s; to the finite
path sp — s1 — S (see Figure 3.2).

_|¢l /\ ¢II .
[t >e @ - mmmmmmm-
So S1 S9 T

i) Prob(so, ¢/u[0,b}¢//) —1 i) Prob(so, ¢Iu[0.5,b}¢)//) —0

Figure 3.3: Probability measure of timed-until path: case sop = —¢' A ¢

Suppose we areinterested in eval uating the probability measure for the time bounded
Until formula (¢’ U' ¢), with respect to so. Let us consider different assumptions cor-
responding to every case of the definition of Prob(s,¢’ U' ¢") of Theorem 2.3.1.

i) sof= -0 AD”.

Figure 3.3 shows a path starting at sp. It is assumed that s is such that the target ¢”
is satisfied but not the premise ¢’. If we are considering a lower bound of zero (a = 0),
then the first case of equation 2.3.1 does apply, thus Prob(s,, ¢'U%Pl ¢") = 1. On
the other hand whenever inf(l) is greater than zero (a > 0), the “ otherwise” case of
equation 2.3.1 applies hence, for example, Prob(s, ¢'U 038l ¢"") = 0.

i) so =o' A—¢" and 5 = -0’ A ¢

In Figure 3.4 59 is assumed to satisfy ¢’ but not ¢”, hence the second case of equa-
tion 2.3.1 applies. Moreover s;, the only successor of sy, is assumed to satisfy ¢ but
not ¢’. A distinction between multiple-point intervals (i.e. a < b) and single-point
intervals (i.e. a= b > 0) needs to be made.

e a< b (multiple-pointsinterval). From equation 2.3.1 we have that

b
PI’Ob(So,(])IU[a’b} q)ll) _ /O Q(SO,Sl) . efE(So)X . Prob(sl,q)’U [asx,bex] q)ll)dX
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L
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w0
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b
i) Prob(so,qﬁ'u[“’b}qﬁ"):/ P (s, 51)-e El0k gy

a

ii) Prob(sq, U@ ¢") =0

Figure 3.4: Probability measure of timed-until path: case Sp = ¢’ A —0”

The above integral can be split into the sum of two integrals, resulting in

a
Prob(so, ¢'U> ¢”) = /0 Q(s0,51) - € E(®X. Proby(sy, ¢'U PP ¢/ dx+-
b
+/ Q(50751) . e*E(So)X. PI’Ob(Sl,(j)IU[O’b@X} (])”)dX
a

Since we are assuming s; = ¢ A —¢’ then Prob(s;, ¢'URo%0EX ") = 0 for
any x € [0,a), thus [ Q(so,s1) - € E(S)X. Prob(s;, ¢’ U B0 /") dx = 0 while
Prob(sy, ¢'U0PX /") = 1 (see previous case). Hence

b
Prob(so, o’'U ¢”):/ Q(so,51) - € E(®)Xdx
a

e a=Db > 0 (single-point interval). Again by application of the second case of
equation 2.3.1 we have that

a
Prob(so,¢’U[a’a} (I)”) :/O Q(So,Sl) ‘efE(so)x' Prob(sbq)lu[aex,a@x] (I)")dX

but since, as we pointed out above, Prob(sy,¢’U@%aX ¢y = 0 for any x €
[0,a) then

a
Prob(so, ¢'UB ¢") = / Q(s0,51) - € E(®X. Prob(sy, ¢'U B3 ¢"ydx = 0
0

showing that whenever dealing with a single-point bound a path
o € Path(sg, (0’ A —0") U (=¢' A¢”)) leadsto a null probability measure.

i) so =0’ A—0" and 51 = o' A ¢
In Figure 3.5 59 is again assumed to satisfy the premise but not the target of the until,
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hence again the second case of equation 2.3.1 applies

b
Prob(so, ¢'UP ¢") = /O Q(so,51) - € E(X. Prob(sy, ¢/Ua5%04 ¢/l

So 51 S2 T

efa-E(so) _ efa-E(sl))

i) Prob(so, 6U6") = Qlso. 1) - ey

Figure 3.5: Probability measure of timed-until path: case Sp =0’ A—¢" and 1 = ¢/ A9

though now the recursive call Prob(sy, o’U'©* ¢”) isdone with respect to a state, sg, in
which both ¢’ and ¢” are assumed to be true. Hence Prob(sy, ¢’'U'©X ¢") is obtained
through the third case of equation 2.3.1, therefore:

Prob(so, ¢'UI*0 o) = | " Qsoysy) - € E®X. e B @4
0
asXx
/o Q(s1, ) - € Y. Prob(sy, | © x@y)dy] dx

In the case of a single-point interval (i.e. b = a), as shown in the previous case,
Prob(s;, | ©xoy) =0, Vx € [0,a) and Yy € [0,a— Xx), thus

Prob(s,,¢’UBd ¢") = / aQ(so, 51) - 6 E(®)X. g Els1)-(aX) gy
i (e—&E(So) _ e—b-E(sl))
[E(s1) — E(s0)]
which shows that whenever the untimed embedded generator G of a timed path ¢ be-

longs to Path(so, (¢’ A —¢") U (¢’ A¢")) then the probability measure of the set of
paths ¢ satisfying the bounded Until with respect to a single-point bound | = [a,a], is

= Q(so0,81)-

not necessarily equal to zero.

The above example has shown a peculiarity which concerns the semantics of bounded
Until formulae (¢'U" ¢"), when the bounding interval | consists of a single-point. In
such a case, only paths which reach a future state o[n] satisfying both the premise and
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the target of the considered Until (i.e. o[n] = ¢’ A ¢") through states satisfying the
premise, lead to a measure greater than zero, which is. any path reaching a future state
where the target but not the premise is satisfied (through states satisfying the premise),
has probability zero to fulfil the single-point time bound | = [a, a.

3.4 Well-formed CSL probabilistic formulae

With respect to the syntax described in Definition 2.3.5, CSL probabilistic formulae are
those requiring the comparison of a probability measure with a bound: either Sqp(0),
namely steady-state formulae, or P4p(9), that is probabilistic-path formulae.

Theliterature on CSL seemsto lack of consistency with respect to the type of com-
parison operators (<) allowed for formulating probabilistic formulae. In its origind
definition [1], the only comparison operator alowed was >; as a result P~ p(¢) was
the only possible form of probabilistic formula (the steady-state operator was not in-
cluded in the original CSL syntax). In [4, 23], two comparison operators were permit-
ted: < and >; hence possible probabilistic formulae were either P< (@) or P>p(9),
for probabilistic-path formulae, or S<p(¢) or S>p(¢), for probabilistic steady-state
formulae. In its most recent treatment [5], the set of alowed comparison operators
has been further enlarged becoming the one described in Definition 2.3.5, which is:
e {<, <, >, >}

The analysis of the sensibleness of possible combinations of the comparison oper-
ator < and the probability bound p, leads to the characterisation of relevant semantic
equivalences concerning CSL probabilistic formulae which we present here.

Definition 3.4.1 (Semantically equivalent stateformulae)) Let M = (SQ,L) be a
labelled CTMC; two CSL state formulae ¢ and y are semantically equivalent, denoted
é =, ifand only if

SEd<=sSkEvy, VseS

or, equivalently:

0=y — Sat(0)=Sat(vy)
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The syntax depicted in Definition 2.3.5 does not impose any restriction on the combina-
tions of the comparison operator <€ {<, <, >, >} and the probability bound p € [0, 1].
However not all the possible combinations (<, p) lead to sensible formulae. For ex-
ample, although syntactically correct, comparison combinations like (<,0) or (>,1),
result in contradictory probabilistic formulae (i.e. formulae equivalent to the contra-
diction —tt). Infact it is clearly impossible for a probability measure to fall outside the
interval [0, 1].

Remark 3.4.1 (Basic contradictions) Let ¢ bea CSL stateformulaand ¢ a CSL path
formula, then the following equivalences hold:

S<0(0) =Po(9) =S-1(¢) =P>1(p) =t

Symmetrically, comparison combinationslike (>, 0) or (<, 1) lead to valid probabilis-
ticformulae (i.e. formulae equivalent to the validity tt). In fact any probability measure
p € [0,1], hence, trividly, it is also greater than or equal to 0 and less than or equal
to 1.

Remark 3.4.2 (Basic validities) Let ¢ bea CSL state formula and ¢ a CSL path for-
mula, then the following equivalences hold:

S>0(0) = P>0(0) = S<1(¢) =P<a(¢) =tt

By allowing the equality check (==) among the possible comparison type a proba-
bility measure can be verified for (i.e. e {<,<,>,>,==}), the following trivial
equivalences hold:

Remark 3.4.3 (Equality check equivalences) Let ¢ be a CS. state formula and ¢ a
CSL path formula, then the following equivalences hold:
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As for the PCTL, the existential and universal path quantifiers can be obtained as
special cases of probabilistic-path formulae, obtained, respectively, by the comparison
combinations (>,0) and (>, 1).

Remark 3.4.4 (Existential and Universal path quantifiers) Let ¢ bea CS_ path for-
mula, then E(¢) and A(¢) are notationsto represent respectively, the existentially and
universally path quantified formulaP-o(¢) and P>1(9).

The following definition provides alist of logical conditions useful for characterising
the type of bound check the combination (<, p) represents.

Definition 3.4.2 Let <€ {<,<,>,>} beacomparison operator and p € [0, 1] a prob-
ability value, the following logical conditions characterise the type of the combination
(<, p):

e low(<,p)=[pe (0,A<I=>]V[p€e [0,1)A I=>].
The combination (<, p) represents a lower-bound check if the logical condition
low(<, p) holds.

o up(<,p) =[pe[0,)A<=<]V[pe (0, J=<].
The combination (<, p) represents an upper-bound check if thelogical condition
up(<, p) holds.

e E(<,p)=[p=0A<=>]| (Existential quantifier).
The combination (<, p) characterises an Existential quantifier for probabilistic-
path formulae.

o A(<,p)=[p=1A<=>]V[p=1AJI=>] (Universal quantifier).
The combination (<, p) characterises an Universal quantifier for probabilistic-
path formulae.
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Thelogical conditionsintroduced in the above definition allow for the characterisation
of semantic equivalences for formulae involving the steady-state operator. Although
the type of check a pair (<, p) represents (i.e. lower-bound or upper-bound) could be
distinguished only by means of the comparison operator (<), the value of the prob-
ability bound p is aso relevant. In fact by considering p, it is possible to rule out
those combinations (<, p) leading to either contradictory or always valid probabilistic
formulae. That allowsfor the following definition.

Definition 3.4.3 (Well-formed probabilistic CSL formulae) Let ¢ bea CIL statefor-
mula, ¢ a CSL well-formed path formula, p € [0,1] a probability bound and
de {<,<,>,>} a comparison operator. The probabilistic formulae S4p(¢) and
Pap(¢) are said to be well-formed if and only if

low(<d,p) or up(<,q)

The above definition allows for ruling out probabilistic formulae whose semanticsis
trivial (e.g. S>o(0) or Po(¢)). For the remaining part of the thesis, unless other-
wise stated, we will assume that any generic CSL probabilistic formulalike Sqp(¢) or
Pap(9), isactually awell-formed one.

3.5 Nesting of the CSL probabilistic connectives

The mutually recursive structure of CSL state and path formulae syntax (see Defini-
tion 2.3.5) allows for nesting of the probabilistic operators Sqp and P<p. As aresult
formulae like

Szo.g(on.g(l’ecl U idlel)) (3.5.1)

or
P>0.9(X (S>o.8reci)) (35.2)

showing a probabilistic path formula nested within the steady-state operator and a
steady-state formula nested within a probabilistic next, are legitimate examples of
propertiesin the CSL syntax.
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In [5] an interesting overview regarding the specification of performance measures
interms of CSL formulae, is given. The authors show how standard steady-state and
transient measures can be obtained in CSL. Furthermore it is shown how the expres-
siveness with respect to performance measuring of CTMCs is improved with CSL by
means of time bounded path formulae. Finally the possibility of mutual nesting of the
probabilistic connectives Sqp and P, is considered and it is proved that that provides
further means to state useful measures which it would not be possible to express by
means of any other CTMCs' analysis technique.

Concerning the issue of nesting the probabilistic operators of CSL arelevant point
appears not to have been considered in literature: a distinction has to be made de-
pending on the structure of the considered CTMC, either ergodic (i.e. consisting of a
single BSCC) or non-ergodic (i.e. resulting in a number of BSCCs). The ergodicity of
the model impacts on the validity of CSL steady-state formulae, as pointed out in the
following remark.

Proposition 3.5.1 (Steady-state semantics with respect to ergodic CMTCs) Let ¢ be
aCSaL stateformula, M = (S Q,L) an ergodic labelled CTMC, p € [0, 1] a probability
bound and <€ {<,<,>,>}. The formula Sqp(¢) is either satisfied in all or none of
thestatesse S

Vs€S skE=Sqp(d) or  VSES s Sqp(d)

Proof. From the CSL semantics we know that

sk=Sap(9) <=M (s Sat(9)) I p

Since M isergodic, then from Proposition 2.3.1 we know that:

™ (sSat(0))= Y, w(s)
JeSat(d)
which proves the measure T (s, Sat (¢)) being dependent only on the satisfiability set
Sat () and not on the considered state s.
0]
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The above remark pointsout arelevant feature of the CSL logic: steady-state formulae,
like Sqp(¢), are model dependent, rather than state dependent, whenever the model
they refer toisan ergodic CTMC.

Intuitively, for anon-ergodic CTMC M , the satisfiability of a steady-state formula
like Sqp(¢) with respect to a state s, depends on the measure of how likely it isto reach
a state satisfying ¢ when sis considered as the starting point (to be more precise: how
likely it is to reach the BSCC B a state satisfying ¢ belongs to, when we start from s).
Hence, in the non-ergodic framework, the satisfiability of Sp(¢) strongly depends on
the considered starting state s other than on M itself. Conversely, in the ergodic case,
all states belong to the same, unique, BSCC the CTMC consists of; thus the formula
Sap(9) iseither validin M or false in every state: the satisfiability of Sqp(0) is state
independent.

As a consequence, in the ergodic framework, we will use M = Sqp(0)
(M [~ Sqp(0)) to denote the fact that the steady-state formulaS<p(¢) is satisfied (not
satisfied) in every state of M or, whenever the model M is clear from the context,
smply = Sqp(d) (K= Sap(d)). An aternative formulation of Proposition 3.5.1 isgiven
in the following corollary.

Corollary 3.5.1 The satisfiability set of Sqp(¢) with respect to an ergodic CTMC
M = (S Q,L) iseither the whole state space Sor the empty set:

Sat(Sap(9)) =S or Sat(Sap(9)) =0

3.5.1 Semantics equivalences for nested formulae

The relevance of the model’s ergodicity with respect to the semantics of CSL steady-
state formulae, calls for checking the existence of semantic equivalences for formulae
involving the steady-state connective. The following propositions characterise relevant
equivalences concerning such types of formulae.

Proposition 3.5.2 (Basic steady-state equivalence.) LetM = (S Q,L) bean ergodic
labelled CTMC and Sqp(¢) a CSL state formula, then S<p(¢) is semantically equiva-
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lent either tott, if = Sqp(d) or to —tt, if = Sqp(d):

ttif =Sqp(0)
S = 353
<p(9) { i Sap(0) (35.3)
Proof.
Trivial consequence of Proposition 3.5.1, in fact clearly
= Sap(9) <= Sat(Sap(9)) = S= Sat(tt)
/= Sap(9) <= Sat(Sap(9)) = 0 = Sat(-tt)
0]

Relying on Proposition 3.5.2 semantic equivalences can be found for any possible
combination of steady-state formulae obtained by means of the CSL connectives.

Proposition 3.5.3(S nested inS) . Let M = (S Q,L) be an ergodic labelled CTMC
and ¢ a CSL state formula. The following semantic equivalence regarding nesting of
the steady-state formula qu (¢) within a probabilistic steady-state operator holds:

ttif “low(ﬁ, D] A= qu(q))]]v
[up(<. )] A [ S54(0)] (35.4)

—-tt otherwise

Sap(Szq(9))

Proof.
The proof proceeds similarly to the one regarding nesting of S within an unbounded
Next. The validity of the innermost steady-state formula (i.e. qu (0)), directly af-
fects the equivalence. In fact the nested formula Sqp(S54(¢9)) states that the long-run
probability for the states satisfying qu (¢) respects the bound < p. However the states
satisfying the innermost steady-state are either al the statesin Sor none. Asaresult if
Sgq(9) issatisfiedinM (i.e. = S54(9)), then soisSqp(Sg4(9)) given that the type of
bound check it represents is alower-bound. Whileif Sz, (¢) is not satisfiedin M (i.e.
7= S5q(0)) then Sap(S54(9)) issatisfiedin M, given that it represents an upper-bound
check.

0]
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The above proposition has shown that formul ae given by nesting a steady-state connec-
tive within another one are equivalent either to the tautology tt or to the contradiction
—tt. The following two propositions, instead, highlight the equivalences for boolean
combinations of steady-state connectives (i.e. conjunctions and negations of steady-
state formulae).

Proposition 3.5.4 (S nested in A) Let M = (S Q,L) be an ergodic labelled CTMC,
¢ and y two CSL state formulae, p,q € [0,1] and < < € {<,<,>,>}. Thefollowing
semantic equivalences regarding nesting of steady-state formulae within the conjunc-
tive operator holds:

(v if =Sap(0)
YA (Sap(0) =
|t otherwise
(ttif [[=Saq(®)] A [ Saq(w)]
(Sap(9)) A (Szq(w)) =
|t otherwise

Proof.
Trivial consequence of Proposition 3.5.2.
0

Proposition 3.5.5 (S nested in =) LetM = (S Q,L) be an ergodic labelled CTMC,
¢ aCSL stateformula, p € [0,1] and <€ {<, <, >, >}. The following semantic equiv-
alence regarding nesting of the steady-state formula S<p(¢) within the negation oper-

ator holds:
—ttif = Sap(0)
~(Sqp(9)) = (3.5.5)
tt otherwise
Proof.
Trivial consequence of Proposition 3.5.2. O

So far equivalences for non-path formulae, containing a steady-state sub-formula have
been proved. In the following four propositions the case of path formulae, both Until
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and Next either bounded or unbounded, built on some steady-state sub-formulaisfaced
and equivalences are proved.

Proposition 3.5.6 (S nested in abounded Until.) Let M = (S Q,L) be an ergodic
labelled CTMC, ¢ and y two CSL state formulae, | = [a,b] C R>o a time interval,
p,a.r € [0,1] and <,<,< € {<,<,>,>}. The following semantic equivalences re-
garding nesting of the steady-state formulae within a probabilistic bounded Until op-
erator hold:

tt if | [=Saq(w)] Alow(<, p)] A[a=0]
v [[1~ Saqw)] A [up(<, p)] |

~OVIpAPap(0 U tt)] if [[1=Szq(w)] A [up(<, ] A [a£ 0]
Pap(0U' Sgq(w)) = _

0APap@ U )] if | [=Sq(w)] A low(<, p)] Ala 0]

-t it [ [ Sz(w)] A [up(<,p] A[a=0]]
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[ Pap(c'0)

Pap(Szq(w) U' 0) =
tt

Pap(Szr(0) U' Sgq(w)) = ¢ -t

Pr oof.

69
it |=S44(0)
if & S5q(0) Allow(<, p)] Ala=0]

it & S54(0) A lup(2, p)] A a# 0]

otherwise

The proof relies both on the basic equivalence for steady-state formulae (Proposi-

tion 3.5.2) and on the result of Theorem 2.3.1 concerning the probability measure
for bounded-Until paths. With respect to the first and second cases (i.e. one steady-
state formula among the operands of a bounded Until), three factors are relevant: the
validity of the steady-state operand with respect to the model M (either = S, (w) or
= qu(w)), the type of bound check involved (either low(<, p) or up(<, p)) and the
value of the bounding interval’s infinum (either a= 0 or a > 0). That leads to atotal
of eight possible combinations which, are fully caught by the conditions characteris-
ing the first and second equivalences. In the third case, (i.e. both the operands of the
Until are steady-state formulae) also the validity of the second steady-state operand of
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the bounded Until, hasto be considered amongst the factors affecting the semantics of
Pap(Sx(0) u! Sgq(W)). Hence the possible combinations of conditions are, in this
case, Sixteen.

) Pap( U Sgq(w)):

Case 1. If Sg4() isvalid in the considered model and a= 0, the probability measure
of paths satisfying (¢ U' qu(\u)) isequal 1 (case 1 of Theorem 2.3.1), for every state
S. Hence if we are checking that measure against a lower-bound (i.e. low(<, p)) the
formulaissatisfied in every state s, sinceclearly 1 < p. Similarly if qu (y) isnot satis-
fiedinM (i.e. not satisfied in any state s € S), then it is equivalent to the contradiction
—tt (Proposition 3.5.2); thus the original Until formulaP qp(¢ U qu(w)) boils down
to P<p(¢ U —tt) which, independently of a and of the considered state s, is satisfied,
if and only if (<, p) represents an upper bound check (i.e. up(<, p)): the probability
measure of paths satisfying P<p(d U —tt) iszero (case “ otherwise” of Theorem 2.3.1).

Case 2. If S5,(y) is valid in the considered model and a > 0 then a distinction be-
tween states satisfying ¢ and states satisfying —¢ needs to be made. First of all, since
we are assuming = qu(w) then, again, the original Until formula is actually equiv-
aent to Pqp(¢ U tt). If s does not satisfy ¢ (i.e. s= —¢), the probability measure
Prob(s,¢ U' tt) isequal zero (case” otherwise” of Theorem 2.3.1). Hence, if up(<, p),
Pap(¢ U S54(v)) isclearly satisfied in s, as 0 < p. On the other hand if s satisfies ¢,
case 3 of Theorem 2.3.1 applies. and the measure Prob(s, ¢ U' tt) isequal to the prob-
ability of leaving s within the bound I. The formulad AP <p(¢ U' tt) clearly captures
the states fulfilling this second possibility

Case 3. Thiscaseisidentical to the previous one (case 2) except for the type of bound
check, which is supposed, in this case, to be a lower-bound check (i.e. low(<, p)).
As we know, Prob(s,¢ U' Sgq(w)) =0 & pfor any state s |= —¢ (see previous case).
Hence the only states s for which the measure Prob(s, ¢ U' Sgq(w)) < p arethose sat-
isfying ¢ and Prob(s,¢ U' tt) (i.e. sissuch that the probability measure of (¢ U' tt)
is < p).
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Case 4. If |= S54(y) and a= 0, then Prob(s, ¢ U Sgq(w)) = 1, independently of
the state s (i.e. case 1 of Theorem 2.3.1). Hence, if up(<, p) holds, then clearly
Prob(s,¢ U' Sgq(w)) =1 4 p, for al s€ Swhich proves Pqp(¢ U Sg4(w)) = tt.
Similarly if = Sz, (), then Prob(s, ¢ u! S5q(w)) = 0, independently of the state sand
of a (eithr a = 0 or a > 0). Thus if low(<d,p), then agan
Prob(s,0 U' Sg,(w)) = 1 #4 p. which proves Pap(¢ U Sg,(v)) being equivalent
to the contradiction —tt.

i) Pap(Szq(w) U ¢).
Case 1. Direct consequence of Proposition 3.5.2 and of theequivalence o' ¢ = (tt U' ¢).

Case2. If [~ Sgq,(y) then (S5, (w) U' ¢) = (-tt U' 0) . Thenif a= 0, adistinction be-
tween s E 0 and s E -0 has to be made.
Prob(s, (Sg4(y) U ¢)) = 1 for any state s |= ¢. Thusif low(<, p), then for each such
state dlso s = Pap(Sgq (w) U ¢) as clearly 1 < p. On the other hand
Prob(s, (Sz4(w) U 9)) 4 pfor any state s = —0.

Case 3. Here again = S5, () isassumed but now theinfinum of the bounding interval
| issupposed to be a > 0. If thisis the case then Prob(s, (S, (v) U ¢)) = 0 both with
sk= ¢ andwith s}~ ¢ (i.e. in both casesthe “ otherwise” case of Theorem 2.3.1 applies).
Hence of up(<, p) then P4p(S54(y) U ¢) isequivalent to the tautology tt.

Case 4. This case regards the remaining two possibilities, which are, respectively:
- Sq(W) AOW(<L, p) A (> 0) and | Szq(w) AUP(L, P) A (@ =0). If = Sgq(y) A
low(<1, p) A (a> 0) then Prob(s,—ttU' ¢) = 0 4 p (i.e. we are assuming low(<, p)),
independently of s. Hence clearly, for every s€ S, s~ P4p(S54(w) U ¢) which proves
the equivalence of s~ P4p(S54(w) U ¢) with the contradiction —tt. On the other hand
if = Sgq(w) Aup(<, p) A (a= 0) then again Prob(s, —ttU' ¢) = 0 ¢ p which proves
the equivalence with the contradiction also in this case.
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i) Pap(Sz,(0) U' S5q(w)).
Similar to the previous cases.

U
The above proposition shows the equivalences for bounded Until formulae having
steady-state formulae amongst their operands. The following proposition, instead,
proves results regarding the unbounded Until case.

Proposition 3.5.7 (S nested in an unbounded Until) LetM = (S Q,L) beanergodic
labelled CTMC, ¢ and y two CSL state formulae, p,q,r € [0,1] and
q,4,4, e {<,<,>,>}. The following semantic equivalences regarding nesting of
the steady-state formulae within a probabilistic unbounded Until operator hold:

(1t if [[Iow(gl, P A[E qu(w)]]v
Pap(6 U Sgqw) = [[up(<,p)] A [ Sz4(w)] |
—tt otherwise

(V)
Pap(Saq(w) U o) = < 0 it} Sgq(w) A llow(<, p)]
= if 7 Sgg(w) Alup(2, p)]

[t if [[Iow(gl,p)] AlE qu(w)]]v

Pap(Sz:(0) U Szq(w) = | [[up(<, )] A [ Ssq(w)]|

—tt otherwise

Proof.
The proof relies on Proposition 3.5.2 and Corollary 2.3.1.

i) Pap(¢ U Sg4(v)).

If = Sgq(w) then Sg4(w) is equivalent to tt. As a consequence Prob(s,¢ U v) = 1,
for any state s. Hence if low(<, p) holds, then clearly P4p(6U Sz, (v)) is satisfied in
any state, thusit is equivalent to tt. Conversely if = Sz, (w) then the Until formulais
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not satisfiable by any path ¢. As a result the probability measure of paths satisfying
(0 U S54(v)) is zero in any state hence Pqp(d U Sz, (y)) is equivalent to tt given
that up(<, p).

i) Pap(Szq(w)U ).

If = Sgq(w) then Sz, (w) is equivalent to tt hence (Sg,(w)U 0) is equivalent to the
sometime in the future formula (o9) . If = S5 () then the premise of the Until for-
mula (qu(qf)U ¢) is aways false. As a conseguence for any state s the probability
measure of paths satisfying (S, (w)U ¢) iseither 1if thetarget ¢ issatisfied insor 0
if it is not. Hence Pp(Sg4(w)U ¢)) is equivalent either to ¢, if it represents a lower-
bound check, or to —¢ if it is an upper-bound check.

iii) Pap(Sz (0) U Sgg(w)).
The proof of this caseisa direct consequence of the first case Pqp(¢" U S54(y)) with

o' = Sﬁr(q))-
]

Finally in the remaining two propositions, the semantic equival ences concerning nest-
ing of steady-state properties within a Next operator, either bounded or unbounded,
are proved.

Proposition 3.5.8 (S nested in a bounded Next) LetM = (S Q,L) bean ergodicla-
belled CTMC, ¢ a CSL stateformula, | = [a,b] € R>g atimeinterval, p,q € [0, 1] and
4,4 e {<,<,>,>}. The following semantic equivalence regarding nesting of the
steady-state formula qu (¢) within a probabilistic bounded Next operator holds:

[ Sziq(9)] A Jup(<, p)]]

[ tt if

Pap(X' Sgq(0) =14 -t if :[b& Soq(®)] A [low(g,p)}] (3.5.6)

| Pap(X'tt) i [{=S4q(0)]
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Proof.
If £ S5q(0) then the measure Prob(s, (X! S4q(9)) isequal to zero for any state s € S
Hence if up(<, p), the formula Pp(X! S5q(9)) is valid in every state s as clearly
0 < p. Onthe other hand, if low(<, p), then 0 # p, thus P 4 p(X' S5q(9)) isequivalent
to the contradiction —tt. The final case (i.e. |= S54(9)) is atrivia consequence of
Proposition 3.5.2.

0J

Proposition 3.5.9 (S nested in an unbounded Next) LetM = (S Q,L) beanergodic
labelled CTMC, ¢ a CL state formula, p,q € [0,1] and <,< € {<,<,>,>}. The
following semantic equivalence regarding nesting of the steady-state formula qu (0)
within a probabilistic unbounded Next operator holds:

ttif [[Iow(ﬁ, P A[E qu(q))]]v
Pap(X Sg4(0)) = [[up(ﬁ, )] A [ qu(q))}] (35.7)

—tt otherwise

Proof.
If the steady-state formulaSg, (¢) issatisfiedinM (i.e. = S44(9)), thenitisequivalent
to tt, hence the probability measure of the paths satisfying (X qu (0)) is clearly 1,
independently of the starting state. As aresult, Pqp(X Sg4(9)) is satisfied in every
state, if it represents a lower-bound check for the probability measure of (X S54(¢))
(i.e. low(<, p) holds). Similarly, if S5, (¢) isnot satisfiedinM (i.e. = S4,(9)) theniit
is equivalent to —tt. Thus there can be no paths satisfying (X Sz, (¢)) whatever isthe
considered starting state (i.e. the probability measure of paths satisfying (X qu (0))
is0). As aconsequence, Pqp(X S54(9)) is satisfied in every state, if it represents an
upper-bound check for the probability measure of (X qu (0)) (i.e. up(<, p) holds).
0
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3.5.2 CSL syntax for ergodic models (no nesting of Sg]p).

The semantic equivalences described in Propositions 3.5.2-9, suggest a modified ver-
sion of the CSL syntax introduced in Definition 2.3.5, which can be used to state
properties referring to ergodic CTMCs. The main point with such a syntax is to keep
steady-state formulae apart from the other logical connectives so that recursionis only
allowed for boolean and probabilistic-path combinators. The steady-state connective
Sap can be applied, at top level only, to formulae which do not contain it.

Definition 3.5.1 (CSL syntax for ergodic CTMCs) The syntax of CL state-formulae
(0), boolean and probabilistic-formulae (), path-formulae (¢) and steady-state for-

mulae (&) isinductively defined as follows with respect to the set of atomic proposition

AP:

0=y | & EA | WAL | EAE | —E  (stateformulae)

yi=tt | a| yAy | -y | Pap(9) (BP-formulae) (358)
eu=X"y | (yU'y) (path-formulae) -
& = Sqp(V) (steady-state-formulae)

wherea € AP, p € [0,1] isareal number, <€ {<,<,>,>} and| =[a,b] CR>p isa
non-empty interval.

Proposition 3.5.10 (Equivalent CSL syntax) Thelanguage generated by the CS. syn-
tax (Definition 2.3.5) is semantically equivalent to the one generated by the modified
CSL syntax (Definition 3.5.1) given that the considered model is an ergodic CTMC.

Proof. Straightforward consegquence of Propositions 3.5.2-9.

Example 3.5.1 Let us show how the equivalences described in Propositions 3.5.2-9
work in practice by considering some examples of CSL formulae involving the steady-
state operator. The formulae in this example refer to the ergodic CTMCs of the GIS
system of our running example (see Section 2.5.1). In Figure 3.6 the state-space of the
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Figure 3.6: State space of the GIS system’s components

two CTMCs is depicted. For illustrative purpose only?, let us assume the following
values for the steady-state distribution 1 of component My:

Tcl(Slo) = 0.3, 1'[1(811) = 71:1(812) = 0.2, 1'[1(813) = 71:1(814) = Tc1(515) =0.1

Furthermore let us suppose we are interested in the analysis of the steady-state proba-
bility of those states of M1 which satisfy respectively the formulae ¢ and :

o =idleg Y =reciVres

The formula v is valid in state s13,514 and si5 while ¢ is satisfied in s;g only. As
a consequence the measure of the steady-state probability for Sat(¢) and Sat(w) is,
respectively, given by:

Ttl(S, (idlel)) . 751(810) =0.2
71:1(8, (recl V resl)) = Ttl(Slg) +7t1(514) +7'C1(S15) =0.3

2The values here assumed may turn out to be impossible with respect to the solution of the steady-
state distribution w1, asit is described in Example 2.5.1
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independently of the considered state s (i.e. M1 is ergodic). In the following some
examples of steady-state formulae are considered in order to illustrate the basic equiv-
alences which have been proved in theinitial part of this section.

