
Decidability, Behavioural Equivalences

and

Infinite Transition Graphs

Hans Ḧuttel

Doctor of Philosophy

University of Edinburgh

1991



Abstract

This thesis studies behavioural equivalences on labelled infinite transition graphs and

the role that they can play in the context of modal logics and notions from language

theory. A natural class of such infinite graphs is that corresponding to theSnS -definable

tree languages first studied by Rabin. We show that a modal mu-calculus with label set

f0; : : : ; n� 1g can define these tree languages up to an observational equivalence.

Another natural class of infinite transition graphs is that of normed BPA processes,

which correspond to the graphs of leftmost derivations in context-free grammars without

useless productions. A remarkable result is that strong bisimulation is decidable for these

graphs. After an outline of the existing proofs due to Baeten et al. and Caucal we present

a much simpler proof using a tableau system closely related to the branching algorithms

employed in language theory following Korenjak and Hopcroft. We then present a result

due to Colin Stirling, giving a weakly sound and complete sequent-based equational

theory for bisimulation equivalence for normed BPA processes from the tableau system.

Moreover, we show how to extract a fundamental relation (as in the work of Caucal)

from a successful tableau.

We then introduce silent actions and consider a class of normed BPA processes with

the restriction that processes cannot terminate silently, showing that the decidability

result for strong bisimilarity can be extended to van Glabbeek’s branching bisimulation

equivalence for this class of processes.

We complete the picture by establishing thatall other known behavioural equivalences

and a number of preorders are undecidable for normed BPA processes.



Acknowledgements

First of all I want to thank my supervisor Colin Stirling for our fruitful discussions and

his many useful comments that greatly influenced the contents and presentation of this

thesis.

Thanks are also due to Didier Caucal for his important insights into the topics of

Chapters 4 to 6 that inspired much of my work; in particular thanks for pointing out some

serious errors in an early version of what was to become Chapter 6. I also want to thank

him, his wife Catherine and Roland Monfort for their immense hospitality during my

visit to IRISA in June 1990. – Had it not been for Jan Friso Groote and the discussions we

had during his visit to the LFCS in May of 1991, Chapter 6 would have been very short

and boring. Many of the results in that chapter are due to him. My work on branching

bisimulation in Chapter 5 began as the result of a discussion I had in Aalborg with Kim

Larsen. Example 5.2.2 is his.

The Department of Computer Science at Edinburgh provided me with an interesting

work environment and I want to thank all the people I got to know there during my stay.

Special thanks to Kees and Fabio for being such good office-mates.

An important aspect of going abroad is that you get to make new friends. My warm

thanks go to Mads and Charlotte for providing me with a proper perspective of many

things in life, to Bjarne for drinks osv. and for keeping me in touch with things Danish,

to David for meals and Japanese film and theatre (which willneverbe the same) and to

Sonia for food, company and understanding (she is very special!).

And thanks to Eduardo, Nigel, Hans Jørgen & Nomi and last – but by no means

3



4

least – Søren for sharing accommodation with me at various times during my years in

Edinburgh and for generally tolerating my strange whims.

The constant emotional and practical support that my mother has given me throughout

my self-imposed exile and whenever I was in Denmark has been all-important; without

her, things could have looked very grim indeed and I cannot thank her enough for being

there.

My grandmother did not live to see the end of my stay in Edinburgh; it is to the

memory of her that my thesis is dedicated.

�

The work in this thesis was made possible by a research position at the Department of

Mathematics at Ïrhus University, travel grants and payment of research costs by Aalborg

University Centre and C.W. Obel Fonden and financial support from the Danish Research

Academy.



Declaration

This is the revised version of my thesis incorporating the required corrections suggested

by my examiners Robin Milner and Matthew Hennessy. The thesis was composed by

myself, and the work reported has not been presented for any university degree before.

The ideas and results that I do not attribute to others are my own.

Parts of the thesis have already been published elsewhere. Chapter 3 is a slightly

revised version of [Ḧut90]. Chapter 4 contains an expanded version of [HS91]. Chapter

5 is essentially [Ḧut91], and Chapter 6 is essentially [GH91].

Hans Ḧuttel

5



Table of Contents

1 Introduction 9

1.1 Determining the qualities of behavioural equivalences: : : : : : : : : : 9

1.2 Infinite-state systems: : : : : : : : : : : : : : : : : : : : : : : : : : : 12

1.3 Behavioural equivalences and program logics: : : : : : : : : : : : : : 13

1.3.1 Tableau techniques: : : : : : : : : : : : : : : : : : : : : : : 13

1.3.2 Expressiveness: : : : : : : : : : : : : : : : : : : : : : : : : : 14

1.4 Decidability of behavioural equivalences: : : : : : : : : : : : : : : : 16

1.5 Layout of the Thesis: : : : : : : : : : : : : : : : : : : : : : : : : : : 19

2 Background 21

2.1 Infinite trees and Rabin automata: : : : : : : : : : : : : : : : : : : : 21

2.1.1 Infinite trees: : : : : : : : : : : : : : : : : : : : : : : : : : : 21

2.1.2 Rabin automata: : : : : : : : : : : : : : : : : : : : : : : : : 23

2.2 Normed recursive BPA processes: : : : : : : : : : : : : : : : : : : : 25

2.2.1 Syntax and semantics: : : : : : : : : : : : : : : : : : : : : : 25

2.2.2 Bisimulation equivalence on BPA processes: : : : : : : : : : : 28

2.2.3 Axiomatizations of bisimulation equivalence: : : : : : : : : : 29

2.2.4 Normed recursive BPA processes in Greibach Normal Form: : 30

2.2.5 Self-bisimulations: : : : : : : : : : : : : : : : : : : : : : : : 36

2.2.6 The ‘split’ lemma : : : : : : : : : : : : : : : : : : : : : : : : 38

6



7

3 A modal characterization ofSnS 39

3.1 Syntax and semantics ofSnS andCML : : : : : : : : : : : : : : : : 39

3.1.1 SnS : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 39

3.1.2 CML : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 41

3.2 SnS is at least as expressive asCML : : : : : : : : : : : : : : : : : 42

3.3 CML is as expressive asSnS modulo'A : : : : : : : : : : : : : : : 44

4 Deciding bisimilarity for normed BPA 51

4.1 Existing approaches: : : : : : : : : : : : : : : : : : : : : : : : : : : 52

4.1.1 Baeten, Bergstra, and Klop’s proof: : : : : : : : : : : : : : : 52

4.1.2 Caucal’s proof: : : : : : : : : : : : : : : : : : : : : : : : : : 55

4.2 The tableau decision method: : : : : : : : : : : : : : : : : : : : : : : 56

4.2.1 Constructing subtableaux: : : : : : : : : : : : : : : : : : : : 57

4.2.2 Decidability, soundness, and completeness: : : : : : : : : : : 61

4.3 An equational theory: : : : : : : : : : : : : : : : : : : : : : : : : : : 65

4.4 Extracting fundamental relations: : : : : : : : : : : : : : : : : : : : : 72

5 Introducing silent actions 79

5.1 Branching bisimilarity: : : : : : : : : : : : : : : : : : : : : : : : : : 79

5.2 Normed BPA�rec : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 81

5.3 A tableau system for branching bisimulation: : : : : : : : : : : : : : : 85

5.3.1 Building tableaux : : : : : : : : : : : : : : : : : : : : : : : : 85

5.3.2 Termination, completeness, and soundness: : : : : : : : : : : 88

5.3.3 Complexity of the tableau system and decidability: : : : : : : 97

6 Negative results 101

6.1 Deterministic BPA processes: : : : : : : : : : : : : : : : : : : : : : : 101

6.2 Simulation equivalence: : : : : : : : : : : : : : : : : : : : : : : : : 102

6.3 n-nested simulation equivalence: : : : : : : : : : : : : : : : : : : : : 103



8

6.4 n-bounded-tr-bisimulation: : : : : : : : : : : : : : : : : : : : : : : : 107

6.5 Failures, readiness, failure-trace and ready-trace equivalences: : : : : : 109

6.6 Ready-simulation or 2/3-bisimulation: : : : : : : : : : : : : : : : : : 112

7 Conclusion 116

7.1 Summary of the main results: : : : : : : : : : : : : : : : : : : : : : : 116

7.2 Various kinds of infinite transition graphs: : : : : : : : : : : : : : : : 117

7.2.1 SnS-definable tree languages: : : : : : : : : : : : : : : : : : 118

7.2.2 Context-free graphs: : : : : : : : : : : : : : : : : : : : : : : 118

7.2.3 Unnormed BPA : : : : : : : : : : : : : : : : : : : : : : : : : 119

7.2.4 Beyond BPA: : : : : : : : : : : : : : : : : : : : : : : : : : : 120

7.3 Complexity bounds : : : : : : : : : : : : : : : : : : : : : : : : : : : 121

7.4 Weak equivalences: : : : : : : : : : : : : : : : : : : : : : : : : : : : 121

7.5 Equational theories: : : : : : : : : : : : : : : : : : : : : : : : : : : : 122



Chapter 1

Introduction

The problem of determining if a program satisfies a given specification is one of the

central motivating problems in theoretical computer science, and several approaches

exist.

Denotational semantics can serve as a valuable tool for program verification. But in

the case of nondeterministic, parallel or non-terminating programs an operational account

is often preferred. Over the past decade much attention has been devoted to the study

of process calculi such as CCS [Mil80,Mil89], ACP [BK84,BK88] and CSP [Hoa88].

Of particular interest has been the study of the behavioural semantics of these calculi as

given by transition graphs arising from structural operational semantics in the tradition

originated by [Plo81]. A particularly important question is when processes can be said

to exhibit the same behaviour, and a plethora ofbehavioural equivalencesexist today.

1.1 Determining the qualities of behavioural equivalences

The main rationale behind the various behavioural equivalences that have been proposed

has been to capture behavioural aspects that the language equivalence known from

language theory does not take into account. For instance,

9



10 Chapter 1. Introduction

ab + ac = a(b + c)

holds for language equivalence, but is an identification that these other notions of be-

haviour and behavioural equivalence do not make, since these two process expressions

do not exhibit the same deadlock properties: after an initiala-action the former is only

able to perform one action (b or c), whereas the latter has a choice betweenb andc.

Equivalences are usually classified according to theircoarseness, i.e. how many

identifications they make with respect to the branching behaviour of processes. This

linear/branching time hierarchyis illustrated in Figure 1–1 (after [vG90a]) . The coarsest

equivalences are then the trace equivalence and the completed trace equivalence; the latter

differs from trace equivalence in that only thecompletedtrace languages are compared

and is thus the usual language equivalence. Directly above we have the testing/failures

equivalence investigated by Hennessy and deNicola et al. (see e.g. [Hen89]). At the

top of the diagram is bisimulation equivalence (or bisimilarity), a notion introduced by

Park in [Par81] and subsequently used by Milner and others in the CCS tradition (as

exemplified in [Mil89]).

It has also been argued that behavioural equivalences should be judged according

to how well they obey some computationally justifiable criterion ofobservability. For

instance, while bisimulation equivalence has many nice mathematical properties it fails

to have a computational justification in that (in)equivalence is not intuitively observable.

Indeed, within the framework of testing some very unintuitive testing operators must

be used. Abramsky has shown [Abr87] that bisimulation can be characterized by a test

language that contains a testing operator that enumerates all next-states of the process

subjected to testing. In [Gro89] Groote presents another test language; here lookahead in

combination with the possibility to check for the absence of activity is needed. Bloom et

al. argue [BIM90] that only completed traces should count as observations and define an

equivalence which is a (completed) trace congruence under a ‘reasonable’ set of process



1.1. Determining the qualities of behavioural equivalences 11

Bisimulation equivalence

?
n-nested simulation equivalence

?
Ready simulation equivalence������������)

?

Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Qs

Simulation equivalence
�

�
�

�
�

�
�

�
�

�
�

�
�

�	

Possible-futures equivalence
J
J
Ĵ

�������������)

n-bounded-tr-bisimulation

?

Readiness equivalence

Ready trace equivalence








�

J
J
J
JĴ

Failure trace equivalence
J
J
J
JĴ









�

Failures equivalence

?
Completed trace equivalence

?
Trace equivalence

Figure 1–1: The linear/branching time hierarchy of equivalences (based on [vG90a]) .

constructs. This equivalence is the ready simulation equivalence of Figure 1–1.

The study of processes with unobservable actions leads to another linear/branching

time hierarchy similar to Figure 1–1 except that we now have the correspondingweak

equivalencesbased on the weak transition relationa=) where unobservable actions are

disregarded. The best-known weak equivalence is Milner’s weak bisimulation equiva-

lence [Mil89]; however, it has been argued that this is not the proper weak version of

bisimilarity since it does not reflect the changes in branching properties that may happen

as the result of performing an unobservable action. Moreover, weak bisimulation is not



12 Chapter 1. Introduction

robust under a simple notion of action refinement.

The notion of branching bisimilarity, put forward by van Glabbeek and Weijland

in [vGW89b], reflects these concerns. According to this definition, all intermediate

unobservable steps in a weak transition must be matched. The idea is not new, however.

De Nicola and Vaandrager have proved [DNV90] that branching bisimulation corresponds

to the stuttering equivalence on Kripke structures considered in e.g. [BCG88]. Recently

it has been shown [DNMV90] that there is a natural connection between branching

bisimulation and weak bisimulation in that the former is the so-called ‘back and forth’

variant of the latter. Branching bisimilarity has many pleasant properties; in particular

a complete equational theory for finite BPA, the class of finite processes with choice

and sequential composition, can be obtained by adding just two new axioms to those for

strong bisimulation for finite BPA processes. Moreover, this axiomatization can easily

be turned into a complete term rewriting system [vG90a], something that is not the case

for weak bisimulation equivalence.

Finally, there is a similar hierarchy ofpreorderson processes which is yet to be

determined in detail. Examples of such preorders include the simulation preorder [Par81],

the testing/failures preorder [Hen89] and the ready simulation preorder of [BIM90].

1.2 Infinite-state systems

Milner [Mil84] has shown that the class of finite transition graphs corresponds to that of

the transition graphs forregular processes, i.e. the recursively defined CCS processes

over the signaturefa:;+g wherea: is an action prefixing operator for everya in a

set of atomic actionsAct and+ is nondeterministic choice. Regular CCS processes

correspond to the usual finite automata; their finitary trace languages are the finitary

regular languages.

However, this result also says that as soon as we move beyond these constructs

(known as the dynamic process constructs), recursively defined processes can have



1.3. Behavioural equivalences and program logics 13

transition graphs with infinitely many states and trace languages that are no longer

regular. This includes many realistic cases; in particular processes that are defined using

various notions of parallel composition such as the asynchronous parallel operatorj of

CCS can have infinitely many states.

In fact, the theory of finite-state systems and their equivalences can now be said

to be well-established. One may be led to wonder what the results will look like for

infinite-statesystems.

1.3 Behavioural equivalences and program logics

There is a striking relationship between behavioural equivalences and some program

logics. Amodal characterizationof bisimilarity exists [HM85] in that two processes are

bisimilar iff they satisfy the same formulae in a modal logic now known as Hennessy-

Milner logic. Many other related modal and temporal logics also characterize bisim-

ulation equivalence in this way [BCG88,Sti87,Sti91]. Similar characterizations exist

for the other parts in the linear/branching time hierarchy; in the logics that characterize

these equivalences either restrictions of Hennessy-Milner logic are made or operators of

linear-time temporal logic are introduced in place of the Hennessy-Milner modalities.

Indeed, for the description of program properties the tendency is to prefer modal and

temporal logics for describing properties of programs. One such logic is the modal mu-

calculus [Koz83] , which also characterizes bisimilarity in the sense that two processes

are bisimilar iff they satisfy the same closed formulae [Sti91].

1.3.1 Tableau techniques

An important problem in the context of program logics is that ofmodel checking. Model

checking consists in determining whether a process statep satisfies a formulaF – written

p j= F . In [SW89] Stirling and Walker have given a model checker for the modal mu-

calculus and finite transition graphs in the form of atableau system, a goal-directed proof



14 Chapter 1. Introduction

system for the relationp j= F . An advantage of the tableau-based approach to model

checking is that it islocal in the sense that only those states relevant to determining

whether or notp j= F need to be examined. In [BS90] Bradfield and Stirling have

given a tableau system that deals with infinite transition graphs. In this thesis we

use a related tableau technique approach to look at decision problems for behavioural

equivalences. Our approach turns out also to be closely related to the branching algorithms

for equivalences studied in formal language theory. The method, introduced by Korenjak

and Hopcroft in [KH66] has been widely applied for giving decision procedures for

various equivalence problems – see e.g. [Cou83].

1.3.2 Expressiveness

The modal mu-calculus is a very expressive logic; it incorporates the full expressibility

of CTL� [Dam90] and thus serves as a natural branching time logic for expressing

properties of processes. Moreover, the modal mu-calculus is decidable, in fact even

elementary [ES84]. Another important decidable theory, in fact one of the most general

decidable theories around, is the second-order monadic theory ofn successors,SnS ,

as introduced by Rabin [Rab69].SnS is the generalization ofS1S , the second-order

monadic theory of1 successor, which was shown to be decidable by Büchi in [Büc60]

by automata-theoretic means similar to those later used by Rabin.

SinceSnS is a very general theory, several other theories have been shown to

be decidable by interpretations intoSnS [Rab69,Rab77]; examples include the weak

second-order theory of linearly ordered sets, the second-order theory of totally ordered

sets with a countable domain and various propositional modal logics [Rab77]. The class

of SnS-definable sets corresponds to that of the sets of infiniten-ary node-labelled trees

accepted by Rabin automata [Rab69] and is a well-known class of infinite-state systems.

The acceptance condition of a Rabin automaton can be seen as describing a fairness

property along tree paths. Thus it would seem that theSnS-definable sets can be defined



1.3. Behavioural equivalences and program logics 15

through a tree property that can be described in a somewhat more natural way, namely

through using a branching-time temporal logic, since such a logic can be interpreted on

infinite trees in a straightforward fashion.

So sinceSnS is a very powerful decidable theory and the modal mu-calculus also is

very powerful, subsuming many well-known modal and temporal logics, a natural and

interesting question is how these two logics are related with respect to expressiveness.

Some work has already been done in this field. In [VWS83] Vardi et al. show that

the temporal logicETL [Wol83] can define exactly the class of!-regular languages,

corresponding to theS1S -definable sets. And in [Niw88] it was shown by Niwinski that

a fixed-point calculus whose signature apart from maximal and minimal fixed points and

disjunction includes the usual operators on trees can define exactly theSnS-definable

sets.

Finally, Hafer and Thomas have proved [HT87] that a restricted version ofSnS with

set quantification restricted to paths is expressively equivalent toCTL� for binary tree

models. However, there are certainly bound to be differences. For one thing, the full

SnS is non-elementary [Mey75], whereas the modal mu-calculus is elementary [ES84].

Moreover, as was also shown in [HT87] the fullSnS can express properties which

have no correlate in a branching time temporal logic which does not have operators that

incorporate information about the ordering of nodes in a tree. An example is counting

the nodes in a tree which are incomparable to a nodex w.r.t. to the ancestral ordering,�:

A(x)
def
= 9x1; : : : ; xm:

^m

i=1
(x 6� xi ^ xi 6� x) ^

^
i;j
(i 6= j � xi 6= xj)

This problem would not arise if we could somehow refer to the ancestral ordering

in our modal operators. In fact, in this thesis we show that a modal mu-calculus with

label setf0; : : : ; n � 1g can characterizeSnS up to a bisimulation-like equivalence on

node-labelled trees.



16 Chapter 1. Introduction

1.4 Decidability of behavioural equivalences

Language equivalence is known to be decidable for finite automata. However, it is also

well known (see e.g. [HU79]) that language equivalence becomes undecidable when one

moves beyond finite automata to context-free languages.

For finite-state processes all of the equivalences of Figure 1–1 can be seen to be

decidable. For instance, the bisimilarity problemp � q for processesp andq is decidable

for finite transition graphs because we can enumerate all the finitely many binary relations

over the state set and search for a bisimulation among them containing the pair(p; q).

Moreover, for regular CCS complete equational theories exist for strong bisimilarity

[Mil84].

In this thesis we argue thatdecidability or lack thereof should be thought of as

another criterion for determining the computational merits and deficiencies of behavioural

equivalences.

A natural question is then whether the decidability can be extended beyond the finite-

state case. One limitation that should be noted is that strong bisimulation equivalence

(� ) in a process language with general static constructs and recursive definitions is

undecidable. In fact, the general bisimilarity problem is not even r.e. For, using the

operators communication (j), restriction (n) and sequential composition one can code

any Turing machineM and input stringw as a process expressionpM;w such that all

moves ofM are represented by internal (� -)actions ofpM;w and such that the possible

eventual halting is represented by a special success actiond. The encoding consists in

expressing the tape ofM as two stacks, one of which has been initialized to holdw.

The stacks communicate with the finite control, represented by a regular process. The

problem ‘DoesM diverge on inputw ?’ can now be expressed as

pM;w � �x:(�:x) (1.1)

However, (1.1) is undecidable since the above divergence problem isnot r.e.



1.4. Decidability of behavioural equivalences 17

In the setting of process algebra, an example of infinite-state systems is that of the

transition graphs of processes in the calculus BPA (Basic Process Algebra) [BK88].

These are recursively defined processes over the signaturefa;+; :g wherea ranges over

a set of atomic actions,+ is nondeterministic choice and� is sequential composition.

A BPA process is defined by a system of recursion equations of the form

X0
def
= E0(X0; : : : ; Xn)

...

Xn
def
= En(X0; : : : ; Xn)

where theEi’s are BPA expressions. A system of the above form where every occurrence

of a variable in any expressionEi is within the scope of an atomic action is said to be

guarded. Any guarded system of equations can effectively be put in the BPA equivalent

of Greibach Normal Form(GNF), i.e. a system of equations where all equations are of

the formXi
def
=
P

j aij�ij where the�ij ’s are compositions of process variables.

A special case is that ofnormed BPAprocesses. Thenormof a process is defined as

the least number of transitions necessary to terminate. A process is said to be normed if

every state has a finite norm. Even though normed BPA does not incorporate all regular

processes, systems defined in this calculus can in general have infinitely many states.

There is an obvious correspondence between process equations of the formXi
def
=

P
j aij�ij and the GNF context-free productionsX ! ai1�i1 j : : : j aik�ik, so normed

BPA processes correspond to context-free grammars without useless or empty produc-

tions. It is therefore easy to see that both trace equivalence and completed trace equiva-

lence (or language equivalence) are undecidable for normed BPA processes.

However, a recent result shows that strong bisimilarity for normed BPA processes is

decidable. Two proofs of this result exist, one by Baeten, Bergstra and Klop [BBK87a]

and another due to Caucal [Cau88,Cau90a]. These proofs are very different (and are

sketched in Chapter 4). The (lengthy and impenetrable) proof in [BBK87a] consists in

showing that one can exhibit a decomposition of the process graph with certain regular-



18 Chapter 1. Introduction

ities. The proof in [Cau88,Cau90a] consists in showing that the maximal bisimulation

is finitely representable by a confluent and strongly normalizing Thue system, and that

there are only finitely many candidates for this Thue system.

These proofs do not correspond to one’s intuition about how to determine whether

or not two normed BPA processes are bisimilar. And they do not lead to complete proof

systems for the process algebra involved. But what these proofsdo tell us is that we

can go beyond finite-state systems while maintaining the decidability of bisimulation

equivalence. Moreover, somewhat unexpectedly, we have gained something by using an

equivalence different from language equivalence in a setting that involves structures from

language theory. On the other hand, Huynh and Tian [HT90] have proved the negative

result that the failures and readiness equivalences are undecidable for normed BPA.

Their proof consists in giving a special class of normed BPA processes for which these

equivalences coincide with language equivalence and then showing that the language

equivalence problem for arbitrary normed BPA processes reduces to that for the special

class.

A natural question in the light of this is now for which equivalences and for which

process signatures we have that the equivalence in question is decidable for normed

processes. In this thesis we show that in factnoneof the other behavioural equivalences

in Figure 1–1 are decidable for normed BPA processes.

Related questions are what happens when we introducesilent actionsand what the

situation looks like forpreorders. For the latter there are bound to be some differences.

Friedman has shown [Fri76] that the language inclusion preorder is undecidable for

so-called simple grammars, a class of context-free grammars that correspond to that of

deterministic normed BPA processes. However, Korenjak and Hopcroft have shown

that the language equivalence problem for this class of grammars/processes is decidable

[KH66].

Finally, another important question is whether we can find a ‘natural’ and ‘convenient’

method of determining whether or not two normed BPA processes are bisimulation



1.5. Layout of the Thesis 19

equivalent. In this thesis we show that it is indeed possible; our method is a tableau

technique related to the local model checking systems of [SW89,BS90]. This method is

also closely related to the branching algorithms for equivalence problems on grammars

introduced by Korenjak and Hopcroft in [KH66].

