Decidability, Behavioural Equivalences
and

Infinite Transition Graphs

Hans Hittel

Doctor of Philosophy
University of Edinburgh
1991

Abstract

This thesis studies behavioural equivalences on labelled infinite transition graphs and
the role that they can play in the context of modal logics and notions from language
theory. A natural class of such infinite graphs is that corresponding terifedefinable

tree languages first studied by Rabin. We show that a modal mu-calculus with label set
{0,...,n — 1} can define these tree languages up to an observational equivalence.

Another natural class of infinite transition graphs is that of normed BPA processes,
which correspond to the graphs of leftmost derivations in context-free grammars without
useless productions. A remarkable result is that strong bisimulation is decidable for these
graphs. After an outline of the existing proofs due to Baeten et al. and Caucal we present
a much simpler proof using a tableau system closely related to the branching algorithms
employed in language theory following Korenjak and Hopcroft. We then present a result
due to Colin Stirling, giving a weakly sound and complete sequent-based equational
theory for bisimulation equivalence for normed BPA processes from the tableau system.
Moreover, we show how to extract a fundamental relation (as in the work of Caucal)
from a successful tableau.

We then introduce silent actions and consider a class of normed BPA processes with
the restriction that processes cannot terminate silently, showing that the decidability
result for strong bisimilarity can be extended to van Glabbeek’s branching bisimulation
equivalence for this class of processes.

We complete the picture by establishing ththbther known behavioural equivalences

and a number of preorders are undecidable for normed BPA processes.

Acknowledgements

First of all | want to thank my supervisor Colin Stirling for our fruitful discussions and
his many useful comments that greatly influenced the contents and presentation of this
thesis.

Thanks are also due to Didier Caucal for his important insights into the topics of
Chapters 4 to 6 that inspired much of my work; in particular thanks for pointing out some
serious errors in an early version of what was to become Chapter 6. | also want to thank
him, his wife Catherine and Roland Monfort for their immense hospitality during my
visitto IRISA in June 1990. — Had it not been for Jan Friso Groote and the discussions we
had during his visit to the LFCS in May of 1991, Chapter 6 would have been very short
and boring. Many of the results in that chapter are due to him. My work on branching
bisimulation in Chapter 5 began as the result of a discussion | had in Aalborg with Kim
Larsen. Example 5.2.2is his.

The Department of Computer Science at Edinburgh provided me with an interesting
work environment and | want to thank all the people | got to know there during my stay.
Special thanks to Kees and Fabio for being such good office-mates.

An important aspect of going abroad is that you get to make new friends. My warm
thanks go to Mads and Charlotte for providing me with a proper perspective of many
things in life, to Bjarne for drinks osv. and for keeping me in touch with things Danish,
to David for meals and Japanese film and theatre (whichneierbe the same) and to
Sonia for food, company and understanding (she is very special!).

And thanks to Eduardo, Nigel, Hans Jgrgen & Nomi and last — but by no means

3

least — Sgren for sharing accommodation with me at various times during my years in
Edinburgh and for generally tolerating my strange whims.

The constant emotional and practical support that my mother has given me throughout
my self-imposed exile and whenever | was in Denmark has been all-important; without
her, things could have looked very grim indeed and | cannot thank her enough for being
there.

My grandmother did not live to see the end of my stay in Edinburgh; it is to the

memory of her that my thesis is dedicated.

The work in this thesis was made possible by a research position at the Department of
Mathematics at irhus University, travel grants and payment of research costs by Aalborg
University Centre and C.W. Obel Fonden and financial support from the Danish Research

Academy.

Declaration

This is the revised version of my thesis incorporating the required corrections suggested
by my examiners Robin Milner and Matthew Hennessy. The thesis was composed by
myself, and the work reported has not been presented for any university degree before.
The ideas and results that | do not attribute to others are my own.

Parts of the thesis have already been published elsewhere. Chapter 3 is a slightly
revised version of [[dt90]. Chapter 4 contains an expanded version of [HS91]. Chapter

5 is essentially [[dt91], and Chapter 6 is essentially [GH91].

Hans Hittel

Table of Contents

1 Introduction
1.1 Determining the qualities of behavioural equivalences
1.2 Infinite-state systems.
1.3 Behavioural equivalences and program logics.
1.3.1 Tableautechniques
1.3.2 Expressiveness.
1.4 Decidability of behavioural equivalences.

1.5 LayoutoftheThesis

2 Background

2.1 Infinite trees and Rabinautomata.
2.1.1 Infinitetrees.
2.1.2 Rabinautomata.

2.2 Normed recursive BPAprocesses.
2.21 Syntaxandsemantics.
2.2.2 Bisimulation equivalence on BPA processes.
2.2.3 Axiomatizations of bisimulation equivalence.
2.2.4 Normed recursive BPA processes in Greibach Normal Form
2.2.5 Self-bisimulations oL

226 The'splitlemma.

3 A modal characterization of Sn.S

3.1 Syntax and semantics 86h.S andCML

311 SnS
312 CML

3.2 SnSisatleastasexpressive@d/L

3.3 CMLisasexpressive &nsS modulo~,

4 Deciding bisimilarity for normed BPA

4.1 Existing approaches

4.1.1 Baeten, Bergstra, and Klop’sproof

4.1.2 Caucal'sproof

4.2 The tableau decision method .

4.2.1 Constructing subtableaux.

4.2.2 Decidability, soundness,

4.3 Anequational theory

and completeness.

4.4 Extracting fundamental relations

5 Introducing silent actions
5.1 Branching bisimilarity.
52 NormedBPfgc

5.3 Atableau system for branching bisimulation.

5.3.1 Building tableaux. . . .

5.3.2 Termination, completeness, and soundness.

5.3.3 Complexity of the tableau system and decidability.

6 Negative results
6.1 Deterministic BPA processes .
6.2 Simulation equivalence.

6.3 n-nested simulation equivalence

39
39
39
41
42
44

51
52
52
55
56
57
61
65
72

79
79
81
85
85
88
97

6.4 n-bounded-tr-bisimulation oL
6.5 Failures, readiness, failure-trace and ready-trace equivalences . .

6.6 Ready-simulation or 2/3-bisimulation.

Conclusion

7.1 Summaryofthemainresults. L.

7.2 Various kinds of infinite transitiongraphs.
7.2.1 SnS-definabletreelanguages.
7.2.2 Context-freegraphs
7.2.3 UnnormedBPA.
7.24 BeyondBPA

7.3 Complexitybounds.

7.4 Weakequivalences. o

7.5 Equationaltheories.

109

Chapter 1

Introduction

The problem of determining if a program satisfies a given specification is one of the
central motivating problems in theoretical computer science, and several approaches
exist.

Denotational semantics can serve as a valuable tool for program verification. But in
the case of nondeterministic, parallel or non-terminating programs an operational account
is often preferred. Over the past decade much attention has been devoted to the study
of process calculi such as CCS [Mil80,Mil89], ACP [BK84,BK88] and CSP [Hoa88].

Of particular interest has been the study of the behavioural semantics of these calculi as
given by transition graphs arising from structural operational semantics in the tradition
originated by [Plo81]. A particularly important question is when processes can be said

to exhibit the same behaviour, and a plethoraetiavioural equivalencesxist today.

1.1 Determiningthe qualities of behavioural equivalences

The main rationale behind the various behavioural equivalences that have been proposed
has been to capture behavioural aspects that the language equivalence known from

language theory does not take into account. For instance,

9

10 Chapter 1. Introduction

ab+ac=a(b+c)

holds for language equivalence, but is an identification that these other notions of be-
haviour and behavioural equivalence do not make, since these two process expressions
do not exhibit the same deadlock properties: after an initiattion the former is only

able to perform one actiom r c¢), whereas the latter has a choice betwkeandc.

Equivalences are usually classified according to thearsenessi.e. how many
identifications they make with respect to the branching behaviour of processes. This
linear/branching time hierarchig illustrated in Figure 1-1 (after [vG90a]) . The coarsest
equivalences are then the trace equivalence and the completed trace equivalence; the latter
differs from trace equivalence in that only tbempletedrace languages are compared
and is thus the usual language equivalence. Directly above we have the testing/failures
equivalence investigated by Hennessy and deNicola et al. (see e.g. [Hen89]). At the
top of the diagram is bisimulation equivalence (or bisimilarity), a notion introduced by
Park in [Par81] and subsequently used by Milner and others in the CCS tradition (as
exemplified in [Mil89]).

It has also been argued that behavioural equivalences should be judged according
to how well they obey some computationally justifiable criteriorob$ervability For
instance, while bisimulation equivalence has many nice mathematical properties it fails
to have a computational justification in that (in)equivalence is not intuitively observable.
Indeed, within the framework of testing some very unintuitive testing operators must
be used. Abramsky has shown [Abr87] that bisimulation can be characterized by a test
language that contains a testing operator that enumerates all next-states of the process
subjected to testing. In [Gro89] Groote presents another test language; here lookahead in
combination with the possibility to check for the absence of activity is needed. Bloom et
al. argue [BIM90] that only completed traces should count as observations and define an

equivalence which is a (completed) trace congruence under a ‘reasonable’ set of process

1.1. Determining the qualities of behavioural equivalences 11

Bisimulation equivalence

\

n-nested simulation equivalence

n-bounded-tr-bisimulation
Ready simulation equivalence

&

Ready trace equivalen

Possible-futures suivalenc \

Readiness equivalenceFailure trace equivalence

/ Simulation equivalence

Failures equivalence

7

Completed trace equivalenc

Trace equivalence

Figure 1-1: The linear/branching time hierarchy of equivalences (based on [vG90a]) .

constructs. This equivalence is the ready simulation equivalence of Figure 1-1.