Basic steady-state equivalences. (application of Proposition 3.5.2 and Remark 3.4.2).
Let us consider the following examples of CSL steady-state properties.

) Sso2(y) =tt

i) S<o2(y) =-tt

i) Sso(y) =S«l(y)=tt
Casei) isclearly satisfied in every state of M1 (i.e. isvalid) as the steady-state prob-
ability for states satisfying y is 0.3 > 0.2. For the samereasonii) is never satisfied in
M3, as 0.2 isnot an upper bound for the steady-state probability of states satisfying .
Caseiii) shows an example of non-well-formed probabilistic formulae: both the pairs
(>,0) and (<, 1) result in pointless probabilistic formulae (i.e. tautologies), asclearly
a probability measure muust fall in [0, 1].

S nested in bounded Until (application of Proposition 3.5.6).

Here some examples of time-bounded Until formulae with nested steady-state prop-
erties are provided. The operands of the Until will be chosen amongst the following
three: reads, Sg,(y)) and S, (¢)). Furthermore two different cases of bounding in-
terval will be considered, namely | = [0,5] or | = [2,5], in order to points out the
differences between a null and a non-null infinum.

Casel.

Pap(read; UM S5, (y))

i) Psoz(read; UPS S.o5(y)) =ttt

i) Pso7(read; U% S502(y)) = [readiAPxo7(ready U9 tt))]

iii) P<g7(read; U2% S.q5(y)) = —read; v [readiAP<q 7(read; U5 tt)]
iv)  Psoz(read; U Soa(y)) =t

Case i) is clearly satisfied in every state since the proability measure of the target-
formula, S>o2(y), isitself satisfied in every state (see previous case). Hence every path
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from every sate satisfies the Until  formula, which  means:
Prob(s, (ready U%8 So05(y))) = 1> 0.7, for every statess.

In case ii) we are concerned with a lower-bound check for the probabiity measure of
a time-bounded Until formula. We observe that since we have a non-null infinum (i.e.
2) of the bounding interval, then a path ¢ must start in a read; state in order to sat-
isfy (read; U2% S-5(\)). Thusthe conjunction [read; AP>q7(read; U125 tt)] rules
out those state (i.e. —read; states) whose paths cannot satisfy (read; U2 S5q,(y)).
In fact, for every sate s [~ read; the probability measure
Prob(s, (read; U8 S.05(y))) =0#0.7.

In case iii), we are considering an upper-bound check for the probability
measure of the same Until formula. As a consegquence, the disunction
—read V [read; AP<o 7(read; U[?% tt)] reflects the fact that in order for the proba-
bility measure Prob(s, (read; U%% S-q5())) of a state s to meet the bound < 0.7 it
suffices s = —read;. The conjunntion [read; AP<g 7(read; U2 tt)], instead, identifies
those amongst the read; states whose measure Prob(s, (read; U%% S52(v))) < 0.7.

Finally, the formulain caseiv) is clearly unsatisfiable, asthe target, S <o 2(y)) falsein
the model (see previous case of the example).

In the remainder examples regarding the other possible way of nesting a steady-state
property within a time-bounded operator, are illustrated. They are obtained by appli-
cation of Proposition 3.5.6.

case2. Pqp(Sz,(recivresy) URY read;)

0.,9] 0,5

P20_7(SZO,2(rec1vr$1)U[ readl) = P20,7(<>[ readl)
P-07(S<o2(reci vVres;) U9 read;) = read;

PSO.7(S§0,2(I’601\/I'681) u2s read;) = tt
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case3. Pqp(Sz(idler) URP S (rec; vresy))

PzQ?(SSO 2(Id| e]_) U SZO,Z(recl V I’eS]_)) -
P-07(Ss02(idler) UCS S go(reci vresy)) |
Pgoj(s 2(|dle1) U Szo.z(l'ecl V resl)) } — it
Pgoj(s 2(|dle1) ubo Szo.z(l'ecl V resl))






Chapter 4

Compositional CSL model checking:

non-Path formulae

4.1 Introduction

The Boucherie framework introduced in Chapter 2, provides a method to compose
CTMCswhich features a product-form solution for the composed model. In this chap-
ter the analysis of a compositional semanticsfor CSL formulae referring to atwo com-
ponent Boucherie process is addressed. Unlike other works which base their results
for “compositionally” checking the truth of a formula on the existence of a preorder
relation between a model and its components [36], the results presented in this chap-
ter depend on the compositional structure of the Boucherie process only: no preorder
relation holds between a Boucherie process and its components.

Section 4.2 recalls the Boucherie framework description for the case of two com-
ponents, introducing notations used throughout the rest of the chapter as well as some
relevant background properties. In Section 4.3 a subset of the CSL syntax, in which
probabilistic path formul ae are not permitted, is considered and “compositional” equiv-
alences are proved with respect to a two component Boucherie process. In Section 6.2
the considered logic is extended by allowing also probabilistic path formulae but, dif-
ferently fromtheoriginal CSL syntax, restraining the nesting capability of probabilistic
operators. probabilistic path connective P can be nested only within a the steady-state

81
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operator S, while the converse is not permitted. Compositional semantic equivalences
for formulae of that “restricted” CSL logic are then proved in this section, relying on
results obtained in the previous section.

4.2 The two component Boucherie framework

The n-dimensional Boucherie product-process has been formally introduced in sec-
tion 2.5. Here we focus on the bidimensional casewhereM = (S Q, L) isaBoucherie
process, with components' M; = (S;,Q4,L1) and M, = (S, Q,,L5). The two inde-
pendent processes M; and M, compete over a shared resource R.

Boucherie Bidimensional state-space. The state-space S of each component k €
{1,2}, is partitioned according to the resource possession: SR C Sk represents the
states where component k does not hold R, while S¢r C S are the states where My
holds the resource.

St = SRUSIR
S = SrRUSR

The product-process state-space S (Figure 4.1) is obtained by eliminating the states

representing the simultaneous possession of the shared resource R from the Cartesian
product of the components’ state-spaces:

S=S xS\ (SIrRX SR)

In the remainder, the notation R1R> will be used to refer to the Cartesian product
(SLr X S R), representing the prohibited area of states which has to be ruled out from
the Boucherie state-space definition.

LFrom now on, unless otherwise stated, M = (S, Q, L), will denote a generic bidimensional Bouche-
rie process with components M1 = (S1,Q4,L1) and M2 = ($,Q5,L>).
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S
5% So.r
5.7 Rfree | R2
(S5 % So7) (S, 7 % So.p)
S LR
Sir Rl
(St % Sy 7 S

Figure 4.1: The bidimensional state-space of a two components Boucherie process.

Boucherie process transitions. Transitions of the Boucherie process are such that
only moves along a single component direction are alowed (as components are sup-
posedly independent, synchronisation is not allowed). As Figure 4.1 points out, in
every state (st,s?) belonging to the area of S where neither My nor M, hold R (i.e.
(st,$%) € Ryree), both types of transition are permitted: either a 1-move (i.e. according
to the behaviour of component M) leading to a state (t*,s?) where the second com-
ponent’s state (s?) is unchanged, or a 2-move leading to a state (s',t?) where the first
component’s state (st) is unchanged.

On the other hand when acomponent holds R (i.e. (st,s?) € R¢) the only permitted
behaviour is the one of the resource holder’s process. Hence, for example, any state
(t1,t2) reachable from a state (s',s%) € Ry must be such that the M, component state
t? is unchanged: t? = s* (similarly any state (t1,t2) reachable from a state (st,s?) €
R> must be such that t* = s'). This is formally achieved through the definition of
the infinitessimal generator matrix Q for a bidimensional Boucherie process, which
is obtained from definition 2.5.2 by considering the two components only case (i.e.
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((Qu(shtY) if S=t2AS¢Z SR
Q((s,89), (tht?)) =1 Qu(t?) if st=tlast¢g SR (4.2.1)

0 otherwise

\

Boucherie process labelling. L : S— AP, U AP, where
L((sl,sz)) = Ll(sl) ULQ(SZ)

Throughout the remainder we will adopt theindicesk and j, withk, j € {1,2},toalow
reference to a generic component of a bidimensional Boucherie process and its dual:
both j and k can represent either the first or second component but while k represents
one j represents the other (i.e. j = (k mod 2) + 1). Furthermore, to ease the descrip-
tion, the notions of k-move and k-projection are introduced.

k-move. A transition (st,s?) — (t1,t?) iscalled ak-move, if and only if

Q((Slasz)? (tlatz)) = Qk(skatk)

k-projection. The k-projection of a state (s, s%) € Sisitsk-th component: s,
For example:

st isthe 1-projectionof (s, &%)
t2 isthe 2-projectionof (s, t?)
(st,s%) — (t1,5?) isal-movegiventhat Q(s!,t}) #0

Here we are assuming that self-loops are not allowed in the Boucherie framework.
Hence the source and target state of a transition in My are aways different

(i.e Ve tK e S, Qu(sth) > 0= s £1K),
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Definition 4.2.1 (Probability of a k-move) . Given a state (s*,s?) € Sof a Boucherie
process, the probability of a k-move out of (st,s?) is given by:
Ex(s9) .
WEj(Sj) |f (81,82) € Rfree
pshs) =1 1 it (sl,) € Ry
0 if (Sl,Sz) €R;

So for example for any state (st,s%) where neither M1 nor M, possesses R, the prob-
ability of a 1-move is p*(st, ) = ¢ Ea(s))

2 1(sh)+E2(?)
_ Ea(s”)
R = i

while the probability for a 2-move is

As a consequence of the transition rate for a bidimensional Boucherie process (see
equation 4.2.1), two trivial Remarks regarding the emanating rate of states and the
probability of transitions, can be straightforwardly derived.

Remark 4.2.1 Let M = (S Q,L) be a bidimensional Boucherie process, the emanat-
ing rate of a state (st,s?) € Sisgiven by the sum of the emanating rates of its compo-
nents, if the resource Ris freein (st, s%), or by the emanating rate of the holder of R, if
Risnot free.

e

E1(s!) + Ex(s?) if (s1,5?) € Riree

E((sh¢))=1 Eq(sh it (s5,9) eRy (4.2.2)

Eo($?) if (sh,s%)€eR

The above Remark providesacompositional way to obtain thetotal rate out of astate of
a bidimensional Boucherie process: the emanating rate of any state (s',s?) is obtained
from the emanating rate of its components. In the next Remark, instead, the probability
of the Boucherie process transitions is characterised.

Remark 4.2.2 Let M = (S Q,L) be a bidimensional Boucherie process, then the
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probability of a transition from a state (s, s%) € Sto a state (t1,t?) € S, isgiven by:

([ _Qushth i (s',9%) €ERfree A (=12

Ea(sh)+Ex(s?)

)
%;ngz) it (s!,5%) €Rpree (SL=tY)

P((s',s),(tht?))= (4.2.3)
UL it (L) eRy
| LD it (L)eR

or equivalently
Py(sh,t1) - pl(st,s?) if (1, %) €Rfree A (=t?)
Po(S,12)- PA(sL,8%) i (s1,8%) €Rrreo\ (SH=t)

P((sh9),(tht?) )= { (4.2.4)
Pl(Sl,tl) if (81,82) cRy

Pz(Sz,tz) if (Sl,Sz) eRy

The second formulation of the above Remark (4.2.4) points out how the probability for
atransition (st,s?) — (t,t2) can be determined compositionally, in terms of the prob-
ability of the corresponding component’stransition. Whenever the source state (st, %)
iSin R¢ree the transition’s probability is given by afactor of the probability of the cor-
responding My’s transition (i.e. s* — t*) probability, given that (s!,s%) — (t1,t?)
is a k-move. On the other hand if the source state (st,s?) isin Ry the only possible
transitions are k-moves, hence the probability of (st,s?) — (t1,t?) is equal to the
probability of its corresponding My’s transition (i.e. s — t¥).

Product-form. The steady-state distribution  of a bidimensional Boucherie process
Is given by the product of the steady-state distributions of its components. For every
dtate (st,s?) € Sthefollowing holds:
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n(sl,sz) = G-nl(sl) -1:2(52)

where i (sX) is the probability for component My to be in state € on the long-run,
while G is anormalisation constant.

On subsets of components state-space. Concerning the Boucherie framework we
introduce a specific notation to characterise subsets of the component’s state-space
according to the state space partition. Thus given a subset Ay C S¢ of component
M state-space, the two parts it consists of are denoted, respectively, A, g C § g and
AR C R

Given two subsets, respectively A1 C S and Ay C S, the intersection of their prod-
uct with the Boucherie state-space S, can be decomposed into the union of two sub-
products, as the following Remark points out.

Remark 4.2.3 Let A; C § and A C S be two subsets with respect to the components
of a bidimensional Boucherie process with state-space S, then the following holds:

(AL X A2) NS= (A X A2) U(ALr X Ayg) = (A1 X Ay g) U (A g X A2R)

Figure 4.2 shows what Remark 4.2.3 is meant to point out: the part of the product of
two subsets A; and A, which fallsin Sallows for a bi-partition which is susceptible
for two different but equivalent characterisations. In the first characterisation (Fig-
ure 4.2.a) one part is obtained by coupling every state of A; where M; does not hold R
(i.e Al,ﬁ) with every state of Az, whilethe other part, is given by coupling the states of
A1 where M1 holds R (i.e. Aqr) only with the states of A, where M» does not hold R
(i.e. so that the mutual-exclusion condition is not breached). In the second characteri-
sation (Figure 4.2.b) the first part is obtained by coupling every state of A1 with every
state of A, such that M, does not hold R (i.e. Azaﬁ), while the second part, is given by
coupling the states of A; where M; does not hold R (i.e. A; g) only with the states of
A; such that M, holdsR (i.e. A2R).
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Ay Ay

P A — P A —

Aox Ao g S 2 Aox Ao g

o a) S_l b)

Figure 4.2: (A1 x Ap)NS= (Al,ﬁ X Ag) U (Al,R X szﬁ) = (Ag X AZﬁ) U (Al,ﬁ X A2,R).

Satisfiability sets Sat(¢), Satk(¢), Sat, z(9), Satk r(9). If M = (S Q,L) isabidimen-
siona Boucherie process with components M1 = (S1,Q4,L1) and My = (S, Q,, L))
and ¢ isa CSL formulathe following notations will be adopted throughout the remain-
ing parts of this chapter:

e Sat(¢) C Sdenotesthe subset of M ’s states which validate ¢.
e Sati(0) C S denotes the subset of component My’s states which validate ¢.

o Saf, 5(¢) C S denotes the subset of Saty(¢) consisting only of states where M
does not hold R.

e Satr(9) C S denotes the subset of Sat(¢) consisting only of states where My
holds R.

Aswill soon be clear, the above characterisation isimportant in order to find a decom-
positional expression for the set Sat(¢).
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4.2.1 Partitioning the Atomic Propositions set

In order to find a compositional semantics for formulae of the CSL with respect to
bidimensional Boucherie processes, the set of atomic propositions AP on which the
formulae are built needsto be partitioned. Since the components of a Boucherie frame-
work are independent processes it is sensible to keep the atomic propositionsreferring
to one process separated from the ones referring to the other process.

AP = AP, UAP,

where AP, denotes the atomic propositions for component My.

As a consequence of the AP’s partition, the CSL formulae referring to a bidimen-
sional Boucherie process can also be distinguished according to the number of com-
ponents they refer to. We will call single-component formulae, the formulae which
state properties concerning one component only (i.e. those formulae involving atomic
proposition of one part only, either AP, or AP,) as opposed to general formulae, namely
those formulae which refer to both components (i.e. formulae for which atomic propo-
sitions of both components are involved). The following two definitions, provide a
formalisation of these concepts.

Definition 4.2.2 (Single-component formulae) LetM = (S Q,L) beabidimensional
Boucherie process labelled over the set AP = AP; U AP,, where AR is the atomic
propositions set for component My. The formulae ¢ characterised by the following
syntax are CSL single-component state formulae:

B = a1t 0] G o | Sapl(0n) | Pap(eu)  (Sate-formulae)

425
ok = X'ok | ok U'ox (path-formul ae) (4.25)

where ax € AR.

Definition 4.2.3 (General formulae) Let M = (S Q,L) be a bidimensional Bouche-
rie process |labelled over the set AP = AP; U AP,, where AP isthe atomic propositions
set for component My. The formulae ¢12 characterised by the following syntax are
CSL general formulae:

012 = 01A02 | d2A 01| ~b12 | Sap(d12) | Pap(@12) (state-formulae)

(4.2.6)
@12 =X'012 | 0j12 U 012 [ 912 U ' |0k U'djrz  (path-formulae)
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where ¢ are CSL single-component.state formulae as in Definition 4.2.2.

As a consequence of the partition of the atomic proposition set AP the set of CSL
state formulae ® for a bidimensional Boucherie process is is aso partitioned in the
following manner:

O=0P,UDPUD

Each formula ¢ € @ can be classified as single-component or general by means of a
function, named At (), which returns the set of atoms ¢ is built on.

Definition 4.2.4 (Atomsof a CSL formula) Let AP be a set of atomic propositions
and ¢ a CSL formula built on AP. The function At() : ®U® — AP, is defined as
follows:

a if p=a
At(¢)UAL(¢") if d=0¢' A"
At) = & At@) it §=0
At(¢') if 0 =Sap(¢')
| At(g) it ¢=Pap(p)
At(o) — {At(q)') if o=Xo'
At(¢") UAL(¢") if o=¢'U¢”

where ¢ denotes the set of path formulae ¢ built on AP.

Relying on the above Definition the classification for the formulae ¢ referring to a
bidimensional Boucherie process can straightforwardly be obtained as follows:

o iff At(0) C AR
o= (4.2.7)

012 iff [(At(d) NAPL) # O] A[(At(0) NAP,) # 0]

In the next section we deal with the problem of deriving a compositional semanticsfor
single-component formulae. The results there obtained will be then exploited through-
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out the subsequent section, where the study of a compositional way to check general
formulae is faced.

4.3 Model checking non-Probabilistic state formulae

In this section a restricted syntax of the CSL logic is considered and a compositional
semantics, with respect to a bidimensional Boucherie process, is proved for the formu-
lae belonging to it. The logic is obtained from the one described in Definition 2.3.5,
by disallowing probabilistic path formulae. Essentially only Boolean combinations of
atomic-propositions and steady-state formulae are permitted; furthermore the steady-
state connective Sq, cannot be nested (i.e. it can appear at top-level only). This last
feature, though, does not affect the logic expressiveness, since modelsin a Boucherie
framework are ergodic CTMCs. Hence, as proved by Proposition 3.5.10, the expres-
sivenessis unchanged: the logic given by eliminating P <p(¢) from Definition 2.3.5is
semantically equivalent to the one characterised by the following syntax.

0=y [ & | A0 | —d
yi=1tt|a| yAy | vy (4.31)
€ = "Sqp(V)

The remainder of this section is split in two parts: the first is devoted to proving the
existence of a compositional semantics for single-component formulae; the second
involves the analysis of the general formulae case.

4.3.1 Compositional semantics for single-component formulae

We take into account only formulae which are built on atomic propositions belonging
to AR (k € {1,2}). The syntax for single-component formulae, results from the one
described by equation 4.3.1:
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o=k | G | oADK | 0k
W=t ] ac | wiA WK | gk (43.2)
Sk 1= Sap(Wk)

Given a state (st,s?) of the product-process, we aim to prove that there exists a trans-
formation function f; : @& — ®y, which applied to a single-component formula ¢,
returns another single-component formula f; (dk), such that:

(L) E ok = s fu(ow) (4.33)

where = denotes the semantics relationship with respect to component My. The
equivalence 4.3.3 provides us with a compositional semantics for single-component
state-formulae ¢y: checking the validity of ¢, with respect to a state (st,s?) of a bidi-
mensional Boucherie process is equivalent to check the validity of a derived formula
f(0x) with respect to the projection state s of component M.
Asone can easily understand, the main issue with the characterisation of “composition-
aly” equivalent single-component formulae, concerns steady-state formulae, namely
Sap(wik). It will be shown that characterising the equivalence for Sqp(wi) concerns
the derivation of an equivalent probability bound p which depends on the original one,
i.e. p, aswell as on the argument formula yy and on the component My it refers to,
which is: aformula Sqp(yx) is valid in a bidimensional Boucherie M if and only if
S<p(wi) isvalid with respect to the component My.

The characterisation of the equival ent probability bound for single-component steady-
state formulae, is given by afunction named g() whose definition follows.

Definition 4.3.1 (Equivalent steady-state probability bound function g()) Let
Yk € Wy be a single-component formula , where Wy isthe set of yy formulae described
by equation 4.3.2; the functiong() : [0, 1] x WxxCTMC — [0, 1] is defined as:
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if Sati(yk) € Sr

Olo

gPwicM) =1 g5 if Sat(yi) C Sr (4.3.4)

pféfk" if (Satyr(Wk) # 0) A (Satr(Wk) # 0)

\

where G is the product-form normalisation constant, and C;j and Cy; are respectively
defined as follows:

Ci= > m(t)
tieS g
. (4.3.5)
Gi= 3 mS) XY mE)= Y m)] (1-c)
stesat, g(wk) sleSir ke Saty m(wk)

Thefunction g distinguishes between three different cases depending on Saty(wk). The
proof of correctness for g() will be faced in Theorem 4.3.1, here an informal descrip-
tion of theintuitionsit relieson is given. Figure 4.3 provides a graphical description of
the three possible cases concerning the satisfiability set for a formula y1 with respect
to component My: Satj(y1) C Sir (Figure 4.3.8), Sat1(y1) € S r (Figure 4.3.c) or
[Sat1(y1) NS, gl # 0 and [Sat1 (y1) NSy R # 0 (Figure 4.3.b). Themain point in deter-
mining the equivalent probability bound for a steady-state formula S <p (i), isto find
adecomposition of the set Sat (yy) in terms of products of subsets of the components
state-space S¢ and ;.

o if yy is satisfied only in states where component My does not hold R
(i.e. Sat(wk) C S see figure 4.3.9) then it is straightforward to prove that
the set of M s states satisfying wy is given by? Sat (yi) = Saty (k) x Sj. Insuch
a case, as will be proven by Theorem 4.3.1, the equivalent probability bound
a(p, Wk, My) isgiven by &.

2Herewe areassumingk = 1and j = 2; clearly if k=2 and j = 1, then Sat(w) = Sj x Satk(k).
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| 55

a) | b)

Satk(L,fk)

C)

Figure 4.3: Three possibilities concerning Sat;(y1).

¢ on the other hand, if yy is satisfied only in states where component My retains R

(i.e. Satk(yk) € SR, seefigure 4.3.c) then Sat (yi) = Saty (k) % S; r- Asacon-
seguence, (see Theorem 4.3.1), the equivalent probability bound g(p, wk, Mk),
is given by G—%, It is relevant to note that the constant C; represents the long-
run probability of not holding the shared resource for component M. Thus,
the meaning of g(p, yx, M) inthis caseis as follows: checking the steady-state
probability of yy against a probability bound p with respect to M is equivalent
to check the steady-state probability of yy with respect to My, against a derived
bound whose value depends on the probability that M; does not hold R in the
long-run.

the most complex situation iswhen yy is valid both in states where My does and
does not holds R (i.e. (Satkr(Wk) 7 0) A (Saty g(Wk) 7 0) see figure 4.3.b) then
Sat () isdecomposablein two parts Sat (yk) = [Saty g(Wi) x Sj]U[Satk r(Wk) X
S; r; thefirst oneis given by coupling all those states where M does not hold
R but satisfies w (i.e. Sat g(wk)) with any state of Mj (i.e. Sj); the second

part is obtained by coupling the states where My holds R and satisfies yy (i.e.
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Saty r(yk)), only with those states where M does not hold R (i.e. S;p): the
states of Sj r must be ruled out in order not to breach the mutually exclusive
accessto R. The equivalent probability bound g( p, wk, M), in that case, isgiven
by pfc'?k" . The constant Cy; represents the long-run probability for component
M; to hold the shared resource weighted by the probability for component My
to satisfy yy while not holding R at steady-state. Summarising, in this case,

checking S<p(wi) with respect to a bidimensional Boucherie M is equivalent

to check Sqp (k) with respect to My, where the equivalent probability bound
depends on two factors: the probability of M; to retain Rin the long-run and the
probability of My to not satisfy yy while not holding R in the long-run.

The formal definition of the transformation function for the the single-component for-
mulae, can be now introduced.

Definition 4.3.2 (Transformation function f;()) Let ok € @k be a single-component
formula, where @y is the set of single-component formulae ¢y described in equation
4.3.2; the transformation function fi() : ®x — @y is defined as:

;

(% if Ok=yx

— () it o=y
fe(0k) = (4.3.6)
fe(op) A fe (o)) if dk= (0 AD})

SatpyieM (W) if 0k =&k = Sap(wi)

\

Having introduced the transformation function f;(), the next step isto prove that it
isactually correct (i.e. it provides us with formulae that are “compositionally” equiva-
lent to the transformed one). Thisistheresult of the Theorem 4.3.1. Before proceeding
with proving the correctness of the transformation function, a minor, but relevant re-
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sult, concerning the characterisation of the satisfiability set Sat(¢y) needs to be shown
and isdonein the following Lemma.

Firstly, though, anotational peculiarity which isassumed in thefollowing, deserves
to be clarified: in genera k, j € {1,2} are interchangeable indices used to distinguish
elements (i.e. sets of states, formulae, set of atomic propositions . ..) referring to the
components of a bidimensional Boucherie process. In the following, the Cartesian
product of subsets of the two components, like, for example, Satx(yx) and Sj, even
though asymmetric, always appear in the form Saty (yx) x Sj (i.e. with Kk as the first
operand of the product and j the second), which with respect to the Boucherie frame-
work is proper only if k=1, j = 2 isassumed. Neverthelessin the following wherever
a result involving the Cartesian product of a k subset times a j (i.e. k first operand
and j second operand of the product) is shown, that result also holds in the dual case
k=2,j=1: in such a case, a product like Satk(yk) x Sj has to be intended as if
reversed, whichis Sj x Saty (y).

Lemma4.3.1 Let M be a bidimensional Boucherie process and ¢x a single compo-
nent state-formula from the syntax described by equation (4.3.2), then the following
implication holds:

[(s4,5%) = b = S =i fe(0n)] = Sat(on) = (Sat( fi(0x)) x Sj) NS

Proof. The equality Sat(¢x) = (Satk(ft(dx)) x Sj) NS has to be shown assuming
(s1,8%) = 9k & S =k fi(0k) as hypothesis,

(=) let us suppose that (st, %) € Sat(¢x) then, (st,s%) = ok hence from the hypothe-
sis, also € =y fi(0k) = ¢ € Saty( fi(¢k)). Furthermore, since obviously Sat (¢x) C S,
then (st,s?) € S henceclearly (st,s?) € (Saty(fi(¢x)) x Sj) NS which provesthat any
state (s',s%) € Sat(¢k) isaso adtate (st,s?) € [(Satk(fi (k) x Sj) NS

(<) if (sh,9) € [(Sat(f(d)) x S) NS then (%, ) € SA € Saty( (k). Hence,
from the hypothesis, also (s!,s?) € Sat(¢x), which proves that any state
(st, %) € [(Sat(fi(dk)) x Sj) NS is also a state (st,s?) € Sat(¢k), hence the equal-
ity Sat (oK) = (Satk(fe(ok)) x §)) NS
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O

Lemma 4.3.1 shows that by assuming the transformation function’s correctness
(i.e. [(st,9%) = 0k & S¢ =k fi () ]), the satisfiability set Sat (¢x) for asingle-component
formulacan be decomposed in terms of the satisfiability set, with respect to component
My, of the corresponding transformed formula fi(¢x) (i.e. Satk(¢)). Thisresult turns
out to be useful in the proving the following Theorem.

Theorem 4.3.1 Let M be a bidimensional Boucherie process and ¢ a single compo-
nent state-formula asin (4.3.2), then the following implication holds:

(shS) E ok == K fi(o) V(shs)eS

where f; isdefined asin (4.3.6).

Proof. By structural induction over the form of .

base case: 0k = Yk = ax.

The proof is trivial. From Definition 4.3.2 we have that f;(ayx) = ax. Furthermore an
atomic proposition ay labels a state (s, s%) of the Boucherie process if and only if it
labels the state s¢ of component My (i.e. ax € L((sh, %) <= ax € Ly(s9)). Hence,
clearly

(she) Fax = Exac

induction step: all the other cases have to be considered.
1 k=W
L et us assume the following inductive hypothesis:
(sh) Ew <= Ecfilw) V(s eS (43.7)
We aim to show that the following bi-implication:
(s8) vk <= (v

(=) if (s1,8%) =~y then dlearly (st,8%) ¢ Sat(yy), hence by inductive hypothesis
(i.e. 4.3.7) also $¢ ¢ Saty(fi(wk)), then clearly € € Saty(—f (wk)) = ¢ =k —fr (W)
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(<) if &€= —fi(yk) then € ¢ Sat(fi(wk)). Hence, by inductive hypothesis (i.e.
4.3.7),ds0 (s5,9)) ¢ Sat(wk), Vs) € Sj: (s, s) € S Butthenclearly (s¢,s)) € Sat(—wy)
which means (s,s!) = —yy, Vsl € S @ ($,9)) € S.

For the sake of simplicity, we will refer the proof of the remainder of this Theorem
to single-component formulae ¢y which refer to component M; (i.e. k = 1), having
in mind that the argument can straightforwardly be reversed to the case of formulae
referring to component M5 (i.e. k = 2).

2.01=y1 AV
From Definition 4.3.2, we have that fi(wj Ay7) = fi(w)) A fi(yY). Let us assume the
following inductive hypothesis:

(") Evi & st filyy) and (8889 vl & s o fi(y])  (438)

for all states (s!,s?) € S
We aim to show that:

(shs) EviAy] = s' 1 fiwh) A f(v).

for any state (st,8%) € S

(=) if (s5,8%) =y Ay] thenclearly (s, ¢%) = v and (st,$%) |= y}. Hence, from the
inductive hypothesis (i.e. 4.3.8) also s! =1 fi(y}) and st =1 fi(w}), which is to say
st =1 fi(wh) A fi(w).

(<) if st =1 fi(w)) A fi(w]) then clearly st =1 fi(w)) and st =1 fi(w)). Thus, from
from the inductive hypothesis (i.e. 4.3.8), we also have that, Vs’ € S : (s1,s%) € S,
(st,¢%) = v} and (st,§%) =y} which meansthat (st,s?) =y Ay,

3. 01 =281 =Sqp(y1).
Let us assume (4.3.7) as inductive hypothesis. From Definition 4.3.2, we have that
ft(S<ap(W1)) = Sag(pysMy) ft(W1), hence we aim to prove that®:

SHere |= Sﬂpgm) and =1 Sy(pyyMy)( fi(y1)) are used instead of (s',s?) E Sqp(w1) and
stk Sq(pw,My) (Tt (w1)) sincemodelsin aBoucherieframework are ergodic CTMCs, hence, as pointed
out in section 3.5, steady-state formulae are actually model dependent rather than state dependent.
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A

=Sap(W1) = 1 Sq(pyMy) (Tt(W1)).

(=) if = Sap(y1) then
[ Y mthtH)]<p
(t1,t2)esat(y1)

which, since M has a product form solution, we can rewrite as:

G[ Y mth-m(t?)]gp
(tl,tz)eSat(wl)
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Since we are assuming (4.3.7) as inductive hypothesis, then from Lemma 4.3.1 also

Sat(y1) = (Sati(fi(w1)) x &) NS which, from Remark 4.2.3, we can rewrite as,
Sat(y1) = (Saty r(fi(w1)) x ) U (Satzr(fi(y1)) x S;g). As aconsequence the sum

in the above inequality, can be split as follows:

G [Sumg+Sumy | < p

where:
ST > mth Y m(t?)
tleSat, x(fi(y1) tPes
am = Y m) Y m
tleSaty r(fi(w1) t?eSat, 5

Three different cases, depending on the set Sat; ( f; (1)), need to be considered:

o Sati(fi(y1)) C Sr!
in such acase g(p, ¢}, M1) = &, hence we aim to show that

[G[Suma+81mb]§1p]:>[[ T mth<

P
treSaty (fi(y1)) G

Note that
Sata(fi(y1)) € S p= Satrr(fi(y1)) =0
hence the sum Sump = 01in (4.3.9). Thus (4.3.9) resultsin:

Gl Y  mth Y mt?)]|dp

treSat (fi(y1)) t2eS

(4.3.9)
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which, since t, isadistribution over S, resultsin:
G[ Y - mhgp
tteSaty (fi(y))

proving that:
S1 ):1 Sﬂé (ft (\jfl)).