We use the same tableau method to prove that the branching bisimulation equivalence

of Weijland and van Glabbeek [vGW89a,vGW89b] is decidable for a class of normed

BPA processes with silent actions.

1.5 Layout of the Thesis

In this final section we outline the contents of the rest of this thesis.

In Chapter 2 we present the necessary background material for the chapters that

follow. We give the definitions of infiniten-ary trees and Rabin automata (studied in

Chapter 3) and introduce in greater detail the process calculus BPA (studied in Chapters

4 to 6) and the notion of bisimulation equivalence. We describe the subclass of normed

BPA and show how every system of BPA equations can be effectively rewritten into

3-GNF.

In Chapter 3 we show that a modal mu-calculus with label setf0; : : : ; n � 1g can

define theSnS-definablen-ary tree languages up to an observational equivalence. The

main idea is to use Rabin’s theorem stating that theSnS-definable languages correspond

to the n-ary Rabin-recognizable tree languages, which are the sets of infiniten-ary

labelled trees recognizable by Rabin automata. Thus our result also underpins the idea

that equivalences other than those normally used can be of use in problems related to

language theory.

In Chapter 4 we first outline the existing proofs of the decidability of bisimulation

equivalence for normed BPA processes due to Baeten, Bergstra and Klop [BBK87b,

BBK87a] and Caucal [Cau88,Cau90a] and then give an alternative and much simpler

proof of this result. Our decidability proof uses a tableau system which is similar to



20 Chapter 1. Introduction

the tableau systems used for model-checking the modal mu-calculus [SW89,BS90] and

closely related to the branching algorithms of language theory [KH66,Cou83]. If a

successful tableau for an equation� = � exists, the tableau provides us with a finite

witness for a bisimulation containing(�; �), the witness being a self-bisimulation in the

sense of [Cau88,Cau90a]. We give a complexity bound for the tableau method in terms

of the length of the longest possible path in any tableau for a given equation. Then we

present a result due to Colin Stirling, a sequent-based equational theory for bisimulation

equivalence for normed BPA processes in3-GNF extracted from the tableau system. The

theory is shown to be strongly sound and weakly complete. Finally we show how one

can find a fundamental relation (as in the work of [Cau88,Cau90a]) from a successful

tableau. This is done via another so-called auxiliary tableau system.

In Chapter 5 we introduce silent actions into normed BPA. We consider a class of

BPA processes with the restriction that process termination must involve performing an

observable action. We then show how the decidability result of Chapter 4 can be extended

to branching bisimulation equivalence, giving complexity bounds for the tableau method.

In Chapter 6we show thatall equivalences below bisimulation in the linear/branching

time hierarchy are undecidable for normed BPA processes in3-GNF and thus that they

are undecidable for BPA processes in general. The proofs involve reductions to the

language inclusion problem for simple grammars of [Fri76] and the language and trace

equivalence problems for normed BPA processes.

Chapter 7 sums up the conclusions of this thesis and give directions for further work.



Chapter 2

Background

In this chapter we give various definitions that will be used throughout the rest of this

thesis. Section 2.1 introduces the notions of infinite node-labelled trees, bisimulations

on such trees and Rabin automata that will be used in Chapter 3. In Section 2.2 we

introduce the class of normed BPA processes studied in Chapters 4 to 6 and the notion of

bisimulation equivalence for such processes.

2.1 Infinite trees and Rabin automata

In Chapter 3 we shall look atSnS [Rab69] and a version of the modal mu-calculus

[Koz83], both of which are logics interpreted on infinite node-labelled trees of fixed arity.

2.1.1 Infinite trees

An n-ary infinite tree can be seen as a prefix-closed set, with suffixing representing the

successor relation.

Definition 2.1.1 The full infiniten-ary tree is the setf0; : : : ; n� 1g� with the successor

relation!� f0; : : : ; n� 1g��f0; : : : ; n�1g+ defined byw! wi for i 2 f0; : : : ; n�1g.
wi is called theith successor ofw. The root is�.

21



22 Chapter 2. Background

In other words, any nodewx wherex = i1i2 : : : im is the unique node reachable from

w via the pathw! wi1 ! wi1i2 � � � ! wi1i2 : : : im.

We shall sometimes need an ordering on the node set.

Definition 2.1.2 Theancestral orderingonf0; : : : ; n� 1g� is given byw0 < w00 if there

exists aw000 2 f0; : : : ; n� 1g+ such thatw0w000 = w00.

A labelled treet whose labels are in the alphabetA is defined as a labelling function

onf0; : : : ; n� 1g�.

Definition 2.1.3 An n-ary A-labelled tree is a functiont : f0; : : : ; n� 1g� ! A. The

set of allA-labelled trees is denoted byT !
A . A set ofn-ary A-labelled trees is called a

tree languageoverA.

In the rest of this section we assume without loss of generality that all trees considered

are binary, meaningn = 2.

We now define a notion of equivalence on trees which states that two nodes have

the same branching properties with respect to some subalphabetA0. First we define the

notion of anA0-descendant.

Definition 2.1.4 For any treet 2 T !
A andA0 � A, theA0-descendant relation=)

A0

�
f0; 1g� � (f0; 1g� � f0; 1g�) is given byw =)

A0

(u0v0; u1v1) wheneverw < u0v0 and

w < u1v1 where t(w0) 62 A0 wheneverw < w0 < u0v0 or w < w0 < u1v1 but

t(u0v0); t(u1v1) 2 A0.

Thus, theA0-descendants of a nodew are the first descendants ofw labelled by

elements fromA0 along a pair of incomparable paths. ForA-labelled trees=)
A

clearly

reduces to!. If A = A0 [ f�g where� is a special ‘invisible’ label,� 62 A0, =)
A0

can be seen as the successor relation modulo invisible labels. Thus, the relation is

similar to the weak transition relations for edge-labelled transition graphs with silent

actions (cf. Definition 5.1.1) and gives rise to an equivalence of nodes that is similar to



2.1. Infinite trees and Rabin automata 23

the observational equivalence of [Mil89] and essentially is the equivalence on trees of

[BCG88]:

Definition 2.1.5 For any treest1 2 T !
A1
; t2 2 T !

A2
andA0 � A1 \A2, anA-bisimulation

is a relationRA0 � f0; 1g� � f0; 1g� such that whenever(w0; w00) 2 RA0 we have

1. t1(w0) = t2(w
00) andt1(w0) 2 A0

2. w0 =)
A0

(w00; w
0
1) =) 9(w000 ; w001) : w00 =)

A0

(w000 ; w
00
1) withw00Rw

00
0 andw01Rw

00
1

3. w00 =)
A0

(w000 ; w
00
1) =) 9(w00; w01) : w0 =)

A0

(w00; w
0
1) withw00Rw

00
0 andw01Rw

00
1

We define'A0 by'A0= f(w0; w00)jw0RA0w00 for someA0-bisimulationRA0g. Ifw0 'A0 w00

we say thatw0 andw00 areA0-bisimilar.

Thus,'A0 identifies two trees labelled by alphabets containingA0 if their ancestral

information w.r.t.A0 is the same. We have

Proposition 2.1.1'A0 is an equivalence relation onf0; 1g� � f0; 1g�.

2.1.2 Rabin automata

The use of Rabin automata is crucial to the equi-expressiveness proof in Chapter 3. The

Rabin automaton, introduced in [Rab69], is an important type of automaton on infinite

trees, first used as an auxiliary notion in the proof of the decidability ofSnS. It provides

a generalization of the B̈uchi automata on infinite sequences introduced in Büchi’s proof

of the decidability ofS1S [Büc60].

Definition 2.1.6 A Rabin automatonon binaryA-labelled trees is a quadrupleA =

(Q; q0; f a! j a 2 Ag;
), whereQ is a finite set ofstates, q0 is thestart state, f a! �
Q� (Q �Q) j a 2 Ag is a finite family of finitetransition relationsand
 � 2Q � 2Q

is a finite collection of finiteacceptance pairs. Whenever(q; (q1; q2)) 2 a! we write

q
a! (q1; q2).



24 Chapter 2. Background

Rabin automata are thus nondeterministic. This feature is essential; deterministic

Rabin automata can be shown to be strictly less powerful than their nondeterministic

counterparts [Tho90].

Definition 2.1.7 A run of the Rabin automatonA = (Q; q0; f a! j a 2 Ag;
) on an

A-labelled treet is anyQ-labelled treer such that

r(�) = q0

if t(s) = a thenr(s) = q; r(s0) = q0; r(s1) = q00 for someq a! (q0; q00)

Rabin acceptance states that there is a run where every path satisfies a fairness

condition in that along any path there is an acceptance pair(Li; Ui) such that states inUi

occur infinitely often and states inLi do not. We letIn(r j �) denote the set of states

occurring infinitely often along a path� in the runr.

Definition 2.1.8 A run r ofA is acceptingif for all paths� in r there is an acceptance

pair (Li; Ui) 2 
 such that

In(r j �) \ Li = ; andIn(r j �) \ Ui 6= ;

Definition 2.1.9 A tree languageL is Rabin-recognizableif there is a Rabin automaton

A such thatt 2 L iff t admits an accepting run ofA.

Example 2.1.1 For the alphabetfa; bg consider the Rabin automaton

A = (fq1; q2g; q1; fq1 a! (q1; q1); q1
b! (q2; q2); q2

a! (q1; q1); q2
b! (q2; q2)g; f(fq2g; fq1g)g)

The stateq2 is assumed exactly when ab is encountered, so from the acceptance

condition we see that the tree language recognized byA is that of the trees that do not

have a path containing infinitely manyb’s. 2

In [Rab69] Rabin proved that a set of trees can be defined inSnS if and only it it

is Rabin-recognizable. This result, stated in this thesis as Theorem 3.3.1, provided a

generalization of B̈uchi’s result thatS1S-definability corresponds to the notion of the

notion of being B̈uchi-recognizable and will play a crucial role in Chapter 3.



2.2. Normed recursive BPA processes 25

2.2 Normed recursive BPA processes

In Chapters 4 to 6 we shall look at (edge)-labelled transition graphs that arise from the

structural operational semantics of process calculi.

Definition 2.2.1 A labelled transition graphG = (Pr; Act; f a!g) is a triple consisting

of a set ofstatesor processesPr, a set ofatomic actionsAct and a family of transition

relationsf a! � Pr � Pr j a 2 Actg. We refer to processes in general byp; q; : : :

Whenever(p; q) 2 a! we writep a! q. If there is noq such thatp a! q we writep 6 a! .

The transitive closuref u! ju 2 Act+g of the transition relations is defined forw 2 Act+

byp aw! q if p a! p0 andp0 w! q for somep0.

In particular we look at the transition graphs defined by the class of guarded recursive

normed BPA (Basic Process Algebra) processes (see e.g. [BBK87a,BK88]).

2.2.1 Syntax and semantics

In the rest of this chapter and in Chapters 4 to 6E; F;G : : : will be used to denote BPA

process expressions. These are given by the abstract syntax

E ::= a j X j E1 + E2 j E1 � E2

Herea ranges over a set of atomic actionsAct, andX over a family of variables. The

operator+ is nondeterministic choice whileE1 � E2 is the sequential composition ofE1

andE2 – we usually omit the ‘�’. A BPA process is defined by a finite system of recursive

process equations

� = fXi
def
= Ei j 1 � i � kg

where theXi are distinct, and theEi are BPA expressions with free variables in

V ar = fX1; : : : ; Xmg. One variable (generallyX1) is singled out as theroot. We

shall occasionally write�1R�2 for binary relationsR; this should be read as stating that



26 Chapter 2. Background

the roots of�1 and�2 are related byR. Often we shall only look at relations within the

transition graph for a single�. We can do so without loss of generality, since we can let

� be the disjoint union of the�1 and�2 that we are comparing (with suitable renamings

of variables, if required); its transition graph is then the disjoint union of those for�1

and�2.

We restrict our attention toguardedsystems of recursive equations.

Definition 2.2.2 A BPA expression isguardedif every variable occurrence is within the

scope of an atomic action. The system� = fXi
def
= Ei j 1 � i � kg is guarded if allEi

are for1 � i � k.

Here and in Chapters 4 to 6 we useX; Y; : : : to range over variables inV ar and

Greek letters�; �; : : : to range over elements inV ar�. In particular,� denotes the empty

variable sequence.

Definition 2.2.3 Any system of process equations� defines a labelled transition graph.

The transition relations are given as the least relations satisfying the following rules:

E
a! E 0

E + F
a! E 0

F
a! F 0

E + F
a! F 0

E
a! E 0

EF
a! E 0F

a
a! � a 2 Act

E
a! E 0

X
a!E 0

X
def
= E 2 �

E
a! �

EF
a! F

Finally, the important extra restriction on a family� is normedness.

Definition 2.2.4 Thenormof a BPA expressionE is defined as

jEj = minflength(w) j E w! �; w 2 Act+g

A system of defining equations� is normedif for any variableX 2 V ar jXj <1.

The maximal norm of any variable in� ism� = maxfjXj jX 2 V arg.



2.2. Normed recursive BPA processes 27

An important property of the norm is that it is additive under sequential composition

and for nondeterministic choice corresponds to taking the minimum. This reduces the

calculation of norms of variables in a system of process equation to solving systems of

equations over the natural numbers.

Proposition 2.2.1 For BPA expressionsE; F we havejEF j = jEj+ jF j andjE+F j =
min(jEj; jF j).

PROOF: Let wE be any shortest string with the property thatE
wE! � and letwF be any

shortest string with the property thatF
wF! �. Clearly,wEwF is a shortest stringu such

thatEF u! �. Also it is obvious that the shorter ofwE andwF is the shortest stringu

with the property thatE + F
u! �. 2

As from Section 2.2.4 we restrict our attention to the class of BPA processes in GNF,

whose states are all members ofV ar�. The following definitions and results are only

stated for states that are indeed strings of variables.

Definition 2.2.5 The languageL(�) accepted by� 2 V ar� is defined by

L(�) = fw 2 Act+ j � w! �g

We say that� and� are language equivalentiff L(�) = L(�).

Definition 2.2.6 The set of tracesTr(�) for � 2 V ar� is given by

Tr(�) = fw 2 Act+ j � w!g

We say that� and� are trace equivalentiff Tr(�) = Tr(�).

Example 2.2.1 Consider the system� = fX def
= a + bXY ; Y

def
= cg. HerejXj =

jY j = 1, so� is normed. By the transition rules in Definition 2.2.3X generates the

transition graph in Figure 2–1. We have thatL(Y ) = fcg whereasL(X) = fbnacn jn �
1g andTr(Y ) = fcg butTr(X) = fbn j n � 1g [ fbnacj j j � n; n � 1g. 2



28 Chapter 2. Background

�

X

?
a

Y

XY

?
a

-

�
c

b -b

�
c

XY 2

Y 2
?

a

-b

�
c

: : :

: : : : : :

: : :.......

.......

-b

�
c

XY n

Y n
?

a

-b

�
c

: : :

: : : : : :

: : :.......

Figure 2–1: Transition graph forX def
= a+ bXY ; Y

def
= c (Example 1)

Example 2.2.2 The system of equations� = fX def
= aX; Y

def
= c + aXg is not

normed, since there is now such thatX w! �. 2

Thus, because of the normedness restriction, normed BPA does not include all regular

processes. Nevertheless, it is a very rich family with processes that can have infinitely

many states even after quotienting by any behavioural equivalence in the linear/branching

time hierarchy.

For instance, in Example 2.2.1 above, for any two distinct states�1 and�2 we

haveTr(�1) 6= Tr(�2), so no two distinct states are related byanyequivalence in the

linear/branching time hierarchy, since they are not even trace equivalent. Thus, the

transition graph is left unchanged with infinitely many states after quotienting by any

such equivalence.

2.2.2 Bisimulation equivalence on BPA processes

In Chapter 4 we prove that bisimulation equivalence [Par81,Mil89] over normed BPA

processes is decidable.

Definition 2.2.7 A relationR between processes is abisimulationif wheneverpRq then

for eacha 2 Act

1. p a! p0 ) 9q0 : q a! q0 with p0Rq0



2.2. Normed recursive BPA processes 29

2. q a! q0 ) 9p0 : p a! p0 with p0Rq0

We define� by� = f(p; q) j pRq for some bisimulationRg. If p � q, p andq are said

to bebisimulation equivalentor bisimilar.

Proposition 2.2.2 [BK88] � is a congruence relation w.r.t.+ and�

Proposition 2.2.3 For any normed system�, � � � implies thatL(�) = L(�), and

thus alsoj�j = j�j.

Example 2.2.3 An example of bisimilar BPA process expressions is given byfX def
=

aY X + b; Y
def
= bX;A

def
= aC + b; C

def
= bAAg. We have thatX � A, since the relation

f(Xn; An) jn � 0g[f(Y Xn+1; CAn) jn � 0g is a bisimulation (whereV n here denotes

n successiveV s,V 2 V ar). 2

2.2.3 Axiomatizations of bisimulation equivalence

In the usual presentation of BPA (see e.g. [BK88]), much attention is usually devoted to

the so-called BPA laws – presented here in Table 2–1. The BPA laws are easily shown to

be sound w.r.t. bisimilarity1, irrespective of any restrictions on the processes involved.

Proposition 2.2.4 [BK88] For any BPA expressionsE1; E2 andE3 we have thatE1 +

E2 � E2 + E1, (E1 + E2) + E3 � E1 + (E2 + E3), E1 + E1 � E1, (E1 + E2)E3 �
E1E3 + E2E3 and(E1E2)E3 � E1(E2E3).

The BPA laws do not form a complete axiomatization of BPA; some notion of fixed-

point induction must be added in order to prove equations involving recursively defined

processes. In Section 4.3 we show how such an induction principle arises from the

tableau method used to decide strong bisimilarity and use it together with an encoding of

the BPA laws and congruence laws of Proposition 2.2.2 to give an equational theory for

normed BPA processes in3-GNF (see below).

1In fact the BPA laws are sound forall equivalences in the linear/branching hierarchy [vG90a].



30 Chapter 2. Background

E1 + E2 = E2 + E1 A1

(E1 + E2) + E3 = E1 + (E2 + E3) A2

E1 + E1 = E1 A3

(E1 + E2)E3 = E1E3 + E2E3 A4

(E1E2)E3 = E1(E2E3) A5

Table 2–1: The BPA laws

2.2.4 Normed recursive BPA processes in Greibach Normal Form

Any system� of guarded BPA equations has a unique solution up to bisimulation

equivalence [BK84]. Moreover, in [BBK87a] it is shown that any such system can be

effectively presented in what we here callGreibach Normal Form. In this thesis we

restrict our attention to normed BPA processes given in3-GNF.

Definition 2.2.8 A system of BPA equations� is said to be inGreibach Normal Form

(GNF) if all equations are of the form

fXi
def
=

niX
j=1

aij�ij j 1 � i � mg

If for eachi; j the variable sequence�ij haslength(�ij) < k, � is said to be ink-GNF.

The normal form is called Greibach Normal Form by analogy with context-free

grammars (without the empty production) in Greibach Normal Form (see e.g. [HU79]).

There is an obvious correspondence with grammars in GNF: process variables correspond

to non-terminals, the root is the start symbol, actions correspond to terminals, and each

equationXi
def
=
Pni

j=1 aij�ij can be viewed as the family of productionsfXi ! aij�ij j1 �



2.2. Normed recursive BPA processes 31

j � nig. The notion of normedness says that the grammar must not have useless

productions. It is well-known that any context-free language (without the empty string)

is generated by a grammar in3-GNF [HU79]. One should also notice that for systems in

GNF, a transition step in the operational semantics of Definition 2.2.3 corresponds to a

leftmost derivation step in the corresponding grammar.

Theorem 2.2.1 [BBK87a] If � is a guarded system of BPA equations, we can effectively

find a system�0 in 3-GNF such that�0 � �. Moreover, when� is normed, so is�0.

PROOF: An effective procedure for rewriting� into 3-GNF consists in first rewriting

� into GNF and then rewriting the resulting system into3-GNF. (We assume that the

right-distributive law A4 (Figure 2–1) has been applied (from left to right) as far as

possible.)

For the rewriting into GNF, we first replace all internal occurrences of atomic actions

by equations. Thus, for each atomic actiona occurring in the definitions introduce a new

variableXa, replace as many occurrences ofa as possible while keeping the resulting

system guarded and add the equationXa
def
= a to�.

We then remove all unresolved sums from the outside in. Anunresolved sumis a sum

F +G occurring in an expression of the formE(F +G). We now repeat the following

loop until there are no unresolved sums left:

� For each outermost unresolved sumF + G introduce a new variableXF+G and

replace all occurrences ofF +G byXF+G. Add the equationXF+G
def
= F +G to

�. (This may make the resulting system unguarded.) Call the equations added in

traversali of the loop theith stratum(letting the original� be stratum0).

After all unresolved sums have been removed, all equations in the resulting system are

of the form

Xi
def
=
X
j

aij�ij +
X
l

�il



32 Chapter 2. Background

We then make all unguarded summands guarded. Notice that all variables introduced

in stratumi have definitions using only variables in strata< i. We replace unguarded

variables by their definitions, using the following loop. It is easy to see that when we

reach stratumi all equations in strata< i are now guarded.

� For each successive stratum do the following: For every equation in the stratum,

for any unguarded summandX 0kl�
0
kl replaceX 0kl by its definition

P
ij aij�ij and

use the right-distributive law (A4) to obtain the new summand
P

ij aij�ij�
0
kl.

We now have a system of process equations ink-GNF for somek. We can then

rewrite the system into3-GNF in the following way. We introduce a new ‘pair variable’

UXY for every occurring variable pairXY , adding the equationUXY
def
= XY . We then

replace every occurrence ofXY by U in each equation, going from left to right. For

each of the new unguarded equationsUXY
def
= XY we use the same trick as above:X

is replaced by its definition and A4 is applied. This may have introduced new instances

of the variable pairs, which we then have to replace by appropriate ‘pair variables’. The

resulting system is now indk
2
e-GNF. The whole procedure is repeated until we reach

3-GNF.

Since all steps used in the algorithm described here either simply introduce new

variables that rename expressions or use the BPA laws, we see that bisimilarity and thus

normedness must be preserved, so clearly�0 � �. 2

Example 2.2.4 Let us rewrite the system�:

X
def
= a(Y + ZX) + aXb

Y
def
= aZ(Y + bXXX) + aZ

Z
def
= a

in 3-GNF.



2.2. Normed recursive BPA processes 33

After removing internal occurrences of actions, it becomes

X
def
= a(Y + ZX) + aXXb

Y
def
= aZ(Y +XbXXX) + aZ

Z
def
= a

Xb
def
= b

We then remove unresolved sums, getting

X
def
= aXY+ZX + aXXb

Y
def
= aZXY+XbXXX + aZ

Z
def
= a

Xb
def
= b

XY+ZX
def
= Y + ZX

XY+XbXXX
def
= Y +XbXXX

After we have got rid of all unguarded sums, we have

X
def
= aXY+ZX + aXXb

Y
def
= aZXY+XbXXX + aZ

Z
def
= a

Xb
def
= b

XY+ZX
def
= aZXY+XbXXX + aZ + aX

XY+XbXXX
def
= aZXY+XbXXX + aZ + bXXX

This system is in4-GNF. We introduceUXX
def
= XX andUXXb

def
= XbX and get

X
def
= aXY+ZX + aXXb



34 Chapter 2. Background

Y
def
= aZXY+XbXXX + aZ

Z
def
= a

Xb
def
= b

XY+ZX
def
= aZXY+XbXXX + aZ + aX

XY+XbXXX
def
= aZXY+XbXXX + aZ + bXXX

UXX
def
= XX

UXXb

def
= XbX

which then becomes

X
def
= aXY+ZX + aXXb

Y
def
= aZXY+XbXXX + aZ

Z
def
= a

Xb
def
= b

XY+ZX
def
= aZXY+XbXXX + aZ + aX

XY+XbXXX
def
= aZXY+XbXXX + aZ + bUX

UXX
def
= aX + aXXbX

UXXb

def
= bX

finally arriving at�0, which is

X
def
= aXY+ZX + aXXb

Y
def
= aZXY+XbXXX + aZ

Z
def
= a

Xb
def
= b

XY+ZX
def
= aZXY+XbXXX + aZ + aX

XY+XbXXX
def
= aZXY+XbXXX + aZ + bUX



2.2. Normed recursive BPA processes 35

UXX
def
= aX + aUXXb

X

UXXb

def
= bX

2

Because of the correspondence with context-free grammars, we immediately see that

language equivalence (or completed trace equivalence) is undecidable for normed BPA

processes. This follows directly from the result for context-free grammars (see e.g.

[HU79]). In our terminology this result reads as follows:

Theorem 2.2.2 For any normed system� of BPA process equations in GNF it is unde-

cidable whetherL(�) = L(�) for �; � 2 V ar�.

