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Abstract

This thesis provides an in-depth study of the properties of pseudo-distributive laws
motivated by the search for a unified framework to model substitution and variable
binding for various different types of contexts; in particular, the construction presented
inthisthesisfor modelling substitution unifiesthat for cartesian contextsasin thework
by Fiore et al. and that for linear contexts by Tanaka.

The main mathematical result of the thesisisthe proof that, given a pseudo-monad
S on a 2-category C, the 2-category of pseudo-distributive laws of S over pseudo-
endofunctors on C and that of liftings of pseudo-endofunctors on C to the 2-category
of the pseudo-algebras of S are equivalent. The proof for the non-pseudo casg, i.e., a
version for ordinary categories and monads, is given in detail as a prelude to the proof
of the pseudo-case, followed by some investigation into the relation between distribu-
tive laws and Kleidli categories. Our analysis of distributive laws is then extended
to pseudo-distributivity over pseudo-endofunctors and over pseudo-natural transfor-
mations and modifications. The natural bimonoidal structures on the 2-category of
pseudo-distributive laws and that of (pseudo)-liftings are also investigated as part of
the proof of the equivalence.

Fiore et al. and Tanaka take the free cocartesian category on 1 and the free sym-
metric monoidal category on 1 respectively as a category of contexts and then consider
its presheaf category to construct abstract models for binding and substitution. In this
thesisamodel for substitution that unifies these two and other variationsis constructed
by using the presheaf category on asmall category with structure that models contexts.
Such structures for contexts are given as pseudo-monads S on Cat, and presheaf cate-
gories are given as the free cocompletion (partial) pseudo-monad T on Cat, therefore
our analysis of pseudo-distributive laws is applied to the combination of a pseudo-
monad for contexts with the cocompletion pseudo-monad T. The existence of such
pseudo-distributive laws leads to a natural monoidal structure that is used to model
substitution. We prove that a pseudo-distributive law of Sover T results in the com-
posite TS again being a pseudo-monad, from which it follows that the category T S1
has a monoidal structure, which, in our examples, models substitution.
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Chapter 1

Introduction

1.1 History and motivations

1.1.1 Variable binding and substitution

I ssues surrounding variable binding and substitution have always been an important re-
search topic throughout the history of computer science. Variable binding isasituation
where a variable becomes associated with another symbol, typically denoting an oper-
ation, or, conceptually equivalently, a function, and as the result of this association, the
variablelosesitsfull distinction as a symbol and becomes only distinguishablerelative
to the symbol withwhichit isassociated. Drawing an examplefrom some simple math-
ematics, consider an expression X+ a, where both x and a denote variables, although
the implicit intention in the choice of symbolsis rather clear here. Then suppose we
name this expression f using = and at the same time associate the symbol x with this
symbol f. A typical representation of this situation isthe expression f(x) = x+a. We
say that the variable x is bound in the expression x 4+ a on the right hand side. We can
apply the same discussion to an expression y + a to obtain the expression f (y) =y+a.
Then these two resulting expressions are indistinguishabl e, in the sense that both x and
y are associated with f in exactly the same way, and hence, having lost the distinc-
tion as symbols they render the two expressions indistinguishable. This phenomenon
has traditionally called a-equivalence in the study of A-calculi, where the function
f(x) = x+ aisnamelesdy denoted by an expression Ax.x+ a. Again, we say that the

1



2 Chapter 1. Introduction

variable x is bound by A and call x abound variable.

We have yet to define the precise meaning of “associating” a symbol with another,
which can be done in more than one way as we see later, but the most common way is
to regard such an f as higher-order, with the associated symbols as formal parameters
for the function.

Now, with afunction and formal parameters, the next thing to consider is applying
an argument to a function. Given a function f(x) = x+ a and an argument, say, b,
the value f(b) of this argument applied to this function is b+ a, where the actual
argument b is substituted for the formal parameter x. In the A-calculus terminology,
the application of an argument to a function is denoted by juxtaposition, i.e., in this
case, (AX.x+ a)b. Substituting the argument b for the bound variable X is represented
as (X+a)[b/x], which isequa to the value of the application b+ a. The representation
M[N/x] for expressionsM and N and avariable x should read “the expression obtained
as the result of substituting N for all the x's appearing in M”. We defer the precise
definition of substitution for later, but what one has to be cautious in the definition is
to consistently take care of situations where variables appearing in the expression to
be substituted might become bound as the result of substitution, for example, consider
the case of (Ay.Xx+Yy)[y/X]. When the substitution is interpreted as application of an
argument to a function, this should not be allowed in general, and M[N/x] should be
defined accordingly. Thisis usually done by using a-conversion, i.e., by renaming the
relevant bound variables in the function body.

Manipulation of symbolsat thislevel of complexity presents unexpectedly difficult
problems particularly when we want to process such expressions automatically, i.e.,
using computers, because one needs to formulate precisely and properly how sym-
bols are associated and how and when symbols are distinguished or not distinguished.
Moreover, thisneedsto be donein a*“good” way in order for usto make use of the syn-
tactic nature of the expressions. Plenty of effort has been put into this area of research
to establish a good model of variable binding and substitution [dB72, Sto88].

Recently there has been some new developments in the direction of category-
theoretic models. In [FPT99, Hof99] presheaf categories were used as the basisfor the
representation of syntax with variable binding. Meanwhile, Pitts and Gabbay [ GP99]
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proposed the use of Fraenkel-Mostowski set theory, and then the Schanuel topos. Our
focusinthefollowingisthefirst direction, which was also studied in amodified setting
for linear binding by Tanaka [ Tan00Q].

1.2 Developments so far

Around 1970, Kelly introduced the notion of club [Kel72a] in order to deal with co-
herence theorems for category theory.

We will not go into any details on clubs here, except to remark that almost thirty
years later Fiore et al. [FPT99] used a structure that is a variant of clubs, to provide
binding algebras to model variable binding and monoidal structure to model substi-
tution. Using F, the category freely generated from 1 by adding finite coproducts,
as the category of contexts, they built their model of variable binding, called binding
agebra, on the presheaf category Set™. The main analogy is that instead of algebras
over setsasin universal algebra here one considers binding algebras over variable sets,
which are modelled by presheaves. The presheaf category Set”™ inherits finite product
structure from F°P. This structureis arestriction of Kelly’sclub and it is a conceptual
improvement in choice, for the application to computer science.

The kind of binding discussed in that paper is the one which is most common, but
it is natural to think of other variations in binders, asin [Tan00], where linear binders
are considered. In that paper, binding algebra and substitution monoids are adapted to
the case of linear binders, using the free symmetric monoidal category P on 1. The
resulting structure is again closely related to Kelly’s original clubs, being a variant of
his clubs over P.

Having seen these developments in modelling different kinds of binders, Power
[PowO03] recently described an idea of unifying these structures for different kinds of
binders by providing a category-theoretic framework along the lines of [Tan00]. That
not only includes the two examples, but it also allows one to consider a wider variety
of examples, including, in particular, that given by that Logic of Bunched Implica-
tions [Pym02].
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1.3 The aim of this thesis

The paper [Pow03] is based on the definition of a pseudo-distributive law between
pseudo-monads given in [Mar99]. However, the definition given in [Mar99] is incom-
plete, in the sense that one of the coherence axioms is missing and the duality in those
axiomsis not reflected in the presentation.

The aim of thisthesisisto provide a solid technical foundation for the above idea
by Power by studying in detail pseudo-distributive laws between pseudo-monads and
giving their full coherence axioms. A complete and definitive definition of pseudo-
distributive laws is given, together with a detailed investigation of some of their prop-
erties, followed by abrief investigation of substitution as a main example of itsuse, in
particular in association with cartesian binders, linear binders and binders of Bunched
Implications.

For ordinary monads, given two monads Sand T on a category C, adistributivelaw
0 of Sover T isanatural transformation & : ST — TS such that certain commutative
diagramsinvolving the multiplications and units of both Sand T are satisfied. But what
we need is the notion of pseudo-distributive law rather than that of distributive law.
The “pseudo-ness’ arises as follows: Take the 2-monad T on Cat for finite product
structure which will be discussed in Section 8.1. Given asmall category C, T¢pC isa
free category with finite productson C. Let F P be the category of small categorieswith
finite products and product-preserving functors. We claim that FP is equivalent, not to
the category of Tt p-algebras, but to the category of pseudo-Tsp-algebras. Thereis an
obvious forgetful functor U from FP to Cat. Now consider if thisU has aleft adjoint.
If there exists aleft adjoint F, since F preserves colimits and Cat has an initial object
0, the value FO should be an initial object in FP. But thisis not the case because FP
does not have aninitial object. For consider the category 1so of apair of objectsand an
isomorphism between them. Any category with finite products has at least two finite
product preserving functorsinto it. Therefore it is essential here to have pseudo-ness
in the structure, more precisely, the notion of pseudo-mapsis crucial here. We choose
to deal with pseudo-algebras, too.

The central result about ordinary distributive laws is the equivalence between a
distributivelaw & : ST — TSand alifting of T to SAlg. But in our examples, what
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we have is Ps-S-Alg, the 2-category of pseudo-S-algebras. So, correspondingly, we
must generalise from an ordinary distributive law to a pseudo-distributive law. For
a pseudo-distributive law, we need to consider a pseudo-natural transformation to-
gether with invertible modifications replacing equality in the commutative diagrams,
and these modifications are subject to several coherence conditions, which usualy are
very complex.

Now consider the composite T Sdetermined by a pseudo-distributivelaw ST — TS,
Although the examples of pseudo-monadsthat we study later in thisthesis are actually
2-monads regarded as pseudo-monads, we cannot avoid pseudo-monads because the
composite of 2-monads has the structure of a pseudo-monad, not of a 2-monad. This
result is essential in our construction, hence we choose to devel op our discussion at the
level of pseudo-monads from the start.

We study the propertiesof pseudo-distributivelaws by starting from the non-pseudo
version of them; wefirst give proofs of the properties of ordinary distributive laws, and
then we extend the discussionsto the case of pseudo-distributive laws. One cannot fail
to notice that the commutative diagrams appearing in the proofs for the non-pseudo
case become part of the construction in the pseudo-casg, i.e., are replaced by pieces
of data such as 2-cells and modifications, and that what needs to be proved then is
coherence for those data.

In[Mar99] Marmol gjo gave adefinition of apseudo-distributivelaw between pseudo-
monads. However this was done in a very specific setting, namely, Gray-enriched cat-
egories, where Gray isthe symmetric monoidal category whose underlying category is
2-Cat with tensor product [GPS95]. In the paper he gave nine coherence axioms, but
most of these are described in away for which the duality among these axioms is not
easily understood. We have worked out a better and definitive definition of a pseudo-
distributive law in a generic 2-categorical setting, as shown in Chapter 7 including a
coherence axiom which was missing in Marmol g0’ s paper.

Having defined the pseudo-distributive law in full, it is necessary to have adetailed
discussion of how the two pseudo-monads and their pseudo-al gebrasinteract under the
existence of a pseudo-distributive law. More specifically, the facts of interest here are
that to give a pseudo-distributive law & of Sover T is equivalent to give a lifting of
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T to PsSAlg, the 2-category of pseudo-S-algebras, or to give an extension of Sto
KI(T), the Kleidi bicategory of T, and that the functor T S acquires the structure of a
pseudo-monad. We have provided a precise description and proofs of those properties
for the case of ordinary monads with a distributive law, which is reformulated into
the pseudo setting for the pseuod-algebra case by carefully replacing the commuting
diagrams with invertible modifications. Our proof aso shows that in the non-pseudo
setting the equivalenceisin fact an isomorphism.

To provide the unifying framework for substitution, it is also necessary to introduce
the notion of pseudo-strengths of a pseudo-monad and study their properties. Thisis
one of the main results given in Chapter 8. We present the definition of a pseudo-
strength with ten coherence axioms; one can find many similarities between these
axioms and those of a pseudo-distributive law, which reflects the fact that a pseudo-
strength can be regarded as a specia case of a pseudo-distributive law.

We present the unifying framework for substitution as one example of applications
of our analysis on pseudo-distributivity. The construction is based on the existence of
apseudo-distributivelaw of a pseudo-monad Sover a pseudo-monad T, where Sisone
of the pseudo-monads that gives a category which models a certain type of context,
while T isthe (partial) pseudo-monad for free cocompletion. Here we need to address
the size issue of this particular pseudo-monad on Cat because the free cocompletion
of a small category C is not small in general. More detailed discussion is found in
Section 8.1.

There are other areas where the analysis of pseudo-distributive laws in this thesis
can be applied. One of them is the study of concurrency and bisimulation by Winskel
and Cattani [WCO04] using open maps and profunctors; the structure used there involves
pseudo-comonads and Kleisli constructions. The analysis of pseudo-distributive laws
in thisthesis can be easily applied to the case of pseudo-comonads.

1.4 Outline

Chapter 2 provides the basic knowledge required for the rest of the thesis. Sec-
tion 2.1 contains a quick summary of severa topics from ordinary category theory,



1.4. Outline 7

including monads and their algebras, adjunctions, monoidal categories and monoids.
Then the notion of 2-categories and related notions such as cells, 2-functors, 2-natural
transformationsare defined in Section 2.2, followed by the definition of pseudo-functors,
pseudo-natural transformations, modifications, and then finally pseudo-monads and
their morphisms in Section 2.3. A brief introduction to the notion of pasting is also
included. Section 2.4 introduces the notions of pseudo-algebras of a pseudo-monad,
pseudo-maps between pseudo-al gebras, and 2-cells between pseudo-maps, all of which
together define the 2-category of pseudo-algebras. The last section contains the defini-
tions of bicategories and bimonoidal bicategories.

Chapter 3 is devoted to the study of the properties of distributive laws in ordinary
categories, which will be extended to the pseudo case in 2-categoriesin later chapters.
It starts with the definition of distributivity of a monad S over an endofunctor H, and
also over a natural transformation in Section 3.1. Then we introduce the notion of
a lifting of an endofunctor H to the category of S-algebras in Section 3.2. In the
following three sections it is proved that the category Dist® of distributive laws of a
monad isisomorphic to Liftg, Alg: the category of liftings of endofunctorsto the category
of algebras of the monad.

In order to prove the similar isomorphism for distributive laws over a monad rather
than an endofunctor, we need the notion of lifting of amonad T to amonad Ton SAlg:
the multiplication fi: T2 — T of T should be given by the lifting of p as a natural
transformation. Consequently, the proof of the isomorphisms requires some analysis
of the relation between T2 and T2 and also how that relates to distributive laws. We
investigate this issue in Section 3.6 for the case of H?, where H is an endofunctor.
We establish the relationship between the square of a lifting of H and a particular
distributive law of a monad over H2. This leads to the discussion in Section 3.7 on
distributive laws of a monad over amonad. The last section (Section 3.8) in Chapter 3
studies the properties of the composite TS under the existence of a distributive law of
amonad Sover amonad T. We see that in this case the functor T Sis amonad.

Chapter 4 isin asense dual to Chapter 3; the relationship between distributive laws
over amonad T and the Kleisli category KI(T) of themonad T is established. First the
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definitions of the notion of distributive laws of endofunctors over amonad T are given
in Section 4.1 and an extension of an endofunctor to KI(T) is defined in Section 4.2.
Then in Sections 4.3, 4.4 and 4.5 the proof that there is an isomorphism between the
category of distributive laws of endofunctors over a monad and that of extensions of
endofunctors to the Kleidli category of the monad is given. In the following section
(Section 4.6) we develop an analysis similar to that in Section 3.6 of the relationship
between an extension of H? and distributive laws. The rest of the chapter contains
the proof that the category of distributive laws of monads over a monad T is also
isomorphic to the category of extensions of monadsto the Kleisli category KI(T) of T.
We conclude the chapter by stating a theorem that summarises the resultsin Chapter 3
and 4.

Chapter 5 The discussion in the first five sections in Chapter 3 is extended to the
pseudo-setting, by systematically replacing the commuting diagrams with invertible
modifications or 2-cells. In Section 5.1 the definition of pseudo-distributivity of a
pseudo-monad Sover pseudo-endofunctors, pseudo-natural transformations, and mod-
ifications are given, and it is shown that these data constitute a 2-category called
Ps-DistS. Similarly, in Section 5.2, the liftings of pseudo-endofunctors, pseudo-natural
transformations and modifications to the 2-category of pseudo-S-algebras are defined,
and they define a2-category Liftpg 5 - ONe can define pseudo-functors between these
two 2-categories, as shown in the following two sections (Section 5.4, 5.3), which
define an equivalence of 2-categories (Section 5.5).

Chapter 6 isthe pseudo-version of Section 3.6 (and also of Section 4.6), expanded
and generalised. The motivation for this chapter is the same as that for those sec-
tions. The properties of H? investigated for ordinary endofunctors are in fact derived
from the monoidal structures on Dist® and Lifts »,, and the isomorphism between them
preserves those structures (Section 6.1). In the pseudo-case, in Section 6.2, the situa-
tion is much more complex; the structure on Ps-Dist® is a special case of bimonoidal
structure. Still, the pseudo-functors that define an equivalence between Ps-Dist® and
Liftps 5 a1g Preserve these structures, i.e., they are 2-strong bimonoidal 2-functors, to be
precise (Section 6.3).



1.4. Outline 9

Chapter 7 isthe pseudo-version of Section 3.7. The precise definition of a pseudo-
distributive law of a pseudo-monad over a pseudo-monad is given in Section 7.1,
together with its complete set of coherence axioms. These define the 2-category
Ps-Dist>

ps-monads

of pseudo-distributivelaws of apseudo-monad Sover pseudo-monads,
which is a variant of Ps-Dist®>. Then, in Section 7.2, the 2-category Liftgznsmgds of
liftings of pseudo-monads to the 2-category of pseudo-S-algebras is defined. The
equivalence of these two 2-categories is proved in Section 7.3. The existence of a
pseudo-distributive law of a pseudo-monad S over a pseudo-monad T implies that the
composite TSis again a pseudo-monad, and this together with a few more properties

are stated and proved in Section 7.4.

Chapter 8 containsthe main application of the theoretical development of the thesis,
i.e., the construction of the generic substitution monoidal structure is given in depth.
We start the chapter by examining several examples of pseudo-monads, including Ty
and Tgy, and their pseudo-algebras in Section 8.1 and examples of pseudo-distributive
laws between them in Section 8.2. We also introduce the (partial) pseudo-monad Teoc
for the free cocompletion and address the relevant size issues, too. After defining and
studying the notion of strength for ordinary monadsin Section 8.3, and that of pseudo-
strength for pseudo-monads in Section 8.4, we show that an arbitrary pseudo-monad
T on Cat yields a canonical monoidal structure on the category T1 in Section 8.5. The
significance of that monoidal structure, as we explain as examples in Section 8.6, is
that when T is the pseudo-monad Teoc Tt p, it yields precisely Fiore et al.’s substitution
monoidal stucture, and likewise for Tanakawhen T iS Tgoc Tsm. Moreover, at the level
of generality proposed here, we can follow the main line of devel opment of both pieces
of work.

Chapter 9 summarises the thesis and discusses possible directions for future work.






Chapter 2
Preliminaries

This chapter contains definitions of category theoretic terms used in thisthesis. These
will serve to fix notation and also to remind readers of some basics, including monads
and their algebras, 2-categories and 2-functors, and most importantly, pseudo-functors,
pseudo-monads and pseudo algebras.

2.1 Monads and their algebras

In this section, the notions of a monad (ordinary) and its algebras are defined. After
the definition of the category of algebras, T-Alg, we state several important results on
the relationship between monads and adjunctions, which are used in Section 3.8. We
finish the section with the definitions of monoidal categories and monoids in them;
these are needed in Chapter 8.

Definition 2.1 (monad). A monad (T, ,n) on acategory € consists of afunctor

T : @€ — € and two natural transformations, the multiplication p: T2 — T and the unit
N :lde — T, such that the following diagrams, onefor the associativity of pand another
for the left and right unity of n, commute:

TH

T3 T? T

11
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Definition 2.2 (monad mor phism). Given monads (T,,m) and (T',/,n’), a natural
transformation o, : T — T’ is called a monad morphism from (T,,m) to (T',/,n/') if
the following diagrams commute:

T2 T gy T g Id
¢/
H 14 n
T ¢ . T T % o7

Definition 2.3 (algebras for a monad). Given a monad (T,,m) on C, a T-algebra
(Aya) isapair consisting of an object A of € and an arrow a: TA — A of C, called
the structure map of the algebra, such that the following two diagrams, one called the
associative law and the other the unit law, commute:

T2A TA A TA
Ta nAa
Ma a /¢,< a
a
TA A A

Amap f: (A a) — (A,d) of T-algebrasisan arrow f : A— A’ in € which makesthe
following diagram commute:
Tf

TA TA
a a
f !
A A

These data constitute the category T-Alg of T-algebras and T-algebra maps. Thereis
the obvious forgetful functor G : T-Alg — €.

Now we state several important results about monads and adjunctions. Given a
category € and a monad on it, there exists a canonical adjunction induced by this
monad. On the other hand, an adjunction defined on € aso defines a monad on C.

Lemma 2.4 (a monad induced adjunction). If (T,py,n) isamonad on C, then there
exists an adjunction ]

(FT,G",n",eN):e % T-Alg.
FT sendsan object Ain € to the free T-algebra (TA, pa: T?A— TA), n T isthe unitn
of the monad, and the component of ¢ " at a T-algebra (A, h) ish.
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Lemma 2.5 (an adjunction defines a monad). Any adjunction
F
(F,Gn,e):€—D
G
givesriseto a monad (GF, GeF,n) on C.

The following lemma states that the composition of two adjunctions again defines
an adjunction.

Lemma 2.6 (composition of adjoints). Given two adjunctions

!

F
(F.Gn.e): €D (F',G'\n,e):D—¢
GI

the composite functorsyield an adjunction
'F
(F'F,GG,Gn'F n,¢/ -F'eG): e — &
GG’
Now we consider the relationship between an adjunction and the adjunction canon-

ically induced by the monad that the adjunction defines.

Lemma 2.7 (comparison of adjunctionswith algebras[Mac98]). Let (F,G,n,¢) be
an adjunction, whereF : ¢ — D, and T = (GF, GeF, n) themonad it definesin €. Then
there exists a unique functor K : D — T-Alg such that GTK = Gand KF =FT.

K
D - T-Alg

The comparison functor K is constructed as follows: for an object A and an arrow
f:A—BinD,

KA = (GA,Gep) Kf =Gf : (GA Gep) — (GB,Geg).

In the rest of the section, we define the notion of amonoidal category with symme-
try and closeness, and that of amonoid in amonoidal category.
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Definition 2.8 (monoidal category). A monoidal category (€, ®,1, o, A, p) consists of
a category C, a bifunctor @ : € x € — €, an object | of €, and three natural isomor-
phisms o, A and p, whose components are given as, for any objects A,B and C,

oapc A®(B®C)= (A®B)®C
A TQAXA
paiA®I A

such that the following two diagrams commute: for any A,B,Cand D in C,
A® (B® (C®D)) % (A®B)® (C®D) & (AB)®C)®D
ideo a®id

A2 ((BeC)®D) (A (BxC))®D
A® (IeC) (A®l)®C

A®C
Sometimes athird axiomA; = p; : | ® | — | isincluded in the definition but this has

been found redundant by Kelly [Kel64].

There existsanotion of morphisms between monoidal categories: astrong monoidal
functor is a functor between monoidal categories with additional structure that pre-
serves monoidal structure up to isomorphisms. For a precise definition see [Mac98].

Definition 2.9 (symmetry). A monoidal category € = (C,®,1,0, A, p) is called sym-
metricif it is equipped with a natural isomorphism y, whose components are given as,
for any objects A,Bin C,

Yap A®B=B®A,

for which the following diagrams commute:

A®B 2B, BoA Aol —A L oA
% YBA 2 AA

A®B A
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Y

A® (B®C) (A®B)®C C® (A®B)
idey o

A® (C®B ARC)®B CRA®B
®(C®B) (ARC)® y®id(®)®

Definition 2.10 (closedness). A symmetric monoidal category € = (C,®,1,a,A,p,7Y)
isclosedif, for any object Ain €, thefunctor — ® A: € — € has a specified right adjoint
()A:e—C.

Definition 2.11 (monoid). A monoid (X, 1) inamonoidal category (C,®, 1, o, A, p)

consists of an object X of €, together with arrowsu: X®@ X — X andn : | — X such
that the diagrams

id X X
X@(XoX) — (XeX)oX B2 x o x lox 2%, xox 220, xe|
idk © u W
7 | Q+
X @ X X X

commute.

2.2 2-Categories

In addition to the objects and arrowsthat constitute an ordinary category, in a2-category,
extrastructureisintroduced which is defined beween arrows. We call such extrastruc-

tures 2-cells. Accordingly, objects and arrows are often called O-cells and 1-cells,

respectively. The notion of vertical and horizontal compositions play an important role

in the definition (See [Mac98]). Constructions in 2-categories are often expressed us-

ing diagrams of a certain kind: typically, their vertices denote the O-cells, arrows the

1-cells, and the areas delimited by arrows in a particular way denote 2-cells. Such di-

agrams are used extensively throughout in the rest of thisthesis. For adetailed discus-

sion of 2-categorical diagrams and the notion of pasting, first introduced by Bénabou

in [Bén67], we refer to the papers [Pow90, KS74].

Definition 2.12 (2-category). A 2-category C consists of the following data:
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e aset Cy of objects, called O-cells.

e for each pair of 0-cells A and B, a category C(A, B) (hom-category), whose ob-
jects are called 1-cells of C and whose arrows are called 2-cells of C.

e for each triple of O-cells A, B and C, afunctor
compagc : C(B,C) x C(A,B) — C(A,C)
called composition.
e for each O-cell A of C, afunctor
unita : 3 — C(AA)

Thefunctors comp and unit are subject to the commutativity of the following diagrams.

compgcp X idgap)

C(C,D) x C(B,C) x C(A B) - C(B,D) x C(A,B)
\id@(cp) X COMpaBC CcOMpag,D
com
C(C,D) x C(A,C) PACD C(A,D)

idC(A,B) X unitA

C(AB) - C(A,B) x C(A,A)
/'Q'Q
unitg X ide(ap) 48 compaAB
C(B,B) x C(A,B ~C(AB
(B,B) x C(A,B) COMPAss (A,B)

Here J is the trivia category with one object O and its identity arrow (the terminal
object in Cat). We denote the value unit(0) in C(A, A) by ida.

The fact that 1-cells are defined as objects of a category and 2-cells as arrows im-
plies the associativity and the unit law for the vertical composition of 2-cells, and the
two diagrams imply the associativity and the unit law for both the horizontal composi-
tion of 2-cells and the composition of 1-cells.

Notation 2.13. We denote the horizontal composition of 2-cells by o, and the verti-
cal composition by -. Composition in general is denoted simply by juxtaposition or
sometimes by o.
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Definition 2.14 (2-functor). Let C,D be 2-categories. A 2-functor F from C to D
consists of

e afunctionFy: Cy — Dy

e for each pair A, B of 0-cells, afunctor Fag : C(A,B) — D(FoA, FoB)

subject to the commutativity of the following diagrams;

Fec x F
C(B,C) x C(A,B) — 2" "B | D(FB,FC) x D(FA,FB)
compag.c COMPFAFB,FC
F
C(AC) At ~ D(FA,FC)
J
(//7/
. (7
unita &
C(A,A) D(FA, FA)
Faa

The operation of F on 1-cells and 2-cells is defined in terms of functors on hom-
categories. Thismeansthat, if we use F; and F, to denote the object part and the arrow
part of the functor,

1. fora2-cdlo:f— f':A— B, Raisof type i f — F1 ' : FpA — FoB,

2. given another 2-cell B of type f' — ", (B - o) = (F2B) - (F0) holds;
and

3. for theidentity id¢ : f — f onany 1-cell f, Fo(idf) = idr; ¢ holds.