The study of processes with unobservable actions leads to another linear/branching
time hierarchy similar to Figure 1-1 except that we now have the corresponeialk
equivalencedased on the weak transition relatief> where unobservable actions are
disregarded. The best-known weak equivalence is Milner’s weak bisimulation equiva-
lence [Mil89]; however, it has been argued that this is not the proper weak version of
bisimilarity since it does not reflect the changes in branching properties that may happen

as the result of performing an unobservable action. Moreover, weak bisimulation is not

12 Chapter 1. Introduction

robust under a simple notion of action refinement.

The notion of branching bisimilarity, put forward by van Glabbeek and Weijland
in [vGW89Db], reflects these concerns. According to this definition, all intermediate
unobservable steps in a weak transition must be matched. The idea is not new, however.
De Nicola and Vaandrager have proved [DNV90] that branching bisimulation corresponds
to the stuttering equivalence on Kripke structures considered in e.g. [BCG88]. Recently
it has been shown [DNMV90] that there is a natural connection between branching
bisimulation and weak bisimulation in that the former is the so-called ‘back and forth’
variant of the latter. Branching bisimilarity has many pleasant properties; in particular
a complete equational theory for finite BPA, the class of finite processes with choice
and sequential composition, can be obtained by adding just two new axioms to those for
strong bisimulation for finite BPA processes. Moreover, this axiomatization can easily
be turned into a complete term rewriting system [vG90a], something that is not the case
for weak bisimulation equivalence.

Finally, there is a similar hierarchy gfreorderson processes which is yet to be
determined in detail. Examples of such preorders include the simulation preorder [Par81],

the testing/failures preorder [Hen89] and the ready simulation preorder of [BIM90].

1.2 Infinite-state systems

Milner [Mil84] has shown that the class of finite transition graphs corresponds to that of
the transition graphs faegular processed.e. the recursively defined CCS processes
over the signaturda., +} wherea. is an action prefixing operator for everyin a
set of atomic actionsict and + is nondeterministic choice. Regular CCS processes
correspond to the usual finite automata; their finitary trace languages are the finitary
regular languages.

However, this result also says that as soon as we move beyond these constructs

(known as the dynamic process constructs), recursively defined processes can have

1.3. Behavioural equivalences and program logics 13

transition graphs with infinitely many states and trace languages that are no longer
regular. This includes many realistic cases; in particular processes that are defined using
various notions of parallel composition such as the asynchronous parallel ogesator
CCS can have infinitely many states.

In fact, the theory of finite-state systems and their equivalences can now be said
to be well-established. One may be led to wonder what the results will look like for

infinite-statesystems.

1.3 Behavioural equivalences and program logics

There is a striking relationship between behavioural equivalences and some program
logics. Amodal characterizatioof bisimilarity exists [HM85] in that two processes are
bisimilar iff they satisfy the same formulae in a modal logic now known as Hennessy-
Milner logic. Many other related modal and temporal logics also characterize bisim-
ulation equivalence in this way [BCG88,Sti87,Sti91]. Similar characterizations exist
for the other parts in the linear/branching time hierarchy; in the logics that characterize
these equivalences either restrictions of Hennessy-Milner logic are made or operators of
linear-time temporal logic are introduced in place of the Hennessy-Milner modalities.
Indeed, for the description of program properties the tendency is to prefer modal and
temporal logics for describing properties of programs. One such logic is the modal mu-
calculus [Koz83] , which also characterizes bisimilarity in the sense that two processes

are bisimilar iff they satisfy the same closed formulae [Sti91].

1.3.1 Tableau techniques

An important problem in the context of program logics is thatnafdel checkingModel
checking consists in determining whether a process gtdésfies a formul&’ — written
p E F. In[SW89] Stirling and Walker have given a model checker for the modal mu-

calculus and finite transition graphs in the form ¢ébleau systema goal-directed proof

14 Chapter 1. Introduction

system for the relatiop = F. An advantage of the tableau-based approach to model
checking is that it idocal in the sense that only those states relevant to determining
whether or notp = F need to be examined. In [BS90] Bradfield and Stirling have
given a tableau system that deals with infinite transition graphs. In this thesis we
use a related tableau technique approach to look at decision problems for behavioural
equivalences. Ourapproach turns out also to be closely related to the branching algorithms
for equivalences studied in formal language theory. The method, introduced by Korenjak
and Hopcroft in [KH66] has been widely applied for giving decision procedures for

various equivalence problems — see e.g. [Cou83].

1.3.2 Expressiveness

The modal mu-calculus is a very expressive logic; it incorporates the full expressibility
of CTL* [Dam90] and thus serves as a natural branching time logic for expressing
properties of processes. Moreover, the modal mu-calculus is decidable, in fact even
elementary [ES84]. Another important decidable theory, in fact one of the most general
decidable theories around, is the second-order monadic theorysofcessorssns |,

as introduced by Rabin [Rab69Fn.S is the generalization o$1S , the second-order
monadic theory ofl successor, which was shown to be decidable bgHin [Bic60]

by automata-theoretic means similar to those later used by Rabin.

Since SnS is a very general theory, several other theories have been shown to
be decidable by interpretations infnS [Rab69,Rab77]; examples include the weak
second-order theory of linearly ordered sets, the second-order theory of totally ordered
sets with a countable domain and various propositional modal logics [Rab77]. The class
of SnS-definable sets corresponds to that of the sets of infinéey node-labelled trees
accepted by Rabin automata [Rab69] and is a well-known class of infinite-state systems.
The acceptance condition of a Rabin automaton can be seen as describing a fairness

property along tree paths. Thus it would seem thatSth8-definable sets can be defined

1.3. Behavioural equivalences and program logics 15

through a tree property that can be described in a somewhat more natural way, namely
through using a branching-time temporal logic, since such a logic can be interpreted on

infinite trees in a straightforward fashion.

So sinceSnS is a very powerful decidable theory and the modal mu-calculus also is
very powerful, subsuming many well-known modal and temporal logics, a natural and

interesting question is how these two logics are related with respect to expressiveness.

Some work has already been done in this field. In [VWSS83] Vardi et al. show that
the temporal logicET L [Wol83] can define exactly the class ofregular languages,
corresponding to thg1S -definable sets. And in [Niw88] it was shown by Niwinski that
a fixed-point calculus whose signature apart from maximal and minimal fixed points and
disjunction includes the usual operators on trees can define exactBntfrelefinable

sets.

Finally, Hafer and Thomas have proved [HT87] that a restricted versiém8fwith
set quantification restricted to paths is expressively equivalefifftb* for binary tree
models. However, there are certainly bound to be differences. For one thing, the full
SnS is non-elementary [Mey75], whereas the modal mu-calculus is elementary [ES84].
Moreover, as was also shown in [HT87] the f@hS can express properties which
have no correlate in a branching time temporal logic which does not have operators that
incorporate information about the ordering of nodes in a tree. An example is counting

the nodes in a tree which are incomparable to a noge.t. to the ancestral ordering

A(x) def Hxl,...,xm./\:;(x L x; ANy £) /\/\i,j(i #+J D xi # 1j)

This problem would not arise if we could somehow refer to the ancestral ordering
in our modal operators. In fact, in this thesis we show that a modal mu-calculus with
label set{0,...,n — 1} can characteriz&n.S up to a bisimulation-like equivalence on

node-labelled trees.

16 Chapter 1. Introduction
1.4 Decidability of behavioural equivalences

Language equivalence is known to be decidable for finite automata. However, it is also
well known (see e.g. [HU79]) that language equivalence becomes undecidable when one
moves beyond finite automata to context-free languages.

For finite-state processes all of the equivalences of Figure 1-1 can be seen to be
decidable. For instance, the bisimilarity problgm ¢ for processeg andg is decidable
for finite transition graphs because we can enumerate all the finitely many binary relations
over the state set and search for a bisimulation among them containing the,pair
Moreover, for regular CCS complete equational theories exist for strong bisimilarity
[Mil84].

In this thesis we argue thatecidability or lack thereof should be thought of as
another criterion for determining the computational merits and deficiencies of behavioural
equivalences.

A natural question is then whether the decidability can be extended beyond the finite-
state case. One limitation that should be noted is that strong bisimulation equivalence
(~) in a process language with general static constructs and recursive definitions is
undecidable In fact, the general bisimilarity problem is not even r.e. For, using the
operators communication)(restriction {) and sequential composition one can code
any Turing machinel/ and input stringw as a process expressipp;, ,, such that all
moves ofM are represented by internal-Jactions ofp,,,, and such that the possible
eventual halting is represented by a special success attidhe encoding consists in
expressing the tape dff as two stacks, one of which has been initialized to hold
The stacks communicate with the finite control, represented by a regular process. The

problem ‘DoesM diverge on inputv ?° can now be expressed as

Prw ~ 1. (T.7) (1.1)

However, (1.1) is undecidable since the above divergence probleatiig.

1.4. Decidability of behavioural equivalences 17

In the setting of process algebra, an example of infinite-state systems is that of the
transition graphs of processes in the calculus BPA (Basic Process Algebra) [BK88].
These are recursively defined processes over the sigriature .} wherea ranges over
a set of atomic actions; is nondeterministic choice ands sequential composition.

A BPA process is defined by a system of recursion equations of the form

X() - Eo(Xo,...,Xn)

X, ¥ E,(Xy...,X,)

where theF;’s are BPA expressions. A system of the above form where every occurrence
of a variable in any expressiafj; is within the scope of an atomic action is said to be
guarded Any guarded system of equations can effectively be put in the BPA equivalent
of Greibach Normal Forn{GNF), i.e. a system of equations where all equations are of
the form.X; def >_; aiaq; Where then;;’s are compositions of process variables.

A special case is that eformed BPAprocesses. Theormof a process is defined as
the least number of transitions necessary to terminate. A process is said to be normed if
every state has a finite norm. Even though normed BPA does not incorporate all regular
processes, systems defined in this calculus can in general have infinitely many states.