(<) By reversing the order of passagesin (=).

o Saty(fi(y1)) C SR
Inthiscase g(p, y1, M1) = G%z whereC, = Yizes,q m»(t?), obtained from 4.3.5
with j = 2, isthe probability of not holding R for component M, in thelong-run.
Hence we aim to show that

G [ Sumu+Sumy | < tha P
o8+ %]_p]i[[tlesm%t(‘h))nl( 1<5E)

Note that
Saty(fi(y1)) € SLR=> S p =0

hence the sum Sum, = 0in (4.3.9). Thus (4.3.9) resultsin:

G[ Y mh Y m(t?)]dp

tlesaty (fi(w1)) t?eSx

which, proves that
S1 ):1 SSIG__%Z (ft (\jfl)).

(<) By reversing the order of passagesin (=).

o (Saty r(fi(w1)) # 0) A (Satyr(fi(w1)) # 0):
In this case g(p,y1,M1) = % where C; isasin the previous case while

C12 = 2 TC1(Sl) 2 TC2(32) = [ z 71:1(81)} . (l—Cz)

steSat; g(y1) SESR steSat) g(y1)
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isthe probability for M; to satisfy y1 while holding R on the long-run, weighted
by the long-run probability for M to hold R (both C, and Cy» are given by 4.3.5
withk =1, j = 2). Hence we aim to show that

-G-C
[G [ Sumg +Sumy | < p] = [[ > m(th)< %]

tleSaty (fu(ya)) 1
Since ((Satlﬁ( ft(d1)) # 0) A (Satyr(fi(91)) # 0)), then both Sum, and Sumy,
in (4.3.9) are greater than zero. By factoring out the common statesin S, and
noting that fi(y1) =y, we obtain:

G Y mth Y mt?)+ Yoo omth) Y m?)]<dp

tleSaty (fi (1)) t?cS)g ttesat g(fi(y1)) t2eSR

which resultsin:
[ Y me)eP =
tteSaty (fi (1)) 12

hence proving that
st 1S psc, (fi(wa)).
= GCpp

(<) By reversing the order of passagesin (=).

The proof for theremaining cases (i.e. ¢1 = ¢} A 97, 91 = —¢)) issimilar to the previous
cases, hence, for brevity, we skip it.
0

The above Theorem proves the correctness of the compositional semantics for the
single-component non-probabilistic state-formulae (i.e. formulae characterised by the
syntax 4.3.2), as it is described by the transformation function f¢(). Hence checking
a non-probabilistic state-formula which refers to a single component only, either M,
or My, against M is equivalent to checking a derived non-probabilistic state-formula
against the component it refers to.

Next, formul ae invol ving both components of the Boucherie process are considered
and a compositional semanticsis derived for them.
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4.3.2 Compositional semantics for general formulae

CSL general formulae are generated by coupling single component formulae relating
to different components (¢1 and ¢2), by means of binary connectives. Their formal
characterisation, with respect to the origina CSL syntax, has been shown in Defini-
tion 4.2.3. Here, though, the same restrictionsimposed for single-component formulae
are considered: probabilistic-path formulae (P<p(¢)) are ruled out and nesting of the
steady-state connective (S.p) is not permitted.

The resulting syntax for general non-probabilistic state-formulae (i.e. which is di-
rectly derived from the syntax for generic non-probabilistic state-formulae described
in 4.3.1) isasfollows:

d12::= d1A02 | d2AD1L | dkAD12 | d12ADK | d12A D12 | E12 | 12
Y12 = WIAY2 | Yo AL | WA | Y AWK | W2 Ay | Sy (4.3.10)
€12 :=S<p(W12)

where ¢ and yy areasin 4.3.2, while &1, are steady-state formulae whose argument is
ageneral formula(i.e. it refers to both components M and My). The use of a specific
production for §1, formulaein 4.3.10, prevents the possibility of nesting S <p.

The basic idea on which the compositional semantics for general formulae relies, is
that given aformulad1, whosevalidity isto be checked against astate (st, %), there ex-
istsaBoolean combination of satisfiability conditions concerning some derived single-
component formulae, which turns out to be equivalent to (s, s%) |= 612.

To explain the intuition on which this idea is based, let us consider an example,
referring to the Boucherie process introduced as our running example in Section 2.5.1.
Suppose we are interested in checking whether the general formula (idle; Aidley) is
satisfied with respect to the state (s10,S20) Of the Boucherie process pictured in Fig-
ure 2.8. From the CSL semantics we know that, trivialy,

(S10,%20) = (idlep Aidlep) <= (s10,S20) =idler and  (Si0,S20) = idler

but then, from Theorem 4.3.1 (i.e compositional semantics for single-component for-
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mulae), it follows that

(810,820) ): (idlel/\idlez) < S10 ):1 idle; and sy ):2 idle

The above, trivial, example shows that acompositional semanticsfor general formulae
ispossible; in fact, checking : the validity of (idlej Aidley) against the state (S10, Sp0)
of the Boucherie process is equivalent to check that idle; and idle; are valid with
respect to the states st and s? of the components’ processes.

The formal characterisation of the “decomposed equivalent satisfiability condi-
tions’ for a formula ¢1, and a state (st,s?) is by means of the function cond(), in-
troduced in Definition 4.3.4. The main point there regards the case of steady-state
general formulae (i.e. last case of Definition 4.3.4). In order to define the equivalence
for ¢12 = &12 = Sqp(y12), @ decomposed characterisation of Sat(y12) is needed (i.e.
Sat (y12) must be partitioned in a number of parts each of which is given by the Carte-
sian product of subsets of the two components). Thisis achieved through the function
DecSat() : ¥1p — 2112, which takes a1, formula as argument and returns a set of
pair of single-component formulae (¢1,92) € (W1 x W2) characterising a partition of
Sat(y12) (see Lemmma4.3.2).

Definition 4.3.3 (function DecSat () : W1 — 2¥1%¥2) Let 3, be a Boolean proposi-
tion as described in (4.3.10). The value DecSat(y12) is defined as follows:

DecSat (y12) =
{(v1,y2)} if [yi2 = y1Ay2]v
[Y12=v2Ay]
yk ANDy DecSat(y,) if (W12 =W AYplV
(W12 =y, Ay
DecSat (y3,) AND DecSat (y75) it [wi2 =i, Ay,
L K(ocl,(xz)eDecSat(w’lz){(_‘alvtt)7 (0, —0)} if Y12 = _‘Wllz

(4.3.11)
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where AND1, AND, and AND are binary operators returning, respectively, the con-
junction of a single-component formula with a set of pairs of single-component for mu-
lae and the pairwise conjunction of two sets of pairs of single-component formulae.
Formally

(uAND1T) = | {(nAoa,02)}
(oug,02) €l
(2 AND2T) = [ {(og,02A72)}
(oug,02) €l
('AaNDT") = | { U {(0qndd,apn05)}}

(ag,00)€l” (o of)el™

and where A in (4.3.11) refers to the conjunction AND of sets of pairs of single-
component formulae.

The next Lemma proves that the set of pairs of single-component formulae provided
by DecSat (y12) actualy represents a characterisation of a partition of Sat(y12). In
order to prove such aresult a preliminary property concerning the complement of the
Cartesian product of two subsets, needs to be introduced.

Proposition 4.3.1 (Complement of a Cartesian product) Let A ¢ Aand B’ c B, be
subsets, respectively, of a set A and a set B. The complement of the Cartesian product
A’ x B isgiven by:

A'xB' = (AN xB)U(A xB)

Proof. We need to show that the following bi-implication holds:

(a,b) € A x B <= (a,b) € [([A' x B)U (A" x B')]

(=) 1f (a,b) € A x B then (ac AvbeB). But (ac Avbe B') = (a,b) € (A xB)
which proves (=).



4.3. Model checking non-Probabilistic state formulae 105

(<) If (a,b) € [(A x B) U (A" x B')] two cases need to be considered. If (a,b) € (A’ x B)
then (ac A’ Ab € B) but thisimpliesalso (ac A’ Vb € B') which proves (a,b) € A/ x B'.
On the other hand if (a,b) € (A’ x B') then (a€ A’ Ab € B) but this implies also
(a€ A'vb e B') which proves (a,b) € A’ x B.

0

Sy

| a9 | a9 a9

a1

Sl a ai; N\ as

—a

Figure 4.4: Decomposition of Sat(a; A ap) = (Sat1(—ay) x ) U (Sat(a) x Sat(—ap)).

Figure 4.4 shows an example of application of Proposition 4.3.1 to a bidimensional
Boucherie process: thecomplement of Sat(a; Aap) = Satj(a;) x Satz(ap) ispartitioned

in two subsets. Thefirst onebeing (Sat(a;) x &) = (Sat1(—a1) x S); the second one
bei ng (Sat(al) X Satz(az)) = (Satl(al) X Satz(—'az)).
The result of Proposition 4.3.1 is needed for proving the following Lemma, which

shows that DecSat (y12) actually characterises a partition of Sat(y12).

Lemma4.3.2 Let M be a bidimensional Boucherie process and 12 a formula asin
the syntax described by (4.3.10), then the following holds:

Sat(q;lg) = U [Satl(ocl) X Sﬂtz((lz)} \(Rle) (4.3.12)
(ou1,00)€DecSat (y12)
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Proof. By structural induction over the definition of DecSat(). For simplicity we
denote the right hand side of the equality (4.3.12) as S*(y12).
Proving the equality (4.3.12) means showing that

(s',t%) € Sat(y12) <= (s'.1?) € S'(y12)

base case:* 1o = W1 A Y2 OF W12 = Yo Ay,
From Definition 4.3.3, we know that, in this case, DecSat (y12) = {(w1,y2)}, hence
S (y1Ay2) = [Sat1(y1) x Sata(w2)] \ (RiR2). Thuswe aim to prove that

(s',5%) € Sat(y1Ay2) <= [Sata(y1) x Sata(y2)] \ (RiRz)

(=) if (s,$%) € Sat(y1 A o) then (sh,s%) =y and (s,8%) |= w2 and clearly also
(st,s?) € S. But then from Theorem 4.3.1, we also have that, [s! =1 w1 A S? =2 2]
which proves, (st,8%) € S (y1Ay2).

(<) by reversing (=).

induction step: all the remaing cases in the definition of DecSat () needs to be consid-
ered.

L W12 = W AW, OF Wiz = Wip AWk

Again here, for brevity, we consider only the case w12 = Wi A Wy, knowing that the
same result holds also for w12 = W}, Ay as adirect consequence of the ssmmetricity
of the conjunction.

If w12 = w1 Ay, then DecSat (y12) = [w1 AND; DecSat(y),)], hencewe aim to show
that

(s, € Sat(yiAyhy) <= (sh,s9) € |J [Sata(ou) xSato(02)] \ (ReRz).
(oug,0i2)[ w1 AND; DecSat (v, )]

Asinductive hypothesis | et us assume

Sat(y12) = S'(W1o)

4For brevity we consider y12 = y1 Ay as our base-case, knowing that same result holds when
Y12 = Y2 A isconsidered.
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(=) if (s,?) € Sat(y1 A yy,) then it is true that (sl,s?) € Sat(yi) and
(st,s%) € Sat(y),) and clearly also (st,s?) € S. Though, if (st,s?) € Sat(w},) then (in-
ductive hypothesis) there exists a pair (af,05) € DecSat(y},) such that
(st,8%) € [Sata (o)) x Satz(0h)] \ (RiRz). which means (st,s?) |= o and (st,$%) = 0.
From Theorem 4.3.1 then dlso s! =1 o} and & = o, and also st |=1 w1 which proves
(%) € [Sata (Wi ct) x Sat(0)]\ (RiRy) hence (s, ) € S (waAYp).

(<) by reversing (=).

2. Y12 = Y1 AT
If w12 = y), Ay, then DecSat(y12) = [DecSat(y},) AND DecSat(y/,)], hence we
aim to show that

(s5,5%) € St (W AyT,) <= (55,89 € | [Sata(0) x Sata(02)] \ (RiR).
(ou,02)€[DecSat (y,) AND DecSat (w7, )]

L et assume the following inductive hypothesis:
Sat(yio) = S'(y1p) and Sat(wi) = S'(Wr5)
(=) if (1, 8%) € Sat (Wi A ) then
(s,8) € Sat(yi) A (s,5) € Sat(vhy)

Hence also, (inductive hypothesis) (st,s%) € S*(v),) and (st,s%) € S*(y,), but that
meansthat there existsapair (o, o5) € DecSat(y),) and apair (o, o) € DecSat (y75,)
sch  tha (L) e [Sai(e)) x Sa(oh)] \ (RiR:)  and
(st, &%) € [Sat(0f) x Satz(0f)]\ (RiRz). Then, as a consequence of Theorem 4.3.1,
aso (st, %) € [Sat1 (o) Aay) x Sata(a/Aoy)] \ (RiRz). From the definition of the opera-
tor AND it is straightforward to show that (oj,0)) € DecSat(y},) and
(af,05) € DecSat(y7,) implies (o Aaf,a5A05) € DecSat(y),Ay;,) which proves
(s5,5%) € S' (ViAW)

(<) by reversing (=).
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3. Y12 = _'WéI_Z
If Y12 = _'WéI.Z then

DecSat(y12) = A\ {(—0a,true), (og, —~o2)}

(0ug,02) €DecSat (v ,)

where A refersto the binary operator AND as described in Definition 4.3.3. We denote
the right hand side of the above equality asNOT (). Hence we aim to show that

(s,5%) € Sat(—yyp) <= (s4,5") € | [Sata(0u) x Sata(02) ]\ (RiRy).

(0t1,02)ENOT (y),)

L et assume the following inductive hypothesis:

Sat(y12) = S'(W12)

(=) if (st,5?) € Sat(—y),) then (s,s?) ¢ Sat(w),) which also means (inductive hy-
pothesis) that (st,s?) ¢ [Sati (o) x Sata(02)]\ (RiRz), V(0u, 02) € DecSat (w),). Which
is (Sl,SZ) € [Satl(ocl) X Satz(az)] \ (Rle), hence:

(shs) e [[Satz(on) x Satz(a2)] \ (RiRy)]

(0,00) €DecSat (v),)

From Proposition 4.3.1 we know that

[Sata (o) x Satz(02)] = [Sata(ou) x S]U[Sati(on) x Sata(orp)]
= [Sati(—ou) x SJU[Satr(0ou) x Satz(—or)]

thus
(shs%) €[ [[Sata(—0u) x S| U[Sata(0u) x Satz(—02)]] \ (RuRe)

(0u,02) €DecSat (y,)
Considering the distribution of N with respect to both U and x and also considering
that, Sat1(¢7) N Sat1(¢]) = Sat1(d5 A ¢7) for any two single-component formulae ¢
and ¢7, then it straightforwardly follows that

m [[Satl(—!(xl) x S| U[Saty(0g) X Salz(ﬁaz)]] \RiRx = U Sat1(81) x Satz(82) \RiR2
(au1,02) EDecSat (y) (81,82)€NOT (yy)

which proves (=).
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(<) By reversing (=).

In the next example some 12 formulae are considered and the set DecSat(y12) is
computed, illustrating the application of the above Lemma.

Example 4.3.1 (Decomposition of Sat(y12) by means of DecSat (y12)) Let usconsider
the application DecSat() to some y12 formulae. We focus on 2 formulae involving
four atomic propositions, namely {az,bs,ap, by} (i.e. At(wyi12) = {a1,b1,a2,b2}). We
observe that there are four possible situations concerning the relationship between
Satj(a;) and Sat;(b1) on one hand and Saty(ay) and Satz(by) on the other and these
can be characterised in the following way:

a) [Sati(ag) NSaty(by) = 0]V [Sata(az) N Sata(bp) = 0].
This case relates to one out of the three situations depicted in Figure 4.5.

b) [Sati(a1) N Saty(by) # 0] A [Sat2(az) N Satz(b2) # 0].
Thiscase relatesto Figure 4.6.

The distinction concerning the possible relationship between the satisfiability sets for
theatomsay, by and ay, b, isuseful to show that the decomposition provided by DecSat (y12)
is correct in any possible situation. Let us focus on the following examples of y 1o.

Lyp=yiAyz = (a1Abr) A(agAby).

In this case we know that, trivially, Sat((a1 A b1) A (a2 A b)) is given by the part
of the Cartesian product Sati((ag A bz)) x Satz(ap A bp) which intersects Swhich is:
Sat((azAbg) A (agAbp)) = Sata((a1 Aby)) x Sata(ap Aby) \ (RiR2). Also, from Defi-
nition 4.3.11, we have that:

DecSat((a1 Ab1) A (a2 Abp)) = { (a1 Ab1), (a2 Ab)}
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Figure 4.5: [Satl(al) N SaIl(bl) = @] V [Satz(az) N Salz(bz) = @].

which shows the correctness of Lemma 4.3.2 for this case.

Let us consider, one by one, each possibility regarding the satisfiability of the atoms
a1, b1 and ap, by and let us show that in any case Sat((ay A b1) A (a2 A by)) is char-
acterised in terms of the product [Sati(a; A b1) x Sata(ax A b2)] \ (RiRz). If either
Satj(a;) and Satq(by) or Satp(ap) and Sata(by) are digoint ( Figure 4.5), then clearly
Sat((azAby) A (agAby)) = 0. Though, clearly, also Sat; (agAbs) =0 or Saty(agAby) =
0, hence [Sat1 (a3 Ab1) x Satz(apx Ab2)] = 0. Ontheother hand if both Sat;(ag Abg) and
Saty(ap A bp) are not empty (Figure 4.6) then the conjunction (ag Abg) A (ax Aby) isnot
empty and Sat ((ag Ab1) A (ag A b)) isactually given by coupling all states of Sat1(ag A
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as
—— b S 2

[T T T [ 1

Figure 4.6: [Satl(al) N SaIl(bl) #* @] N [Satz(az) N Salz(bz) #* @].

b1) with all the states of Sat,(az A by), which proves the result of DecSat((a; Aby) A
(a2 Ab2)) being correct also for this case.

In the following, the less trivial case of a negated general formula (DecSat(—y12)) is
considered. We will focus on two different types of negated general formulae. The first
one is given by the negation of a “simple” conjunction, —y12 = —[(a1 Ab1) A (a2 A
b2)]), while the second involves recursion, being the negation of a conjunction whose
conjuncts are themselves negated conjunctions, —y12 = —[—=(ag A a2) A =(by A bp)],
(we note that, indeed, thisis equivalent to the disunction of two conjunctions -y 12 =
(a1 Aag) Vv (b Abyp)). In both cases the set DecSat(—y12) is computed and proved to
be correct by considering every possible case concerning the satisfiability of the atoms
a1, b1 and ap, b, (see Figure 4.5 and Figure 4.6).

2. y12 = ~y12 = (a1 Ab1) A (ag A b))

From Definition 4.3.3 we know that DecSat (—12) isgiven by the pairwise conjunction
(AND) between the sets of pairs {(—au,tt), (oq, 702) } where (o, o) are elements
of DecSat(y12). From the previous case, though, we know that the decomposition of
(a1 A b)) A (a2 A bp) consists of a single pair which s,
DecSat((ag Ab1) A (a2 Ab2)) = {(a1 Ab1), (a2 A bp)}, hence the decomposition of its
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negation® is given by:

DecSat(={(anby) A (@21 b2)]) = /\(0€170€2)€Decsal([(alAbl)/\(azAbz)D{(_lal’tt)’ (02, 702)}
= {(=(aAb),tt), ((aaAb1),~(a2Ab2))}

Let us consider now the different possible situations concerning the satisfiability of the
atoms aj;,b; and ap,b, and show that in every case the pairs in
DecSat(—[(a1 A b1) A (a2 A by)]) actually provide a characterisation of
Sat(—[(azAb1) A (azAbp))).

a) In this case either [Sati(a;) N Saty(by)] = 0 or [Saty(az) N Sata(by)] = 0, or both.
That meansthat there can be no such a state (st, s?) € Swhere both the conjuncts
(a1 Ab1) and (az A by) are satisfied, hence Sat(—[(a1 Ab1) A (a2 Abp)]) =S

Let us suppose that Satq(a;) and Sat1(bs) aredigoint; inthiscase Satq(ag A bg)
is the empty set (see Figure 4.5.a or Figure 4.5.b), hence Sat1(—~(agAb1)) =S
which means Sat;(—(ag A b1)) x Satp(tt) = S This proves that the first pair in
DecSat(—[(ag A b1) A (a2 A bp)]), namely (—(ag A by),tt), characterises a sin-
gle element partition of Sat(—[(az A b1) A (ag A b2)]), independently of whether
Saty(ap) and Sato(bp) are digoint or not.

On the other hand if Saty(a;) and Sats(b;) are not digoint while Satp(ay) and
Saty(by) are, then DecSat (—[(ag Ab1) A (a2 Ab2)]), provides a two element par-
tition of Sat(—[(a1 A b1) A (a2 Aby)]) = S Figure 4.6 depicts the form of the two
parts, associated, respectively, with the pair (—(az A by),tt) and with the pair
((apAb1),~(agAbyp)).

b) Inthiscaseboth (Sati(a;) NSat1(b1)) and (Sata(az) NSatz(by)) are assumed to be
not empty. As a result there will exist at least one state in Swhere (az Abg) A
(a2 A bp) istrue, hence Sat(—[(a1 A b1) A (a2 Ab2)] has to be a proper subset of
S. In such a situation the two pairsin DecSat(—[(a1 A b1) A (a2 A b2)]) split the
complement of Sat((az A bz) A (a2 Aby)) which indeed is equal to Sat(—[(az A

5]t should be noted that, the number of pairs the decomposition of the negation of a y 1o formula
consists of, is given by the n-th power of 2, where n is the number of pairs the decomposition of y 12 is
made of : |DecSat (—y1p)| = 2/PecSt (Vr2)|
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b1) A (a2 Ab2)]), in two parts.

3y =(arha) V(b1 Aby) = —[-(agAap) A—=(br Aby)].

Here we consider the negation of the conjunction of two negated general formulae.
In order to determine DecSat(—[—(a1 A az) A — (b1 A by)]) we proceed incrementally,
starting from deter mining the decomposition of the conjuncts:

DecSat(—(agAap)) = {(—aytt),(ag,—ap)}
DecSat(—(by Abp)) = {(—by,tt),(by,—bp)}

The decomposition of the conjunction [—(a1 A a2) A —(by A bp)] is then given by the
pairwise conjunction of the conjuncts’ decomposition:

DecSat([ﬁ(al VAN 8.2) A\ —l(bl VAN bz)]) = [DecSat(ﬁ(al/\ 8.2))] AND [DecSat(ﬁ(bl VAN bz))]
= {(—ay,tt),(as,—az)} AND {(—bg,tt), (b1, —b2)}
= {(—agA-by,tt), (mayAbg, —by),

(al/\ﬁbl, —laz), (al/\bl, —|8.2/\—|b2)}
Finally DecSat(—[—(a1 A a2) A =(b1 A b2)]) can be computed from the terms of

DecSat([—(az A a2) A =(b1 A b2)]). This leads to a set of sixteen pairs, which can
straightforwardly be proved equivalent® to:

DeCSBI(—![—'(al/\az)/\—l(bl/\bz)]) = {((alAbl),(az\/bz)),
(al/\ﬁbl,az),

(—|8.1/\b1,b2)}

which suggestsa partition of Sat((a;Aaz) V (b1 Aby)) consisting of at most three parts.

6That equivalence relies on the fact that some pair of formulae (ou1,02), lead to the empty set
(i.e. they are such that Sat; (o) = 0 or Satz(0p) = 0). For example, when either o1 or o contains
acontradiction (e.g. (a1 A —ay,bp)) then (o1,02) can be ruled out as clearly Sat1(o) x Sata(op) = 0.
Similarly a pair like ((a1Vb1) A—~(—a1Ab1) A—(agA—b1) A=(a1Aby),tt) which is actually one of the
sixteen elements of DecSat([(a1 A az2) V —(b1 A bz)]), can be easily proved to lead to the empty set, as
Sat1((a1Vb1) A—(—agAby) A—(agA—=br) A—=(arAbr)) = 0 independently of the relationship between
Satl(al) and Satl(bl).
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as bz 52

b i
! 4 S(ltl(a] A b]) X Satg(ag \ bg) = 0

""""""""""""""""""""""""" ‘ ST Satl(al A _‘bl) X Satz(az)

S Satl(—'al A bl) X Satg(bg)

S
S1
Figure 4.7: [Satl(al) N SaIl(bl) = @] N [Satz(az) N Salz(bz) = @].
Let us consider some of the possible situations concerning the sets Sat1(a;), Sat1(bs

)
and Satp(ap), Sata(by). In Figure 4.7 both Sat1(a;), Sati(b1) and Sata(ap), Sata(bo)
are assumed to be digoint. In this case the three pairsin DecSat((az Aaz) V (b1 Abp))
actually result in a bi-partition of Sat((azAaz) Vv (b1 A b)) as clearly Sati(a1 A by)
contains no elements (hence the pair ((a1 A b1), (a2 Abp)) € DecSat(—[—(ag A a2) A

(b1 A bp)]) leads to the empty set).

A three element partition of Sat((a1 A az) Vv (b1 A bp)) results, instead, both when
the intersection between Satj(a;) and Sati(bg) is not empty while the one between
Saty(ap) and Satp(by) is(Figure 4.8), and also when neither Sat;(a;) and Sat;(by) nor
Saty(ap) and Satp(by) are digoint (Figure 4.9). In those cases all the three pairsin
DecSat((ag A az) V (b1 A b)) correspond to a non-empty subset of S,

Finally a two element partition occurs whenever the set of states satisfying an
atom (either ay or by) is a proper subset of the satisfiability set of the other. Fig-
ure 4.10 points out the two parts Sat ((az Aap) V (b1 Aby)) consists of when Sat1(bs) C
Satj(ag) and Satp(byp) C Sata(ap), while Figure 4.11 shows a similar result for the case
Satg(by) C Saty(a1) and Satp(ap) C Sata(by).

O
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as by 82
o [
" ( s Saty(ag Aby) x Sats(az V by)
7777777777777777777777777777777777777777777777 wws Saty(ap A —by) x Sata(as)
Sati(=a1 Aby) x Sata(by)
S

S

Figure 4.8: [Satl(al) N SaIl(bl) #* @] N [Satz(az) N Salz(bz) = @].

Having demonstrated that the decomposition of Sat(y12) isgiven by DecSat (y12), the
function cond() can be formalised in the next definition.

Definition 4.3.4 (function cond() : Sx @1, — B(Sat).) Let (s!,s%) bea state of a bidi-
mensional Boucherie process M and ¢;2 a formula as in (4.3.10), the value
cond((st,$%),d12) is a boolean combination of single-component satisfiability condi-
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i 5

by

. [ {Ij | i

s S(ltl(a] A b]) X S(ULQ(QZ V bz)

"""""""""""""""""""""""""" ‘ SR Sﬂrtl((ll A _‘b1> X Satz(az)

= Satl(ﬂal N bl) X S(Zrtg(bg)
S

S1

Figure 4.9: [Satl(al) N SaIl(bl) * @] N [Satz(az) N Salz(bz) #* @].

tions, defined as:

cond ((sh,s?),012) =

(Sl fi(91) and $2= fi(6) it [012 =01/ 2]V
(012 = d2A 91]

sk ):k fl (Wk) and Cond((81732)7¢€l_2) if [¢12 = ¢k/\¢l12]\/
(012 = ¢ A dk]

COI’]d((Sl,SZ),(])éLZ) and COﬂd((Sl782)7(])éL’2) if [¢12 = ¢l12/\¢éLl2]
not cond((st,s%),0},) if 010= -0,

xS (o)  if 012=E12=Sqp(y12) A

< LprorRiR w1p) (0090 w11
= Grj(aj)

(o1,02) € DecSat(y12)
(4.3.13)
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D | E2

Al |

ey Satl(al A bl) X S(Itz(ag V bg)

———————————————————————————————————— s Saty(ag A —by) X Sata(ag)

S Satl(—'al A bl) X Satz(lb) = 0

Figure 4.10: [Satl(bl) C SaIl(al)] VAN [Salz(bz) C Satz(az)].

where B (Sat) is the set of all boolean combinations of propositions belonging to the
set Sat = Satq U Satp, Saty (i € 1,2) being:

Saty = {Sk Fk Ok : Ke S, ok € Ok}

and G is the product-form normalisation constant while for any general formula y 12
and any pair of single-component formulae (o1, 02) € DecSat(w12) and the constants
E(Rle,llflz), ﬂ((OLl, 0(2),1|112) and T (Otj) are defined as:

nt(RiR2,y12) = D [ DI (S ch(tj)]
(81,82)€DecSat(y12) thkeSaty (k) ticSat; r(8))
n((01,02), Y12) = > [ oo Y nj(ti)]
(81,6p)€Decsat(y12) tkESatk(Sk) tjESatj(ﬁj)

(81,02)7 (01, 062)

mioy) = Y m(t)

thesat(ay)
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by
/—/'F
T T T s
il | | 70
SIS Ls Satl(al A 1)1) X Satg(ag \ 1)2)
A | o Saty(ay A —by) x Sata(az)
Saty(—ay A by) X Saty(bs) =0
] S
S

Figure 4.11: [Satl(bl) C SaIl(al)] VAN [Salz(az) C 8812(22)].

The constants wtj(otj), m((ot1,0t2), y12) and m(RiR2,y12) appearing in the definition
of cond(), are measures concerning the long-run behaviour of the Boucherie process
and its components. Let us interpret them. Having in mind that (o1, 02) represents
one of the partitions of Sat(y12) by means of DecSat(y12), then mj(oj) represents
the probability for component M; to satisfy the formula o in the long-run (i.e. the
long-run probability for the projection onto S; of the part of Sat(y1») associated with
(01, 02)).

On the other hand, mt((cou1, 0t2),y12) is defined as the sum of the steady-state prob-
ability of statesin Sats(31) x Satx(d2) for every pair (81,82) # (o, 02). It should be
noted that this value deviates from the steady-state probability of the complement of
the part associated with (o1, 02) (i.e. Sat(yi2) \ [Sat1(ou) x Sata(oz) \ (RiR2)]) by a
factor which depends on the part of Sat1(d1) x Satz(d2) which falls in the prohibited
area (i.e. [Sat1(01) x Satz(82)] N [R1R2]). To understand what that means, let us con-
sider an example. Figure 4.12 depicts what the decomposition of Sat((a;Aaz) V (b1 A
b)) looks like when some among the states satisfying the atoms a1, b; and ap, b, are
such that the component holds R. We already know (see previous example) that

DecSat((al VAN 8.2) V (bl VAN bz)) = {((al/\bl), (8.2\/b2)), (al A by, 8.2), (ﬁal/\bl, bz)}
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:I SQ 12 = (ay A ag) V (by A by)
S(lt(ulg) = AU BUC

Saty(a; A —by) x Saty(as)

[Sati(aiAby)x Sata(as Vo) \ [S1,r X So.R]
[Sati(aiAby) x Sata(asVba)] N [S1 rXSo k]
[Sati(—a1Aby) x Sata(s)] \ [S1,r X So,5]
[Saty(

ay : Sat1 —\al/\bl) XS(ItQ(bQ)} n [SI,RXSQ.R]
bl[ﬁ B Saty(ar A by) X Sats(ay V by) = BUB

Satl(ﬂal A bl) X S(ltg(bg) =CucC

aQn® >
1 | R | |

Al &

S S

Figure 4.12: Meaning of the deviation T(R1Rp, (a1 Aaz2) V (b1 Ab)) = n(A) +n(B).

providing a three part partition of Sat((aiAaz) V (b1 Abg)), whose elements, A,B
and C are respectively associated with the pairs (a3 A —by,a2), ((a1Ab1),(a2Vvhy))
and (—apAbg,bp). We observe that, in this case, the intersection of the products
[Sat1(81) x Satz(82)] N [R1R2] is not empty with two of the three pairsin DecSat ((az A
az) V (b1 Abp)), namely ((a1Ab1),(a2Vby)) and (—agAbg,by). We named such not
empty intersections, respectively B (the one regarding ((a;Aby), (a2vby))) and T (the
one regarding (—ai Abz,b2)). Now, if we pick up a pair, say (—az A by, by), then the
value of the constant nt((ag A —b1,a2), (a1 Aaz) Vv (b1 Aby)), is given by the sum of
the steady state probability of the areas determined by the other pairs, namely A and
(BUB), hence:

n((ag A —by,a), (@ Aap) V(b1 Aby)) = n(A)-}-TC(BUE)
= n(A)+n(B)+n(B)

This value deviates by a factor n(B) from n(A UB) = n(A) + n(B), which is the
probability of satisfying the formula (a; Aay) Vv (b1 A by) without being in any of the
states associated with the pair (—ay A by, bp), in the long-run.