In the second item above, the dot - denotes the vertical composition of 2-cells both in
C(A,B) and D(FoA, FpB).

Moreover, the two diagrams above demonstrate the functoriality of F over comp,
that is,

1. F(yoa) = (Fy)o(Fa),

over the horizontal composition of 2-cells, and
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2. comp(Fg,Ff)=F(comp(g, f)) and F(ida) = idga,
over the composition of 1-cells.

Definition 2.15 (2-natural transformation). Let F, G be 2-functorsfrom C and D. A
2-natural transformation o, from F to G consists of a collection of 1-cellsindexed by
O-cells of C, such that, for each component o.a : FA— GA at a0-cell A, the following
diagram commutes:

C(A,B) D(FA,F B)
G oo —
D(GA, GB) D(FA, GB)

— o0lp

Example 2.16. The 2-category Cat. The O-cells are given by all small categories,
1-cellsgiven by all functors between them, and 2-cells given by all natural transforma-
tions.

2.3 Pseudo-monads

From now on, we use the pasting of diagrams extensively. The two basic situations for
pasting is

Sl Nl

\Y

Thefirst of these represents the 2-cell Bg- ua : uf — uhg — gv and the second is the
2-cell vy-of : uf — vkf — ug, where the dot - denotes the horizontal composition.
Therefore we give meaning to such composites as
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If inadiagram such as

one area has no 2-cells marked in it, it is to be understood that the identity 2-cell is

meant, which implies that wg = kv.
One can generalise the pasting operation further, so as to give meaning to such

multiple composite as
/ / '
\ .

Thisis meant to indicate a vertical composite of horizontal composites of the form
— < e

Thereis usually a choice of the order in which the composites are taken, but the result

isindependent of this choice [KS74].
Now we give the definitions of pseudo-functor, pseudo-natural transformation, and
modification.

Definition 2.17 (Pseudo-functor). Let C,D be 2-categories. A pseudo-functor (F, h, h)
from C to D consists of the data for a 2-functor, plus

e for each triple A, B and C of O-cells, an invertible natural transformation,
h:comprarerco (F xF) = Focompagc: C(B,C) x C(A,B) — D(FA,FC)

whose component at (g, f) givestheisomorphismFgoFf =2 F(go f).
FxF

C(B,C) x C(A,B) D(F B, FC) x D(FA,FB)
compaBC dh COMPFAFB,FC

C(A,C)

D(FA,FC)
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o for each O-cell A, aninvertible 2-cell h: unitea — F (Unita)

J

unita

C(AA)

lny;
%4
Lh

~ D(FA,FA)

subject to the following three coherence axioms, expressed using the diagrams below:

«y
FxFxF
C(C,D) x C(B,C) x C(A,B) D(FC,FD) x D(F B, FC) x D(FA,F B)
. _ |
ide(c,p) X COMPABC JFxh idp(Fc,Fp) X COMPEAFBFC
C(C,D) x C(A,C) — D(FC,FD) x D(FA,FC)
compac,p Jh COMPEA FC,FD
C(A,D) = ~ D(FA,FD)
equals
FxFxF
C(C,D) x C(B,C) x C(A,B) D(FC,FD) x D(F B, FC) x D(FA,F B)
. |
compgcp X ide(ag) JhxF COMPEBFCFD X I0n(FAFB)
C(B,D) x C(A,B) - - D(FB,FD) x D(FA,FB)
COMPAB,D 4h COMPFAFB,FD
F
C(A,D) ~ D(FA,FD)
2 C(A,B)
Unyy
unitg  id n Bxr
v h)(/'d
C(B.B) x C(A.B) ——— D(FB.FB) xD(FAFB) = id
X
COMpPAB,B Uh COMPFAFB,FB
C(A,B) D(FA,F B)
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(©) C(A,B)
X
id x unita iy,
4 {Z/d/? XA
C(A,B) x C(A,A) D(FAFB) x D(FA,FA) = id
COMpaAB 4h COMPFA FAFB
C(A,B) = D(FA,F B)

Definition 2.18 (Pseudo-natural transformation). Let F = (F,h,h) and G = (G, k,k)
be pseudo-functors from C to D. A pseudo-natural transformation oo from F to G
consists of the following data:

e for each O-cell A, al-cel op : FA— GA,

e for each pair A,B of O-cells, an invertible natural transformation o8, called
pseudo-naturality of o,

B (G(=)oap) — (ogoF(—)) : C(A B) — D(FA GB),

whose components are 2-cellsin D(FA, GB), indexed by 1-cellsin C(A, B).

and subject to the coherence conditions expressed in the diagrams below: for every
composable pair of 1-cellsf : A—Bandg: B — C,

GB GB
< & X <
/ X %k(fN
G(gf
B GC GA (g7) GC

GA
oa| Jof® FB U og e = o | och}C oc
LN S
€ hiig NG
F(gf F(gf
FA (gf) FC FA (g7) FC
and the component of oa g at ida
FA GA
oA
. ~ A7B . ~
F(IdA) = IdFA U OCidA G(IdA) = IdGA
FA Gl GA

isequal to the 2-cell idy, : oa — oA in D(FA, GA).



22 Chapter 2. Preliminaries

The pseudo-naturality o8 is expressed in the following diagram:

C(A,B) D(GA, GB)
F JarB — o0
oBo —
D(FA FB) D(FA, GB)

Given an arrow f in C(A, B), the component oc?’B a fisa2-cell

FA GA
oA
AB. AB
o :Gfooap—agoFf Ff U of Gf
FB—%8 . cB

The naturality of o8 amounts to the following equality: given arrows f, f’: A— B
anda2-cely: f — f'inC,

FA GA FA GA
oA oA
= =
Ff| UJof® Gf|Gy|Gf = Ff|Fy|Ff Ja¥® |Gf
FB —® GB FB % cp

Notation 2.19. We usually suppress the superscripts B whenever they are clear from
the context.

Definition 2.20 (Modification). Let oo and B be pseudo-natural transformations. A

modification x from o to B consists of a collection of 2-cells {ya : oa — Ba} indexed
by O-cells A of C, such that, for every 1-cell f : A— B, the following holds:

oA
FA—* | GA FA Uxa GA
Ba
Ff Jog Gf = Ff U Bt Gf
oB
FB |xs GB FB GB
T Bs
Bs

Now we are ready to give the definition of pseudo-monad:

Definition 2.21 (Pseudo-monad). A pseudo-monad T = (T, W,m, T, A, p) on a2-category
C consists of
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e apseudo-functor T:C — C

apseudo-natural transformation p: T2 — T

apseudo-natura transformationm : lde — T

an invertible modification t : po TW— o UT,

Tu

-I—3 -I—2

uT Yt u

T2 H 7

invertible modificationsA : poTn — idt and p : ponT — idr,

2
Yt T?
A HT I M N 41 4 H
2B 7 T2__ K
and
T2 TnT‘T3 Tu . T2 T2 ™mT T3
Zin %
% wr Yt jp = e T
° )
e M 7 T2 H 7

We also need the notion of the monad morphism for pseudo-monads:

23



24 Chapter 2. Preliminaries

Definition 2.22 (pseudo-monad mor phism). Given pseudo-monads (T,,n,T,A,p)
and (T',/,n', 7', A/, p’) ona2-category C, apseudo-monad morphismo. fromT to T’ is
apseudo-natural transformation o : T — T’, together with two invertible modifications

Ta oT’
T2 - TT . T d—1 7
_ , 3
H Jay M 22 o
T - T T
o
subject to the following three coherence axioms:
T3 Tza o TZT/ T(XTL TT/Z (XTIZ T/3
$ T Ta, T = T
H 4 Toy 2 Za M
Y
T2 Yt T? To T T e
< M Yoy W
Y
T T
I
T3 TZ({ T2T/ T(XT,‘ TT/Z aT,Z T/3
e
T ~ T’ ~ T/ T’ L
H TR Yoy H
Y
T2 Ta‘ TT/ (XT, _ T/Z ‘U’T, T/2
H U oy o Q&
Y
T T
o
T2 Ta‘ T oT’ T/2 T2 TO{“ T (XT,‘ T/Z
@
A .
/\M \u e \u’ =T A = T Mf’
T - T - T T - T - T
id o o id
T2 TO{“ TT/ ol _ T/Z T2 TO{“ TT/ (Z{T\‘ T/Z
\ / ~ %)\’ /T / L
AN Vi Jay W =nT =y 2N nT )
Up | Up
T T T T T T
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2.4 The 2-category of pseudo-T-algebras
Now we consider algebras of pseudo-monads, in the pseudo-setting.

Definition 2.23 (Pseudo-T-algebra). Given a pseudo-monad (T,m,T,A,p) OnN a
2-category C, apseudo-T-algebra (A, a,ay, a,) consists of the following data:

e a0-cal Aof C

e alcela: TA— A

e invertible2-cellsay : aoTa— aopa, @y :aona — ida

Ta
T2A TA A—A L TA
“
mal  lay |a % a
'7
TA A A

a

subject to the following coherence axioms: for the associative law,

T2a T2a
T3A T2A T3A T2A
2 UT ):9 U
Hra % ay Hra Ma Ha )é
Ta Ta
T?°A 1ta T2A TA = T?A TA Ja, TA
a a
4 Ha Jay 4 Jay A
TA A TA A
a a
and for the left unit law,
TA_ DA, q2p T8 1p TA DA 125
% %
o @ Ma Jay a = % /% Ta
2 %
TA A TA A
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and from these two axioms follow another axiom for the unit law:

Ta
TA —TA | T2p TA TA A | 12p
%,
3 ba by (@ = a| Una |Ta
'7
TA— A A L TA
%

/é, 7 a

%
A

Definition 2.24 (Pseudo-map). A pseudo-map (faTa,b) of pseudo-T-algebras from
(A,a,ay,a,) to (B,b,by,by,) consists of a 1-cell f: A— B and an invertible 2-cell
Ta,b :boTf— foa

TA TB

A B
f
subject to two coherence axioms:
T2f T2f
2 2 T
UTf@b Ha Jue Us
TA la, TA TA TB b, TB
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Definition 2.25. An algebra 2-cell from (f,f,p) t0 (9,0,p) isa2-cell x: f =g
subject to the following coherence axiom:

Tf
TA T TB TA Ty TB
Tg
al| Uf,, |b = a] UGy |b
f
A Uy B A B

2.4.1 The 2-category Ps-T-Alg

Definition 2.26 (the 2-category of pseudo-algebras). The above definitions together
form a 2-category of pseudo-T-algebras, Ps-T-Alg, where the O-cells are pseudo-T-
algebras, the 1-cells are pseudo-maps of pseudo-T-algebras, and the 2-cells are a-
gebra 2-cells. The composition functor is defined as follows: for pseudo-T -algebras
(A,a,ay,a,) and (B, b, by, by ), the composition functor is given as

compagc: PsT-AIg((B,b), (C,c)) x PsT-Alg((A, &), (B,b)) — Ps-T-Alg((A, &), (C,c))

which sends a pair of 1-cels, (f,f,},) : (Aaaya,) — (Bbbyby) and
(9.0n) : (B,b,by,by) = (C.c,cucy), to (af,gf,c) : (Aaay,ay) — (C,c,qucy),
where gf is the composite of 1-cellsin C and g_f&C is defined as the composite of
invertible 2-cells, gf 5 c = (G0 Tf) - (go fap), asshown below:

Fromthisitiseasy to seethat (gf,gf, ;) satisfies the axiomsfor pseudo-mapsand that
thisis awell-defined definition. Theidentity in Ps-T-Alg((A,a), (A, a)) is (ida,i0aa a)-
The functor comp defines the composition of 2-cells as the horizontal composition,
which obviously preserves pseudo-maps.
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2.5 Bicategories and bimonoidal bicategories

Definition 2.27 (bicategory). A bicategory C consists of the data for a 2-category
(Definition 2.12) , i.e., 0-célls, 1-cells, and 2-cells together with families of functors
comp and unit, with the commutativity constraints for those functors replaced by the
existence of some natural isomorphismswhaose components (invertible 2-cells) are de-
scribed in the following diagrams:

compo,D X i d(C(A, B)

C(C,D) x C(B,C) x C(A,B) C(B,D) x C(A,B)

\idc(c,o) x compagc  aagcD

COMpA,B,D
com
C(C,D) x C(A,C) PAC,D C(A,D)
id(C(A B) X unitA
C(A,B) ’ » C(A,B) x C(AA)
unitg X idgag) compaaAB
C(B,B) x C(A,B) - C(A,B)

COMpa,B,B
subject to the following two coherence axioms. suppressing the subscripts for the
components and using o instead of comp, for a composable quadruple of 1-cells f, g, h
and k, they are expressed as commutative diagrams:

ko (ho (go f)) — (keh)o(go f) — ((koh)og)o f go(idgo f) — >+ (goidg)o f
idkoa\ ‘OLOidf ’go{
ko((hog)o f) " > (ko(hog))o f

Evidently, a bicategory is a 2-category if al the invertible 2-cells described above
are identities. Also note the similarity of the coherence axioms to the commutativity
axioms for monoidal categories defined in Definition 2.8. Thisreflects the well known
fact that amonoidal category isregarded as a one object (O-cell) bicategory.

In Chapter 6, we need the notion of bimonoidal 2-category, which can be con-
ceptually described as a 2-category with atensor given by a pseudo-functor. In fact,
the above identification of a monoidal category with a bicategory extends to the level
of 3-category, i.e., a tricategory with one object is a bimonoidal bicategory. In the
following, we give the relevant definition needed for the discussion in Chapter 6.
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Definition 2.28 (bimonoidal bicategory, [GPS95]). A bimonoidal bicategory (C,®,1,a,A,p)
consists of the following data:

abicategory C,

apseudo-functor ® : C x C — C, called the tensor,

an object | € C, called the unit,

three pseudo-natural isomorphisms
o =-R(-®-)2(-®-)®—

Ail®—=lde
p:—®I =ldc

e four invertible modifications as described below:

—®(-®(—®-)) > (~8-)8 (-8 —) > (~8-)®—)®— —®(1®—) — (-8 ®—
ide o ﬂml a®id
—®(—2-)®-) = - (e (-®-)@-
I@(-0-) — (I®—)®— —-@(—®l) — (—2—)®I
4
P ARid
_®_

The four invertible modifications are subject to the three coherence axioms given
below:
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—®(—®-) (—®-)®—
8o poid = (p®id) ®id
o
—0(18(-8-) — (-8 (-8-) — (-e)o-)o-
id® o fmt o®id
-2(le—)-) ¢ r (—9(le-)®—
I
-o(®(- (-®-)®-
@@.
W
id® o mzz@id (—ohe-)®—
—2(le—)-) (—2(le-)®—
and
(—®-)®—
p®id
- (-2(le-)) (o )(l®—-) — ()R ) —
id® o a®id
(- -) ¢ r (-9 (-)e-—
I
—e(-a (o) ——— (2B~
'0®/O'
id® o =N (idep)xid Wf@id (—2-)®)e—
@@\6
-(-)e-) ¢ (-2 (-®1)®-—

A strong bimonoidal bifunctor is defined to be exactly a trifunctor of one object tri-
categories [GPS95], and that means that all the structure of the bimonoidal bicategory
is preserved up to coherent equivalence, the coherence axioms corresponding exactly
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to the pentagon and triangle in the definition of monoidal category [GPS95].



Chapter 3
Distributive Laws

In this chapter we study distributive laws of amonad over an endofunctor and a natural
transformation and also over a monad. Given a monad (S,,m) and an endofunctor
H on a category C, a distributive law § is a natural transformation 6 : SH — HSthat
satisfies two axioms. The main theorem of the chapter is that the existence of such a
distributive law induces a lifting of H to the category of S-algebras, SAlg, and vice
versa. We then consider the case where H isamonad.

The results presented in this chapter are known in one way or another from the lit-
erature (for example [BW89]), but it isworthwhile for the devel opment of the thesisto
spell them out here in detail, because it will offer great guidance through the discussion
of pseudo-distributive lawsin the following chapters, where the axioms in this chapter
systematically become data (invertible 2-cells), and the proofs become constructions.

This chapter comes in two parts: in the first five sections we study the relationship
between a distributive law of amonad S over an endofunctor and alifting of the endo-
functor to the category of S-algebras S-/Alg, and that between distributivity of a monad
over a natural transformation and a lifting of the natura transformation to S-Alg. In
Section 3.1 we give the definition of adistributive law of amonad Sover an endofunc-
tor H, followed by the definition of the notion of the distributivity of Sover a natural
transformation. In Section 3.2, we define alifting of an endofunctor H to the category
of S-algebras, SAlg. A lifting of H to SAlgisan endofunctor H such that UH = HU
holds for the forgetful functor U : SAlg — €. Thismeans H sends an S-algebra (A, a)
to (HA, &), where & is the structure map from SHA to HA, and an S-algebra map f

33
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to Hf, which is again an S-algebra map. We then describe the condition for a natural
transformation between endofunctors with liftings to S Alg aso to lift. These defini-
tions yield the categories of distributive laws of Sover endofunctors, called DistS, and
of liftings of endofunctorsto S-Alg, called Liftg p -

In the following two sections we go on to prove that a distributive law of Sover an
endofunctor induces alifting of that endofunctor to S-Alg, and vice versa. We do simi-
larly for natural transformations. We rephrase our discussionin terms of categoriesand
prove that Dist® and Liftg Alg &€ isomorphicin Section 3.5. Note that thisisomorphism
becomes an equivalence in the pseudo-case as we see in Chapter 7.

Next, in Section 3.6, we state a few propositions that pave our way for the study
of distributive laws over amonad in Section 3.7. The goal of the discussion hereisto
establish the relation between the composite H o H and the distributive law of the form
H& o 8H. We prove that thefirst is alifting of H? and the latter is a distributive law of
Sover H? and that the isomorphism of the categories described in the previous section
sends oneto the other. Thisresult isessential in the discussion in the following section
because the definition of lifting of amonad T to a monad T on SAlg requires that both
the multiplication p and the unit n lift to S'Alg. The discussion in this section will be
elaborated in Chapter 6, extending the discussion further to the pseudo case.

In the second part of the chapter, we consider the situation where the endofunctor
carries the structure of a monad: distributive laws of S over monads are those over
endofunctors with two additional axioms which follow from the compatibility with
the multiplication and the unit of monads. We also see how our definition of liftings
extendsto those of monads, the main point of which isthelifting of natural transforma-
tions pand n. The definition of distributive laws over amonad is given in Section 3.7
and that of liftings of amonad to amonad on S-Algin Section 3.7.1. Then we establish
the relation between such distributive laws and such liftings, which follows from the
isomorphism for the case with endofunctors. We prove that the isomorphism of cate-
gories for endofunctors preserves the monad properties. they induce functors between

the categories, Dist3,,,4s aNd Liftg"Ar,‘Sds, that define an isomorphism between them.

In the last section, Section 3.8, we study several properties given two monads S
and T and adistributivelaw ST — TSof Sover T. First we prove that the composite
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functor TS acquires the structure of a monad induced by the distributive law. Then
we investigate the structure of algebras of this composite monad TS, and compare
those with the algebras of the lifting Tof Tto SAlg. We show that the comparison
functor between the Eilenberg-M oore adjunction defined by the monad T Sand that of
the composite of those defined by the monads Sand T isisomorphic, proving that the
categories TS-‘Alg and 'f-AIg are canonically isomorphic. These results are extended
to the pseudo-case in Section 7.4.

3.1 Distributivity of amonad S

We start our discussion with the definition of a distributive law of a monad over an
endofunctor. Such a distributive law consists of a natural transformation satisfying
two conditions, whereas we will need two extra conditions when we extend it to a
distributivelaw of amonad over amonad later in this chapter. When we move onto the
discussion of pseudo-distributive laws, the axioms here become data, i.e., invertible
2-cellsthat satisfy several coherence conditions.

Definition 3.1. Given a monad (S ,m) and an endofunctor H on a category C, a
distributive law of Sover H isanatural transformation

0:SH ——HS

which makes the following diagrams commute:

H—D g5 e
uH Hu (6-1)
SH 5 - HS
H
N (5-n)
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We cdll the first diagram the associative law for distributive laws, or é-, and the
second the unit law for distributive laws, or &-1).

In the presence of distributive laws of S over endofunctors H and K, a natural
transformation o. : H — K with a certain property can be regarded as a transformation
of these distributive laws, or to put it differently, “Sdistributes over o” with respect to
these laws.

Definition 3.2. Given distributivelaws 8" : SH — HSand §X : SK — KSand anatural
transformation o. : H — K, we say Sdistributes over o with respect to M and 8 if

H
SH L» HS
So oS (3.2
X T» KS
holds.

The distributive laws of Sover endofunctors and the natural transformations that S
distributes over as defined above form a category.

Proposition 3.3. The data defined above form a category we denote by DistS as fol-
lows: objects of Dist® are pairs (H,8 : SH — HS) of an endofunctor H on € and a
distributive law of S over it, and an arrow from (H,8") and (K,8X) is given by a
natural transformation o : H — K that Sdistributes over with respect to 5™ and 8X.

Proof. The composition of arrows is given by composition of natural transforma
tions (3.1). Therest follows by routine calculation. O

Notation 3.4. We often omit the first component in the objects whenever it does not
cause confusion and just write 8" instead of (H,8: SH — HYS).

3.2 Lifting to S-Alg

Givenamonad (S p,m) and an endofunctor H on acategory €, we define the notion of
alifting of H to the category S-Alg.
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Definition 3.5. A lifting of H to S Alg is an endofunctor H on SAlg for which
UH = HU holds, where U isthe forgetful functor from S-Algto C.

Hence H is an endofunctor on S-Alg such that for an S-algebra (A, a) and a map of
Salgebras f : (A,a) — (B,b), we have

UH (A, h) = HU (A h) = HA (3.2a)
UHf =HUf =Hf. (3.2b)
From (3.2a) we know that ﬁ(A, a) consists of an S-algebra structure on HA, hence

in the following we write H (A, a) = (HA, &) where the structure map a: SHA — HA
should satisfy the following commuting diagrams.

FPHA HA HA — 2, SHA
HHA a o a (3.39)
%,
SHA HA HA

For the arrow part, (3.2b) statesthat Hf : H(A,a) — H(B,b) is an S-algebra map, so
the diagram below commutes:

SHf
SHA SHB
a b (3.30)
HA HB

Hf

Notation 3.6. We write & to denote the structure map of the value of H at (A, a),
whenever necessary to make it clear which lifting is concerned. Otherwise we will
simply write a.

GivenliftingsH and K of H and K, respectively, anatural transformation o.: H — K

with a certain property is also anatural transformation from H to K.

Definition 3.7. Given endofunctors H and K on € with their liftings H and K and a
natural transformation o, : H — K, we say “o lifts to SAlg from H to K” if, for any
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S-algebra (A, a), o, is an S-algebramap from H(A, a) to K(A, a), or equivalently, o

makes the diagram
SHA A KA
at ak (3.4)
HA KA
oA
commute.

In the following, we also use the notation @ : H — K to refer to o regarded as a
natural transformation between liftings and call it alifting of o to S-Alg.

All the liftings of endofunctors on € to S/Alg and the natural transformations be-
tween endofunctors on C that lift to S:Alg as defined above form the category Liftg
asfollows:

Proposition 3.8. The data defined above forma category we denote by Liftg Alg: objects
of Liftg 54 @re pairs (H,H) of an endofunctor H on € and an endofunctor H on SAlg
such that UH = HU holds, and an arrow from (H, H) to (K,K) is given by a natural
transformation o. : H — K that liftsto S-Alg from H to K.

Proof. Follows by routine calculation. The composition of arrows is given by the
compositionin C. O

Notation 3.9. We omit the first component in the objects whenever it does not cause
confusion and just write H instead of (H,H).

3.3 From liftings to distributive laws

Before moving on to the discussion of distributive laws over monads, in the next few
sections we prove the isomorphism between distributive laws over endofunctors and
liftings of endofunctors to S/Alg. We proceed by first providing the proofs that each
of them induces the other, and then proving that the correspondences in those proofs
define an isomorphism of categories between the category of distributive laws and that
of liftings.
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We start by proving that alifting of H to S'Alg induces a distributive law of Sover
H, then we define a functor from Liftg 5, t0 Dist®. To that end, we need to study some
properties of free S-algebras.

Recall that, given any monad (S, |, 1), the component pa of the multiplication al-
waysyields an S-algebra (SA, pa), the free S-algebraon A. Now, consider the value at
(SA, ) of alifting H of H for each A. We observe the following:

L emma 3.10. The collection {[ix} of the structure maps of H (SA, ) for each object
Aof Cisnatural in A, that is, it defines a natural transformationfi: SHS— HS.

Proof. First notethat, for any arrow f : A— B, thearrow Sf : SA — SBisan S-algebra
map from (SA, pa) to (SB, Ug), SO is sent by H to an S-algebra map from (HSA, Hia) to

(HSB,Hig). Then one can obtain the naturality square for f immediately by applying
the diagram (3.3b) to Sf witha= pa and b = pg:

SHSAﬂ SHSB

Ha Hs

O

Our next observation is that the structure map a of any S-algebra (A, a) is always
an S-algebramap from pia to a:

Lemma 3.11. For any S-algebra (A, a), the structuremap a: SA — Aisan S-algebra
map from (SA, pa) to (A, a).

Proof. Followsfrom the associative law for S-algebras. O

Since this a is sent by H to the S-algebra map Ha : H(SA,ua) — H(A,a), the
following diagram commutes for any a: SA — A:

SHsA 2, gya
i a (3.5)
HSA HA

Ha
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Now we are ready to prove the next proposition: we construct a natural transforma-
tion using i discussed above and provethat it satisfiesthe conditionsto be adistributive
law. In the later chapters when we discuss pseudo-distributive laws, the commutative
squares are replaced by invertible 2-cells, and the proofs become constructions.

Proposition 3.12. Given a monad (S, ., 1) and an endofunctor H on a category C, a
lifting H of H to SAlg givesriseto a distributive law of Sover H.

Proof. From Lemma 3.10, we have the natural transformation fi: SHS— HS, whose
component at A is the structure map fia of H(SA, pa). Using this natural transformation
fiwe construct a distributivelaw ©" (H) by letting

O (A) =flosHN : SH 2 sHs . Hs (36)

It isimmediate that this defines a natural transformation. Then it remains to prove that
©" (H) satisfies the associative law (8-) and the unit law (8-n) for distributive laws.
First, for the associative law of @ (ﬁ) and |, the component at A isgiven as

SH

SHA SN @pon Fa gion St gion Bt oa

\ S"U-A
HHA (1) g Hpa
%

<

SHA -~ SHSA _ - HSA

SHNA Ha

which commutes. The reason for commutativity of each areais given asfollows: (1)
commutes by the naturality of , (2) by the associative law for the S-algebra structure

Ha, (3) by theright unit law for the monad S, and (4) by the diagram (3.5) with a = pa.
For the unit law of ® (H) and m,

HA

%

NHA (6) HSA
nHSAl(n @

SH — SHSA — HSA
SHNa Ha
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the square (6) commutes by the naturality of i, and the triangle (7) by the unit law for
the S-algebra map fia. This proves the proposition. O

At thelevel of natural transformations, the proposition above induces the following
correspondence between the arrows in Liftg 54 and thosein Dist®.

Proposition 3.13. Given endofunctors H, K on a category € , together with their
liftings H, K to SAlg, and a natural transformation o : H — K, the following holds:
if o lifts to SAlg from H to K then S distributes over o with respect to the induced
distributive laws ©H (H) and © (K).