There is an obvious correspondence between process equations of tha, f&én
> aijoy; and the GNF context-free productiods — a; v | ... | agxour, SO normed
BPA processes correspond to context-free grammars without useless or empty produc-
tions. It is therefore easy to see that both trace equivalence and completed trace equiva-
lence (or language equivalence) are undecidable for normed BPA processes.

However, a recent result shows that strong bisimilarity for normed BPA processes is
decidable Two proofs of this result exist, one by Baeten, Bergstra and Klop [BBK87a]
and another due to Caucal [Cau88,Cau90a]. These proofs are very different (and are
sketched in Chapter 4). The (Ilengthy and impenetrable) proof in [BBK87a] consists in

showing that one can exhibit a decomposition of the process graph with certain regular-

18 Chapter 1. Introduction

ities. The proof in [Cau88,Cau90a] consists in showing that the maximal bisimulation
is finitely representable by a confluent and strongly normalizing Thue system, and that

there are only finitely many candidates for this Thue system.

These proofs do not correspond to one’s intuition about how to determine whether
or not two normed BPA processes are bisimilar. And they do not lead to complete proof
systems for the process algebra involved. But what these pdwotfsll us is that we
can go beyond finite-state systems while maintaining the decidability of bisimulation
equivalence. Moreover, somewhat unexpectedly, we have gained something by using an
equivalence different from language equivalence in a setting that involves structures from
language theory. On the other hand, Huynh and Tian [HT90] have proved the negative
result that the failures and readiness equivalences are undecidable for normed BPA.
Their proof consists in giving a special class of normed BPA processes for which these
equivalences coincide with language equivalence and then showing that the language
equivalence problem for arbitrary normed BPA processes reduces to that for the special

class.

A natural question in the light of this is now for which equivalences and for which
process signatures we have that the equivalence in question is decidable for normed
processes. In this thesis we show that in famteof the other behavioural equivalences

in Figure 1-1 are decidable for normed BPA processes.

Related questions are what happens when we introsilex@ actionsand what the
situation looks like fopreorders For the latter there are bound to be some differences.
Friedman has shown [Fri76] that the language inclusion preorder is undecidable for
so-called simple grammars, a class of context-free grammars that correspond to that of
deterministic normed BPA processes. However, Korenjak and Hopcroft have shown
that the language equivalence problem for this class of grammars/processes is decidable
[KH66].

Finally, another important question is whether we can find a ‘natural’ and ‘convenient’

method of determining whether or not two normed BPA processes are bisimulation

1.5. Layout of the Thesis 19

equivalent. In this thesis we show that it is indeed possible; our method is a tableau
technique related to the local model checking systems of [SW89,BS90]. This method is
also closely related to the branching algorithms for equivalence problems on grammars
introduced by Korenjak and Hopcroft in [KH66].

We use the same tableau method to prove that the branching bisimulation equivalence
of Weijland and van Glabbeek [vGW89a,vGW89b] is decidable for a class of normed

BPA processes with silent actions.

1.5 Layout of the Thesis

In this final section we outline the contents of the rest of this thesis.

In Chapter 2 we present the necessary background material for the chapters that
follow. We give the definitions of infinitex-ary trees and Rabin automata (studied in
Chapter 3) and introduce in greater detail the process calculus BPA (studied in Chapters
4 to 6) and the notion of bisimulation equivalence. We describe the subclass of normed
BPA and show how every system of BPA equations can be effectively rewritten into
3-GNF.

In Chapter 3 we show that a modal mu-calculus with label §@f...,n — 1} can
define theSn.S-definablen-ary tree languages up to an observational equivalence. The
main idea is to use Rabin’s theorem stating thatth&-definable languages correspond
to the n-ary Rabin-recognizable tree languages, which are the sets of infiraty
labelled trees recognizable by Rabin automata. Thus our result also underpins the idea
that equivalences other than those normally used can be of use in problems related to
language theory.

In Chapter 4 we first outline the existing proofs of the decidability of bisimulation
equivalence for normed BPA processes due to Baeten, Bergstra and Klop [BBK87Db,
BBK87a] and Caucal [Cau88,Cau90a] and then give an alternative and much simpler

proof of this result. Our decidability proof uses a tableau system which is similar to

20 Chapter 1. Introduction

the tableau systems used for model-checking the modal mu-calculus [SW89,BS90] and
closely related to the branching algorithms of language theory [KH66,Cou83]. If a
successful tableau for an equatian= [exists, the tableau provides us with a finite
witness for a bisimulation containir(g,), the witness being a self-bisimulation in the
sense of [Cau88,Cau90a]. We give a complexity bound for the tableau method in terms
of the length of the longest possible path in any tableau for a given equation. Then we
present a result due to Colin Stirling, a sequent-based equational theory for bisimulation
equivalence for normed BPA processe846NF extracted from the tableau system. The
theory is shown to be strongly sound and weakly complete. Finally we show how one
can find a fundamental relation (as in the work of [Cau88,Cau90a]) from a successful
tableau. This is done via another so-called auxiliary tableau system.

In Chapter 5 we introduce silent actions into normed BPA. We consider a class of
BPA processes with the restriction that process termination must involve performing an
observable action. We then show how the decidability result of Chapter 4 can be extended
to branching bisimulation equivalence, giving complexity bounds for the tableau method.

In Chapter 6 we show thaall equivalences below bisimulation in the linear/branching
time hierarchy are undecidable for normed BPA process8sGINF and thus that they
are undecidable for BPA processes in general. The proofs involve reductions to the
language inclusion problem for simple grammars of [Fri76] and the language and trace
equivalence problems for normed BPA processes.

Chapter 7 sums up the conclusions of this thesis and give directions for further work.

Chapter 2

Background

In this chapter we give various definitions that will be used throughout the rest of this

thesis. Section 2.1 introduces the notions of infinite node-labelled trees, bisimulations
on such trees and Rabin automata that will be used in Chapter 3. In Section 2.2 we
introduce the class of normed BPA processes studied in Chapters 4 to 6 and the notion of

bisimulation equivalence for such processes.

2.1 Infinite trees and Rabin automata

In Chapter 3 we shall look atn.S [Rab69] and a version of the modal mu-calculus

[Koz83], both of which are logics interpreted on infinite node-labelled trees of fixed arity.

2.1.1 Infinite trees
An n-ary infinite tree can be seen as a prefix-closed set, with suffixing representing the

successor relation.

Definition 2.1.1 The full infiniten-ary tree is the sef0, ..., n — 1}* with the successor
relation—C {0,...,n — 1}"x{0,...,n—1}* defined byv — wifor: € {0,...,n—1}.

wi is called theith successor of.. The root ise.

21

22 Chapter 2. Background

In other words, any nodex wherex = i1, . . .1, iS the unique node reachable from
w via the pathl} — Wi —> Wil * -+ —> Wily . . . Iy

We shall sometimes need an ordering on the node set.

Definition 2.1.2 Theancestral orderingn {0, ...,n — 1} is given byw’ < w" if there

exists aw™” € {0,...,n — 1}* such thatw'w" = w".

A labelled treet whose labels are in the alphabéts defined as a labelling function

on{0,...,n—1}".

Definition 2.1.3 An n-ary A-labelled tree is a function : {0,...,n —1}* — A. The
set of all A-labelled trees is denoted bf’. A set ofn-ary A-labelled trees is called a

tree languagever A.

In the rest of this section we assume without loss of generality that all trees considered
are binary, meaning = 2.

We now define a notion of equivalence on trees which states that two nodes have
the same branching properties with respect to some subalpHAabEirst we define the

notion of anA’-descendant.

Definition 2.1.4 For any treet € 7Ty and A’ C A, the A’-descendant relation? C
{0,1}" x ({0,1}" x {0,1}") is given byw - (uOvp, ulvy) wheneverw < ulv, and
w < ulv; wheret(w') ¢ A" wheneverw < w' < ulvy or w < w' < wulv; but

t(ulvy), t(ulvy) € A’

Thus, theA’-descendants of a node are the first descendants of labelled by
elements fromAd’ along a pair of incomparable paths. Eéilabelled trees7 clearly
reduces to—. If A = A’ U {7} wherer is a special ‘invisible’ labelr ¢ A’, =
can be seen as the successor relation modulo invisible labels. Thus, the relation is
similar to the weak transition relations for edge-labelled transition graphs with silent

actions (cf. Definition 5.1.1) and gives rise to an equivalence of nodes that is similar to

2.1. Infinite trees and Rabin automata 23

the observational equivalence of [Mil89] and essentially is the equivalence on trees of
[BCG88]:

Definition 2.1.5 For any trees, € T¢ ,t; € T, and A’ C A; N Ay, an A-bisimulation

isarelationR 4 C {0,1}" x {0,1}" such that whenevér', w") € R, we have
1.t (w') = t2(w") andty (w') € A’
2. w' = (wh, wy) = F(wy, w) : w" = (wg, w) with wj Rwy andw] Rw{
3. w" = (wg, wy) = I(wj, w)) : w' = (wg, wy) with wj Rw; andw] Rw{

We define- 4 by~ 4, = {(w', w")|w' R4 w" for someA’-bisimulationR 4 }. If w' ~ 4 w"

we say thaty’ andw"” are A’-bisimilar.

Thus,~ 4 identifies two trees labelled by alphabets containit\gf their ancestral

information w.r.t. A’ is the same. We have

Proposition 2.1.1 ~ 4 is an equivalence relation of, 1}* x {0,1}".

2.1.2 Rabin automata

The use of Rabin automata is crucial to the equi-expressiveness proof in Chapter 3. The
Rabin automaton, introduced in [Rab69], is an important type of automaton on infinite
trees, first used as an auxiliary notion in the proof of the decidabiliydf. It provides

a generalization of thelBhi automata on infinite sequences introducediini8’s proof

of the decidability ofS1S [Buic60].