We note that, it is not always the case that the value of the constant (o1, 02), w12)
differsfrom the probability of the complement Sat (y12) \ [Sat1 (o) x Satz (o) \ (R1R2)].
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In fact, the deviation factor is null either if none of the parts (31, 82) intersect the pro-
hibited area (R1Ry) or if the only part that does that is (o1, 012).

Finally, the constant m(RyRz,y12), represents the sum of the steady-state proba-
bility of the amount of each area (Sat;(81) x Sat2(52)), where (81,9) € DecSat(y12),
which fallsin the prohibited area. Referring to the example depicted in Figure 4.12 we
have that

n(RiRy, (az Aag) V (by Abp)) =n(B) +n(C)

Again, we observe that it is not always the case that t(R1R2, y12) > 0. If none of the
parts (81,02) € DecSat(y12) intersects RiR, then clearly m(R1R2, w12) = 0. If were-
fer, for example, to Figure 4.9 then we have that t(R1Ry, (ag Aap) V (b1 Abp)) = 0.

The definition of the function cond() tells us that in order to check that the prob-
ability for a Boucherie process to satisfy y12 at steady-state matches a bound p, we
have to chose one of the partitions of Sat(y12) by DecSat (y12), namely the part char-
acterised by the pair of formulae (a1, 02), and check either that the probability for
component M1 to satisfy o at steady-state respects a derived bound p* or that the
probability for component M to satisfy o, at steady-state respects a derived bound
p?, where the derived bounds p' and 52 depend on the chosen part (ou, o).

This provides us with the compositional result we were looking for: the computa-
tion of the steady-state distribution for the Boucherie process's components gives us
enough means to check properties involving the steady-state probability of the Bou-
cherie process itself.

The next Theorem provesthat the results suggested by the definition of the function
cond() are actually correct.

Theorem 4.3.2 LetM = (S,Q, L) be a bidimensional Boucherie process, then for any
general formula ¢1» asin (4.3.10) and any state (st,§%) € S, the following holds:

(Sl,Sz) E o012 <~ Cond((Sl,Sz),¢12))

where cond() isasin Definition 4.3.4.
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Proof. By structura induction on the definition of cond().

base case: 012 = d1 A 02.
From Definition 4.3.4 we have that

cond((s",5%),01A 02) =" f=1 fi(¢1) and s =5 i(¢2)

Hence, we aim to show that:

(s, 5%) = 01 A 02 <= ' =1 fi(01) and §° = fi(02)

(=) if (s,t?) = ¢1 A b2 then (sh,t?) = ¢1 and (s1,t?) |= ¢2. Thus, from Theo-
rem4.3.1,asos! =1 fi(¢1) and s? =2 fi(02), which proves (=).

(<) By reversing (=).

012 = Sap(W12).
In this case we have that:

cond((sh, ), 01 Ad2) = = S [ )

p+G[Tt(R1R27W12)—ﬁ((0t1,0t2)7\V12)]]
Grp(ap)

where (a1, 02) € DecSat(y12). For brevity here we consider only the case with k=1,
hence, we aim to show that:

] (0)

S =S
= Sap(¥2) <=1 < LproRRiRy15) (0,09 w1)]

= Grp(op)

(=) if = Sap(y12) then

G[ Y mthm(t)]Ip

(t1,t2)€Sat (y12)
From Lemma4.3.2, we know that
Sat(y12) = U [Saty(81) x Satz(82)] \ (Sy,r x Satzr)
(61,82)€DecSat (y12)

which, as a consequence of Remark 4.2.3, we can rewrite as

Sat (y12) = U [[Sata(81) x Sat, r(82)] U [Sat; 5(81) x Satz r(82)]]
(81,82) eDecSat (y12)
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By substitution in the above inequality, we then have:

G Y | ¥ mth) ¥ omd+r ¥ omih) ¥ m)dp

(81,02)eDecSat (y12) tleSaty(81) t2eSat, 5(82) tleSat) 5(51) t2eSat, r(82)

which by adding to both sides of theinequality theterm Gr(R1R2, w12), where n(R1R2, w12)
isasin Definition 4.3.4, resultsin:

G 2 [ 2 nl(tl) 2 th(tz)] < p+ Gr(R1R2, w12)
(81,82)cDecSat(y12) tleSat(dy) t2eSaty(87)

hence

6[ ¥ mt) ¥ ()] < p+ G r(RiRe, W) — n((01,02), Wi12)]
tlcSaty (o) t2cSatp (o)

where (o1, 02) € DecSat(y12). Thus:

2 TC]_(tl)] 4 [p—f—G[TC(R]_Rz,W]_z)—TC((OL]_,O(Q),W]_Z)H

t1cSat (o) Gra(02)

which proves (=).
(<) By reversing (=).

inductive step:

1. d12 = Ok A 0.
From Definition 4.3.4 we know that for any state (s,s?) € S

cond((s",5%), 9k A 91p) = s |k i (0k) and cond((s",5%), 91o)
Hence we aim to prove that:

(s,8%) F= 9k A 91 <= s b=k Fi(0k) and cond ((s',5%), 012).
L et us assume that

(s,8) 912 <= cond((s',5%),¢%o)-



4.3. Model checking non-Probabilistic state formulae 123

as inductive hypothesis.

(=) if (s1,5?) = 0k A 0, then (s1,¢%) = ¢k and (s1,$%) = ¢),. Then from Theo-
rem 4.3.1 s¢ = ¢k and from the inductive hypothesis also cond((st,s%),},) which
proves (=).

(<) By reversing (=).

2. 012 = ¢/12 A ¢11/2
Similar to the one above.

3. 012 = —1(|)é|_2.
From Definition 4.3.4 we know that for any state (s',s%) € S

cond((st, ), ~0,) = not cond((st, s2), ¢})
Hence we aim to prove that:
(s,8°) = 0, <= not cond((s',5°),012)-
L et us assume the following inductive hypothesis:
(s,8°) = 0, = cond((s",5%), 01,)

(=) Trivial consequence of the inductive hypothesis.
(<) Trivial consequence of the inductive hypothesis.

O

Example 4.3.2 (Decomposed checking for general formulae) Referring to the Bou-
cherie process of our running example, let us suppose we are interested in checking
that, in the long-run, there is at least a 80% probability of having at least one compo-
nent in an “ operative” state (i.e. not idle). This property can be expressed by means
of the following general formula:

S>o0s(—(idlegAidley))
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One possibility to check whether such a formulais valid with respect to the Boucherie
process, is to calculate the set Sat ((—(idley Aidlez)) C Sby applying the CSL model -
checking algorithm to the state-space S. By application of the decomposed semantics
for general formulae given by the function cond() a different approach is possible.
From Definition 4.3.4, we know that

(o)

): SZO'S(_'(Idl 1/ id ez)) ):k S<] [0.8+G[n(R1R2,ﬁ(idIel/\idle2))— ((ocl,ocz),ﬁ(idlel/\idlez))]]
— GTI:J'(OLJ')

where (a1, 02) € DecSat(—(idle; Aidley)). Hence, asafirst step, we have to determine
DecSat(—(idlepAidlep)), whichis:

DecSat(—(idley Aidley)) = {(—idley,tt), (idleg, —idlep)}

Now we can chose a pair, say (idlej, —idley), from DecSat(—(idley Aidley)) and con-
sequently we compute the value of the constant wt((idleg, —idley), (—(idle; Aidley))
whichis

n((idley, —idley), ~(idley Aidley)) = my(—idle)m(S)
= [ma(S11) + 71 (S12) + ma(S13) + 1 (S14) + Ma(S15)] - 1

= 1-— 751(810)

In order to compute the value of the other constant n(R1Ry, —(idle; Aidley)), we
observe that, we have to consider the intersection with the prohibited area R1R, of
each pair in DecSat(—(idle; Aidley)). These are given by Saty r(—idle;) x S r and
Saty r(idler) x Satp r(—idlen). Hence

n(RiRz, ~(idleg Aidlez)) = [1—my(idler)][1—mo(idley)] +ma(idler)[1—mo(idley)]
= 1-—my(idley) = 1—mo(S0)

Finally, we can choose the component we want to refer to, meaning the component we
want to check the derived steady-state property against; say we are interested in com-
ponent M;. In that case the derived formula of interest we want to check the steady-
state probability of, is the first element of the pair (idleq, —-idley) we previously picked,
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namely idle;. Thus the remaining constant we need to calculate is wo(—idley) rep-
resenting the steady-state probability for the other component, M, to satisfy —idle,.
That is given by

np(—idley) = 1—mp(idle)) = 1—mo(Sp0)
We are now able to compute the derived probability bound against which we aim to
check the steady-state probability of Sat;(idlep). That is given by:

0.8+ G[n(RiRy, ~(idle Aidle)) — n((idl ey, midlep), ~(idley Aidle))]
Gro(—idley)

which isequal to

0.8+ G[[l— 1'52(520)] — [l— TEl(Slo)]] _ 0.8+ G[nz(Szo) —I—ﬂl(Slo)]
G[1 - m2(s20)] G[1 - m2(sp0)]

Hence we have that checking the general formula S>og(—(idle; Aidley)) with re-

spect to the Boucherie process M is equival ent to check the single-component formula

S> 0.8+G{[1-ra(sy0)l—[1-m1 (s10))] (1d1€1) With respect to component M1
= Gl1-ma(s20)]

= S>os((idlerAidler)) <==1S_ osteimyisy+my (s (idl€1)

= G[1-m(s20)]

Equivalently, we could have chosen to find a decomposed equivalence with respect to

the other component, M. In that case we would consider the second element of the
(previously chosen) pair (idlep, —idley) asthe target for the steady-state measure and
we would need to compute the value for the constant

1 (idler) = mi(Si0)

As a result the following equivalence holds as well

= S>os(n(idlegAidier)) <=2 S_ os:aimyisyg) imysn (idl€2)

GT[l(Slo)

The advantage of using the compositional semantics, in this case, isthat the complexity
of computing the satisfiability set for the formula idle; with respect to the component
process M1 islower than the complexity for the computation of the satisfiability set of
—(idle; Aidley) with respect to the product process M . That difference relies on the
ratio between the state-spaces dimension

S

S —
S|
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The bigger theratio SF (Savings Factor) is, the bigger is the saving, in terms of com-
plexity, gained through application of the compositional semantics.



Chapter 5

Compositional CSL model checking:

Next formulae

5.1 Introduction

In the previous chapter the existence of a compositional semantics for a subset of the
CSL where probabilistic path formulae, like P<p (), were disallowed, has been shown.
In this chapter that syntax is extended and Next formulae are considered. However, we
observethat, in order to derive compositional equivalencesfor path formulae (i.e. Next
and Until), nesting of path connectives needsto be excluded. Thus, unlike the origina
CSL (see Definition 2.3.5), in this work we will admit only formulae which do not
contain any probabilistic connective! as possible type of argument of a probabilistic-
path operator. Complying with this restriction, it will be shown that a compositional
method for checking Next formulae which refer to a bidimensional Boucherie process,
can be derived. The chapter also presents a further relevant result, which regards the
procedure for checking bounded Next formulae with respect to an arbitrary CMTC.
It will be shown, in fact, that the algorithm for the computation of the state-vector
Prob(s, X' ¢) provided in [5], is not correct and arevised version will be defined.

The chapter is organised in the following way: in the next section the syntax for
single-component Next formulae isintroduced and decomposed semantic equivalences

INot even a probabilistic steady-state formula, like S 4p(y), can be used as an argument of a proba-
bilistic connective.

127
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for both“simple”’ single component bounded Next formulae (Section 5.2.1) and steady-
state properties referring to single-component bounded Next formulae (Section 5.2.2),
are proved. Some examples are also included in order to show the correctness of
these results with respect to the GI'S Boucherie framework formerly introduced in Sec-
tion 2.5.1. In Section 5.3 the a gorithmsfor decomposed checking of such Next formu-
|ae are introduced (an algorithm for P—;(X' ) and an algorithm for Sqp(P=p(X! W)
are presented). Finally, in Section 5.4, general Next formulae are considered and a
procedure for their decomposed verification is defined. In this section, the problem
with the original version of the algorithm for computing Prob(s, X' ¢), is pointed out
by means of a simple example. The revised agorithm is then presented and proved to
fix the error with respect the considered example.

5.2 Compositional semantics for single-component Next

formulae

In this section the application of thetime bounded Next connectiveto single-component
formulae, yy, is considered and a compositional semantics is derived. The syntax of
the logic we refer to is derived from the one described in (4.3.2), by adding the pro-
duction for probabilistic path formulae @k. Thisresultsin:

Ok = Wi | @k | Sk | dkAGK | 0k
W=t ae | WA vk | vk

&k 1= Sap(Wk) | Sap(Pk)

ok = Pap(X' (wk))

(5.2.1)

For the time being we admit only the bounded Next as the possible type of path for-
mula k. Moreover, as we have already mentioned, the possibility for nesting path
connectives is disallowed. Seady-state formulae are also excluded from the possible
type of argument for a probabilistic path connective, because of their model-like rather
than state-like semantics with respect to ergodic models (see the analysis of CSL se-
mantic equivalencesfor ergodic modelsin Section 3.5). Asaresult the argument of the
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bounded Next connective X' can only be aformulawhich itself involves neither a path
connective, nor the steady-state operator, i.e. a yy formula. Finally, the probabilistic
steady-state operator can be applied also to probabilistic path formulae ¢y other than
non-probabilistic formulae yy, enriching, in thisway, the expressiveness of the steady-
state analysis: “future evolutions’ (i.e. paths) are added to simple “ state properties’ in
the criteriafor characterising the “long-run” behaviour of interest.

In the remainder of this chapter we will show that a compositiona approach for
checking the formulae of the syntax in (5.2.1) is possible. This basically will require
us to extend the transformation function introduced in Definition 4.3.2 in order to
cope with probabilistic Next formulae. We start with the analysis of a compositional
approach for probabilistic time-bounded Next formulae (section 5.2.1); those results
will be the basis to determine the compositional semantics for steady-state formulae
whose argument is a probabilistic bounded Next (see Section 5.2.2).

In order to improve the readability, the proof of some preparatory Lemmas has been
moved to Appendix A: only fundamental theorems are reported here together with
their proof.

5.2.1 Bounded Next (Pap(X'(wk)))

In this section, probabilistic time-bounded Next formulae like, P qp(X' (wk))), are con-
sidered. The equivalences showing the existence of acompositional semanticsfor such
formulae are given in Theorem 5.2.1. The result of Theorem 5.2.1, relies on the char-
acterisation of an “equivalent” probability bound p’ whose value is provided by the
function h() introduced in the following definition.

Definition 5.2.1 (Equivalent Next's probability and timebound ) Let (st %) be a
state of a bidimensional Boucherie process, yk a non-probabilistic formula as in the
syntax described in (5.2.1) referring to component My, p € [0, 1] a probability bound
and | = [a,b] C R>( atime bounding interval. The function

h() : ([0,1], ¥, CTMC, S 2%20) — [0,1] x 2R0

is defined as follows:
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;

(W{’sz),l’(sl,sz)) if [(st,s%) e Rfree] A[S¢ bk wil

h(p,wk,Mk,(sl,sz),l)z{ (BB 1(s,97) if [(s%59) eR free Alsk ]

| (1) if (st,<2) € Ry
(5.2.2)

where pX(st,s%) is the probability of making a k-move out of state (s!,s?) and
'(sh,8%) = [ D27l

pk(sl’SZ) ” pk(sl’SZ)

The function h() provides us with a pair representing, respectively, the equivalent
probability bound and the equivalent time bound interval for bounded Next single-
component formulae. It will be shown, infact, that checking aformulalikeP <p(X' (wk))
with respect to a state (st,s%) of the Boucherie process, is equivalent, under certain
circumstances, to checking the formula Pﬂp(xr(\lfk)) with respect to the state s of
component My, where p and I are, respectively, the first and second component of the

pair h(p,Wk,Mk, (Slasz)al) = (ﬁa r)

In Chapter 4, it has been shown that the equival ences characterising the compositional
semantics for non-path, single-component formulae are obtained by means of a trans-
formation function, namely f;(). Unlike the non-path formulae case, the transforma-
tion of a path formula is state dependent, other than formula dependent: the decom-
posed equivalent for apath formulalike P <p(¢) which isto be checked against a state
(st,s%) € Sof the Boucherie process, depends both on P,(¢) and on the considered
state (st, ).

In the next Theorem the compositional equivalences concerning probabilistic time-
bounded single-component Next formul ag, are proved.

Theorem 5.2.1 (Bounded single-component Next) Let (st,s?) € Sbea state of abidi-
mensional Boucherie process, yk a non-probabilistic single-component formula asin
(5.2.1), p € [0,1] a probability bound, <€ {<,<,>,>} and | = [a,b] C R>g atime
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interval. The following equivalences hold:

(= Pap(XT(wi) if (s1,89) ¢ Ry

Sk):klpk if [(sl,sz)eRj]/\low(gl,p)/\
[e—Ej(Sj)a_e—Ej(Sj)b] dp

kWi if [(s',s*) €Rj]AuP(<, p)

[eEi (sha _ g—Ej (Si)b] 4p

(s,8) EPap(X! (W) =

K =y tt if [(st,s?) eRj]AUp(<, p)

e Eis)a_gEiS)b) q

| Skt otherwise
(5.2.3)

where h(p, yi, My, (s1,52),1) = (p,1) andlow(<, p), up(<, p) are the conditions char-
acterised in Definition 3.4.2.

Proof. From Proposition 2.3.2 we know that the probability measure for the paths
starting at astate (s*, §) and satisfying the bounded Next formula X' (), isgiven by:

Prob((s, &), X! (i) = (eES 2 EED). 5 p((sh ), (t1,17)

(tL12) =y
(5.2.4)

We need then to distinguish between the three different conditions characterising the
equivalence (5.2.4).

1. (s4,s?) ¢ R;.

We aim to prove that

(s, 8%) |= Pap(X' (i) <= S =k Pap(X T (wi)

where h(p, yk, My, (st,8%),1) = (p,1). A further distinction is needed, as the comple-
ment of R; is partitioned into Ry and Reree.
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la(s!,s%) € Ry. If (s1,5?) € Ry, then p= pand | = I (see Definition 5.2.1). Moreover
the emanating rate E(st,s?) = Ex(s¥) depends only on the emanating rate of s< (see
Remark 4.2.2), hence the probability measure described in (5.2.4) becomes::

Prob((st, 2), X' (yx)) = (e*Ek<Sk>'a— e BT p(sh ), (t4t2) (5.25)
(t1,2) =i
Furthermore, from the compositional semantics of non-probabilistic formulae (see
Theorem 4.3.1), we know that (t1,t?) = yx < tK = yx and also, since we are as-
suming (st,s%) € R, the only admitted moves are k-moves and they have the same
probability to occur in M asthey have in My (see Remark 4.2.2). Asaresult, the sum
in (5.2.5) can be reformulated resulting in:

Prob((st, 2), X' () = (e*EMSk)'a— e BIP) . F py(s k) (5.2.6)
K=k
Hence
PrOb((slvsz)vxl (Wk)) = PI’Obk(Sk,XI (Wk))

which clearly provesthat
Prob((st,s%), X' (yi)) < p <= Proby (s, X' (yy)) < p.

1.b (s',5%) € Ryree. If (S, 5%) € Ryree, the emanating rate E(st,8%) = Ey(st) + Ex(s?)

(see Remark 4.2.2) and also, again, (t1,t?) = yy < tK =y
Prob((st, 2), X' () = (e—[El(Sl)JrEz(sz)}-a_ g [Ev(sh)+E2(s)] b,

> P((sh9), (tht%)
(tht2) =i

A further distinction needs to be considered though:

1.b.1 8¢ 4 . Inthiscase p= quz) andi = e pk(s?’sz)] (see Definition 5.2.1).

The assumption s € yy, alows usto exactly determine which among the successors

of (st,s?) satisfy the argument yy of the Next operator. We observe that if € p&y yy

then (st,s?) £ i but then clearly also every successor state (t1,t?) corresponding to a

j-move from (st, &%) (i.e. such that Q((st, %), (t%,t2)) > O and t* = ) will not satisfy

Wk, While ak-successor of (st,s?) (i.e. astate (t1,t2) such that Q((st,s%), (t1,t%)) > 0

(5.2.7)
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and t! = sl) will satisfy vy if and only if t* = . Asaresult the sumin (5.2.7) can
be re-written as:

z P((Slasz)?(tlatz)) = pk(sl,SZ) z Pk(sk?tk)

(t1,t2) =y =

which substituted in (5.2.7) gives:
Prob((st,s?), X! (yk)) = (e—[El(sl)+E2(52)]~a_ e—[El(Sl)-I-Ez(SZ)}-b)_

?). Z Pe(.14) (5.2.8)
th=wy
from which, straightforwardly follows,
b
Prob(s', ), X/ (i) < p = Pro($ X P FE421 () < el o
which proves the theorem in this case.
1.b.2 & = yi. In this case p = %ﬁiﬁ;) and [ = [pk(s?,SZ) — 5132 ] (see Defini-

tion 5.2.1). Again, from the assumption s = yy, we are able to exactly determine
which among the successors of (st,s%) satisfy yy. Infact, if $€ = i then (s, 5%) =y
but then clearly also every successor state (t1,t?) corresponding to a j-move from
(st, %) will satisfy y, while a k-successor of (st,s?) will satisfy yy if and only if
tX =y wk. Asaresult the sumin (5.2.7) can be re-written as:

Y, P((sh9),(tht7) = .Y Pt +pi(sh ) S Pi(st)
(t1,t2) =wk tk\—kw ties
= psh)- Y PSSt +pi(sh$)
tK =i

which substituted in (5.2.7) gets:
Prob((sh, %), X' (yi)) = (ef[E1(81)+Ez(sz)}-a_ e*[El(Sl)JrEz(sz)}b) '
LGB ML CRORRICES)

K=y

(5.2.9)

from which, straightforwardly follows,
p—pl(s,s)

Prob((sh, %), X[l (yy)) < p <= Proby (s, X i w2 ](Wk)) TKELD)
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which proves the theorem in this case.

2. (st,s?) € Ry and low(<, p) and [e Eisha_e Eilshb) q p,
In this case we aim to prove that

PrOb((Sl752)7X|(Wk)) dp—= Sk ):k Wk

Since we are assuming (st,s?) to be in R; (i.e. component M; is holding the re-
source), then any successor (t1,t2) of (st,s?) must be such tX = . Hence, (s!,s?) =
Wk < (t5,t2) |= yy for every successor (t1,t2). But then, as a consequence of The-
orem 4.3.1, also ¢ = i & (t1,t?) |= yy for every successor (t1,t2), which means
that only two situations are possible: either al or none amongst the successors of
(st,s?) satisfy i and this is characterisable in terms of the satisfiability of yy with
respect to s¥. If s¢ b4y yy then none of the successors of (st, s%) satisfy wy, thus clearly
Prob((st,s%), X! (yk)) = 0. On the other hand, if s¢ = yy then every successor of
(st,s?) satisfies yy too, hence Prob((st, ), X! (yx)) = [e~Ei()a — eEi(s)b] Then,
since we are also assuming [eEi(sa — ¢=Ei(shb] 4 p clearly

Prob((s, ). X' (wi) = [ B2 — e Ei(9P] < p = & =y e

which provesthis case.

3. (st,5?) € Ry and up(<, p).

As for the previous case, we know that either al or none amongst the successors of
(st,s?) satisfy yy, hence the probability measure Prob((st, s%), X' (yk)) can be either
zero or equal to [e~Ei(sa _e=Ei(s)b) However, since we are assuming an upper bound
check for such ameasure (i.e. up(<, p)), then obviously

PI’Ob((Sl,SZ),XI(Wk)) =0d p<:>sk ):k WYk

which proves a so this case of the theorem.
0

Example 5.2.1 Referring to the Boucherie process representing the GI S system of our
running example (Figure 5.1 and Figure 5.2), let us consider the following bounded
Next formulae:
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T3 P L LLTT T L EEE LR P PR R e

S14
res;

S15
recp, res;

Figure 5.1: State space of the GIS components M1 and M.

1) Let us suppose we are interested in checking whether the probability of reaching a
state where component M is reading the shared register, y1 = read;, in one step and
with a delay falling in the interval | = [2,5], from the initial state (S10,Sp0) (i.e. both
components are idle), has p = 0.3 asa lower bound. Thisisthe case if

(510, 520) = P>0.3(X?% read;)
Since (s10,S0) ¢ Rz then we are in thefirst case of (5.2.3), hence, we know that:
(810,520) ): on,g(x[z’s} readl) < S10 ):1 PZF‘)(XIA readl)

where (P, 1) = h(0.3,read;, M1, (S10,50), [2,5]). We observe that, as read; is not sat-
isfied in sip (i.e. S10 [~1 reads), then from the definition of h() (5.2.2) we have

0.3 2 5
pl(s10,%20) " PL(S10,S20) " PL(S10,S20)

h(0.3,read1, M1, (s10,50), [2,5]) = ( )

and since the probability of making a 1-move out of (S10,S0) IS

E1(s10) ri+r

1 1(S10 1+Trs
S 752 — —

P*(S10,520) Ei(si0) + E2(S20)  2r1+rs
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then

O.3(2r1+r5) 2(2I‘1—H’5) 5(2I‘1+I’5)
(ri+rs) '° (ri+rs) * (r1+rs)

h(0.3,read1, M1, (s10,50),[2,5]) = (

Hence we would like to verify that checking (s10,50) = P>0.3(X% read;) is equiva-
[2(2r1+r5) 5(2r1+r5)]
lent to checking S0 =1 P 03( 2r1+r5> (X! TLt7s) " 1s)
= (r1+rg

we can straightforwardly compute the probability of reaching in one step and with a

read;). From Proposition 2.3.2

delay within the bound | = [2,5] a state where read; istrue:

F)rob((slo7 520),)([275] readl) — (e_(El(510)+E2(520))'2 _ e_(El(510)+E2(520))'5) .

Y P((s10,%0), (t',t%))
(t1t2) l=read;
— —2:(2r1415) _ o=5(2r4rs)y_ M1
(e © )2r1+r5

Smilarly the probability of reaching from state sig in one step a state satisfying

2(2r1+r5) 5(2r1+rs)

read; within a timein the derived equivalent interval | = [ (rrtrs) > (Firs)

lis:

2(2r1+r5) 5(2r1+r5) }

2(2rq+15) 5(2r1+r5)
Prob(sqo, NOCEORACED) (e—(El(Slo))- CEN _e—(El(Slo))~ s ).

z Pl(Slo,tl)

t1|:1readl

_ (e 2(@rits) g S(enirs)y M1
r+rs

readl)

Thus clearly

2(2r1+r5) 5(2r1+r5) ]

Prob((s10, S20), X>® read;) = Prob(syo, X g > (r1+7s)

read;) - p*(s10, S20)

which, as expected, proves

[2(2r1+r5) (2r1+r5)]
(ri+r5) * (r1+rs)

0.3(2r1+rs)

Prob((s10,0), X/>® read; ) > 0.3 <= Prob(s;g, X
(r1+rs)

read;) >

i) Let us suppose we are interested in checking the probability of reaching in one step
with no time bound (i.e. | = [0, «]), a state such that component M isidle(i.e. idley),
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d 11 823)
Rfree T3/ ot 7 €S0

)"

é (5117 520)
gat, idley

b (s11, 521
i gaty, read,

(s11, 824)

T2

(510,521) T

. (510’ 52 i idley, read (810, 824) :

idley, idles

gat,, recy
(5117 522)

(510, 822)
idle;, recy

T3,
T3

(512, 820)
read;, idley

(5147 520) .
resy, idley *

(8137 520)
recy, idley

: (8157 520)
Rl recy, resy, idley

Figure 5.2: State space of the GIS product process M

gaty, resy, Fecy

idley, resy, recy
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fromthe initial state (s10,Sp0), With respect to the same probability bound p = 0.3 as
in the previous case, whichis:

(510,520) |= P>03(X®T idley)

Since component M1 isactually idlein state sy (i.€. s10 =1 idler), then the equivalent
probability and time bound are given by the second case of (5.2.3), whichiis:

(0-3 — p?(S10,520)
p(s10,S20)

where the probability of a 1-move and of a 2-move out of (10, Spo) are respectively:

h(0.3,idle1, M1, (s10,50), [2,5])

[0, ])

r—+rs
2r1+rs

"
P%(S10,S20) = L

1 _
P (S10,S20) = T

As a result we would like to verify that checking (S10,520) = P>0.3(X[%>! idley) is
equivalent to checking sio =1 P_ oaizry 11, (X' readh). The probability of reaching

) ) (ry+rs)
astateidle; from (sip, S0 is

Prob((si0,%0), X% reads) = 1- Y P((s0,50), (t},t?)
(t1t2)|=read;
ri
2r1+rsg

On the other hand, as none amongst the successors of s1g in M; satisfies idle, then
obvioudly:
Prob(sio, X*I read;) = 0

Thus we aim to show that

3
— =(2r1+rg5)—r
r 20.323(:)020.3(2“%5) r_ 75(21+rs)— 1
2r1+rs 10 (r1+rs) (ry+rs)

We have by rearrangement that

n_,3 s > 3
2ri+rg — 10 1_4 5

By substituting r1 > 3rs in % (2r1 +rs) — ry we have that:

3 6 3 3
(= > = _
10(4f5+r5) 252 10(2r1+r5) r
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Clearly, however 2 (8rs+r5) — 3r5 = 0, which proves

3
+1I5) — 2r{+rg)—r
> 030> 03(2r1+rs)—r1_ 75(2ritrs)—n
2r1+rs (ri+rs) (r1+rs)

5.2.2 Steady-state bounded Next (Sﬂp(Pgr,(X' (wk))))

Theorem 5.2.1 describes the equivalences which allow for decomposed checking of
single-component time-bounded Next formulae. The next step isto consider the steady-
state formulae whose argument is a single-component Next formula, namely formulae
like Sgp(Pgb(Xl (wk))). A number of preliminary definitions are needed in order to
determine a compositional semantics for that case.

Definition 5.2.2 Let M be a bidimensional Boucherie process, yy a non-probabilistic
formula asin (5.2.1), p € [0,1] a probability bound, <€ {<,<,>,>} a comparison
relation, | = [a,b] C R>¢ a time interval and sl e S;j a state of component Mj. The
following two formulae are defined:

VSkESgﬁ (atsk /\lllk) if sle Sir
SX|0W(W|(7 ﬁ: pa I 781) = (5210)
Vses (Pap(X' wi)) if sle S

Vsesg (atg A—yy) if sle SR
SXup(wk, <, p,1,8)) = (5.211)
Vaes (PapX wi) if § eSig
where (p,1) = h(p, yk, My, (st,$%),1) and aty represents the conjunction of atomic
propositions which uniquely identifies the state s¥, namely alg = Ager(s) -

In practice, S Xiow(Wk, <, p,1,8') and SXyp(wk, <, p, 1, ) are template formulae which
depend on agiven state s! of component M j- Their importanceis beacusethey allow to
characterise those state of component My which coupled withs! resultin astate (st, §%)
which validates asingle-component time-bounded Next formulalike P (X' wk). This
result will be shown in the next lemma.
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Lemmab5.2.1 Let M be a bidimensional Boucherie process, yy a non-probabilistic
formula asin (5.2.1), p € [0,1] a probability bound, <€ {<,<,>,>} a comparison
relationand | = [a,b] C R>¢ atimeinterval. Then the following holds:

( Sk):kSXmW(\IIk,S],p,l,Sj) if IOW(S],p)/\

(s',5°) EPap(X' (wi)) =

| S FkSXup(Wi. <, p.1,8) i up(<, p)
(5.2.12)

Proof. See LemmaA.0.1in Appendix A.