An easily established consequence is that trace equivalence is undecidable.

Theorem 2.2.3 For any normed system� of BPA process equations in GNF it is unde-

cidable whetherTr(�) = Tr(�) for �; � 2 V ar�.

PROOF: We can reduce language equivalence to trace equivalence, since we haveL(�) =

L(�) iff Tr(�
p
) = Tr(�

p
) where

p
is a new action (this is an observation due to

Lambert Meertens). 2

An important advantage of using GNF is that the states in the transition graph for a

process given in this way are elements ofV ar�. Moreover, the restriction to variable

sequences of length at most2 guarantees limited growth of these sequences under single

transitions. When applying a defining equation to the leftmost variable in a string� the

length of the derivative increases by at most1:

Proposition 2.2.5 Suppose� is in 3-GNF. Then, for any� 2 V ar�, whenever� a! �0

we havelength(�0) � length(�) + 1.



36 Chapter 2. Background

PROOF: Suppose� = Xi�
000. Then� a! �0 must be due toXi

a! �00. This in turn is due

to the defining equationXi
def
=
Pni

j=1 aij�ij having a summanda�00 with length(�00) � 2.

Since�0 = �00�000, the result follows. 2

Finally, the following simple relationship between lengths and norms for variable

sequences becomes particularly useful in Chapter 3.

Proposition 2.2.6 For � 2 V ar� length(�) � j�j andj�j � m�length(�).

2.2.5 Self-bisimulations

For finite-state processes a naive decision procedure for the bisimulation problemp � q

consists in enumerating all binary relations over the state space and determining if there

is a relation among them which is a bisimulation containing(p; q). But since in general

bisimulations over normed BPA processes may be infinite - for instance, the least non-

empty bisimulation for the transition graph in Example 2.2.1 is the identity - a decision

procedure for the bisimulation problem for normed BPA cannot rely on this. However,

whenever� � �, our tableau system in Chapter 4 will construct aself-bisimulation,

a finite relationR � V ar� � V ar� whose closure under congruence w.r.t. sequential

composition is a bisimulation containing(�; �). The notion of self-bisimulation was

introduced by Didier Caucal in [Cau90a] (originally published as [Cau88]). Here the

notion of a least congruence is essential.

Definition 2.2.9 For any binary relationR onV ar�, !
R

is the least precongruence w.r.t.

sequential composition that containsR,  !
R

the symmetric closure of!
R

and  !
R
� the

reflexive and transitive closure of !
R

and thus the least congruence w.r.t. sequential

composition containingR.

A self-bisimulation is then simply a bisimulation up to congruence w.r.t. sequential

composition.



2.2. Normed recursive BPA processes 37

Definition 2.2.10 A relationR � V ar� � V ar� is calleda self-bisimulationiff �R�

implies that

1. � a! �0 implies� a! � 0 for some� 0 with�0  !
R
� � 0

2. � a! � 0 implies� a! �0 for some� 0 with�0  !
R
� � 0

The following lemma, due to Didier Caucal, shows that a self-bisimulation is a finite

witness for bisimilarity2:

Lemma 2.2.1 [Cau90a]If R is self-bisimilar then !
R
� � �.

PROOF: B = f(�; �) j �  !
R
� �g is a bisimulation. Suppose�  !

R
� � and that� a! �0.

We must show that there is a� 0 such that� a! � 0 and�0  !
R
� � 0. We know that�  !

R
� �

holds because�  !
R

k� for somek. We now proceed by induction ink.

k = 0 : Trivial, for then� = �.

k = 1 : Either� !
R
� or � !

R
�. Assume wlog that� !

R
�. Then, by the definition of a

least precongruence, there exists a(�0; �0) 2 R such that� = ��0
 and� = ��0
.

If � 6= �,� a! �0 is due to��0

a! �0�0
, so our matching transition is��0


a! �0�0
;

clearly�0�0
  !
R
� �0�0
. If � = �, � a! �0 is �0


a! �1
, due to�0
a! �1. Since

(�0; �0) 2 R, the latter can be matched by�0
a! �1 with �1  !

R
� �1, so we get the

match�0

a! �1
, and clearly�1
  !

R
� �1
.

Step, assuming fork > 1: Then there is a
 s.t. �  !
R


 and
  !
R

k�. By induction

hypothesis we know that there is a
0 s.t. 
 a! 
0 and�0  !
R
� 
0 and a� 0 s.t. � a! � 0

with 
0  !
R
� � 0. But then by transitivity�0  !

R
� � 0.

The other half of the proof, for� a! � 0, is identical. 2

2We reproduce the proof here, since the underlying idea becomes important in Chapter 5, when dealing

with the analogous notion for branching bisimulations.



38 Chapter 2. Background

Corollary 2.2.1 � � � iff there is a self-bisimulationR such that�R�.

PROOF: Clearly, by Proposition 2.2.2,� is a self-bisimulation. Conversely, by the above

lemma, ifR is a self-bisimulation then !
R
� is a bisimulation. 2

2.2.6 The ‘split’ lemma

Finally, the following lemma due to [Cau88] is essential in the tableau system of Chapter

4, since it provides us with a way of removing suffixes of bisimilar BPA expressions.

Lemma 2.2.2 For any normed� and�1; �2; � 2 V ar�, if �1� � �2� then�1 � �2.

PROOF: Suppose�1� � �2�. ThenR = f(�1; �2) j �1� � �2�g is a bisimulation. We

have by Proposition 2.2.1 thatj�1j = j�2j. So�1 = � iff �2 = �. Otherwise, we have

�1�
a! �1 iff �1

a! �01 and�1 = �01�. And the matching move�2�
a! �2 with �1 � �2

must be due to�2
a! �02 with �2 = �02� so(�01; �

0
2) 2 R. The other half of the proof is

entirely similar. 2

Note that the proof relies heavily on normedness; a simple counterexample for the

unnormed case is the system of equationsfX def
= aX; Y

def
= ag asY Y X � Y X, but

clearlyY Y 6� Y .



Chapter 3

A modal characterization of SnS

In this chapter we show that a modal mu-calculus that incorporates a notion of counting

descendants characterizes the Rabin recognizable tree languages of [Rab69] up to an

equivalence of parental information.

In Section 3.1 we outline the syntax and semantics ofSnS and the fixed-point calculus,

here referred to asCML . We then show in Section 3.2 thatSnS is at least as expressive

asCML by a translation ofCML into SnS . Finally, in Section 3.3 we use Rabin’s

tree theorem to establish the result by showing how to encode the acceptance condition

of a Rabin automaton inCML such that a set of trees equivalent to that recognized by

the automaton satisfies the acceptance encoding formula. Our notion of equivalence is a

bisimulation on node-labelled trees resembling the observational equivalence of [Mil89]

and the tree equivalence of [BCG88].

3.1 Syntax and semantics ofSnS andCML

3.1.1 SnS

The second order monadic theory ofn successors,SnS , has its set of terms given by the

abstract syntax

39



40 Chapter 3. A modal characterization ofSnS

T ::= x j � j T i

wherei 2 f0; : : : ; n�1g andx ranges over a set of zero-order (element) variables,V ar0.

Its formulae are given by the abstract syntax

AF ::= T1 = T2 j T1 < T2 j T 2 X j T 2 Pi

for atomic formulae. HereX ranges over a set of first-order (set) variables,V ar1 andPi

ranges over a finite set of atomic predicates. For composite formulae the syntax is

F ::= AF j F1 _ F2 j :F j 8x:F j 8X:F

SnS -structures are of the form(f0; : : : ; n� 1g�; s0; : : : ; sn�1; <; P1; : : : ; Pm). Here

s0; : : : ; sn�1 are the successor functionssi(w) = wi. < is the ancestral ordering on

f0; : : : ; n� 1g� (Definition 2.1.2) andP1; : : : ; Pm are subsets off0; : : : ; n� 1g� .

The semantics ofSnS is defined relative to two variable assigments,� : V ar0 !
f0; : : : ; n� 1g� and� : V ar1 ! 2f0;:::;n�1g

�

. The semantics of a term is an element of

f0; : : : ; n� 1g� and is defined by

[[x]]� = �(x)

[[�]]� = �

[[T i]]� = ([[T ]]�)i

The semantics of anSnS -formulaF is defined by a relationM j=�;� F whereM is

anSnS -structure and� and� are zero- and first-order variable assigments, respectively.

The clauses are1 :

Mj=�;�T1 = T2 () [[T1]]� = [[T2]]�

1�fw=xg is the zero-order assignment that mapsx to the nodew and otherwise agrees with�. Similarly,

�fS=Xg is the first-order assignment that mapsX to the setS and otherwise agrees with�.



3.1. Syntax and semantics ofSnS andCML 41

Mj=�;�T1 < T2 () [[T1]]� < [[T2]]�

Mj=�;�T 2 X () [[T ]]� 2 �(X)

Mj=�;�T 2 P () [[T ]]� 2 P

Mj=�;�:F () notMj=�;�F

Mj=�;�F1 _ F2 () Mj=�;�F1 orMj=�;�F2

Mj=�;�8x:F () for all w 2 f0; : : : ; n� 1g� :Mj=�fw=xg;�F

Mj=�;�8X:F () for all S 2 2f0;:::;n�1g� :Mj=�;�fS=XgF

When the atomic predicates are explicitly chosen amongP1; : : : ; Pm, we shall refer

to the language asSnSP1;:::;Pm.

3.1.2 CML

We now introduce a modal logic,CML , for describing tree properties.CML is a

version of the propositional mu-calculus of [Koz83] with label setf0; : : : ; n � 1g. The

syntax of its formulae is given by

F ::= P j F1 _ F2 j :F j Z j �Z:F j 
i F

wherei 2 f0; : : : ; n� 1g, P ranges over a set of atomic predicates onf0; : : : ; n� 1g�

andZ ranges over a set of recursion variables,V arCML. We assume that all recursion

variables are within the scope of an even number of negations; this will ensure the

well-definedness of the semantics ofCML given below.

We interpretCML in theSnS -structures, only we now think of the elements of a

structure as possible worlds and thesi as accessibility relations between possible worlds.

The intended semantics of the
i modality inCML is that
i F holds ifF holds in the

ith successor-world.

The semantic functionk k is seen relative to an assignment of the recursion variables,

� : V arCML ! 2f0;:::;n�1g
�

. It is defined relative to a structureM by



42 Chapter 3. A modal characterization ofSnS

kPjkM� = Pj

kF1 _ F2kM� = kF1kM� [ kF2kM�
k:FkM� = f0; : : : ; n� 1g� n (kF1kM� )

k
i FkM� = fw j wi 2 kFkM� g
kZkM� = �(Z)

k�Z:FkM� =
[
fS j S � kFkM�fS=Zgg

When the atomic predicates are explicitly chosen from amongP1; : : : ; Pm, we shall

refer to the mu-calculus asCMLP1;:::;Pm.

Note that all ‘superfluous’ logical operators, including_,� (exclusive or) and�X:F

(least fixed point), are easily derived. For instance, for the formulaF (Z) with free

recursion variableZ we have the translation2 �Z:F = :�Z::(F (:Z=Z)). Similarly,

we can define all temporal operators ofCTL [CE81]. As an example,8G is given by

8G:F = �Z:F ^ Vn�1i=0
i Z whereZ is a variable not occuring free inP . We shall feel

free to use all these derived operators as convenient abbreviations.

3.2 SnS is at least as expressive asCML

Labelled trees and theSnS structures are of course one and the same thing. The

only thing we need to observe is that anSnS -structure is an infiniten-ary tree

with nodes labelled by the sets of predicates that they satisfy. Thus the structure

M = (f0; : : : ; n� 1g�; s0; : : : ; sn�1; <; P1; : : : ; Pm) becomestM : f0; : : : ; n� 1g� !
2fP1;:::;Pmg with Pi 2 tM(w) iff w 2 Pi. Similarly, a labelled treet labelled byA =

fa1 : : : ; amg is the structureMt = (f0; : : : ; n� 1g�; s0; : : : ; sn�1; <; Pa1; : : : ; Pam)
with w 2 Paj iff t(w) = aj.

2HereF (:Z=Z) denotes the formulaF (Z) with all free occurrences ofZ replaced by:Z.



3.2. SnS is at least as expressive asCML 43

We can therefore talk about the tree languages definable inSnS andCML . A tree

languageL isSnS -definable iff there is anSnS -formula whose models are the trees in

L:

Definition 3.2.1 AnA-labelled tree languageL is SnS -definable if there is anSnS -

formulaF with one free first order variable,x, and closed w.r.t. second-order variables

such that

L = ft jMtj=;f�=xg;;F (x)g

The single free first order variable is to denote the root of the tree,�. Putting all this

slightly differently (with a slight abuse of notation), we can define

kF (x)k def
= ft jMtj=;f�=xg;;F (x)g

ThenL is SnS -definable just in case there is a formulaF (x) in SnS such that

L = kF (x)k.
We say thatL is CML -definable if there is a formula inCML which is true in the

roots of the trees inL and none others:

Definition 3.2.2 AnA-labelled tree languageL is CML -definable if there is a closed

CML -formulaF such that3

L = ft j � 2 kFkMt

� g

Again, putting all this slightly differently, we can define

kFk def
= ft j � 2 kFkMtg

Since the metalanguage used in defining the semantics ofCML is not far fromSnS ,

it is easy to see that any tree language definable inCML is also definable inSnS .

3The assignment� is inessential, sinceF is closed, and will henceforth be omitted for closed formulae.



44 Chapter 3. A modal characterization ofSnS

Lemma 3.2.1 For any closed formulaF in CMLP1;:::;Pm there is a formula�(F ) in

SnSP1;:::;Pm with kFk = k�(F )k.

PROOF: We exhibit a direct translation� fromCMLP1;:::;Pm toSnSP1;:::;Pm that gives us

a formula ofSnSP1;:::;Pmwith one free variablex :

�(Pk) = x 2 Pk

�(F1 ^ F2) = �(F1) ^�(F2)

�(:F ) = :�(F )

�(
i F ) = (�(F ))[xi=x]

�(Z) = x 2 YZ

�(�Z:F ) = 9S:x 2 S ^ (8y:y 2 S )

(�(F ))[y=x][S=YZ]) ^ 8T:(8z:z 2 T ) (�(F ))[z=x][T=YZ ]) T � S)

([xi=x] denotes a uniform substitution ofxi for free occurrences ofx – similarly for

the other substitutions.) Note that atomic predicates are carried over and that recursion

variables become set variables. The translation of fixed-points is just a formulation of

Tarski’s fixed-point induction principle. A straightforward induction in the structure of

CML -formulae shows that this translation gives a formula with one free variable with

kFk = k�(F )k. 2

SinceCML by the above lemma can be embedded inSnS , since the latter is decidable

[Rab69] and since the translation is effective we also see thatCML is decidable(cf.

[ES84]).

3.3 CML is as expressive asSnS modulo'A

We now establish thatCML is as expressive asSnS up to an ‘observational’ equivalence

of tree languages. We here use the tree theorem of [Rab69].



3.3. CML is as expressive asSnS modulo'A 45

Theorem 3.3.1 [Rab69]A tree language isSnS -definable iff it is Rabin recognizable

in that

� For any formulaF in SnSP1;:::;Pmthere exists a Rabin automatonAF over the

alphabet2P1;:::;Pm such thattM admits an accepting run onAF iff Mj=F .

� For any Rabin automatonA over the alphabetA = fa1; : : : ; amg there exists a

formulaFA in SnSPa1 ;:::;Pam
such thatMtj=FA iff t admits an accepting run on

A.

In what follows, the first half of Theorem 3.3.1 will be essential. For a givenF of

SnSP1;:::;Pmwe express the Rabin acceptance condition of the corresponding automaton

AF in CML . The acceptance condition assumes a knowledge of the states assigned to

a node. However, we do not have the state predicates available in our structures, only

labelling predicates for the automaton alphabetA, so we must find a way of overcoming

this. We do so by coding the product of a treet and its runr onAF , t̂ r 2 T !
A�Q, as a

tree where the states assumed in the run can be recovered from the position of the nodes

in the encoding using the
i -operator. In what follows we assume wlog thatn = 2.

Definition 3.3.1 A computation history(h; S) for the Rabin automatonA =

(Q; q0; f a! j a 2 Ag;
) is any functionh : S ! A and its domainS � (f0; 1g�Q)+

which is a least set satisfying

q0 2 S andh(q0) = a for somea 2 fa j 9q0; q00 : q0 a! (q0; q00)g

sq 2 S ) 9q a! (q1; q2) :

8><
>:

sq000q0q1 2 S

sq000q1q2 2 S
andh(sq) = a

The definition gives an obvious isomorphismH between the tree/run combinations in

T !
A�Q and the set of computation histories, so we shall feel free to speak of a computation

history associated with a given tree and a run on it. Also, given a history(h; S) it is easy

to find the unique runr(h;S) : f0; 1g� ! Q to which it corresponds. By a slight abuse of



46 Chapter 3. A modal characterization ofSnS

notation, we letH(w) denote the node in the domain ofH(t̂ r) that corresponds to the

nodew in t andr.

We now code all computation histories ofA as full binary trees labelled byA [
f�g, where� is a dummy label which signifies that the node in the encoding does not

correspond to a node in the original computation history. The coding consists in taking

the homomorphic extensionK� of the node-coding given by

K(qi) = 10i1 1 � i � jQj
K(w) = w w 2 f0; 1g�

and defining the associated labellingK�(h; S) : f0; 1g� ! A [ f�g by

K�(h; S)(w) =

8><
>:

a if w = K�(s) for somes 2 S with h(s) = a

� otherwise

The state assumed in a node is thus reflected in the path to its descendants in the

coding. Using this fact we can now define the state predicates as formulaeQqj
ofCML ,

assuming a predicatePa for everya 2 A [ f�g. A node in acodedcomputation history

satisfies the state predicate formulaQqj
exactly if the run corresponding to the history is

labelled byqj at the corresponding node:

Lemma 3.3.1 For any treet and associated computation history(h; S) any nodew in

the runr(h;S) satisfiesw 2 kQqjkMr iff K�(H(w)) 2 kQqj
kMK�(h;S) where theQqj

are

CML -formulae given by

Qqj

def
= :P� ^

_
qi2Q

^1
k=0h0ih0ih0ih1ih0ijh1i
k h1ih0iih1i(:P�) (3.1)

wherehiiF def
= 
i (F ^ P� ) ^ Vj 6=i
j 8G:P� andhiij is this iteratedj times.

PROOF: The state information inr(h;S) is contained in the shape of the path between

successive nodes not labelled by� . Suppose for a nodew in t we havet(w) = a and that

r(h;S)(w) = qi; r(w0) = qi0 andr(w1) = qi1 with t(w0) = a0 andt(w1) = a1. Then for

somesqi 2 S we haveh(sqi) = a andsqi000qi0qi0; sqi000qi1qi1 2 S with



3.3. CML is as expressive asSnS modulo'A 47

h(sqi000qi0qi0) = a0

h(sqi000qi1qi1) = a1

In the coded computation historyK�(sqi000qi0qi0) = K�(sqi)00010
i1010i01 and

K�(sqi000qi0qi1) = K�(sqi)00010
i1110i11 , so we get

K�(h; S)(sqi000qi0qi0) = a0

K�(h; S)(sqi000qi1qi1) = a1

Thus we can find the state assumed inw by recovering the path to the next nodes

not labelled by� . But we must also describe that all nodes on the path between two

non-dummy nodes and all subtrees thereof are labelled by� . We express this by letting

hiiF denote the formula
i (F ^P� )^Vj 6=i
j 8G:P� and lettinghiij denote this iterated

j times, and we now arrive at (3.1). 2

That the coded computation history contains the same ancestral information as the

original tree w.r.t. non-� -labels will be made precise using the equivalence'A (Definition

2.1.5).

We also need to express a next-time operator w.r.t. coded histories,Xi:F , which is

to denote that theith proper descendant has propertyF . (By a proper descendantof a

nodes we mean a descendant not labelled by� such that all nodes between it ands are

labelled by� , see Definition 2.1.4). This only makes sense in non-dummy nodes, so we

get

Xi:F
def
= :P� ^

_
qk1 ;qk22Q


0 
0 
0 
1 
0 k1
1 
i 
1 
0 k2
1 (F ^ :P� )



48 Chapter 3. A modal characterization ofSnS

TheCTL branching time operators can now be redefined w.r.t.Xi:F so we get e.g.

8G:P def
= �Z:P ^ V1i=0Xi:Z.

We can now describe the behaviour of a Rabin automation by a CML formula.

Theorem 3.3.2 For any Rabin automatonA over A = fPa1 ; : : : ; Pamg there is a

CMLPa1 ;:::;Pam ;P� -formulaAccA such that for any treet there is a corresponding com-

putation history(h; S) such thatK�(q0) 2 kAccAkK�(h;S) iff A acceptst.

PROOF: Rabin acceptance is formulated as a conjunction of twoCML formulae inter-

preted overA [ f�g-labelled trees, namely

AccA
def
= Acc1 ^ Acc2

whereAcc1 describes that theA [ f�g-labelled tree indeed is a coded computation

history andAcc2 describes the Rabin acceptance condition itself.

Acc1 includes a description of the transition relation ofA and the fact thatK�(q0) = 11,

so the coding places the root of a tree/run combination at the node11:

Acc1
def
= P� ^
0 (8G:P� ) ^
1 
0 (8G:P� ) ^


1 
1 (Qq0
^ �Z:(

M
q2Q

Qq ^
M

(q;a;q1;q2)2�

(Qq ^ Pa �
1̂

i=0

Xi(Qqi
^ Z)))

Acc2 is given as follows:

Acc2
def
= (8F:(�Z:

_

q2
S
Ui

Qq ^ 8F:Z)) ^

(
^
Ui

^
Qq2Ui

:(9F:�Z:(
_
p2Li

Qp ^ 9F:(Qq ^ Z))))

The first conjunct inAcc2 states that on every path, some state in theU -component

of an acceptance pair occurs infinitely often. The second conjunct states that for no



3.3. CML is as expressive asSnS modulo'A 49

acceptance pair is there a path such that both a state in theL-component and a state in

theU -component occur infinitely often. 2

We now formally state the correspondence between trees and coded computation

histories, using the notion ofA-bisimulation (Definition 2.1.5). The root of a tree is

A-bisimilar to the first node not labelled by� in the coded computation history, namely

the node11:

Theorem 3.3.3 For anyA-labelled treet and any of its corresponding coded computa-

tion historiesK�(H(t̂ r)) wherer is some run oft we have that

�t 'A 11K�(H(t̂ r))

PROOF: It is enough to show that the set of pairs of corresponding proper descendants of

�t and11K�(H(t̂ r)), i.e. the least setD such that

D = f�t; 11K�(H(t̂ r))g [

f(w01; w001) j 9(w0; w00) 2 D:9(w02; w002):w0 =)
A
(w01; w

0
2) ^ w00 =)

A
(w001; w

00
2)g [

f(w02; w002) j 9(w0; w00) 2 D:9(w01; w001):w0 =)
A
(w01; w

0
2) ^ w00 =)

A
(w001; w

00
2)g

is anA-bisimulation. So take any(w0i; w00i) 2 D. By the isomorphismH and the

definition ofK� we have thatt(w) = K�(H(t̂ r))(K�(H(w))); it is immediately seen

that the pairs of proper descendants also belong toD. 2

If we extend the definition of'A to tree languages over alphabets includingA as

L1 'A L2
def()

8><
>:
8t 2 L19t0 2 L2:t 'A t0

8t0 2 L29t 2 L1:t
0 'A t

we get from Theorems 3.3.2 and 3.3.3 that

Corollary 3.3.1 If L isSnSPa1 ;:::;Pam -definable, there exists aCMLPa1 ;:::;Pam ;P� -definable

languageL0 such thatL 'A L0.



50 Chapter 3. A modal characterization ofSnS

Those feeling uneasy about the extra label� can think ofK� as defining apartial

labelling function; the labelling predicateP� should then be seen as a definedness pred-

icate, and'A should therefore be seen as a ‘Kleene equality’ on such partially labelled

trees.



Chapter 4

Deciding bisimilarity for normed BPA

In [BBK87b] (and [BBK87a]) Baeten, Bergstra, and Klop prove the remarkable result

that bisimulation equivalence isdecidablefor normed BPA processes in3-GNF. How-

ever, their decidability proof relies on isolating a possibly complex periodicity from the

transition graphs of these processes. An alternative, more elegant, proof utilizing rewrite

techniques is presented by Caucal [Cau90a] (originally published as [Cau88]).

In this chapter we provide a simple and much more direct proof of this decidability

result using atableaudecision method involving goal-directed rules, a technique closely

related to that introduced by Korenjak and Hopcroft in [KH66] for deciding language

equivalence for simple grammars. The technique is also related to the tableau systems

for local model checking in the modal mu-calculus over finite and infinite state transition

systems [SW89,BS90]. A by-product of the tableau system given is a sound and complete

equational theory for normed BPA.