Definition 2.1.6 A Rabin automatoron binary A-labelled trees is a quadruplgl =
(Q,q,{ % |a € A},Q), whereQ is a finite set oftates ¢ is thestart state{ % C
Q x (@ x Q)| ae A}is afinite family of finiteransition relationgnd Q2 C 29 x 29
is a finite collection of finitecceptance pairsWheneverq, (¢1,¢;)) € = we write

qg(Ql;CD)-

24 Chapter 2. Background

Rabin automata are thus nondeterministic. This feature is essential; deterministic
Rabin automata can be shown to be strictly less powerful than their nondeterministic

counterparts [Tho90].

Definition 2.1.7 A run of the Rabin automatonl = (Q,q,{ > |a € A},Q) on an
A-labelled treet is any@-labelled treer such that

r(€) = qo
if (s) = athenr(s) = ¢,r(s0) = ¢, r(s1) = ¢" for someg = (¢, ¢")
Rabin acceptance states that there is a run where every path satisfies a fairness
condition in that along any path there is an acceptance pait/;) such that states ifi;

occur infinitely often and states ib; do not. We let/n(r | =) denote the set of states

occurring infinitely often along a pathin the runr.
Definition 2.1.8 A runr of A is acceptingf for all paths in r there is an acceptance
pair (L;, U;) € 2 such that

In(r|m)NL;=0andIn(r |7)NU; #0

Definition 2.1.9 A tree languagd. is Rabin-recognizabld there is a Rabin automaton

A such thatt € L iff ¢ admits an accepting run oA.

Example 2.1.1 For the alphabefa, b} consider the Rabin automaton

A=({a, e} a, {(I1i> (a1, q1), Cll—b> (22, 42), (I2i> (a1, q1), C]z—b> (2, 2)}, {{a}, {ar})})

The stateg, is assumed exactly whentais encountered, so from the acceptance
condition we see that the tree language recognized ligythat of the trees that do not

have a path containing infinitely manig. O

In [Rab69] Rabin proved that a set of trees can be defingghisi if and only it it
is Rabin-recognizable. This result, stated in this thesis as Theorem 3.3.1, provided a
generalization of Bchi's result thatS1S-definability corresponds to the notion of the

notion of being Bichi-recognizable and will play a crucial role in Chapter 3.

2.2. Normed recursive BPA processes 25

2.2 Normed recursive BPA processes

In Chapters 4 to 6 we shall look at (edge)-labelled transition graphs that arise from the

structural operational semantics of process calculi.

Definition 2.2.1 A labelled transition grapf = (Pr, Act,{ - }) is a triple consisting
of a set ofstatesor processes$’r, a set ofatomic actionsdct and a family of transition
relations{ % C Pr x Pr|a € Act}. We refer to processes in general pyy, . ..
Whenevefp, q) € % we writep % ¢. If there is nog such thaty % ¢ we writep 2 .
The transitive closur¢ = |u € Act™} of the transition relations is defined far € Act™

byp X qif p % p' andp’ = ¢ for somey'.

In particular we look at the transition graphs defined by the class of guarded recursive

normed BPA (Basic Process Algebra) processes (see e.g. [BBK87a,BK88]).

2.2.1 Syntax and semantics

In the rest of this chapter and in Chapters 4 t6.6, G . .. will be used to denote BPA

process expressions. These are given by the abstract syntax
E:::a|X|E1—|—E2|E1-E2

Herea ranges over a set of atomic actioAst, and X over a family of variables. The
operator+ is nondeterministic choice whilg, - E; is the sequential composition éf;
andE, —we usually omitthe-'. A BPA process is defined by a finite system of recursive

process equations
A={X; ¥ E|1<i<k}

where theX; are distinct, and the&; are BPA expressions with free variables in
Var = {Xy,...,X,,}. One variable (generally;) is singled out as theoot. We

shall occasionally writé\; RA, for binary relations?; this should be read as stating that

26 Chapter 2. Background

the roots ofA; andA, are related by?. Often we shall only look at relations within the
transition graph for a singla. We can do so without loss of generality, since we can let
A be the disjoint union of th&; andA, that we are comparing (with suitable renamings
of variables, if required); its transition graph is then the disjoint union of thosé\for
andA,.

We restrict our attention tguardedsystems of recursive equations.

Definition 2.2.2 A BPA expression iguardedf every variable occurrence is within the
scope of an atomic action. The systam= {X; & E, | 1 < i < k} is guarded if allE;

are forl < <k.

Here and in Chapters 4 to 6 we u3eY,... to range over variables iinar and
Greek lettersy, (3, . . . to range over elements inar*. In particular,e denotes the empty

variable sequence.

Definition 2.2.3 Any system of process equatiahglefines a labelled transition graph.

The transition relations are given as the least relations satisfying the following rules:

ES FE F&F
E+F3%FE E+F&%F
ESE o
m a— € QEACt
ESFE def Eii”
~&ap Lo Pea EF & F

Finally, the important extra restriction on a familyis normedness
Definition 2.2.4 Thenormof a BPA expressiof is defined as
|E| = min{length(w) | E = e,w € Act™}

A system of defining equationsis normedif for any variableX € Var | X| < oc.

The maximal norm of any variable ih is ma = max{|X|| X € Var}.

2.2. Normed recursive BPA processes 27

An important property of the norm is that it is additive under sequential composition
and for nondeterministic choice corresponds to taking the minimum. This reduces the
calculation of norms of variables in a system of process equation to solving systems of

eqguations over the natural numbers.

Proposition 2.2.1 For BPA expression&, F' we havg EF| = |E|+ |F|and|E+ F| =
min(|E], |F']).

PROOE Let wy be any shortest string with the property tifat% ¢ and letwy be any
shortest string with the property that=5 . Clearly,wpwy is a shortest string such
that EF % . Also it is obvious that the shorter af; andwy is the shortest string

with the property thall + F % e. O

As from Section 2.2.4 we restrict our attention to the class of BPA processes in GNF,
whose states are all membersioir*. The following definitions and results are only

stated for states that are indeed strings of variables.

Definition 2.2.5 The languagd.(«) accepted by € Var* is defined by
L(a) = {w € Act™ | a = €}

We say thatv and are language equivaleiiff L(«) = L(f).

Definition 2.2.6 The set of trace$'r(«) for o € Var* is given by
Tr(a) ={w € Act™ |a =}

We say thatv and are trace equivalenf Tr(«) = Tr(3).

Example 2.2.1 Consider the system\ = {X & ¢ + bXY; Y ¥ ¢}. Here|X| =

Y| = 1, soA is normed. By the transition rules in Definition 2.2X3 generates the
transition graph in Figure 2—-1. We have tliat") = {¢} wheread.(X) = {b"ac™ | n >
1} andTr(Y) = {c} butTr(X) = {b" |n > 1} U {b"ac/ | j < n,n > 1}. 0

28 Chapter 2. Background

Figure 2—1: Transition graph folX & ¢ + 6XY; vV % ¢ (Example 1)

Example 2.2.2 The system of equations = {X ¥ oX; vV ¥ ¢+ aX} is not

normed, since there is no such that\ = e. O

Thus, because of the normedness restriction, normed BPA does not include all regular
processes. Nevertheless, it is a very rich family with processes that can have infinitely
many states even after quotienting by any behavioural equivalence in the linear/branching
time hierarchy.

For instance, in Example 2.2.1 above, for any two distinct stateand o, we
haveTr(«;) # Tr(as), SO no two distinct states are relateddiyy equivalence in the
linear/branching time hierarchy, since they are not even trace equivalent. Thus, the
transition graph is left unchanged with infinitely many states after quotienting by any

such equivalence.

2.2.2 Bisimulation equivalence on BPA processes

In Chapter 4 we prove that bisimulation equivalence [Par81,Mil89] over normed BPA

processes is decidable.

Definition 2.2.7 A relation R between processes isasimulationif whenevepRq then

for eacha € Act

1.p5p =3¢ : ¢ ¢ withp'Rg'

2.2. Normed recursive BPA processes 29

2. g5 q¢ =3 :pSp withp'Rg

We definev by ~ = {(p, q) | pRq for some bisimulatioi}. If p ~ ¢, p andq are said

to bebisimulation equivalenor bisimilar.
Proposition 2.2.2 [BK88] ~ is a congruence relation w.r.t- and-

Proposition 2.2.3 For any normed system\, o« ~ [implies thatL(a) = L(5), and
thus alsga| = |3].

Example 2.2.3 An example of bisimilar BPA process expressions is giverv[ﬁydéf

aYX +0,Y ¥ X, A aC +b,C € bAAY. We have thal ~ A, since the relation
{(X™ A") |n > 0}U{(Y X", CA™) |n > 0} is a bisimulation (wher&™ here denotes

n successivé’s,V € Var). O

2.2.3 Axiomatizations of bisimulation equivalence

In the usual presentation of BPA (see e.g. [BK88]), much attention is usually devoted to
the so-called BPA laws — presented here in Table 2—1. The BPA laws are easily shown to

be sound w.r.t. bisimilarity irrespective of any restrictions on the processes involved.

Proposition 2.2.4 [BK88] For any BPA expressionk,, £, and E5; we have thatt); +
Ey ~ Ey+ Ey, (E1 + Ey) + E3 ~ Ey + (Ey + E3), By + Ey ~ Ey, (BEy + Ey)E;5 ~
E\E3 + EsE; and (ElEQ)Eg ~ F (E2E3)

The BPA laws do not form a complete axiomatization of BPA; some notion of fixed-
point induction must be added in order to prove equations involving recursively defined
processes. In Section 4.3 we show how such an induction principle arises from the
tableau method used to decide strong bisimilarity and use it together with an encoding of
the BPA laws and congruence laws of Proposition 2.2.2 to give an equational theory for

normed BPA processes 33aGNF (see below).