As a consequence of the definition of the template formulae S Xjow (Wi, <, p, | ,sj) and
SXup(wi, <, p, | ,s!), we observe that, those states of My for which there exists at
least a state s' of M; by coupling with which they result in a state (s!,s%) satisfy-
ing aformulaP4p(X' wy), are identified by means of the digjunction of the formulae
S Xiow(Wik, <, P, 1,8) (S Xiow(Wi, <, p.1,8))), whichis

\/ SNOW(WkaﬁapalaSj) or \/ SXUp(WkaS‘apalaSj)

sleS; sles;

In the next definition two templates? formulae structurally similar to the ones described
in Definition 5.2.2, are introduced. The principa difference is in that they do not
depend on a given state s/ of M;.

Definition 5.2.3 Let M be a bidimensional Boucherie process, yy a non-probabilistic
formula asin (5.2.1), p € [0,1] a probability bound, <€ {<,<,>,>} a comparison
relationand | = [a,b] C R>o atimeinterval. The following two formulae are defined:

2]t should be noted that, in order to improve the readability, the templates SX o (Wk, <, p,1) and
SXup(wk, <, p, 1) here defined as well as S Xjow(Wk, <, p, 1) and SXyp(wk, <, p,1) in Definition 5.2.2, are
expressed as digunctions, even though the digunctive connective Vv is not part of the standard CSL
syntax. However, since the set of connectives the CSL syntax is based on is adequate, the use of the
disunctionis perfectly legal .

I8 € SR = [(€7FIa—e Eil#b) q p]]
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SXIow(kaﬁypal)E[ V' (atg A [wev |/ Pap(X D]V
SESR sleSig
: (5.2.13)
|V [atgn (Papl (wk>>>]]
§(€S<,R
S Xup(Wk, <, b, )E[ V (@gAn[-wv \/ Pgp ])]V
skes(R SIESLR
: (5.2.14)
V[V [ateA (Pa (wk>>>]]
SkGSkR

where (p,1) = h(p,yk, My, (st,s%),1) and aty« represents the conjunction of atomic
propositions which uniquely identifies the state s, namely alg = Agely (&) B

The following proposition shows the semantic equivalences which relate the
“ state-independent” templates formulae S X ow(Wk, <, p, 1) and SXyp(wk, <, p,1) with
their “ state-dependent” counterparts S Xjow (Wi, <, p, 1,8) SXup(wk, <, p,1,81).

Proposition 5.2.1 Let M bea bidimensional Boucherie process, i a non-probabilistic
formulaasin (5.2.1), p€ [0,1], <€ {<,<,>,>} and | =[a,b] C R>g atimeinterval.
The following semantic equivalences holds:

SX|OW(WK7 §]7 pa \/ SX|OW lIIK7 P I 7S )

sles;
SXUp(Wka q, P, l) = \/ qup(Wka 4, p, I 7sj)
sles

Proof. Starighforward.

The above result tells us that the states of My which map on a state (s!,s?) sat-
isfying a formula Pﬂp(X' k), are completely identified by means of the formula
SXiow(Wk, <, P, 1) (SXup(wk, <, p, 1))

The formulae SXiow(yk, <, p,1) and SXyp(wk, <, p,1) are relevant in aiming for
a decomposed semantics of stedy-state properties like Sqp(P<p(X' (wk))) (see The-
orem 5.2.2). Next, an example showing a SXjow(yk, <, p,1) formula in practice, is
provided.
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Example 5.2.2 Referring to the Boucherie process of our running example, let us sup-
pose we are interested in the states satisfying the probabilistic bounded Next formula
P-03(X[?% read;). Since (>,0.3) represents a lower bound check, then we may con-
sider the template formula S X (reads, >,0.3,[2,5]), which we can readily compute
from (5.2.13) and referring to the state-spaces shown in Figure 5.1 and Figure 5.2.

S)(|0W(rea.d]_7 Z, 03, [2, 5]) —
_atslo/\(readlvPZ@a(X'Aa readl))] %

—atsllA(readlvPZf,b(Xrb readl))] %

'[atslepzo_g(x[Zﬂ reads)]V[ats, AP>03(X 2% reads)]v
[ats,, AP>03(X[2% read;)]V[ats, AP>03(X2% read;)]
where

(f)a, |a) = h(037 read17 M17 (8107 520)7 [27 5])
(Pb,fb) = h(0.3,reads, M1, (S10,521),[2,5))

O

In essence, we are aiming to prove that checking that the probability for a bidimen-
sional Boucherie process to satisfy, at steady-state, the bounded Next formula
(ng(x' (wy)) is < p, is eguivalent to checking that the probability for the compo-
nent process My to satisfy SXjow(Wk, <, p,1), (or SXup(wk, <, p, 1)), at steady-state, is
< p/, where p' is a derived probability whose value depends on p and other factors.
The derivation of p’ is the issue we are going to address next. For that reason, some
relevant sets of states and some constants have to be characterised.

Definition 5.2.4 Let tX € S be a state of the component My of a bidimensional
Boucherie process, yi a non-probabilistic formula as in (5.2.1), p € [0,1] a proba-
bility bound, <€ {<,<,>,>} and| = [a,b] C R>¢ atimeinterval. The following two
subsets of the state-space S; are defined:
Next|™(t, i, p, <, 1) = Next; g(t5, wi, p, <, 1) UNext| B (t, i, p, <. 1)
Next;®(t, i, p, <,1) = Next; q(t*, wk, p, 9,1) UNext] R(t“, wi, p, <, 1)
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where
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Nex; r(t, i, p. 9.1) = {t! € § g 2 Sat(P Xg (v, 1), p. <.1) # 0}

and the template formula P Xg, (&, s, sl p,<,1), isdefined as:

P X, (Wi, 8,81, p, <,1) = atge A Pap(X (i)

with (ﬁa r) = h(p7Wk7Mka (Slasz)al)’ and where

ticS rife I

Next|%/(tX, yi, p, <,1) =

e

Next/R(t, v, p. <) = ¢ gq

if

Utiesj’R;[e_Ej(t])a_e—Ej(tl)b]ﬂp{t }oif

if

(5.2.15)

7E-(ti)a7e*Ej(ti)b]ﬂp{tj} if tk ):k Yk A

k
t Esk,p

(t P wi) Vv
(te ScRr)

X Bk wk A
tk € S(P

R bk wi A
tk € Sﬁﬁ

tke Sk,R

When considering the states of Sat(P4p(X' (wk))) we can refer to a row-by-row (or
column-by-column) partition of the state-space, namely S= Ug.g (st x )\ RiRz (or
S=Uges,(S1 % 5% \ RiRy). In that sense, each row (s',t1,...) or column (s%,t2,...),
can have either none, one or many states satisfying P< (X' (wy)) and to each of them
corresponds an equivalent derived condition, described by Theorem 5.2.1, which sX
is ensured to fulfil. We can describe that situation by saying that each state of a row
st x Sj\ RiRz (or column S; x s?\ RiRy), which satisfies P4p(X' (wk)) maps on s<.
Moreover each row (column) s¢ can be further partitioned according to the resource
possession for Mj: (s*x S;g) ( (S;gx S ) ) denotes the s row's (column’s) states
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where M; does not hold Rwhile (s* x Sjr) ( (Sjr x S¥) ) are those states where M;
holdsR.

The sets of states Next{®(t*, y, p,<,1) and Next;*(tX, w, p, <, 1), introduced in
the above definition, alow for the row-wise (column-wise) partition of
Sat (P<p(X' (wk))), as the following two lemmas will show.

Lemmab.2.2 Let (s!,s%) € Sbhe a state of a bidimensional Boucherie process, yy a
non-probabilistic formula as in (5.2.1), p € [0,1] a probability bound,
e {<,<,>,>}, 1 =[a,b] C Rsp atimeinterval. The state (s, s?) satisfies the for-
mula Sat(Pap(X'(wy))) if and only if its j-projection, s/, is either in
Next|®(s¥, wk, p, <,1) if low(<, p), or in Next; P(s, yi, p, <, 1), if up(<, p).

Sj € Next}ow(sky\Vkv paﬁlal) if lOW(Sla p)
(s, € Sat (Pap(X' (W) <=
sl e Next;P (s w, p,<,1) if up(<, p)

Proof. See LemmaA.0.2 in Appendix A.

Relying on the above result, the following lemma, showing a row-wise (column-wise)
partition for Sat(P<p(X' (wk))), can straightforwardly be proved.

Lemmab5.2.3 Lettk € S bea state of the component M of a bidimensional Boucherie
process, i a non-probabilistic formula asin (5.2.1), p € [0, 1] a probability bound,
de{<,<,>,>}, 1 =[a,b] CR>p atimeinterval. The satisfiability set for the formula
Pap(X! (wk)) is partitionablein the following way:

[ Utkesat (S Xon(wio 2,01 [P X NS (E i p. <. 1)]
if low(<, p)
Sat (Pap(X' (i) =
UtKGSaIk(SXup(wk,gl,p,l))[th Next;(t*, yi, p, <, 1)]
( if up(<, p)

Proof. See LemmaA.0.3in Appendix A.
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In aiming for a compositional semantics for Sﬂp(Pgb(X' (wk))), itisrelevant to pro-
vide a characterisation of those states of arow (column) s which satisfy Pgb(x' (Wk))-
The sets Next}OW(t", v, P, <J) and NextJ”p(t",\uk,b, <), introduced in Definition 5.2.4,
provide such a characterisation and by means of them the equivalent bound p’ for the
steady-state probability of the Pz,(X' (yx)) states, will be derived. The notation for
the steady-state probability of the states of the row (column) Next{®(t¥, y, p, <) and
Next;(t*, wk, p, J) isintroduced in the fol lowing remark.

Remark 5.2.1 Lettk e S be a state of the component M, of a bidimensional Bouche-
rie process, yy a non-probabilisticformulaasin (5.2.1), p € [0, 1] a probability bound,

e {<,<,>,>}, 1 =[ab] CR5p atimeinterval. The steady-state probability of the
sets Nexti®(t*, yi, P, ) and Next; *(t*, y«, p, J) is denoted as:
i (Next? (£, yi, P, ) = > mj(t))

tieNext| ™ (tyi,p,.J)

while
n(Net Py d) = > m(t)

tleNext;® (tk,yy,p,9)
It isrelevant to be able to distinguish which, amongst the states of My, isthe one whose
associated set Next|™(t%, yi, P, <) (or Next;P(t*, y, P, <)) has the highest steady-
state probability. The following remark introduces the notation adopted for such a
State.

Remark 5.2.2 Let yy be a non-probabilistic formulaasin (5.2.1), p € [0, 1] a proba-
bility bound, < € {<,<,>,>},1 =[a,b] CR>o atimeinterval, we denote byt>"<maX €
S, the state of component My which maximises the steady-state probability of its as-
sociated set NeXt}ow(t)lémaxv Wk, P, ) (Ne)d}lp(tg((rnaxa\ifkaba <))

e € Sk 1 VEK € St # e =

Tj (Ne)d}ow(t)lémawwkvbvgv I )) > T (NeXt}OW(tkv kabvgv I ))

The following definition introduces the notation adopted to indicate the steady-state
probability of the set Next| ™ (tf, .y, Wk, P <) (NeXt; (£ Wk, P, <)), Which is the
maximum value amongst the 7t (Next|®(t*, yi, p, <)) of every statet* € .
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Definition 5.2.5 Let yy be a non-probabilistic formulaasin (5.2.1), p € [0, 1] a prob-
ability bound, < € {<,<,>,>} and | = [a,b] C R>o atimeinterval. The following
constant is defined:

. low 1k ol ; —_ =
A (P31 = { miNee  ma Wi B 2) T TOMD.
ch(Neth (tXmaxv Wk P; S‘)) iff Up(ﬁ S])

In the next definition two important constants are introduced, namely C'(y, p, <, 1)
and CYP(yy, P, <,1). They represent the probability for component M to be in a
state ¢, at steady-state, weighted with the deviation of the steady-state probability
T (Net{(t wi, 9, 5,1))  (mj(Next|™(t%, y, p,<,1))),  from  the  maximum

(i, B, S, 1).

Definition 5.2.6 Let yy be a non-probabilistic formulaasin (5.2.1), p € [0, 1] a prob-
ability bound, < € {<,<,>,>} and | = [a,b] C R>( atimeinterval. The following
constants are defined:

C'(yi, p,4,1) = > () [T (Wi, 2, F,1) — 7 (Next| ™ (t, yi, p, S, 1))

tk€561k(sx|a&/(wk,§,'ﬁ,l))
k
A max

CPyPID= ¥ w9y B D) — 1 (Next(P(t, v, 5, 1)
tKesaty (SXup(wi, I;B))
A e

Finally, the following theorem determines the compositional semanticsfor steady-state
bounded Next formulae.

Theorem 5.2.2 (Seady-state Bounded single-component Next) Let M be a bidimen-
sional Boucherie process, yy anon-probabilistic single-component formulaasin (5.2.1),
p, P € [0, 1] two probability bounds, <1, < € {<<,>, >} two comparison relationsand

| =[a,b] C R>o atimeinterval. The following equivalences hold:

):k Sg] pl’OW(SX|OW(Wk7§7b7 l )) If |0W(r)» g)
= Sap(Pop(X! (wi) < (5.2.16)
):k Sﬂphp(sxup(lukvgvr)a I )) if up(bag)
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_ P+GC"™(y,p, <)1) _ P+GCP(yi,p, <)1)
G (yi,p,3,1) G (yi,p,.3,1)
constant for the product-form solution, of M .

where p[,,

and p{Jp while G is the normalising

Proof. We aim to show the vaidity of the two implications (=) and (<) of (5.2.16).
For brevity we consider here only the first case, i.e. we assume low(Pp, <) (the proof
for up(p, <), issimilar). Furthermore we focus on the case k = 1 (hence j = 2), which
means we consider here aformula y; which refers to component M.

(=) If = Sap(Pzp(X! (w1)) then from the CSL semantics
Y ontht)|<p
(tht2)Sat (Pp(Xya))

which from the product-form solution, resultsin

[ 3 G-nl(tl)nz(tz)] ap (5.2.17)
(tht?)eSat (Pz,(X' 1))

By applying the row-wise partition of Sat(Pg.p(X'\pl) (see Lemma 5.2.3) to the sum
in (5.2.17) we obtain:

G[ D ma(ty) D nz(tz)] ap

tteSaty (SXiow(w1,<,p,1)) t2ZeNexth®(t1,y1,p,<,1)

From Remark 5.2.1 850 T2, yeglow(c1 (%) = ma(Next?"(tt, w1, B, <,1)). Hence:

7w17p7§a|)
G- |: 2 TC]_(tl) 'TCZ(Nethzow(tl7W17b7§7|)):| dp
tlES'it]_(SXIOW(Wlagvbvl))
from which, straightforwardly,
G'ﬂ:Z(NeXHZOW(t)]{maXlevbvgvI)) z ﬂ:l(tl) S] (p+G'C|OW(t17Wl7ﬁ7§7I)))
tlewl(sxldw(\lllvgabvl))

Thus,

z ﬂ:]_(tl :| b (p+G'C|OW(t17W1ab7§7|_))
tLeSaty (SXiow(y1,3,P.1)) ~ G (Nt (g e W1, B, I, 1))
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which proves
):1 S<] (p+G-C|°W(t1,\|11,‘p,§,I)) (S X|0W(W1a pa ))
~ Gmp(NethW(th 1.5, 3)))

(<) By reversing (=).

O

Example 5.2.3 Sill referring to our running example (see Figure 5.1 and Figure 5.2),
let us suppose we are interested in checking whether the probability, in the long-run,
for those states which satisfy the bounded Next P~ 3(X>® read; ), is > 0.5. In terms
of the syntax in (5.2.1), thisis represented by the formula

SZO.S(PZO.s(X[Z’S] read))

According to Theorem 5.2.2, we expect

= S>05(P03(X*% reads)) <=1 Sy (SXion(reads, >,0.3,(2,5)))

0.5+GC'%(read;,0.3,> |

2, P :
where pj,, = Gy 03.5,125) 2, whichis to say:
Y G mthno(t?)] > 05 = Y mth)>poy (5218
(t1,42)[=P503(X[25] readl) tth)qaw(readl,>,0 3[2, 5])

Let us verify whether thisis the case. From Figure 2.8, we know that (s12,S0) is the
only state where component M isreading the shared register, hence the only potential
candidate for satisfying the Next formula on.g(x[zﬂ read; ) isits unique predecessor
(S10,S20). Let us assume that, in fact, (S10,20) = P>0.3(X[?® ready). In this case the
left sumin the above equivalenceis

Y G-m(t YHra(t?) = G- ma(S10)m2(S0)
(t1,t2)=P50.3(X29 read;)

In Example 5.2.2, the formula S Xy (reads, >,0.3,[2,5]) has been shown. From Fig-
ure 2.7, we know that read; is true only in state s;2, which has a unique predecessor,
namely s19. Furthermore, since we are assuming (So, Sp0) = P>0.3(X[%% read;), then
from Theorem 5.2.1 also, asit has been shown in Example 5.2.1,

2:(2r14rg) 5-(2r1+r5)]

Slo ):1 P 03 2I’l+f5) (X I’1+f5 ) rl+r5
= r+rg

readl)
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From this it is straightforward to show that there is only one state satisfying
SXjow(reads, >,0.3,[2,5]), namely Sat1 (S Xow(reads,>,0.3,[2,5])) = {s10}. Hence,
S10, IS also the maximum (i.e. syg is the state which maximises the steady-state proba-
bility of the associated set Next'zow(slo, reads, 0.3,>)), which means

X (ready, 0.3, >, [2, 5]) = mo(Next"(s10, reads, 0.3, >))

As a result, the constant C'°Y(reads,0.3,>,[2,5]) (see Definition 5.2.6), is null. In
order to compute the value of n5®(y1,0.3,>,[2,5]), we need to determine the set
Next)®% (s, reads, 0.3, >), which from Definition 5.2.4 we know consists of two parti-
tions, namely Next'OW(slo, read;,0.3,>) and Next'°""(slo, read;). Asso =1 read; then
Next'z"’;’{V (s10,read;) = 0. Moreover, as a consequence of the assumptions we made, it
is easy to show that Next'OW(slo, read;,0.3,>) = {0} (i.e. Spo isthe only state which
coupled with sy, resultsin a state, (10, S0), which satisfies P>.3(X[%% read;)). Then
clearly nJ®(reads,0.3,>,[2,5]) = m2(Sp0). Thusthe equivalent probability value py,,,
isequal to:
, _ 05+GC'%(read;,0.3,>,[2,5]) 0.5
Plow = Gny®(y1,0.3,>,[2,5]) -~ G-ma(S0)

Since syp is the only state of M; satisfying S Xjow(reads, >,0.3,[2,5]) then the right-
hand side sumin equivalence (5.2.18) is

Y my(th) = ma(s0)

t1 =15 Xow(reads,>,0.3 [ 5})

But this proves that the equivalence (5.2.18) actually holds, in fact:

0.5
G- my(S10)™ 205 = m(s0) 2 g~
1(S10)2(S20) > 1(S10) 2 G- m2(s20)

5.3 Compositional model-checking of single-component
Next

The properties proved in the previous section of this chapter call for the formal char-
acterisation of methods for a decomposed verification of single-component bounded
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Next formulae (i.e. Pgr,(x' (yk))) aswell as steady-state bounded Next formulae (i.e.
Sq p(Pgb(x' (wk))))- Algorithm 5.3.1 describes a procedure for decomposed checking
of a probabilistic bounded Next. Algorithm 5.3.3, instead, shows such a procedure for
steady-state bounded Next formulae.

Algorithm 5.3.1 (P5,(X' (yy))) Let (s',5°) be a state of a bidimensional Boucherie
process M with components M1 and M,. Furthermore let yy be a single-component
formula, p € [0, 1] a probability bound, < € {<,<,>,>} and | =[a,b] C R>p atime
interval. The following procedure can be used for checking the truth of the formula
P=p(X! (k) with respect to state (s', s%).

Algorithm ((s',8?) = P (X (y))).

IF (st,¢%) € Rj THEN
- (B, 1) = h(p, yi, My, 1,2, 1);
- compute Sati(P (X' (wi));
-IFsfe Satk(Pgﬁ(X' (yk)) THEN return YES, EL SE return NO;
ELSE
IF low(<d,p) THEN
|F [eEi(si) — e PEBi(S)] Ap THEN return NO;
ELSE
- compute Saty (yy);
- IF ¢ € Saty(yx) THEN return YES EL SE return NO;
ELSE
|F [e 2Ei(Si) — e PEi(S)]Ip THEN return YES
ELSE
- compute Saty(yk);
- IF s € Saty(yx) THEN return NO; EL SE return YES;

O

The procedure for decomposed checking of steady-state bounded Next formulae ba-
sically requires the instantiation of some template formulae and the application of the
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model-checking algorithm to those formul ae with respect to component M.

Thefollowing algorithm characterises the procedure for determining which amongst
the states of a row (column) s¢ satisfy the formula ng(x' (wk)). The compositional
checking of Sqp(P=p(X' (yk))) reliesonit.

Algorithm 5.3.2 (Next;®(s, y, P, I, 1), Next; P (s, y., p, J,1)) LetM beanbidimen-
sional Boucherie process with components M1 and M, and & a state of component
My. Furthermorelet yy be a single-component formula, p € [0, 1] a probability bound,
Jde{<,<,>,>}andl =[a,b] C Rxp atimeinterval. ThesetsNext; (s, i, p, 5,1),

e><t'°‘"’(sk Vi, P, <, 1) and Ne><t;‘7pﬁ(§‘,1uk,r),§, 1) can be determined by means of the
foIIovw ng procedures:

Algorithm A (Next; (s, W,r@)).
1 NeXtJ R(§( Yk, P 7?)

2FOReverysl € S g DO
- instantiate the template formula

P Xg, (Wi 8.8/, 7.9) = atge A Pp(X (wi)

where (p,1) = h(yk, My, ¢, s, 1).
- check for emptyness the set Sati(P Xg, (Wi, $¢,s/,p,<)). Then

oxt; (S v, P Z):{ Next; z(s, yi, P, J) if Satic(P Xg, (WK, 89,7, <)) = 0
j,R\2 s ¥ks My e)(tlﬁ(sl(?q;k,ﬁ,g) U {Sk} if Satk(P Xﬁj (\Ijk7sk7sj7b7§)) 7§ 0

O

Algorithm B (N@d}o%v(é‘,wk,b,ﬁ,l)).

1 Ned!%(s, yi, p, 5, 1) =0
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2. IF s € Scr THEN return;
ELSE
- compute Saty (y);
- IF ¢ ¢ Saty () THEN return;
ELSE
FOR every sl € S;gr DO

low Sk
Next; 5 (s, wie P, 1) = { ext'°W(§‘ vep.3

Algorithm C (Na«f%(&,w,b@,l)).
1NeXt p(§(Wkap7 7)20
2. IF s € Scr THEN return;

ELSE
- compute Saty (y);

- IF ¢ Sati(wi) THEN Next; 2 (s wio P, 5, 1) =

EL SE
FOR every sl € Sjr DO

Next!%(s, wi, P, <. 1) =
IR NeXt:?%v(é(aWkaba

Netholv(sk Wk7r_)7 _7
ufsl} i

N@q:’o%v(é(7 Wk?b? _7
Ui} i

)

)

if [e*a'Ei (sj) _

fle aEj(sj) _

SR

if [e 2Eilsi) —

f [e 2Ei(si) —

e bEJsJ]

e bEJ(SJ)]

e DEj(s )]

e PEj (SJ')]<]

Zp
<P
0

AP
P
O

Relying on the above algorithms, the method for a decomposed verification of the

steady-state probability of single-component bounded Next formulae is defined in the

following manner.
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Algorithm 5.3.3 (Compositional model-checking of Sap(P<,(X' (wk)))) Let (s,s%)
be a state of a bidimensional Boucherie process M with components M1 and M, i
a single-component formula, p, p € [0, 1] two probability boundsand <, < € {<, <, >
,>}. Thefollowing algorithm can be applied for decomposed checking of the formula

Sap(P=p(X' (wi)))

with respectto M : it returnsYESifSSlp(Pg.p(X' (yk))) issatisfiedinM or NOifitis
not.

1. The pair (<, ) isconsidered and the template formula S X isinstantiated by means
of the parameters yy,<,pand .

_ { SX|OW(Wk7b7S]7I) If |0W(§ r))
SXUp(kar)vﬁ]vl) If Up(g )

2. Satk(SX) is computed by application of the CSL model-checking algorithm with
respect to component My.

3. FOR every € € Saty(SX) DO
- compute Next;j(s) = Next; z(s*) UNext; r(s) where
NeXtJﬁ(Sk) = Neth’ﬁ(Sk,wk, Slvr)a l)
and

I W i a7
R WP, <) if low(<,p)
Nextj r(S¥) = =
RS { (é‘,wk, p.<1) if up(<,p)

are computed by means of the procedure described in Algorithm 5.3.2.

- Determine the state s, € Sat(SX) such that 7t (Nextj (S 4y )) IS maximum,
- Let o™ = mj(Next; (Sfiax)
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5. Compute the value C given by:

C= ¥ m(tm"™ —m(Next;(t“))];

tKesan (SX)
th#S9ax
6. Compute the equivalent probability bound p’
/ p+ G * C .
- G-

7.1F m(Sat(SX)) < p’ THEN return YES;, ELSE return NO.

5.4 Compositional model-checking of general Next

So far, in the chapter, we have considered only single-component non-probabilistic
formulae (i.e. y) as possible arguments of a bounded Next connective. In this sec-
tion, we investigate the existence of a compositional method for checking formulae
given by the application of the bounded Next operator to a non-probabilistic general
argument (i.e y12). The new version of the syntax for general state formulae (i.e. ¢12)
(an extension of the one introduced in Section 4.3.2) is characterised in the following
manners:

b12:= 01N 02 | 02/ 01 | OkAO12 | d12AGK | =012 | 012012 | E12 | Q12
V2 D= WiAY2 | W2 AL | WkAW2 | iAWk | Yi2Av12 | Y2
E12 :=Sqp(¥12)
12 :=Pap(X' y12)
(54.1

where ¢ and ¢, areasin (5.2.1).

3As one can notice from (5.4.1), the application of the steady-state connective to general bounded
Next formulaeis not allowed in the given syntax.
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A revised method for computing Prob(s, X' ¢).

Before facing the study of a compositional approach for checking bounded Next gen-
eral formulage, we need to consider the method for checking bounded Next formulae
which can be found in the literature.

From the CSL semantics (see Proposition 2.3.2), we know that the probability of
reaching a ¢-state in one step from a state s of an arbitrary CTMC within atime bound
| = [a,b], isgiven by:

Prob(s, X' ¢) = [e 2E —e PEOTY p(st) (5.4.2)
t=o

In essence, the above equation tellsusthat the probability of satisfying ¢ in one step
from s without violating the bounding interval | is given by the product of the proba-
bility of reaching a ¢ state, from s, in one step (i.e X P(s,t)), and the probability of
leaving swithin| = [a, b] (i.e. such aprobability being givenby = [e 2E(S) — e PE()),

In [5] the authors claim that the state vector
Prob(X' ¢) = (...,Prob(s, X' 9),...)
can be obtained by multiplying the probability matrix P by the vector b,
Prob(X' ¢) =P-b,

where b, is defined as:

(5.4.3)

e2E(S _ePES jf s Sat()
b[s| = -
0 otherwise

However, the proposed algorithm, leads to a wrong result. To understand why, let
us consider a ssimple example. In Figure 5.3 the oriented graph representing a very
simple three state CTMC is depicted. The arcs of each transition are labelled with the
corresponding rate, resulting in the following probability matrix:

'U
I
=
o O wkr
O O wwm
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S1

sy = ¢ 53

Figure 5.3: A simple arbitrary CMTC M

We then consider an arbitrary state formula ¢ and we further assume that state s is
the only one satisfying ¢. Finally, we consider | = [2, 5] as the bounding time interval.
By applying (5.4.2) we can compute the probability of satisfying the bounded Next
formula (X[2% ¢) for each one of the three state 51, and s3. Thisis straightforward
because, since we are assuming s; to be the only state satisfying ¢, then the only state
with anon-zero probability of reaching a ¢-state, in one step, isclearly s;. Hence:

Prob(s;, X2% ¢) = Prob(s3,X2% ¢) =0

Prob(s;, X% ¢) = [e723—e53P(s, )
e ® e 15
3

asclearly E(s1) = 3 and P(sy, ;) = 3. The vector Prob(X 2%, ¢) is then:

e 6_ e—15]

Pron(x% ) = (£~ 00

From (5.4.3), we can then derive the elements of the state vector by 5;:

bog(si] = bpglss|=0
bogls] = [e?—e™"

asE(sp) = 1. Hence the state vector by, 5 is:

9[2,5] = (07 [eiz - 875], O)
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Hence by applying the algorithm proposed in [5], we need to determine the product of
the matrix P by the vector by, 5, which is:

e?—eg®
P-bpg = (%,O,O)

But this provesthat, contrary to what is claimed in [5], actually:
Prob(X 2% ¢) # P- b g

The problem with the above method, has to do with the definition of the state vector
by. Infact, thevalue of b (s) for astate ssatisfying ¢ (i.e. by (s) = [e 2E(S) —e PEO)),
represents the probability of leaving a ¢ state, within I. However, in order to calculate
Prob(X' ¢), the probability of reaching a ¢ state within | iswhat is needed.

In the following an aternative algorithm for computing Prob(X' ¢), isintroduced.
It relies on the definition of the diagonal matrix lg, whose elements represents the
probability of exiting each state within the bounding interval I, and of the state-vector
iy, characterising the ¢ states. This is achieved by means of the following formal
definitions.

Definition 5.4.1 Let M = (S Q,L) be an arbitrary labelled CTMC with state-space
S={s,%,...,s} and | =[a,b] € R>o atimeinterval. The state-vector g with ele-
ments w

g (S) _ e—a~E(s) _ e—b-E(s)

is defined. The coefficient g (s) denotes the probability of exiting the state swithin .

We observe that, by means of the above definition, the expression (5.4.2) for the prob-
ability of reaching in one step, from s, a state satisfying a certain formula ¢ within the
bounding interval |, can be re-formulated in the following way:

Prob(s, X' ¢) = [e 2E(S) e PEG]. Y P(st) =g(9): Y P(st) (5.4.4)
o o
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The diagonal matrix consisting of coefficients e (s) is formally introduced in the next
definition.

Definition54.2 Let M = (SQ,L) be a labelled CTMC with state-space

S={s1,%,...,5} and | = [a,b] € R>o a time interval. The diagonal matrix l¢ is
defined as
a(ss) O 0 0
0 e(s) O 0
le =diag(g) = 0 o . ... 0
0 0 0 ... a(s)

where the coefficient g (s) isasin Definition 5.4.1.

The vector characterising the states satisfying a given formula ¢ is described in the
following definition.

Definition 5.4.3 LetM = (S Q,L) alabelled CTMC with state-space S= {s1,%,...,5}
and ¢ a CSL state formula. The state vector i, is defined as:

i(S):{lif sk o

0 otherwise

Finally, the following proposition provides us with a method for computing the vector
Prob(X' ¢) representing the probability for each state of a CTMC to fulfil a bounded
Next formula (X' ¢).