In Section 4.1 we outline the existing proofs of the decidability result. In Section 4.2

we give the tableau decision method and in Section 4.3 we present the resulting sound

and complete equational theory for normed BPA. Finally, in Section 4.4 we relate our

tableau system to the work of [Cau90a] by showing how one can extract what Caucal

calles a fundamental relation via a successful tableau and a so-called auxiliary tableau.

51



52 Chapter 4. Deciding bisimilarity for normed BPA

4.1 Existing approaches

4.1.1 Baeten, Bergstra, and Klop’s proof

The idea behind the proof in [BBK87b] is to view the transition graph of a normed BPA

process as a tree and to show that this tree is regular.

The transition graph for a process given by a system of equations� in 3-GNF with

variablesV ar = fX1; : : : ; Xng is unfolded onto a tree whose node set isV ar� (cf.

Definition 2.1.1). Here, however, the successors of a nodew areX1w; : : : ; Xnw.

A translationis any function�w defined on nodes by�w(v) = vw and extended to

sets in the obvious way. Two sets of nodesV andW are said to betranslation equivalent

if there are translations�v;�w and a set of nodesU such that�v(U) = V;�w(V ) =W .

Translation equivalence thus means that two node sets ‘have the same shape’.

Example 4.1.1 The tree forV ar = fX; Y g is depicted in Figure 4–1. The sets

fY X;XYX; Y Y Xg andfY Y;XY Y; Y Y Y g are translation equivalent because of the

setU = fY;XY; Y Y g and the translations�X and�Y . 2

A distance functiond(v; w) is defined on pairs of nodes as the least number of edges

betweenv andw. v andw are said to befar apart if d(v; w) > 3. For instance, the nodes

XXX andXXY in Figure 4–1 are far apart sinced(XXX;XY Y Y ) = 6.

It is then shown how one can decompose a transition graph into slices under the

above metric such that the tree of slices yields a regular tree. The decomposition is made

relative to some chosen constantd called theamplitudeof the decomposition. Thenth

slice in the decomposition contains the nodes� with nd � j�j � (n+ 1)d together with

those nodes that can be reached in one transition from a node�with nd < j�j < (n+1)d.

(For an example, see Figure 4–2).

Baeten, Bergstra and Klop then show that there are only finitely many connected

fragments up to translation equivalence, and that no such fragment can be decomposed

into two fragments that are far apart - this is the desired regular decomposition.



4.1. Existing approaches 53

XXX YXX XYX Y YX XXY YXX XY Y Y Y Y

XX YX XY Y Y

X Y

�

�
��

�
��

�
��

�
��

A
AA

A
AA

A
AA

A
AA

�
��

�
��

@
@@

@
@@

��
��

��
�

HH
HH

HH
H

: : : : : : : : : : : :

Figure 4–1: Tree with nodes inV ar� whereV ar = fX; Y g. The node sets enclosed in

dashed rectangles are translation equivalent.

Deciding� then consists in checking for the absence of bisimulation errors between

transition graphs. Abisimulation errorin a relationR between transition graphsG1 and

G2 is a triple of nodes�; �0 2 G1; � 2 G2 and a transition� a! �0 in G1 such that there is

no� a! � 0 in G2 with �0R� 0.

Because of the periodicity exhibited by the above regular decomposition, this test can

always be done in finite time:

Consider two systems of process equations�1 and�2 in 3-GNF. A partial bisim-

ulation up to leveln between their transition graphs is a binary relation between nodes

with norms� n such that it contains no bisimulation errors. Such a partial bisimulation

R is calledd-sufficientwith respect to decompositions of amplituded if for all pairs of

slices(�1;�2) related byR (meaning that for some� 2 �1; � 2 �2; �R�) one can find



54 Chapter 4. Deciding bisimilarity for normed BPA

s

s

s

s

s

s

s

s

s

s ss

ss

6

@
@
@R
@@@

@
@I

@@

?

?

@
@
@R
@@@

@
@I

@@

- -

�
���
�
��

�
���
�
��

- XXX
XXX

XXXy

XXXXXXXXX

?
6

?

@
@
@R
@@@

@
@I

@@

?
6

?
6

HH
HH

HY

HHHHH

HH
HH

HY

HHHHH

�
���
�
��

b
c g

d

b
c g

d

a

b
c g

d
e a

f

a

f

e a e a
a a

f

Level

5

4

3

2

1

0

Figure 4–2: The transition graph forfX def
= a + bY + fXY ; Y

def
= cX + dZ;

Z
def
= gX + eXZg. Nodes at leveln have normn. The dashed area contains slice

1 of a decomposition with amplitude2.

translation equivalent copies(�1
0;�2

0) at least one slice higher up such that the restriction

of R to (�1 � �2) coincides with the restriction ofR to (�1
0 � �2

0).

It is then shown that one now only has to determine a levelN(�1;�2; d) and search

through all the finitely many binary relations between the nodes in the transition graphs

above levelN(�1;�2; d). �1 � �2 iff one finds a partial bisimulation comparing the

roots which isd-sufficient. Decidability follows from the fact that the levelN(�1;�2; d)

can be effectively determined.



4.1. Existing approaches 55

4.1.2 Caucal’s proof

The proof in [Cau90a] is very different; the idea here is to reduce the bisimilarity

problem to a rewriting problem for a relation whose least congruence under sequential

composition is decidable. This is done via a characterization of the maximal bisimulation

� on a transition graph as a Thue congruence, i.e. the least congruence (under sequential

composition) generated by a finite relation.

The relation generating� is a self-bisimulation (cf. Definition 2.2.10) which is also

a fundamentalrelation:

Definition 4.1.1 [Cau90a]A relationR � V ar+ � V ar+ is calledfundamentaliff

1. Dom(R) � V ar , Im(R) � (V ar nDom(R))
+

2. R is a function:�R� and�R
 implies� = 


3. �R� impliesj�j = j�j

From the first and second conditions above it is immediately seen that fundamental

relations are finite and from the third condition one sees that there are finitely many funda-

mental relations for any normed BPA process (since there are only finitely many elements

of V ar� with any given norm). Seen as a rewrite relation, ifR is fundamental then it is

also canonical, i.e. confluent and well-founded (this follows from the functionality ofR

and the finiteness ofDom(R)), and thus its least congruence is decidable.

Proposition 4.1.1 [Cau90a]The set of fundamental, self-bisimilar relations for the tran-

sition graph for a normed system of BPA equations� can be effectively constructed from

�.

PROOF: We know that there are only finitely many fundamental relations for the transition

graph and that !
R
� is well-founded and confluent for any fundamental relation. Thus

we can in finite time check for each of these finitely many finite relations whether or not

it is a self-bisimulation. 2



56 Chapter 4. Deciding bisimilarity for normed BPA

The main result of [Cau90a] is the following characterization.

Theorem 4.1.1 [Cau90a]If R is fundamental, self-bisimilar and maximal w.r.t.� we

have  !
R
� = �.

One should note that fundamental, self-bisimilar relations always exist on a transition

graph for a normed BPA process. The empty relation; is clearly fundamental and

self-bisimilar. If; is maximal,� is the identity relation. We now get

Corollary 4.1.1 For any normed system of BPA equations in GNF� and�; � 2 V ar�

it is decidable whether� � �.

PROOF: Use a linear search as outlined in the proof of Proposition 4.1.1 to findR, a

fundamental, self-bisimilar relation onV ar�V ar+ which is maximal w.r.t.�. SinceR

is canonical, it is decidable whether or not�  !
R
� �. 2

4.2 The tableau decision method

The bisimulation checker for normed BPA we now present is atableau system, a goal-

directed proof system. The proof technique is similar to the algorithm used in [KH66] to

show that language equivalence is decidable for simple grammars.

Assume a fixed system of normed BPA process equations in3-GNF,� = fXi
def
=

Pni
j=1 aij�ij j 1 � i � mg. We determine whetherX� � Y � (assuming of course that

all occurring variables are defined in�) by constructing a tableau using the proof rules

presented in Table 4–1. Atableaufor X� = Y � is a maximal finite proof tree whose

root is labelledX� = Y � such that the equations labelling the immediate successors

of a node are determined by an application of one of the rules in accordance with the

procedure described in this section.

The rules are built around equationsE� = F� (where�; � could be the empty

sequence of variables). Each rule has the form



4.2. The tableau decision method 57

E� = F�

E1�1 = F1�1 � � � En�n = Fn�n

(possibly with side conditions). The premise of a rule represents the goal to be achieved

(thatE� � F�) while the consequents are the subgoals.

The rules are only applied to nodes that are notterminal. Terminal nodes are either

successfulor unsuccessful.

Definition 4.2.1 A tableau node is called anunsuccessful terminalif it has one of the

forms

1. � = � with j�j 6= j�j

2. a� = b� with a 6= b

Clearly, such nodes cannot relate bisimilar processes. In the following subsection we

define the notion of successful termination.

4.2.1 Constructing subtableaux

A tableau consists of a number ofeliminating subtableauxconstructed using the rules

REC, SUM, andPREFIX of Table 4–1. Each of these rules isforwards soundin the

sense that if the antecedent is true (the equation relates bisimilar processes) then one

can find a set of true consequents. This is expressed in the following three propositions,

whose proofs are immediate:

Proposition 4.2.1 (Soundness ofREC) If X� � Y � andX def
= E andY def

= F , then

E� � F�.

Proposition 4.2.2 (Soundness ofSUM) If (
Pm

i=1 ai�i)� � (
Pn

j=1 bj�j)� then there

exist functionsf : f1; : : : ; mg ! f1; : : : ; ng andg : f1; : : : ; ng ! f1; : : : ; mg such that

ai�i� � bf(i)�f(i)� for 1 � i � m andag(j)�g(j)� � bj�j� for 1 � j � n.



58 Chapter 4. Deciding bisimilarity for normed BPA

Proposition 4.2.3 (Soundness ofPREFIX) If a� � a� then� � �.

X� = Y �
REC

E� = F�
SUM

a1�1 = a1�1
PREFIX

�1 = �1

: : : an�n = an�n
PREFIX

�n = �n

Figure 4–3: A basic step in the tableau system

A subtableau is built frombasic steps. See Figure 4–3.

Definition 4.2.2 A basic stepfor X� = Y � consists of an application ofREC followed

by at most one application ofSUM followed by an application ofPREFIX to each of its

consequents (assuming that no node encountered is an unsuccessful terminal). Abasic

nodeis any node of the form�0 = � 0 where�0; � 0 2 V ar�.

Corresponding to a basic step forX� = Y � is a set of single transition steps in

the operational semantics, asX�
ai! �i and Y �

ai! �i for any consequent�i = �i.

By Proposition 2.2.5 we have thatlength(�i) � 1 + length(X�) and length(�i) �
length(Y �) + 1.

Definition 4.2.3 Assume thatk = min(jXj; jY j). Aneliminating subtableaufor X� =

Y � iterates the construction of basic steps to depthk.

See Figure 4–4 for a sketch of an eliminating subtableau in the case whenjXj � jY j.
Notice that if�0 = � 0 is a leaf of an eliminating subtableau thenX�

w! �0 andY � w! � 0

for somew of lengthk.

In the case thatjXj � jY j each leaf of an eliminating subtableau forX� = Y �

is either labelled� = 
�, which we call aresidualof the subtableau, asX has been



4.2. The tableau decision method 59

X� = Y �










J
J
J
JJ

� = 
� � � � � � � �i� = �i� � � �

Figure 4–4: An eliminating subtableau forX� = Y �.

eliminated, or�i� = �i� where�i and�i need not be empty. Since the number of

iterations of basic steps isjXj there must be at least one residual and� and� must persist

as suffixes throughout the subtableau. For any such subtableau we pick one residual node

and call ittheresidual. If insteadjY j < jXj similar remarks would apply except that the

residual then has the form
� = �.

The next step is to apply one of theSUB rules of Table 4–1 to each leafother than

residualsof an eliminating subtableau. If the residual is� = 
� we applySUBL, and if

it is 
� = � we applySUBR. So assumejXj � jY j; then for each leaf�i� = �i� which

is not a residual we obtain

�i� = �i�
SUBL

�i
 = �i
where � = 
� is the residual

If insteadjY j < jXj so
� = � is the residual,SUBR gives us the consequent�i = �i
.

TheSUB rules are also forwards sound in the following sense:

Proposition 4.2.4 (Soundness ofSUBL andSUBR) If �i� � �i� then

� if � � 
� then�i
 � �i, and

� if 
� � � then�i � �i


PROOF: By Lemma 2.2.2 a substitution yields�i
� � �i� and by Proposition 2.2.2 we

get�i
 = �i. The proof for the other half is entirely similar. 2



60 Chapter 4. Deciding bisimilarity for normed BPA

From the above proof we see that theSUB rules should be thought of as two-step rules

consisting of asubstitutionusing the residual followed by areductionof the length of

the expressions involved according to Proposition 2.2.2. Notice that for any application

of SUB we have that

Proposition 4.2.5

1. j�j < jX�j andj
�j < jY �j

2. length(�i) + length(
) + length(�i) � 3m� + 1 for any application ofSUB.

The latter follows from Proposition 2.2.5. Also notice that the bound obtained here is

completely independent oflength(�) andlength(�).

We can now define successful termination.

Definition 4.2.4 A residual or a consequent of an application of aSUB rule is a suc-

cessful terminalif it has one of the forms

1. � = � where there is a subtableau root above it also labelled� = �.

2. � = �

It should be obvious that a node obeying termination condition 2 in the above relates

bisimilar processes. It turns out that this is also true of termination condition 1 in the

context of a successful tableau.

When a consequent ofSUB or the residual is not a terminal node we build a new

eliminating subtableau with it as root as described above, and continue in this fashion.

Therefore, a tableau is defined as successions of eliminating subtableaux as sketched in

Figure 4–5.

Definition 4.2.5 A successful tableauis a tableau all of whose leaves are successful

terminals. If at any point in the construction of an eliminating subtableau we reach an

unsuccessful terminal then the resulting tableau isunsuccessful.



4.2. The tableau decision method 61

X� = Y ��
�

�
��

Q
Q
Q
QQ

� = 
�
�� QQ

� � �
� � �

�� QQ

�i� = �i�

�i
 = �i

SUBL

�
�

�
��

Q
Q
Q
QQ�0 = � 0

� � � � � � � � �
�

�
�

��

Q
Q
Q
QQ�j�

0 = �j�
0

�0 = � 0�00 = �00 � � �

Figure 4–5: A tableau forX� = Y �; some successful leaves are shown

Example 4.2.1 (Example 2.2.3 continued) Consider again� = fX def
= aY X + b; Y

def
=

bX;A
def
= aC + b; C

def
= bAAg. The tableau in Figure 4–6 is a successful tableau for

X = A. 2

4.2.2 Decidability, soundness, and completeness

We now give the proof of correctness of the tableau method and give a complexity

measure in terms of an upper bound on the length of a tableau path.

Theorem 4.2.1 Every tableau forX� = Y � is finite.

PROOF: If a tableau were infinite then it would have an infinite path. By definition such

a path could not contain either successful or unsuccessful terminals. By Proposition

4.2.5(2) such a path can not pass through infinitely many nodes which are consequents of

a SUB rule – for since there are only finitely many different equations with total length

� 3m� + 1 (by Proposition 2.2.6) the path would then contain some successful terminal

infinitely often. Otherwise the path must almost always pass through a residual; but

this also is impossible as the norm of a residual is strictly less than one directly above



62 Chapter 4. Deciding bisimilarity for normed BPA

X = A
REC

aY X + b = aC + b
SUM

aY X = aC
PREFIX

Y X = C
SUB

Y X = C
REC

bXX = bAA
PREFIX

XX = AA
REC

(aY X + b)X = (aC + b)A
SUM

aY XX = aCA
PREFIX

Y XX = CA
SUB

Y X = C

bX = bA
PREFIX

X = A

b = b
PREFIX

� = �

Figure 4–6: A successful tableau forX = A of Example 2.2.3

it by Proposition 4.2.5(1) and as the norms of the residuals are uniformly bounded by

max(j�j; j�j). 2

We can give a complexity bound on the tableau method in terms of the longest possible

path in any tableau forX� = Y �. We measure the length of a path in terms of the total

number of basic steps, since this gives a measure of the number of transition matches

that we need to consider.

Theorem 4.2.2 Any path in a tableau forX� = Y � has a length of at most

m� max(j�j; j�j; m�d3m� + 1

2
e
3m�+1X
j=2

(j � 1)vj)

basic steps, wherev is the cardinality ofV ar.

PROOF: Any SUB consequent has a length of at most3m� + 1, so there can be at most
P3m�+1

j=2 (j � 1)vj distinct SUB consequents along a path. Between any two of these

consequents there can be at mostd3m�+1
2

e residuals, since the worst that can happen is

that the norm on each side decreases by1 between two consecutive residuals. Thus,

any containingSUB consequents has at mostd3m�+1
2

eP3m�+1
j=2 (j � 1)vj subtableau



4.2. The tableau decision method 63

roots. The leftmost path in a tableau contains only residuals, and since their norms are

strictly decreasing there can be at mostmax(j�j; j�j) residuals along this path. Since any

subtableau can have a depth of at mostm� basic steps, the result follows. 2

Corollary 4.2.1 There are only finitely many tableaux for anyX� = Y �.

PROOF: This follows from the above theorem and the fact that the branching at any basic

step in any tableau is uniformly bounded by the maximal number ofSUM consequents.

This is bounded by2B� whereB� = maxfm j 9Xi 2 V ar : Xi
def
=
Pm

j=1 aij�ijg. 2

The next theorem states soundness and completeness of the tableau method. The

proof of soundness relies on the notion of self-bisimulation introduced in section 2.2.5.

Theorem 4.2.3X� � Y � iff there exists a successful tableau forX� = Y �.

PROOF: SupposeX� � Y �. Then we can build a tableau forX� = Y � which has the

property that for each node�0 = � 0 we have�0 � � 0. For by Propositions 4.2.1, 4.2.2,

4.2.3 and 4.2.4 we can at any point in the tableau construction choose true consequents.

By Theorem 4.2.1 this tableau construction must terminate and without unsuccessful

terminals.

Now assumeT is a successful tableau forX� = Y �. We now show thatRT =

f(�; �) j � = � is a basic node inTg is a self-bisimulation. By Lemma 2.2.1 this means

thatX� � Y �.

So suppose(�0; � 0) 2 RT . We must then show that�0 a! �00 implies9� 00 : � 0 a! � 00

with �00  !
RT

� � 00. �0 = � 0 can either be a terminal or an internal node.

Suppose�0 = � 0 is a terminal. If it is a terminal because of condition 2 we can

certainly match within !
RT

� , since the least congruence of any relation contains the

identity. Otherwise, if�0 = � 0 is a terminal is due to condition 1, there is a previous

occurrence of�0 = � 0 as a subtableau root. Then we have the following basic step inT:



64 Chapter 4. Deciding bisimilarity for normed BPA

�0 = � 0

�001 = � 001 � � � �n = � 00n

and�0
ai! �00i is matched by� 0

ai! � 00i becauseT is successful and(�00i ; �
00
i ) 2 RT for

1 � i � n by definition ofRT .

Otherwise�0 = � 0 is an internal node. There are now two possibilities: eitherREC

was applied to�0 = � 0 or one of theSUB rules was.

SupposeREC was applied. Then we had the basic step

�0 = � 0

�001 = � 001 � � � �n = � 00n

and just as in the above case, we can match withinRT .

Now suppose aSUB rule was applied. Suppose wlog that it wasSUBL. Further

assume that�0 = � 0 is X1�1�0 = Y1�1�0, thatX1
def
=
Pm

i=1 ai�2i andY1
def
=
Pn

j=1 bj�2j

and that the residual was�0 = 
0�0:

X1�1�0 = Y1�1�0
SUBL

X1�1
0 = Y1�1

By definition(�0; 
0�0) 2 RT . EitherX1�1
0 = Y1�1 is a terminal or a subtableau

root. In any case we must have that

8ai : X1�1
0
ai! �2i�1
0 9bj : bj = ai; Y1�1

bj! �2j�1 with �2i�1
0  !
RT

� �2j�1 (4.1)

If X1�1
0 = Y1�1 is a terminal, this follows from the same reasoning used in the case

where�0 = � 0 is a terminal. Otherwise, we have the basic step



4.3. An equational theory 65

X1�1
0 = Y1�1
REC

(
Pm

i=1 ai�2i)�1
0 = (
Pn

j=1 bj�2j)�1
SUM

a1�21�1
0 = a1�f(1)�1
PREFIX

�21�1
0 = �f(1)�1

: : : an�g(n)�1
0 = an�2n�1
PREFIX

�g(n)�1
0 = �2n�1

Now, what are the transitions ofX1�1�0 andY1�1�0 and how do we match them ? For

1 � i � m we have thatX1�1�0
ai! �2i�1�0 and for1 � j � n, Y1�1�0

bj! �2j�1�0. For

anyX1�1�0
ai! �2i�1�0 there is (4.1) aY1�1�0

bf(i)! �2f(i)�1�0 such that�2i�1
0  !
RT

� �2f(i)�1.

We now have the match,�2i�1�0  !
RT

� �2f(i)�1�0. For since�2i�1
0  !
RT

� �2f(i)�1, also

�2i�1
0�0  !
RT

� �2f(i)�1�0. Since(�0; 
0�0) 2 RT we then have�2i�1�0  !
RT

� �2f(i)�1�0,

as was to be shown. Finding a match for anyY1�1�0
bj! �2j�1�0 is entirely similar. 2

Corollary 4.2.2 For any normed system of BPA equations in GNF� and�; � 2 V ar�

it is decidable whether� � �.

PROOF: A decision procedure goes as follows: Enumerate all the finitely many tableaux

for � = � (this is possible by Corollary 4.2.1). By Theorem 4.2.3� � � iff we find a

successful tableau. 2

4.3 An equational theory

Besides yielding a straightforward decision procedure, the tableau technique can also

be used to build a (weakly) sound and complete sequent-style equational theory for

bisimulation equivalence of normed BPA processes given in 3-GNF. For all that is

required is a family of sound rules that permit one to derive the roots of successful

tableaux. The proof system presented in this section is due to Colin Stirling.

The equational theory is somewhat non-standard in the arena of process algebras. As

it depends on assumptions, it is different in style both from Milner’s elegant equational



66 Chapter 4. Deciding bisimilarity for normed BPA

theory for regular processes with an explicit fixed point operator� [Mil84] and the version

in [BK88] without �.

Since the theory is based on the tableau system from the previous section, we restrict

our attention to normed systems of process equations in 3-GNF. Let� be such a system.

The proof system appeals toassumptionsof the formX� = Y �. The basic sequent of

the system has the form� `� E = F where� is a set of assumptions andE; F range

over BPA expressions. A sequent is interpreted as follows:

Definition 4.3.1 We write � j=� E = F when it is the case that if the relation

f(X�; Y �) j X� = Y � 2 �g [ f(Xi; Ei) j Xi
def
= Ei 2 �g is part of a bisimula-

tion thenE � F .

Thus, the special case; j=� E = F states thatE � F (relative to the system of

process equations�).

The proof system is given in Table 4–2. Equivalence and congruence rules areR1-5.

The rulesR6-10 correspond to the BPA laws A1-A5 of Table 2–1.R11 andR12 deal

with recursion and have been dictated by the tableau method.R11 is an assumption

introductionrule, justified by the interpretation of sequents described above.R12 is an

assumptioneliminationor discharge rule, which at the same time is a version of fixed

point induction. Notice that the rule is contextual in character, involving the BPA contexts

[ ]� and[ ]� where[ ] is a ‘hole’.

Definition 4.3.2 A proof of � `� E = F is a finite proof tree with the root labelled by

� `� E = F , with leaves that are instances of the axiomsR1,R6-10 or R11 and such

that the parent of a set of nodes is determined by an application of one of the rulesR2-5

or R12. If � `� E = F has a proof we simply write� `� E = F .

In our proof that the equational theory is weakly sound and complete it turns out to

be easiest to prove that it is in factstronglysound. In our proof we need to appeal to the

following standard characterization of the maximal strong bisimulation as a limit:



4.3. An equational theory 67

Definition 4.3.3 For any transition graphG = (Pr; Act; f a!g) define the family of

binary relationsf�ng!n=0 overPr inductively as follows.

� p �0 q for all p; q 2 Pr,

� p �n+1 q iff

– if p a! p0 then9q0 with q a! q0 andp0 �n q
0 and

– if q a! q0 then9p0 with p a! p0 andp0 �n q
0.