!In fact the BPA laws are sound fatl equivalences in the linear/branching hierarchy [vG90al].

30 Chapter 2. Background

B\ + Ey=FEy, + E; Al
(Ey + E3) + E3 = E1 + (Ey + Ej3) A2
E,+E, = F, A3
(Ey + Ey)E3 = E\F3 + FEyF3 A4
(E\Ey)Es = Ey(EyFE3) A5

Table 2—-1: The BPA laws

2.2.4 Normed recursive BPA processes in Greibach Normal Form

Any systemA of guarded BPA equations has a unique solution up to bisimulation
equivalence [BK84]. Moreover, in [BBK87a] it is shown that any such system can be
effectively presented in what we here c@lteibach Normal Form In this thesis we

restrict our attention to normed BPA processes giveir@GNF.

Definition 2.2.8 A system of BPA equations is said to be inGreibach Normal Form

(GNF)if all equations are of the form

n;
{Xl déf ZCLZ']'O[Z']' | 1 S 1 S m}
j=1

If for eachi, j the variable sequence; haslength(c;;) < k, A is said to be ink-GNF.

The normal form is called Greibach Normal Form by analogy with context-free
grammars (without the empty production) in Greibach Normal Form (see e.g. [HU79]).
There is an obvious correspondence with grammars in GNF: process variables correspond
to non-terminals, the root is the start symbol, actions correspond to terminals, and each

equationX; def Y7Ly agoy; can be viewed as the family of productiofs; — a;;a;;(1 <

2.2. Normed recursive BPA processes 31

j < n;}. The notion of normedness says that the grammar must not have useless
productions. It is well-known that any context-free language (without the empty string)
is generated by a grammar3rGNF [HU79]. One should also notice that for systems in
GNF, a transition step in the operational semantics of Definition 2.2.3 corresponds to a

leftmost derivation step in the corresponding grammar.

Theorem 2.2.1[BBK87a] If A is a guarded system of BPA equations, we can effectively
find a system\’ in 3-GNF such that\’ ~ A. Moreover, when\ is normed, so ig\’.

PROOF An effective procedure for rewriting\ into 3-GNF consists in first rewriting

A into GNF and then rewriting the resulting system iBt&NF. (We assume that the
right-distributive law A4 (Figure 2—-1) has been applied (from left to right) as far as
possible.)

For the rewriting into GNF, we first replace all internal occurrences of atomic actions
by equations. Thus, for each atomic actiooccurring in the definitions introduce a new
variable X,, replace as many occurrencesaods possible while keeping the resulting
system guarded and add the equaﬂQnd:ef ato A.

We then remove all unresolved sums from the outside inudresolved suns a sum
F + G occurring in an expression of the forB(F' + G). We now repeat the following

loop until there are no unresolved sums left:

e For each outermost unresolved sutmt G introduce a new variabl&' . ; and
replace all occurrences é6f+ G by Xz, . Add the equatioX 7 ¢ “F+Gto
A. (This may make the resulting system unguarded.) Call the equations added in

traversal of the loop theth stratum(letting the originalA be stratun).

After all unresolved sums have been removed, all equations in the resulting system are

of the form

XZ- d:ef Za,-jaij + Z (0 %3]
J l

32 Chapter 2. Background

We then make all unguarded summands guarded. Notice that all variables introduced
in stratum: have definitions using only variables in stratai. We replace unguarded
variables by their definitions, using the following loop. It is easy to see that when we

reach stratum all equations in strata i are now guarded.

e For each successive stratum do the following: For every equation in the stratum,
for any unguarded summan€, o), replaceX;, by its definition}",; a;;c;; and

use the right-distributive law (A4) to obtain the new summanya;;a;;ay,.

We now have a system of process equations-BNF for somek. We can then
rewrite the system int8-GNF in the following way. We introduce a new ‘pair variable’
Uxy for every occurring variable paiX'Y’, adding the equatiofiyy © XY. We then
replace every occurrence afY by U in each equation, going from left to right. For
each of the new unguarded equatidns, © XY we use the same trick as abovs:
is replaced by its definition and A4 is applied. This may have introduced new instances
of the variable pairs, which we then have to replace by appropriate ‘pair variables’. The
resulting system is now ilﬁg}GNF. The whole procedure is repeated until we reach
3-GNF.

Since all steps used in the algorithm described here either simply introduce new
variables that rename expressions or use the BPA laws, we see that bisimilarity and thus

normedness must be preserved, so cleafly A. O

Example 2.2.4 Let us rewrite the system:

= aV +ZX)+aXb
= aZ(Y +bXXX)+aZ

def
7 £ a

in 3-GNF.

2.2. Normed recursive BPA processes

After removing internal occurrences of actions, it becomes

X ¥ 4y +2X)+aXX,
Y ¥ aZ(Y + X, XXX) +aZ
7z “ g

X, € b

We then remove unresolved sums, getting

Y uXyizx +aXX,
Y aZXyix,xxx +aZ
z 4
X, g
Xyizy ¥ V42X

Xy yx, xxx = Y+ X, XXX

After we have got rid of all unguarded sums, we have

o Xyisx +aXX,
W ZXyix,xxx +aZ
z g4
X, € b
Xyvizx = aZXyyx,xxx +aZ+aX
Xyix,xxx = aZXyix,xxx +aZ +bXXX

def

This system is inl-GNF. We introducé/xy = XX andUxx, o X, X and get

X ¥ oXyisx +aXX,

33

34

VA

Xy

Xyyzx
Xyix,xxx
UXX

Uxx,

which then becomes

Xy

Xyizx

Xy ix, XXX
Uxx

Uxx,

finally arriving atA’, which is

X
Xytzx

Xy yx, xxx

Chapter 2.

aZXyix,xxx +aZ

a

b

aZXyix,xxx +aZ +aX
aZXyix,xxx +aZ +bXXX
XX

XpX

aXyizx +aXX,
aZXyix,xxx +aZ

a

b

aZXyyix,xxx +aZ +aX
aZXyix,xxx +aZ +bUX
aX +aX X X

bX

aXyizx +aXX,
aZXyix,xxx +aZ

a

b

aZXyix,xxx +aZ +aX

(IZXy+XbXXX +aZ + bU X

Background

2.2. Normed recursive BPA processes 35

UXX = (IX+(IUXXbX

Uxx, & bX

Because of the correspondence with context-free grammars, we immediately see that
language equivalence (or completed trace equivalence) is undecidable for normed BPA
processes. This follows directly from the result for context-free grammars (see e.g.

[HU79]). In our terminology this result reads as follows:

Theorem 2.2.2 For any normed systerh of BPA process equations in GNF it is unde-

cidable whethel.(«) = L(3) for o, 5 € Var*.
An easily established consequence is that trace equivalence is undecidable.

Theorem 2.2.3 For any normed systerh of BPA process equations in GNF it is unde-

cidable whethefl'r(«) = T'r(p) for a, 3 € Var*.

PROOF We can reduce language equivalence to trace equivalence, since wie(have
L(p) iff Tr(ay/) = Tr(B+/) where,/ is a new action (this is an observation due to

Lambert Meertens). O

An important advantage of using GNF is that the states in the transition graph for a
process given in this way are elementsiair*. Moreover, the restriction to variable
sequences of length at m@sgjuarantees limited growth of these sequences under single
transitions. When applying a defining equation to the leftmost variable in a strihg

length of the derivative increases by at mbst

Proposition 2.2.5 Suppose&\ is in 3-GNF. Then, for anyy € Var*, whenevern % o

we havdength(a') < length(a) + 1.

36 Chapter 2. Background

PROOF. Supposer = X;a. Thena % o' must be due td\; % o”. This in turn is due

def

to the defining equatio; = Y7, a;;a;; having a summanaq” with length(a”) < 2.

Sinced’ = o', the result follows. O

Finally, the following simple relationship between lengths and norms for variable

sequences becomes particularly useful in Chapter 3.

Proposition 2.2.6 For a € Var* length(a) < |a| and|a| < malength(a).

2.2.5 Self-bisimulations

For finite-state processes a naive decision procedure for the bisimulation ppoblem
consists in enumerating all binary relations over the state space and determining if there
is a relation among them which is a bisimulation contairiing;). But since in general
bisimulations over normed BPA processes may be infinite - for instance, the least non-
empty bisimulation for the transition graph in Example 2.2.1 is the identity - a decision
procedure for the bisimulation problem for normed BPA cannot rely on this. However,
whenevera ~ (3, our tableau system in Chapter 4 will construcsedf-bisimulation

a finite relationk C Var* x Var* whose closure under congruence w.r.t. sequential
composition is a bisimulation containiri@, 3). The notion of self-bisimulation was
introduced by Didier Caucal in [Cau90a] (originally published as [Cau88]). Here the

notion of a least congruence is essential.

Definition 2.2.9 For any binary relationk onV ar*, 2 is the least precongruence w.r.t.
sequential composition that contaiis > the symmetric closure of}z and o the
reflexive and transitive closure Oéf? and thus the least congruence w.r.t. sequential

composition containingy.

A self-bisimulation is then simply a bisimulation up to congruence w.r.t. sequential

composition.

2.2. Normed recursive BPA processes 37

Definition 2.2.10 A relation R C Var* x Var* is calleda self-bisimulationff « R

implies that
1. % o impliesg 2 3 for somes’ with o o o
2. 5% ¢ impliesa % o/ for somes’ with o/ s+ 7'

The following lemma, due to Didier Caucal, shows that a self-bisimulation is a finite

witness for bisimilarity:
Lemma 2.2.1 [Cau90al]lf R is self-bisimilar then?* C ~.