Proof. Assume that o liftsto S-Alg from H to K, that is, for any S-algebra (A, a), the

A~ A~

diagram (3.4) holds. Now recall that @7 (H) = p o SHn and ©X(K) = pK o SKn.
What we need to show isthat the diagram (3.1) commutes for these distributive laws:

A
A M guon PR | yen
Soia Soisa Olsa
KA - KSA —— KA
na [
This holds because of the diagram (3.4) for the S-algebra (SA, pa) and the naturality
of a.. This provesthe proposition. O

This amounts to saying that if a natural transformation oo : H — K is an arrow
in Lifts 54, it has to be an arrow in Dist® too. We now define a functor using the
correspondence estabilished in Proposition 3.12 and Proposition 3.13.

Corollary 3.14. Themapping ©" in Proposition 3.12 defines a faithful functor © from
Lifts pj tO Dist®.

Proof. Define ®(H,H) = " (H) and ©(at) = a.: ©(H) — O(K) forany o : H — K.
It is straightforward to verify its functoriality and faithfulness. O
3.4 From distributive laws to liftings

Now we prove the opposite direction: the discussion proceeds similarly, by first prov-
ing that a distributive law induces a lifting, then after a little discussion on natural
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transformations, we finally define afaithful functor from Dist® to Liftg, Alg:

Proposition 3.15. Given a monad (S, ., 1) and an endofunctor H on a category C, a
distributive law of Sover H givesriseto alifting of H to S-Alg.

Proof. Given adistributive law & : SH — HS, we construct an endofunctor £ (§) on
S-Alg asfollows: for an S-algebra (A, a), define the value of = () at this S-algebraas

=H(8)(A @) = (HA, Hao d,).

To see this is indeed an Salgebra we examine the commutativity of the following
diagrams:

H
FHA D gy HA g HA MHA HA

O oa

HSa
HHA HSPA — HSA

Hpa Ha

Y

SHA - HSA - HA
SA Ha

In the diagram on the left, the big square on the left commutes by (5-), the upper
right one by the naturality of §, and the one on the bottom right by the associative law
for the algebra a. In the diagram on the right, the upper triangle commutes by (6-n),

and the lower one by the unit law for the algebra a.

For the arrow part of 2 (8), given an S-algebramap f : (A, a) — (B, b), we define
=H()ftobeH T :EM(8)(A Q) — =1 (8)(B,b). It is easy to see that this satisfies the
diagram for algebra maps:

SHA A, pea 12 pa
Hf HSf Hf
B HSB — + HB

OB Hb

the left square commutes by the naturality of 8, and the right one because f is an
S-algebra map. The endofunctor ZM () clearly satisfies the conditions to be a lifting
of H, and this proves the proposition. O
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Just as in the previous section, we can now state the following property of natural
transformationso.: H — K:

Proposition 3.16. Given distributive laws 8™ and §¥ over endofunctors H and K and
a natural transformation o. : H — K, the following holds: if Sdistributes over o with
respect to 8™ and 8K then o liftsto S-Alg fromZ(8) to Z(8K).

Proof. Assume diagram (3.1) holds for a.. Then, for each S-algebra (A, a), pasting the

diagram (3.1) for the component at A together with the naturality square for the arrow
a we obtain diagram (3.4) for o

H
SHA—A . pysa M3, A
Soia Olsa (0
KA - KSA - KAa
RN Ka
showing that o liftsto S-Alg from Z(8") to Z(8X). O

This amounts to say that if a natural transformation o. : H — K is an arrow in
Dist®, it has to be an arrow in Liftg 54, t00. We now define the functor using the
correspondence estabilished in Proposition 3.15 and Proposition 3.16.

Corollary 3.17. Themapping Z" in Proposition 3.15 defines a faithful functor = from
Dist® to Liftg /-

Proof. DefineZ(H,8") == (8") and Z(a)) = o : Z(87) — Z(8K) forany o : 81 — 8K,

Verifying functoriality and faithfulnessis easy. O

3.5 Proving the isomorphism

We present in this section our first theorem, which states that the correspondence
shown in the previous two sections is an isomorphism, or more precisely, that the
functors © and E defined in the previous two sections are mutually invertible between
the category of distributive laws and that of liftings.

© S
Liftg pjg <— Dist
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Recall that the object part of the functor © is defined to send H to G(H) = rﬁ oSHn,
just asin Proposition 3.12, whilethe functor Z sends 8 to afunctor =M (81 as defined
in Proposition 3.15.

In the next lemma we prove that these mappings yield a bijection between objects
of Dist® and Liftg .

Proposition 3.18. Given a monad (S 1) and an endofunctor H on C,

1. for any lifting H of H to S-Alg,

-

[1]

(©(H))
holds, or equivalently, for any S-algebra (A, a),

A" = Haofl o SHNA. (3.7)

2. for any distributivelaw & : SH — HSof Sover H,
6 =0(2(9))
holds, or equivalently,
SA: HMAOBSAOS‘W[A. (38)

Proof. For 1., we start with the equality on objects. The value of Z(©(H)) at an
Sagebra(A a) is
Z(O(H))(A,a) = (HA,Hao O(H)a)

where by definition the structure map decomposes as
Hao©(H)a = Hao il o SH1a

We need to show that this equals to the structure map a" of A (A, a). To see that holds,
we verify that the diagram

SHSA ———— HSA
Of‘&\? STa Ha
SHA SHA HA

I
>
Q
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commutes, where the triangle on the left commutes by the unit law for an S-algebra
a and the square on the right commutes by the diagram 3.5. Hence the object part of
Z(O(H)) isequal to that of H. Since the forgetful functor from S-Alg to € is faithful
and both H and Z(©(H)) lifts H, equality on arrowsisimmediate.
Next, for 2., the component of ©(Z(8")) at Aisgivenas

O(E(8"))a =" 0 SHNA = Hpa o 88y 0 SHNA

which is shown to be equal to 5 in the following diagram:

H

5
SHsA %, pa M Hsa
SHNa HSna &

‘ .\@2‘

SHA HSA

A

The square on the left commutes by the naturality of ", and the triangle on the right
by the unit law of the monad. This proves ©(Z(81)) = 8. This completes the proof
of the proposition. O

Our goal in this section is the following theorem:
Theorem 3.19. The categories Dist® and Liftg 5, are isomorphic.

Proof. We show that the functors ® and = define an isomorphism of categories be-
tween Dist® and Liftg og- Proposition 3.18 means that both © and = are mutually in-
verse on objects. Since by definition they are faithful functors, they are isomorphisms
of categories between Dist® and Liftg /- O

In Chapter 5 we prove the pseudo-version of thistheorem, but there we do not have
an isomorphism but only an equivalence of 2-categories.

3.6 Lifting of H?

In this section we investigate the properties related to the composite endofunctor H?,
which we will need in the discussion in the next section when we consider lifting
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the multiplication p of a monad. Given a lifting H of H, it is easy to see that H?2
is a lifting of H2. The equation (3.7) tells us that the structure map of the value,
H2(A, &) = (H2A,a%7%), of A2 at (A, a) is given by

~ -
a™"" = Ha" ol s o SHNHA.

Applying (3.7) again, thisis further decomposed as
a"? = H2a0 Hl o HSHNAO T A 0 SHNHA
and since we know ©(H) = pH o SH1, we have
a"* = H2a0HO(A)a0 O(H)1a

One would naturally expect the last two components of the composed arrow on the
right hand side to be a distributive law. Indeed thisis the case, as we see in the next
lemma.

Lemma 3.20. Given adistributivelaw 6 : SH — HSof a monad S and an endofunctor
H on a category C, the natural transformation

SHH -2 HsH % HHs

isa distributive law of Sover H2

Proof. We only need to verify that the two conditions (6-p) and (6-n) of distributive
laws hold for the natural transformation H8 o 8H : SH? — H2S. For the associative
law (8-1),

H H
ghz M 125 M3 Hais HOS g
pH?2 HS?H H2p
\HuH
H? S > HH E -~ H%S

where the area (1) commutes by the naturality of & and (2) and (3) commute by (5-)
for o.
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And for the unit law (8-1),

SH? — HSH — > H7S

where the both triangles commute by (6-n) for 9. O
The above discussion amountsto the following proposition.

Proposition 3.21. Given an endofunctor H on €, a lifting H of H to SAlg and a
distributive law & of Sover H,

H2 =Z(HO(H) o O(H)H) (3.9)
Ho8H = ©(Z(8)?) (3.10)

hold.

The above proposition leads to a further discussion: the operations appearing on
the left hand side extend to strict monoidal structures on Liftg 54 and Dist®, and the
isomorphisms © and Z are both strict monoidal functors, i.e., they preserve those strict
monoidal structures. In Chapter 6, we state this more formally and further investigate
the pseudo-case.

3.7 Distributive laws of S over monads

Now we turn our attention from endofunctors H to monads T on € and establish a
version of the theorem proved in Section 3.5 for distributive laws of S over a monad
T. First we define the notion of distributive laws of S over monads and the category
DistS onads

distributesover. Next, we defineliftings of monadsto S Alg and the category Liftg%gds,

consisting of distributive laws over monads and monad morphisms that S

consisting of liftings of monads and monad morphisms that lift to SAlg. Then, we
prove that the functors ® and Z induce an isomorphism between those categories. In
the proof of the theorem, the result stated in the previous section plays an essential
role.
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We start with the definition of distibutivelaws of Sover amonad. Distributive laws
over monads are those over endofunctors with two additional conditions which follow
from the compatibility with the multiplication and the unit of monads. Let (S uS,n°)
and (T,u",m") be monads on C. A distributive law of Sover T is defined as follows:

Definition 3.22. Let (S,u51°) and (T,u",n") be monads on €. A distributive law &
of Sover T isanatural transformation 6 : ST — T Sthat makes the following diagrams
commute:

V) oS

T -~ STS - TS T
P
HST THS T]ST &\S‘
ST - TS ST —  + TS
5 5
ST2 o1 STS T T28 S
T s oo s 311
Su W N (3.11)
ST TS ST TS
5 3

Just as in the case of endofunctors, distributive laws over monads form a category,
in which we consider only the arrows that are monad morphisms. Recall the definition
of a monad morphism defined in Section 2.1.

the
objects are pairs ((T,u",n"),8) of amonad (T,u",n") and a distributive law § of S

Proposition 3.23. The following data form a category we denote by Dist3 ., a4

over it, and an arrow from ((T,u",m7),87) to ((T/,u" ,m7"),8" ) is given by a monad
morphismoc: (T,u™,n") — (T/,u",n") that Sdistributes over with respect to 8T and
8T

3.7.1 Lifting a monad to S-Alg

Now we define the lifting of monads. the main point is the liftings of the natural
transformations pLand 1.
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Definition 3.24. A lifting of (T,p",nT) to SAlgisamonad (T,uT,nT) for which

uT=Tu (3.12a)
up' =p'u, un'=n"U (3.12b)

hold, where U isthe forgetful functor from S-Algto C.

The condition (3.12a) meansthat Tisalifti ngof T asan endofunctor, hence, just as
inthe Definition 3.5, for any S-algebra (A, a) and any map of S-algebras f : (A,a) — (B, b),
thevalue T(A, a) = (TA, @) is an S-algebra and the structure map a: STA — TA satis-
fiesthe diagrams (3.3a) for H = T. And T f : T(A,a) — T (B, b) isan S-algebra map,
satisfying the diagram (3.3b) for H =T.

Since T isamonad, in addition, we have conditions (3.12b), which tell us that T
must be alifting of T as an endofunctor such that the components of pf and nf a an
S-algebra (A, a), which are S-algebra maps,

Hna): THAS) — T(A) (3.13)
_i_\ .

are given by the components py and n} of u™ and nT, respectively. Since, T2 is a
lifting of T2, and I ds g is alifting of Ide, the condition (3.13) means that u™ and 1"
areliftings of u" and ' to S-Alg, in the sense of Definition 3.7, with respect to these
liftings.

Here, again, we only consider the monad morphisms as arrows. The following
property of liftings of natural transformations defined in Definition 3.7 is easily veri-
fied.

L emma 3.25. Given a monad morphisma: (T,u",nT) — (T/,u7',n™), if the natural
transformation oo : T — T/ lifts to SAlg from T to T/ as endofunctors, then it is a
monad morphism from (T, u",n") to (T, 17, n™).

Now we consider a category of liftings of monads and monad morphisms between
them:

Proposition 3.26. The following data form a category we denote by Liftg%’;gds: objects
arepairs ((T,u",n7),T) of amonad (T,u",n") and itslifting T asa monad to S-Alg,
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andan arrow from ((T,u™,m"), T) to ((T', 17’ ,n™), T") isgiven by a monad morphism
o (T,uT, ™) — (T, 17, n™) that liftsto SAlg from T to T".

3.7.2 Isomorphism for the monad case

Evidently, a monad is an endofunctor with additional structure. Both the distributive
laws over monads and the liftings of monads are defined accordingly. In Section 3.5we
saw that the functors ® and Z define an isomorphism of categories between Dist® and
Lift o 1N this section, we consider the categories Distg .45 and Liftg%]gds, and show

that the functors ©® and = naturally induce functors that again define an isomorphism
between those categories.

Proposition 3.27. The functor ® in Proposition 3.12 induces a functor from Liftg%'gds

iotS
to Disty nads-

Proof. We define
®m . L-ftmonads Di tS
- L SAlg — DiSlonads

as O™ ((T,u,n"),T) = ((T,1',n7),0(T)) and @ () = 0. It is obvious that an ar-
row o in Liftgxa* is necessarily an arrow in Disty Then what we are |eft to show

monads”
is that, the distributive law ©(T) satisfies the extra conditions (3.11) for the distribu-
tivity over amonad. In order to do so, we only need to note that, by the definition of
liftings of monads, bothu™ : T2 — T andn' : 1d — T lift to SAlg (3.13). Thisimplies
both u™ and n™ are arrows in Liftg 5. Hence ©(U") = W' is an arrow in Dist® such
that, for any object A of C,

T2
®(T )A TZSA\

ST2A
ST\ HEa

STA TSA

O(T)a

commutes. Since ©(T2) = TO(T) o©(T)T follows from Proposition 3.21, we have
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the diagram
ST2A O(T)ta TSTA T(O(T))a T26A
STH Hea
STA o TSA

commute, WhICh isindeed the associative axiom for ©(T) and u'. A similar argument
holdsfor ' and the diagram

id

SI N

STA TSA

0(T)a

holds. Note ©(ldsaig) = Ids. Hence O(T) isindeed a distributive law over a monad.

This provesthat ©™ is afunctor from L|ftmonads t0 DiSt3 o nads- O
Proposition 3.28. The functor Z in Proposition 3.12 induces a functor fromDist?> .4

seemonads
to LlftSAIg .

Proof. from Llﬁg%‘Sds to Dist3 We define a functor

monads*

semonads

=m
= D|Stm0nads — LIftS-A|g

as E™((T,u",m"), 5T) (T.07. 7). (E(8T), B8 n=ED)) and EM (o) = ot We
need to show that p™ and nT lift to SAlg from Z(87)? to Z(87), and, from Z(1de)

E(8"), respectively. We verify that for both cases the suitable instances of the
diagram (3.4) commute. For the multiplication u', it should lift from Z(87)? t
Z(8"). From Proposition 3.21 it followsthat Z(37)? = Z(T8" 08T T) holds, so for any
Salgebra (A, a), the equality 8=(8")* = a82(T87°8"T) holds, Therefore, the diagram (3.4)
for ' isgiven as

8T TSk T2a
ST2A —TA, TSTA — AL T20n 7, T2
STH Hra HA
STA - TSA TA
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which commutes, by the associative law 8T-p" for distributive laws and by the natu-
rality of u'. For theunitn”, since Z(lde) = lds aig holds, the diagram is given as

id a
SA A LA - A
SnA N A
STA TSA TA
ST Ta

A

which commutes by the unit law §"-nT and the naturality of n™. For the arrow part of
=M, again, it iseasily seen to be well-defined. O

From the above two propositions and Theorem 3.19, we have the following result.

Corollary 3.29. The categories Dist> and Liftg%‘gds are isomorphic.

monads

3.8 The composite monad TS

The composite TS of two monads (S,uS5,m°) and (T,u",n™) on a category € is not
necessarily a monad, but when there exists a distributive law of Sover T, it isthe case
that TSisamonad on C. In this section we prove this fact, and then investigate the
relation between the algebras of this monad TS and the algebras of the lifting of T
induced by the distributive law.

Proposition 3.30. Given a distributive law § : ST — TS of a monad (S, uS,n5) over
amonad (T,u",n") on a ordinary category C, the composite functor TS acquires the
structure for a monad on €, with multiplication given by

T T,.S
7515 %5, 11 M K 15

TS
Proof. We define the multiplication uTS as above and the unitn™SasnTS: 1d 1. TS
and claim that (TS u"S,n"S) isamonad on €. Obviously, by definition,

WS = TISo 'S = TS TS

holds. It does not matter which to choose in the actual calculation, but in the following
we agree that we always use the second decomposition, i.e., we always cal cul ate Sfirst.
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Similarly for n™nS. Then, we are left to prove that pu'S and TS satisfy the axioms for
monads. For the associative law, the diagram

TST8S

TST?pS TU'S
TsTsTs 12003 Toreg TS 1grag TH 2 rgrg
|
T3STS (1) T8TS (4 T&TS
' ¥ '
T?STS ——— T’STS ———» T’STS  (8) T8S
T2s3S | T2STPS
T2 (5 T4S
¥ '
T2u5TS 2 T°9 - T3 - T28°
H ( ) T3alS J THTSZ
T3tJSS (6) TJJS (9) T2uS
T2STS - T3 - T3 - TS
T28S | T3S Tu'S
u'sTS 3 WTS (70 WTS (10 TUS
| ¥ '
TSTS T2 T?s TS
T3S TS u's

commutes for the following reasons: the squares (1), (4) and (5) by the naturality of
3, (3), (7) and (9) by the naturality of i, (2) and (8) by the axioms for distributive law

§-pS and 8-, respectively, and (6) and (10) by the associative laws for monads S and
T, respectively. Next, the left unit law is given as

T T
;NS | TSTS
7 2 T8S
’”Se( ) ,
(3) T282
2,S
%‘ VT u
(4) T28
>
% TS
TS

which commutes (1) and (4) by the left unit laws for monads Sand T, respectively,
and (2) by the axiom for distributivelaw 8-nT and (3) by the naturality of n™. Finally,
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the right unit law:

115V STS g
T8S (5)

g TS 1o
T2pS (6) Tp®

T25. TS Lo
u's| (7 &

TS

the commutativity is given by: (5) and (6) by the naturality of n T, (9) and (7) by the
right unit laws for monads Sand T, respectively, and (8) by the axiom for distributive
law 8-n". This concludes the proof that (TS, u™S n™S) isamonad. O

3.8.1 Comparison between the algebras

Having seen that T Sisamonad under the exisitence of adistributivelaw 6 of Sover T,
now we consider its algebras and the rel ationship between the category of T S-algebras
and that of the algebras of the lifting induced by the distributive [aw.

First we have a look at the algebra of the composite monad TS, A TS-algebra
(Al : TSA— A) is, by definition, apair of an object Aof Candanarrow | : TSA — A
such that the following diagrams commute:

S

TZ S T T
TsTA 10 tagp TR qogn M g A TR g M 1gn
TS | % | (3.14)
TA A A

Andamap f: (A1) — (A',l') of TSagebrasisanarrow f : A— A’ in € such that the
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diagram

commutes. These define the category TS-Alg.

Now, in turn, we consider the algebras of a monad on the category S Alg whichis
given asthelifting Z(8) of T induced by the distributivelaw 6. A Z(8)-algebra hasthe
form of ((A, h),k), where (A,h: SA — A) isan S-algebra and the structure map k isan
S-agebramap k: (TA, Thoda) — (A h), which meansthat kisan arrow k: TA— A
in € such that the following diagram should commute:

Th

STA— A, T TA

&« K
SA A

h

Moreover, the arrow k should also satisfy the commutativity of the following two
diagrams, in order to be a structure map of aZ(5)-algebra

E(8)%(Ah) == E(8)(A.h) (Ah) ——— E(3)(Ah)
=(8) )
K k % k
(A,h>\ %z@

E(8)(Ah) 7 (Ah) (Ah)

Since al the arrows in the above diagram represent S-algebra maps, the requirements
reduce to the commuitativity of the following two diagrams:

Tk
T2A TA A—A L TA
T A
W k / k
g g
TA A A

k

which means that the arrow k has the property of a structure map of T-algebras, i.e,,
(A k) formsa T-algebra. And amap f : ((A /h), k) — ((A',H),K') of £(3)-algebrasis
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an S-algebramap f : (A h) — (A’ h") which makes the diagram

@ ah =00 =@

[11

k K

(A, h) (A R)

commute. All the arrows in this diagram are S-algebra maps, however the commuta-
tivity of this square only depends on the commuitativity of the square

Tf

TA TA

k/

A A

f
which meansthat f : A— A’ isalso a T-algebramap, not only an S-algebra map.
The opposite direction of the above discussion aso holds; to summarise, we have
the following proposition:

Proposition 3.31. Given an object Aand arrowsh: SA— Aandk: TA— Aof C, a
structure of the form ((A, h), k) isa Z(5)-algebra if and only if

1. (A h) isan S-algebra
2. k: TA— Aisan S-algebramap from (TA, Thoda) to (A h)
3. (A/k) isaT-algebra,

and, givenanarrowg: A— A’ and Z(8)-algebras ((A, h), k) to ((A',h'), k'), thearrow
gisaE(d)-algebra map from ((A, h), k) to ((A’ i) K') if and only if

1. gisan S-algebra map from (A, h) to (A’, i)

2. gisaT-algebra map from (A k) to (A", K').

All the =(8)-algebras and maps between them again form a category which we
denote by Z(5)-Alg.

Now, in the rest of the section we investigate the relationship between these two

categories of algebras and establish that there exists a canonical isomorphism between
them. We start with considering the adjunctions that the monads involved define.
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Proposition 3.32. There existsa unique comparison functor K from=(3)-Algto TS-Alg.
Proof. From Lemma 2.4, for the monad (S uS,nS) on € and (E(3), u=(®) 1)) on
S-Alg, we have adjunctions

GS
(FS,G5n5e5:¢e % SAlg

_ _ _ GE©®)
(FE0,G70, 0,650 : SAlg = =(5)-Alg

Then, Lemma 2.6 says that these two adjunctions yield a composite adjunction

SEE(3)
(FE®S GEOIS 23S £20)8) - @ GG

=(8)-Alg

FE(S)FS

as defined in the lemma. Then we can in turn use Lemma 2.5 to construct a monad
G=(®)SFE()S from this adjunction. Now it is routine to show that this monad in fact
equals the composite monad (TS,u">,nS). Therefore, we can use Lemma 2.7 to
obtain the comparison functor K, which is required in the proposition. O

Therefore, we have a unique comparison functor
K:Z(5)-Alg—— TSAlg

such that KF=()S = FTS and GTSK = G=(®)S, petween the above adjunction

and theadjunction (FTS,G™S TS eTS), whichisinduced by themonad (TS u™S,nS).
Lemma 2.7 designates the construction of K asfollows: for aZ(5)-algebra ((A, h),k),

K<<A7 h>7 k> = <GSGE(8) <<A7 h>7 k>7 GSGE(S) (85(8) ’ FE(S)SSGE(S))((A,h),k>>
which reduces to (A, ko Th). And a Z(3)-algebramap f : ((A h),k) — ((A,h'),K'),
where f : A— A’ isboth an S-algebramap and a T-algebramap, issent to a T S-algebra
map
Kf:(AkoTh) — (A KoTH).
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What we next need to show is that this comparison functor K is an isomorphism.
To this end, we now define an inverse K1 of K,

K=1:TSAlg— Z(5)-Alg.

Given (Al : TSA — A) a T S-algebra, we define the object part of K1 as;

K(A ) = (A londa),l o TNR).

The following lemma verifies the well-definedness of the above definition.

Lemma 3.33. Thealgebra ((A,lon&,), 10 Tn3) isa E(5)-algebra.

Proof. We prove the statement in three steps.
1. Wefirst show that (Al o ngA) isan S-algebra. The associative law for the algebrais
given in the left diagram below, and the unit law in the right diagram.

T S

A gren T s A A, s

NG @ [N néa
. ' 19
S| () TsTsA s Tsa oL Ts

v

e @ |l I

A . TSA A A

In the square for the associativity, the commutativity of the square (1) in the left is
demonstrated in the next diagram. The right top square (2) commutes by the naturality
of nT, and the right bottom square (3) commutes by the diagram on the left in (3.14),
the associative law for TS-algebras. For the diagram on the right, note that n7 SonS
isnTS; the diagram on the right above commutes immediately by the diagram on the
right in (3.14), the unit law for the structure map |.
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The commutativity of the square (1) aboveis proved as follows:

5
& @ > Nsrsa
q

TSA (b) TSTSA

H TS
/\&% SA

bR TR T?SA
(©) (d) T2

The reason of the commutativity of each areais given as follows: (a) by the unit law
for the distributivelaw § andn T, (b), (c) and (d) by the naturality of n ™, and (€) by the
unit law for the monad T.

2. Next, we show that | o Tnﬁ is an S-algebra map. The proof for this map to be an
Salgebramap is of type

(TAT(longy) 08a) = (ATong),

isgiven by the following diagram : the commuitativity of the square (x), which follows
from the coherence theorem of distributive law, is demonstrated in the next diagram,
and the squares (1) and (3) commute by that of N7 and S, respectively. For the squares
(2) and (4), they commute because | isaT S-algebra, i.e., by the associative law for the
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structure map |. Note that by definition p™s = p' So T?pSo 8.

STA STn3 STsA 2 .

3a N&rsa 1) &

TSA (%) TSTSA — TSA
Tné w3 @ |

T S TS
T2gA A 1orsa P4, 7oA

TI (3)

And for the square labelled (x), we have the following commutative diagram hold
mainly by the unit laws of the monads T and S, to remove u'’s and pu°'s, by one unit
law for & and S, and by several naturality squares:

StTnS
S
8 V nTSTS

T3S

3. The last step isto show that (A1 o Tn3R) isa T-algebra. For thiswe need to show
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two things. Thefirst, the associative law, is shown below;

T3 Tl
T2p A, 1287 - TA

3 TSA A
™a |

The square (1) commutes by the naturality of nS, (2) by thefact that | isastructure map
of aTS-agebra. And for the rectangle (3), we have a closer look in the diagram below
on the left: the rectangle (a) commutes by the naturality of p'. For the remaining two
triangles, (b) isthe unit triangle for the distributivelaw § andn and (c) istheright unit
law for the monad S. Secondly, the unit law for (Al o Tnf{) is given straightforwardly
by the diagram below on the right, the upper triangle of which is the equality by the
definition of n ™S and that of the horizontal composition of natural transformations, and
the lower one by the unit law for | being T S-algebra map.

2.5 s
T2A Ty T25A TNy

TSTSA A TA
»: \Te 77s s
Tlds| (9 7 () | Tos ™

2' T~ 2
T a T<SA T“SA Z TSA
IJ'A ( ) Tzl_l%\ %’
s I
TA TSA A
™;

Now it followsfrom Proposition 3.31 that ((A,lon,), loTn3) isaZ(8)-agebra. O
We are yet to define the arrow part of K1, A map
g:{(ALTAS A = (AT - A)
of TS-algebrasis sent by K~ to g itself, which is a Z(85)-algebra map such that

K=1g: ((Alonda),loTn3) — (A1 oniy), 1 o T L)

To see that thisindeed is a =(3)-algebra map, we only need to verify that g: A — A’
is both an S-algebra map and a T -algebra map, with respect to the respective structure
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maps. Thisis verified easily, as shown below, by the naturality of 17 and nS (the top
squares (1) and (3)), and by the fact that g is a T S-algebra map (the bottom ones (2)
and (4)).

A= LA TA TA
| O nk TR ® |y
T T '
ToA T8, o ToA 9, Tew
(2) I’ (4) '
A A A A
g g

From the above discussion, it follows that the functor K —1 is well-defined.