Theorem 4.3.1 [Mil89] For any image-finite transition graph we have

� =
!\

n=0

�n

Theorem 4.3.2 If � `� X� = Y � then�j=� X� = Y �

PROOF: Contraposition. Assume that we have a proof of� `� X� = Y � but that

�6j=� X� = Y �. Thenf(X�; Y �) jX� = Y � 2 �g[f(Xi; Ei) jXi
def
= Ei 2 �g is part

of a bisimulation butX� 6� Y �; consequently, as� defines an image-finite transition

graph, Theorem 4.3.1 says thatX� 6�n Y � for somen.

Observe that if we ignore the hypotheses, thenR2-5,R12 preserve�n and in all other

rules exceptR11 the conclusion is true for all�n. For instance, forR12 we have that if

E� �n F� thenX� �n Y � becauseX def
= E 2 � andY def

= F 2 �. Similarly, for R3

E �n F andF �n G imply thatE �n G. Now significantly, in the case ofR5 we can

strengthen this to say thatE1 �n F1 andE2 �n�1 F2 imply thatE1E2 �n F1F2 (when

jE1j > 0.)

Now consider the proof tree for� `� X� = Y �. SinceX� 6�n Y �, by the above

observations, there is a path� to some leaf in the proof tree such that for every node

�i `� �i = �i(1 � i � m) along� we have�i 6�ki �i for someki. For eachi chooseki

such that it is the least number with this property.

The leaf of� cannot be an assumption in�, since� is part of a bisimulation. Nor can it

be an identity. The only other possibility is that the leaf at the end of the path is an instance



68 Chapter 4. Deciding bisimilarity for normed BPA

of R11 of the form�0; X 0�0 = Y 0� 0 `� X 0�0 = Y 0� 0 and such thatX 0�0 6�km Y 0� 0where

km is the least number with this property. Assume thatX 0
def
= E 0 2 � andY 0 def= F 0 2 �.

AsX 0�0 = Y 0� 0 has been eliminated as a hypothesis in the course of the proof, there

must be an application ofR12 on� with premise�i `� E 0�0 = F 0� 0 somewhere on the

path�. On the subpath between this premise and the leaf�; X 0�0 = Y 0� 0 `� X 0�0 =

Y 0� 0 there must be at least one application of the congruence ruleR5 in order to build up

the expressionsE 0 andF 0; this can be shown, once we take into account the easily proven

fact that in any sentence a of proof, with conclusionE = F either bothE andF are

guarded or neither is. By the above observation on the soundness ofR5 w.r.t. �n every

node�i = �i on the subpath must have�i �k �i for all k < km. SinceE 0 andF 0 are

guarded, in at least one application ofR5 an equation derived fromX 0�0 = Y 0� 0 must

be the right-hand premise (possibly simply to introduce action prefixes). Thus we must

in fact have thatE 0�0 �k F
0� 0 for somek � km. But this implies thatX 0�0 �k Y

0� 0 for

somek � km, a contradiction of our assumption thatX 0�0 6�km Y 0� 0. 2

The completeness proof depends on simulating the tableau construction using the

proof rules. We first show that the thinning rule usually found in sequent-based proof

systems is a derived rule in ours.

Lemma 4.3.1 (Thinning)If � `� E = F then�;�0 `� E = F for any�0.

PROOF: Consider a proof of� `� E = F . Clearly, any leaf�i `� Ei = Fi

can be replaced by�i;�0 `� Ei = Fi yielding a proof tree with nodes of the form

�ij;�
0 `� Eij = Fij whenever the original proof had�ij `� Eij = Fij. 2

The completeness proof rests on a number of lemmas and definitions which tell us how

to determine our sets of hypotheses throughout a proof ofX� � Y � from a successful

tableau forX� � Y �.

Definition 4.3.4 In a successful tableauT, we define the set ofcompanion nodesCom(E�0 =



4.3. An equational theory 69

F� 0) for a nodeE�0 = F� 0 as the set of nodes along the path to the root ofT that cor-

respond to an instance of a successful terminal for termination condition 1.

For any subtableauT0 of T the setBasicT 0(E�0 = F� 0) for a nodeE�0 = F� 0 in

T0 is the set of basic nodes on the path starting aboveE�0 = F� 0 and ending at the root

of T 0.

Proposition 4.3.1 For any nodeE�0 = F� 0 in a successful tableauT we have

Com(E�0 = F� 0) � BasicT(E�
0 = F� 0)

Lemma 4.3.2 LetT0 be a subtableau of a successful tableauT such thatT0 is built using

only basic steps, has rootX 0�0 = Y 0� 0 and leaves�1 = �1; : : : ; �n = �n. If for some�

we have� `� �i = �i for 1 � i � n then� `� X 0�0 = Y 0� 0 with a proof tree with nodes

of the form�; BasicT0(E 00�00 = F 00� 00) `� E 00�00 = F 00� 00 for any nodeE 00�00 = F 00� 00

in T 0.

PROOF: Induction ind, the depth w.r.t. basic steps ofT 0.

d = 1: T0 consists of one basic step:

X 0�0 = Y 0� 0

REC
(
Pm

i=1 ai�i)�
0 = (

Pn
j=1 bj�j)�

0

SUM
a1�1�

0 = bf(1)�f(1)�
0

PREFIX
�1�

0 = �f(1)�
0

: : : ag(n)�g(n)�
0 = bn�n�

0

PREFIX
�g(n)�

0 = �n�
0

where� `� �i�
0 = �f(i)�

0 for 1 � i � m and� `� �g(j)�
0 = �j�

0 for 1 � j � n.

Since we have that

BasicT0(�i�
0 = �i�

0) = BasicT 0(�j�
0 = �j�

0) = fX 0�0 = Y 0� 0g

for any consequents, Lemma 4.3.1 tells us that



70 Chapter 4. Deciding bisimilarity for normed BPA

�; X 0�0 = Y 0� 0 `� �i�
0 = �f(i)�

0 for 1 � i � m

and

�; X 0�0 = Y 0� 0 `� �g(j)�
0 = �j�

0 for 1 � j � n

Repeated use ofR5 followed by repeated use ofR4 gives us

�; X 0�0 = Y 0� 0 `� (
mX
i=1

ai�i)�
0 = (

mX
j=1

bj�j)�
0

Finally, byR12 we get� `� X 0�0 = Y 0�.

Step (assuming ford): The first basic step of the subtableau is as in the base case.

By induction hypothesis we have that

� `� �i�
0 = �f(i)�

0 for 1 � i � m

and

� `� �g(j)�
0 = �j�

0 for 1 � j � n

And by Lemma 4.3.1 we get that

�; X 0�0 = Y 0� 0 `� �i�
0 = �f(i)�

0 for 1 � i � m

and

�; X 0�0 = Y 0� 0 `� �g(j)�
0 = �j�

0 for 1 � j � n

The proof now proceeds as for the base case. 2

Lemma 4.3.3 Given a successful tableauT, for anyX� = Y � that is a terminal or the

root of an eliminating subtableau we haveCom(X� = Y �) `� X� = Y �.



4.3. An equational theory 71

PROOF: Induction in the structure ofT.

Base case -X� = Y � is a terminal: X� = Y � is either a terminal due to termi-

nation condition 2 or termination condition 1. In the former case,R1 immediately gives

usCom(X� = Y �) `� X� = Y �. In the latter case,X� = Y � 2 Com(X� = Y �)

so we get desired result byR11.

Step:NowX� = Y � is root of the subtableauT0:

X� = Y �










J
J
J
JJ

� = 
� � � � � � � �i� = �i�
SUBL

�i
 = �i

� � �

By induction hypothesis, we haveCom(� = 
�) `� � = 
� and for anySUB

consequent (assume wlog that it isSUBL) Com(�i
 = �i) `� �i
 = �i. But since

there are no terminals withinT0 we have thatCom(� = 
�) = Com(�i
 = �i). By

R1, we getCom(� = 
�) `� � = � and byR5 Com(� = 
�) `� �i
� = �i�.

By R3 this impliesCom(� = 
�) `� �i� = �i� . By Lemma 4.3.2 we then get

Com(X� = Y �) `� X� = Y � as desired. Note also that by Lemma 4.3.2 that for

any nodeE 00�00 = F 00� 00 in T 0 we haveBasicT 0(E 00�00 = F 00� 00) `� E 00�00 = F 00� 00. 2

Theorem 4.3.3 If X� � Y � (with respect to�) then;`� X� = Y �

PROOF: By Theorem 4.2.3 we know thatX� = Y � has a successful tableauT. For

each nodeE 00�00 = F 00� in T we have thatBasicT(E
00�00 = F 00� 00) ` E 00�00 = F 00�.

If E 00�00 = F 00� is a subtableau root or a terminal, this follows from Lemma 4.3.3,

Proposition 4.3.1 and Lemma 4.3.1. IfE 00�00 = F 00� is a node in an eliminating

subtableau, it follows from the remarks at the end of the proof of Lemma 4.3.3 and

Lemma 4.3.1. SinceBasicT(X� = Y �) = ;, the result follows. 2



72 Chapter 4. Deciding bisimilarity for normed BPA

4.4 Extracting fundamental relations

In Section 4.2 we have seen that the tableau system presented generates a self-bisimulation

in case of successful termination. In this section we show another relationship with the

work of Caucal [Cau90a] in that we give anauxiliary tableau systemfor extracting a

fundamentalrelationR from a successful tableau forX� = Y � with the property that

X�  !
R
� Y �.

One can think of the least congruence !
R
� of a relationR as the set of equations

provable within equational logic (with added congruence rules) usingR as axioms. Thus,

we can we view a fundamental relation with the above property as constituting a ‘local

axiomatization’ of� , relative to� and the root equationX� = Y �.

Throughout the following we shall assume the existence of a successful tableauT for

X� = Y �.

The fundamental1 observation is that for the eliminating subtableau forX� = Y �

we must, when� = 
� is the residual, haveY � � X
� and thus by Proposition 2.2.2

Y � X
; assume now wlog thatX andY are not the same variable. SincejY j = jX
j
we know thatY does not occur inX
, so (Y;X
) is a fundamental relation. Clearly,

if we let R = f(�; 
�); (Y;X
)g we haveX�  !
R
� Y �. The auxiliary tableau system

now gradually modifies and extendsR until it becomes a fundamental relation with this

property. While doing this we may need to introduce new goals.

The auxiliary tableau system is built around sequents of the formR `T � whereR

is a finite subset ofV ar � V ar+ and� is a finite set of equations overV ar�. Since

the relationsR constructed are all fundamental (by Proposition 4.4.2 below), they are all

confluent and strongly normalizing, so for any� its unique normal form� # R is known

to exist.

At all times during the auxiliary tableau construction we rewrite as much of� as

much as possible usingR. We may then need to introduce new goals or extendR. There

1Pun intended.



4.4. Extracting fundamental relations 73

are in general three possible situations possibly at any point where this can happen:

� If an equationX� = Y � has the residual� = 
� andR[f(Y;X
)g is fundamental

we simply extendR with the pair(Y;X
). This justifies the ruleEXTEND.

� If an equationX� = Y � has the residual� = 
� but R [ f(Y;X
)g is not

fundamental becauseY 2 Dom(R) with (Y;X1
1) 2 R for someX1
1. Then we

must also compareX1
1 andX
. This gives rise to the ruleCOMPARE.

� If an equationX� = Y � has the residual� = 
� but R [ f(Y;X
)g is not

fundamental even thoughY 62 Dom(R) because some variableZ 2 Dom(R)

occurs inX
. We must rewriteX
 and can then add(Y; (X
) # R) toR. This is

the basis of the ruleUPDATE.

The ruleREWRITE tells us that we must rewrite usingR whenever possible. And

finally there are the rulesCONGL andCONGR whose purpose is to remove identical

heads and tails from equations.CONGR is strictly speaking not necessary but has been

included for reasons of symmetry.

The rules have the followingpriority: CONGL must always be used whenever

possible to remove identical leftmost variables. Next in priority isREWRITE. Finally,

the other rules have equal priority. Thus we see thatREWRITE will only be used between

updatings ofR, as desired.

The rules in Table 4–3 are sound w.r.t.� .

Definition 4.4.1 A relationR � V ar � V ar+ is said to be� -consistentif R � �.

Similarly, a set of equations� is called� -consistentif for all �0 = � 0 2 �0 we have

�0 � � 0.

Proposition 4.4.1 (Soundness under� ) If R0 `T �
0 hasR0 and�0 � -consistent then for

the consequentR00 `T �
00 of any rule application toR0 `T �

0,R00 and�00 are� -consistent.



74 Chapter 4. Deciding bisimilarity for normed BPA

PROOF: The soundness ofEXTEND, COMPARE, UPDATE andREWRITE follows

from Proposition 2.2.2. The soundness ofCONGR follows from Lemma 2.2.2. The

only mildly interesting case isCONGL. But if ��1 � ��2 we have for anyw 2 Act such

that� w! � that��1
w! �1 which is matched by some��2

w! ��2 with �1 � ��2. Since by

Proposition 2.2.1j�1j = j�2j andj�1j = j��2j we getj�j = 0, which implies that� = �.2

The rules also preserve fundamentality:

Proposition 4.4.2 If in R0 `T �0 we have thatR0 is fundamental and� -consistent and

� is� -consistent, then for the consequentR00 `T �
00 of any rule application toR0 `T �

0

we have thatR00 is fundamental.

PROOF: For EXTEND, preservation of fundamentality is required by the side condition.

In the case ofCOMPARE, REWRITE, CONGL andCONGR, R0 is not changed. In

UPDATE we know thatY 62 Dom(R) soR0[f(Y; (X
) # R0)g is also functional. Since

R0 was assumed fundamental, no variable in(X
) # R0 occurs inDom(R0). Finally, by

Proposition 4.4.1,Y � (X
) # R0 sojY j = j(X
) # R0j. 2

We can now be precise about the notion of an auxiliary tableau.

Definition 4.4.2 An auxiliary tableaufor R `T � is a maximal sequence of sequents

R0 `T �0; R1 `T �1; : : : ; Rn�1 `T �n�1; Rn `T �n whereR `T � = R0 `T �0 and for

all i � 0 Ri+1 `T �i+1 is the consequent of using a rule in Table 4–3 withRi `T �i as

premise. An auxiliary tableau is finite if for somen all equations in�n are identities (i.e.

of the form�0 = �0 for some�0).

Lemma 4.4.1 If � is� -consistentall auxiliary tableaux for; `T � are finite.

PROOF: Every time an equation�0 = � 0 is replaced in a rule application, it is replaced

by equations whose norms are all� j�0j = j� 0j. At least one of these new equations has

norm< j�0j. Thus we must eventually reach a situation where all equations in a sequent

are identities, possibly of the form� = �. 2



4.4. Extracting fundamental relations 75

Theorem 4.4.1 If R0 is fundamental and� -consistent and�0 is� -consistent, then for

any finite auxiliary tableauR0 `T �0; : : : ; Rn `T �n we have�  !
R
� � withR = Rn for

any� = � 2 �0.

PROOF: We proceed by induction inn.

n = 1: The auxiliary tableau isR0 `T �; R `T �
0, and every equation� = � in �0 is an

identity. Thus, obviously�  !
R
� �. We now proceed by case analysis, looking at the rule

used on anX� = Y � 2 �.

If the rule wasEXTEND, we have�  !
R
� 
� and�0  !

R
� � 0 for any�0 = � 0 2 �0.

Therefore,X�  !
R
� X
� andX�  !

R
� Y � as desired.

Had the rule beenUPDATE, we would have� # R  !
R
� (
�) # R so�  !

R
� 
� and

Y  !
R
� X
, so againX�  !

R
� X
� implyingX�  !

R
� Y �.

If the rule wasREWRITE, we would have(X�) # R  !
R
� (Y �) # R implying

X�  !
R
� Y �.

And if the rule used had beenCOMPARE, we hadX1
1  !
R
� X
 and�  !

R
� 
�

andY  !
R
� X1
1. But thenY �  !

R
� X1
1� andX1
1�  !

R
� X
�, which implies that

Y �  !
R
� X
� and againX�  !

R
� Y �.

CONGL andCONGR are immediate.

Step: The auxiliary tableau is nowR0 `T �0; R1 `T �1 : : : ; Rn `T �n andR1 `T

�1; : : : ; Rn `T �n is an auxiliary tableau forR1 `T �1, so for every equation�0 = � 0 2 �1

by induction hypothesis�0  !
R
� � 0 . The proof proceeds exactly as in the base case.2

From the above theorem and Lemma 4.4.1 we now get the desired result:

Corollary 4.4.1 If X� � Y � by the successful tableauT, for any auxiliary tableau

; `T X� = Y �; : : : ; Rn `T �n we haveX�  !
R
� Y � whereR = Rn.



76 Chapter 4. Deciding bisimilarity for normed BPA

Rules within subtableaux

REC
X� = Y �

E� = F�
whereX def

= E andY def
= F

PREFIX
a� = a�

� = �

SUM
(
Pm

i=1 ai�i)� = (
Pn

j=1 bj�j)�

fai�i� = bf(i)�f(i)�gmi=1 fag(j)�g(j)� = bj�j�gnj=1

where

f : f1; : : : ; mg ! f1; : : : ; ng
g : f1; : : : ; ng ! f1; : : : ; mg
withm;n � 1

Rules for new subtableaux

SUBL �i� = �i�

�i
 = �i
where� = 
� is the residual

SUBR �i� = �i�

�i = �i

where
� = � is the residual

Table 4–1: The tableau rules



4.4. Extracting fundamental relations 77

Equivalence

R1 � `
�
E = E

R2
� `

�
E = F

� `
�
F = E

R3 � `
�
E = F � `

�
F = G

� `
�
E = G

Congruence

R4 � `
�
E
1
= F

1
� `

�
E
2
= F

2

� `
�
E
1
+E

2
= F

1
+ F

2

R5 � `
�
E
1
= F

1
� `

�
E
2
= F

2

� `
�
E
1
E
2
= F

1
F
2

BPA axioms

R6 � `
�
E + F = F +E

R7 � `
�
(E + F ) +G = E + (F +G)

R8 � `
�
E +E = E

R9 � `
�
(E + F )G = EG+ FG

R10 � `
�
E(FG) = (EF )G

Recursion

R11 �;X� = Y � `
�
X� = Y �

R12 �;X� = Y � `
�
E� = F�

� `
�
X� = Y �

X
def

=E; Y
def

= F2�

Table 4–2: Rules of inference in the equational theory



78 Chapter 4. Deciding bisimilarity for normed BPA

EXTEND R `T X� = Y �;�

R;Y = X
 `T � = 
�;�
if � = 
� is the residual of

X� = Y � andR;Y = X
 is

fundamental

COMPARE R `T X� = Y �;�

R `T X1


1
= X
; � = 
�;�

if Y 2 Dom(R) and� = 
� is

the residual forX� = Y � but

(Y;X
1


1
) 2 R

UPDATE R `T X� = Y �;�

R;Y = (X
) # R `T (�) # R = (�) # R;�

if Y 62 Dom(R) and� = 
� is

the residual forX� = Y � but

some variableZ 2 Dom(R) oc-

curs inX


REWRITE R `T X� = Y �;�

R `T (X�) # R = (Y �) # R;�
if (X�) # R 6= X� or

(Y �) # R 6= Y �

CONGL R `T ��1 = ��
2
;�

R `T �1 = �
2
;�

CONGR R `T �1� = �
2
�;�

R `T �1 = �
2
;�

Table 4–3: Rules of the auxiliary tableau system



Chapter 5

Introducing silent actions

In this chapter we extend the decidability result obtained in the previous chapter by using a

similar tableau method to show that the branching bisimilation equivalence introduced by

van Glabbeek and Weijland in [vGW89b] is decidable for the class of normed recursively

defined BPA processes with silent actions.

Section 5.1 introduces the notion of branching bisimilarity. Section 5.2 introduces the

class of normed BPA�recprocesses. In Section 5.3 we describe the tableau system, prove

its soundness and completeness, give a complexity measure and establish the decidability

result for branching bisimilarity.

5.1 Branching bisimilarity

The processes that we will be looking at have their behavioural semantics given by

transition graphs with silent actions. For comparison we first describe the notion of

weak bisimulation equivalence, introduced by Milner [Mil80,Mil89]. This equivalence

is essentially bisimulation equivalence defined on the derivedweaktransition relations

that disregard silent actions.

Definition 5.1.1 For a transition graphG = (Pr; Act [ f�g;!) with silent action� ,

theweak transition relationsf s
=) j s 2 Act [ f�gg are given by a

=) =
�! � a! �! �

79



80 Chapter 5. Introducing silent actions

for a 2 Act and �
=) =

�! �

In the definition below, we use the ‘observational’ mapping� : (Act[f�g)� ! Act�

which is the homomorphic extension of the function defined by�(a) = a for a 2 Act

and�(�) = �.

Definition 5.1.2 [Mil89] Aweak bisimulationonG is a symmetric relationR � Pr�Pr
such that wheneverpRq for anya 2 Act [ f�g we have thatp a! p0 implies that there

exists aq0 such thatq
�(a)
=) q0 with p0Rq0. We define� by

� = f(p; q) j pRq for some weak bisimulationRg

If p � q we say thatp andq areweakly bisimilar.

The notion of branching bisimilarity was put forward by van Glabbeek and Weijland

in [vGW89b] as an alternative to weak bisimulation.

Definition 5.1.3 [vGW89b] A branching bisimulation (bb)onG is a symmetric relation

R � Pr�Pr such that wheneverpRq for anya 2 Act[f�g we have thatp a! p0 implies

� a = � andp0Rq or

� there existq01; q
0 such thatq �

=) q01
a! q0 with pRq01; p

0Rq0

We define�b by

�b = f(p; q) j pRq for some bbRg

If p�b q we say thatp andq are branching bisimilar.

Unlike weak bisimulation equivalence, changes in branching properties caused by

individual � -transitions must always be taken into account in branching bisimulation.

(Example 5.2.2 provides an example of the importance of this, namely two processes

that are weakly bisimilar but not branching bisimilar). An equivalent definition which

reflects thisstuttering propertybetter is the one below which we will be using in the

tableau system presented in Section 5.3.



5.2. Normed BPA�rec 81

Proposition 5.1.1 A branching bisimulation onG is a symmetric relationR � Pr� Pr

such that wheneverpRq for anya 2 Act [ f�g we have that ifp a! p0 then either

� a = � andp0Rq or

� there existq00; : : : ; q
0
n; q
0 such thatq = q00

�! q01
�! � � � �! q0n

a! q0 with pRq0i for

0 � i � n andp0Rq0.

van Glabbeek proves that the above notion of branching bisimilarity is indeed equiv-

alent to that of Definition 5.1.3 by introducing a notion of what he calls a semi-branching

bisimulation where the conditions for matchingp �! p0 have been relaxed to allow matches

of the formq
�

=) q0 with p0Rq0. He then proceeds to show that the maximal semi-bb

satisfies the stuttering property of Definition 5.1.1. For the details of the proof, see

[vG90a].

5.2 Normed BPA�rec

Extending BPA with silent actions gives us the class of processes BPA�
rec[BK88]. Again,

these are processes given by systems of defining equations� = fXi
def
= Ei j1 � i � mg.

The process expressionsEi are now given by the syntax

E ::= a j � j E1 + E2 j E1E2 j X

where� is a new, silent action not inAct. As in the previous chapter, elements of

V ar� will be denoted by Greek letters:�; �; : : : The operational semantics given by the

transition relationsf a! j a 2 Act [ f�gg is as given in Definition 2.2.3.

We restrict our attention toweakly normedsystems of equations.

Definition 5.2.1 Theweak normof anyX 2 V ar is given by

jjXjj = minflength(w) jX w
=) �; w 2 Act�g



82 Chapter 5. Introducing silent actions

A system of defining equations� is weakly normedif for anyX 2 V ar 0 < jjXjj <
1. The maximal norm of any variable in� is defined byM� = maxfjjXjj jX 2 V arg.

Since norms must be strictly positive, all variables must eventually perform an ob-

servable action and processes can thereforenot terminate silently. While this is an

important restriction, it is also in analogy with the requirement that a grammar has no

empty productions.

In Section 5.3 we shall also need the notion of norm from the previous chapter; to

avoid confusion we shall refer tojXj as thestrong normof X. Clearly, if� is weakly

normed it is also strongly normed.

Finally, we again restrict our attention to systems of defining equations given in3-

Greibach Normal Form (3-GNF). As before, this is actually no real restriction, since by

Theorem 2.2.1 any system of equations� in BPA�
rec can effectively be rewritten to a

�0 which isstronglybisimilar to� and therefore normed iff� is [BBK87a]. This once

again leaves us with transition graphs whose states are strings of process variables; the

further restriction to variable sequences of length at most2 guarantees limited growth

when determining single transitions: Proposition 2.2.5 again applies.

Because weak norms are assumed strictly positive, we retain the simple relationship

between lengths and norms of Proposition 2.2.6:

Proposition 5.2.1 For � 2 V ar� length(�) � jj�jj andjj�jj �M�length(�).