PROOFE B = {(o,3) | « e (3} is a bisimulation. Suppose e 3 and thato % o’
We must show that there is# such that? % 5" anda/ o 3. We know thaty o I6;

holds because — k3 for somek. We now proceed by induction in
k = 0 : Trivial, for thena = .

k =1: Eithera 2 gorp 2 a. Assume wlog thatv 2 B. Then, by the definition of a
least precongruence, there existag) € R suchthaty = dayy ands = 65,7y.
If § £ €, 0> o isduetddayy— ¢y, SO our matching transitiondg,y-> &5y,
clearly ¢’ agy o §Boy. f 6 =€, a2 ais ayy = a7y, due toay = «;. Since
(v, Bo) € R, the latter can be matched By % 3, with o, e (1, SO we get the

match3yy % (1, and clearlyo, y o By,

Step, assuming far > 1: Then there is a s.t. « 7 and~y N k3. By induction
hypothesis we know that there is/as.t. v =% +' anda/ o v andagd' s.t. 5% 3
with ~/ e (4'. But then by transitivityy’ o g

The other half of the proof, fos % 3, is identical. O

2We reproduce the proof here, since the underlying idea becomes important in Chapter 5, when dealing

with the analogous notion for branching bisimulations.

38 Chapter 2. Background
Corollary 2.2.1 « ~ g iff there is a self-bisimulatio® such thainR(3.

ProOF Clearly, by Proposition 2.2.2; is a self-bisimulation. Conversely, by the above

lemma, ifR is a self-bisimulation then?* is a bisimulation. O

2.2.6 The ‘split’ lemma

Finally, the following lemma due to [Cau88] is essential in the tableau system of Chapter

4, since it provides us with a way of removing suffixes of bisimilar BPA expressions.
Lemma 2.2.2 For any normedA andaq, as, 8 € Var*, if a5 ~ azf thena; ~ as.

PROOF Supposey; 3 ~ az3. ThenR = {(ay, as) | oy 5 ~ ay} is a bisimulation. We
have by Proposition 2.2.1 that;| = |as|. So«a; = € iff ay = e. Otherwise, we have
a3 %y iff ap % o andn; = o 3. And the matching move, 3 = 1, with n; ~ 1,

must be due tew, % o), with 7, = a8 so (o}, o) € R. The other half of the proof is

entirely similar. O

Note that the proof relies heavily on normedness; a simple counterexample for the
unnormed case is the system of equatigns < o X,V ¥ ¢} asYY X ~ VX, but
clearlyYY £ Y.

Chapter 3

A modal characterization of Sn.S

In this chapter we show that a modal mu-calculus that incorporates a notion of counting
descendants characterizes the Rabin recognizable tree languages of [Rab69] up to an
equivalence of parental information.

In Section 3.1 we outline the syntax and semanticgdf and the fixed-point calculus,
here referred to aS M L . We then show in Section 3.2 th&t.S is at least as expressive
asC'M L by a translation of M L into SnS . Finally, in Section 3.3 we use Rabin’s
tree theorem to establish the result by showing how to encode the acceptance condition
of a Rabin automaton i’ M/ L such that a set of trees equivalent to that recognized by
the automaton satisfies the acceptance encoding formula. Our notion of equivalence is a
bisimulation on node-labelled trees resembling the observational equivalence of [Mil89]

and the tree equivalence of [BCG88].

3.1 Syntax and semantics ofn.S and CM L

3.1.1 SnS

The second order monadic theoryro$uccessorsinS , has its set of terms given by the

abstract syntax

39

40 Chapter 3. A modal characterization$it.S

T:o=x|e|Ti

wherei € {0,...,n—1} andz ranges over a set of zero-order (element) variables,.

Its formulae are given by the abstract syntax
AF:I:T1:T2|T1<T2|T€X|T€H

for atomic formulae. Her& ranges over a set of first-order (set) variablésy; and P,

ranges over a finite set of atomic predicates. For composite formulae the syntax is
Fu=AF |,V Fy | -F |Vz.F | VX.F

SnS -structures are of the forrt{0,...,n — 1}, s0,..., 801, <, P1,..., Py). Here
So, ..., Sn_1 are the successor functiongw) = wi. < is the ancestral ordering on
{0,...,n —1}" (Definition 2.1.2) and?,, . . ., P, are subsets of0,...,n — 1}".

The semantics ofnS is defined relative to two variable assigments, Varg —

The semantics of afn.S -formula F' is defined by a relatiotM |=,, F where M is
ansSnS -structure and andp are zero- and first-order variable assigments, respectively.

The clauses are:

M):mpTl = T2 < [[Tl]]a = [[Tg]]a

Lo{w/z} is the zero-order assignment that maps the nodev and otherwise agrees with Similarly,

p{S/ X} is the first-order assignment that maygo the setS and otherwise agrees with

3.1. Syntax and semantics .S andC M L 41

ME, T <T, <= [Ti]o<[L]o
Mg, TeX < [T]oepX)
Mg, TeP < [IoeP
Mg, ~F <= notMp, F
Mg, FiVE < Mg, Fo Mg F
Mg, Vo.F = forallwe{0,....n— 1} : ME 0 F
ME, VX.F <« forall§ e 20" Mo o F

When the atomic predicates are explicitly chosen ambBng. ., P,,,, we shall refer

to the language aSnSp, _p,,.

3.1.2 CML

We now introduce a modal logi@,/M L , for describing tree propertiesCM L is a
version of the propositional mu-calculus of [Koz83] with label &&t...,n — 1}. The

syntax of its formulae is given by

Fu=P|FVF|-F|Z|vZF|®F

wherei € {0,...,n — 1}, P ranges over a set of atomic predicates{én ..,n — 1}"

andZ ranges over a set of recursion variablés;-,;;,. We assume that all recursion
variables are within the scope of an even number of negations; this will ensure the
well-definedness of the semantics(ol/ L given below.

We interpretC' M L in the Sn.S -structures, only we now think of the elements of a
structure as possible worlds and theas accessibility relations between possible worlds.
The intended semantics of tkie modality inC M L is that() F' holds if F' holds in the
ith successor-world.

The semantic functiof || is seen relative to an assignment of the recursion variables,

42 Chapter 3. A modal characterization$it.S

M
15[, = P
M M M
I1FvV B, = (B, UlE,
M * M
=F = {0,...,n =13\ ([[FA][)")

IOFI," = {w|wie|F|,"}
1ZI," = »(2)

WZF|M = ULS|S CIFINz}

When the atomic predicates are explicitly chosen from am@ng. ., P,,, we shall
refer to the mu-calculus &M Lp, . p,,.

Note that all ‘superfluous’ logical operators, including® (exclusive or) angi.X. F
(least fixed point), are easily derived. For instance, for the fornf((l&) with free
recursion variableZ we have the translatiénuZ.F = —vZ.—~(F(-Z/Z)). Similarly,
we can define all temporal operators@i’'L [CE81]. As an exampleyG is given by
VG.F = vZ.F A \'Z) (@ Z whereZ is a variable not occuring free iR. We shall feel

free to use all these derived operators as convenient abbreviations.

3.2 SnS'is atleast as expressive aSM L

Labelled trees and th&nS structures are of course one and the same thing. The
only thing we need to observe is that &mS -structure is an infiniten-ary tree

with nodes labelled by the sets of predicates that they satisfy. Thus the structure
M=({0,....n— 1} s0,...,8,1,<,P1,..., Py,) becomeg : {0,...,n—1}" —
2{PrPmb with Py € ty(w) iff w € P Similarly, a labelled tree labelled byA =

{ay ...,an} is the structureM; = ({0,...,n—1}",s0,...,80-1,<, Pays..., Ps.)

with w € P,; iff t(w) = a;.

’HereF(=Z/Z) denotes the formul&'(Z) with all free occurrences df replaced by-Z.

3.2. SnS is at least as expressive @3/ L 43

We can therefore talk about the tree languages definalde thandC' M L . A tree
language. is Sn.S -definable iff there is a¥n.S -formula whose models are the trees in
L:

Definition 3.2.1 An A-labelled tree languagé is SnS -definable if there is abn.S -
formula F' with one free first order variable;, and closed w.r.t. second-order variables

such that

L={t] Mt):@{e/x},@F(x)}

The single free first order variable is to denote the root of the trelRutting all this

slightly differently (with a slight abuse of notation), we can define

| F (@)l < {t| Mt):@{e/x},@F(x)}

Then L is SnS -definable just in case there is a formulgz) in SnS such that
L= |[|F(z)]].
We say thatl is C M L -definable if there is a formula i6'M L which is true in the

roots of the trees i, and none others:

Definition 3.2.2 An A-labelled tree languagé is C'M L -definable if there is a closed
CML -formulaF such that

L={t|ee|FI;"}
Again, putting all this slightly differently, we can define
IF| = e |e € |F|MY

Since the metalanguage used in defining the semant€dbf is not far fromSn.S,

it is easy to see that any tree language definableNfL is also definable ibnsS .

3The assignmentis inessential, sincé' is closed, and will henceforth be omitted for closed formulae.

44 Chapter 3. A modal characterization$it.S

Lemma 3.2.1 For any closed formul&’ in CM Lp,
SnSp,...p, With [|F|| = [|©(F)]].

p,, there is a formula®(F) in

.....

.....