Having defined the functor K =21, we are now left to see that it isindeed an inverse
of K.

Lemma 3.34. The comparison functor K isinvertible.

Proof. We show that K~1oK =id and K o K=1 = id. We start from proving the first
equation. For the object part, let ((A, h), k) beaZ(5)-algebra. Then

K20 K(((Ah),k)) = K~1((A ko Th))
— ((AkoThongy),ko Tho Tng)

whichisequal to ((A, h),k) because, first the arrow ko Tho Tn3 isequal tok asin the
diagram

TA
2
s %
TSA TA A
Th k

which commutesby the unit law of the S-algebrah, and, secondly, thearrow ko Tho ngA
isequal to h because of the naturality of 0T (the square on the left) and of the unit law
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of the T-algebrak (the triangle):

SA A
‘ /gy
ni nll 3
TSA » TA > A
Th k

It is also easy to see that the arrow part of K~1oK is an identity. Hence we have
K-1oK =id.
For the proof of the second equation Ko K1 = id, let (A1) bea T S-algebra. Then
KoK= (A D) = K({(Alon&),loTnR))
= (AloTnRoT(long))

The structure arrow | o T3 o T (1 ond,) isequal to | because the following diagram

T
TSA & - TA
id| (1) /2 \ 2
TSA «— T2SA e TSTSA ™3
Hea A
| (3) \
A TSA

commutes by the left unit law for the monad T (1), the naturality of S (2), the right
unit law for the monad S (the triangle on the [ft), the unit law for nS of the distributive
law o, and one of the axioms (3.14) for the TS-algebral (3).
Again, it is easy to see that the arrow part of K o K~ isan identity. This concludes
the proof of the proposition. O

From what we have seen so far, we can state the following theorem:
Theorem 3.35. Thereisa canonical isomorphism between TS-Alg and Z(3)-Alg.
Proof. Followsimmediately from Proposition 3.32 and Lemma 3.34. 0J

We summari se the above discussion on the composite T Sin the following theorem:
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Theorem 3.36. Given a distributive law & : ST — TS of a monad (S, p5,n°) over a
monad (T,u",n™) on a ordinary category €,

1. the composite functor T Sacquiresthe structure for a monad on €, with multipli-
cation given by

T,,S
1515 1S, 1755 KK 15

2. TS Algiscanonically isomorphicto Z(3)-Alg
3. the object T S1 has both canonical S-algebra and T -algebra structures on it.

As we will see in the later chapters, the results in this section al extend without
fussto the pseudo setting.



Chapter 4
Kleisli Category and Distributive Laws

Just as in the previous chapter, we consider here the situation where there exist both
amonad (T,u",n") and an endofunctor H, which we later upgrade to a monad, on
a category C. In Chapter 3 we fixed a monad and investigated distributive laws of
the monad over endofunctors (or monads), and how they are related to liftings of the
endofunctors (or the monads) to the category of algebras. In this chapter, we again fix
the monad T but consider distributive laws over it and how they relate to the Kleidli
category KI(T) of T. It isshown that there exists an isomorphism between them just
asin the case of distributive laws and liftings.

This chapter mirrors the structure of Chapter 3: the main difference is that, in this
chapter, instead of distributive laws of amonad S over endofunctors, we study those of
endofunctors over amonad T; instead of the category of S-algebras (Eilenberg-Moore
category), we consider the Kleisli category KI(T) of T; apart from these the discussion
takes the same path.

We start from the definition of adistributive law of an endofunctor H over amonad
T and the notion of a natural transformation distributing over T. We show that they
form the category Dist; of distributive laws over T (Section 4.1).

In Section 4.2 we study the extensions of endofunctors to the Kleidli category
KI(T) of T. After recaling the definition of the Kleidli category KI(T) of a monad
T, we study some of its basic properties, in particular the adjunction between C and
KI(T). The counit of this adjunction plays an important role in the rest of the chapter.
Then we give the definitions of an extension of an endofunctor H to KI(T) and of the

65
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notion of a natural transformation extending to KI(T). Again, they form the category
Exty () Of extensions of endofunctorsto KI(T).

In the following three sections we prove the categories Dist; and Extyn) are 1SO-
morphic: in Section 4.3 we define a functor Y' from Exty 1 to Dist; and in Section 4.4
afunctor I' from Dist; to Exty.p). Thenin Section 4.5 we prove that they are mutually
inverse and define an isomorphism of categories between Dist; and Exty ).

In Section 4.6, as preparation for the monad case, we prove some properties re-
garding the sguare of an endofunctor. This section corresponds to Section 3.6 in the
discussion of distributive laws and liftings.

Finally, we consider the case of distributive laws of monads over T in Section 4.7
and 4.8. After defining extensions of monads to KI(T) in Section 4.7, we prove that
Y and T" induce functors between Dist7°"*%* and Extig33* determined by monads and
define an isomorphism of categoriesin Section 4.8.

4.1 Distributivity over amonad T

In this section we define the notion of a distributive law of an endofunctor H over a
monad T. We have, in the previous chapter, seen the definition of adistributive law of
amonad Sover an endofunctor, and the following definition is a natural dual.

Definition 4.1. Given an endofunctor H and a monad (T, m) on a category C, a
distributive law of H over T is a natural transformation 6 : HT — TH such that the
following diagrams commute:

oT TS

HT? ——— HTH ——— T?H H
2
Hu" H'H  HnT % (4.2)
HT TH HT TH
S o

Similarly to the case of distributive laws of a monad over endofunctors, in the
presence of two distributive laws 8" : HT — TH and 8 : KT — TK, given anatural
transformation o : H — K, we can consider the situation where o distributes over T
with respect to these distributive laws.
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Definition 4.2. Let 8" : HT — TH and 8K : KT — TK be distributive laws of H and
K over T, respectively. Then a natural transformation o : H — K distributes over T
with respect to 8 and 8K if the following diagram

H
HT o TH
oT To (4.2)
KT K TK

commutes.

Proposition 4.3. Given a monad (T, ,m) on a category C, the following data form
a category we denote by Dist;: objects of Dist; are pairs (H,6: HT — TH) of an
endofunctor H on C and its distributive law over T, and an arrow from (H,8") and
(K,8K) is given by a natural transformation o : H — K that distributes over T with
respect to 8" and 8X. The composition of arrows is given by composition of natural
transformations.

Notation 4.4. Just as before, we often omit the first component in the objects whenever
it does not cause confusion and just write 8" instead of (H,8: HT — TH).

4.2 Extension of S to the Kleisli Category

In this section, we turn to the Kleisli category KI(T) of the monad T. After recalling
the definition of Kleisli category, we have a close look at the well-known adjunction
(J,G,m,€) between C and KI(T). We examine the naturality of the counit € of this
adjunction as it plays an important role in the following sections. We also state two
equations on the adjoint arrows, derived from the adjunction.

4.2.1 Some properties of Kleisli categories

Definition 4.5. Let (T,,n) beamonad on acategory C. The Kleidli category KI(T)
of T isa category that has, for each object A in C, an object A7, and, for each arrow
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f of type A— TBin C, an arrow h of type At — By in KI(T). We use the notation
h= f> and f = h to express this relation between arrows. The compositionin KI(T)
isdefined interms of that in C, asfollows:. let h: At — Bt and k : By — Ct bearrows
inKI(T). Thenko hisdefined as

koh= (pc; oTkio hﬁ)b
yielding an arrow of type A — Ct in KI(T). It is straightforward to see that this
construction is associative. Theidentity isgiven asida, = nbA : At — A7, whichisthe
left and right unit for the composition due to the unit law of the monad T.
Asiswell-known, thereis a canonical adjunction between C and KI(T), for which
the mapping between adjoint arrowsisin fact given by —” and —*.

Proposition 4.6 (Another monad induced adjunction (Kleidli)). Given a monad
(T,i,m) on C, thereisan adjunction

J
(J,G,ﬂ,8)1C<—G—’ KI(T)

where J and G are functors such that JA = At and GBt = TB on objects A in C and

Br inKI(T), and for arrows f : A— BinCandh: At — Bt inKI(T),

Jf = (o f)”: Af — Br

Tht

Gh=pgoTh!: TA —. T2B ", TB,

Note that GJ = T holds not only on objects but also on arrows. The unitm : 1d¢c — GJ
of thisadjunctionisprovided by theunitn of themonad T, and the counite : JG — Idk )
isgiven by
ear = i0ha 1 (TA)T — Ar.
Now we verify that the unit € is indeed a natural transformation. For an arrow
h: Ar — Bt inKI(T), thenaturality of € isgiven by the commuitativity of thefollowing
squarein KI(T)

=id
(TA)r A=A
3Gh h
(TB)r Br



4.2. Extension of S to the Kleisli Category 69

where the composite arrows are calculated as
hoea, = (pBoThIi o id-rA)b
= (Mgo Tidrgo Th')’
—id}go (Th).
Since JGh= (nrgoug o Th)’ = (urgo Tnreo ThE)’ =nigo (Th!)’ = (Thf)’ holds,

this demonstrates the naturality of .
Then there exist bijections

C(A,GBr) = C(A, TB) 4—;:»_ KI(T)(Ar,Br) = KI(T)(JA,Br)

f ht
A——TB A——TB
At —»fb Bt At — Bt

which are natural in A and Bt. The naturality of these bijections amount to the follow-
ing equations: for arrows f : A— TBandg: B — TB' inKI(T) and m: A’ — AinC,

gof = (Ggof) (4.33)
(fom)’ = " 0Jm, (4.3b)

and two more equations involving only #, which are inverses of these. Note the first
equation (4.3a) gives the definition of composition of arrowsin KI(T).

4.2.2 Extension to KI(T)

Here we consider the situation where there exist both a monad (T,u",n") and an
endofunctor H, which we later upgrade to a monad, on a category C. We define the
notion of an extension of H to KI(T), which isan endofunctor on KI (T that commutes
withtheleft adjoint J and H. Wethen state a useful lemmawhich givesthe values of an
extension at adjoint arrows. After considering the extensions of natural transformations
and some of their properties, we give the definition of extensions of monads on C to
KI(T), which is the second of the two main ingredients of the later discussion in this
section.
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Definition 4.7. Given amonad (T,u",n") and an endofunctor H on a category C, an
extension of H to KI(T) isan endofunctor H on KI(T), for which HJ = JH holds.

The condition requires the functor H to satisfy HAT = (HA)1 on an object At, and
foranarrovm: A — BinC,

Hmgom)’ = mfigoHm)’. (4.4)

Since H is a functor, we have equalities H (ko h) = Hko Hh and Hida = idg, .
where h: A — Bt and k: Bt — Ct are arrows in C. The first of the two equations
amountsto the equality

(e o T(HK) o (HN)®)’ = H(uE o TKF o b’ (4.5)

And, since the identity arrow ida; : At — At in KI(T) is n}b, the second equation
givesthe equality

AN = Mha - (4.6)
Moreover, we have the following lemma:
Lemma4.8. For any arrow h: Ay — Bt inKI(T)
Hh= ((Heg, )’ o Hh')’ (4.7)
holds.

Proof. Recall eg; = id3. Then, the right hand side calculates:

((Hid}g)? o Hh)’” = Hid} 5 0 JHN? by (4.3b)
— Hid}5 o HJW

H(pg o Tidrgomg o hf)’

Hh

The notion of extension to KI(T) naturally extends to natural transformations.
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Definition 4.9. Given extensions H, K of endofunctors H and K, respectively, and a
natural transformation o.: H — K on C, we say “o. extends to KI(T) from H to K” if,
for each Ain C, Jowa is the component at At of a natural transformation in KI(T), or
equivalently, there exists a natural transformation & : H — K, such that .J = Jo. holds.

Then, from the naturality condition o for the components of the counit € of the
adjunction, we have the following lemmato characterise this notion:

Lemma 4.10. Given extensions ﬁ, K of endofunctorsH and K, a natural transforma-
tion o, : H — K extends to KI(T) from H to K if and only if for each A the following
holds:

(KSAT)ﬂo(xTA: GJlopo (HEAT)ﬁ. (4.8)

Proof. If there existsanatural transformation & : H — K such that &.J = Ja, then from
its naturality it follows that for each component e, of €, the equality

KSAT OO TA)T = OlAr © HE‘ZAT

should hold. The adjoint of the left hand side is an arrow (IZeAT)ﬂ oara in C, which
equalsthe adjoint of the right hand side GJoca o (ﬁsAT)ﬂ, proving that the equality (4.8)
holds.

For the opposite direction, assume the equality (4.8) holds for a. Then, for any
arrow h: Ar — Bt in C, one can calculate
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proving the commutativity of the naturality square
J
(HA)T 2+ (KA)T

Hh Kh

O

Extensions of endofunctors on and natura transformations between them form a
category.

Proposition 4.11. Let (T, m) beamonad on a category C. The following data yields
a category we denote by Extym: objects (H, ﬁ) are pairs of an endofunctor H on
C and its extension H to KI(T), and an arrow from (H,H) and (K,K) is given by a
natural transformation o, : H — K that extends to KI(T) from H to K. The composition
of arrows is given by that of natural transformations.

4.3 From extensions to distributive laws

Now we can prove the following proposition.

Proposition 4.12. Given a monad (T,u",n") and an endofunctor H on C, an exten-
sion H of H to KI(T) givesriseto a distributive law fromHT to TH in C.

Proof. We define a mapping Y from extensions of H to KI(T) to distributive laws
of H over T. The value of Y a H is a natural transformation Y(H) : HT — TH,
whose component Y (H)a of Y(H) at A is defined to be the arrow (Hea, ) in C. We
need to prove that thisis a distributive law. First, we need to see that it is a natural
transformation. The naturality square for anarrovm: A— BinC is

Hea )t
(Hea)® ria

HTA
HTm THm

HTB THB

(HE':BT)ﬁ
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for which a proof of commutativity is given as follows: the composite of the top and
theright sidesare

THmMo (Hea, ) = GIHMo (Hea, )*
= GHJImo (Hea, )f
— (HImoHep, )*
(Heg, o HIGIm)*
(Heg, o JHGIm)*
(Heg, )foHTm,

proving the commutativity of the square above.
Next, to see that our choice of distributive law satisfies the associative and the unit
laws, we examine the two axioms. For the associative law of Y'(H) and p',

He ' T(Hear)!
mroa B’ | pppn  THea)! 1o
HuL M
HTA _ - THA
(HeAT)ﬁ

This commutes simply by the definition of composition in KI(T). The top and the
right sides compose as

WiaoT(Hear) o (Heray)f = (H(HA o Tidraoidyza)’)!
= (H(R))*
which is equal to (ﬁaAT)ﬂ oH uX from the Lemma 4.8, proving the commutativity of
the diagram. Finally, the unit law of Y(H) andnT is
HA
%

HnA &

HTA——— THA
(Hidr,)*
whose commutativity follows immediately from Lemma 4.8 and the equation (4.6).
This concludes the proof of Proposition 4.12. O
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Corollary 4.13. The mapping Y in Proposition 4.12 defines a functor Y from Ext KI(T)
to Dist;.

Proof. Define Y(H,H) =Y(H) and Y(o) = oz Y(H) — Y(K) forany o.: H — K. The
definition of the arrow part is justified by Lemma 4.10. The condition 4.8 makes the

diagram 3.1 hold for o.: Y(H) — Y(K). O

4.4 From distributive laws to extensions

Proposition 4.14. Adistributivelaw 6 : HT — TH of an endofunctor H over a monad
(T,u,M) givesriseto an extension of H to KI(T).

Proof. We define a mapping '™ from distributive laws of H over T to extensions of
H to KI(T). Define T (§) to be an endofunctor on KI(T) such that the values at an
object At and an arrow h: At — By of KI(T) are given as TH (§)Ar = (HA)T and
™ (8)h = (8g o HW)?. We verify the functoriality of TH(§): both conditions on the
composition and the identity hold because of the two axioms of 6. For the composition,
given apair of arrowsh: At — Bt andk: Br — Cy inKI(T), we have

M (8)ko T (8)h = (¢ o HK!)’ o (8g o HA)’
(G(8¢c o HKF)’ 0 8g o HF?
(Hpc o Tdc o THK! 0 85 o HHF)
(

(

(

p,.K;oTESCoSTCoHTkﬂloﬁ)b
8c o Hpc o HTK o Hh¥)’
dcoH(koh)!)’ =TH(8)(koh)

and for the identity,
M(8)ida, = (SaoHNA)’ =Niya.
Finally we prove that TH (3) is an extension of H to KI(T). It obviously satisfies
the condition on objects. For arrows, given any arrow m: A— Bin C, we have

M(8)Im=T"(8)(ngom)’ = (dgo HNgoHM)’ = MpgoHM)’

as desired. This completes the proof of Proposition 4.14. O
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Corollary 4.15. The mapping I" in Proposition 4.14 defines a functor I" from Dist; to
EXtKI(T)'

Proof. Define T'(H,8" : HT — TH) =TH(8") and T'(a) = 0. : T(8") — T'(8X) for
any o.: 87 — 8K, Justification for the definition of the arrow part is similar to that in
the definition of Y (Corollary 4.13, by Lemma4.10.) O

4.5 Isomorphism between Dist; and Exty,q,

Theorem 4.16. The functors Y and I" are mutually inverse and, indeed, define an
isomor phism of the categories Exty;ry and Disty.

Proof. The constructions shown in the previous two sections are mutually inverse.
Given an extension H, theinduced distributivelaw Y'(H) defines an extension T(Y'(H))
that sendsh: At — Bt to

(Y(H)goHh)’ = ((Heg; )* o HH)” = Hh,

which is the same arrow as the one H sends h to, meaning they define the same ex-
tension. Meanwhile, given a distributive law 9§, the induced extension I"(3) defines a
distributive law Y'(I'(3)), whose component at A is given by

(T(8)enr ) = SaoHeh = SaoHidra = a

proving that it defines the original distributive law 8. This completes the proof of the
theorem. O

4.6 Extension of H?

In this section, we consider distributive laws and extensions of the endofunctor H?,
along the lines of Section 3.6. The discussion in this section can be formulated in
terms of strict monoidal structures on Exty 1, and Disty, and it extends to the pseudo-
case in asimilar manner asin Chapter 6 for theliftings.

Given an extension H of an endofunctor H to KI(T), it is immediate that the
composite H? is an extension of H2. On the other hand, given a distributive law
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0:HT — TH of H over T, we have the following lemma to construct a distributive
law of H?:

Lemma4.17. Givenadistributivelaw d: HT — TH of an endofunctor H and a monad
T ona category C, the natural transformation

HHT 2% 1T 2 THH
isadistributive law of H? over T.
Proof. By asimilar discussion as Lemma 3.20. O
The following proposition relates the functors Y’ and I" to the above discussion.

Proposition 4.18. Given an endofunctor H on C and an extension H of H to KI(T)
and a distributivelaw & of H over T,

HZ =T(Y(H)HoHY(H)) (4.9)
SHoH3 =Y(I'(8)?) (4.10)
hold.
Proof. Immediate from the definitionsof Y and I". O

Similarly to the casefor liftings, theisomorphismsY and I" are both strict monoidal
functors.

. . d d
4.7 Categories Disty " and Extgjmy™®

In the rest of the chapter we consider extensions of monads to KI(T) and study their
relationship to distributive laws of monadsover T. In order to do so, we first define the
variants of Dist; and Exty ), which we denote by Dist"*®* and Extigi33 .

The category Distf}“’”"j‘ds isvery similar to Dist> defined in Section 3.7.

monads

Proposition 4.19. The following data forma category we denote by DistfPO”adS: objects
arepairs ((S u>n%),8: ST — TS) of amonad (S, 15 n°) and a distributivelaw & of S
over T, and an arrow from ((S,uS,15),8%: ST — TS to (S, u5,15),8% : ST - TS)
isgiven by amonad morphismoc: (S pSnS) — (S, S, 1) that distributesover T with
respect to 85 and 5.
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We now give the definition of an extension of amonad S.

Definition 4.20. Given monads (S u>,m°) and (T,u",n™) on a category C, an exten-
sionof StoKI(T) isamonad (S pS,nS), for which SJ = JSholdsand pS and 'S extend
to KI(T), meaning pSJ = JpS and nSJ = InS hold.

Thefirst condition means, just asthe case of an endofunctor H, Ssatisfies SAt = (SA)T
on an object A, and SME om)’ = (n&; 0 SM)” holdsfor an arrow m: A — Bin C.

And, from Lemma4.10, the naturality of u§ and n§ impliesthat Sisan endofunctor
that makes the following equations hold:

(Sear)? o pifa = GIHRo (Sear)f (4.12)
(Sear)?onfa =GInj (4.12)

Just as in the case of liftings of monad morphisms, we have the following lemma:

Lemma 4.21. Given a monad morphismo. : (S pSnS) — (S,uS,1S), if it extends to
KI(T), then its extension ¢. is a monad morphism from (S, uS 1) to (S, u%,n°).

Hence we can construct a category as follows:

Proposition 4.22. The following data form a category we denote by Ext[?lo(”nadsz objects
arepairs ((S,uS 15), S) of amonad (S, pS,mS) anditsextension Sasamonad to KI (T),
and an arrow from ((S uS,15),S) to ((S,pS,1%),S) is given by a monad morphism

o: (S S NS — (S,pS,n%) that extends to KI(T) fromSto S.

4.8 Restricting isomorphisms

In the following, we prove that the isomorphisms Y and I" induce functors between
these categories and define an isomorphism between them.

Proposition 4.23. The functor Y in Proposition 4.12 induces a functor from Ext Q‘ﬁ”nads
to Distironads,

Proof. Define Y((SpS15),S) = ((SS1%),Y(S) and Y(0)) = o.. We show that the

distributive law Y'(S) isthat of Sasamonad over T, by examining the two additional
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axioms for pS and nS. For the multiplication law of & and pS, recall that p> extends to
uS, therefore the equation (4.8) holds for pS, whichis

(§€AT)Ij ° p-'SI'A = TUEO (§28AT)ﬁ'
On the other hand, from Lemma 4.8 we have the equality
(Senr)* = (Se(sayr ) o S(Sear )

Putting the two equations together, we have the following diagram commutes:

ora &) | qon  SEew)l ron
“%A Tu?\
STA _ TSA
(SGAT)ﬁ

For the unit law of 5 and nS, a similar discussion as above for n'S holds. Since nS
extendsto KI(T), the equation (4.8)

(‘8‘f3AT)ﬂ OT]'SI'A = Tnio (‘c:P\T)Lt

holds. By definition, (aAT)ﬂ = idya; therefore it amounts to the commutativity of

TA

A
n3a 27&

TSA

STA —
(S‘GAT)Ij

This concludes the proof of Proposition 4.23. O

Proposition 4.24. The functor T in Proposition 4.14 induces a functor from Dist'r"ads

to Extiaes.

Proof. Define I'((S,pu5,n5),8%: ST — TS) = ((S,u5,n°),T(5%)) We show that the ex-
tension I'(8%) of Sto KI(T) isamonad, i.e., pu° and ‘S also extend to KI(T). Using
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Lemma 4.10, we only need to prove the following equalities: for pS,

(T(8%)ear)" o HEa = 8a0 Sidrao A
= 8a0 1A
= THz 0 8sa0 SBp0 Sidra
= THro ((T(8%))%a )%,

and for nS,

(T(3%)en; )  onFa = aon3a
=Tng,

This defines a monad (T(8S), ur® %)), This completes the proof of Proposi-
tion 4.24. O

From the above two proposition and Theorem 4.16, we have the following:

Corollary 4.25. The categories Ext (5 and Disty°"*®® areisomorphic.

4.9 Discussion

We state the following theorem as a summary of Chapters 3 and 4 for distributive laws
of amonad over a monad:

Theorem 4.26. Let (S uS,n®) and (T,u",m") be monads on a category C. Then the
following are equivalent:

1. adistributivelaw é : ST — TSof Sover T.
2. aliftingof T to SAlg

3. anextension of Sto KI(T)






Chapter 5
Pseudo-Distributive Laws |

In Chapter 3 we proved that, given a monad S on a category C, the category of dis-
tributive laws of amonad Sover endofunctorsisisomorphic to that of liftings of endo-
functorsto S-Alg, the category of S-algebras, and that the discussion extends naturally
to the case where the endofunctors have the structure of monads. In this chapter, we
further extend our discussion to the case of pseudo-distributive laws on a 2-category.
We prove that, given a pseudo-monad S on a 2-category C, the 2-category of pseudo-
distributivelaws of Sover pseudo-endofunctorsis equivalent (in the category-theoretic
sense) to that of liftings of pseudo-endofunctorsto the 2-category Ps-S-Alg of pseudo-
S-algebras.

The reason we need to study pseudo-distributivelawsisthat in applying our theory
on substitution in the later chapters, we will be dealing with composites of 2-functors,
and there we need pseudo-distributive laws rather than 2-distributive laws; all the lead-
ing examples are of pseudo-distributive laws that are not strict.

In Section 5.1 we first define pseudo-distributive laws of a pseudo-monad S over
pseudo-endofunctors, which we will extend to those over pseudo-monadsin Chapter 7.
Our discussionin principle followsthe one on ordinary (non-pseudo) distributive laws,
but we systematically replace the commutative diagrams with invertible 2-cells, and
spell out the three coherence axioms which those 2-cells should satisfy. We also define
pseudo-distributive laws over pseudo-natural transformations and consider pseudo-
distributivity over modifications. In contrast to the ordinary case in Section 3.1, where
the distributivity of S over a natural transformation is given as a property the natural

81
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transformation may possess, in the pseudo-case, the pseudo-distributivity of S over a
pseudo-natural transformation requires additional datathat isassociated to the pseudo-
natural transformation to make S distribute over it. On the other hand, the pseudo-
distributivity of S over amodification in turn is given as a property it may satisfy. To
end the section we show that the definitions in the section form a 2-category Ps-DistS
of pseudo-distributive laws of Sover pseudo-endofunctors.

Thedefinition of liftings of pseudo-endofunctorsto Ps-S-Algisgivenin Section 5.2,
followed by the definition of liftings of pseudo-natural transformations and modifica-
tions. Just as in the non-pseudo case (Section 3.2), alifting of a pseudo-endofunctor
H to Ps-S-Alg is defined to be a pseudo-endofunctor H for whichUH = HU, where U
isthe forgetful 2-functor from Ps-S-Alg to C. Here for the pseudo-case, we have more
pieces of datato define and again the commutative diagrams are replaced by invertible
2-cells. A comparison similar to that in the previous section between the pseudo and
non-pseudo cases exists in the discussion of liftings. In Section 3.2, the notion of a
lifting of a natural transformation isin terms of a property of the natural transforma-
tion, whereas in the pseudo-case it is an extra piece of data that is associated to the
pseudo-natural transformation in a particular manner, to form alifting. On the other
hand, the lifting of a modification in turn is given as a property it may satisfy. Then
we see that these form the 2-category Liftpg o Alg of liftings of pseudo-endofunctors to
Ps-S-Alg.

Our goal in this chapter isto prove that there exists an equivalence of 2-categories
between Ps-Dist® and Liftpg 5 o4- We construct the 2-functors that provide the equivar
lence in two sections: in Section 5.3 we first look at the construction from Liftpg s o/
to Ps-Dist>. After proving in Section 5.3.1 a few lemmas about the properties of
free pseudo-S-agebras that we need, we give the construction for each cell, that de-
fines the 2-functor @ from Liftpg g 51 tO Ps-Dist>. Then in Section 5.4 we give the
construction for the opposite direction and define the 2-functor ¥ from Ps-DistS to
Liftes s a1g- Fin@Aly, in Section 5.5 we prove that these 2-functors define an equiva-
lences of 2-categories.

In the next chapter, Chapter 6, we investigate, in both the non-pseudo and pseudo
cases, the square H? of an endofunctor H; the motivation is the same as that for Sec-
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tion 3.6. For the pseudo-case, we provide a more general analysis of the structure, in
particular, we consider the operations constructing a lifting of H? from that of H and
a distributive law of Sover H? from that over H, and how those operations relate to
each other. That provides the basis for the discussion in Chapter 7, where we extend
the pseudo-endofunctors in the discussion of this chapter to pseudo-monads.