The weak norm is additive under sequential composition:

Proposition 5.2.2 For �; � 2 V ar� jj��jj = jj�jj+ jj�jj.

PROOF: As for Proposition 2.2.1. 2

Definition 5.2.2 Theobservational languageLobs(X)accepted by a variableX is defined

byLobs(X) = fw jX obs
=) �g.



5.2. Normed BPA�rec 83

�

A

?
a

BC-

�
c

b -� AC

C
?

a

-b

�
c

BCC : : :.......

.......
: : :

-�

�
c

ACn

Cn
?

a

-b

�
c

: : :

: : : : : :

: : :.......

�

X

?
a

Y

XY

?
a

-

�
c

b -b

�
c

XY 2

Y 2
?

a

-b

�
c

: : :

: : : : : :

: : :.......

.......

-b

�
c

XY n

Y n
?

a

-b

�
c

: : :

: : : : : :

: : :.......

Figure 5–1: Transition graphs for�1 = fA def
= a + bBC; B

def
= �A; C

def
= cg (top) and

�2 = fX def
= a+ bXY ; Y

def
= cg (bottom)

We have

Proposition 5.2.3 [vG90a]If ��b � thenLobs(�) = Lobs(�).

Note that for weakly normed systems this implies

Proposition 5.2.4 ��b � implies thatjj�jj = jj�jj.

Example 5.2.1 Consider�1 = fA def
= a + bBC; B

def
= �A; C

def
= cg and�2 = fX def

=

a+ bXY ; Y
def
= cg (cf. Example 2.2.1). The transition graphs are shown in Figure 5–1.

For�1 we haveLobs(A) = fbnacn j n � 0g, Lobs(B) = Lobs(A) andLobs(C) = fcg.
X �b A because of the branching bisimulation

f(XY n; ACn) j n � 0g [ f(XY n; BCn) j n � 1g [ f(Y n; Cn) j n � 1g [ f(�; �)g

2



84 Chapter 5. Introducing silent actions

For the tableau system we need the counterparts of Proposition 2.2.2 and Lemma

2.2.2. (The proofs that follow utilize the notion of bb from Definition 5.1.3.) Firstly,

�b is a congruence w.r.t. sequential composition:

Proposition 5.2.5 If �1 �b �1 and�2 �b �2 then�1�2 �b �1�2

PROOF: R = f(�1�2; �1�2) j�1�b�1; �2�b�2g is a bb. It is obvious thatR is symmetric.

Suppose(�1�2; �1�2) 2 R. If �1�2
a! �0 this must be due to either�1

a! �01 or�1 = � and

�2
a! �02. In the former case�1�2

a! �01�2, in the latter�1�2
a! �02. If �1

a! �01 there are

two possibilities. Eithera = � and�01 �b �1, but then(�01�2; �1�2) 2 R. Or there exist

� 01; �
00
1 with � �

=) � 01
a! � 001 such that�1�b �

0
1 and�01�b �

00
1 . Then�1�2

�
=) � 01�2

a! � 001�2

and (�1�2; �
0
1�2) 2 R, (�01�2; �

00
1�2) 2 R. If �1 = � we must have�1 = � and thus

�2
�

=) � 02
a! � 002 with �2�b �

0
2 and�02�b �

00
2 , so(�1�2; �1�

0
2) 2 R and(�1�

0
2; �1�

00
2 ) 2 R.

2

The other result is a new version of the ‘split’ lemma.

Lemma 5.2.1 If �1��b �2� then�1 �b �2.

PROOF: By Proposition 5.2.2jj�1jj = jj�2jj, and since all variables are normed,�1 = �

iff �2 = �. NowR = f(�1; �2) j �1��b �2�g is a bb. It is obvious thatR is symmetric.

Suppose(�1; �2) 2 R and�1 6= �. Then also�2 6= �, sincejj�1jj = jj�2jj. So if�1
a! �01

then�1�
a! �01� can either be matched bya = � and�01� �b �2�, implying�01R�2, or

by�2�
�

=) �02�
a! �002� with �02��b �1� and�002��b �

0
1�. The latter holds, since weak

norms are positive, so�2�
�

=) a! because�2
�

=) a! . 2

It is important to note that this doesnot hold for weak bisimulation. The following

counterexample arose in a discussion with Kim Larsen and is due to him.

Example 5.2.2 Consider� = fX = aY; Y = a + �X;A = a + aB;B = ag. As

jjXjj = 2; jjY jj = 1; jjAjj = 1 and jjBjj = 1, � clearly obeys all requirements stated

above. It is easily seen thatX � BY and thatA 6� B. However, we haveAY � BY ,



5.3. A tableau system for branching bisimulation 85

sincef(AY;BY ); (BY;X); (Y; Y ); (�; �); (X;X)g is a weak bisimulation. The problem

lies in the fact that weak bisimilarity does not require the results of intermediate steps in

weak transitions to be related. In particular,AY
a!BY is matched byBY a

=)X. The

latter is due toBY a! Y
�!X, where we clearly have thatAY 6� Y . 2

5.3 A tableau system for branching bisimulation

5.3.1 Building tableaux

A tableau for determining branching bisimilarity is a maximal proof tree built using the

proof rules in Table 5–1. Tableaux consist of a number of subtableaux. These are built

from successive applications of theSTEP rule, which corresponds to the notion of a

basic step in Chapter 4 (Definition 4.2.2).

STEP is applicable iff there is a possibility of matching transitions. Apossible match

is any set of equations whose sides are the results of successful matching transitions

according to the definition of branching bisimilarity in Proposition 5.1.1:

Definition 5.3.1 A set of equationsM is a possible matchfor � = � if for anya 2 Act

we have that if� a! �0 then either

� a = � and�0 = � 2M or

� there exist� 00 = �; : : : ; � 0n; �
0 s.t. �0

�! � 01
�! � � � �! � 0n

a! � 0 with � = � 0i 2 M

for 0 � i � n and�0 = � 0 2M .

and similarly for any� a! � 0.

This definition appears to allowinfinitely many possible matches, since there seems

to be no bound on the lengthn of a matching transition sequence. However, this is not

the case. Firstly, we have



86 Chapter 5. Introducing silent actions

Proposition 5.3.1 If � �b � we can find a possible matchM for � = � such that

whenever� a! �0 is matched by� 00 = �; : : : ; � 0n; �
0 such that�0

�! � 01
�! � � � �! � 0n

a! � 0

with� = � 0i 2M for 0 � i � n and�0 = � 0 2M all � 0i (0 � i � n) are distinct.

PROOF: If some state�j occurred twice in�0
�! � 01

�! � � � �! � 0n
a! � 0 we could remove

any states between the two occurrences of�j and still have a matching sequence. 2

Secondly, we have

Proposition 5.3.2 If X��b Y � andX�
a! �0� is matched byY � �

=) � 01�
a! � 0� any

intermediate state� 00 in Y � �
=) � 01� haslength(� 00) � M�+ length(�). Furthermore,

length(� 0�) �M� + length(�) + 1

PROOF: For any single transition step�1
�! �2 in Y �

�
=) � 01� Proposition 2.2.5 applies,

solength(�2) � 1 + length(�1). Moreover, we must have�2 �b X� so by Proposition

5.2.4 we havejj�2jj = jjX�jj. Thus, in the worst case, wherejjY jj = M�, we would

have replacedY by a sequence ofM� variables each having weak norm1. 2

The outbranching is a multiple of the boundBX;Y on the number of single transition

steps forX� = Y �; this factor only depends on the leftmost variables.

Definition 5.3.2 BX;Y is the cardinality of

f�0 jX a! �0; a 2 Act [ f�gg [ f� 0 j Y � a! � 0; a 2 Act [ f�gg

Proposition 5.3.3 Let v be the cardinality ofV ar. If X� �b Y �, there is a possible

match forX� = Y � with at mostBX;Y

P2K
j=2(j � 1)vj equations in a match, where

K =M� + 1 + max(length(�); length(�)).

PROOF: By Proposition 5.3.2, we see that there is a possible match forX� = Y � with

expressions with lengths bounded byK = M�+1+max(length(�); length(�)). So the

total length on an expression is at most2K, meaning that there are at most
P2K

j=2(j�1)vj

different equations for anyX�
a! �0� in a possible match. 2

Clearly,STEP is forwards sound in the following sense:



5.3. A tableau system for branching bisimulation 87

Proposition 5.3.4 (Forwards soundness ofSTEP) If � �b �, then there is a possible

matchM such that whenever�0 = � 0 2M we have�0 �b �
0.

The tableau construction procedure is analogous to that presented in Section 4.2. An

eliminating subtableau forX� = Y � consists of attempted matches to the depth where

an equation of the form� = 
� is reached. WhenjXj � jY j each non-residual leaf

of an eliminating subtableau forX� = Y � is either labelled� = 
� (a residualof the

subtableau), or�i� = �i�. Because the number of successive attempted matches isjXj
there is at least one residual and since all norms are strictly positive,� and� must persist

as suffixes throughout the subtableau. As before, for any such subtableau we pick one

residual node and call ittheresidual. If insteadjY j < jXj the same holds, only now the

residual is
� = �.

Unless a subtableau leaf is a successful terminal (Definition 5.3.4 below) it is used

as the basis of a new subtableau. However, before a new subtableau is constructed, for

every leaf one of theSUB rules is used to trim the length of the expressions in the new

subtableau root. TheSUB rules work just as theSUB rules in the previous chapter, and

are forwards sound in the same sense:

Proposition 5.3.5 (Soundness ofSUBL andSUBR) If �i� �b �i� and� �b 
� then

�i
 �b �i. If 
�i �b �i then�i �b �i


PROOF: Exactly as in the proof of Proposition 4.2.4, only now using Propositions 5.2.5

and 5.2.1. 2

The rules are only applied to nodes that are notterminal. Terminal nodes can either

besuccessfulor unsuccessful.

Definition 5.3.3 A tableau node is anunsuccessful terminalif it has one of the forms

1. � = � with jj�jj 6= jj�jj

2. � = � with� 6= �; � 6= � and no possible match exists (i.e.STEP is inapplicable).



88 Chapter 5. Introducing silent actions

In both of these cases it is obvious that the expressions compared are not branching

bisimilar. Thus, whenever we see an unsuccessful terminal the whole tableau construction

aborts.

The nodes that can be successful terminals are those that are potential roots of

eliminating subtableaux:

Definition 5.3.4 A residual or consequent of an application of aSUB rule is asuccessful

terminalif it has one of the forms

1. � = � where there is another subtableau root above it on the path from the root

also labelled� = �

2. � = �

X = A
STEP

� = � XY = BC
SUBL

XY = BC
STEP

XY = AC
SUBL

X = A

XY Y = BCC
SUBL

XY = BC

Y = C
STEP

� = �

Figure 5–2: A successful tableau forX = A

Example 5.3.1 (Example 5.2.1 cont.) The tableau in Figure 5–2 is a successful tableau

for X = A. 2

5.3.2 Termination, completeness, and soundness

It is important for our decidability result that all tableaux are finite. This follows from

reasoning entirely similar to that for the tableau system for strong bisimulation.

Theorem 5.3.1 For any equation� = � all tableaux are finite.



5.3. A tableau system for branching bisimulation 89

PROOF: Since our tableaux are finitely branching by Proposition 5.3.3, by König’s

Lemma an infinite tableau would have an infinite path. This would then be caused by the

combined absence of unsuccessful termination and the successful termination condition

1 along that path. Since we have assumed3-GNF and normedness, there is a uniform

bound on the total length of the consequent of aSUB rule. Assume wlog that we have a

subtableau with rootX� = Y � and that aSUBL rule was applied to a subtableau leaf:

�1� = �1�
SUBL

�1
 = �1

Since the depth of the subtableau is at mostm�, repeated applications of Proposi-

tion 5.3.2 tell us thatlength(�1) � m�(M� + 1), length(�1) � m�(M� + 1) and

length(
) � m�(M� + 1). This implies a uniform bound on the length ofSUB conse-

quents of3m�(M� + 1), so there can be no infinite path through infinitely manySUB

applications since there are of course only finitely many different equations of any given

length. Nor can an infinite path pass through infinitely many residuals. For if a residual

�0 = �0 is above the residual�1 = �1 we have thatjj�0jj = jj�0jj < jj�1jj = jj�1jj.
By Proposition 5.2.1, any subsequence of residuals therefore has a uniform bound on the

total lengths of expressions compared, again ensuring termination. 2

It is easily seen that the tableau system is complete:

Theorem 5.3.2 If ��b �, � = � has a successful tableau.

PROOF: By the forwards soundness of theSTEP and SUB rules (Propositions 5.3.4

and 5.3.5) we can use the tableau rules in such a way that only valid consequents arise.

Clearly this must give rise to a finite, successful tableau. 2

Finally we must show soundness of the tableau system, namely that the existence

of a successful tableau for� = � indicates that� �b �. This follows from the fact

that the tableau system tries to construct a ‘self-branching bisimulation’, which, if a



90 Chapter 5. Introducing silent actions

successful tableau is reached, consists of the symmetric closure of the set of nodes in

the successful tableau. This notion is the counterpart of the notion of a self-bisimulation

defined in Section 2.2.5 and used in the proof of Theorem 4.2.3. In order to define

the corresponding notion for branching bisimulation, we need a simple rephrasing of

Proposition 5.1.1:

Proposition 5.3.6 A branching bisimulation on a transition graphG is a symmetric

relationR � Pr � Pr such that wheneverpRq for anya 2 Act [ f�g we have that if

p = p0
�! p1

�! � � � pm a! p0 then there existq0; q1; : : : ; qm; q0 such thatq0 = q andpiRqi

for 1 � i � m, p0Rq0 and fori < m

� – qi = qi+1 or

– there existqi1 ; : : : ; qin(i) such thatqi
�! qi1

�! � � � qin(i) �! qi+1 with piRqij for

1 � j � n(i)

and either

� a = � andqm = q0 or

� there existqm1
; : : : ; qmn(m)

such thatqm
�! qm1

�! � � � qmn(m)

a! q0

PROOF: Clearly, any relation that satisfies the conditions of the proposition is a bb (let

m = 0). For the reverse direction, supposep = p0
�! p1

�! � � � pm a! p0. One then uses

a straightforward induction inm.

Base case -m = 0: This is immediate, since here the definitions coincide.

Step - assuming form = k: Here we know by induction hypothesis that the transition

sequencep = p0
�! p1

�! � � � pm can be matched according to the conditions in

the proposition. We then extend the match to coverpm
a! p0 by appealing to

Proposition 5.1.1.



5.3. A tableau system for branching bisimulation 91

2

Recall that  !
R
� is the least congruence under sequential composition containingR

(Definition 2.2.9).

Definition 5.3.5 A branching bisimulation up to sequential congruence (sbb)is a sym-

metric relationR � V ar� � V ar� such that whenever�R� � = � iff � = � and

for any a 2 Act [ f�g we have that if� = �0
�! �1

�! � � ��m a! �0 then there exist

�0; �1; : : : ; �m; �
0 such that�0 = � and�i  !

R
� �i for 1 � i � m, �0  !

R
� � 0 and for

i < m

� – �i = �i+1 or

– there exist�i1 ; : : : ; �in(i) s.t. �i
�! �i1

�! � � ��in(i) �! �i+1 with�i  !
R
� �ij for

1 � j � n(i)

and either

� a = � and�m = � 0 or

� there exist�m1
; : : : ; �mn(i)

s.t. �m
�! �m1

�! � � ��mn(m)

a! � 0 with�m  !
R
� �mj for

1 � j � n(m).

The reason why a bisimulation up to sequential congruence can be said to be an

essential part of a bisimulation lies in the following result, which is a generalization of

Lemma 2.2.1.

Lemma 5.3.1 If R is an sbb then !
R
� is a bb.

PROOF: It is clear that !
R
� is symmetric. Now suppose�  !

R
� �; we must show that

we can match transitions within !
R
� as required by Definition 5.3.5.�  !

R
� � must be

due to�  !
R

n� for somen, and the proof now proceeds by induction inn:



92 Chapter 5. Introducing silent actions

Base case 1,n = 0 is obvious, since� = � in this case.

Base case 2,n = 1 must have� = ��0�; � = ��0� with �0R�0. If �0 = �0 = �, we

are done. Otherwise, if� 6= � any transition sequence

�
�! �1

�! � � ��m a! �0 (5.1)

is due to

�
�! �1

�! � � ��m a! �0

with �i = �i�0� for 1 � i � m and�0 = �0�0�. It is easy to see that this transition

sequence can be matched by

��0�
�! �1�0�

�! � � ��m�0� a! �0�0�

with �i�0�  !
R
� �i�0� for all 1 � i � m and�0�0�  !

R
� �0�0�.

If � = �, (5.1) becomes

�0�
�! �01�

�! � � ��0m�
a! �00� (5.2)

due to

�0
�! �01

�! � � ��0m
a! �00

There exist�00; : : : ; �0m; � 00 where for alli either�0i = �0i+1 for i � 1 or there exist

� 00i1; : : : ; �
0
0in(i) such that�0 = �00

�! � � ��00n(0) �! �01
�! � � ��0m �! � � ��0mn(m)

a! � 00

is a matching transition sequence with�0i  !
R
� �0ij for 1 � i � m and1 � j � n(i) and

�00  !
R
� � 00. If a = � , possibly� 00m = � 00. Here (5.2) is matched by

�0�
�! � � ��01� �! � � ��0m� �! � � � a! � 00�

where possibly� 00m� = � 00�.



5.3. A tableau system for branching bisimulation 93

Step,n = k+1 assuming fork, wherek � 1: Here there is an� such that�  !
R

k�  !
R

�.

By induction hypothesis, we must have that (5.1) is matched using�0 = �; �1; : : : ; �m; �
0

where�i  !
R
� �i and either�i = �i+1 or there exist�i1; : : : ; �in(i) such that

�i
�! �i1

�! � � � �! �in(i)
�! �i+1 (5.3)

with �i  !
R
� �ij for 1 � j � n(i) and either�m = �0 with a = � or there exist

�m1; : : : ; �mn(m) such that

�m
�! �m1

�! � � � �! �mn(n)
�! �0

Each transition sequence of the form (5.3) can be matched by�i; �i+1 such that either

�i = �i+1 or there exist�i1; : : : ; �ik(i) such that

�i
�! �i1

�! �i2 � � ��iki �! �i+1

such that for all1 � i � m we have�i  !
R
� �i and�i  !

R
� �ij for 1 � j � n(i). And if

�m 6= �0 we can match similarly with�m
�! � � � a! � 0. By transitivity of  !

R
� we see

that the concatenation of the matching sequences

�0
�! � � ��1 �! � � � �! �m

�! � � � a! � 0

constitutes the desired matching sequence of transitions for (5.1). 2

Corollary 5.3.1 ��b � iff there is an sbbR such that�R�.

PROOF: From the above and from the fact that any bb is an sbb. 2

We now have

Theorem 5.3.3 If � = � has a successful tableauT then

RT = f(�0; � 0) j �0 = � 0 or � 0 = �0 is an equation inTg

is an sbb.



94 Chapter 5. Introducing silent actions

PROOF: It is obvious thatRT is symmetric. Since all variables have positive norms, we

see that�0 = � iff � 0 = �. We must now show that for any(�0; � 0) 2 RT any transition

sequence

�0
�! �01

�! � � ��0m a! �00 (5.4)

can match within !
RT

� . We now proceed by induction in the lengthm of the� -transition.

Base case,m = 0: Here (5.4) is�0 a! �01, and there are now four cases to be considered,

depending on where inT �0 = � 0 is found.

� If �0 = � 0 is a successful terminal due to condition 2, it is obvious that we can

match within  !
RT

� , since any least congruence contains the identity.

� If �0 = � 0 is a successful terminal due to condition 1 this means that there is a

subtableau root above it also labelled�0 = � 0. This node must be the premise of a

STEP application, and becauseT is successful, a possible match exists so we can

find a matching sequence

� 0
�! � 0011

�! � � � �! � 001n(1)
a! � 00

where(�0; � 001j) 2 RT for 1 � j � n(1) and(�00; � 00) 2 RT.

� If �0 = � 0 is an internal node and the premise of aSTEP, we proceed exactly as in

the previous case for termination condition 1.

� If �0 = � 0 is an internal node and the premise of aSUB, assume wlog that the rule

applied wasSUBL. Further suppose�0 = � 0 isX1�1� = Y1�1� and that� = 
�

is the residual. Then we have

X1�1� = Y1�1�
SUBL

X1�1
 = Y1�1



5.3. A tableau system for branching bisimulation 95

If X1�1
 = Y1� is a terminal node it can either be an identity (condition 2) or a

repeated occurrence (condition 1). In the former case we know that the transition

X1�1

a! �00a�1
 can be matched byY1�

a! � 00a�1 where�00a�1
 = � 00a�1, so clearly

�00a�1
  !
RT

� � 00a�1.

In the latter case the situation is the same as whenSTEP is applied to theSUB

consequent. Here the transitionX1�1

a! �00a�1
 will be matched either byY1�1

(if a = � ) with �00a�1
RTY1�1 or by some

Y1�1
�! � 0011�1

�! � � � a! � 001n(1)�1
a! � 00a�1

with (�00a�1
; �
00
1j�1) 2 RT for 1 � j � n(1) and(�00a�1
; �

00
a�1) 2 RT. Clearly

X1�1�
a! iff X1�1


a! and thus (5.4) is of the formX1�1�
a! �00a�1� which can

be matched either byY1�1� if a = � or by

Y1�1�
�! � 0011�1� � � � a! �1n�1�

a! � 00a�1�

For thenX1�1�  !
RT

� � 001j�1� for 1 � j � n(1) and�00a�1�  !
RT

� � 00a�1�. This

holds, since�  !
RT

� 
� andX1�1
RT�
00
1j�1 impliesX1�1
�  !

RT

� � 001j�1� giving

X1�1�  !
RT

� � 001j�1� and�00a�1
�RT�
00
a�1�, implying �00a�1�  !

RT

� � 00a�1�. Simi-

larly, �0a�1�  !
RT

� Y1�1�.

Step: Suppose�0 �! �01
�! � � ��0m a! �00. If �0 = � 0 is a terminal because of condition

2, it is obvious that we can match within !
RT

� . Otherwise, by the base case we know

that�0 �! �01 can be matched either by�01  !
RT

� � 0 or by

� 0
�! � 011

�! � � � �! � 001n(1)
a! � 01

where�0  !
RT

� � 001j for 1 � j � n(1) and �01  !
RT

� � 01. Now if (�01; �
0
1) 2 RT (or

(�01; �
0) 2 RT) we know by induction hypothesis that we can match the transition

sequence�01
�! � � ��0m a! �00 within  !

RT

� so our match for (5.4) simply consists in



96 Chapter 5. Introducing silent actions

combining these two matches. From the base case we see that the only case where it

mightnotbe the case that(�01; �
0
1) 2 RT or (�01; �

0) 2 RT is when�0 = � 0 is the premise

of a SUB rule. So assume wlog that the rule applied wasSUBL and that�0 = � 0 is

X1�1� = Y1�1� with � = 
� as the residual. Then we have

X1�1� = Y1�1�
SUBL

X1�1
 = Y1�1

So hereX1�1�
�!X2�2�1�, so consequently�01 = � 01 is of the formX2�2�1� =

Y2�2�1� with either(X2�2�1
; Y2�2�1) 2 RT orX2�2�1
 = Y2�2�1, if we are dealing

with a terminal of type 2. A closer look at the transition sequence�01
�! � � ��0m a! �00

reveals that it is of the form

X2�2�1�
�! �3�1� � � � �! �m�1�

a! �001�1� (5.5)

which is due to

X2�2�1

�! �3�1
 � � � �! �m�1


a! �001�1


Both in the cases whenX2�2�1
 = Y2�2�1 is a terminal of type 2 and when we have

(X2�2�1
; Y2�2�1) 2 RT, we know (in the latter case by induction hypothesis) that there

must exist�i�1 for 3 � i � m and� 001�1 such that either

�2�1
�! �3�1 � � ��m�1 � � � a! � 001�1

or, if a = �

�2�1
�! �3�1 � � ��m�1 = � 001�1

with �i�1
  !
RT

� �i�1 and either�i�1 = �i+1�1 or there are�ij�1 for 1 � j � n(i)

such that�i�1
�! �i1�1

�! � � ��i+1�1 with �i�1
  !
RT

� �ij�1 and�001�1
  !
RT

� � 001�1. If

a 6= � , we can also have�mj�1 for 1 � j � n(m) with �m�1
�! �m1�1

�! � � � a! � 001�1

and�m�1
  !
RT

� �mj�1 and�001�1
  !
RT

� �m�1. At any rate, our match for the sequence



5.3. A tableau system for branching bisimulation 97

�0
�! �01

�! � � ��0m a! �00 consists of the concatenation of the match for�0
�! �01 and that

for (5.5), which is either

�2�1�
�! �3�1� � � ��m�1� � � � a! � 001�1�

or, if a = �

�2�1�
�! �3�1� � � ��m�1� = � 001�1�

with�i�1� for 3 � i � mand if�i�1� 6= �i+1�1� the additional�ij�1� for 1 � j � n(i).