Proposition54.1 Let¢ M = (SQ,L) be a labelled CTMC with state-space
S={s1,%,...,5}, and probability matrix P. Let ¢ be a CSL state formula and
| = [a,b] € Rso atimeinterval. The state vector Prob(X' ¢) = (..., Prob(s, X' ¢),...)
is given by the product:

Prob(X' ¢) = (Ie - P) iy
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Proof.
To prove that the state vectors Prob(X' ¢) and (g - P) -1y are identical, we need to
show that for any state sy € S, Prob(X' ¢)(sm) = [(lg - P) iy)(Sm). The m-th element
of Prob(X' ¢), is, by definition,
Prob(X' ¢)(sm) = Prob(sm, X' ¢) = & (sm) - ¥ P(sm.S)
S0
Let us consider the vector (lg - P) -iy. Lét the transition probability matrix P be:

P11 P12 ... ... Pin
p_ Po1 P22 ... ... Pon
Pr1 Pn2 --- --- Pmn

The product of the diagonal matrix | by the transition probability matrix P leads to
the following matrix:

e(S1)-pr &(s)-p2 ... ... €(St) P

&() P21 &(S)-p2 ... ... () P
lg -P= : . :

&(s):pnr &(Sn)-Pn2 --- ... €(Sh)Pm

The mrth element of the vector (lg - P) - iy, is given by the product of the m-th row of
the matrix lg - P by iy, whichiis:

[(Ie - P) i) (Sm) = (&1 (Sm)- Prt, € (Sm) - P2, - - -, € (Sm) - Prn) - I
= > &(sm): Pni

Sk=o

=@ (sm)- Y, Plsms)
sk

which proves the equality between the state vectors Prob(X' ¢) and (Ig - P) Iy

0
Relying on the result of Proposition 5.4.1, the following algorithm can be used, as
an alternative to the one proposed in [5], for checking a bounded Next formula with
respect to astate s.
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Algorithm 5.4.1 Let s be a state of an arbitrary labelled CMTC M, ¢ a CSL state
formulaand | = [a,b] C R>¢ atimeinterval. The following procedure returns YES if
the formula P qp(X' ¢) isvalidin s, and NO otherwise.

Algorithm
- Compute Sat (o).

- Determine the state vector i_q,, as.
1 if SE¢
0 otherwise

- Determine the diagonal matrix |g, .

- Compute the state vector
(g -P) -y
-IF [(lg -P)-iy](s) < p THEN returnYES ELSE return NO;

L et us apply the above algorithm to determine Prob(X [29] ¢) with respect tothe CTMC
of Figure 5.3. The diagonal matrix Ie[275] isgiven by:

g 23 _g53 0 0
le,q = 0 g2l _g51 0
0 0 e—2-l o e—5-l

which multiplied by the transition probability matrix P gives:

0 g6 15 2.(e76,e715)
3 3
Ie[2,5] . P — e_2 — e_5 O O
e2_g? 0 0

The vector iy, is given by:
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Hence the product [le, ; - P] - i, resultsin:

. e—6_ e—15
[Ie[2,5] ’ P] l(j) = (T:‘l O)

which proves
Pr_Ob(X[ZS] ¢) = [le[z,s] : P] 1(1)

Having provided a method for checking bounded Next formulae with respect to an
arbitrary CTMC, we can get back to our original goal, which is the study of a compo-
sitional way for verifying general bounded Next formulae referring to a bidimensional
Boucherie process.

The characterisation of a decomposed approach for checking of bounded Next general
formulae, relies on afundamental result which isproved in Theorem 5.4.1. In order to
prove that result, some preliminary definitions and properties need to be introduced.

The following definition introduces the idea of derived time interval (or k-projection
of atime interval). Given | = [a,b] and a state (s, %) of a bidimensional Boucherie
process, the interval 1X(st, %) is obtained by shifting | with respect to the probability
of leaving (st,s?) with a k-move, if the shared resource is not held by component M;

in (st, %), or with respect to the ratio % if M holdsthe resourcein (st,s?).

Definition 5.4.4 (k-projection of atimeinterval I) Let| =[a,b] C R>o beatimein-
terval, (st,s?) a state of a bidimensional Boucherie processM and pX(st, %) the prob-
ability of making a k-move out of (s?,s%). Thetimeinterval 1X(st, %) defined as:

[ a b ] if (s1,$2) ¢ R,

pK(sh,s?)” pK(sh,s?)

IK(st,$%) =

a.E(sj) b-E'(sJ') ) .
[ Ekl(sk) ’ Ekj(sk) ] if (st,¢%) € R

is called the k-projection of | with respect to the state (st,s?).

The relevance of the definition of k-projection of a time interval with respect to a
given state of a bidimensional Boucherie process, standsin the result of the following



162 Chapter 5. Compositional CSL model checking: Next formulae

proposition, which is: the probability of exiting a state (s*,s?) of a bidimensional
Boucherie process within the bound 1, is equal to the probability of exiting the sk of
component My, within the k-projection of I, 1¥(st, s).

Proposition 5.4.2 Let (st,s%) be a state of a bidimensional Boucherie process and
| = [a,b] C R>o atimeinterval. The following equality holds:

a (s, &) = @reg)(s)
where g () isasin Definition 5.4.1.

Proof.
A distinction with respect to the partitions of the Boucherie's state-space, needs to be
considered.

1. (s',¢%) ¢ R;. In this case, from Definition 5.4.4, we have:

k = a >
- e Fee)

A further distinction has to be considered:

- (81, 9) € Riree. InthiscaseE (s, %) = Ex(s}) +Ex(s) and also p(sh, ) = £ 5P .

Hence:
o (s, 2) = e (EuSHIHEAS) _ g b(Ba(sH+E(S)

2 EEERE) e dy p EIEHE) b &
—e a4 Ex(s9) K )_e Ex(s9) ()

b
ke ) _ o ety B

—e

—e ()

a b
K(s1,s2) " pK(sL.2)

= Qs ) (sk)

_e_

- (s1,9%) € Ry. Inthiscase E(st,s?) = E(s¢) and also pX(st,s%) = 1. Hence,

b
9= [rae Femen] =20
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and also:

a(shs) = 2B _ g DB = €ab) (8) = €ik(st,82) (s)

2. (st,s?) € R;. Inthis case, from Definition 5.4.4, we have:

K _ ra-Ej(s) b-Ej(s))
Bt VE RED

Furthermore E(s!, §%) = Ej(s)), hence:

a(shs?) =e 25 () _ o bEj(S)

= e[a-Ej(sj) b-Ej(sj):| (Sk)

B 7 B

= Gk(s,®) (Sk)

The next theorem shows a basi ¢ equival ence regarding the semantics of general bounded
Next formulae. This result provides us with a decomposed relation which allows for
the definition of an algorithm for compositional checking of such formulae.

Theorem 5.4.1 Let (s',s%) be a state of a bidimensional Boucherie process, p € [0, 1]
a probability bound, <€ {<,<,>,>},1 =[a,b] CR>g atimeinterval, y12 a formula
asin (5.4.1). The following equivalence holds:

(s',8%) EP<p(X! yi2) =
Y pl(st,$)-Proby (X' ay)(sh)+pA(st, &) -Probp(X' 8" ay) () | <1 p

(01,02 €DecSat (yi2)
(5.4.5)

Proof.
(=) Fromthe CSL semantics we know that if (st,s?) = P<p(X! w12) then

[ 2EES) g PESSL Y p((sh ), (1L t7)] < p
(t1t2)cSat(y12)
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whichis:

ashe)-| ¥ P SLN)| <p

(th12)eSat (y12)
However Sat (y12) can be decomposed, by means of the Lemma 4.3.2, in the following
way:

Sat(y12) = | J [Sats(oa) x Sato(i2)] \ (RiR2)
(0u1,002) €DecSat (1)

Hence the sum in the above inequality can be re-formulated in terms of DecSat (y12),
resulting in*:
a(sh)- Y | Y PSR <p (546
(o,00)eDecSat (y1z)  (t1,t2)Saty (o )xSatp(0r)
Snce, in a Boucherie process each transition corresponds to a change of state for
exactly one component, then the above inequality is equivalent to the following one:

a(s.s) Y, Y, P((sS),(ths)+ 3 P((s',),(sht%)| I p

(o1,00)€DecSat (y12) (tl,Sz)ESatl((Xl)XSalz(Otz) (Sl,tz)ESan_(Otl)XSatz((Xz)
(5.4.7)

From Remark 4.2.2, we know that the probability of a 1-move (2-move) from a state
(st,s?) is a factor of the probability of the corresponding component’s transition,
whichis:

P((slvsz)v (tlvsz)) = pl(slvsz) : Pl(slvtl)
where pt(st,s%) isthe probability of a 1-move from (s!,s?). Hence (5.4.7) resultsin:
a(shs) Y [pshe) TPt +psLS) T PaLt)] < p
(og,00)eDecSat(y12)  tleSaty(oy) t2€Saty (o)

which we can re-write as:;

Y |ashptshs) Y Pushth +a(sh PP D) 3 PRt <p

(o1,00)€DecSat (y12) t1€Sat1(oc1) t2€Sat2(oc2)
(5.4.8)

41t should be noted that the R1 R, states need not to be excluded from theinnermost sumin (5.4.6), as
the probability of reaching such astate from (st,s%) isclearly zero (i.e. V(t1,t?) € RiRy and V(st, &) € S,
P((s%,8), (t',t) = 0)
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From Proposition 5.4.2 we have e (s',5%) = €k« &) (S¥) which, substituted in (5.4.8),
gives:

Y e (sHPHshS) TPt +6ea e (PP, X P 2)] I p

(0u1,02) €DecSat (y12) tleSaty (o) t2eSaty (o)
(5.4.9)
But from Proposition 5.4.1 we know that
Proby (X" ap)(s1) = @y (s) Y Pa(shth)
tleSaty (o)
and also:
Prob, (X" a2 (s) = @29 (S) Y Pa(S1%)
t2eSatp(0p)
which by substituting in (5.4.9), provesthe implication (=).
(«). Byreversing (=).
[

The result of the above theorem suggests the definition of the following agorithm for
decomposed checking of general bounded Next formulae with respect to a bidimen-
siona Boucherie process.

Algorithm 5.4.2 Let (s',s?) be a state of a bidimensional Boucherie process M with
components M1 and My, w12 a general formula asin (5.4.1), p € [0,1] a probability
bound, <€ {<,<,>,>} and| = [a,b] C R>p atimeinterval. Thefollowing algorithm
can be applied for checking whether:

(s',5°) = Pap(X' y12)

Algorithm ((st,s%) = Pap(X! w12)).
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1. PX=0;

2. Determine the set of pairs DecSat (y12) by application of Definition 4.3.3.

3. Determine the diagonal matrices:

1_,1
M _Ie|1(sl,32)

M2 =IZ
G2(sl,e2)

for component M1 and component M respectively.

4. FOR (0, 02) € DecSat () DO
- determine Sat (01) and Satz(or2), hence the vectors b and bg;
- determine the vectors Prob; (X! "5 o1) and Proby (X!'855) oy):

pr_obl(xll(SHSZ) 01) = (Ml-Pl)-Ql;
Prob, (X" o) = (M2.Py)-bZ;

- PX = PX+ pl(st, 82 Proby (X'"(57%) o) (s1) + p2(st, %) Prob, (X575 ap) (89);

5. IF PX<dp THEN returnYES, ELSE return NO.

Complexity analysis.

A precise evaluation of the complexity of the decomposed verification method de-
scribed by the above algorithm, is not part of this work. However, here some in-
tuitive considerations are given. As a first thing we observe that, by means of the
above method, the verification of abounded Next general formula, like Pﬂp(X' y12),
on the product process M, is replaced by the verification of some bounded Next
single-component formulae on the components M1 and My, respectively. The num-
ber of corresponding single-component formulae is equal to the number of partitions
of Sat(y12). Thus, if Sat(y12) consists of n partitions (i.e. |DecSat(y12)| = n), then
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checking P<p(X! wi12) with respect to the state-space S, boils down to checking n de-
rived formulae P<p(X"" ), with respect to state space S; and n derived formulae
Pop(X'" ), with respect to state space S, (1 < i < n). The computational saving
implied by that, depends on both the dimension and the structure of the components
state-space (the computational gain is proportional to the ratios %) Checking of
an arbitrary bounded Next P4p(X! ¢) on a state-space S (see Algorithm 5.4.1), re-
quires the computation of Sat(¢) and of the matrix-matrix-vector product (¢ - P) - i,
Its computational cost is clearly proportional to the dimension of S. The state-space’s

dimension of abidimensional Boucherie processis:

IS = 15| - [S2l = (1SuRl - [S2r])

where the dimension of component My’s state-space is:

ISl = ISRl + SR

The saving gained through the compositional algorithm, depends on the percentage of
states in which each component holds the shared resource (i.e. the cardinality of S¢R).
For example, if we consider a state-space of 1000 elements for both components (i.e.
|S1| = |S2| = 1000), and we assume that for each component the states representing the
= |S Rr| = 50), then the application
of the compositional checking to P4p(X' w12) resultsin checking 2 n bounded Next

resource holding are 5% of the whole (i.e. |Sir

formulae (P p(X" wX)) over a1000 elements state-space, instead of checking asingle
bounded Next formula with respect to a 997500 el ements state-space (in fact, in this
case, |§ = 1000- 1000 — (50- 50) = 997500). We further observe that the number n of
partitions Sat (y12) consists of, depends on the number of nested negation connectives
(—) contained in y1, and hardly exceed some units®.

Finally, to be more precise, we notice that a so the cost for computing DecSat (y12)
has aso to be considered in the evaluation of the complexity impact of decomposed
checking of bounded Next general formulae.

5In Example 4.3.1 it has been shown that the satisfiability set of a rather complex formula like
—[~(a1Aa2) A= (b1 Aby)] resultsin three partitions. The study of the existence of arelationship between
the structure of a general formulay 12 and the number of partitions its satisfiability set resultsin, isan
interesting subject for future works.
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Example5.4.1 Let us consider an example of general bounded Next formulae, re-
ferring to the GIS Boucherie framework of our running example (see Figure 5.1 and
Figure 5.2) and let us show that the decomposed approach for checking it is actually
correct. Let us suppose we are interested in verifying that thereis at least a 50% pos-
sibility that soon after being started (i.e. initial state (S10,S0), Figure 5.2) and within
thetimeinterval [2,5], the GI Sprocess reaches a state where component M isreading
the shared register (i.e. read;). This corresponds to checking that the following folds:

(S10:20) |= P>05(X2% (ready Aidley))

By means of the “ standard” approach (non-decompositional checking), we can apply
Algorithm5.4.1 to compute the state vector Prob(X 2% (read; Aidley)) for the product
process. Hence

Prob(X %% (read; Aidley)) = (ley - P) - ifready nidiey)

FromFigure 5.2, we know that the only state where (read; Aidley) isvalidis (S12,50).
Hence the VECor i yead, pidie,) IS:

1read; nidley) = (0,0,0,0,0,0.0,0,0,0,1,0,0,0)

Thetransitions' probability matrix for the product processis.

0 54 0 0 0x% 0 0 0 0z 0 0 0
0 0 {2 -0 0 0 0 00 0 0 00
o 0 0 01 0 0 O 0O O 0 0O
o 0 0 010 0 O 0O0O 0O 00O
1 0 0 00O O O 0OUO O 0O
20 0 00 0 - 0 00 0O 0O 00
| 0 0 0 00 0 20 0 0 0 0
o 0 0 00O O O 010 0 00O
o 0 0 00O O O 010 0 00O
o 0 0 00 1 0 0 00O 0 0O
0O 0 0 00 0 0O 0 00 0 fz .o
o 0 0 00O O O 0O OO0 0 01
o 0 0 00O O O 0O O 0 01
1 0 0 00O O O 0O O O 0O
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It is straightforward to show that the product of the matrix (| ess P) by the vector
1(read; nidle,)» |€20s t0 the following state vector:

2 -5(2
(le[Z,S] : P) ' D(readl/\ldlez) = ( r]_ _'_ r.5 [e ( r2+r5)_e ( r2+r5)]7 07 07 07 07 07 07 07 07 07 07 07 O, 0)

which, as expected, tellsusthat the only state fromwhich thereisa non-null probability
of reaching, within the time bound [2,5], a state where component M is reading the
register while My isidle, istheinitial state (si10,S20). Furthermore, the probability for
such a state is equal to:
Prob((s10. o), X2 (reach Aidle)) = -~ [e72#2i15) g 5(zits)
1+T1s
As a consequence we have that

(S10,520) |= P05(X29 (read; Aidley)) & rl%rs(ez@fﬁfs) g 52ty o
(5.4.10)

In the above, we have shown how to verify (sjo, S20) = P>05(X%% (read; Aidlep)) by
application of the “ standard” method with respect to the product process. Let us see
that the application of decomposed checking leads to the an equivalent result.

As a first step, we need to determine the partitions of Sat(read Aidlep). Triv-
ially, DecSat(read; Aidley) = {(reads,idley) }, meaning that the satisfiability set for
(read; Aidley) consists of a single partition:

SaI(readl/\ Id|€2) = Satl(readl) X Saiz(ld|ez) \ Ri1R

As a result we know that we will have to check one bounded Next formula
a(2rl+r5)} [ (2rl+r5

(e (XD 5 idley),
on component M.

read;)) on component M, and another one (i.e. (X

a(2ry+rg)
In order to compute the state vector Probl(X[ s | read; ), first we need to determine
read But since s12 isthe only state of M1 satisfying read; (i.e. Saty(read;) = {s12}),
then:

ifeaq, = (0,0,1,0,0,0)

Smilarly for the vector i2,. , we have:

-idley?

i_i2d|e2 - (17 07 07 07 0)
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Next we need to consider the diagonal matrices built on the projections of the bounding
interval | = [2, 5] with respect to state (s10, Sp0). Asthe probability of a 1-move and of a
2-move out of (S10,S0) are respectively p*(sio, S20) = 557 and P(Si0,S20) = 7757
then the projections of the time interval | are:

11(s, 2) = [a(2r1+ rs) a(2ry+ rs)]

fi+rs ° ri+rs
a(2ry+rs) a(2ri+rs)
e

sl
(however, for brevity, herewe skip it). Knowing that the transition probability matrices

The derivation of the diagonal matrices le, ) and le, ) is then straightforward

P, and P» are equal to:

0 r1[|E-_)r5 rerlrs 0 0 0
1 O 0 0 0 O
r r
Pl: O O I’z—ﬁu I’zfl’4 O
0 O 0 0 0 1
0O O 0 0 0 1
1 O 0 0 0 O
01 O 0O O
r r
00 ity i O
P.=| 00 O 0 1
00 O 0 1
10 O 0O O

[a(2r1+r5) a(2rq+rg) a(2ry+rg) a(2ry+rg)

s 0 s | ready) and Proby(XL s ts L idley),

the state vectors Prob; (X
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can easily be obtained as the products

[2(2r1+r5) 5(2r1+r5)} 1
PI’_Obl(X Titfs ' T1+75 readl) = (Ie|1(sl,52) . Pl) “Tread
r
= ( ri —i‘ I's (e*2(2l’1+l’5) _e75(2r1+r5) ) ,0,0,0,0, 0)

[2(2r1+r5) 5(2r1+r5)] ) -
Prob, (X" 's s idley) = (|e|2(51,52) -P2) “lidle,
—2rg2r1+rg) —5r3(2r1Hg)

=(0,0,0,0,e "*s —e Tif5 )

Finally we have to consider the weighted sum of the elements of vectors
[2(2r1+r5) 5(2r1+r5)} [2(2r1+r5) 5(2r1+r5)}
Prob, (X" ™+ > 11t’s ' read;) and Prob,(X' s 7 Ts

the considered source state of the product process (i.e. (S10,$20)) and check whether it

idley) corresponding to

is<p.

2(2r1+r5) 5(2r1+r5)}

PX = pl(Slo,Szo)Pr_Obl(X[ 175 1145 reads ) (Sp0)
2(2ry415) 5(2r1+f5)}

+ P2(S0.S20)Proby(X 5 s idler) (sp0)
rl + r5 rl —2(2r1+r5) —5(2r1+r5) r5
= . — ——.0
2ri+r5 r1+r5(e € )+2r1+r5

r - _
— 72“-_'_ = . (e 2(2I’1+I’5)_e 5(2r1+r5)) dp

which proves that by application of the decomposed method with respect to the compo-
nents M1 and M>, we have obtained exactly the same condition (5.4.10) given by the

application of the “ standard” method on the product process.
0






Chapter 6

Compositional CSL model checking:

Until formulae

6.1 Introduction

In this chapter the study of a compositional way for checking Until formulae on a
bidimensional Boucherie processistackled. At thetime being, the results we managed
to obtain are not complete. The mainissueisthe semanticsof the Until formulae which
makes the derivation of a decomposed technique a difficult task.

From the CSL semanticswe know that a path ¢ from astate s of an arbitrary CTMC
M, satisfiesan Until formulalike (¢' U! ¢”) (i.e. 6 = (¢' U ¢”)), if and only if, there
existsa futuretimeinstant t € | such that the state s isin at t, c@t, validates ¢ (i.e.
oc@t E ¢"), while up until timet o satisfies ¢’ (i.e. c@t’' E ¢, Vt' < t). For the un-
bounded Until (i.e. | = [0,<)), thisis equivalent to say that there has to be a future
state n > 0 at which ¢ validates ¢” (o[n] = ¢”) and such that for each predecessor
m < n, o[m] |= ¢'. Furthermore a probabilistic Until formula, like Pp(¢’ U! ¢"), is
satisfied in a state s, if and only if, the probability measure of the paths (from state )
which satisfy (¢ U ¢") is < p (i.e. ProbM (s, (¢’ U' ¢”)) < p). The main problem
with the verification of a probabilistic Until formula, is the evaluation of the proba-
bility measure ProbM (s, (¢/ U! ¢”)). In Chapter 2, we have seen that, for bounded
Until formulae (i.e. | # [0, <)), this, generally, involves the solution of a Volterrainte-

173
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gra equation system, requiring complex mathematical methods. However, it has been
shown, that by means of proper manipulations, this problem boils down to the compu-
tation of transient state probabilities for a transformed CTMC, a good approximation
of which can be obtained by applying the Uniformisation method (see [42]). In con-
trast, the verification of unbounded Until formulae, implies the solution of a system
of linear equations. In both cases (i.e. bounded and unbounded Until), the search for
a compositional semantics, would require finding a decomposed relationship from the
application of solving method (i.e. Uniformisation, for bounded Until or solution of a
system of linear equation, for the unbounded Until).

Very recently, we have begun to consider the application of tensorial algebrasto a
bidimensional Boucherie framework for obtaining a compositional expression of the
infinitesimal generator matrix (i.e. Q) and of its associated transition probability ma-
trix (i.e. P). Our believeis that, that could be of some help in finding a decomposed
method for checking both bounded and unbounded Until formulae which refer to a
bidimensional Boucherie process.

In the remainder of the chapter, instead, we will show the type of result we have
achieved by considering a path-wise interpretation of the Until semantics rather than
a state-wise. As we said, verifying an Until formula with respect to a state s of M,
requires the evaluation of the probability measure ProbM (s, (¢' U ¢”)). Thisvalue,
accounts for the probability measure of each path that satisfies (¢’ U! ¢”), whichiis:

Prob" (s, (vi U wk) = 3, Pr(o)
ocPath(s, (v U wy))

By means of the existing methods the value of ProbM (s, (¢/ U! ¢”')) is worked out
in a state-wise fashion: a recursive function defined on S, computes that probability
value by unravelling only those paths which satisfy (¢’ U! ¢”). In essence the set
Path(s, (v, U yy)) isnever determined, and the above mentioned methods are proved
to provide a value which is equivalent to the sum of the probability measure of the
paths satisfying (¢/ U' ¢”).

Our argument here, originates from observing that there exists a close relation be-
tween the paths of the product process and the paths of the components’ processesin a
bidimensional Boucherie framework. In particular, as we will see in detail in the next
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section, each path of the product-process results from interleaving two corresponding
paths (projection paths), one from component M1 and the other from component M.
Asaconseguence, it can be shown that the probability measure of apath of the product-
process can be factored by means of the probability measure of its two corresponding
projection paths.

This leads to a non-constructive proof showing the existence of a compositional
semantics for Until formulagl. In Section 6.3, we will show that checking that the
probability measure Prob((st,s?), (w}, U w}))) is< p, where (st, %) isastate of abidi-
mensional Boucherie process, is equivalent to checking that the probability measure
Prob(s¥, (v}, U y)) is < p/, where p is aderived probability value. This means that
the probability measure of the paths satisfying (y, U ) with respect to the product-
process, is related to the probability measure of the paths of component My, which
satisfy the same Until formula (y U yy/). The problem with this approach is that the
evauation of the equivalent probability bound p’ would require both a method that,
given a state s of a CTMC, returns the set of paths Path(s, (y, U y}/)) and a method
that, given a path o, over component My, returns the corresponding set of paths of
the product-process, which map on to 6. Both those methods, seem to rely on graph
analysis technigques, something which we still need to investigate.

The following section is devoted to the analysis of the basics properties relating
paths of the product process and paths of the components' process in a bidimensional
Boucherie framework.

6.2 Paths in a bidimensional Boucherie process

In any graph-like structure (Transition System, Markov Chain, ...) a path is an infi-
nite sequence of states ¢ = Sy, S1,---, Sy, - - - SUCh that each state 5 in the sequence, is
connected to its successor 41 by an arc. In a Markov Chain such an arc reflects the
fact that for the state s the probability of reaching its successor is greater than zero
(see Definition 2.2.4). Furthermore, with respect to CTMCs, paths can be timed by
interleaving the sequence of states with a sequence of time intervals lo,l1,...,In,...

LIn this work single-component unbounded Until formulae only are treated.
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(see Definition 2.3.3).
6= 507IOaslvlla"'alnflena"'

We remember that by untimed generator ¢ of atimed-path, we mean the sequence of
states (i.e. the untimed path) obtained by elimination of the interleaved time intervals,
li, from the timed path G, or, aternatively, by assuming every time interval 1; = [0, o)
(i >0).

G =50,S1,.++5,Sn.-

For the time being we concentrate on untimed paths only. In Section 4.3 it has been
pointed out that transitionsin a bidimensional Boucherie process, can be classified el-
ther as 1-moves or 2-moves, according to the component which is involved?. Hence a
transition (st,s?) — (t%,t?) will be a 1-move whenever the state change involves com-
ponent M (i.e. st #£t1, 2 =12), or a2-move, if it reflects a state change regarding com-
ponent My (i.e. st =t!, > £t?). Asaresultapahc = (s,5), (s}, 2), ..., (S, S2), - - -
over a two component Boucherie state-space corresponds to an interleaved sequence
of 1-moves and 2-moves. In the remainder we will refer to paths of a two component
Boucherie process, as bidimensional paths or Boucherie paths.

Intuitively the k-projection of a bidimensional path o, is given by the contraction
of o with respect to the j-moves (i.e. the path obtained by eliminating every j-move
from the sequence it is made of). Thus every bidimensional path o, is associated with
apair of projections, namely its 1-projection and 2-projection®.

In thissection aformal definition of the k-projection of a Boucherie path ¢, isgiven
and three basic results are proved. The first and trivial one, states that the k-projection
of a path o, formally defined by means of a function named Projy(), is actually a
proper path over component My. The formal proof of this intuitively obvious result
(see Proposition B.0.3) relies on a number of intermediate results which are treated
in the Appendix B. The second and more relevant result, states that the probability
measure of a path ¢ can be factored by means of the probability measure of its two
projections. Finally it will be shown that every path ¢ of a bidimensional Boucherie

2In a Boucherie framework synchronisation is not permitted, hence only one component at a time
can changeits state.

3Note that either one projection or the other can be the empty path € but not both unless the consid-
ered o isitself the empty path.
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process, satisfies a single-component unbounded Until formula, like ok = (w;, U wy),
if and only if its k-projection Proj(c) does. These results are useful in the study of a
compositional semantics for unbounded Until formulae with respect to the Boucherie
framework.

In the following some notations and remarks regarding generic paths and bidimen-
sional paths are introduced. Let ¢ be a (generic) path, then:

e ¢ isthe empty path
e (o1 n):isthe prefix of ¢ up to the n-th element (inclusive).
e (N1 o) : isthe suffix of ¢ starting at the n-th element (inclusive).

where n € N. Generaly speaking a path is an infinite sequence of states. However
finite paths are used to represent a set of infinite paths characterised by a common
prefix.

Remark 6.2.1 The n-th prefix of a path ¢ represents the set of all paths which have
1 nasacommon prefix.

From now on, unless explicitly specified, o will denote afinite sequence
C=S—S1—...~ %
representing the set of infinite pathswhich havesp — 1 — ... — s, ascommon prefix.

Definition 6.2.1 Thelength of a (finite) path ¢ is given by the number of transitionsit
consists of:
length(sp—~s1 — ... > S) =n

Given a(finite) path ¢ we adopt the following conventions:

e o[0] isthefirst element of ¢ while c[length(c)] isthe last one.

e Vne [0,length(c) — 1], o[n] is called the predecessor of 6[n+ 1], while o[n+ 1]
is called the successor of o[n.

e Vm,n € [0,length(c)] with m < n, we will say that o[m] precedes o[n], while
o[n] follows o[m.
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It should be noted that a sequence consisting of a single state, for example 6 = sp, is
a proper path even if it contains no transitions at all. Since a finite path ¢ is meant
to represents the set of all infinite paths which have ¢ as common prefix, then ¢ = 59
represents the set of al infinite paths starting at sp. Hence the probability measure
of a single element path is clearly Pr(c = sp) = 1, as it is given by the sum of the
probability measure of every path starting at sp.

Definition 6.2.2 (Path(s,y’ U ")) Let s € S be a state of a labelled CTMC
M =(SQ,L)andvy’,y" two non-probabilisticformulaeasin (4.3.1). Path(s,y' U y")
denotes the set of paths starting at s and satisfying the unbounded Until formula

(v U y").

Remark 6.2.2 (Path((st,s%),y’ U ")) Definition 6.2.2 naturally applies to a bidi-
mensional Boucherie process M = (S,Q,L), hence Path((s%, &%),y U ") denotes
the set of paths starting at (st, %) and satisfying (' U ") inM, (st,s?) being a state
of the Boucherie process.

In the remainder we will use o[n]* to denote the k-th component of the n-th state of a
Boucherie path 6. Thus, if we consider the following bidimensional path

o = (s',89)(sht?) (11, t2) (11, u?) (11, v2) (6.2.1)

then, for example,
o0l =¢s' o6[3]2=u?

Moreover, as we have already pointed out, each bidimensional path corresponds to
an interleaved sequence of 1-moves and 2-moves, hence ¢ maps on the following se-
quence:

2-move, 1-move, 2-move, 2-move

Definition 6.2.3 (Number of k-movesin a bidimensional path) Let ¢ be a bidimen-
sional path, then k_steps(c 1 n) denotes the number of k-moves contained in the n-th
prefix of 6. If o isfinite then k_steps(c) stands for k_steps(c 1 length(c)).
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Fact 6.2.1 (Length of a bidimensional path) The length of a bidimensional pathc is
equal to the sum of the k_steps and j _stepsit consists of.

length(c) = k_steps(c) + j_steps(o)

Fact 6.2.1 istrivialy true as any transition in a bidimensional Boucherie process can
either be a 1-move or a 2-move. Therefore it is obvious that the length of any finite
sequence of such transitions has to be equal to the sum of 1-moves and 2-moves it
consists of. For example, the path ¢ shown in (6.2.1) consists of four transitions (i.e.
length(c) = 4), three of which are 2-moves (i.e. 2_steps(c) = 3) while the remaining
oneisal-move(i.e. 1 steps(c) = 1).

Definition 6.2.4 (k-path) A bidimensional path ¢ is called a k-path if it consists only
of k-moves, whichis, j_steps(c) = 0.

For example the bidimensional path ¢ = (s, %) (s!,t?)(st, u?)(s!,V?) is a 2-path as
contains no 1-moves®.

Fact 6.2.2 The k-component of the target and source state of a j-move taken from a
bidimensional path o, is constant.

o[n] — o[n+1] € j-move = o[n]* = o[n+ 1]
Vn € [0,length(c) — 1]

Fact 6.2.2 isatrivia consequence of the definition of Boucherie product process.

Definition 6.2.5 (k-projection of a bidimensional path) Let c beabidimensional (timed)
path with respect to a Boucherie process M , then its k-projection Projg (o), or simply

4Again we point out that we are referring to CTMCs with no self-loops, hence a transition like
(st,s%) — (st,t?) can only represents a 2-move.
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o, is defined as:
([ G[0.Proju(11c) if o[0] — o[1] € k-moves
Projk(110) if o[0] — o[1] € j-moves
Projk(c) = o =
oo if (1t0)=¢
| € if o=¢

Next an example of a bidimensional path ¢ is considered and its two projections
Proji(c) and Proj,(c) are computed.