PrROOF We exhibit a direct translatio® from C' M L p, p,, that gives us

..........

a formula ofSnSp, . p, with one free variable :

) = z€PR
) = O(F)ANO(F)
) = —O(F)
O(@F) = (O(F))ri/x]
) = z€Yy
) = ISz e SA(VyyeS=
(O(F)[y/x][S/Yz]) AVT. (V2.2 € T = (O(F))[2/z][T/Yz] = T C 95)

([zi/x] denotes a uniform substitution af for free occurrences of — similarly for

the other substitutions.) Note that atomic predicates are carried over and that recursion
variables become set variables. The translation of fixed-points is just a formulation of
Tarski’s fixed-point induction principle. A straightforward induction in the structure of
C'M L -formulae shows that this translation gives a formula with one free variable with
IE] = l[eF)]]. O

SinceC' M L by the above lemma can be embeddeghiy , since the latteris decidable
[Rab69] and since the translation is effective we also see@Wdt. is decidable(cf.
[ES84]).

3.3 CMLis as expressive asnS modulo ~ 4

We now establish th&i M L is as expressive &85 up to an ‘observational’ equivalence

of tree languages. We here use the tree theorem of [Rab69].

3.3. CML is as expressive &S modulo~ 4 45

Theorem 3.3.1[Rab69]A tree language i$nS -definable iff it is Rabin recognizable
in that

e For any formulaF in SnSp, . p,there exists a Rabin automato# over the

alphabet2” = such that ,, admits an accepting run od iff M=F.

e For any Rabin automatont over the alphabetd = {a,...,a,} there exists a
formula F4 in SnSp,
A.

p,,, such thatM,|=F, iff t admits an accepting run on

.....

In what follows, the first half of Theorem 3.3.1 will be essential. For a gikeof
,,,,, p,,We express the Rabin acceptance condition of the corresponding automaton
Arin CML . The acceptance condition assumes a knowledge of the states assigned to
a node. However, we do not have the state predicates available in our structures, only
labelling predicates for the automaton alphateso we must find a way of overcoming

this. We do so by coding the product of a treand its runr on Ar, t'r € T4, 5, as a

tree where the states assumed in the run can be recovered from the position of the nodes

in the encoding using th@) -operator. In what follows we assume wlog that 2.

Definition 3.3.1 A computation history(h,S) for the Rabin automatond =
(Q,q0,{ > | a € A},Q) is any functioms : S — A and its domainS C ({0,1}*Q)*

which is a least set satisfying

q € S andh(qy) = a forsomea € {a|3¢,q¢" : g0 > (¢',q")}

s5q000q0 eSS
sg€ S =395 (q1,q): T andh(sq) = a
sq000glg, € S

The definition gives an obvious isomorphigirbetween the tree/run combinations in
T3, o and the set of computation histories, so we shall feel free to speak of a computation
history associated with a given tree and a run on it. Also, given a higtoly) it is easy

to find the unique rum,) : {0,1}" — @ to which it corresponds. By a slight abuse of

46 Chapter 3. A modal characterization$it.S

notation, we letd (w) denote the node in the domain Hif(¢'r) that corresponds to the
nodew in ¢ andr.

We now code all computation histories df as full binary trees labelled byt U
{7}, wherer is a dummy label which signifies that the node in the encoding does not
correspond to a node in the original computation history. The coding consists in taking

the homomorphic extensiaii* of the node-coding given by

K(g) = 101 1<i<|Q)|
Kw) = w we{0,1}

and defining the associated labelliAg (h, S) : {0,1}" — Au {7} by

a if w= K*(s)forsomes € Swith h(s) =a
K*(h,S)(w) =

T otherwise

The state assumed in a node is thus reflected in the path to its descendants in the
coding. Using this fact we can now define the state predicates as forQula¢ C M L ,
assuming a predicat®, for everya € AU {7}. A node in acodedcomputation history
satisfies the state predicate form@lg, exactly if the run corresponding to the history is

labelled byg; at the corresponding node:

Lemma 3.3.1 For any treet and associated computation histqry, S) any nodew in
the runr, s satisfiesw € ||Q, || iff K*(H(w)) € ||Qq,|I*'** ¢ where theQ; are

C M L -formulae given by

Qg = ~Pr A\ Ao {0)(0)(0){1)(0) (@ (1)(0) (1) (=Py) (3.1)

G EQ

where(i\F & @ (F A P,) A Njzi @D VG.P; and (i)’ is this iterated; times.

PROOF. The state information im, sy is contained in the shape of the path between
successive nodes not labelledhySuppose for a node in ¢t we havel(w) = a and that
rh,sy(w) = g;, r(w0) = g3, andr(wl) = g;, with ¢t(w0) = ao andt(wl) = a;. Then for
somesq; € S we haveh(sg;) = a andsq;000¢;0g;,, s¢;000¢;1g;, € S with

3.3. CM L is as expressive &nS modulo~ 4 47

h(sq;000¢;,0q;,) = ao

h(sq;000¢;1q;,) = a;

In the coded computation histork*(s¢;000¢;0¢;,) = K*(sq;)00010°1010%1 and
K*(5;000¢,0¢;,) = K*(s¢;)00010°111071 , so we get

K*(h,S)(sq;000¢;0q;,) = ao

K*(h,S)(sq;000¢;1¢q;,) = ay

Thus we can find the state assumeduirby recovering the path to the next nodes
not labelled byr. But we must also describe that all nodes on the path between two
non-dummy nodes and all subtrees thereof are labelled We express this by letting
(i) F denote the formul&) (F'A P;) A\ @ VG.P- and letting(i)’ denote this iterated

j times, and we now arrive at (3.1). O

That the coded computation history contains the same ancestral information as the
original tree w.r.t. non=labels will be made precise using the equivalenggDefinition
2.1.5).

We also need to express a next-time operator w.r.t. coded histarids, which is
to denote that théth proper descendant has propefty (By a proper descendarif a
nodes we mean a descendant not labelledrguch that all nodes between it andre
labelled byr, see Definition 2.1.4). This only makes sense in non-dummy nodes, so we

get

X FE-p, A/ OO0O0QOO"OO®O®"® (FA-P)

Qky Tky €Q

48 Chapter 3. A modal characterization$it.S

The C'T L branching time operators can now be redefined wX;t/’ so we get e.g.
VG.P Y vZPAN_,X;.Z.

We can now describe the behaviour of a Rabin automation by a CML formula.

Theorem 3.3.2For any Rabin automatod over A = {P,,..., P, } there is a
p.,..p.-formula Acc 4 such that for any tree there is a corresponding com-

K(h.5) iff A acceptst.

.....

putation history(h, S) such thatk™*(qy) € ||Acc]

PROOE Rabin acceptance is formulated as a conjunction of@d L formulae inter-

preted overd U {7}-labelled trees, namely

def
Aces = Acey N Acey

where Acc, describes that thed U {7}-labelled tree indeed is a coded computation
history andAcc, describes the Rabin acceptance condition itself.
Acc, includes a description of the transition relation4dfnd the fact thai(* (¢,) = 11,

so the coding places the root of a tree/run combination at the hiode

Ace; ¥ P.A@® (VG.P)AQD © (VG.Py) A

@@(quAVZ-(EBQq/\ @ (Qq/\PaD /I\Xi(qu/\Z)))

qeq (9,a,q1,g2) €A i=0

Accy is given as follows:

Acey, @ (VF.(wZ. \/ QqAVF.Z))A
qEUUi

(A A\ ~EFFvZ(\ QyAIF.(QqA Z))))

U; QqeU; pEL;

The first conjunct inAcc, states that on every path, some state inlfheomponent

of an acceptance pair occurs infinitely often. The second conjunct states that for no

3.3. CML is as expressive &S modulo~ 4 49

acceptance pair is there a path such that both a state ib-tieenponent and a state in

the U-component occur infinitely often. O

We now formally state the correspondence between trees and coded computation
histories, using the notion of-bisimulation (Definition 2.1.5). The root of a tree is
A-bisimilar to the first node not labelled byin the coded computation history, namely
the nodel 1:

Theorem 3.3.3 For any A-labelled treet and any of its corresponding coded computa-

tion historiesK*(H (¢'r)) wherer is some run of we have that
€ ~a (g

PROOE It is enough to show that the set of pairs of corresponding proper descendants of

€ and11 g (ry), I.€. the least seb such that

D = Ae, g}tV

/

{(w'y,w"y) | (', w") € DI (w'y, w"s).w' = (w'y, w's) A w” = (w"y,w"9)} U

A
{(w'y,w"y) | A(w',w") € DI (w'y, w"y).w' = (w'y, w's) A w” = (w"y,w"9)}

is an A-bisimulation. So take anyw';,w”;) € D. By the isomorphisnH and the
definition of K* we have that(w) = K*(H(t'r))(K*(H(w))); it is immediately seen

that the pairs of proper descendants also belong.to O
If we extend the definition of, to tree languages over alphabets includihgs

I I def Vt € Llﬂt’ € Lot ~4 t!
1 A Ly <
\i € LQElt & Ll.tl >4 t

we get from Theorems 3.3.2 and 3.3.3 that

Corollary 3.3.1 If Lis SnSPe,,...Pa, -definable, there exists(é’lMLpal,___7pam7pr-definable
languagel’ such thatl ~, L'.

50 Chapter 3. A modal characterization$it.S

Those feeling uneasy about the extra labelan think of K* as defining gartial
labelling function; the labelling predicafe. should then be seen as a definedness pred-

icate, and~ 4 should therefore be seen as a ‘Kleene equality’ on such partially labelled

trees.

Chapter 4

Deciding bisimilarity for normed BPA

In [BBK87b] (and [BBK87a]) Baeten, Bergstra, and Klop prove the remarkable result
that bisimulation equivalence decidablefor normed BPA processes lRGNF. How-

ever, their decidability proof relies on isolating a possibly complex periodicity from the
transition graphs of these processes. An alternative, more elegant, proof utilizing rewrite

techniques is presented by Caucal [Cau90a] (originally published as [Cau88]).