Clearly�i�1�  !
RT

� �i�1�,�i�1�  !
RT

� �ij�1�,�001�1�  !
RT

� � 001�1� and�m�1�  !
RT

� �mj�1�,

the latter if�m 6= � 001 . 2

So we now get the soundness of the tableau system as

Corollary 5.3.2 If � = � has a successful tableau then��b �.

5.3.3 Complexity of the tableau system and decidability

The complexity of the tableau system can be measured in terms of the maximal depth

of a tableau, i.e. the length w.r.t.STEP applications of the longest possible path in a

successful tableau for an equationX� = Y �. Let v be the cardinality ofV ar. By the

discussion in the proof of Theorem 5.3.1 we have that anySUB consequent has a length

of at most3m�(M�+1), so an upper bound on the number of distinctSUB consequents

along any tableau path is
P3m�(M�+1)

j=2 (j � 1)vj. Between any twoSUB consequents

there are at mostd3m�(M�+1)

2
e residuals, since the worst that can happen is that the total

norm decreases by2 in every subtableau along the way. Thus, any path that contains

SUB consequents can have at mostd3m�(M�+1)

2
eP3m�M�+3

j=2 (j � 1)vj subtableau roots.

As for the leftmost path, all of whose subtableau roots are residuals, there can be at most

max(jj�jj; jj�jj) residuals, since the norm of the residuals is strictly decreasing. So, since

a subtableau can have a depth w.r.t.STEP applications of at mostm�, any path can have

a length of at most



98 Chapter 5. Introducing silent actions

m� max(jj�jj; jj�jj; d3m�(M� + 1)

2
e
3m�(M�+1)X

j=2

(j � 1)vj) (5.6)

STEPs.

We also have an upper bound on the outbranching of any tableau forX� = Y �.

This follows from the fact that there is a uniform upper bound on the total length of any

subtableau root in any tableau forX� = Y �. Any subtableau root along the leftmost

path is a residual and has its total length bounded by2max(jj�jj; jj�jj). Since, as we

saw, anySUB consequent has its length bounded by3m�(M� + 1), and thus also has a

norm of at most3m�(M� + 1), any of its following residuals must also have a length of

at most3m�(M� + 1). So the length of any subtableau root is bounded by

L = max(2max(jj�jj; jj�jj); 3m�(M� + 1))

By repeated applications of Proposition 5.3.2 we see that any node in a subtableau

has a length of at most2m�(M� + 1) +L. By Proposition 5.3.3 this means that there is

a uniform upper bound on the number ofSTEP consequents at any point in any tableau

for X� = Y � of

maxfBX;Y jX; Y 2 V arg
2m�(M�+1)+LX

j=2

(j � 1)vj (5.7)

Theorem 5.3.4 For anyX� = Y � there are finitely many possible tableaux.

PROOF: From (5.6) and (5.7). 2

Theorem 5.3.5 For any weakly normed� it is decidable whether or not� �b � for

�; � 2 V ar�.

PROOF: A naive decision procedure for�b constructs all the finitely many tableaux for

� = �, answering ‘yes’ if a successful tableau occurs and ‘no’ otherwise. 2



5.3. A tableau system for branching bisimulation 99

Just as the system in Chapter 4, this tableau system has exponential complexity in

terms of the longest possible path of a generated tableau. But again, in the case of a

successful tableau we get additional information in the form of a finite relation whose

congruence closure w.r.t. sequential composition is a bisimulation containing the initial

equation.



100 Chapter 5. Introducing silent actions

Rule within a subtableau

STEP � = �

�1 = �1 : : : �k = �k
wheref�1 = �1 : : : �k = �kg

is a possible match for� = �

Rules for new subtableaux

SUBL �i� = �i�

�i
 = �i
where� = 
� is the residual

SUBR �i� = �i�

�i = �i

where
� = � is the residual

Table 5–1: The tableau rules



Chapter 6

Negative results

In [HT90] Huynh and Tian have shown that the readiness and failures equivalences are

undecidable for BPA processes. In this chapter we give an alternative account of their

proof and examine all other equivalences in Figure 1–1, showing thatnoneof them are

decidable for normed BPA processes and that a number of preorders are also undecidable.

This we do by reducing language containment for deterministic processes to the various

preorders and reducing language equivalence and in one case trace equivalence for

normed BPA processes to the equivalences.

6.1 Deterministic BPA processes

In what follows the undecidability of language inclusion for simple grammars, a result

established by Friedman in [Fri76], is crucial.

Definition 6.1.1 [KH66] A simple grammaris a context-free grammar in GNF such that

there are no two distinct productionsA! a�1; A! a�2 for any nonterminalA.

Thus, we see that simple grammars correspond todeterministicsystems of BPA

equations in GNF. For simple context-free grammars the language equivalence problem

was proved to be decidable by Korenjak and Hopcroft [KH66]. However, as was later

101



102 Chapter 6. Negative results

shown by Friedman, the language containment problem isundecidable. The proof of this

consists in a reduction from the halting problem via the Post correspondence problem:

Given a Turing machineM and an inputw we can effectively construct a Post system

and from it two simple grammars such that language inclusion holds iff the Post system

has a match iffM halts onw. Reformulated in the BPA framework, Friedman’s theorem

reads:

Theorem 6.1.1 Let � be a normed and deterministic system of BPA equations. It is

undecidable whetherL(�) � L(�) for �; � 2 V ar�.

However, it is important to note that for deterministic BPA processes trace equivalence

and bisimulation equivalence coincide:

Proposition 6.1.1 If � is a deterministic normed system of BPA equations,Tr(�) =

Tr(�) iff � � � for any�; � 2 V ar�.

PROOF: f(�; �) j Tr(�) = Tr(�)g is a bisimulation. Since� is deterministic, there

is exactly one�0 such that� a! �0. SinceTr(�) = Tr(�) we know that there also is

exactly one� 0 such that� a! � 0 and thatTr(�0) = Tr(� 0). The other half of the proof is

similar. 2

Consequently, in the deterministic case the linear/branching time hierarchy collapses

(see also [Eng85] and [vG90a]), and since language equivalence is decidable,all equiv-

alences aredecidablein this case. However, we already know from Theorems 2.2.2 and

2.2.3 that the language and trace equivalences are undecidable for the full BPA, so there

are bound to be differences in the general case.

6.2 Simulation equivalence

We start off with simulation and simulation equivalence.



6.3. n-nested simulation equivalence 103

Definition 6.2.1 A binary relationR between processes is asimulationiff wheneverpRq

then for eacha 2 Act p
a! p0 ) 9q : q

a! q0 ^ p0Rq0. A processp is simulatedby a

processq, notationp�!q, iff there is a simulation relationR with pRq. Two processesp

andq aresimulation equivalent, writtenp$ q, iff p�!q andq�!p.

We first show that that simulation is undecidable for deterministic normed BPA

processes. This is a direct corollary of Theorem 6.1.1; this was pointed out to me by

Didier Caucal.

Theorem 6.2.1 Simulation is undecidable for deterministic normed BPA processes.

PROOF: Let� define a normed deterministic BPA process and let�; � 2 V ar�. Now let
p

be a new action not inAct. We then have

L(�) � L(�) iff �
p
�
!�

p

as� and� are deterministic. With this observation, we reduce language containment for

deterministic normed BPA processes to the simulation preorder for deterministic normed

BPA processes. 2

Theorem 6.2.2 Simulation equivalence is undecidable for normed BPA processes.

PROOF: We can reduce simulation to simulation equivalence by the following observation,

which was pointed out to me by Jan Friso Groote:

��!� iff � + � $ �:

2

6.3 n-nested simulation equivalence

The notion ofn-nested simulation equivalence was introduced by Groote and Vaandrager

[GV89] in their study of thetyft/tyxt-format for structured operational semantics because

2-nested simulation equivalence is the completed trace congruence for this format.



104 Chapter 6. Negative results

Definition 6.3.1 For all n 2 N, n-nested simulation, written �
!
n, is inductively defined

by

� p�!
0
q for all processesp andq,

� p�!
n+1

q iff there is a simulation relationR � (�!
n
)�1 with pRq.

Two processesp andq aren-nested simulation equivalent, writtenp$n q, iff p�!
n
q and

q�!
n
p.

Note that1-nested simulation is just simulation and that therefore1-nested simulation

equivalence is simulation equivalence.

Lemma 6.3.1 For all n 2 N, n-nested simulation is a precongruence under action

prefixing and+.

PROOF: Induction inn.

n = 1 : This simply states that�! is a precongruence under action prefixing and+.

Clearly if p�!q andp�!q0 we have thatap�!aq andp+ p0�!q + q0.

Step - assuming forn: Here if p�!
n+1

q we have that there is a simulationR � (�!
n)�1

such thatpRq. But then, sinceq�!
n
p we must by induction hypothesis have

aq�!
n
ap and thusR [ f(ap; aq)g is a simulation withR [ f(ap; aq)g � (�!

n)�1.

The proof for+ is entirely similar.

2

The undecidability proof that follows is due to Jan Friso Groote. The class of

processes defined in the following can be used to reduce simulation to bothn-nested

simulation andn-nested simulation equivalence.

Some of these processes are depicted in Figure 6–1.



6.3. n-nested simulation equivalence 105

r1(p; q):
E
E
E@
@
@

q
�
�
�

�
�
�

p s1(p; q):
�
�
�L
L
L

p

r2(p; q): s2(p; q):

@
@
@R

a
�

�
�	

a

E
E
E@
@
@

q
�
�
�

�
�
�

p
�
�
�L
L
L

p

?
a

E
E
E@
@
@

q
�
�
�

�
�
�

p

r3(p; q): s3(p; q):

@
@
@R
a

@
@
@R
a

�
�
�	
a

@
@
@R
a

�
�
�	
a

E
E
E@
@
@

q
�
�
�

�
�
�

p
�
�
�L
L
L

p
E
E
E@
@
@

q
�
�
�

�
�
�

p

?
a

@
@
@R
a

�
�
�	
a

E
E
E@
@
@

q
�
�
�

�
�
�

p
�
�
�L
L
L

p

Figure 6–1: rn(p; q) andsn(p; q) for n = 1; 2; 3

Definition 6.3.2 Letp andq be processes and leta be an action. The processesrn(p; q)

andsn(p; q) for n > 0 are inductively defined by:

r1(p; q) = p+ q; s1(p; q) = p;

rn+1(p; q) = a rn(p; q) + a sn(p; q); sn+1(p; q) = a rn(p; q):

Observe that ifp andq are normed BPA processes, then so arern(p; q) andsn(p; q).

Lemma 6.3.2 Letp andq be processes. For alln > 0 it holds that

1. sn(p; q)�!
n
rn(p; q),

2. rn(p; q)�!
n
sn(p; q) iff q�!p.

PROOF: Both proofs proceed by induction. For 1 we have

n = 1 : The lemma then reduces top�!p+ q which obviously holds.

Step - assuming forn: Define for processesp andq the simulation

R = f(arn(p; q); arn(p; q) + asn(p; q))g [ Id



106 Chapter 6. Negative results

whereId is the identity relation.R � (�!
n
)�1, as we havern(p; q)�!

n
rn(p; q)

andsn(p; q)�!
n
rn(p; q) by induction hypothesis, which by Lemma 6.3.1 gives us

arn(p; q) + asn(p; q)�!
n
arn(p; q).

For 2 the proof is

n = 1 : The lemma here reduces top + q�!p iff q�!p. If there is a simulationR with

qRp thenf(p+ q; p)g[R[ Id is a simulation. And ifp+ qRp for a simulationR,

thenf(q; p)g [ R is a simulation.

Step - assuming forn: For the ‘if’ direction suppose for processesp andq thatq�!p and

rn(p; q)�!
n
sn(p; q). Then define

R = f(arn(p; q) + asn(p; q); arn(p; q))g [ (�!
n)�1

R � (�!
n)�1 since Lemma 6.3.1 gives usarn(p; q)�!

n
arn(p; q) + asn(p; q), so

rn+1(p; q)�!
n+1

sn+1(p; q). For the ‘only if’ direction supposeq 6�! p. By induc-

tion hypothesisrn(p; q) 6�!n
sn(p; q). So also havern+1(p; q) 6�!n+1

sn+1(p; q),

for any candidate simulation would be one containing the pair(a rn(p; q) +

a sn(p; q); a rn(p; q)). As rn+1(p; q) a! sn(p; q) can only be matched by the tran-

sition sn+1(p; q)
a! rn(p; q) it must be that(sn(p; q); rn(p; q)) 2 R. But since

R � (�!
n
)�1 we would havern(p; q)�!

n
sn(p; q),

2

Theorem 6.3.1 For n > 0 n-nested simulation andn-nested simulation equivalence are

undecidable for normed BPA processes.

PROOF: We reduce simulation ton-nested simulation using the following observation:

q�!p iff rn(p; q)�!
n
sn(p; q):

We reduce simulation ton-nested simulation equivalence using:

q�!p iff rn(p; q)$n sn(p; q):



6.4. n-bounded-tr-bisimulation 107

Becausen > 0 both facts follow directly from Lemma 6.3.2. As simulation is unde-

cidable,n-nested simulation andn-nested simulation equivalence cannot be decidable.

2

One should notice here that the limit of then-nested simulation equivalences as

n! ! is strong bisimulation equivalence:

Theorem 6.3.2 [GV89] For any finitely branching labelled transition graph we have

� =
!\

n=0

$n

So we here have the odd situation, because of Theorem 6.3.2 and the results of Chapter

4, that while� is decidable, it is the limit of a series of undecidable approximations.

6.4 n-bounded-tr-bisimulation

We now considern–bounded-tr-bisimulation. This equivalence is a generalization of

trace equivalence and thepossible futures equivalenceof [RB81], in that1-bounded-tr-

bisimulation corresponds to the former and2-bounded-tr-bisimulation to the latter.

Definition 6.4.1 We definen-bounded-tr-bisimulation, written�n
tr, inductively as fol-

lows.

� p �0
tr q for all processesp andq,

� p �n+1
tr q iff

– if p w! p0 then9q0 with q w! q0 andp0 �n
tr q
0 and

– if q w! q0 then9p0 with p w! p0 andp0 �n
tr q
0.

This notion of equivalence also arises naturally as the consecutive approximations

of bisimulation equivalence [Mil80,Mil89]. For finitely branching transition graphs, and

therefore for BPA processes, the limit of then-bounded-tr-bisimulations forn ! !

coincides with bisimulation equivalence:



108 Chapter 6. Negative results

Theorem 6.4.1 [Mil89] For any finitely branching labelled transition graph we have

� =
!\

n=0

�n
tr

The following proof uses the same reduction that was employed in [KS90] to show

thatn-tr-bisimulation for regular processes is PSPACE-complete. The following easy

lemma is crucial:

Lemma 6.4.1 [KS90] Let p andq be processes. For alln > 0 it holds that

p �n
tr q iff p + q �n

tr p andp+ q �n
tr q

Lemma 6.4.2 [KS90] Let p andq be processes. For alln > 0 it holds that

p �n
tr q iff a(p + q) �n+1

tr ap + aq

PROOF: For the ‘if’ half we prove the contrapositive, stating thatp 6�n
tr q implies that

a(p+ q) 6�n+1
tr ap+aq. Assumep 6�n

tr q. But thena(p+ q)
a! p+ q whereasap+aq

a! p

andap + aq
a! q. Sincep 6�n

tr q we have by the previous lemma that eitherp + q 6�n
tr p

or p + q 6�n
tr q, so clearlya(p + q) 6�n+1

tr ap + aq. The ‘only if’ half of the proof

also proceeds by contraposition, showing thata(p + q) 6�n+1
tr ap + aq impliesp 6�n

tr q.

Assuminga(p+q) 6�n+1
tr ap+aq, the action string that distinguishesa(p+q) andap+aq

must bea, since for any longer stringw thew-derivatives are identical. Thus, either

p+ q 6�n
tr p or p+ q 6�n

tr q, and again by the previous lemmap 6�n
tr q. 2

Theorem 6.4.2 For n > 0 n-bounded-tr-bisimulation is undecidable for normed BPA

processes.

PROOF: We reducen-bounded-tr-bisimulation ton + 1-bounded-tr-bisimulation using

Lemma 6.4.2. Since1-bounded-tr-bisimulation is trace equivalence, which is undecidable

(Theorem 2.2.3), the result follows. 2

So the consequence of the above result, seen in conjunction with Theorem 6.4.1 and

the results in Chapter 4, is again the rather odd one that� is decidable while none of

these non-trivial approximations are!



6.5. Failures, readiness, failure-trace and ready-trace equivalences 109

6.5 Failures, readiness, failure-trace and ready-trace equiv-

alences

In their paper [HT90] Huynh and Tian show that failure equivalence [BHR84] and

readiness equivalence [BKO88,OH86] are undecidable for normed BPA processes. Here

we give an alternative account of their technique, using a simpler transformation to show

that ready trace and failure trace equivalence are undecidable.

Definition 6.5.1 For any processp, define

failures(p) = f(w;X) j 9p0 : p w! p0; 8a 2 X : p0 6 a!g;

readies(p) = f(w;X) j 9p0 : p w! p0; p0
a! () a 2 Xg:

Processesp and q are failures equivalent, written p�fq, iff failures(p) = failures(q).

Processesp andq are readiness equivalent, writtenp �r q, iff readies(p) = readies(q).

The proof technique of Huynh and Tian involves defining a class of processes, called

locally unary processes, for which failures and readiness equivalence coincide with

completed trace equivalence.

Definition 6.5.2 [HT90] A processp is locally unaryiff for eachp0 with p w! p0 there is

at most onea 2 Act such thatp0 a! .

Lemma 6.5.1 [HT90] If p andq are locally unary normed processes then

p �r q iff p �f q iff L(p) = L(q):

PROOF:[HT90] It is sufficient to show thatL(p) = L(q) implies p �r q. Suppose

L(p) = L(q) and (w;X) 2 readies(p). If X = ; we havew 2 L(p) and hence

(w; ;) 2 readies(q). Otherwise, sinceq is locally unary we haveX = fag for some

a 2 Act. Sincep is normed, there must be aw0 2 Act� such thatwaw0 2 L(q).



110 Chapter 6. Negative results

SinceL(p) = L(q) andq is locally unary and normed, we must therefore also have that

(w; fag) 2 readies(q). 2

The idea is now, given a� to construct a locally unary�0 containing the variables

of � such thatL(�) = L(�) in � if and only if L(�) = L(�) in �0. The following

construction accomplishes this. The idea is simply to precede any action by a# that

indicates that a nondeterministic choice has been made.

Definition 6.5.3 Given a system of equations� in GNF let�0 have the action setAct0 =

Act[f#g (where# is a new action) and process variablesV ar0 = V ar[fXa ja 2 Actg.
For every process equation in�

Xi
def
=
X

aj�j

create the equations

Xi
def
=
X

#Xaj�j

Xaj

def
= aj

in the new system�0.

It is obvious that�0 is normed iff� is (in fact if jXj = k in � thenjXj = 2k in �).

We now have

Proposition 6.5.1 �0 is locally unary.

PROOF: If a state in the transition graph for�0 is of the formX
 with X 2 V ar we

must haveX

#! and nothing else. Otherwise, if it is of the formXa
 we can only have

Xa

a! 2

The following is now obvious from the definition of�0.

Proposition 6.5.2 For � 2 V ar� we have� a! �0�00 in � iff �
#!Xa�

0�00
a! �0�00 in �0.



6.5. Failures, readiness, failure-trace and ready-trace equivalences 111

We therefore also see that

Proposition 6.5.3 For � 2 V ar� b1b2:::bn 2 L(�) relative to� iff #b1#b2:::#bn 2
L(�) relative to�0.

Theorem 6.5.1 [HT90] Failures and readiness equivalence are undecidable for normed

BPA processes.

PROOF: From Proposition 6.5.3 we can reduce language equivalence for normed BPA

processes to language equivalence for locally unary processes and the theorem now

follows from Lemma 6.5.1. 2

The above ideas can also be used to prove that failure trace and ready trace equivalence

are undecidable. For normed BPA, failure trace equivalence [vG90b] coincides with the

notion of refusal testing [Phi87].

Definition 6.5.4 Therefusal relation A! for A � Act is defined for any processesp; q

by p A! q iff p = q and whenevera 2 A, p 6 a! . The failure tracerelations u! for

u 2 (Act[P(Act))� are defined as the reflexive and transitive closure of the refusal and

transition relations. Define

failure-traces(p) = fu 2 (Act [ P(Act))� j 9p0 : p u! p0g:

Processesp and q are failure-trace equivalent, written p �ftr q iff failure-traces(p) =

failure-traces(q).

The definition of ready trace equivalence that we use here is a characterisation presented

in [vG90b].

Definition 6.5.5 Define

ready-trace(p) = fA0a1A1 : : : anAn j



112 Chapter 6. Negative results

9p0; : : : ; pn : p = p0
a1! p1 � � � an! pn; pi

a! () a 2 Ai; 0 � i � ng:

Processesp and q are ready trace equivalent, written p �rtr q, iff ready-trace(p) =

ready-trace(q).

Lemma 6.5.2 If pandq are locally unary normed processes thenp �ftr q iff L(p) = L(q)

iff p �rtr q.

PROOF: It is enough to show thatL(p) = L(q) impliesp �ftr q andp �rtr q. Define

h : (Act [ P(Act))� ! Act� as the homomorphic extension of

h(u) =

8><
>:

� if u 2 P(Act)
u otherwise.

Then, if u 2 failure-traces(p) clearly for somev 2 Act�, h(u)v 2 L(p). Thus, since

L(p) = L(q) we must haveh(u)v 2 L(q) and sinceq is locally unary and normed, it is

now easy to see thatu 2 failure-traces(q). For the other part of the proof, note that if

A0a1A1a2 : : : anAn is a ready trace for a locally unary process, allAi (0 � i < n) are

singleton sets andAn is the empty set or a singleton set. Then ifu 2 ready-trace(p) we

have av 2 Act� such thath(u)v 2 L(p). SinceL(p) = L(q)we must haveh(u)v 2 L(q),

and sinceq is locally unary and normed we getu 2 ready-trace(q). 2

Corollary 6.5.1 Failure trace equivalence and ready trace equivalence are undecidable

for normed BPA processes.

6.6 Ready-simulation or 2/3-bisimulation

The notion of ready simulation (or 2/3-bisimulation) originated in work by Bloom, Istrail

and Meyer [BIM90] and Larsen and Skou [LS90]. It is the completed trace congruence

induced by the GSOS-format [BIM90].



6.6. Ready-simulation or 2/3-bisimulation 113

Definition 6.6.1 A relationR between processes is aready simulationiff it is a simulation

and wheneverpRq then for eacha 2 Act we havep a! if q a! . We say thatq ready

simulatesp, writtenp�!rq, iff there is a ready simulationR with pRq. Two processesp

andq are ready simulation equivalent, writtenp$r q, iff p�!rq andq�!rp.

The idea behind the proof in this section is to find a class of processes where the

ready simulation and simulation preorders coincide. The following class of processes,

introduced by Jan Friso Groote, is essential here:

Definition 6.6.2 A system of process equations� in GNF is said to betwo-step deter-

ministic iff whenever� a! �1
b! and� a! �2

b! then�1 = �2.

Note that the notion of being two-step deterministic is strictly weaker than that of being

deterministic.

We now show that for locally unary, two step deterministic processes language

inclusion coincides with ready simulation. We use the construction of Definition 6.5.3

to show that language inclusion for deterministic processes can be reduced to language

inclusion for unary locally, two-step deterministic processes. This enables us to show

that ready simulation is undecidable for locally unary, two step deterministic processes.

The following two results follow immediately from Propositions 6.5.2 and 6.5.3. Let

� and�0 be given as in Definition 6.5.3.

Proposition 6.6.1 If � is deterministic, then�0 is two-step deterministic.

Lemma 6.6.1 For �; � 2 V ar� L(�) � L(�) in � iff L(�) � L(�) in �0.

PROOF: Directly from Proposition 6.5.3. 2

The next lemma is due to Jan Friso Groote.

Lemma 6.6.2 Let �0 define a normed BPA process in GNF. If�0 is locally unary and

two-step deterministic, then for any�; � 2 V ar� we haveL(�) � L(�) iff �
p
�
!r�

p

(where
p

is a new action not occurring inAct0).



114 Chapter 6. Negative results

PROOF: The ‘if’ half is obvious, so it suffices to prove the ‘only if’ half. We define the

relation

R = f(�p; �p) j L(�) � L(�)g

and show that it is a ready simulation. This is easy for the pair(
p
;
p
). So we only

consider pairs(�
p
; �
p
) where�; � 6= �.