5.1 The 2-category Ps-Dist®

5.1.1 Pseudo-distributive laws over pseudo-endofunctors

Recall the definition of pseudo-monadsin Section 2.3. A pseudo-distributive law of a
pseudo-monad (S, 1, M, T, A, p) over a pseudo-endofunctor consists of a pseudo-natural
transformation, together with two invertible modifications, one of which isthe associa-
tivelaw involving pand the other the unit law involving 1. Both of these modifications
are subject to three coherence axioms.

Definition 5.1. Given a pseudo-monad S= (S,,n,T,A,p) and a pseudo-endofunctor
H on a 2-category C, a pseudo-distributive law (8,1, 1) of S over H consists of the
following data:

e apseudo-natural transformation
0:SH —— HS

¢ invertible modificationst and 1 given as

) oS

PH "+ HS—» HS? H

H o H H /s'& (5.1)
u JH M n 7 :
H 5 HS H — HS

In addition to the axiom for modifications, the above invertible modifications are sub-
ject to the following three coherence axioms. Axioms (H-1) and (H-2) involve the
modifications A and p of the pseudo-monad S. Axiom (H-3) involves the modification
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(H-1) i 2, g45 5, e i 2, g45 5, e
Q
ylw tm Hu\ = SH \\ié% 18, HS %
U aH £ U HA
H o H 5 HS SH 5 HS " HS
(H-2) i 2, g45 %5, e S*H —»SHS—»HSZ
7
&l un om = | g ®Hn8
J pH @Hp
S idg-| SH ) HS Ist
H3) S0 gns DS g9 99, e
& SH s SHul U8 |Hsu
SH | 1H SPH = » SHS %S, HS
x uH I Hu
H 5 ~ HS
I
IS

SH — SZHS—> SHSZ—> HS

K

uSH| Ups [pHS  yps  Hps| %

H SS HS 3S HS JHt HS
| b Hu K
SH » HS

S

5.1.2 Pseudo-distributive laws over pseudo-natural transformations

Under the existence of pseudo-distributive laws (87,1, q) and (8, g%, 1), where
8" : SH — HSand 8K : SK — K 'S, we can consider asituation where Sdistributes over
a pseudo-natural transformation o. : H — K in terms of the horizontal composition, as
in
H
s s  —
C Ja C—C = C—2C ja C
K K
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A transformation of this kind is realised by an invertible modification with certain
properties specified in the following definition:

Definition 5.2. A pseudo-distributive law of Sover o with respect to " and 8X isan
invertible modification o.* of the following form,

5H

H HS

So. Jof oS

X KS

6K
satisfying, in addition to the axiom of modifications, the two axioms given bel ow:

S Hs

~SHS ~HSZ PH —+ HS— > HZ
\&Sa\mx uH\ TN
SH Jpe SK SH i HS (o, KS (0r*-1)
& \MK unK \Ku & Vo R \Ku
X = KS X = KS
/ \ / | \
In
= H Una XK o HS (a*-2)
| o o e
o Uocn oS o Un oS
e
K » KS K » KS
Kn Kn

5.1.3 Pseudo-distributive laws and modifications

We extend our discussion further to modifications. Consider a modification { : a0 — P
from H to K, with pseudo-distributive laws o.* and B* with respect to 87 and X, as
defined in the previous section. If { has a certain property, then it can be considered as
an arrow from o* to B*, or, equivalently, in a sense, Sdistributes over .

Definition 5.3. Let o, : H — K be pseudo-natural transformations with distributive
laws o* and B* with respect to 8™ and 8X. Given amodification { : oo — B, wesay “ S
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distributes over { with respect to o* and * ” if it satisfies the condition

H H
H " . Hs % o us
= =

$|%|s0 Yo |os = | Up* ps|cs|as (5.2)
K ——— KS K —— KS

5.1.4 The 2-category Ps-Dist®

The data defined above form the 2-category Ps-Dist® of pseudo-distributive laws of S
over pseudo-endofunctors.

Proposition 5.4. Given a pseudo-monad Son a 2-category C, the following data form
a 2-category we denote by Ps-Dist>.

e the O-cells of Ps-Dist® are pairs (H, (8, [1,7)) of a pseudo-endofunctor H on C
and a pseudo-distributivelaw (8: SH — HS [, 7).

o Al-cel in Ps-Dist® of type 8" — 8K isa pair (o, o*) of a pseudo-natural trans-
formation o : H — K and a distributive law o.* of Sover o with respect to 8"
and 8.

e A2-cell {inPs-Dist® of type (o, o) — (B,B*) is a modification { : oo — B that
distributes over Swith respect to o* and *.

Proof. The compositionisgiven, for the 1-cells, by the composition of pseudo-natural
transformations and the pasting of diagrams, and for 2-cells, by the usual horizontal
composition. A routine cal culation shows that Ps-Dist® is well-defined. O

Notation 5.5. For a O-cell (H, (8", ,7)), we often suppress the pseudo-endofunctor
and the 2-cells of the pseudo-distributive law and just write 8", and similarly, for the
1-cell (a, o) we often just write o*, when it does not cause confusion.

We see |ater that the 2-category Ps-Dist® is equivalent to the 2-category Liftp, o Alg
of liftings of pseudo-endofunctorsto Ps-S-Alg, which we define in the next section.
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5.2 The 2-category LiftpS_S_A|g

In this section we leave pseudo-distributive laws for a while and study the liftings
of pseudo-endofunctors on C to Ps-S-Alg, the category of pseudo-S-algebras (Sec-
tion 2.4). In Section 5.2.1 we give the definition of liftings of pseudo-endofunctors
to Ps-S-Alg, followed by the definition of liftings of pseudo-natural transformations
in Section 5.2.2 and the notion of lifting modifications in Section 5.2.3. Finaly, we
define the 2-category Liftpg g 514 IN Section 5.2.4.

5.2.1 Lifting of a pseudo-endofunctor H to Ps-S-Alg

Recall the definition of the forgetful 2-functor U from Ps-SAlg to C (Section 2.4).
A lifting of H to Ps-S-Alg is defined to be a pseudo-endofunctor H on Ps-S-Alg that
satisfies UH = HU, just as in the non-pseudo-case, except that the definition here
includes the 2-cell part of the lifting in addition to those for objects and arrows, and
the commutative diagrams are replaced by invertible 2-cells.

Definition 5.6. Given a pseudo-monad S= (S,,m, T, A, p) and a pseudo-endofunctor
H on a2-category C, alifting of H to Ps-S-Alg is a pseudo-endofunctor H on Ps-SAlg
for which UH = HU holds, where U isthe forgetful 2-functor from Ps-S-Algto C.

The above definition says that, given a 0-cell, a pseudo-S-algebra (A, a,ay, an),
L-cell (f,Tap) - (Aaayan) — (B,b,by,by), and a2-cell x: (f,Tap) = (9,0ap), in
Ps-S-Alg, the lifting H should satisfy

UH (A a,a,,a,) = HU (A a,a,a,) = HA (5.39)
UHR(f, Top) = HU(f,Tap) =Hf (5.3b)
UHy =HUy =Hy (5.3¢)

Hence, for 0-cells, the equation (5.39) statesthat H sendsa pseudo-S-algebra (A, a, ay, ay)
to apseudo-S-algebra of the following form:

H(A & ay,an) = (HA & 8, &,)
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where the structure map @ is of type SHA — HA, and &, and &, are invertible 2-cells
in C described in the following diagram:

SFHA HA

=~

HHA Jay a

SHA HA

~

and they satisfy the coherence axioms for pseudo-algebras given in Section 2.4.

Notation 5.7. In the following discussion, whenever we need to distinguish more
than one lifting, we use superscripts, as in F(A a,ay,an) = (@ all,al) to indi-
cate which lifting is associated to the hats.

For 1-cells, what (5.3b) meansisthat H sendsa pseudo-algebra map

(f7 fa,b) : <A7 a, au: aﬂ> - <87 ba buvbr]>

~

to apseudo-algebramap (Hf, f)

H(f, Tap) = (Hf,HT p) : (HA Q8,8 — (HB,b,by,by),

ab

whereH faB isan invertible 2-cell in C of the form:

f
SHA k. SHB
a| |Hf |b (5.4)
HA HB

Hf

satisfying the two coherence axioms for pseudo-al gebra maps given in Section 2.4.

Notation 5.8. In the following we sometimes write H(Ta,b) instead of H f . to denote
this 2-cell.

For 2-cells, the equation (5.3c) statesthat H sendsan algebra2-cell y : (f,fap) — (9,8ap)
to an algebra 2-cell Hy : (Hf,Hf ;) — (Hg,Hg, ), satisfying the coherence axiom
for algebra 2-cells.
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5.2.2 Lifting pseudo-natural transformations

Given a pseudo-natural transformation o.: H — K : € — C, and liftings H, K of H, K
to Ps-S-Alg, we can consider alifting of o.

Definition 5.9. A lifting of o to Ps-S-Alg from H to K is a pseudo-natural transforma
tion & : H — K for whichUa = aU holds.

From the equation U & = olU we have the following two conditions:

1. for each pseudo-S-algebra (A, a,ay,a,), the component of o at this pseudo-
algebra is given by the component aa of o a A, that is, we have an invertible

2-cell apa
SHA 2 A
a" JOaa ak
HA KA

oA

that makes a1 into a pseudo-algebramap from H (A, a, &y, a,) to K(A, &, ay, an).

2. the pseudo-naturality of o extendsto that of o.. Abbreviating pseudo-S-algebras
(A a,ay,aq) as (A a), for each pseudo-algebra map (f,f,p) : (A @) — (B,b),
the pseudo-naturality of 0. ¢ 7_ ) is defined to be an algebra 2-cell of the form

ab

that satisfies the pseudo-naturality conditions. In order for o to lift to @, the
component o.s of the pseudo-naturality of o at f : A— B should provide such an
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algebra 2-cell, hence it needs to satisfy the following additional condition:

f
HA A, oea X«

a|  YOaa aAUK( ») DX /Sa\
SHf

B, «B (55)

\ / &l LAT.) Bf Vasp |BS

HA HB KB
Hf oB

5.2.3 Lifting modifications

Given pseudo-natural transformations o, B : H — K and their liftings &, : H — K, a
modificationy : o« — B with a certain property lifts uniquely to a modification from o
to B.

Definition 5.10. We say “ vy liftsto Ps-S-Alg from o. to B " if, for each pseudo-algebra

(A, a,ay,ay,), the component ya at A satisfies the condition required to be an algebra
2-cell from (o, 0aa) 0 (Ba, Baa), i-€., it satisfies the equality

S A
SHA A, KA SHA U Sja KA
$Ba
a'l Yoaa (& = 3| UBaa |3 (5.6)
oA
HA P
Uya KA HA KA
Ba

5.2.4 The 2-category I—iftPs-S-AIg

Allliftings of pseudo-endofunctorson C to Ps-S-Alg form a2-category Liftpg s g, With
pseudo-natural transformations and their liftings as 1-cells.

Proposition 5.11. Let Sbe a pseudo-monad on C. The following data forma 2-category
we denote by Liftps g -

o The0-cellsof Liftpy g 4 are pairs (H, H) of pseudo-endofunctorsH on C and H
on Ps-S-Alg, such that UH = HU holds.
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o Al-cel in Liftp, g 54 from (H,H) to (K,K) isa pair (a, @) of a pseudo-natural
transformationo.: H — K and & : H — K, such that Ud = oU holds.

o A2-cell in Liftpg g o from (a, a) to (B, B) isamodificationy: oo — B that liftsto
Ps-S-Alg from & to B.

Proof. The composition of 1-cellsis given by that of pseudo-natural transformations,
and the rest follows by routine calculation. O

In the remainder of the chapter we establish the equival ence between Liftpg g 54 and
Ps-Dist®.

5.3 From liftings to pseudo-distributive laws

Our final goal in the following three sectionsis to construct 2-functors

. < . .S
Liftps s Alg <—\P_’ Ps-Dist

and show that they form an equivalence of 2-categories. For the sake of clarity, wefirst
give the construction for a fixed H; in this section we establish the construction from
liftings to pseudo-distributive laws and in the next section in the opposite direction.

In Section 5.3.1 we start by studying some properties of a particular pseudo-S
algebra, whose structure map is a component pa of the multiplication p of the monad
S, which we will need for the rest of the section.

Then we move on to construct 0-cells of Ps-Dist® from those of Liftp g p1g 1N Sec-
tion 5.3.2 and similarly for 1-cellsand 2-cellsin Section 5.3.3 and Section 5.3.4. Using
these constructions we define a 2-functor @ from Liftpg g a4 t0 Ps-Dist®.

5.3.1 Pseudo-S-algebra pa

Just like the non-pseudo case, the components of the multiplication p of the pseudo-
monad are always pseudo-algebra structure maps. In this section, we give a proof of
thisfact and then investigate some properties of such pseudo-algebrasand their liftings.
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Lemma 5.12. For any O-cell A of C, the component pa of the multiplication p is the
structure map of a pseudo-S-algebra.

Proof. We define Ha, = TA and Hany = pA @S shown in the diagrams below, and claim
that (SA, pa, Ta, pa) constitutes a pseudo-S-algebra

SA_H @ A @
%
o,
0 Ut Ha % Ha
SA A %'\?
A SA SA

Ha

It follows immediately from the coherence axioms of pseudo-monads that these data
satisfy the axioms for pseudo-S-algebras. O

Now we consider the value of H at (SA, Ha, TA, pa). This pseudo-S-algebrais ex-
pressed as (HSA, [a, Ta, pa), With each component described as:

o al-cel (inC) [ix: SHSA — HSA

o invertible 2-cells T : fiao S — (a0 tsa and PA : fiaoMisa — idksa

SHsA A, gsa HSA THSA qsa
o
HHsa A Ha Q A
S
HA . HSA HSA
A

satisfying the coherence axioms for pseudo-algebras.

Our next observation is that the three pieces of data described above are in a sense
natural in A, in other words, the first and the other two are components of a pseudo-
natural transformation and modifications, respectively.

Lemma 5.13. The collections {[ia}a, {Ta}a, {Pa}a oOf the data of (HSA, [ia,Ta,PA),
for each A in C, define a pseudo-natural transformationfi: SHS— HS, and invertible
modificationsT, p, respectively, in the 2-category C.
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Proof. For the collection of the structure maps {{ia}a, first note that for any 1-cell
f : A— B, Sf is a pseudo-algebra map between (SA, pa,ta, pa) and (SB, us, s, PB),
and for any 2-cell x: f - g: A— BinC, Sy isan agebra2-cell from Sf to &g, both
resulting from the fact p being pseudo-natural transformation: the second component
gUA,UB of the pseudo-algebra map Sf is given by (u?’B)—l, the component at f of the
pseudo-naturality of p. Thejustification for Sy being an algebra 2-cell followsfrom the
fact that B is a pseudo-natural transformation. The coherence axiomsfor Sf to be a
pseudo-map are satisfied because of the fact that T and p are suitable modifications.
Now consider the lifting of Sf. By letting a = pa and b = pg in the diagram (5.4)

we obtain the following diagram for H(SF,,, ,.) = HSTy, 5

Ha| UHSfRp P8 (5.7)

H Sf

We define pseudo-naturality :° to be (HSfg, gg) ™ This B defined in thisway is

indeed a pseudo-natural transformation, because the conditions for an algebra 2-cell

HSy = HSy provide the necessary pseudo-naturality.

For {Ta}a, we show that this defines an invertible modification: a component ta is
by definition invertible and of type fia o Sia — Ha © UHsa, Whose domain and codomain
we now know are pseudo-natural transformations. Now, given a1-cell f : A — B, the
axiom for modifications are satisfied asfollows: abbreviating (HSfy, ¢,)~ lasHSF !

PHsA A gisa M pea

IJ'A

FHB ——— —  PHsA MR SHSA—» HSA

\ / PHSE| | st SHSfUHSfl HSf

FHB —» HB ——+ HB
MHsB Hs

the equality holds because by suitably rearranging the invertible 2-cells one can obtain
the diagram for the associativity axiom for Sf to be a pseudo-algebramap. HenceT is



94 Chapter 5. Pseudo-Distributive Laws |

aninvertible modification. A similar argument also holdsfor p : flonHS— idHS. The
axiom for modificationsit satisfiesis given below.

SHSA SHSA
ARV s N\
&7 st & YN
HSA Umust SHSB UASF 'HSA = HSA : HSA
/ \ idHsa
HSf && Ups @\ HSf  HSf H Sf
HSB : HSB HSB : HSB
idHss idnss

O

To end the section, we state the fact that any structure map a is a pseudo-algebra

map from the algebra pa to a

Lemma5.14. For any pseudo-S-algebra (A, a, ay, ay ), the structure map a isa pseudo-
S-algebra map from (SA, U, Ta, pa) t0 (A, a,ay, ay).

Proof. Let the 2-cell a,, for the pseudo-algebramap ato be a,,. Thenitisimmediate
from the definitions that it satisfies the necessary axioms. O

Now consider the value of a lifting at such a pseudo-algebra map. The lifting of
thismap (a,ay,) gives a pseudo-S-algebra map
(Ha,H(Bau)) : (HSATa,Ta, Pa) — (HA, 8 8,8,)

where the 2-cell H(aa,,,) isof theform

fa| UH(@ay,) |a

HSA HA

Ha

satisfying the axioms for pseudo-algebra maps.
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5.3.2 O-cells

We show the construction of a pseudo-distributivelaw from alifting in the proof of the
following proposition. The pseudo-natural transformation of the pseudo-S-algebras fi
plays acentral role in the construction.

Proposition 5.15. Given a pseudo-monad (S, n,t,A,p) and a pseudo-endofunctor
H on a 2-category C, a lifting of H to Ps-S Alg givesrise to a pseudo-distributive law
of Sover H.

Proof. In order to prove the proposition we construct a function ®" from the set of all
liftings of H to the set of all pseudo-distributive laws of Sover H asfollows. (We omit
the superscript H in the rest of this section.) Given alifting H, the value

) = (@(H),p®H), 7H)

S
I

(

is given by first defining ®(H) = pf o SHn, that is,

SHn al

®(H) : H SHS-F- HS (5.8)

using the pseudo-natural transformation ﬁﬁ discussed in Lemma 5.13. Thisis easily

seen to be a pseudo-natural transformation.
D(H)

Next we define the components of the invertible modifications: I, is defined to
be the invertible 2-cell described in the following diagrams:
2 A nA
Pua SHMA | ouen Fa qign s qion B g
HHA Ypgr, % Hua  (5.99)
Q ’ Y
SHA ~ SHSA - HSA
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and ﬁdA>(H)
HA NHA - SHA
63 UMHn,  [SHNA
vy
Hs M g (5.9b)
Z s
0|
/b, N ﬁ?
HsA
These modifications satisfy the axioms for the pseudo-distributive laws (H-1)—(H-3).
Hence @M indeed defines a function as required, proving the proposition. O
5.3.3 1l-cells

Now we have alook at 1-cells of Liftpg g pq, 1.€., pseudo-natural transformations that
lift to Ps-S-Alg. Thefollowing proposition givesthe construction of pseudo-distributive
laws over o. from alifting of o.

Proposition 5.16. A lifting 6. : H — K of o.: H — K to Ps-S:Alg induces a pseudo-
distributive law (&) with respect to the induced pseudo-distributive laws ®H (H) and
DX (K).

Proof. Recall that theinduced pseudo-distributivelawsare given by oH (ﬁ) = Tﬁ oSHn
and ©K (K) = i o SKm. We define the component ® (i) of the modification ®(di) at
Aas

S" ’\ﬁ
HA M gen - M e
Soa| USoy, SosalTsap, b |os

KA

Na T

We need to verify that this satisfies the axiom for modificationsand (o.*-1) and (o*-2).
First, the axiom for modifications holds as shown below by the pseudo-naturality of o
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and by the axiom for algebra 2-cell o.s;:

S" /\ﬁ
SHA M8 gyen A jea _OMA qea B, i HSA

| |
d‘ SOCA | Soiy SOCSAUOLSAUA L osa g\ U SHn¢ q\g’\ R 65\

SHB Soit = SHB—»SHSB

XKna ﬁﬁ SHnp ‘ ‘
San % uf Socs § St Soisa Ua$pglaf8 <

~S<SB — KSB SKB—n>SKSB4>KSB

Next, the axiom (oc -1):

2H A nH
SPHA SHMa PHSA 314'“, SHSA _ SHns HIA PR A
Sot S %, *\ 1 I
& U Soy, U U Sosap, s VS sy UOgapg
4 2 K oK
SK XK
LA SKA NA ksa — A gean Ko Cgeon Hoa KA

Kia
KA - SKSA _ C KSA
S s
equals
2 A ol
PHA SMA | onan A, g SHQS‘\ HFA Hor HSA
* %,
/b' l S‘“J.A v
M U Wi, % A SHSA U H(MRy ) [Hia KA
2, Yoy, [Kpa
Y ’\ﬁ Y
HA S - SHSA H S HSA
U Soi, \‘% o= A
k%fq MA Sq\ A o '
KA - SKSA L KSA
S s

The proof is, in the order of application, by the pseudo-naturality of |, by that of o,
by the axiom for the algebra 2-cell oy, and by the axiom for the pseudo-algebra map

(XSA,MA
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Finally for the axiom (o*-2), the following equality holds by the axiom for the
pseudo-algebramap tisa 4, and by the pseudo-naturality of n.

<& U MHna KA
/AN Mo U%A
i

SHNa

SHA —— SHSA —— < U min,
Soa 4 SOCH Al SOISA 4 OCSA,uA_l Oolsa / / \
KA KsA KSA
nAa gﬁ
This concludes the proof of the proposition. O
5.3.4 2-cells

Proposition 5.17. For any modification y: oo — B : H — K, where H and K are
pseudo-endofunctors on C, the following holds: if v is a 2-cell in Liftps 54 @nd
v:G — B:H — K, thenyisa2-cell in Ps-DistS and y: ®(d) — ®(P).

Proof. The assumption requires vy to satisfy the axiom (5.6). Then the condition (5.2)
that y needs to satisfy to be a 2-cell y: ®(a) — CI)(B) in Ps-Dist® follows from the
axiom (5.6) and that for modifications. O

Now we are ready to define the 2-functor ®. For O-cells, define the function dg
using ®" for each pseudo-endofunctors H on C, defined in Proposition 5.15, i.e., we
define do(H, H) = (H,®" (H)), where ®H () = pH o SH1. For 1-cells, given a1-cell
(0, @) in Liftpg 5 5y We define @(ot, ) = (o, @(t)) as in Proposition 5.16. And, for
any 2-cell yin Liftpg 5 5, LemMa5.17 justifies defining @(y) = v.

Proposition 5.18. @ defined as above is a 2-functor.

Proof. Follows from routine calculation. O
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5.4 From pseudo-distributive laws to liftings

In this section, we show the construction in the opposite direction, from pseudo-
distributive laws to liftings. The structure of this section is similar to that of the
previous section. First we construct O-cells of Liftps 5 5q from those of Ps-Dist® in
Section 5.4.1 and then similarly for 1-cellsin Section 5.4.2 and 2-cellsin Section 5.4.3.

54.1 O-cells

Proposition 5.19. Given a pseudo-monad (S p,n,t,A,p) and a pseudo-endofunctor
H on a 2-category C, a pseudo-distributive law of Sover H givesriseto alifting of H
to Ps-S-Alg.

Proof. We construct a function WHfrom the set of all pseudo-distributive laws of S
over H to the set of all liftings of H to PssS Alg. (Again, we omit the superscript H
in the rest of this section.) Given a pseudo-distributive law (& : SH — HS [,1), we
define the value W(9) at this pseudo-distributive law to be the pseudo-endofunctor on
Ps-S-Alg that sends a pseudo-S-algebra (A, a, ay, ay), to

W(8)(A,a,ayay) = (HA,a¥® a1 ® at®)

where the structure map is defined to be a¥(®) = Hao 8, and the invertible 2-cells

a¥(d) (8)

a, and é\f are defined as described in the following diagrams:

dsA 87t N

HHA P HSA

HSA (5.10a)
HSa

Hpa I Hay Ha

8A Ha
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(5.10b)

One can show that data defined as above satisfy the necessary coherece conditions for
pseudo-algebras. Hence (HA, Hao da, ﬁﬁ’ ®) , a}f (5)> isindeed a pseudo-S-algebra. For
the algebramaps, given apseudo-S-algebramap ( f, ?a,b) 2 (A a,ay,ay) — (B,b, by, by),
we define W(8)(f, f,p) tobe (Hf,'W(8)(T,p)), wherethe invertible 2-cell 'W(8) (T, )
isgiven as

It is routine to verify that this 2-cell satisfies the axioms for pseudo-algebra
maps and that it indeed is a pseudo-S-algebra map from (HA, Hao SA,aﬁ(S),ﬁn\y(é)>
to (HB,Hbo 65,531(5),5;]{'(8)). For algebra 2-cells, given  : (f,f,p) = (9,0ap), We
define ¥ (3)(x) = Hy. Again, itiseasy to seethat thisiswell-defined. This provesthat
PH iswell defined. Sinceit is obviously alifting of H, this completes the proof of the
proposition.

0]

542 1-cells

Proposition 5.20. Let 87 : SH — HSand 8% : SK — K S be pseudo-distributive laws
over pseudo-endofucntorsH and K, and o : H — K be a pseudo-natural transforma-
tion. Then a pseudo-distributive law o.* of Sover o with respect to 87 and §¥ induces
alifting ¥ (o) of o to Ps-S-Alg from WH (8M) to WX (8K).
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Proof. Aswe have seen in Section 5.2.2, to define a lifting of oo we need (1) to con-
struct, for each pseudo-S-algebra (A, a, ay, an ), a2-cell, which we name ¥ (0*) o o, that
makes oa a pseudo-algebra map from WH(87)(A a,a,,a,) to WK(8X)(A a,ay,aq),
and (2) to show that the construction in (1) makes the pseudo-naturality of o also lift.

For (1), we define the 2-cell \¥(a*)a 4 as follows:

We need to verify that this defines a pseudo-algebra map. For the axiom with ay,, the

following equality holds by, in the order of application, the modification axiom for o.*,
by the pseudo-naturality of o and by the axiom (ou*-1):

SN Ka
KA SKSA % %A FPKA —4 KA

'Ld* 2,0%
%(m %LS“/ o 3 | e |
SSH $Ha

PHA A, SHSA

SHA | o 'KSA SHA  wa| U KSA o KSA
8 LT |8 [y |Ka= U bg, Kia| UKa, |Ka
—H '
HSPA HSA KA KA - KSA - KA
HHA U b Hsa { 0a HHA Sﬁ Ka
@.‘?‘ x—1
Hua YHa, |Ha 7o bop ™ g boa s
SHA HSA HA SHA — ~ HSA — -~ HA
A a RN Ha

and for the axiom with ay, we have the following equality by the axiom (a.*-2) and by
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the pseudo-naturality of o

For the pseudo-naturality part (2), the axiom for algebra 2-cells holds as

S f
SHA —2 . KA - KB KA
| .
S| bopt Bf gEH |8k S I soy "
' ' SHf S
HSA - KSA - KSB SHA » SHB ——2, KB
Ha| lJoa Ka (KT, |Kb S uE)t sf Jog™t |8
HA - KA - KB HSA -~ HSB - KSB
oA Kf H Sf ‘ olss
A I o S Ha| (Hf,, Hb Yoy Kb
HB HA - HB - KB

Hf

oB

by the pseudo-naturality of ow and then by the axiom for modification o.*. This proves

the proposition.