Example 6.2.1 Let us consider the following bidimensional path ¢

o = (s',99) (s, t2) (14, t2) (uh, t2) (U, u?) (VE, u?)

and let us compute its projections by means of the function Projy(c) described in
Definition 6.2.5. As a first thing we notice that ¢ maps on the following sequence of
transitions

2-move, 1-move, 1-move, 2-move, 1-move

which also meansthat 1-steps(c) = 3, while 2-steps(c) = 2.

The iterative application of Projk() to ¢ with respect to both components M1 (i.e.
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Proj1(c)) and M (i.e. Proj,(o)), resultsin:

Proji(c) = Proju((s',s%)(s"t%) (tH,t?) (u",t%) (u', 1) (v}, 1))
= Proji((sh,t2)(t1,t2) (ub, t2) (Ut u?) (v, 1))
= sh.Projy((tht%) (ut, t%) (ut, u?) (VE, u?))
= st Proji((ub,t2) (Ut u?) (v, u))
= sh.th.Projy((ut,u?) (Vi 1))
= st.th.ul. Projy (v U?)

= sl.tl.ul.v1

ul
ul

)
)

Projo(c) = Proja((st,s?)(sh,t2) (t1,t2) (ut, t2) (ut, u?) (v, u?))
= 2. Projo((sh,t2)(t,t2) (ut,t?) (ut, u?) (Vi 1))
= 2. Projo((t,t2)(ut, t?) (ut,u?) (Vi u?))
= 2. Projo((ul,t?) (ut, u?) (v, u?))
= $2.t2.Projo((ut, u?) (V1))
= S2.t2.Projo((Vi,u?))
= S.t2.u?

Figure 6.1 depicts how the states of the bidimensional path ¢ are mapped onto the
projections’ paths. It should be noted that the n-th state of 6, o[n|, is mapped, with re-
spect to the 1-projection (2-projection) on the same element on which its predecessor,
o[n— 1], ismapped, whenever the transition 6[n— 1] — o[n] isa 2-move (1-move). On
the other hand the element on which o[n] is mapped, with respect to the 1-projection
(2-projection), is the successor of the element on which o[n— 1] is mapped, whenever
o[n— 1] — o[n] isa 1-move (2-move).

O

The next fact points out an evident consequence of the definition of k-projection of a
bidimensional path.
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P'rojl (O') = 4 4 ul ol

Figure 6.1: The two projections of a bidimensional path ¢

Fact 6.2.3 (The k-projection isa k-path) The k-projection of a bidimensional path ¢
is a path with respect to component My starting at state 6[0]X.

Proji(c) € Path(c[0]¥)

Fact 6.2.3 trividly relies on the definition of k-projection of a bidimensional path as
well as on the definition of Boucherie process. In fact since Projy(c) is obtained by
elimination of the j-moves from o, the result is clearly a sequence of k-moves which,
according to the definition of Boucherie process, is aso a proper sequence of moves,
hence a path, over component My. The formal proof of the result stated in Fact 6.2.3
can be found, in the Appendix B.

The following two facts point out two other trivial consequences of the definition of
k-projection of a bidimensional path.

Fact 6.2.4 (Length of the k-projection of a bidimensional path) Thelength of thei-
projection of a path ¢ isequal to the number of i-stepsin c.

length(Proji(c)) = i_steps(o)
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Fact 6.2.4isasotrividly true. From Fact 6.2.3, we know that Proj(c) isa path start-
ing at 6[0]%, henceit has alength. Furthermore since Proji(c) is made of the k-moves
of o, then clearly itslength is given by the number of k _stepsinc.

Remark 6.2.3 (Length of a bidimensional path) The length of a bidimensional path
o isequal to the sum of the length of itsk and j projections:

length(c) = length(Projk(c)) + length(Proj;(c))

So far theidea of k-projection of abidimensional path has been introduced and formal
means to derive it have been provided (see Definition 6.2.5). Moreover, it has been
shown that the k-projection of a path of a bidimensional Boucherie processis a proper
path over the component My.

We now aim to show that the probability measure of a bidimensional path ¢ can
be expressed in terms of the probability measure of its projections 6 and 62. Such a
property will be the basis for showing the existence of a compositional semantics for
probabilistic path formulae P<p(). In order to do that, we first need to prove another
property concerning bidimensional paths. The following proposition states that the k-
projection of a bidimensional path ¢ can be split in two parts: thefirst one being given
by the k-projection of its n-th prefix and the second being obtained by elimination of
the first element from the k-projection of its n-th suffix.

Proposition 6.2.1 (Splitting the k-projection of a path) Let ¢ beabidimensional path
consisting of | = length(c) > Otransitionsand O < n <|. The k-projection of ¢ can be
split in terms of the k-projection of its n-th prefix and suffix, in the following manner:

Projk(c) = Projk(c 1 n).(11 (Projk(nt o)))

Proof.
By inductiononn e [0,1). Let ¢ be

0= (5:%) (S 1% 1) (H%), (5.5
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base case: n= 0.

In this case (6 1 n) = (s3,53) hence Projk(c 1 n) = s5. Furthermore (n 1 ¢) = o, thus
Projk(n1 o) = Projk(c) hence (11 (n1 o)) = 11 6. We need to distinguish between
two cases:

i (s5,S8) — (sh,s2) € k-move.

In this case, from Definition 6.2.5, we have that Projk(c) = §.Projk(1 1 o), hence
here we aim to prove that

Projk(c 1 0).(11 (Projx(01 6))) = s§.Projk(11 o)
Aswe have already noticed
(11 (Projk(01 6))) = 11 Proj(c) = (11 (s5.Proj(11 6))) = Proji(11 o)

Thus the above equality is proved.

i. (,%5) = (s}, D) € j-move.

In this case a further distinction is needed. If ¢ isa j_path (i.e. it consists only
of j-moves), then Projy(c) = §* = . Also, since (n1 ¢) = ¢ with n= 0 then
(11 (Projk(nto))) =&, hence

Projk(c 1 n).(11 (Projk(nt 6))) = s§ = Projk(o).

On the other hand if ¢ is not a j_path then there exists an index n’ € [1,1) such that

(S, S5) — (S, 1,55, 1) € k-moveand VY € [1,1), (s, 55) — (Sh,1,55.,4) € j-move.

In this case, from Definition 6.2.5, it is straightforward to show that
Projk(c) = Projk(11 o) = s5.Proji((n'+1) 1 0)
where also 5§ = s.Furthermore, sincewithn=0
(11 (Projk(010))) =11 Projk(o)

then
(11 (Projk(0106))) = Projk((n +1) 1 o)
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Hence
(61n)-(11 (Projx(016))) = 5.Projk((n' +1) 1 6) = Projk(o)
which proves the base of the induction also in this second case.

inductive step: 0 < n<|1.
We aim to show that

Projk(c) = Projk(c T (n+1)).(11 (Projk((n+1) 1 0)))

assuming
Projk(c) = Projk(c 1 n).(11 (Projk(nt o)))
as inductive hypothesis. As before, we need to distinguish between two cases.

I (s%,sﬁ) - (Sr11+1?§+1) € j-move.

Inthiscase, asaconsequence of Definition 6.2.5, we havethat Projk(c 1 n) = Projk(c
(n+1)). Furthermore, Projk(n1 o) = Projk((n+1) 1 ), hence

Proji(c 1 n).(11 (Projk(n1 o))) = Projk(c T (n+1)).(11 (Projk((n+1) 1 6)))
which, as a consequence of the inductive hyptosis, proves that:
Proji(c) = Projk(a 1 (n+1)).(11 (Projk((n+1) 1 6)))

i. (#7%) - (Sr%—l—b%—&—l) € k-move.
In this case from Definition 6.2.5, it is easy to show that

Projk(c 1 n).s%, 4 = Projk(c + (n+1)) (6.2.2)
and also Projy(nt 6) = sX.Projk((n+ 1) 1+ ) which implies:
(11 Projk(nt o)) =Projk((n+1) 1 o) (6.2.3)

Trivially though, we can rewrite Projk((n+ 1) 1 o) as the concatenation of its first
element to itsfirst suffix, namely:

Projk((n+1) 1 o) = Projk((n+1) 1 6)[0].(1 1 Projk((n+1) 1 o))
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Straightforwardly, Proji((n+ 1) 1 6)[0] turns out to be equal to s .1- Toprovethat a
further distinction needs to be considered: if (11 Projk((n+1) T o)) isa j_path, then
clearly Proj((n+1) 1 6) = ¢ = ¢ ;; on the other hand if (11 Proji((n+1) 1 0)) is
not a j_path, then there will existsanindex n’ € [n+1,1) such that 6[n'] — o[’ + 1] €
k-move and VfY € [n+ 1,1), o[ff] — o[ff + 1] € j-move, hence Projy((n+1) 1 o) =
s = s&. which proves Proji((n+1) 1 6) = . ;, in thiscase too. Relying on thisand
on (6.2.2) and (6.2.3) we have that:

Projk(c 1 (n+1)).(11 Projk(ntc)) = Projk(c 1 n).§;1.(11Projk((n+1) 1 o))
= Projk(c 1 n).Proji((n+1) 1 o)
= Projk(ctn).(11Projk(nto))

which, as a consequence of the inductive hypothesis proves that:

Proji(o) = Proj(c 1 (n+1)).(11 Proj((n+1) 1 6))

O
2 9 2
S .
0‘ fl 52 Projy(o)
S (5.5
(50, 50)
51 (s1,7)
1
Sy sh 52
(s3.57) (52:5%)
53 (3, 53)
Proji(o) o

Figure 6.2: Splitting Projx(o)

To understand the meaning of the result of the above proposition, let us consider the



6.2. Paths in a bidimensional Boucherie process 187

bidimensional path

= (%7 5(2))? (%7 S%), (é? ﬁ)? (é? ﬁ)? (év %)7 (S%, %)

which is depicted in Figure 6.2, together with its projections:

PrOj]_(G) = %,S},é,%
PI’sz(G) = %?ﬁvé

Suppose we are concerned about the 1-projection of ¢, namely Proj1(c), then, accord-
ing to Proposition 6.2.1 we can randomly choose a splitting point nin {0,...,I} where
| isthe length of G, i.e. | = 5. For example, if we choose n = 0 as splitting point (i.e.
a splitting point corresponding to a 2-move), then the n-th prefix and suffix of ¢ are
respectively: (61 n) = (61 0) = (s},s5) and (n 1 6) = (01 6) = o. Proposition 6.2.1
tells usthat
Proji(c) = Proj1(c 1 0).(11 Proj1(01 o))

Let us verify if this is the case. Trivialy Proji(c 1 0) = s5.  Furthermore
Proj1(01 6) = Proji(c) = s, s}, S5, s3, which by elimination of the head element be-
comes

(11 Proj1(01 0)) =sl, 5,5

Then, clearly, the concatenation of Proj;(c 1 0) = s and (11 Proj;1(01 6)) = st, S5, S5
leads to Proj1 (o) = S, St, S5, Si. If instead we consider n = 4 as splitting point, which
correspondsto a 1-move (i.e. o[4] — o[5] € 1-move), the n-th prefix and suffix are:

(GTI’]) = (GT4):(Sév%)v(Séaﬁ)?(s%vs%)v(éaﬁ)a(évé)
(nTG) = (4TG):(S}7%)7(S}X7§)

and their 1-projections are:

PI’Ojl(GT4) = %?évé
Proji1(416) = sis

from which, straightforwardly, Proji(c) = Proji(c 1 4).(11 Proj1(41 o)).
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This proves that the splitting rule for Proj (o) works properly both when the cho-
sen splitting point corresponds to a j-move or to a k-move.

The ability to split the k-projection of a bidimensional path ¢ is a basic result for
proving that the probability measure of ¢ can be factored in terms of the probability
measure of its projections.

Given abidimensional path o, we introduce the further notations:

e k move(o): represents the set of indices m € [0,length(c)) corresponding to a
k-move in ¢, namely such that 6[m] — o[m+ 1] isak-move.

. p‘é: isaconstant, accounting for the probability of the k-moves of ¢. It isdefined
asfollows:

Ps =

k 1_[mek-move(c) [pk(c[m])] if n> 0andk-move(c) # 0
1 otherwise

where pX(c[m]) represents the probability for a k-move to occur when at state
o[m| (see Definition 4.2.1).

In essence the coefficient pf is proportional to the measure of the probability of the
k-moves in a bidimensional path .

Proposition 6.2.2 (Factor s of the probability measure of a bidimensional path) Let
¢ be a bidimensional path. The probability measure of ¢ is expressible in terms of the
probability measure of its 1-projection and 2-projection, in the following way:

Pr(c) = pg - Pz - Pr(Proja(o)) - Pr(Projz(c))

where the constant p¥ is as described above.
Proof.
By induction on n = length(c). Let c be:

0= (5% (%)
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base: n= 0.
In this case 6 = (s}, s5) hence, trivialy, Pr(c) = 1. Moreover Proji(c) = s§ and
Projz(c) = <5 then clearly Pr(Proji(c)) = Pr(Projz(c)) =1and dso pl = p2 =1
which proves

Pr(c) = pt-p2-Pr(Proji(c)) - Pr(Projz(c)).

induction: n> 0.

Trivially, we know that the probability measure of a path is given by the product of the
probability measure of its m-th prefix and suffix, hence, with respect to the (n— 1)-th
prefix and suffix of G:

Pr(c) =Pr(ct(n—1))-Pr((sy_1, 1) (S0, 5)) (6.2.4)

Since the length of the (n— 1)-th prefix of 6 isn— 1, then by inductive hypothesis, we
know that:

Pr(ct(n=1))) = Plsyn_1)) - Pr(Proja(ct(n—1))) - Pln_1), - Pr(Projz(ct(n—1)))
By substituting thisresult in 6.2.4 we get:

Pr(6) = Plgj(n_1)) - Pr(Proji(c 1 (n—1))) - plgyn_1) - Pr(Projz(ct(n—1)))

Pr((sy 1,8 1) (S5, 5)-

(6.2.5)

We then need to distinguish between two possibilities:

L (S1-1.5-1) = (S5.5) € T-move.

Inthis case Proji((n—1)1o) =st_,.st, hence

Pr((ss 1.5 1)(s05) = PH((Sh 1,57 1)) - Pr(sh 1.5y

where pt((st_;,s%_,)) isasin Definition 4.2.1. Then by substitutionin 6.2.5 we get:

Pr () = Pioyn_1)) - Pr(Proju(61(n—1))) - plsyn_1) - Pr(Projz(ct(n—1))

1((5%_1,5§_1)) : Pr(si—lai)-

(6.2.6)
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Moreover, from Proposition 6.2.1 we know that Projy(c) can be split in two parts,
particularly:

Proj1(c) = Proji(c1(n—1)). (11 Proja((n—1) 1))
Proja(c) = Proja2(c1t(n—1)).(11 Proj2((n—1)10))

Since we are assuming (st ;, % ;) — (s, %) € 1-move, then
Proji((n—1)10) = & 1.5
Proj2((n-1)to) =
hence

Proji(c) = Proji(ot(n—1)). (11 (s_1.51) = Proja(ct(n—1)). s,
Proja(c) = Proja(c1(n—1)). (11 s2) = Proja(c1(n—1))

then:
Pr(Proji(c)) = Pr(Proji(ct(n—1))).Pr(s;_1,%)
Pr(Projz(c)) = Pr(Projz(c t(n—1)))

By substituting the above resultsin 6.2.6, we get

Pr(6) = Ploin_1)) Plotn_1))Pr(Proj1(c))Pr(Projz(c)) - p'((sh-1,5-1))  (6:2.7)

but since we are assuming (st |, s2 ;) — (s}, %) € 1-move, then also

P = p(lcr(n—l))'pl((#—lvﬁ—l))

P; = p(zoﬁ(nfl))

which substituted in (6.2.7) proves
Pr(c) = pgp5Pr (Proji(c))Pr(Projz(c))

i (s 1,87 1) = (S, S) € 2-move,

The proof of this case is symmetric to the one of the previous case.
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The above proposition provides us with a compositional method to compute the prob-
ability measure of a bidimensional Boucherie path. Given such a path ¢, the value of
its probability measure is given by the product of the probability measure of its projec-
tions multiplied by two constants, the values of which depend on the transitions ¢ is
made up of. The following example shows how to apply the above result in practice.

Projs(o)
st @
(s*,s
e (t', u?)
ul @
Proji (o)

Figure 6.3: factorizing the probability measure of a path ¢

Example 6.2.2 Figure 6.3 shows a path ¢ together with its projections Proj1(c) and
Proj,(c). The probability measure of 6 is given by the product of the probability of
each step, hence:

prio) . 2 Q) Q) it
CEEEE) BE)HEE) B ED) B +E(P)

Having in mind that the probability of a k-move from a state (§1,5?), is given by:

ok(&, @) — E(89)

(6.2.8)

- Ei(8H) +Ex(®)
then we can rewrite (6.2.8) as follows:
$,t2 st t!
Pr(o) =p2((s1. ) T o) pr(sh ) .
. QZ(t27 u2) . . Ql(t17 ul)

P gy P~ e
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On the other hand, the probability measure of the ¢ projections are respectively

1 1.1
Pr(Projy(o)) = Q|15(18(18,1t) ) QlE(lt(t,ll; )

2 2 2
Pr(Projo(c)) = lez(js,zt) ) QlE(zt(t,zl; )

Hence, since p; = p*((s',t%)) - pH((t*,u?)) and p5 = p*((s', %)) - p*((t1,t%)), we have
that:
Pr(c)=pg - p5 - Pr(Proji(c)) - Pr(Projz(c))

proving the validity of Proposition 6.2.2 in this case.
O

Finally, we are going to show a basic result which regards the semantics of single-
component unbounded Until formulae with respect to bidimensional paths: a bidimen-
sional path satisfies aformulalike (yi U ) if and only if, its k-projection does.

Proposition 6.2.3 Let ¢ be a bidimensional path with respect to a bidimensional Bou-
cherie process M and w;, y;, two single-component formulae asin (5.2.1). Then the
following holds:

o = (WU vy) <= Proj(o) Ex (wiU wy)

Proof.

(=) Fromthe CSL semanticswe know that if ¢ = (v, U y})) then3n > 0: o[n] =y,
and Ym < n o[m] = y,.. From the decomposed semantics of non-probabilistic single-
component formulae, we know that

ofm] = v <= o[m* =i wi

o[n] = v <= olnlk =k vy
Moreover, thanks to Remark ?? (see Appendix B), we know that the n-th element of
o isprojected over the mapk (o, n)-th of its k-projection. Hence 3n’ = mapy(o,n) > 0
such that Proji(o)[n] = o[n =« v and dso VYm = map(o,m) < n,
Proji(c)[m]=o[m]* =i v, which proves Proji (o) = (v U ).
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Projy(o)

1 "
S3 1

Proji (o) g

Figure 6.4: Semantics of (W} U yY) with respect to a bidimensional path

(<) Straightforward by reversing the argument in (=).
0

In Figure 6.4 an example of the property proved by Proposition 6.2.3 is depicted. The
bidimensional path ¢ satisfies (v} U y/) and also, clearly, its projection on component
My, o1, satisfies (y} U 7).

A direct consequence of the aboveresult isthe one proved in the following proposi-
tion. It states that the k-projection of the paths which start from a state (s*, s?) and sat-
isfy theformula (y U w}!) isequal to the set of paths from state s satisfying v} U /"

Proposition 6.2.4 Let (st,s%) be a a state of a bidimensional Boucherie process M
and v, y,, two single-component formulae asin (5.2.1). Then the following holds:

Projk(Path((s",s%), i U ¥)) = Path(s, wi U i)

Proof.
(=) If o € Projk(Path((s!,s?),y; U ), then from Proposition 6.2.3 aso o* =
(wi U ), and since clearly 6¥[0] = s¥, then 6* € Path(s*, v U w)).
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(<) Let us consider an arbitrary path oy € Path(s¥, w U y//). We aim to show that
for each such a path o, there exists a bidimensional path from (st,s?), which as well
satisfies (y U ) and whose k-projection is actually oy. Thisis equivalent to show
that the subset of Path((st,s?), v}, U ) given by the paths whose k-projection is o,
namely Proj*(ox, ((s',5%), W}, U ), is not empty. In order to do that we need to
distinguish between three possible cases, which are:

i) All states in oy fall in § g. For simplicity, in the remainder of the proof we
refer our argument to the case k = 1 hence | = 2. We observe that a symmetrical and
equivalent derivation can be straightforwardly obtained from the above by swapping
the indices k and j. If all states of o arein S g and s € S; , then 6= (o xs!) =
(0k[0],S!)... (ok[n],s!), where n = length(cy), is clearly a path from (st,s%) and fur-
thermore, as a consequence of the decomposed semantics of yy formulae, also 6 =
(yi. U wy). Hence o € (Path((st,s%),y} U y})) and also, trivialy, Projk(c) = o
which proves Proj (o, (s, %), i, U i) to be non empty.

On the other hand if s/ ¢ Sj r, then since we are dealing here only with ergodic
Markov Chains (i.e. any state is reachable from any other state), there will be a path
6=-9...tl on M leading from sl to astate t! € S; 5. Thus, clearly, (s‘x 0) isa
path on M from (s¥,s/) and furthermore (s x 6).c € Path((s!,s%), v}, U y}))) and
Projk((s¢ x 6).0) = ok which again proves Proj, *(ck, (s', %), v, U w})) to be non
empty.

i) All statesin o are in S r. Inthis case sl must bein Sj,ﬁ (as S rx Sjr IS not part
of the Boucherie state space). Then (oyxs!) isa path from (s!,s?) and, thanks to de-
composed semantics of wy formulae, we also know that (o x ) satisfies (v}, U wj)),
while clearly itsk-projection is oy.

iii) Some states of o arein 3<F and some others are in S r. In the most general case
the path 6, we consider (we are assuming k = 1), is given by a (finite) sequence of
G15 and 61, subpaths (subpaths consisting only of statesin S; g and S g respectively).
However we can consider the simplest case of 61 consisting of a sequence of only two
such subpaths, either 61 = 61..61, OF 61 = G1,. O1, knowing that the proof for any
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59
‘/ i\\ B
° 0 0y
t 52
S1 R
01 ! 3 o i\‘ 1/)/
1] %1 Uy 142 3 1
S (s7,t%) (31,52)
!
i X ¥y (t', %)
o | |ext 8w
v'® U (R YO
28 RIENS S

O':(SlXé'Q). (1 T (UlXtQ))

Figure 6.5: Projy(Path((st,s%), wj, U yi)) = Path(s%, w}, U v}

other case isadirect consequence of thissimple one. Let us assume
01 = Glﬁ. O1x

Let usdenoteby k € [0,1) (I=Iength(c1)) thelast element of 61 (i.e. k= length(c1,)).
Then clearly, 61[K] € S, g and o[k + 1] € S, r. Aswe have seen in the previous case, if
* € S, g then the bidimensional path given by the product of 61 by &%, Ga=01x?, isa
proper path from (st,s?). On the other hand (see Figure 6.5), if s?> € S, g there will be
astatet? € S,  reachable from s through a path 6 such that the bidimensional path
obtained by concatenation of the product paths (51[0] x62) and ((11 61,) xt?), i.e.

op=(0[0]1x6?). (11 O1g) xt2)

is a proper path from the state (s*, %) to the state (o1 k], t?).

It is straightforward to show that both 6, and oy, are paths from (st,s%) which
project on 61. Moreover since, by the hypothesis, o1 satisfies (y, U ) then there
existsn’ € [0,1] such that 61[n'] =1 Y and V' < ', o3[ =1 v, Thus, if s* € S,
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then thanks to the compositional semantics of yy formulag, also there will exist n = n’
such that, with 6 =03, o[n] = ¥/ and Ym=m' < n=n" o[m| |= v, which proves 6,
beingin Path((s,s2), (v} U wy)) (hence Path((st, &%), (v, U ) # 0).

If, instead, $* € S g, then the path 6=0y,. (51, xt?) issuch that withn=n’+length(c?),
o[n| = ] and Ym < n o[m| =y}, which means o |= (y, U ;). Hence, dso in the
case §? € SR, the set Path((sh,s?), (Wi, U w})) is not empty as it contains, at least,
G =0p. (01, x1?).
The proof for the symmetrical case 61 =01,. 61 is simpler as clearly the only possi-
bility, in this case, is s? € S, r (we are considering a path 61 generated from a state
61[0] € S;.r Where component M1 holds the shared resource, hence st can only be
coupled with states s* € S, g). In this case the product path 6 =61 x 8 is clearly a
path from (s!,s?) projecting on 1. Furthermore it is straightforward to show that, by
assuming o1 =k (i U y,) thenalso 6 |= (y, U ).

0]

Theresult of the above proposition relating bidimensional pathsand their k-projections,
will be the basisfor a non-constructive prove of existence of acompositional semantics
for single-component unbounded Until formulae. This will be the subject of the next
section.

6.3 On single-component unbounded Until formulae

Relying on the background material about bidimensional paths provided in the previ-
ous section, we are now ready to deal with the analysis of a compositional semantics
for unbounded Until formulae which refer to a bidimensional Boucherie process. For
that purpose, we consider an enriched version of the syntax for single-component for-
mulae introduced in (5.2.1), where the Until connective U', in its unbounded version
(i.e. 1 =[0,<0)) only, has been added.
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Ok = Wk | Ok | ok | & | dkAdKk | —dk

W=t ak | WAk | pk

&k = Sap(Wk) | Sap(Pk) (6.3.1)
ok = Pap(X! (W)

o == Pap(wU wy)

We notice that the same type of restrictions concerning nesting of probabilistic op-
erators (see Section 5.2) still apply. Thus, aso for the Until connective, only non-
probabilistic single-component formulae yy, are admitted as the possible type of argu-
ment. Furthermore, Until formulae are kept apart from Next formulae. Thisis due to
the fact that, for the time being, no results have been found showing a compositional
semantics of steady-state properties which refer to Until paths (while, as shown in
Section 5.2.2, there is a decomposed way to check steady-state properties of bounded
Next single-component formulae). As a consequence, the Until formulae cannot ap-
pear as argument of the steady-state operator, in the syntax of formulae for which a
decomposed semantics exists.

The following theorem proves that, relying on the properties of bidimensiona paths,
the derivation of acompositional semanticsfor single-component unbounded Until for-
mulaeis possible.

Theorem 6.3.1 Let (s,s?) be a state of a bidimensional Boucherie process, v}, y;,
two non-probabilistic formulae as in (6.3.1), p € [0,1] a probability value and
<e {<,<,>,>}. Then there exists a derived probability value p’ such that the fol-
lowing holds:

(s',5%) = Pap(wi U w) <= = Pap (Wi U )

Proof. From the CSL semantics we know that a state s of an arbitrary CTMC M
satisfies a probabilistic Until formulalike P<p(y; U /) if and only if the probability
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measure ProbM (s, (y U yi)) < p. However, ProbM (s, (wj, U ) is equal to the
sum of the probability measure of the paths starting from s and satisfying (y; U yy/),
whichis:

ProbM (s (yk U wi)) = Y Pr(o)
oePath(s, (i U wy))

where the probability of a path ¢ is given by the product of the probability of each
transition it consists of. Relying on thisremark let us prove the two implications.

(=) If (s,5°) = Pap(w U y{'). Then
[ Y Pr(o) | <p (6.3.2)
oePath((sh,s?),yl U y!')
If we denote by P’ the set of k-projections of the paths ¢ € Path((st,s?),y! U y/')
(i.e. P = Projk(Path((s!,€%),w/ U w!"))) and by Proj, *(d’, (s,5?)) the set of paths
o from (st, §%) whose k-projection is ¢’ (i.e. the path ¢ such that Projk(c) = ¢’), then
we can rewrite the above sum by factoring out the paths with common k-projectionin
the following way:

Y Po) = ¥ ( D Pr(c)) (6.3.3)

ocPath((sL,82),y} U i) o'eP’ oeProjt(o’,(st,?))
From Proposition 6.2.2 we know that the probability measure of every bidimensional
path ¢ can be factored in terms of the probability measure of its projections Proj1 (o)

and Proj(o) and of two constants, namely pt and p2:
¥o,3p5, Ps 1 Pr(o)=pg- p5-Pr(Proji(c)) - Pr(Projz(c))
Hence (6.3.3) resultsin:

> i)=Y (X pepPr(c)Pr(Proj;(0)))

ocPath((s!,s?), v U wy) o'€P’ “5eProj (o',(sh,8?))
= > ksPr(c’) < p
o' €Projy(Path((st,s?),yiUw}))
(6.3.4)
with
ko' = 2 P& PsPr (Projj(o)) (6.35)

oeProj (o', (st,82))
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But from Proposition 6.2.4, we know that
Proji(Path((s', %), wilUwy)) = Path(s", (yic U w))

which substituted in the inequality (6.3.4) resultsin:

> kePr(c’) < p (6.3.6)

o' ePath(sK,(yi U wy))

If we denote by o}, the path in Path(s%, (y} U /) which maximises the associated
constant k , then we can define the constant C which accounts for the total deviation
from the maximum k; of each other path o’ € Path(s¥, (w U wy)), 6’ # o}, namely:

C= > [Kot, — Ko']Pr (")
o ePath(sK, (v}, U yjl))
o' #oy

Then from (6.3.6), straightforwardly follows

Kty )y Pr(c’) < (p+C)

o'ePath(s* (v, U w}))

which, clearly, proves
S P ipre) (Vi U w0
S

(<) By reversing (=).

0
Relying on the properties of bidimensional paths, the above theorem proves the
existence of a compositional semantics for single-component unbounded Until for-
mulae. This result, though correct, does not provide a practical way of decomposed
checking of Until formulae. The computation of the equivalent probability bound
P’ , in fact, requires determing the set of paths which satisfy an Until formula (i.e
Path(s%, (v}, U w))), something which could be achieved by defining some specific
graph-analysis technique. In the next section we will show that a decomposed verifi-
cation of event-bounded Until formulae is easily achievable.
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6.4 Compositional Semantics of event-bounded Until

formulae

In Section 3.2 an event-bounded version of the Until operator has been formally in-
troduced and a verification method has been demonstrated for the case of a single-
point bounding interval. It has been shown that verifying an event-bounded formula
(v Uy w") boils down to the verification of its operands, y' and w”, plus the ver-
ification of the Next formula (X y”). In Chapter 4 and Chapter 5, we have proved
methods for decomposed checking of both simple boolean combinations of atomic
propositions (i.e. yyk and y12) and Next formulae (i.e. Xyg and Xy2). Asaconse-
quence, the derivation of an algorithm for compositional verification of event-bounded
Until formulae, both single-component and general, is straightforward. In Algorithm
6.4.1 such amethod is provided. That procedure requires the computation of the state-
vectors Prob(Xwy) and Prob(Xwy2) whose elements represent the probability of sat-
isfying, respectively, a single-component and a general Next formula, for the states of
a bidimensiona Boucherie CTMC. The following two remarks point out that the ele-
ments of those vectors can be evaluated in a compositional way (i.e. by computing the
probability of Next formulae with respect to the states of the component’s processes).

Remark 6.4.1 Let (s!,s%) be a state of a bidimensional Boucherie process and yy a
boolean combination of atomic propositions referring to component M. The proba-
bility of reaching a yy-state from (st, §?) in one-step, is equal to:

;

Proby (X wi) (s) if (s',8%) € R

1 if (st,9%) € R

and s =y yi

0 if (st,9%) € R

Prob(X wi)(s1,s2) = and s -y i
p(st, s2) - Proby, (X wi) (5X) if (s',5?) € Ryree

and s¢ Fk Wk
pK(st, s2) - Proby (X wi) ($) + pi(st, &) if (s1,92) € Riree

and Sk ):k Yk
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The above remark shows that the probability vector Prob(Xwyy) for a bidimensiona
Boucherie process is a function of the corresponding probability vector Prob, (Xwy)
computed with respect to component M.

Remark 6.4.2 Let st and s? be a state of a bidimensional Boucherie process and y1»
a general formula asin 5.4.1. The probability of reaching a y1o-state from (st,s?) in
one-step, is equal to:

Prob(Xyi2)(s',8%) = 3, [p'(s', %) Proby (X aug)(sh) + p(s', %) - Prob,(X ) (5°)]
(01g,012) €DeCSat (W12)

The above remark is a direct consequence of Algorithm 5.4.2. It shows that the stat-

evector Prob(Xw12), for abidimensional Boucherie process, can be obtained asafunc-

tion of the components' state-vectors Prob; (Xat1) and Prob(Xa2) , where oy and o

are the single-component formulae characterising the partition of Sat(y12).