First we show that if�
p a! then�

p a! . So, assume�
p a! . First observe, as� is

normed, that�
p b1���bn

p

! for somen > 0. AsL(�) � L(�), �
p b1���bn

p

! . As � is locally

unary, it must be thata = b1. Hence,�
p a! .

Now we show thatR is a simulation relation. Assume(�
p
; �
p
) 2 R and�

p a! �0.

There is exactly one actionb such that�0 b! . If b =
p

then�0 =
p

. Moreover, there

is some� 0 such that�
p a! � 0

p

! . Clearly� 0 =
p

, so (�0; � 0) 2 R. If b 6= p
then

�0 = �00
p

for some�00 and, as�0 is two-step deterministic

L(�00
p
) = fbw j abw 2 L(�

p
); w 2 (Act�)

pg:

As�0 is two-step deterministic, there is exactly one� 0 such that�
p a! � 0

b! , � 0 = � 00
p

andL(� 00
p
) = fbw j abw 2 L(�

p
)g. As clearlyL(�00

p
) � L(� 00

p
) it follows that

(�00
p
; � 00

p
) 2 R. 2

We now have the following:

Theorem 6.6.1 Ready simulation is undecidable for normed BPA processes.

PROOF: We reduce language containment for deterministic processes to ready simulation

for locally unary, two step deterministic processes. Given a deterministic�, let �; � 2
V ar�. We now have the following (strongly relying upon Lemmas 6.6.1 and 6.6.2),

where
p

is a new action:

L(�) � L(�) in � iff L(�) � L(�) in �0

iff �
p
�
!r�

p
in �0

2



6.6. Ready-simulation or 2/3-bisimulation 115

Theorem 6.6.2 Ready simulation equivalence is undecidable for locally unary normed

BPA processes.

PROOF: As in the proof of Theorem 6.2.2, we can reduce simulation to ready simulation

equivalence by the following observation, first made by Jan Friso Groote:

��!r� iff � + � $r �:

2



Chapter 7

Conclusion

In this final chapter we summarize the results of the previous chapters, describe open

problems and outline directions for further work on these.

7.1 Summary of the main results

We have shown (inChapter 3) that a modal mu-calculus with labelsf0; : : : ; n� 1g can

define theSnS -definablen-ary tree languages up to an observational equivalence. The

main idea in the proof is an application of Rabin’s theorem, which states that theSnS -

definable languages correspond to then-ary Rabin-recognizable tree languages. For any

Rabin-recognizable tree languageL we can, by extending our alphabet with a ‘silent’

label, by using an encoding scheme for the Rabin automatonAL acceptingL, express

the transition relation and acceptance condition forAL within the mu-calculus such that

a set of trees equivalent toL is defined. InChapter 4 we have given an alternative

and much simpler proof of the decidability of bisimulation equivalence for normed BPA

processes, first proved by Baeten, Bergstra and Klop [BBK87b,BBK87a] and later by

Caucal [Cau88,Cau90a]. Our decidability proof uses a tableau system closely related

to the branching algorithms employed in the study of equivalence problems in language

theory [KH66,Cou83]. If a successful tableau for an equation� = � exists, the tableau

116



7.2. Various kinds of infinite transition graphs 117

provides us with a finite witness for a bisimulation containing(�; �). This witness is

a self-bisimulation in the sense of [Cau88,Cau90a], which means that we by taking its

congruence closure w.r.t. sequential composition get a (potentially infinite) bisimulation

containing(�; �). The length of the longest possible path in any tableau for a given

equation over variables in a system of process equations� has been found. We have

presented a sequent-based equational theory for bisimilarity over normed BPA processes

in 3-GNF, a result due to Colin Stirling. Its existence follows directly from the tableau

system; the theory is shown to be strongly sound and weakly complete. Finally, we have

shown how to extract a fundamental relationR (as in the work of [Cau88,Cau90a]) from

a successful tableau for� = � such that�  !
R
� �. This is done via another so-called

auxiliary tableau system. Then, inChapter 5 we introduced silent actions into normed

BPA, considering a class of BPA processes with the restriction that process termination

must involve performing an observable action. We have then shown how the decidability

method of Chapter 4 could be modified to apply to van Glabbeek’s branching bisimulation

equivalence. InChapter 6 we completed the picture by showing thatall equivalences

below bisimulation in the linear/branching time hierarchy are undecidable for normed

BPA processes in3-GNF and thus that they are undecidable for BPA processes in general.

The proofs involve reductions to the language inclusion problem for simple grammars

of [Fri76], and the language and trace equivalence problems for normed BPA processes.

The rest of the chapter consists of a discussion of open problems that relate to the work

in this thesis and how these may be approached.

7.2 Various kinds of infinite transition graphs

A main theme of this thesis has been the exploration of infinite-state transition graphs, in

particular their logics and equivalences. Several questions remain open here.



118 Chapter 7. Conclusion

7.2.1 SnS-definable tree languages

It is indeed possible that the mu-calculus with label setf0; : : : ; n � 1g andSnS are

entirely equi-expressive, not just modulo some equivalence. However, it is very unlikely

that we will ever find a direct translation fromSnS to the mu-calculus. For if we do,

this translation must have a hideous complexity, since the mu-calculus is elementary and

SnS is not. The encoding scheme employed in Chapter 3 does not contradict this; the

extraction of a Rabin automaton from a formula inSnS can introduce an exponential

blowup of the number of states every time a negation is considered [Rab69].

7.2.2 Context-free graphs

An interesting question that should be asked in the combined light of our equi-expressiveness

result and the results in Chapters 4 to 6 is what happens when we look at the so-called

context-free graphs, of which the transition graphs of normed BPA form a subclass.

Context-free graphs correspond to the transition graphs for pushdown automata. From

the point of view of bisimulation equivalence, pushdown automata are more expressive

than context-free grammars: Caucal and Monfort have shown [CM90] that there exist

pushdown automata whose transition graphs are not bisimilar to any graph for a context-

free grammar/normed BPA process.

Muller and Schupp have shown [MS85] that the counterpart ofSnS for context-free

graphs, the monadic second-order theory of context-free graphs, is decidable. One may

now wonder how the mu-calculus with label setA is related to the monadic second-

order theory of context-free graphs overA. A more general question is how the monadic

second-order theory of (finitely branching) transition graphs is related to the mu-calculus.

It is not immediately clear exactly how one would approach this problem; the result for

SnS relied on the correspondence with Rabin automata. Rabin automata were originally

introduced because they provide one with a way of reducing the satisfiability of an

SnS formula to the question of whether the language accepted by an automaton is empty.



7.2. Various kinds of infinite transition graphs 119

In [MS85] Muller and Schupp use a tiling technique for approaching the decidability

problem. Whether this could be of use in establishing an equi-expressiveness result is

not obvious.

Since the transition graphs of normed BPA processes form a proper subclass of the

context-free graphs, one may also wonder whether the decidability result for bisimilarity

extends to pushdown automata.

The problem lies with the ‘split’ lemma, since it relies on the fact that the states in

the transition graph of a normed BPA process given in GNF are sequences of process

variables - any part of a string of variables is therefore itself a state. This is not the case

when we look at pushdown automata. Here a state in the transition graph is of the form

qw whereq is the state of the automaton andw is a string representing the contents of the

stack. So we will have to use a different approach.

Here the various characterizations showing the regularity of context-free graphs may

be of interest. The decomposition result used by Baeten, Bergstra and Klop, stating that

a transition graph for a normed BPA process has finitely many connected fragments up

to translation equivalence, is a special case of a result established by Muller and Schupp

[MS85]. In the formulation of Caucal [Cau90b] this result says that the context-free

graphs are exactly those generated by some deterministic graph grammar.

7.2.3 Unnormed BPA

We have seen that almost all equivalences are undecidable for BPA, but for bisimulation

equivalence the case is certainly not closed, for we have only dealt with normed BPA.

Since an important application of process calculi is the modelling of systems that do not

terminate, the case where processes can have infinite norms is relevant indeed. A result

due to Baeten and Bergstra shows that in the case where the system of equations is guarded

andnoneof the process variables have a finite norm the solutions to the defining equations

are regular processes and thus have finite transition graphs. Intuitively, this should not



120 Chapter 7. Conclusion

surprise us since any process term that follows an unnormed variable can never give rise

to a transition – any summandaX1X2 in a GNF process equation wherejX1j =1 will

reduce toaX1. We therefore see that the only interesting case is the case where some

process variables are normed and others are not. The main problem that prevents us from

a direct extension of our result is again the ‘split’ lemma (Lemma 2.2.2), here since it

no longer holds in the unnormed case. What this tells us, though, is that if we want to

use the tableau method, we need to find another way to limit the growth of expressions.

A decidability result for the case where all processes involved aredeterministichas

been dealt with by Caucal in [Cau86] in which it was shown that language equivalence

for simple context-free grammars is decidable. As was noted in Chapter 6, simple

grammars correspond to deterministic BPA processes, so here bisimulation and language

equivalence coincide. The approach used in [Cau86] is somewhat similar to that of

[Cau88,Cau90a], in that it is shown that� is a Thue congruence. Here, however, one

cannot rely on properties of the usual norm. Instead a prefix normj jf given as the

homomorphic extension on(N;+) of

jXjf =
8><
>:
jXj if jXj <1
0 if jXj =1

is used. Caucal’s decision procedure consists of two semi-decision procedures, one

searching for the finite relation generating� and another searching for a bisimulation

error. It is not obvious how or if we could use this to find a tableau decision method

similar to that used in this thesis. Moreover, Caucal’s method does not provide us with a

way of extracting a complete axiomatization as was done in Chapter 4.

7.2.4 Beyond BPA

A natural and obvious extension of BPA would be to allow a notion of parallelism.

However, as we introduce more operators, we will eventually reach a process language

where bisimilarity is undecidable. But it might be that one could isolate a class of



7.3. Complexity bounds 121

static operators such that strong bisimilarity (and possibly also weak bisimilarity) would

remain decidable; here the view of static constructs put forward in e.g. [Hüt88] may have

something to offer. In particular one may wonder if the parallel should include some

form of communication or simply be the merge operator. The case for weak equivalence

is of course especially interesting here if synchronization becomes a possibility.

One of the many problems with going beyond sequential composition is that we in

general no longer have finitely many process expressions with a given norm. If we are

to use a tableau method similar to that used in Chapters 4 and 5, we will probably need a

very different tableau system.

7.3 Complexity bounds

Even though we have established that� is decidable for normed BPA, it remains to be

seen if the decidability is realistic. In other words: what is the lower complexity bound

? The proof due to Baeten, Bergstra and Klop gives no idea as to the complexity bound

of the decision method that they employ. It would be interesting to have a more precise

estimate of the value ofN(�1;�2; d), the level above which a periodic bisimulation must

exist, and compare this with our complexity bound in terms of the length of a longest

path. Caucal’s proof has a decision algorithm which enumerates all the finitely many

fundamental relations onV ar � V ar+, filtering out the ones that are self-bisimulations

and ordering them under�. This algorithm must be exponential in the number of

variables but a more careful analysis is required.

7.4 Weak equivalences

The results of Chapter 6 show that almost all the weak counterparts of the equivalences

in the linear/branching time hierarchy are undecidable, but there are still several open

questions for the weak versions of bisimulation equivalence. For branching bisimulation



122 Chapter 7. Conclusion

over BPA�recas considered in Chapter 5, the restriction to processes with strictly positive

norms is rather strong, as it rules out the possibility of a process terminating silently.

A problem with having nullary norms in the tableau system is that we no longer are

guaranteed that� and� persist throughout an eliminating subtableau forX� = Y �,

since a match forX�
a! may require access to observable actions inside�. So the

natural question is whether there is a way of introducing nullary norms. Moreover, we

would of course also want to get rid of the restriction of normedness altogether. However,

since this problem also needs to be tackled for strong bisimulation equivalence, it seems

that progress must first be made here before we can give any answer for the branching

bisimulation case. Last, but not least the questions for weak bisimilarity all remain open.

As we saw, Lemma 5.2.1 does not hold for this equivalence so a different approach must

be used in that case.

7.5 Equational theories

It would be nice to give another formulation of the theory presented in Section 4.3 that did

not have to use the simultaneous fixed-point induction ruleR12. In particular, we would

want a formulation that used explicit fixed points in process expressions and extended to

all BPA processes. The importance of such an equational theory for the full BPA is that it

would generalize the axiomatization for regular processes [Mil84]. However, the crucial

difficulty in extending Milner’s theory centres on the appropriate fixed-point induction

rule. A case to ponder on is that(�X:aX)E � (�X:aXXF ) for anyE andF .

Finally, it would be interesting if we could give a syntax-directed version of our

tableau system for branching bisimulation since this could give us an equational theory

of �b over normed BPA�rec along the same lines. A naive approach would be to add

the � -laws for branching bisimulation to our equational theory for strong bisimilarity.

However, this theory wouldnotbe able to simulate the tableau construction, in particular

theSTEP rule. R12 is the rule that corresponds to theREC rule in the tableau system



7.5. Equational theories 123

in Chapter 4, and in order to determine the transitions in aSTEP application to� = �

we may need to use the defining equations a different number of times on each side of

this equation – think of the case where we are comparing a process with silent actions to

one without.



Bibliography

[Abr87] S. Abramsky. Observational equivalence as a testing equivalence.Theoret-

ical Computer Science, 53:225–241, 1987.

[BBK87a] J.C.M. Baeten, J.A. Bergstra, and J.W. Klop. Decidability of bisimulation

equivalence for processes generating context-free languages. Technical

Report CS-R8632, CWI, September 1987.

[BBK87b] J.C.M. Baeten, J.A. Bergstra, and J.W. Klop. Decidability of bisimulation

equivalence for processes generating context-free languages. InLNCS 259,

pages 93–114. Springer-Verlag, 1987.

[BCG88] M.C. Browne, E.M. Clarke, and O. Grumberg. Characterizing Kripke struc-

tures in temporal logic.Theoretical Computer Science, 51:115–131, 1988.

[BHR84] S.D. Brookes, C.A.R. Hoare, and W. Roscoe. A theory of communicating

sequential processes.Journal of the ACM, 31:560–599, 1984.

[BIM90] B. Bloom, S. Istrail, and A. Meyer. Bisimulation can’t be traced. Technical

Report TR 90-1150, Cornell University, August 1990.

[BK84] J.A. Bergstra and J.W. Klop. Process algebra for synchronous communica-

tion. Information and Control, 60:109–137, 1984.

[BK88] J.A. Bergstra and J.W. Klop. Process theory based on bisimulation seman-

tics. In J.W. de Bakker, W.P de Roever, and G. Rozenberg, editors,LNCS

124



Bibliography 125

354, pages 50–122. Springer-Verlag, 1988.

[BKO88] J.A. Bergstra, J.W. Klop, and E.-R. Olderog. Readies and failures in the al-

gebra of communicating processes.SIAM Journal on Computing, 17:1134–

1177, 1988.

[BS90] J. Bradfield and C. Stirling. Verifying temporal properties of processes. In

LNCS 458, pages 115–125. Springer-Verlag, 1990.

[Büc60] J.E. B̈uchi. On a decision method in restricted second order arithmetic.

In Logic, Methodology, and Philosophy of Science, pages 1–11, Stanford,

1960.

[Cau86] D. Caucal. D́ecidabilit́e de l‘egalit́e des langages algébriques infinitaires

simples. InProceedings of STACS 86, LNCS 210, pages 37–48. Springer-

Verlag, 1986.

[Cau88] D. Caucal. Graphes canoniques de graphes algébriques. Rapport de

Recherche 872, INRIA, Juillet 1988.

[Cau90a] D. Caucal. Graphes canoniques de graphes algébriques. Informatique

théorique et Applications (RAIRO), 24(4):339–352, 1990.

[Cau90b] D. Caucal. On the regular structure of prefix rewriting. InProceedings of

CAAP 90, LNCS 431. Springer-Verlag, 1990.

[CE81] E.M. Clarke and E.A. Emerson. Using branching time temporal logic to

synthesize synchronization skeletons. InLNCS 131, pages 52–71. Springer-

Verlag, 1981.

[CM90] D. Caucal and R. Monfort. On the transition graphs of automata and gram-

mars. Technical report, IRISA, 1990.



126 Bibliography

[Cou83] B. Courcelle. An axiomatic approach to the Korenjak-Hopcroft algorithms.

Mathematical Systems Theory, 16:191–231, 1983.

[Dam90] Mads Dam. TranslatingCTL� into the modal�-calculus. Technical Re-

port ECS-LFCS-90-123, Laboratory for Foundations of Computer Science,

November 1990.

[DNMV90] R. De Nicola, U. Montanari, and F.W. Vaandrager. Back and forth bisim-

ulations. In J. Bergstra and J.W. Klop, editors,CONCUR 90, LNCS 458,

pages 152–165. Springer-Verlag, August 1990.

[DNV90] R. De Nicola and F.W. Vaandrager. Three logics for branching bisimulation.

In Proceedings of 5th Annual Symposium on Logic in Computer Science

(LICS 90). IEEE, Computer Society Press, 1990.

[Eng85] J. Engelfriet. Determinacy! (observation equivalence= trace equiva-

lence).Theoretical Computer Science, 36(1):21–25, 1985.

[ES84] E.A. Emerson and R.S. Street. The propositional mu-calculus is elementary.

In Proceedings of 11th ICALP, LNCS 172, pages 465–472. Springer-Verlag,

1984.

[Fri76] E.P. Friedman. The inclusion problem for simple languages.Theoretical

Computer Science, 1:297–316, 1976.

[GH91] J.F. Groote and Ḧuttel. Undecidable equivalences for basic process algebra.

Technical Report ECS-LFCS-91-169, Department of Computer Science,

University of Edinburgh, August 1991.

[Gro89] J.F. Groote. Transition system specifications with negative premises. Report

CS-R8950, CWI, 1989. An extended abstract appeared in J.C.M. Baeten

and J.W. Klop, editors,Proceedings of CONCUR 90, Amsterdam,LNCS

458, pages 332–341. Springer-Verlag, 1990.



Bibliography 127

[GV89] J.F. Groote and F.W. Vaandrager. Structured operational semantics and

bisimulation as a congruence (extended abstract). In G. Ausiello, M. Dezani-

Ciancaglini, and S. Ronchi Del la Rocca, editors,Proceedings of 16th

ICALP, LNCS 372, pages 423–438. Springer-Verlag, 1989. Full version to

appear inInformation and Computation.

[Hen89] M. Hennessy.Algebraic Theory of Processes. MIT Press, 1989.

[HM85] M. Hennessy and R. Milner. Algebraic laws for nondeterminism and con-

currency.Journal of the ACM, 32(1):137–161, January 1985.

[Hoa88] C.A.R. Hoare.Communicating Sequential Processes. Prentice-Hall, 1988.

[HS91] H. Hüttel and C. Stirling. Actions speak louder than words: Proving bisim-

ilarity for context-free processes. InProceedings of 6th Annual Symposium

on Logic in Computer Science (LICS 91), pages 376–386. IEEE Computer

Society Press, 1991.

[HT87] T. Hafer and W. Thomas. Computation tree logicCTL� and path quantifiers

in the monadic theory of the binary tree. InProceedings of 11th ICALP,

LNCS 267, pages 269–279, 1987.

[HT90] Dung T. Huynh and Lu Tian. On deciding readiness and failure equivalences

for processes. Technical Report UTDCS-31-90, University of Texas at

Dallas, September 1990.

[HU79] J. Hopcroft and J.D. Ullman.Introduction to Automata Theory, Languages,

and Computation. Addison-Wesley, 1979.

[Hüt88] H. Hüttel. Operational and denotational properties of a modal process logic.

Master’s thesis, Aalborg University Centre, 1988.



128 Bibliography

[Hüt90] H. Hüttel. SnScan be modally characterized.Theoretical Computer Sci-

ence, 74:239–248, 1990.

[Hüt91] H. Hüttel. Silence is golden: Branching bisimilarity is decidable for context-

free processes. InProceedings of CAV91. Springer-Verlag, 1991. To appear.

The full version is available as Report ECS-LFCS-91-173, Department of

Computer Science, University of Edinburgh.

[KH66] A.J. Korenjak and J.E. Hopcroft. Simple deterministic languages. InPro-

ceedings of Seventh Annual IEEE Symposium on Switching and Automata

Theory, pages 36–46, 1966.

[Koz83] D. Kozen. Results on the propositional�-calculus.Theoretical Computer

Science, 27:333–354, 1983.

[KS90] P.C. Kanellakis and S.A. Smolka. CCS expressions, finite state processes,

and three problems of equivalence.Information and Computation, 86:43–

68, 1990.

[LS90] K.G. Larsen and A. Skou. Bisimulation through probabilistic testing. In

16th Symp. Principles of Programming Languages, pages 344–352. ACM,

January 1990.

[Mey75] A.R. Meyer. Weak monadic second order theory of successor is not elemen-

tary recursive. InProceedings of Boston Univ. Logic Colloquium, LNCM

453, pages 132–154. Springer-Verlag, 1975.

[Mil80] R. Milner. A Calculus of Communicating Systems, LNCS 92. Springer-

Verlag, 1980.

[Mil84] R. Milner. A complete inference system for a class of regular behaviours.

Journal of Computer and System Sciences, 28:439–466, 1984.



Bibliography 129

[Mil89] R. Milner. Communication and Concurrency. Prentice-Hall International,

1989.

[MS85] D. Muller and P. Schupp. The theory of ends, pushdown automata and

second order logic.Theoretical Computer Science, 37:51–75, 1985.

[Niw88] D. Niwinski. Fixed points vs. infinite generation. InProceedings of 3rd

Annual Symposium on Logic in Computer Science (LICS 88), pages 402–

409, Edinburgh, 1988. IEEE Computer Society Press.

[OH86] E.-R. Olderog and C.A.R. Hoare. Specification-oriented semantics for com-

municating processes.Acta Informatica, 23:9–66, 1986.

[Par81] D.M.R. Park. Concurrency and automata on infinite sequences. In

P. Deussen, editor,Proceedings of 5th GI Conference LNCS 104, pages

167–183. Springer-Verlag, 1981.

[Phi87] I.C.C. Philips. Refusal testing.Theoretical Computer Science, 50:241–284,

1987.

[Plo81] Gordon Plotkin. A structural approach to operational semantics. Technical

Report FN-19, Computer Science Department, Aarhus University, 1981.

[Rab69] M.O. Rabin. Decidability of second-order theories and automata on infinite

trees.Transactions of the AMS, 141:1–35, 1969.

[Rab77] M.O. Rabin. Decidable theories. In Barwise, editor,Handbook of Mathe-

matical Logic, pages 595–629. North-Holland, 1977.

[RB81] W.S. Rounds and S.D. Brookes. Possible futures, acceptances, refusals and

communicating processes. InProc. 22nd Annual Symposium on Founda-

tions of Computer Science, pages 140–149, New York, 1981. IEEE.



130 Bibliography

[Sti87] C. Stirling. Modal logics for communicating systems.Theoretical Com-

puter Science, 49:311–347, 1987.

[Sti91] C. Stirling. Modal and temporal logics. In Abramsky, editor,Handbook of

Logic in Computer Science. Oxford University Press, 1991. To appear.

[SW89] C. Stirling and D. Walker. Local model checking in the modal mu-calculus.

In LNCS 351, pages 369–383. Springer-Verlag, 1989.

[Tho90] W. Thomas. Automata on infinite objects. In van Leeuwen, editor,Hand-

book of Theoretical Computer Science, pages 133–191. North-Holland,

1990.

[vG90a] R.J. van Glabbeek.Comparative Concurrency Semantics and Refinement

of Actions. PhD thesis, CWI/Vrije Universiteit, 1990.

[vG90b] R.J. van Glabbeek. The linear time – branching time spectrum. In J.C.M.

Baeten and J.W. Klop, editors,Proceedings of CONCUR 90,Amsterdam,

LNCS 458, pages 278–297. Springer-Verlag, 1990.

[vGW89a] R.J. van Glabbeek and P.W. Weijland. Refinement in branching time se-

mantics. Report CS-R8922, CWI, Amsterdam, 1989. Also appeared in:

Proceedings of AMAST, May 1989, Iowa, USA, pp. 197–201.

[vGW89b] R.J. van Glabbeek and W.P. Weijland. Branching time and abstraction in

bisimulation semantics (extended abstract). In G.X. Ritter, editor,Informa-

tion Processing 89, pages 613–618. North-Holland, 1989.

[VWS83] M. Vardi, P. Wolper, and A.P. Sistla. Reasoning about infinite computation

paths. InProceedings of 24th IEEE FOCS, pages 185–194, 1983.

[Wol83] P. Wolper. Temporal logic can be more expressive.Information and Control,

56:72–99, 1983.