5.4.3 2-cells

O

Proposition 5.21. For any modification y: oo — B : H — K, where H and K are
pseudo-endofunctors on C, the following hold: if y is a 2-cell in Ps-Dist®> and
yiot — B*: 8" — 8, thenyisa2-cell in Liftpg g oy and y: (o) — W(B*).
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Proof. The assumption requiresthat y satisfy the axiom (5.2). Then the condition (5.6)
for ytobea2-cell y: W(a*) — ¥(B*) in Liftpg 5 5 q follows from that axiom (5.2) and
that for modifications. O

Now we define a 2-functor ¥: define Wo using ¥ defined in Proposition 5.19, as
Wo(H,8") = (H,¥H(8")). For 1-cdls, given a 1-cell (o, or*) in Ps-Dist® we define
¥ (o, 0*) = (o, ¥(ar*)) asin Proposition 5.20. And, for any 2-cell { in Ps-Dist®, we
define ¥ (£) = , again from Proposition 5.21

Proposition 5.22. ¥ defined as above is a 2-functor.

Proof. Follows from routine calculation. O

5.5 Proving the equivalence
We have constructed 2-functors ® and ¥,
. @ . .S
LIftPS—S—A'g <—\P_> Ps-Dist
and now we are going to show that they define an equivalence of 2-categories.
Theorem 5.23. The 2-categories Ps-Dist® and Liftpg s Alg @re equivalent.
Proof. First, we show that there exists a 2-natural isomorphism

0:1d —— ¥Yoo.

Its component at H isan arrow in Liftog Alg 1€, @ pseudo-natural transformation, but
inthis case in fact a 2-natural transformation

0, H — ¥(®(H)),

I

whose component at a pseudo-algebra (A, a, ay, a,) is a pseudo-algebra map

(01) Aasan | (HARY 8, a) — (HA Haolf o SHia, & 1) ) @)
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givenas (85)aaa.a,) = (10HA; (67)aa), Wherethe invertible 2-cell is given as

SHA

SJJ%)

idsHA
We need to verify that this satisfies the axioms for pseudo-algebra maps; for the unit
axiom, it follows from the unit axiom for pseudo-map H (@, ) and the axiom for mod-
ification a,. For the associativity axiom, it followsfrom, in the order of application, the
modification axiom for ay, the associativity axiom for pseudo-algebra map ﬁ(éa,pA),
the fact that Ha,, isan algebra 2-cell, and the right unit law for pseudo-algebraa. The
2-naturality of 85 is proved by the fact that for any pseudo-map (f,?a,b), the 2-cell
Hf,p, isan algebra 2-cell, and the unit law for pseudo-map (f, T, ). The 2-naturality
of 0 follows from that of o and the fact that o lifts (o5 is an algebra 2-cell).
For the opposite direction, we construct a 2-natural isomorphism

e:do¥Y — Id,
whose component of € at 8" is an invertible modification
ggn - O(P(87)) — &

which is an arrow in Ps-DistS. Thisis a specia case of a pseudo-distributive law over
a2-natural transformation, that is, over idy. Itscomponent (esH)a a A isof type

(egr)a - Hia 0 88 0 SHNA —— 8
and defined asin

S5
SHSA HSA

4,
SHna| 487! HSa &
J HAa

SHA » HSA — » HSA
N idHsa
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Thisisindeed a pseudo-distributivelaw over idy: we need to verify the axioms (o *-1),
(a*-2) and the one for modifications. These follow from routine calculation. The 2-
naturality of € also follows from easy calculation. The 6 and € defined in thisway are
obviously isomorphic (i.e., invertible). Thisimpliesthat ® and ¥ are equivalences of
2-categories between Ps-Dist® and Liftps g a/- O






Chapter 6
Composing Pseudo-Distributive Laws

In this chapter we further extend the discussion about composition of lifting and com-
position of distributive laws in Sections 3.6 and 4.6 and obtain similar results for the
pseudo case. We first show that there are strict monoidal structures on the categories
Dist® and Lift 54 and that the functors © and = preserve those structures. We then
consider corresponding structures in the pseudo setting. In Ps-Dist® and Liftps 5 o/qs
the situation is more complex owing to the pseudo-ness. We study the 2-category
Ps-Endo(C) to explain the special monoidal structure (bimonoidal structure), of which
the structures on Ps-Dist® and Liftps 5. a1g @€ iNstances. This chapter bridges the con-
structions for pseudo-endofunctors and pseudo-monads, hence connecting the discus-
sion in Chapter 5 to that of Chapter 7.

In Section 6.1 we start where we ended in Section 3.6. The construction for H2 and
H&08H : SH2 — H2Shoth generalise to tensor products on Lifts alq and Dist®, respec-
tively, providing strict monoidal structures on those categories, and the isomorphisms
© and E preserve those structures. We do not examine the case of Dist; and Extp in
thisthesis but similar results hold there by duality too.

The structure on the 2-category Ps-Endo(C), consisting of pseudo-endofunctorson
C, pseudo-natural transformations between them, and modifications, is a bimonoidal
structure. We consider the 2-categories Ps-Dist> and Liftpg o Alg @d bimonoidal struc-
ture on those 2-categories. We aso prove the 2-functors ® and ¥ preserve the bi-
monoidal structures. We then conclude the chapter by stating results generalising
those in Section 3.6; we will use them in the next chapter when we consider pseudo-
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distributivity over pseudo-monads.

6.1 Monoidal structure on Dist®
The following proposition describes the strict monoidal structure on DistS.

Proposition 6.1. The following data yields a strict monoidal structure on the category
Dist>: Define a tensor ® on Dist®

® : Dist® x Dist> — Dist®
by
(H,8" :SH - H9 ® (K, 85 : K = KS) = (KH, " : SKH — KHY),

where 8H = K& 0 8XH, and, for arrows o : (H,8") — (H’,8" : SH' — H'S) and
B:(K,8) — (K,8¥ : K/ = K'S). Thevalue B@ o : (KH,8KH) — (K/H’,8¥H")
is given by the horizontal composition Bo. : KH — K’H’. The unit for this tensor is
(Idg,ids: S— S).

Proof. Well-definedness of the object part followsby aslight generalisation of Lemma3.20.
For the arrow part, to see that it iswell-defined, i.e., that Sdistributes over this natural
transformation, we examine the diagram

KH K H
) KSH )

Fo BSo BaS

|

XK'H’ —>8K’H’ K'SH' —>K’8H' K'H'S

KH KHS

which commutes since S distributes over both o and . It is easy to see that this
tensor is strictly associative and has a strict unit (Idg,ids: S— S), making Dist® a
strict monoidal category. O

Similarly, strict monoidal structure on Liftg 5 is given as follows:
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Proposition 6.2. The following data yields a strict monoidal structure on the category
Liftg g: We define a tensor @ on the category Liftg pq

X LiﬁS-A|g X LIftS-A|g — LIftS-A|g

(H,H) @ (K,K) = (KH,KH)
on objects, and for arrows o : (H,H) — (H’,H’) and B : (K,K) — (K’,K'), the com-
posite B® o : (KH,KH) — (K'H’,K'H’) is again given by horizontal composition
Bo.: KH — K'H'. The unit for thetensor is (Idc, ldsag).

Proof. The well-definedness of the object part is immediate. To see that Bo lifts to
S-Alg from KH to K'H’, we need to verify that, for any S-algebra (A, a), the component
(Bou)a isan S-algebramap from (KHA, aKH) to (K'H/A, aK'H'). By the equation (3.7),
the structure arrow decomposes as

—a =Ka o0 SKnua, (6.1)

similarly for the arrow a<'M'. Therefore well-definedness amounts to the commutativ-
ity of the following diagram:

HKoa | geha A, gopa

SKNnHa KNpra SKMyra

KHA T giin Pa qogiia
rﬁ' (8) P
KSHA A, kg Psra igia
KaH (A K%ﬁ' K'aH
KHA —o— KH'A — K'H'A

which commutes by the fact that oo and B lift to S-Alg for the squares (A) and (B),
respectively, and by the naturality of n, B and i for the rest of the squares. Note that

KHA

the component (Boc) a has two equivalent decompositions Ba o Koa and K'owa o By,
and in the above diagram we chose the former. The composition is obviously strictly
associative and its unit is (Idc, ldsalg), therefore Lifts aig is again a strict monoidal
category. O
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We have seen in Section 5.5 that the categories Liftg 5, and Dist® are equivalent.
The following theorem says that they are also equivalent as strict monoidal categories,
hence the equivalences © and = preserve the structures described above.

Theorem 6.3. The functors constructed in Chapter 5
. © . .S
LIftS-A|g —><:_ Dist
are strict monoidal functors.
Proof. Given two objects (H,H) and (K, K) of Liftg 5, the value of the functor © at
(H,H)® (K,K) = (KH,KH) isadistributive law ©(KH), which, by definition of ©,
the equation (6.1) and the naturality of X, yields
O(KA) = pkH 0 SKHn

— K o f"H S0 SKNHSo SKHN

= Kﬁﬁ oKSHn oﬁRH o KnH

= KO(H) o O(K)H

=0(H)®0(K)

demonstrating that © preservesthe tensor ®. Since © and = are isomorphisms (Theo-
rem 3.19), it means that they define an isomorphism of strict monoidal categories. [J

Although it follows from the above, a direct proof that = is strict monoidal goes
asfollows: let (H,8" : SH - H9 ® (K, 8K : K — KS) = (KH, 85" : SKH — KHY)
for objects (H,8" : SH — HS) and (K, 8% : SK — KS) of Dist®. Then, for the lift-
ing 2(8H) @ 2(8%) = Z(8K)Z(8") the structure map a=(3)2@") of the value at an S
algebra (A, a) is calculated as follows:

a2 = ka6 o (£ o sk
= KHao KSE o KIJ-HA06§—|A08<T]HA
= KHao K8} o Kppao KSnHao 85
=KHaoK8} o8
= KHao (K&8" 0 8¥H)a

_ é\E(SKH)
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showing that Z preserves the tensor on DistS. It follows that, since for the units
O(ldc,idsaig) = HoSn = idsand a%(1%) = a hold, © and = are strict monoidal functors
between Liftg 5, and Dist®.

For any category C, the category of endofunctors on € and natural transformations
between them is a strict monoidal category with composition of endofunctors as the
tensor and the identity functor on € as the unit. Now, let U, and U, be the forgetful
functors from Dist® and Liftg 4 to Endo(€), respectively, which send each object toits
first component. Then the following diagram commutes:

(1]

Dist® > Lifts g
(6.2)

Endo(C)

Corollary 6.4. Thediagram(6.2) isa diagramof strict monoidal categoriesand strict
monoidal functors.

6.2 The structure on Ps-DistS

In this section we consider the structure discussed in the previous section in the pseudo-
setting, where the strict monoidal structure is replaced by something more complex.
First we take a 2-category C and consider the 2-category Ps-Endo(C) of pseudo-
endofunctors on C, pseudo-natural transformations between them, and modifications
between them. This category does not have a strict monoidal structure like Endo(C)
in the previous section; moreover, neither does it have monoidal structure, mainly
because of the pseudo-ness. The structure can be called a bimonoidal structure, the
precise meaning of which we detail later in the section. The 2-categories Ps-DistS and
Liftps 5.alg have the same structures on them, which are preserved by the equivalence
pseudo-functors® and ¥ in Chapter 5, making adiagram similar to (6.2) commute.The
definition of bimonoidal bicategory can be found in Section 2.5.
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6.2.1 The 2-category of pseudo-endofunctors Ps-Endo(C)

We first have a look at the structure on the 2-category Ps-Endo(C) to describe how
the strict monoidal structure in the ordinary (non-pseudo) case is replaced by the bi-
monoidal structure in the pseudo-case. The category Ps-Endo(C) is a 2-category with
the composition of 1-cellsin Ps-Endo(C) given by the vertical composition of pseudo-
natural transformations, which is well-defined up to an equality because the composi-
tion of 1-cellsin the 2-category C is defined up to an equality and is associative, and
also because the pasting of 2-cellsin C is associative. For 2-cellsin Ps-Endo(C), i.e.,
modificationsin C, both the horizontal and vertical compositions are well-defined
There exists a tensor on Ps-Endo(C),

® : Ps-Endo(C) x Ps-Endo(C) — Ps-Endo(C),

which is a pseudo-functor rather than a functor. The O-cell part of this tensor is given
by the composition of pseudo-endofunctors, just as the case in Endo(€), and its asso-
ciativity is guaranteed by the coherence axiom of pseudo-functors. However, thisis
not the case for the 1-cells. The arrow part of the tensor ® on Endo(C) is given by
the horizontal composition of natural transformations, which is obviously associative.
But that is not true for Ps-Endo(C). For Ps-Endo(C), the 1-cellsin Ps-Endo(C) are
pseudo-natural transformations, for which horizontal composition is defined only up
to an invertible modification. Let oo: H — H’ and B : K — K’ to be pseudo-natural
transformations between pseudo-endofunctors on C.

H . K
C Jo C §p C
H’ K’

Then, the arrow part of the tensor o ® B : KH — K’H’ can be defined as BH’ o Ko or
K’o.o BH, which are equal only up to an invertible modification

K
KH —% o KH'

pH 4B |BH

K'H — K'H’.
Ko
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L et us now assume that we choose BH’ o Ko to be the 1-cell part of the tensor. (In fact,
it does not affect the later discussion what choice we make.) Suppose we also have a
pseudo-natura transformationy: L — L/, withL,L’ : C — C. Then the diagram

Id
oRPRY 9 x (BH oK) @y
ldx ® ®
o® (YK o LP) ?

need not be commutative because (YK’ o LB)H o LK and yK'H' o L(BH’ 0 Kat) are
equal only up to an invertible 2-cell because the functoriality of pseudo-functors hold
only up to invertible 2-cells. The situation is similar for units, as we have an equality
for one of the unit holds, but not for the other: for 1-cellsoc:H — H’,idy : H — H and
idy : H' — H’, oneonly hasidy ® oo = aH o Hidy, but hasa® idy: = idy/H o Ho.

Proposition 6.5. The following data defines a pseudo-functor
® : Ps-Endo(C) x Ps-Endo(C) — Ps-Endo(C)

e givenapair H and K of O-cells, the value H ® K is defined to be KH,

e givenapairo.:H — Kandp: H' — K’ of 1-cells, choose BH’ o Ko asthe value
o® p.

e givenl:oo—o/:H—-Kand&:B—p':H — K’ thevalue(®&:00®@p — o’ @ P
is given by the horizontal composition EH’ @ K.

Thisisnot a Gray-monoid because here we are dealing with pseudo-functors rather
than 2-functors: in order to be a Gray-monoid, onewould need — ® H to be a2-functor,
but in generdl, it is not. We do not need to develop a precise general statement of the
structurefor the purpose of thethesis, i.e., the development of pseudo-distributivelaws,
but for completeness, we state the following. The definition of bimonoidal bicategory
appears as Definition 2.28. Here, a bimonoidal 2-category is a bimonoidal bicategory
whose tensor product is a pseudo-functor and, whose underlying bicategory is a 2-
category.

Proposition 6.6. Ps-Endo(C) isa bimonoidal 2-category.

Proof. The proof an immediate consequence of [GPS95]. O
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6.2.2 The structure on LiftPs-S-AIg
Now we turn to the 2-category Liftpg g 54- This 2-category has astructure that is essen-
tially the same as Ps-Endo(C). The structure is the pseudo-version of that on Liftg
we saw in Section 6.1, but similarly to the case of Ps-Endo(C), owing to the pseudo-
ness we lose not only the strictness but also the equality on the composition of 1-cells:
the composition of 1-cellsin Liftps s Alg is defined only up to invertible 2-cells as ex-
plained later. Moreover, the similarity between Liftpg g o @d Ps-Endo(C) extendsto
the fact that, for O-cells, the structure on Liftpg g 54 i Strictly associative because the
O-cell part of the tensor, which we define below, is defined in terms of the composition
of pseudo-functors. Thisis not the case, however, for the structure on the 2-category
Ps-Dist®, which we investigate in the next section.

Define atensor ® on Liftps 5 54 8 @ pseudo-functor

® : Liftpg s alg X Liftps s a1g — Liftps s AIg»

such that, for apair of 0-cells (H, H) and (K,K), thevalue (H,H) ® (K,K) isgiven by
the composition of pseudo-endofunctors, i.e.

A~

And, given 1-cells (., @) : (H,H) — (H’,A’) and (B,B) : (K,K) — (K',K'), they are
sent to

~ —_—

(,0) @ (B,B) = (@B, 00®P),

where o B isapseudo-natural transformation from KH to K’H’, which means, firstly,
for each pseudo-S-algebra (A, a,ay,a,), which we abbreviate as (A, a), the compo-
nent (o.® B)a = (BH’ o Ka)a constitute a pseudo-algebra map from (KHA, akH) to
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(K'H'A, aK'H"), together with the 2-cell (BH' o Ko)aa

KHA SKH'A K'H'A

S(OLA H’A

KnHa| U SKngy Knpa I B, KA

x ,
SKSHA X508 gy Psra | gogiia

. ~—1 gt
K oK K
Hya U M o “11’A U BS—I’A,uHrA

KA (6.3)

Y

K ,
KsHA K508 g _Psra | ogqiia

Ka®|  yKoaa K& UB K'ah'

Y

KHA —R%A | hia —Pranyia

that satisfies the axioms for pseudo-algebra maps.  Secondly, BH’ o Ko
should be pseudo-natural as pseudo-algebra maps. Given any pseudo-algebra
map (f,f,p): (A& aya)) — (Bb,byby), the second component of the value

KH(f, T4p) isgiven by the diagram

KHA XKHB

KHf

SKnHa J SKngt Knhe

' KSHf
SKSHA SKSHB
K KR
HHa ey Hrig
KSHA KSHT KSHB

K&|  UKA(T,p) | KBS

' KH f
KHA KHB

The proof that the axiom (5.5) holdsfor this2-cell isgiven, inthe order of application,
by pseudo-naturality of 3, that of B then by pseudo-naturality of ﬁ'? and 3, and then
by that of 1.

And for the 2-cells, given 2-cells { : (o, &) — (o, d) : (H,H) — (H’,H’) and
£:(B.B) — (B.B) : (K,K) = (K',K'), the value { ® & is given by the composite
modification EH’ o K, which obvioudly liftsfrom @ Bto & @ .




116 Chapter 6. Composing Pseudo-Distributive Laws

Putting all these together,

Proposition 6.7. The data described above define a pseudo-functor

® ! Liftpg salg X Liftes s plg — Liftps s alg:
Proof. Functoriality isverified routinely. O

Our next claim (although we do not really need this for our analysis) is that this
tensor @ gives abimonoidal structure on Liftpg g g On O-Cellsthe tensor ® is strictly
associative, which follows from the fact that the composition of pseudo-endofunctors
is strictly associative. However, for the 1-cells, the situation is just as the case for
Ps-Endo(C) and again is not very simple. We have associativity only up to coherent
invertible 2-cells, thereby failing to make Liftpg 5 5 @ Monoidal category.

Proposition 6.8. Liftp g 4 iS@ bimonoidal 2-category.

Proof. Followsroutinely from above and Proposition 6.6. O

6.2.3 The structure on Ps-Dist®
Similarly to the cases of Ps-Endo(C) and Liftpg 5 54, We define the tensor
® : Ps-Dist® x Ps-Dist> — Ps-DistS,

asapseudo-functor such that, given apair of 0-cells, (H, (8", g™, 7)) and (K, (8¥, 1%, 7)),
thevalue (H, (8", 0", 7)) ® (K, (8, 1€, 7)) isdefined to be (KH, (3, pH 7)),
where 8¥H is a pseudo-natural transformation

K" 0 8¥H : SKH — KHS,

and the invertible modifications ikt is given by:

KH H KH K H
ki 2 e O sens O3 ks KOS kne
o USKng 3
k &
pKH JEH KSH Kk KHup
lKuH
' 8 H Ko™ '

KH KSH KHS
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and 7K by:

KaH

KHS
Proposition 6.9. Thedata (8¥H, ", 7KH) defined asabove yields a pseudo-distributive

law over KH.

Proof. We need to verify that the two invertible modifications piKH and <" satisfy
the three axiomsfor pseudo-distributive laws. The proof that axioms (H-1)-(H-3) hold
for these two modifications are given by: in the order of application, (H-1) by axiom
(1) for & (twice) and pseudo-naturality of o, (H-2) by axiom (2) for & (twice) and the
axiom for modification 1, and (H-3) by pseudo-naturality of o, axiom (3) (twice) and
the modification axiom for . O

Now we are left to define the 1-cell and 2-cell parts of the tensor ® on Ps-DistS.
Given apair of 1-cells,
(o,0) < (H, (37, p 7)) — (', 37,1, 7)),
and
(B.B") : (K, (8, H.7") — (K, (8, . 7)),
we define (o,0") ® (B,B*) = (0 ® B, (a® B)*), where aa® B is BH’ o Kat, and the

invertible modification (o ® B)* is defined as

KH K H
SKH y KSH y KHS

Ko U8 KSo Ko |KaS

4 KH/ K H'
SKH’ 8 KSH’ o KH'S

PH'| UBH Bey UBGE |BH'S

K’H/ K’ H'
S( H/ 8 K/s_|/ 8 K/H/S
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Lemma 6.10. The invertible modification (a.® 3)* defined in the diagram above is a
pseudo-distributive law of Sover o.@ B with respect to §KH and X'

Proof. It is easy to see that the above diagram defines a modification. We now need
to verify that (a® PB)* satisfies axioms (o*-1) and (a*-2). For (a*-1), the proof is
routinely given by using the axioms for pseudo-distributive laws o* and *, and for
modificationspH, ¥, 7t and 7K. O

Finally, for 2-cells: given 2-cells ¢ : (o, 0*) — (o, 0/*) and & : (B,B*) — (B/,p’")
the value { ® € is defined to be EH’ o K, which is easily seen to satisfy the condition
that Sdistribute over it with respect too.®  and o’ ® B'.

Now we can state the following:

Proposition 6.11. The data described above defines a pseudo-functor
® : Ps-Dist® x Ps-Dist® — Ps-Dist®.

Now we consider the bimonoidal structure on Ps-Dist®. Recall that both on Ps-Endo(C)
and Liftpg g pyg, the tensor is strictly associative on O-cells. However, for the case of
Ps-Dist®, since the 0-cells are defined in terms of pseudo-natural transformations, the
tensor is associative only up to invertible 2-cells. The situation for 1-cells and 2-cells
are similar to the others.

Proposition 6.12. Ps-Dist® isa bimonoidal 2-category.

6.3 Equivalence of bimonoidal categories

Proposition 6.13. The pseudo-functors @ and ¥ constructed in Chapter 5
S f
Ps-Dist® —— Lift
Ps-S-Alg

preserve the bimonoidal structures (not strictly), or in other words, there exist coherent
isomor phisms
Y(-)e¥(-)=¥(-o-) (6.4)
P(-)RP(—)=DP(—®—). (6.5)
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Proof. For ¥: assumewe are given pseudo-distributivelaws (87, g, q) and (8%, i, 7).
We need to show that there exists a pseudo-natural isomorphism

Y @ w(8K) = v © &)

between the liftings of KH, which amounts to showing, for each pseudo-S-algebra
(A,a,ay,ay), the existence of a pseudo-algebra map which consists of the identity
map and an invertible 2-cell, satisfying the pseudo-naturality condition Here we show
the construction of the pseudo-algebra map only. This pseudo-algebra map, from
Y(3)WP(87) (A a ay,an) to W(8KH) (A aayay) is the component at (A, a,ay,ay)
of the pseudo-natural isomorphism. If we denote the structure maps of the pseudo-
algberas ¥ (85)W(8") (A, a, ay, an) and W(8KH) (A, a, ay, an) by a¥(E)¥(E") and a* ("),
respectively, we can calculate them, from the definition of the pseudo-functor V¥, as;

—p(sK)

a¥ (") — g¥(K&"e8H) — KHao K8 o 8K

AP() ¥ (M)

which are equal up to an invertible 2-cell because of the pseudo-functoriality of K. The
pseudo-functoriality is defined in such away that the conditions for this 2-cell to be a
pseudo-map are satisfied automatically.

Similarly, for the opposite direction ®, we only show the construction for the O-
cells. Given O-cells (H,H) and (K,K) of Liftp g 5 g, We show that there exists an
invertible 2-cell that serves as a pseudo-distributive law of Sover idky with respect to
®(H) @ ®(K) and ®(H ® K), which providesthe pseudo-natural isomorphism between
®(H) @ ®(K) = ®(H ® K). By definition, the value on the right hand sideiis given by

~

PN —~K
OHRK) =N oSKHN=pH o SKHn

which s, from Theorem 5.23 and the pseudo-naturality, equal up to an invertible 2-cell
to

R SN

IH o SKHnN 2 KpH o fH S0 SKnHSo SKHn
~ K o RH S0 SKSHN 0 SKNH
= KﬁﬁoKSHT] oﬁRH o KnH
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On the other hand, we have
O(H) @ d(K) = KO(H) 0 d(K)H = K(p 0 SHN) o fKH 0 KnH

which is, again up to the pseudo-functoriality, equal to the above. Checking coherence
is routine but lengthy. O

The above discussion leads to the following theorem:

Ps-Dist® Liftps s Alq

6.6
<% v (60

Ps-Endo(C)

Theorem 6.14. Diagram (6.6) is a commutative diagram of bimonoidal 2-categories
and 2-strong bimonoidal 2-functors. Moreover, U1 and U, are strict.
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Pseudo-Distributive Laws Il

In this chapter we investigate pseudo-distributive laws and liftings where the pseudo-
endofunctor H has the structure of a pseudo-monad. A pseudo-distributive law over
a pseudo-monad is defined to be one over a pseudo-endofunctor that is compatible
with the extra structure which makes the pseudo-endofunctor a pseudo-monad. Con-
sequently, a pseudo-distributive law over a pseudo-monad consists of two extra 2-cells
for the multiplication and the unit of the second pseudo-monad, and seven extra coher-
ence axioms involving them and the rest of the data, in addition to those three for the
pseudo-distributive laws over a pseudo-endofunctor.

We aso define alifting of apseudo-monad T on a 2-category C to a pseudo-monad
on Ps-S-Alg: recall how liftings of pseudo-natural transformations and modifications
are defined in Chapter 5. For a pseudo-monad to lift to a pseudo-monad, we require
that not only the pseudo-endofunctor itself but also all other components of the pseudo-
monad, i.e., the two pseudo-natural transformations and three invertible modifications,
lift.

Section 7.3 is the pseudo-version of Section 3.7.2. The definitions given in Sec-
tion 7.1 and Section 7.2 define the 2-category Ps-Dist> 4 Of pseudo-distributive

ps-mona

laws over pseudo-monads and the 2-category of Liﬁgig%gds of liftings to pseudo-

monads. We show that these two are equivalent by combining the results of the previ-
ous two chapters. We prove that the 2-functors ® and ¥ we constructed to prove the
equivalence between Ps-Dist® and Liftps 5 a1g 1N Section 5.5 naturally define an equiva-

ps-monads

lence between Ps-Disty, naq @ Liftpe s alq - The proof of thisrelies on the result in

ps-mona

121
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Chapter 6 about the bimonoidal structures on both 2-categories.

In Section 7.4 we investigate the property of the composite pseudo-functor TS
under the existence of a pseudo-distributive law ST — TS thisis the pseudo-version
of Section 3.8 and, similarly to the discussion there on ordinary functors, the pseudo-
functor TS has the structure of a pseudo-monad induced by the pseudo-distributive
law.

7.1 Pseudo-distributive laws over pseudo-monads

A pseudo-distributive law of a pseudo-monad over a pseudo-monad is similar to a
distributivelaw of an ordinary monad over an ordinary monad. And just asthe latter is
given by combining distributivelaws of amonad over an endofunctor and over anatural
transformation, the former isgiven by combining pseudo-distributive laws of apseudo-
monad over a pseudo-endofunctors, pseudo-natural transformations and modifications,
except that in the pseudo-case the commutative axioms are replaced by invertible 2-
cells, together with a number of coherence axioms that they need to satisfy.