Having shown that the vectors Prob(Xwy) and Prob(Xy2) for a bidimensional
Boucherie CTMC can be computed in a compositional manner, it is easy to determine
a method for decomposed verification of both single-component and general event-
bounded Until formulae.

Algorithm 6.4.1 Let M be a bidimensional Boucherie process with components M
and M2, ' and " two boolean combinations of atomic propositions (either single-
component or general) and n a natural number. The following algorithm can be ap-
plied for computing the state-vector PU = Prob(y’ Uy, y”)

Algorithm (Prob(y’ Uy, w")).
1. PU =0;
2.IFn=0THENPU =i,; ELSE
i. Determine Prob(X y");
ii. Determine i—w’;
iii. PU =i, -Prob(X y"); n=n—1;
iv. FORn>0DO
PU =i, -[P-PUJ;
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n=n-1;

3. return PU.

U
The above agorithm shows a method for computing the probability of satisfying an
event-bounded Until formulae of any type (i.e. with any possible combination of
operands, either single-component formulae, yy, or general formulae, y12) for a bidi-
mensional Boucherie process. We observe that the evaluation of the state-vector
Prob(y' Uy, "), for the product-process, is obtained in adecomposed way whichis,
by means of a number of verifications involving the component’s processes only (no
actual verification with respect to the state-space of the product-processis needed). In
fact, in order to determine Prob(y’ Uy, w") the vectorsi,,, i, and Prob(Xy") are
needed. However, relying on Theorem 4.3.1 and Theorem 4.3.2, we know that i,,, and
underlinei,,» can be evaluated in a compositiona way. Moreover, from Remark 6.4.1
and Remark 6.4.2, we know that also Prob(Xy") can be computed compositionally.
Hence, the procedure illustrated by Algorithm 6.4.1 shows that an approach for de-
composed verification of event-bounded Until formulae, is possible when referring to
a bidimensional Boucherie process.
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Conclusion

7.1 Introduction

In this chapter a summary of the main results of the thesisis presented. The extent to
which these address the analysis of CSL expressiveness and the study of a composi-
tional approach to CTMC’s model-checking is assessed. Furthermore, in Section 7.3, a
description of the ongoing work and directions for further devel opments are provided.

7.2 Summary

In this work the model-checking technique for CMTCs has been considered and two
major aspects have been addressed: the study of the expressiveness of the CSL logic
and the analysis of a compositional method to check CSL formulae with respect to a
bidimensional Boucherie process.

CSL expressiveness

In Chapter 3 the CSL logic has been considered and its expressiveness analysed. Rel-
evant points have been made regarding each of the following subjects.

Extending the future-quantification: in referring to a behaviour of interest with re-
spect to a system’s evolution, the idea of event-quantification, as opposed to time-

203
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guantification, of the future has been pointed out. In thisrespect, we have seen that the
Until and Next operator perform differently, the former allowing usto refer to an indef-
initely long (in terms of events) future only, the latter allowing a one-event-long only
quantification of the future. The extension of the strict (one-only) event-quantification
capability of the CSL logic to the most general case of n events, seemed then to be
natural. As aresult, an event-bounded version of the time-unbounded Until operator
has been introduced and a method for its verification has been demonstrated. This has
been shown to require the computation of an iterative matrix-vector multiplication, as
opposed to the the solution of a system of linear equations which is needed for its
event-unbounded counterpart (i.e. the standard unbounded Until).

Single-point time-bounded formulae: time-bounded path formulae (i.e. X' ¢ and
oU'" ) allow us to specify abounding interval | = [a,b] for the time-wise distance of
afuture behaviour of interest. When the bounding interval consists of a single instant
(i.e. 1 =[a,a]) we have pointed out some relevant features of both Next and Until.
Concerning a Next formulag, (i.e. X[&@ 0), it has been shown that reaching a ¢ statein
one step exactly at timet isan impossible event (i.e. it has probability zero to happen).
As a consequence a time-bounded Next formula has been characterised as well-formed
only if a < b. With the Until formulae (i.e. (oU22 vy)), instead, we have seen that
only the evolutionsin which a future state where both the source (i.e. ¢) and the target
(i.e. y) formulae are valid is reached through a sequence of states where the sourceis
satisfied, have a non-null probability to fulfil the point time-bound [a,a]. In contrast,
in the non-point interval case, a < b, also the paths in which a future state where only
thetarget isvalid is reached through a sequence of states where the sourceis satisfied,
can have a non-zero probability to fulfil thetime bound | = [a,b].

Well-formed probabilistic formulae: CSL probabilistic formulae (i.e. Sqp(¢) and
Pap(9)) alow usto compare a probability measure (either an equilibrium probability
measure or a path probability measure) with respect to a bound p. The comparisonis
achieved by means of any operator <¢ {<, <,>,>} andany bound p € [0, 1]. We have
pointed out that the absence of restrictionsin associating < and p can lead to senseless
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formulae, like S>o(¢) or P<1(¢). Such formulae are trivialy valid in any state, be-
cause, clearly, a probability measure must fall in the interval [0, 1]. This hasled to the
characterisation of well-formed probabilistic CSL formulae, achieved by identifying
the sensible pairs (<, p) through proper logical conditions.

Simpler syntax for ergodic CTMCs:. the CSL syntax admits nesting of probabilistic
operators (i.e. Sqp and P<p). This facility allows for expressing complicated proper-
tiesof aCTMC. However, we have demonstrated that when the considered model isan
ergodic CTMC, the complete nesting facility of the original CSL syntax isnot actually
needed. Thisis due to the fact that with ergodic CTMCs, steady-state formulae like
Sqp(d), are model-dependent rather than state-dependent (i.e. they are either valid in
every state or in none). As aresult, we have proved a number of equivalences which
show that nesting of Sqp within aP <, operator is pointless when dealing with ergodic
CTMCs. That has led to the characterisation of a simpler, but equivalent, CSL syntax
for referring to ergodic models.

Compositional CSL model-checking

Chapters 4, 5 and 6 have been devoted to the analysis of a compositional CSL se-
mantics for bidimensional Boucherie CTMCs. Formulae referring to atwo component
Boucherie process have been partitioned into single-component, for stating properties
which refer to features of asingle component only, and general, which refer to features
of both components. A progressive approach has been have adopted in deriving of a
compositional semantics.

Non-path formulae: in Chapter 4 decomposed semantic equivalences for non-path
formulae (i.e. formulae not involving X nor U) have been proved, first for the single-
component case, then, relying on those results, for the general case. With respect to
properties which refer to a single component only, it has been proved that the model-
checking problem for a single-component steady-state formula (i.e. S<p(wi)) on the
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product-process, is equivalent to the model-checking problem of the same steady-state
formula on component My, but with respect to a derived probability bound p’ (whose
value depends on Saty (yk)). On the other hand, we have shown that checking of gen-
eral formulae reduces to a combined checking of single-component formulae. In par-
ticular, a decomposed semantics for general steady-state formulae, like Sqp(y12), has
been derived, relying on the definition of a partition of the set Sat(y12). We observe
that most of the decomposed semantic equivalences for steady-state properties (both
single-component and general) we have proved, assume that the normalisation con-
stant G, for the product form solution of the Boucherie steady-state distribution, is
known. The problem of computing G (awell known onein the literature) has not been
considered in this work.

Next formulae and new algorithm for Prob(X' ¢): in Chapter 5 time-bounded Next
formulae have been considered and a decomposed semantics has been provided. For
the time being the possibility for nesting of the probabilistic Next operator (i.e. P 4 pX' )
has been excluded. Furthermore, since both the product process and the component’s
processes of a Boucherie framework are ergodic CTMCs, then only non-probabilistic
formulae have been allowed as the possible type of argument of P < pXI . Under thesere-
strictionswe have proved that checking a single-component probabilistic time-bounded
Next formula, like Pﬂp(X' k), on the product process, is eguivalent to checking the
same formula on component My but with respect to a derived probability bound p’
and a derived time-bound I, in the worst case, and to verifying a simple inequality,
in the best case. Furthermore, we have proved that, checking the steady-state prob-
ability of single-component probabilistic time-bounded Next against a bound p (i.e.
formulae like Sﬂp(Pgb(X' Yk ))), reduces to checking the steady-state probability of
a derived single-component formula (i.e. SXjow(Wk, <, P, 1) or SXup(Wk, <, . 1)) with
respect to aderived probability bound py,, (or p{Jp). Finally, adecomposed method for
checking general probabilistic time-bounded Next formulae has been provided. In this
chapter another interesting result have been provided. We have demonstrated that the
algorithm for computing the probability measure of satisfying a time-bounded Next
formula (i.e. the state vector Prob(X' ¢)) which can be found in the literature, is not
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correct. A revised (and correct) version has been defined and its use has been shown
with respect to an example.

Until formulae: in Chapter 6 the study of a decomposed way for checking single-
component unbounded Until formulae has been faced. As for the Next operator, for
the time being, only non-probabilistic formulae have been considered as the possible
type of operand of a probabilistic until operator. Under this condition, we have shown
that the verification of aformulaP<p(y U ) with respect to the Boucherie process,
is equivalent to the verification of the same formula on component My but against a
derived probability bound p’ (i.e. P4y (y; U y)). Although correct, our argument
relies on a non-constructive proof. Hence, it does not provide a practical decomposed
method for checking those formulae. In order to obtain the equivalent probability
bound p’ one would need some method which, given astate s of a CTMC, returns the
set of paths starting at s and satisfying (y; U /).

About excluding nested path-operators. In our work on compositionality we have
considered a strict restriction by disallowing nesting of path operators. In practice,
we have demonstrated that a decomposed verification is possible only for the formulae
belonging to that subset of the CSL. Assessing the extent to which thislimitsthe ability
to state properties of interest isrelevant. A formal study of this problem will be the
object of future work, however here some informal consideration is provided!. We
observe that the practical relevance of formulae given, for instance, by nesting of a
probabilistic Until operator within another probabilistic Until operator is not easily
understandable. A formulalike

Pap, (U (Pap,(w U 8)))

identifies al those states for which, with probability < p1, there exists a future state,
reachable via ¢ states, at which, with probability < p,, a § state is reached through
y states. The practical utility of such a formula, is far to be crystal clear. Similar
considerations hold for the converse case, P<p, ((P<p,(w U &))U ¢), and for nesting

LA complete analysis of the problem would require al the possible nesting combinations of Next
and Until to be considered.
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of Until and Next like, P<p, (06U (P<p,(X w))) or P, (X (P<p, (06U v))) evenif the
practical application of the latter case seemsto have some relevance.

Abolishing the nesting facility, on the other hand, affectsthe ability to expresstran-
sient properties. A formulalike P<p(ott ¢), can be used to check the states’ transient
probability of matching ¢ at timet, against a bound p. If probabilistic path formulae
cannot be used as argument of the o' operator, the expressiveness for identifying the
target states of interest, hence, the transient analysis capability, is reduced? .

7.3 Future work

At time of publication of thisthesis severa aspects of the research are still under pro-
cess. In this section we provide directions for future developments of this work. In
particular, we would like to point out that the (brand) new event-bounded Until op-
erator, introduced in Chapter 3, has actually been a very recent “discovery”. For this
reason we have had no time enough to develop further material concerning it, even if
there are many interesting aspects which originate from its definition. In the remainder
alist of relevant pointsis provided.

Expressiveness analysis for nested probabilistic path-formulae. A formal analy-
sis concerning the nesting facility for CSL path-formulae, is an interesting subject for
further work. In this respect, it is relevant to work out what type of measures are
expressible by means of nested path-properties and how sensible is to resort to that
facility of the CSL syntax from a performance analysis point of view. Searching for
the existence of useful equivalences, is also relevant.

Event-bounded Until. The event-bounded Until discloses the possibility for a new
type of analysis of path properties. The results proved in Chapter 3 show that the
model-checking problem for event-bounded Until actually reducesto the verification of

2\We observe, however, that the use of probabilistic path formulae to identify the target state for a
transient analysis, is not always sensible. A formulalike, P qp, (ol (P4, (ol22] ¢)), which nests a
transient probability measure within another, appearsto be reduceableto an equivalent, simple, transient
analysisPp(olt,t] ¢), witht =t; +tp and p= p1 - pz.
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aNext property plusthe calculation of an iterative matrix-vector product. In Chapter 5
we have demonstrated methods for decomposed checking of Next formulae referring
to a bidimensional Boucherie framework. As a result the derivation of an algorithm
for decomposed verification of event-bounded Until on a Boucherie process, seems to
be straightforward. The definition of a combined time/event-bounded Until operator is
also arelevant aspect which we are currently investigating.

Until decomposed semantics. Very recently we have started to consider the use of
tensorial algebrasto obtain a decomposed representation of the infinitesimal generator
matrix of a bidimensional Boucherie process M . We are currently studying if the ap-
plication of such adecomposition in the Uniformisation method leads to a decomposed
approximation of the transient distribution of M . This would allow us to exploit the
correctness preserving transfor mations described in Chapter 2, by means of which the
model -checking problem for time-bounded Until with respect to a Boucherie process,
would reduce to atransient analysis on the component’s processes. .

Complexity. The analysis of the computational costs/savings resulting by application
of the decomposed CSL verification (on a bidimensional Boucherie process) needs to
be performed. With this respect, it is relevant to assess the computational cost for the
function DecSat () which, given ageneral non-probabilistic formula, y12, returnsa de-
composed partition of Sat(y12).






Appendix A

On the compositional semantics of

Next formulae

In this Appendix three lemmas which have been mentioned in Section 5.2.2, are re-
ported and proved. They regard properties which are essential to deriving a composi-
tional semantics for single-component steady-state time-bounded Next formulae (i.e.
formulae like Sqp(P<p(X' (Wk))))-

LemmaA.0.1 Let M be a bidimensional Boucherie process, i a non-probabilistic
formula asin (5.2.1), p € [0,1] a probability bound, <€ {<,<,>,>} a comparison
relation and | = [a,b] C R>p atime interval. Then a state (s!,s?) € S satisfies the
formula Pp(X' (wk)) if and only if s¢ satisfies S Xyp (Wi, <, p, 1)

( sk):ksxmw(\ukaﬁ]vpalvsj) if |0W(£],p)/\
19 € S - (e 19 €0 ap]

(s',5°) = Pap(X' (i) <=

| S FrSXup(vi <, p.1,8)) if up(<,p)
(A.0.1)

Proof. For brevity we focus only on thefirst case of the bi-implication. The derivation
of resultsfor the case up(<, p), issimilar.

(=) Let usshow that if (st,5?) = P<p(X' (wi)) then s =k SXiow(Wk, <, p,1,81), given
that low(<!, p) and [[sl € Sjr] — [(€ Ei(®)2—eEi($)by < p]. We have to distinguish

211
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between two possibilitieswhich are: (st,s?) € R;, (i.e. M holds the shared resource)
and (st,s?) ¢ R; (i.e. component M; does not hold the shared resource).

i) If (sh,s?) € Rj then also s € § g and s € Sjr. Hence, since we are assuming
([l € Sjrl — [(e Ei®)a_g Eilshby g ], also [(e Eils)a—_e Eil)b) < p] istrue. As
a result, from Theorem 5.2.1, we then have that s Fk Wk, but then also the formula
SXiow(Wk, <, p,1,8'), whichsinces! € S risS Xiow(Wk, <, p,1,8) = Vikes g (@l AWK)
istrue since at least the digunct (aty, A ), clearly is satisfied by t* = .

ii) If (s!,5) ¢ R; then, from Theorem 5.2.1, we know that s€ =y Pap(X' (k)), where
h(p.wik, Mi, (s1,8%),1) = (p.1). Since (s',5*) ¢ Rj then a0 sl € S;, but then
S Xiow(Wks <, P, 1) = Viees, (@i, AP<ap(X' i) (see Definition 5.2.2), which is clearly
validin .

(<) For simplicity we show the prove of thiscase by consideringk=1and j = 2. The
sameresult can easily bederived for thedual casek=2and j = 1. Here we assumethat
for & € S s E1 SXow(y1,<,p,1,8%) given tha low(<,p) and
([ € Sr| — [e B2 E2(s)D 4 p]]. We then have to distinguish between two
cases.

i) If & € SR then SXiow(v1, <, p,1,8) = Vites, (@l A1) and then also ste S
thus, (st,s?) € Rj. Hence clearly s' = yy. Furthermore, since we are assuming
(2 € Sr] — [(eE2()a_g=E2(sP) q )], then [eF2(")a_g~E2(")b] 4 pistrue. But
then from Theorem 5.2.1 also (st, %) = Pop(X! w1).

i) If s € Sz then clearly (s,¢’) ¢ Rj and also, in this case
SXiow(W1, <, p,1,8) = Vires, (aty, AP<p(X! wi1)). Thus, clearly st =1 Pgp(X! 1)),
then from Theorem 5.2.1 also (s, 5?) = Pqp(X! y1).

0
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LemmaA.0.2 Let (s!,s%) be a state of a bidimensional Boucherie process, yy a non-
probabilisticformulaasin (5.2.1), p< [0,1], <e {<,<,>,>} and | = [a,b] CR>p a
timeinterval. The following equivalence holds:

sl € Next{™(s, i, p,<,1) if low(<,p)
(s ) eSat(Pap(X' (W) <=
sl € Next;"(s, wi . 2,1)  if  up(<, p)

Proof.
(=) We need to distinguish between two possibilities: (s,s%) ¢ R; or (s!,5?) € R;.

i) If (st,s?) ¢ R, since we are assuming (st,s?) € Sat(P<p(X'(wk))) then from The-
orem 5.2.1, also ¢ = P<p(X (i) with (5,1) = h(p,yi, My, (s,9),1). But this
impliesalso that Sat(P Xg (Y, sH %, p, <,1)) #0, as

Pxﬁj (\lfk,Sl,Sz, P, <, 1) = atg A Pgﬁ(xf(llfk))

(see Definition 5.2.4) then proving that sl fals in the first partition
sl € Next; g(S, Wk, p, <,1), of the row(column) s* independently of the type of check
(3,p) represents, which is. sl e Net[(s,y,p,<,1), if low(3,p) or
s S NeXt}Jp(Sk,Wk, paﬁlal)a if Up(a, p)

i) If (st,s%) € Ry, afurther distinction has to be considered. If low(<, p), since we
are assuming (st,s?) = (P<p(X'(wk))) then, as a consequence of Theorem 5.2.1, also
[eEisha_eEi($)b) g p (as clearly it is not possible that sk j= —tt). Since, in this
case

Nei®(sw,p.<,)=  |J {t}}

tjES]_,R:[eij(ti)aieij(ti)b}

dp
(see Definition 524), then clearly s e Next|%(s,wk p,<,1), hence
sl € Next{™(s, yk, p,<,1). 1If up(<, p) a further distinction has to be considered.
If [eEi(t)a __ e~Ej(t)b] g p then from Theorem 5.2.1 s |= . Hence from Defini-
tion5.2.4

NetREweps= U (0]

tjEsj,R:[e—Ej(tj)a_e—Ej(tj)b}ﬂp
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which proves sl € Next;'5(s, wk, p,<,1) = Sj r, hence s! € Next;® (s, i, p, <, 1). If
[e Bitha _ e Ei(t)b] 4 p then from Theorem 5.2.1 X = —y. Hence from Defini-
tion5.2.4

Next; (s, wi, p. <,1) = Sjr

thus, clearly, sl € Next;'R(s, wk, p, <, 1), which means s/ € Next; (s, yi, p, <, 1).
(<) By reversing (=).

O

LemmaA.0.3 Let M be a bidimensional Boucherie process and t a state in compo-
nent My, yk a non-probabilistic formulaasin (5.2.1), p € [0,1], <€ {<,<,>,>} and
| =[a,b] C R-o atimeinterval. The following equivalence holds:

[ Utesat (S Xontwro 2 p ) P X NS (H, i .S 1)]
it low(Z, D)

UtKESaIk(SXup(Wk,g,T),I ) [th NeXt}Jp(tkv kabvgv I )]
( if up(<,p)

Proof. For brevity we consider here only the first case of the above equality, which is:
we assume low(<, p). Furthermore, for simplicity, we suppose to refer to component
M3, which is we further assume k = 1 and j = 2. Again the proof for the dual case
k=2and j =1, issymmetrical to the following one.

We then aim to prove the following bi-implication:

(s5,5) € Sat(Pap(X'(y1)) <= (s55) e |J [t'x Nety™(t},y1,p, <,1)]
treSaty (SXiow(¥1,<,p,))

(=) If (st,5?) € Sat (P<p(X' (w1))) (i€ (st,5?) =P<p(X! (y1))) then, fromLemmaA.0.1,
aso st =1 SXiow(Wk, <, p,1,5%). Hence

Sl ):l \/ SX|OW(\1UK7 Sla pa l ?tz) = SX|0W(W17 Sl? p’ I ))
t2cS
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which proves s; € Sat1(SXiow(W1, <, p,1)). Furthermore from Lemma A.0.2 aso
s? € Next?"(st, w1, p, <, 1), then, clearly,

(s, ) e U [th x Ned?¥(t, w1, p,<,1)]
tleSat1 (SXiow(w1,<,p,1))

(<) By reversing (=).






Appendix B
On the bidimensional paths

This appendix contains some background material regarding paths over a bidimen-
siona Boucherie process (i.e. bidimensiona paths). In Section 6.2 the idea of
k-projection of a bidimensional path has been introduced. In essence the k-projection
of a path ¢ is obtained by contraction of ¢ with respect to its j-moves. Intuitively,
such a contraction is itself a path on My. However, since the k-projection of a path
has been formally defined (see Definition 6.2.5), a rigorous proof of that is needed.
Thisresult is proved in Proposition B.0.3. Before that some definition and preliminary
property are introduced. A quick reminder of the principal notations and conventions
adopted in the appendix is given. Unless otherwise stated, ¢ will denote a bidimen-
siona path; length(c) denotes the number of transitions ¢ consists of; o[n| is the n-th
state in the sequence 6 and o[n]¥ is the k-component of state 6[n]; atransition (or step)
o[n] — o[n+ 1] iscalled ak-move if it corresponds to a transition on component My;
the number of k-movesin ¢ isdenoted k_steps(c); o issaid to be ak-pathiif it consists
of k-moves only;

Remark B.0.1 The statesin a k-path ¢ have a constant j-component:
o[ni]’ = o[ny]’
for every ng,n, € [0,length(c)] with ng # ny.

The above remark is a trivial consequence of the definition of Boucherie process. In
fact, in a bidimensional Boucherie framework, every global transition corresponds to
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exactly one local transition (i.e. synchronisation is not allowed). Hence, clearly, with
ak-move, o[n] — o[n+ 1] € k-move, the j-component of the source and target state
must be constant: o[n]! = o[n+ 1]} (see Fact 6.2.2).

Definition B.0.1 Let ¢ be a bidimensional path and 6* = Projy(o) its k-projection.
We denote mapy (o, n), the index of the element of 6¥ on which o[n] is mapped. For-
mally,

mapy (o, n) € [0, length(c")] : 6[mapy(c,n)] = o[n]*
The index mapy(c, n), introduced in the above definition, provides a meansto refer to
the state of the k-projection of ¢ which correspondsto o[n|.

Proposition B.0.1 The n-th element of a bidimensional path o, maps on the
(n— (j-steps(ctn)))-th element of its k-projection:
mapy(c,n) = n— j_steps(c T n)
Proof. by induction on n.
base: n= 0. From Definition 6.2.5 we have, Proj(c)[0] = o]0];.
induction: weaimto show that Proj(c)[(n+1) —m] = o[(n+1)]¥, giventhat Projy(c)[n—

m| = o[n], with 0 < n < length(c) — 1, is assumed as inductive hypothesis, where m
and m' are, respectively:

m = j_steps(ctn)
m = j_seps(ct(n+1))

We need to distinguish between two cases.

1. o[n] — o[n+ 1] € k-move.

In this case, m" = m, hence Proj(c)[(n+ 1) — M| = Projk(c)[(n—m) + 1]. The k-
projection of ¢ can be expressed in terms of its (n—m)-th element, in the following
manner:

Projk(c) = (Projk(c) T (n—m—1)) . Projk(c)[n—m[ . ((n—m-+1) tProj(c))



219

Since from the inductive hypothesis we know that Proj(c)[n— m] = o[n], then rely-
ing on Definition 6.2.5 we can rewrite the above, as:

Projk(c) = (Projk(c) T(n—m—1)) . o[n]k . Projk((n+1) o)) (B.0.1)

Let us now consider the term Projy((n+1)1 o)) in (B.0.1):
- if n+4+ 1 = length(s), then from Definition 6.25 we have that
Projk((n+1)10)) = o[n+ 1] Hence, by substituting in (B.0.1), we have

Projk(c) = (Projk(c) 1 (n—m—1)) . o[n]x . o[n+1]%
which proves the proposition (i.e. Proji(c)[n+1—m] = o[n+ 1];).

- if n+1 < length(c) and (n+ 1)t o is a j-path, then from Definition 6.2.5 it is
straightforward to show that Projk((n+ 1) 1)) consists of asingle state, whichis:

Projk((n+1)1a)) = olength(c)]¥

Furthermore, sincewe are assuming (n+ 1) 1o to bea j_path, then from Remark B.0.1
we know that
o[n+ 1% = oflength(c) ]

which by substitution in (B.0.1) provesthat Projy(c)[n+1— '] = o[n+ 1.
-if n+1 < length(c) and o[n+ 1] — o[n+ 2] € k-move, then by Definition 6.2.5it is
straightforward to show that

Projk((n+1)16)) = ((n+1) 16)[0] Projk((n+2) 1)
since, again, ((n+1)10)[0]% = o[n+ 1]¥ then
Projk((n+1)10)) = o[n+ 1J%. Projk((n+2) 1 o)

which substituted in (B.0.1) shows that Proji(c)[n+1—m'] = o[n+ 1],
-if n+1 < length(c) and (n+ 1)t isnot a j-path and 6[n+ 1] — o[n+2] € j-move,
then there exist g € [0,length(c) — 2] such that

o[n+1+9] — o[n+1+(q+1)] € k-move
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Thus, from Definition 6.2.5
Proji((n+1)106) = o[n+ 1+ q]*. Proj[(n+ 1+ (q+ 1)) 1 o]

furthermore (((n+ 1) to)1q) isa j-path hence, as a consequence of Remark B.0.1,
also o[n+ 1+ g]¥ = o[n+ 1]%, by which we can rewrite the above equality as

Projk((n+1)16) = o[n+ 1. Projy[(n+ 1+ (q+1)) 1 o]

which substituted in (B.0.1) provesthat Projy(c)[n+1—m] = o[n+ 1]*.

2.o[n] = o[n+1] € j-move. Inthiscase, M = m+ 1, hence the ((n+ 1) — nY)-th and
(n— m)-th element of the projected path are actually the same. Furthermore, since we
are assuming the n-th transition of ¢ to be a j-move, then, thanks to Proposition 6.2.2,
o[nk = o[n+ 1]¥, thus, relying on the inductive hypothesis:

Projk(c)[n+1—mn] = Projk(c)[n—m] = o[njx = o[n+ 1k

which proves the proposition also for the case 6[n] — 6[n+1] € j-move.
U

Remark B.0.2 The k-component of the last element of a path  maps on the last ele-
ment of the ¢ k-projection.

map(c,length(c)) = k_steps(o)

We notice that Remark B.0.2 is a direct consequence of Proposition B.0.1 and Re-
mark 6.2.3.

Definition B.0.2 Given the n-th element of the k-projection of a path ¢, we define
Map;l(c, n), to be the set of elementsin o which (all) map on Proj(c)[n]. Formally,

Map, 1(c,n) = {me [0,length(c)] : mapk(c,m) = n}
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Lemma B.0.4 The k-projections of two distinct elements of a path ¢ are in relation <
if and only if the number of k-stepsin their respective prefix are in relation <

mapk(o, ki) <mapi(o, ko) <= Kk steps(c tky) <k steps(c Tky)

Vky, ko € [0,length(c)] and < € {<,<,>,>,=}.

Proof.

(=) Let us suppose that mapy(c,ki) < mapg(o,kz), then from Proposition B.0.1
ki — j_steps(cTky) <ks — j_steps(c 1Tkz), which means (Proposition 6.2.1) k_steps(c 1
ki <k_steps(cTkp)).

(<) By reversing (=).

Fact B.0.1 For any given path o, the function map(c, k) is monotonic.

Fact B.0.1 points out that the index on which an element o[n] is mapped on the k-
projection of ¢ can only be greater or equal to theindex on which any of its predecessor
ismapped. Thisisobvioudly true as a consequence of definition of k-projection of .

Remark B.0.3 For any path ¢ if 6[n] — o[n+ 1] € k-move, then
mapg(o,n+ 1) = mapg(o,n) +1

Remark B.0.3 points out that every k-move on a path ¢ is actually preserved on its
k-projection, but shifted j_steps element ahead. On the other hand every j-move on ¢
is deleted by Projk(o), (as aresult both the source and target state 6[n] and o[n+ 1]
map on the same element of the k-projection).

Relying on the results proved so far, we now introduce a proposition which isthe basis
to prove that the k-projection of bidimensional path ¢ is a path on component My.

Proposition B.0.2 Given a bidimensional path ¢, the minimum element which maps
on the n-th element of its k-projection, is the successor of the maximum element which
maps on the (n—1)-th element.
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max(Map, *(c,n— 1)) = min(Map, *(c,n)) — 1
vn € [1,length(Projk(c))]

Proof. Let us assume that m is the maximum amongst the indeces of ¢ which map
on the n-th element of its k-projection (i.e. max(Map, 1(5,n)) = m). Hence, clearly,
mapk(o,m) = n. Furthermore, thanks to Lemma B.0.4, also VYm' > m, k_steps(c
m) < k_steps(c ). But with m' = m+ 1, that implies k steps(c t (m+ 1)) =
k_steps(c 1+ m) + 1 which means 6[m] — o[m+ 1] € k-move, hence also j_steps(c t
m) = j_steps(ct(m+ 1)). From Definition B.0.1 and Proposition B.0.1, we know that

mapk(c,m+1) =m+1— j steps(ct(m+1)) =m—j steps(ctm)+1=n+1

which proves that the successor of max(Map; *(c,n)) = mmaps on the successor (n+
1) of the element it maps on (n). Relying on Fact B.0.1 we also know that Vm’ > m+
1= mapk(c,m’) > mapk(c,m+ 1), which proves m+ 1 being the minimum element
of ¢ mapping on the (n+1)-th element of its m-projection.

U

Remark B.0.4 Thetransitionfromthe maximum element of a path ¢ whose k-projection
isn— 1 and the minimum element which maps on n, isa k-move.

o[max(Map, *(c,n— 1))] — o[min(Map, *(c,n))] € k-move

Proof. contained in the proof of Proposition B.0.2.
0

Proposition B.0.3 The k-projection of a bidimensional path ¢ is a path from [0] on
component My:
Projk(c) € Pathy, (c[0]¥)

Proof. by induction on | = length(Projk(o)).

base: Iy = 1. Inthis case Proji(c) = o[0]x hence clearly Proj(c) € Pathy, (c0]%).
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induction: we assume that Projy(c) € Patth(c[O]"), if [x=x>1and we aim to
show that, as a consequence, that holds also when I, = x+ 1. To prove that Projy(c) €
Pathy, (c[0]¥) we need to show that

Qk(Projk(o)[m],Projk(c)[m+1]) > 0 Yme [0,ly]

Let as assume (inductive hypothesis) that thisis the case with [y = x> 1. Now let us
consider Iy = x+ 1. Thus we only need to show that

Qk(Proji(c)[x], Projk(c)[x+1]) > 0
holds. From Corollary B.0.4 we know that
o[max(Map, }(x))] — o[min(Map, *(x+1))] € k-move

hence clearly Q(c[max(Map, 1(x))],c[min(Map,*(x + 1))]) > O. Since
Projx(n — 1) = o[max(Map,*(x))] and Projk(n) = o[min(Map,'(n))] then
Qk(Projk(n—1),Projk(n)) > 0, which proves the induction.

0

The result of the above proposition proves that, as expected, the path obtained by
application of the function Proj() (see Definition 6.2.5) on abidimensional path o, is
aactualy a path on component M.
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