Definition 7.1. Given pseudo-monads (S, u>n°>,1° A5, p%) and (T,u",n",t",AT,p")
on a 2-category C, a pseudo-distributive law (8,15, 7, 751" ) of Sover T consists of

e apseudo-natural transformationd: ST — TS,

e invertible modifications S and 7i°,
) S

T STS TS T
P
LST s TS nST /;1 P8
20
ST TS ST TS
o o
e invertible modificationsp" and 1.
ST? o1 STS T T28 S
D
STy yp’ s ' $ (7.1)
N
P
ST TS ST TS
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subject to the ten coherence axioms as below. In [Mar99], Marmoleg o gave nine co-
herent axioms for a pseudo-distributive law. However, they seem not to be complete,
as some dual axioms are missing. Moreover, the presentation of diagramsin that paper
makes calculation difficult, in particular in checking what axioms follow from them.
Here we give amore structured presentation, including the apparently missing axiom.

The first axiom involves > and ', and is self-dual. Thisis the same as the first
axiomin [Mar99].

S S T S T
(T-1) e —V s g e — 1 L g N g
o R = =R NN h)
72 72 72 ~
$ UT]S
T TS T . TS
™S ™S

Axiom (T-2) and (T-3) are coherence between nS/pS and AS or pS. (T-2) is equiv-
alent to (coh 2) in [Mar99], but (T-3) is missing there.

(T-2) I L 21 -2 g5 1
9
A K. Py
=) kST yps THS| = ST >~ TS &
ll?uST llTxS
ST ST TS ST TS TS
idsr ) 5 idrs
(T-3) A L 21 P g5 5 1
N
& 7% T x
N BT UES TS| = [nSST = pg TSSO\
4pST $ \ U TpS
ST - ST -~ TS ST ~ TS -~ TS
idsr ) 5 idrs

Axiom (T-4) and (T-5) are similar to (T-2) and (T-3) (dual, in a sense) and they
involven™ /u" and AT or pT. Theseare equivalent to the (coh 8) and (coh 7) of [Mar99]
respectively.

(T-4) stz 0T, ror T8 | 12g stz O qor T8 q2g
7
< N T
Q R Ly
& STy iy ws| = ST = Jgy TS NS
Yot N | uaTs
ST ST TS ST TS TS
idsr ) ) idrs
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(T-5) sr2 O, pgr 1O
<A
) g Iy ur
UspT
ST ~ ST
idsr 8
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ST TS
ST2 ST — T3S
/&&
N\ V2
= ' Y & = qTTS
Q Up's
~ TS ST - TS ~ TS
5 idrs

Axioms (T-6) and (T-7) involve S, 15 and ", t" respectively and are dual to each

other. These correspond to (coh 4) and (coh 9) in [Mar99].

2 2
T-6) T 0% 215 2% gre B s
S
N ST ugs sns| = |19
ST LT 9T 55 srs 5, 1
s KT yp TS
ST S » TS
I
2 2
ST is» FTS S STS? oS, TS
Ve
uSST = \uSTS UpSs  TpSs s
T d STS oS TS YT TS
S =S S
wT Im Ty 3
ST S TS
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T? T8T T?
(T-7) sr3 O rorz IO, qogr T8 13
| \Z%»
STiN vig uTSTl o pTTS )
' T
ST? ol TST 8 25 A LEST S
SJT UHT J‘ /
or 5
I
5T?

Axioms (T-8) and (T-9) are dual to each other, involving S, /" and 1", 7> respec-
tively. These are equivalent to the (coh 3) and (coh 5) of [Mar99] respectively
(T-8) ST &

sZT\SfA
A A T
7 |t Tsts g &4 STS 5
SIS O,
f =~ ST v T = & TS
TR
n's
. d TS uS o TS
4n
S ~ TS S ~ TS
nTS nTS
(T-9) = ST s L ST oy
N N /ST\
N st OTST. 4 TST »
1) ST/:r_S 1)
/T T
2 >~ g vy T?S T2 - T°S
T2nS
T ) T T ~ T
H < u's u u's
TS T TS
S S

The last axiom involves 1S and 1" and is self dual. Thisisareformatted version of
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(coh 6) in[Mar99].
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T T T
(T-10) <72 T srar =10 o125 972 115 108 o
Sy ysr ST W's
ST S STS 5s TS
WST e TuS
st 5 TS
I
ST2s
o J,
VNN
T T T
o212 D orgr BT 1o TR 3515 18 129

53 “
123 uSTZ U l—1s-|— T uST U THS T ZHS So
FT = gr2 TST T2s =~ TS
oT T
T ) T (2
& S Lo WSl %
ST TS
o

The order in which the axioms are listed here is based on the duality, but there are
other perspectives on them. The axioms (T-2), (T-3) and (T-6) correspond to the fact
that 9 is a pseudo-distributive law of S over an pseudo-endofunctor. Also note that
some of the axioms imply that the two invertible modificationsi” and @' in (7.1) are
pseudo-distributivelaws of Sover T andn T, respectively: the axiom (T-10) isthat of
(o*-1) for p', and (T-9) isthat of (o*-2). Similarly, (T-8) isthat of (o*-1) for ', and
(T-1) isthat of (a*-2).

We now define a 2-category Ps-Dist>

H . S . .
5s-monads &S avariant of Ps-Dist> consisting only

of datainvolving pseudo-monads,

Proposition 7.2. The following data constitute a 2-category PS'DiStFS)s-monads: the O-
cells are pairs (T,8") of a pseudo-monad T = (T,u",n",7",AT,p") and a pseudo-
distributive law 87 = (87,5, 1", n° Q") of Sover the pseudo-monad. Suppressing
the 2-cell data, the 1-cells in Ps-Dist3 from (T,8") to (T',8"') are those in

ps-monads
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Ps-Dist® consisting of pseudo-monad morphisms from T to T'. And finally, the 2-

cellsin Ps-Disty 1 onads

mor phisms and preserve the pseudo-monad structure (compatible with the 2-cell com-

are those in Ps-Dist® that are defined between pseudo-monad

ponents of pseudo-monad mor phisms.)

7.2 Lifting a pseudo-monad to Ps-S-Alg

Just as in the case of ordinary (non-pseudo) monads, a lifting of a pseudo-monad is a
lifting of an endofunctor with some extra conditions, ensuring that the components of
the pseudo-monad lift to Ps-S-Alg.

Definition 7.3. Given pseudo-monads (S, uS,nS,15 A5,p%) and (T,u",n",",AT,p")
ona2-category C, alifting of T to Ps-S-Algisapseudo-monad T = (T, T, 07,17, AT,p")

for which
UT =TU; (7.24)
U =p'u, un’ =n"u; (7.2b)
Ut =1tTu, UAT=ATU, UpT=pTU. (7.20)

hold, where U isthe forgetful pseudo-functor from Ps-S-Algto C.

The condition 7.2ameans that T is a lifti ng of T as a pseudo-endofunctor. Hence
(5.3a), (5.3b), and (5.3c) hold for T. The conditions 7.2b require that uf should be a
lifting of U7 to Ps-S-Alg with respect to T2 and T, and T that of nT with respect to
ldps.saig @nd T. (Note that T2 is alifting of T2 as an endofunctor.) This means that,
for each pseudo-algebra (A, a, a,, a ), there exist invertible 2-cells

T T
A M g sr2a M oA
al| Unk, |& a’|  Ym, (@
A TA T2A TA
nA HA

such that the axioms for pseudo-algebra maps hold, and that the pseudo-naturality of
W™ andnT extend to that of p’ andnT.
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And the conditions (7.2c) mean that the liftings T, uT and nT are defined so that
the modifications t7,AT,pT also lift to Ps-S-Alg and satisfy the axiom (5.6), serving
ast',AT,p". For thecase of 1" it amounts to saying that the following holds:

SI' T T
st3a > MA, grea S| STA ST2A
\ ’
I A & — |z \$% N
aT3 H T“X,a aTZ H HX,a aT é H S‘CA %
T3A - T2A — TA = ST3A = ST2A —» STA
Tha Ha St L 7y
AN Y A I T T
»7
T2A T3A - T2A — TA
Hra Ha

Proposition 7.4. The liftings of pseudo-monads yield a 2-category Lift‘,;i”;‘{A,”gdS: the O-
cellsare pairs (T, T), where T isa pseudo-monad and T isa lifting of T as a pseudo-
monad. A 1-cell from (T, T) to (T’,T') isa pair (o, d) of a pseudo-monad morphism
o T — T’ and its lifting & from T to T'. And a 2-cell from (0, @) to (B,B) is a
modification of pseudo-monad mor phisms that lifts from o to B

7.3 Equivalence for the pseudo-monad case

In Section 5.5 we proved that the 2-functors ® and ¥ define an equivalence between
the 2-categories Ps-Dist® and Liftpg 5 5. [N this section, we prove that the 2-functors
@ and ¥ naturally induce 2-functors between Ps-DistS, .. and Liftgss'"g‘}i]gds, again

defining an equivalence between those 2-categories.

Proposition 7.5. The pseudo-functor @ in Proposition 5.18 induces a pseudo-functor

.. PS-monads . .S
from LIftPS‘S’Alg tO PS'DIStpS_monadS.

Proof. We show that @ is defined in such a way that it preserves the pseudo-monad

. .c. pS-monads iotS
structure, hence is a pseudo-functor from Liftpg s aq~ 10 PS-Dist;e ngnags-

For O-cells, given a O-cell ((T,u",mT7),T) of ngss;”;mgdi we first need to show

O((T,uT,n"),T) = (T.u",n"),®(T)) isa0-cel in Ps-DistS,  ags: 1-6, D(T) isa
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pseudo-distributive law over a pseudo-monad rather than a pseudo-endofunctor. What
we need to do is to define canonically the extra data (7.1) for pseudo-distributive
laws for monads, that is, invertible modifications fi" and ". Then we need to ver-
ify those modifications satisfy the coherence axioms. Since (uT,u") : T2 — T is a
1-cell in Liftpg 4 there exists a pseudo-distributive law () : (T2) — o(T) over
U™ Meanwhile, the equality ®(T2) = ®(T ® T) holds by definition of ®, and, from
Proposition 6.13, we also have

O(TRT)2d(T)d(T).

Again by definition of ® in Ps-Dist® we have

~ ~ ~ ~

DO(T)RP(T)=TO(T)o®(T)T,
which altogether means that there exists a pseudo-distributive law

MT To(T)

D
sT? ~ TST - TS
suf U u's
st ~ - TS
o(T)

over u". We define thisinvertible 2-cell to bei" for ®(T). On the other hand, for f",
the discussion is slightly simpler than the above; we only need to consider the fact that
(M",nT): Idpssaig— T isal-cell inLiftpg s p g Thisimpliesthat d(n") : d(1d) — &(T)
is a pseudo-distributive law over n':

ids = ®(idpssAlg)

.S
SnA Néa
ST TS

O(T)
which provides the invertible 2-cell we defineto be ' .
For the 1-cells and the 2-cells, it isimmediate from the definition of ® in Proposi-
tion 5.18 that it preserves pseudo-monad morphisms and modifications between them.

Therefore, @ is a pseudo-functor from Lift2y SXe" to Ps-DistS O

ps-monads”
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Proposition 7.6. The pseudo-functor ¥ in Proposition 5.22 induces a pseudo-functor

. .S .. pS-monads
fromPs-Dist]e 1 onads 0 Liftpe s prg -

Proof. GivenaO0-cell ((T,u",n"),8") in Ps-Dist> we consider the value

ps-monads’

P((T,u',n"),87) = (T.u'n"), ¥(@")).

We claim that the value is a O-cell in LiftSog *, i€, the lifting W(8T) of T is that
of a pseudo-monad. In order to prove this claim, we need to show that, for the
pseudo-monad T = (T,u",n",t",AT,pT), there exist canonical liftings of pseudo-
natural transformationsp” andn T, and the modificationst™, AT and pT lift to Ps-S-Alg,
all from suitable domains to codomains generated by ¥(87). For the pseudo-natural
transformations ™ and nT, since the invertible modifications i" and 7" in (7.1) are
pseudo-distributive laws over uT andnT, the values W(uT, ") and ¥(n™, ") are, by
definition of P, liftings of uT andn', as required. And, for the modificationst', AT
and p', the fact that Sdistribute over them with respect to suitable pseudo-distributive
laws over suitable pseudo-natural transformations meansthat they also lift to Ps-S-Alg.
Therefore W(8") isalifting of a pseudo-monad.

Finaly, for the 1-cells and the 2-cells, it is immediate from the definition of ¥

in Proposition 5.22 that it preserves pseudo-monad morphisms and modifications be-

.¢.pS-monads
to L'ftPsSAlg .

O

tween them. Therefore, ¥ is a pseudo-functor from Ps-Dist>

ps-monads

ps-monads

Corollary 7.7. The 2-categories Liftpo g pq  and Ps-Dist;

ps-monads

are equivalent.

7.4 Composite pseudo-monad TS

We now consider pseudo-distributive laws and the composite pseudo-monads they in-
duce. Such composite pseudo-monads play a central role in the discussion of substitu-
tion monoidal structure given in the next chapter.

This section is the pseudo-version of Section 3.8. Given two pseudo-monads S and
T and a pseudo-distributivelaw ST — TS, we show that the composite pseudo-functor
T S has the structure of a pseudo-monad. We give a proof to this, which is the pseudo-
version of Proposition 3.30. The rest of the resultsin Theorem 3.36 also extend to the
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pseudo-setting: we state the corresponding theorem as Theorem 7.9 at the end of the
section.

Proposition 7.8. Given pseudo-monads (S, uS,mS,t5, A5, pS) and (T, 1", n",t", AT, p")
on a 2-category C, and a pseudo-distributive law & : ST — TS, the composite pseudo-
functor TS acquires the structure for a pseudo-monad on C, with multiplication given
by
TS lJTMS
TSTIS—— TTSS—— TS

Proof. The composite of pseudo-functorsis a pseudo-functor. Then we need to con-
struct the remaining data for a pseudo-monad (TS u"S,n"S,tTS ATS, pTS).

We define the multiplication p'S and the unit ™S as the following pseudo-natural
transformations:

S T
WS TsTs % 71ss U 17525 T8

S T
n™S:de . s 25 18

Next we define t" Sas in the following diagram:

TST8S TST28
TsrsTs %2 Tor2 > M gr2g

T8STS Y T8ss TOTS | Tdrys TOTS

TSU'S
THS 1grs

T2RTS—» T2STS: ——» T2STS | TE™'s [T8S
T2s3S ‘ T2STPS ‘ Lo
TszZ Y T2, Tzfss
TASTS RS T3S - T38 - 728
H 4T ‘ T3alS J THTSZ
T3|J.SS U T3TS T |J'S u Tll;s T2|JS

T2STS - T3S » T3S -~ T?S
T28S ‘ T3S ‘ TU'S

ursTs Vs WTS Yups WIS U1's u's
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The left unit ATS and the right unit p TS are defined as: for ATS
S T

TS° Lo TSNS

/N
7]7*

e S |Tes

TS YTl T

TS TSTS

TnT TZHS

\ Y
2
> K//Z » TS
/0; &
N u's

T8S

andp'S:

It is routine to verify that these definitions satisfy the coherence axioms for pseudo-
monads shown in Section 2.3. O

The proposition above is the pseudo-version of Proposition 3.30. The rest of the
results in Theorem 3.36 also extend to the pseudo-setting:

Theorem 7.9. Given pseudo-monads (S, uS,n>,t5,A5,p%) and (T,u",n",7",AT,p")
on a 2-category Cat, and a pseudo-distributivelaw & : ST — TS,

¢ the composite pseudo-functor T S acquires the structure for a pseudo-monad.
e PsTSAlgiscanonically equivalent to Ps-¥(3)-Alg

¢ theobject T S1 hasboth canonical pseudo-S-algebra and pseudo-T -algebra struc-
turesonit.



Chapter 8

An Application : Substitution

Monoidal Structure

In this chapter, we study the intended main application of the theoretical development
in this thesis. Every pseudo-distributive laws yields a composite pseudo-monad TS,
and hence, a monoidal structure on TS1 if T and S are pseudo-monads on Cat. We
demonstrate that the models of substitution described in [FPT99] and [ Tan00] are ex-
amples of the monoidal structures thereby induced by pseudo-distributive laws.

We start by looking at examples of pseudo-monads and their pseudo-algebras that
interest us in Section 8.1. These pseudo-monads are of two types: the first (Exam-
ple 8.1, 8.2 and others) is the pseudo-monads on Cat that yield the structures for mod-
eling contexts, such as Ty for finite product structure or Tgm for symmetric monoidal
structure. The second typeisthe (partial) pseudo-monad on Cat for free cocompletion
(Example 8.7). We also address the size issue related to this pseudo-monad briefly.
In particular, given a strongly inaccessible (or even just regular) cardinals x, one can
consider the free cocompletion under colimits of size less then x, and that technically
may be used to address the size issues.

Section 8.2 gives exampl es of pseudo-distributive laws between the pseudo-monads
described in Section 8.1. We explain why there exist pseudo-distributive laws of each
of the pseudo-monadsfor contexts over the pseudo-monad of free cocompletion, based
on the result in Chapter 7 on liftings and that in [1K86].

133
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In the following three sections, we show that an arbitrary pseudo-monad T on
Cat yields a canonical monoidal structure on the category T1. The significance of
that monoidal structure isthat when T isthe pseudo-monad Teoc Tt p, it yields precisely
Fioreet al.’s substitution monoidal stucture, and likewisefor Tanakawhen T iS Teoe Tsm.
Moreover, at the level of generality proposed here, we can follow the main line of
development of both pieces of work. The monoidal structure on T1 we obtain in this
way is the central result here.

We start again from ageneral discussion for the ordinary (non-pseudo) casein Sec-
tion 8.3 : given amonoidal category (C,®,1) (to recall the definition, see Chapter 2)
and amonad (T, i) on it, we give the definition of strength of T. We also show that,
given a strong monad T, the object T1 in € has a canonical monoid structure induced
by the strength.

This discussion extends naturally to the pseudo-setting: first, in Section 8.4, we
define the notion of pseudo-strength of pseudo-monads. we list ten coherence axioms,
which bear quite alot of similarity to those of pseudo-distributive laws, athough, for
pseudo-strength, it may be possible that one of the ten axioms (axiom (t-9)) is actually
redundant. In Section 8.5 we then show that, given a pseudo-monad T with a pseudo-
strength on the 2-category Cat, the category T1, where 1 isthe terminal object in Cat,
has a canonical monoidal structure. This monoidal structure is the main structure for
modelling substitution in our examples.

The last section (Section 8.6) then combines the above discussion with that on
pseudo-distributive laws from Chapter 7 and demonstrates the substitution monoidal
structures for the pseudo-distributive laws given as examples in Section 8.2. We have
seen that, given a pseudo-distributive law 6 : ST — TS, the composite TS has the
structure of a pseudo-monad (Section 7.4). The monoidal structure T S1 induced by
this composite pseudo-monad is what we use to model substitution. Those of the
pseudo-monads Tt and Tay are precisely the structures of Fiore et al. [FPT99] and
Tanaka [Tan00]. This chapter is mainly based on the papers [PT04a, PT04b].
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8.1 Examples : Pseudo-monads and pseudo-algebras

In this section we give several examples of pseudo-monads on Cat and the categories
of their pseudo-algebras.

Example8.1. Let T¢p denote the pseudo-monad on Cat for small categories with finite
products. The 2-category Ps-T¢p-Alg has objects given by small categories with finite
products, arrows given by functors that preserve finite products up to coherent isomor-
phism (non-strict), and 2-cells by all natural transformations. Thisis the well-studied
2-category FP of all small categories with finite products. For any small category C,
Ttp(©) isgiven by the (bi)free object of FP, i.e., the free category with finite products,
on €. Taking € = 1, the category T¢p1 is given, up to equivalence, by Set?®, which is
denoted by F°P by Fiore et al. [FPT99].

Example 8.2. Let Tgy, denote the pseudo-monad on Cat for small symmetric monoidal
categories. The 2-category Ps-Tgn-Alg has objects given by small symmetric monoidal
categories, arrows given by strong symmetric monoidal functors, i.e., functorstogether
with dataand axiomsthat makes them preserve the symmetric monoidal structure up to
coherent isomorphism, and 2-cells by all symmetric monoidal natural transformations,
i.e., those natural transformations that respect the symmetric monoidal structure. This
is the well-studied 2-category SM of small symmetric monoidal categories. Again,
Tsm(©@) is the (bi)free object of SM, i.e, the free symmetric monoidal category on C.
Taking € = 1, it follows, up to equivalence, that Tsn(X) is the category P°P of finite
sets and permutations used by Tanaka [Tan00].

Example 8.3. Lying between the above two examples is the pseudo-monad Tgyy 0N
Cat for small symmetric monoidal categories whose unit isthe terminal object. The 2-
category Ps-Tgm-Alg has objects given by small symmetric monoidal categorieswhose
unit isthe terminal object, arrows given by strong symmetric monoidal functors, and 2-
cells by all symmetric monoidal natural transformations. Taking € = 1, it follows that
Tsm (1) isgiven by Inj°P, where Inj denotes the category of finite sets and injections.
This category has been used by O'Hearn and Tennent, among others, to model local
state [OT97].
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Example 8.4. Combining the first two examples, specifically by taking the sum of
pseudo-monads, we may consider the pseudo-monad Tg; defined on Cat for small sym-
metric monoidal categorieswith finite products. The 2-category Ps-Tg, -Alg has objects
given by small symmetric monoidal categories with finite products, arrows given by
strong symmetric monoidal functors that preserve finite products, and 2-cells by all
symmetric monoidal natural transformations. This structure is used in the Logic of
Bunched Implication [Pym02]. The objects of Tg|(€) where € = 1 are precisely the
bunches of Bunched Implications.

The above examples of pseudo-monads allow us to model variable manipulation
for untyped variable binding, which will play the rdle of Sin a pseudo-distributive law
ST — TSlater. We now turn to a (partial) pseudo-monad for cocomplete categories,
which will play therbleof T.

The notion of free cocompletion is defined as follows:

Definition 8.5 (free cocompletion). Given asmall category €, the free cocompletion
of € consists of alocally small cocomplete category € and afunctor J : € — € such
that, for any locally small cocomplete category D, the composition with J induces an
equivalence of categories from Cocomp(é, D) to [C, D).

The next Theorem states that we can always construct such a cocompletion for any
small C.

Theorem 8.6 ([Kel82]). For any small category €, the free cocompletion € existsand
is given by the category [C°P, Set] together with Yoneda embedding Y : € — [C°P, St

For size reasons, there is no interesting monad on Cat for cocomplete categories:
small cocomplete categories are necessarily preorders, and the construction of the free
(locally small) cocomplete category does not have codomain in Cat. Therefore, co-
complete categories do not quite yield a monad or pseudo-monad on Cat. But there
are well-studied techniques to deal with that concern, essentially by applying size con-
straintscarefully. For instance, assume the existence of astrongly inaccessible cardinal
K. and suppose Set has cardinality k. Now let CAT be a universe that contains Set (and
therefore also Cat) as an object. Then the 2-category k-cocomp of categories that are
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small with respect to CAT and are cocomplete for all diagrams of size less than x is
pseudo-monadic over CAT and the pseudo-monad restricts to the above construction
on Cat regarded as a full sub-2-category of CAT. Therefore, the construction of the
free cocompletion by the Yoneda embedding extends to a pseudo-monad on CAT. For
further details see for example [ARY4].

Example 8.7. From the above discussion we can safely ignore the size concern. Based
on that, thereisa (partial) pseudo-monad T for cocompl ete categories. To the extent
to which Teoc is @ pseudo-monad, Ps-Tgoc-Alg is the 2-category of cocomplete cate-
gories, colimit preserving functors, and all natural transformations between them. If
follows from Theorem 8.6 that for any small category C, the category Teoc(C) is given
by the presheaf category [C°P, Set]. This construction is fundamental to al of Fiore
et al., Tanaka, and Pym [FPT99, Pym02, Tan00Q]. For variable binding, its universal
property has not been considered, but it does provide the key to why their various con-
structions, in particular their substitution monoidal structures, are definitive, and how
they relate to their other structures.

8.2 Examples : Pseudo-distributive laws

In Section 8.1, we gave four examples of pseudo-monads for variable manipulation
and one for cocompl ete categories. If, in each case, we can give a pseudo-distributive
law, it would follow from Theorem 7.9 that the combination of each of the first four
pseudo-monads with the fifth would yield a composite pseudo-monad. In fact, pseudo-
distributive laws do exist for each of these combinations, by the following argument,
based on the main result of [1K86]:

Theorem 8.8. For a small symmetric monoidal category C, the category [C°P, Set]
with the convolution symmetric monoidal structure is the free symmetric monoidal
cocompletion of € with unit given by the Yoneda embedding.

For an arbitrary small symmetric monoidal category C, the convolution symmetric
monoidal structure on [C°P, Set] at (X,Y) is given by the coend

N
X®Y:/ XixYjxC(—,i®]j), (8.1
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where, on the right hand side of the equation, ® denotes the symmetric monoidal
structure of €, and on the left hand side, ® denotes the extension to [C°P, Set]. The unit
for the convolution symmetric monoidal structureis C(—, 1), where | isthe unit of the
symmetric monoidal structure of C.

Corollary 8.9. Teoc liftsfrom Cat to Ps-Tgn-Alg.

Proof. To show that T¢o lifts, we need to show that for any small symmetric monoidal
category C, the category TeocC has asymmetric monoidal structure, with the unitm and
the multiplication p strong symmetric monoidal functors. But by Theorem 8.8, the cat-
egory TeocC = [COP, Set] with the convolution symmetric monoidal structureisthe free
symmetric monoidal cocompletion of C. Moreover, the unit 1 ¢ is given by the Yoneda
embedding, which is strong symmetric monoidal. Again by Theorem 8.8, the category
Teoc TeocC, With the convolution symmetric monoidal structure, is the free symmetric
monoidal cocompletion of T¢ocC, except for the size concern that we are ignoring. So,
up to coherent isomorphism, the identity functor on TeocC, Which is strong symmet-
ric monoidal, uniquely extends along the Yoneda embedding to a colimit-preserving
strong symmetric monoidal functor from Teoc TeocC 10 TeocC. But the multiplication pe
is, up to coherent isomorphism, the unique extension of theidentity map alongn e to
a Teoc-structure-preserving functor. So our extension of the identity functor must agree,
up to isomorphism, with pe, forcing the latter to be strong symmetric monoidal. [

Example8.10. Itisroutineto verify that Corollary 8.9 restrictsfrom symmetric monoidal
categories to categories with finite products, i.e., from Tgy to T¢p. By Corollary 7.7,
we therefore have a pseudo-distributivelaw of Tsp over Teoc. Applying Theorem 7.9to
Ttp and Teoc, ONe obtains the pseudo-monad Teoc T p With Teoc Trp(1) being equivalent
to [F, Set], which was Fiore et al.’s category for variable binding [FPT99]. One can
readily check that the symmetric monoidal structure (8.1) is the finite product struc-
tureon [F, Set], whichis calculated point-wise. The unit for the finite product structure,
i.e., the terminal object, is given by F(—,1).

Example8.11. By Corollary 8.9 and Corollary 7.7, thereisacanonical pseudo-distributive
law of Tgm over Teoc. Applying Theorem 7.9 to Tgy, and Tgoc, ONe obtains the pseudo-
monad Teoc Tsm With Teoc Tsm(1) equivalent to [P, Set], which was Tanaka's category for
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linear variable binding. The symmetric monoidal structure on [P, Set] is given by the
tensor (8.1), which may be expressed as follows:

XeY(n) =[] XmxYmpx8,/~
n=nmy +ny
where 8y, is the symmetric group on n elements. Note that S, = P(n,n). The equiva-
lence relation is generated by the relation

(X,y,00 (014 02)) ~ ((X01)X, (YO2)Y,0). (8.2

where x and y are elements of Xmy and Ynp, and 6, 61 and o2 are permutations on n,
my and mp (Mg + mp = n), respectively. Some simple calculations show that P(—,0) is
both the left and right unit for ®.

Example 8.12. Applying a similar discussion t0 Tgy and T Yields another com-
posite pseudo-monad with TeocTsma (1) given by [Inj, Set], as used by O'Hearn and
Tennent [OT97].

Example8.13. Applyingasimilar discussionto Tg and Teoc yieldsacomposite pseudo-
monad with Teoc Tl (1) given by the functor category [(Tgi 1)°P, Set]. The combination

of Tg) and Teoc isimplicit in the Logic of Bunched Implications; presheaf categories

such as [(Tg 1)°P, Set] appear explicitly there [Pym02].

8.3 Strength and monoid structure

In the following three sections, we study a property of a pseudo-monad with pseudo-
strength on Cat that it induces a monoidal structure on T 1. This monoidal structureis
the one used both in [FPT99] and [ Tan00] to construct substitution monoidal structures.
As we have done so far, we first study the non-pseudo version of this in this section,
which we then extend to the pseudo-version in Section 8.4 and Section 8.5.

Definition 8.14. Given a cartesian closed category (€, x,1), a C-enriched monad
(T,i,M) on € isgiven by afunction

ObT : ObC — ObC



140 Chapter 8. An Application : Substitution Monoidal Structure

together with arrows
Txyv : [X,Y] — [TX,TY]

in €, where [X, Y] denotes the internal hom, satisfying commutativity of the diagrams:

¥,2) % [X,Y] X.Z 1 X,X]
Tvz x Txy Tx,z 2 Tx x
[TY,TZ] % [TX,TY] — [TX,TZ] [TX,TX]

o

together with C-natural transformationspt: T2 — T and 1 : 1 — T satisfying the usual
three conditions for a monad.

Definition 8.15. A strength for a monad (T, 1) on a cartesian closed category C
consists of a natural transformation with components

ty : TX XY — T(XxY)

such that the following diagrams commute: suppressing the associativity isomorphisms
of

txy xid >~
TXXYXZ— T(XxY)xZ X TXx1
&) txxy,z id tx.1
2N
T(XxY x2) TX —— T(X x 1)
5 trxy Ttxy _5
T2X x Y T(TXxY) T2(X xY) X xY
uxid u n xid 7
TX XY - T(XXY) TX XY T(XxY)
tx,y tx,y

Theorem 8.16. To give a C-enriched monad on a cartesian closed category C is equiv-
alent to giving a strong monad on C.

A strong monad is a monad together with a strength. The next theorem states its
property whose pseudo-version gives us the structure we need to model substitution.
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Theorem 8.17. Given a strong monad T on a cartesian closed (more generally a
monoidal closed) category (€, x, 1), the object T1 of € has a canonical monoid struc-
ture with multiplication given by

t = "
1T1 T21 H

TIxT1 2 T(1xT1) — T1

and with unit given by
m:1—T1

Moreover, themultiplicatione : T1x T1— T1lisaT-algebramapinitsfirst variable,

e,
T21 571 T2 T(T1xT1) T 1y
uxid 1
TixT1 - - T1
commutes.

Sketch of proof. We give a construction for the associativity axiom required for T1 to
be amonoid. Therest followsfrom asimilar calculation. It isverified by the following

diagram:
Tixt T1xTI Tixu'
TIxT1xT1 C1E TIxTAXTY) — 1 o 71x721 —H 11471
| E,rjk |
tl,Tlf< Tl 77 (t) tiT(axT) (t) ty 721 (t) tim1
TAXTYXxTL —TAXTIxT)—— = T(AxTAXxTL))——— > T(AxT?) —— T(IxT1
( | ) tixT1T1 ( | )T(1><t1,T1) ( (| ) T(AxTlry) ( ) T(1xu) ( )
TlTl‘X T1 (t) T(l‘rlf( T1) (N TIT(lel) O Tly2g (N Tlt1
y ,
T2AXTL —— > T(TIxT1) ——— = T2(1xT1) > - T31 — T?1
| triT1 Tti71 Telr1 Ty
W X¢T1 M1 (W W1 W
Y
TixT1 T(1xT1) T21 - T1
tim1 Tlr1 M

which commutes, for the triangle at the top and the pentagon at the bottom, by the
axioms for the strength, for the square at the right bottom corner, by the associativity
axiom for the monad T, and, for the rest of the squares, by the naturality of the natural
transformations appearing in the labelling in each square. Note that the second vertical
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arrow from the left in the middle row of squares labelled as“T (It1 x T1)” isequal to
T(lT1xT1) Up to the associativity isomorphism, because € isamonoidal category. [

A 2-monad isa Cat-enriched monad. Thereforea2-monad T on Cat hasastrength,
and induces amonoid structureon T1, i.e., T1isastrict monoidal category. However,
when we have a pseudo-monad rather than a 2-monad, the situation is more complex.
We need the notion of pseudo-strength, which we introduce in the next section, and it
ismonoidal structure rather than strict one that a pseudo-monad with a pseudo-strength
induceson T1.

8.4 Pseudo strength

We seek to generalise the situation for ordinary monads to pseudo-monads on Cat.
So we need the notion of a pseudo-strength of a pseudo-monad. It is not true that
a pseudo-strength is equivalent to a notion of pseudo-enrichment, as we shall explain
later, but a pseudo-monad on Cat does yield a pseudo-strength, which isall werequire.
And that in turn yields a monoidal structureon T 1.

Definition 8.18. A pseudo-strength for apseudo-monad (T, y,n, T, A, p) onabimonoidal
2-category C = (C,®,1,a,A,p) consists of apseudo-natural transformation with com-
ponents

txy : TX®Y — T(X®Y)

and four invertible modifications, whose components are given by the diagrams bel ow:

txy ®id t
(TX®Y)9Z 2L "% T(XoY)0Z ~2% T(XeVY)®Z)  TX
o iifl Ta
TX®(Y®2Z) » TX®(Y®Z) TXR — T(X®I)
tX Yoz tx,|
2 trx,y Ttxy _,
TXRY — T(TXRY) —= T*(X®Y) X®Y
u®id VB L meid 7
Py
TX®Y TX®Y)  TX®Y — T(X®Y)
txy tx.y
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subject to the following ten axioms:

The axioms from (t-1) to (t-3) and (t-10) are for the coherence between the above
four invertible modifications. These correspond to (T-1), (T-8), (T-9) and (T-10),
respectively, of the axioms for pseudo-distributive laws over pseudo-monads.

(t-1)

NXxz!
(t-2) T2X T2X
o ‘ $: " ‘ o
&7 Torx _X&F < i &
2, | T2 |
T°X @1 — T(TX®I) = T2X®l) = TXel =, TX 22, TiXal)
trx, X,
5 < 2 \%
px @ id $ix, Mxel  Mx ®id Q i T Hxgl
TX®I TX®I) TX®I TX®I)
tx,| tx,|
(t-3) X®Y ®Z X®Y
@\ @\
@\& ®|d @\&
* ®id
(TX®Y) ®Z—»T X®Y ®Z—»T XRY)®Z) = Xe(Y®Z) =4 X®Y ®Z En (X®Y)®2Z)
QS
A\
TX®(Y®2Z) - TX®(Y®2Z)) TX®(Y®2Z) ®(Y®2))
tX Yoz X yez

Axioms (t-4) to (t-6) involve the invertible modifications > and ©#, which are the data
for the pseudo-strength and the multiplication and the unit for the pseudo-monad T.
These axioms are for the coherence between these two invertible modifications and
those from the data of the pseudo-monad T. (t-4) isthe axiom for the left unit A, (t-5)
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for the right unit p, and (t-6) for the multiplication t of the pseudo-monad.

t Tt
(t-4) T2X @Y — 2% T(TX®Y) —2% T2(X®Y)

ye Mxey
TX®Y TX®Y - T(X®Y)

. TX®Y)
tx,y i
(t-5) T2X®Y T(TX®Y) T2(X®Y)
@ts Mx ey
TX®Y TX®Y TX®Y)
tx,y
|
T2X®Y T(TX®Y) T2(X®Y)
Y
. " N 4,
Nrx @idy 5 =n NT(XeY) ¢
« U pxay
TX®Y TX®Y) — TX®Y)
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(t-6)
)
et

T°X®Y | tx®id
7
*@l.ol
t
XY — 2
prx ®id
T2X®Y
px ®id
TX®Y

T(TX®Y) o

- T(X®Y)

145
¢ Tt T2t
X oY —2L T(TXeY) —% TATX0Y) —% T3(XaY)
| | )
Tux¢®ld Yty T(uﬂ@ud) YTEy Thxey
T2X®Y T(TX®Y) -~ T2(X®Y)
| trx,y Ttxy
Mx i@ id Ufi,y Hxey
t
TX®Y ual - T(X®Y)
[
Tt T
T(TX®Y) —% TATX®Y) — T3X®Y)

| | n
P—T)i@Y U He P—T(>+(®Y) &r

T2(X®Y) | 1xey TAX®Y)

K %

Axioms (t-7), (t-8) and (t-9) are for the invertible modification t* and 2, which in-
volve the isomorphisms o and p of the bimonoidal structure on C. The axiom (t-7) is
for the coherence between t* and the constraint for the associativity isomorphism o,
while (t-8) is for that between t, ¥ and the constraint for the left and right unit A, p
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isomorphisms,



8.4. Pseudo strength 147

The axiom (t-9) isfor the coherence of the derived constraint for the right unit isomor-

phism p. It islikely, that thisis actually redundant, given the fact that the constraint
is a derived one, the proof of which should provide the main part of the proof of its
redundancy.

tx) ®i t
(t-8) (Mxoney XY rxeney — XY rixeney)
'\(5‘(
oet a U Ta
4 #1x))
X0V ——  » TXo (Y TX® (oY
idrx ® Ay ( ) tx 1oy (X )
I
t t
(TX@1) x| @10y T(X XY L T(Xel)eY)
&
2 @V . T,
pTX ®idy W = T(px ®idy) ! @
ES
,‘9\,\ X,
TX®V TX®Y TX® (oY
(X&Y) g TX@ 1Y)
iq. =
M ‘.)(\®\(
TX® (1Y)
tyy ®id t
(t-9) TXeY)ol X2, txeY)el — 2 | 1(XxeY)ol)
Q‘*@\( it To
U*TXY
TX®Y TX® (Y s T(X®(Y®I
idrx ® py tx yel (X )
I
tyy ®id t
(TXeY)ol =22, T(XaY)ol —2 X®Y
PTXxY =, o5 TpX®Y
()(Gay) UT*XY
TX®Y TX®(Yol)

tx,y Idx X py
;
dTX ) Py WY @\

TX®(Y®I)
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One can formulate a coherence theorem for pseudo-strengths that shows the defini-
tiveness of the axioms up to provable equality. It isamild diversion to investigate it
here, but we shall state the result for compl eteness.

Proposition 8.19. Given a pseudo-strength t for a pseudo-monad T on a 2-category
C, and given any parallel pair of pseudo-natural transformations constructed from
copiesof t, Y, and n, thereis a unique modification between them constructed fromthe
modificationsin the data for a pseudo-monad and a pseudo-strength.

Theorem 8.20. Every pseudo-monad on Cat gives rise to a pseudo-strength.

Proof. Definetyx y by Currying

Y

X, X xY] —T> [TX,T(XxY)]

The rest of the data for pseudo-naturality arises from pseudo-functoriality of T, as do
thefirst two structural modifications. The latter two structural modifications arise from
the pseudo-naturality of pand 1. Verification of the axiomsisroutine. O

The reason one does not have a meaningful equivalence between the notions of
pseudo-monad and pseudo-strength is because a pseudo-monad may have an underly-
ing pseudo-functor that is not an ordinary functor.

8.5 Monoidal structureon T1

Now we state the pseudo-version of Theorem 8.17. We give the theorem without a
proof. The verification is lengthy but routine.

Theorem 8.21. Given a pseudo-monad T on Cat, the category T1 has a canonical
monoidal structure with composition defined by using the pseudo-strength induced by
T asfollows:

tiT1

TixT1 20 TaxT) — > 721 M

- T1

and with unit given by
m:1—T1
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The associativity and unit isomor phisms are generated by those for the multiplication
and unit of T together with those of the pseudo-strength. Moreover, the multiplication
e:T1xT1— Tlisapseudo-map of T-algebrasin itsfirst variable, i.e, thereisa
coherent isomor phism

t T
T2xT1 21 T(T1xT1) —— T2

uxid

1
=

TixT1 T1

8.6 Examples : Substitution monoidal structures

Applying this result to the pseudo-monad T S obtained from Theorem 7.9, TSL is a
monoidal category, i.e., amonoid in Cat, with the multiplication e.

Calculating the value X o Y for objects X and Y of T1isnot easy in genera, but the
final clause of Theorem 8.21 makes life easier. Typically, an object of T1 is given by
a sophisticated sort of word of copiesof 1. But 1eY must always be isomorphictoY.
So the final clause of the theorem tells us that, if we express X as aword of copies of
1, the object X oY is given by replacing each copy of 1 in that word by an occurrence
of Y. Thisfact, together with that T is given by T¢ocSin our cases, enable the tensor e
to be readily calculated.

Example 8.22. Consider the pseudo-monad Teoc T p On Cat. We have aready seen that
TeocTp(1) is equivalent to [FF, Set]. So, by the theorem, [F, Set] acquires a canonical
monoidal structure. By the last line of the theorem, for every object X of [F,Set],
the functor — e Y : [FF, Set] — [F, Set] is a pseudo-map of Teoc Tt p-algebras, and so
preserves both colimits and finite products. Since every functor X : F — Setis a
colimit of representables, and every object of F°P is a finite product of copies of the
generating object 1, which in turnisthe unit of e, it followsthat we can calculate X e Y
as acanonical coequaliser of the form

(XeY)m=JJ(Xnx (Ym)")/~

neN

yielding exactly Fiore et al.’s construction of a substitution monoidal structure.
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Example 8.23. Consider the pseudo-monad TeocTsn 0n Cat. We have already seen
that Teoc Tsm(1) isequivaent to [P, Set]. Applying the same argument as in the previous
example, we can calculate X o Y and check that it agrees with Tanaka's construction of
a substitution monoidal structure, namely

(XeY)m=[J(Xnx (Y(V)m)/~
neN
where Y™ denotes the n-fold tensor product in [P, Set] of Y, using the convolution
symmetric monoidal product of [P, Set]: that convolution symmetric monoidal product
is exactly the lifting to [P, Set] of the canonical symmetric monoidal product of P°P,
which is, in turn, the free symmetric monoidal category on 1, i.e., Tsm(1). The reason
one still sees a product in thisformulais because, conceptualy, it playsthe role of the
Xn-fold sum of copies of Y ("m here rather than that of a product.

Example 8.24. Considering Teoc Tei, ONe can make asimilar calculation: every functor
X 1 (Tg)°P — Set is a colimit of representables, and each representable is a bunch of
copiesof 1. So, if one takesaformulafor X as acolimit of bunches of copiesof 1 and
replaces each occurrences of 1 by Y, one obtainsaformulafor X eY of the form

b’ETB|1 ,
(x.v)b:/ Xb' x (Y®)b

where Y(®) represents a b/-bunches of copies of the object Y of [(Tg)°P, Set]. This
integral may be calculated as

(XeY)b= [ (Xt'x (Y®)b)/ ~
beTg 1

for an equivalence relation ~ generated similarly to those of Examples 8.22 and 8.23.

One can also apply the same style of analysisto the other examples, yielding canon-
ical substitution monoidal structures for, for instance, affine binders. It follows in
general, from the fact that we always consider Teoc, that our generalised substitution
monoidal structure is always closed. That closedness appears in Fiore et al.’s work,
in Tanaka's work, and in the work on Bunched Implications. Moreover, we know
from the previous section that, given any pseudo-distributive law, TS(1) always has
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a pseudo-S-algebra structure. That agrees with the finite product structure of Fiore et
al. and it agrees with the corresponding symmetric monoidal structure of Tanaka as
remarked in the last example above.



Chapter 9

Conclusions and Further work

9.1 Conclusions

In thisthesiswe haveinvestigated the properties of pseudo-distributivelaws of pseudo-
monads over pseudo-monads, and, as an application of the investigation, we con-
structed a framework that provides the structures for modeling substitution for terms
in contexts with different structural properties. This is a structure that unifies the
category-theoretic formulations of substitution in higher order abstract syntax dis-
cussed in Fiore et al. [FPT99] and also in [Tan0Q].

The definition of pseudo-distributive laws of pseudo-monads over pseudo-monads
was given together with its ten coherence axioms. These coherence axioms arise from
the facts that such pseudo-distributive laws should let each datum of pseudo-monads
(pseudo-natural transformations and modifications) naturally be endowed with suitable
distributivity. We believe that this definition of pseudo-distributive laws of pseudo-
monads over pseudo-monads is definitive in the sense that the axioms are complete
and elegant. Moreover, we introduced the notions of pseudo-distributivity generally;
definitions of the pseudo-distributivity of a pseudo-monad over pseudo-natural trans-
formations and over modifications were given alongside the pseudo-distributive laws
of a pseudo-monad over pseudo-endofunctors, alowing the application of these defi-
nitions for combinations of such structures, for instance, the case of comonads, as in
the work of Winskel in modelling bisimilarity.

153
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In the analysis of the properties of a pseudo-distributive law of a pseudo-monad S
over apseudo-endofunctor H, we introduced the notion of lifting of H to the 2-category
of pseudo-S-algebras. We then provided a proof that the notions of pseudo-distributive
laws and of liftings are equivalent in the sense that they define equivalent 2-categories.
We also proved, not in the pseudo-setting but in terms of ordinary categories and func-
tors, that, in a sense, a “dual” to this also holds, in that a distributive law of an end-
ofunctor H over amonad T is equivalent to an extension of H to the Kleidli category
KI(T) of T, which is easily extended to the pseudo-case. In moving from pseudo-
distributive laws over pseudo-endofunctors to those over pseudo-monads, we investi-
gated the bimonoidal structures on Ps-Endo(C), Ps-Dist® and Liftpg 5 oq, Which pro-
vide the canonical composition both of liftings and of pseudo-distributive laws. This

fact is essential in the proof of equivalence between the 2-categories Ps-Disto. o ads

of pseudo-distributive laws over pseudo-monads and Liftpy axq * of liftings of pseudo-

monadsto pseudo-monadson Ps-S-Alg. Another important property of pseudo-distributive
laws of a pseudo-monad S over a pseudo-monad T is that when there exists such a
pseudo-distributive law, the composite pseudo-functor T S acquires the structure of a
pseudo-monad. We proved thisin Section 7.4.

As the main examples of our analysis we consider two different types of pseudo-
monads: the first of them are the pseudo-monads that give categories that are used to
model various different types of contexts, such as the pseudo-monad for finite product
structure and that for symmetric monoidal structure. The other type of pseudo-monad
isthat for the free cocompletion, modulo the size issue, which, for a small category €,
givesits free cocompletion [C, Set]. We explained why there exist pseudo-distributive
laws for combinations of one of the pseudo-monads for contexts and that of free co-
completion, which follows using Im and Kelly’swork in [IK86].

Moving back from the examplesto the discussion of general structure, wethen con-
sidered the monoidal structure induced by the notion of pseudo-strength. Similarly to
the case of an ordinary strength and a monad, we have the fact that any pseudo-monad
T on Cat has a pseudo-strength. From there we showed that there exists a monoidal
structure on the object T 1 in Cat induced by the pseudo-strength. We consider pseudo-
monads of the form TS, where T is the cocompletion pseudo-monad and Sis one of
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the pseudo-monads for contexts. The category T S1 has the form [(S1)°P, Set] and the
tensor for the monoidal structure induced by the pseudo-strength for this category is
calculated as a coend, due to the fact that T is the free cocompletion monad.

9.2 Further work

There are many possibilities for the future work of this thesis. The most important
is the further investigation of the syntactical aspects of the unifying framework. A
definition of binding signatures for generic contexts should be given in such away that
the signatures defined in [FPT99] and [Tan00] are included as instances and also the
functor that is associated to such a signature should have a strength with respect to the
tensor for substitution discussed in Chapter 8.

9.2.1 Syntactic aspects

The definitions of binding signature given in both [FPT99] and [Tan00] are in fact
identical:

Definition 9.1 ([FPT99],[Tan00]). A binding signature X = (O, a) consists of a set of
operations O and an arity functiona: O — N*.

An operator o of arity (ng,...,nk) hask arguments and binds n; variablesin thei-th
argument (1 <i < nj). The terms associated to a signature X over a set of variables
ranged over by x are given by the grammar:

teTsi=X] (XL, -, Xy ) e,y (X3, %0 ) 1)

where o isin O and a(o) = (ny,...,Nnx). The notions of free/bound variables and a-
equivalence are defined in the obvious way.

Inthelinear case, each variable to be bound by a binder has exactly one occurrence
in the term, where as in the ordinary case there is no such restriction. However, such
facts do not surface in the definition of signaturesitself. The distinction is introduced
when one considers the notion of binding algebra on the suitable presheaf category.
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In order to interpret an operation o of arity (ny,...,ng), the algebra on a presheaf X
associated to this operation has the forms

(8™X) x -+ x (8™X) — X

for ordinary binders and
(0MX)®-+ @ (a™X) — X

for linear binders, where X and 90X are defined to be X(1+ —) with the operation +
interpreted in F and P respectively. Both 6 and 0 are used to give a mathematical for-
mulation of the idea of binding over one variable. The definition for ordinary binders
uses thefinite product structure of both F°P (finite productsin IF°P are finite coproducts
inF) and [IF, Set], together with the object 1 of F. Aswe have seen in earlier chapters,
that is all elegantly expressible as structure generated by the 2-monad Ttp. The same
is true for linear binders, in which case the definition X(1+ —) of dX is given not by
the coproduct but by the symmetric monoidal structure on P. Moreover, the symmetric
monoidal structure on [P, Set] is used instead of the product. Thisis again a structure
generated by the 2-monad Tgn,.

But this definition of binding signature in [FPT99] and [Tan00], although fine for
their purposes, is insufficient in more complex binding situations, where more than
two kinds of binders may be present in the signature, for instance, that of Bunched Im-
plications. In Bunched Implications, one has two sorts of binders: alinear binder and
anon-linear binder. So we need to be able to specify the kind of binding an operator
employs to bind a particular argument. A finite sequence of natural numbers is not
precise enough to specify which sort of binder isto be used, and in what combination
the binders are to be used.

So, in order to capture such examples in which one has more than one binder, one
needs a more refined general notion of binding signature. We do not have a definitive
genera account of that yet, so we shall not develop that idea here beyond mentioning
that it definitely is possible to unify these examples and extend them to situations such
asthat of Bunched Implications as explained in [Pow03], the only question being how
elegantly one can do so and with what degree of definitiveness.

The above definition of binding signature essentially contains two pieces of data:
for each i, each n; tells you how many times to apply X(1+ —), and k tells you how
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many such X(nj+ —) (= 8" X or 9" X) need to be multiplied. More generally, we need
to allow more freedom than that, so that, for the cases such as Bunched Implications,
we may specify words of products and tensors, with the n; and the k only telling us how
long those words are. In fact, in the general setting of 2-monads on Cat, the notion of
a Lawvere 2-theory [Pow99] supports such a general notion of signature. We do not
go into the details, but it supports the following definition.

Let S denote one of the 2-monads for the structures that model contexts. Recall
that, in general, given a 2-monad S and a pseudo-distributive law of S over Tec, the
pseudo-monad for free cocompletion, the category [(SL)°P, Set], which is equivalent to
TeocS1, has the structure of a pseudo-S-algebra (Theorem 7.9). Therefore, an object o
of Skinduces afunctor of the form

0 : [(SL)°P, Set] — [(SL)°P, Set]
given by the composite of
[k, [(S1)°P, Set]] = (K, SI(SDP, Set]] % §(S1)°P, Set]
with the algebra structure
S(SD)®P, Set] — [(S1)°P, S

This is a routine extension of the idea that every model of an equational theory sup-
ports a semantics for every operation of the theory: TSl is a pseudo-S-algebra, so
it supports every S-operation; a k-ary S-operation amounts to an object of Sk; and the
displayed formula spells out explicitly how such an operation is canonically modelled
on a pseudo-S-algebra.

Similarly, but more easily, as S1 also possesses an S-algebra structure, an object 3
of 2 yields afunctor

B*:(S1)2— sl

This, by composition, yields a functor

B*(1,-):S1— SL

Putting the above altogether we have the following definition:
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Definition 9.2 (generic binding signature). For a 2-monad S, a binding signature
¥ = (0,a) isaset of operations O together with an arity functiona: O — Arswhere
an element (k, o, (04)1<i<k) Of Ars consists of a natural number k, an object o of the
category Sk, and, for 1 <i <k, an object ¢; of the category S2 together with a strength
X(oc?(l,—)) oY — (X oY)(oc?(l,—)) over pointed objects Y, i.e., functors Y with a

specified element of Y (1)
The agebraon apresheaf X associated to an operation of arity (K, o, (o) 1<i<k) iS
(X (04 (L, —), ..., 04 (L,—))) — X.

This definition suffices for our purposes, yielding the level of generality we seek. But
obviously, in due course, we should prefer a definition that does not involve the condi-
tion at the end: such a definition should be readily obtainable as the condition does not
appear explicitly in Fiore et al. or Tanaka's work, and it is clear how to avoid it in all
the leading examples; but it is not clear yet what is the best condition that impliesit in
general.

9.2.2 Other possibilities

As a syntactic development in another direction, in [MS03], Miculan and Scagnetto,
and also Fiore in [Fio02], gave atyped version of the work in [FPT99]. The category
used in the paper [MS03] is 8§ = [U, Set], where U is the category of typed contexts
and defined to be the comma category in | U of the inclusion functor in: F — Set
and the set U of variable types. Extending the framework presented in this thesisto a
version for typed variablesis one obviousdirection for further study. The construction
in [MS03] should involve a pseudo-distributive law for 2-monads on CatV.

Another interesting possibility isto fit the direction choseninitially by Gabbay and
Pitts in their paper [GP99] and followed by Miculan and others in [GMMO3Db] into
the framework presented in this thesis. They use the presheaf category on I, where
I is the category of natural numbers and injections, and also the notion of Fraenkel-
Mostowski set theory, which is equivalent to what is called the Schanuel topos, a par-
ticular full subcategory of [I,Set]. These structures are aso related to permutation
algebras[GMMO033g]. Gabbay and Pitts' line of work is considered to be one of the two
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main directions of category-theoretic research on higher order abstract syntax, both
of which coincidentally appeared in the LICS 99 conference [FPT99, GP99, Hof99],
but it seems that the two directions can be unified in terms of our framework as the
category theoretic construction shown in [GMMO3b] seems to fit nicely. Specificaly,
the Schanuel topos is the free cocompletion on T°P that respects pushouts. So, one
could start by replacing Cat by the category of small categories with pushouts, and by
attempting to emulate the line of argument of thisthesisthere.

There are other topics where the analysis on pseudo-distributive laws in this thesis
can be applied. Investigating such applicationsis certainly amajor direction of further
research. One such publicly available is the study of concurrency and bisimulation
by Winskel and Cattani [WCO04] using open maps and profunctors; the structure used
there involves pseudo-comonads and Kleisi constructions. The anaysis of pseudo-
distributive laws in this thesis can be easily applied to the case of pseudo-comonads.
It is also useful to provide a detailed account of the relation between the Kleidli con-
struction and pseudo-distributive laws.
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