In this chapter we provide a simple and much more direct proof of this decidability
result using dableaudecision method involving goal-directed rules, a technique closely
related to that introduced by Korenjak and Hopcroft in [KH66] for deciding language
equivalence for simple grammars. The technique is also related to the tableau systems
for local model checking in the modal mu-calculus over finite and infinite state transition
systems [SW89,BS90]. A by-product of the tableau system given is a sound and complete

equational theory for normed BPA.

In Section 4.1 we outline the existing proofs of the decidability result. In Section 4.2
we give the tableau decision method and in Section 4.3 we present the resulting sound
and complete equational theory for normed BPA. Finally, in Section 4.4 we relate our
tableau system to the work of [Cau90a] by showing how one can extract what Caucal

calles a fundamental relation via a successful tableau and a so-called auxiliary tableau.

51

52 Chapter 4. Deciding bisimilarity for normed BPA

4.1 EXxisting approaches

4.1.1 Baeten, Bergstra, and Klop’s proof

The idea behind the proof in [BBK87b] is to view the transition graph of a normed BPA
process as a tree and to show that this tree is regular.

The transition graph for a process given by a system of equafions3-GNF with
variablesVar = {Xy,...,X,} is unfolded onto a tree whose node seligr* (cf.
Definition 2.1.1). Here, however, the successors of a nodee X w, . .., X, w.

A translationis any function®,, defined on nodes b®,,(v) = vw and extended to
sets in the obvious way. Two sets of nodéandll are said to bé&ranslation equivalent
if there are translations,,, ©,, and a set of nodds such thav,(U) =V, 0, (V) = W.

Translation equivalence thus means that two node sets ‘have the same shape’.

Example 4.1.1 The tree forVar = {X,Y} is depicted in Figure 4-1. The sets
{YX, XYX,YYX}and{YY, XYY, YYY} are translation equivalent because of the
setU = {Y, XY,YY} and the translation® y and©y . |

A distance functionl(v, w) is defined on pairs of nodes as the least number of edges
betweerny andw. v andw are said to béar apartif d(v, w) > 3. For instance, the nodes
XXX andX XY in Figure 4-1 are far apart sindéX X X, XYYY) = 6.

It is then shown how one can decompose a transition graph into slices under the
above metric such that the tree of slices yields a regular tree. The decomposition is made
relative to some chosen constantalled theamplitudeof the decomposition. Theth
slice in the decomposition contains the nodesith nd < |a| < (n + 1)d together with
those nodes that can be reached in one transition from anettd nd < |o| < (n+1)d.

(For an example, see Figure 4-2).

Baeten, Bergstra and Klop then show that there are only finitely many connected

fragments up to translation equivalence, and that no such fragment can be decomposed

into two fragments that are far apart - this is the desired regular decomposition.

4.1. Existing approaches 53

Figure 4-1: Tree with nodes iV ar* whereVar = {X,Y}. The node sets enclosed in

dashed rectangles are translation equivalent.

Deciding~ then consists in checking for the absence of bisimulation errors between
transition graphs. Aisimulation errorin a relationR between transition graplis and
G, is a triple of nodesy, o’ € Gy, 8 € G, and a transitionr % o/ in G; such that there is
nos =% A'in G, with o/ R3'.

Because of the periodicity exhibited by the above regular decomposition, this test can

always be done in finite time:

Consider two systems of process equatidnsand A, in 3-GNF. A partial bisim-
ulation up to leveln between their transition graphs is a binary relation between nodes
with norms< n such that it contains no bisimulation errors. Such a partial bisimulation
R is calledd-sufficientwith respect to decompositions of amplitudé for all pairs of

slices(3;, 3,) related byR (meaning that for some € %, § € X5, «R(3) one can find

54 Chapter 4. Deciding bisimilarity for normed BPA

Level

Figure 4-2: The transition graph fof X ©oa oy + fXY; Yy ©oex 4+ az;
Z ¥ gx + eXZ}. Nodes at leveh have normn. The dashed area contains slice

1 of a decomposition with amplitude

translation equivalent copi¢®,’, ;') at least one slice higher up such that the restriction
of Rto (2, x ¥,) coincides with the restriction @k to (X, x 3,').

It is then shown that one now only has to determine a I&¥eh, A,, d) and search
through all the finitely many binary relations between the nodes in the transition graphs
above levelV (A, Ay, d). Ay ~ A, iff one finds a partial bisimulation comparing the
roots which isi-sufficient. Decidability follows from the fact that the lev€(A, A, d)

can be effectively determined.

4.1. Existing approaches 55

4.1.2 Caucal’s proof

The proof in [Cau90a] is very different; the idea here is to reduce the bisimilarity
problem to a rewriting problem for a relation whose least congruence under sequential
composition is decidable. This is done via a characterization of the maximal bisimulation
~ on a transition graph as a Thue congruence, i.e. the least congruence (under sequential
composition) generated by a finite relation.

The relation generating is a self-bisimulation (cf. Definition 2.2.10) which is also

afundamentatelation:

Definition 4.1.1 [Cau90a]A relation R C Vart x Var™ is calledfundamentaiff
1. Dom(R) C Var ,Im(R) C (Var \ Dom(R))"
2. Ris afunction:aRg andaRy impliesg = ~
3. aRp implies|a| = |3|

From the first and second conditions above it is immediately seen that fundamental
relations are finite and from the third condition one sees that there are finitely many funda-
mental relations for any normed BPA process (since there are only finitely many elements
of Var* with any given norm). Seen as a rewrite relationkifs fundamental then it is
also canonical, i.e. confluent and well-founded (this follows from the functionalify of

and the finiteness dbom(R)), and thus its least congruence is decidable.

Proposition 4.1.1 [Cau90a]The set of fundamental, self-bisimilar relations for the tran-
sition graph for a normed system of BPA equatidnsan be effectively constructed from
A.

PROOFE We know that there are only finitely many fundamental relations for the transition
graph and that?* is well-founded and confluent for any fundamental relation. Thus
we can in finite time check for each of these finitely many finite relations whether or not

it is a self-bisimulation. O

56 Chapter 4. Deciding bisimilarity for normed BPA

The main result of [Cau90a] is the following characterization.

Theorem 4.1.1[Cau90a]If R is fundamental, self-bisimilar and maximal w.r& we

have « s+ = ~,
R

One should note that fundamental, self-bisimilar relations always exist on a transition
graph for a normed BPA process. The empty relatlois clearly fundamental and

self-bisimilar. If() is maximal,~ is the identity relation. We now get

Corollary 4.1.1 For any normed system of BPA equations in GNRnda, 5 € Var*

it is decidable whethes ~ §.

PROOE Use a linear search as outlined in the proof of Proposition 4.1.1 toRind
fundamental, self-bisimilar relation diar x Var™ which is maximal w.r.t.C. SinceR

is canonical, it is decidable whether or ra;ot?* g. O

4.2 The tableau decision method

The bisimulation checker for normed BPA we now presentt@bdeau systema goal-
directed proof system. The proof technique is similar to the algorithm used in [KH66] to
show that language equivalence is decidable for simple grammars.

Assume a fixed system of normed BPA process equatioAsGiNF, A = {X; def
Yty agog; | 1 <@ < m}. We determine whetheXa ~ Y3 (assuming of course that
all occurring variables are defined ix) by constructing a tableau using the proof rules
presented in Table 4-1. #ableaufor Xa = Y is a maximal finite proof tree whose
root is labelledX a = Y3 such that the equations labelling the immediate successors
of a node are determined by an application of one of the rules in accordance with the
procedure described in this section.

The rules are built around equatiofgy = F'5 (wherea, 5 could be the empty

sequence of variables). Each rule has the form

4.2. The tableau decision method 57

Ea=Fp
Elalelﬁl Enan: nﬁn

(possibly with side conditions). The premise of a rule represents the goal to be achieved
(that Ea ~ F'[3) while the consequents are the subgoals.
The rules are only applied to nodes that aretaaiinal Terminal nodes are either

successfubr unsuccessful

Definition 4.2.1 A tableau node is called amnsuccessful terminad it has one of the

forms
1. o = g with |«| # |5
2. aocc = b witha # b

Clearly, such nodes cannot relate bisimilar processes. In the following subsection we

define the notion of successful termination.

4.2.1 Constructing subtableaux

A tableau consists of a number eliminating subtableaugonstructed using the rules

REC, SUM, andPREFIX of Table 4-1. Each of these rulesf@wards soundn the

sense that if the antecedent is true (the equation relates bisimilar processes) then one
can find a set of true consequents. This is expressed in the following three propositions,

whose proofs are immediate:

Proposition 4.2.1 (Soundness oREC) If Xa ~ Y3 and X “ Fandy ¥ F, then
Ea~ Ff.

Proposition 4.2.2 (Soundness o8UM) If (3, a;aq)a ~ (X7, b;0;) then there
exist functions : {1,...,m} — {1,...,n}andg: {1,...,n} — {1,...,m} such that

a;0;00 ~ bf(z)ﬁf(z)ﬂ for 1 <i:1<m andag(j)ag(j)oz ~ bjﬂjﬂ for 1 <] <n.

58 Chapter 4. Deciding bisimilarity for normed BPA

Proposition 4.2.3 (Soundness dPREFIX) If aa ~ af thena ~ §.

Xa=Yp
— REC
Ea=Fp(

SUM
a1 = a1 cee QO = apfh
— PREFIX — PREFIX

a1 = Py ay = [y,

Figure 4-3: A basic step in the tableau system
A subtableau is built fronbasic stepsSee Figure 4-3.

Definition 4.2.2 A basic stefor X o = Y 3 consists of an application &EC followed
by at most one application &UM followed by an application d?PREFIX to each of its
consequents (assuming that no node encountered is an unsuccessful terminajc A

nodeis any node of the formt’ = 3’ whered/, 3’ € Var*.

Corresponding to a basic step f@ra = Y5 is a set of single transition steps in
the operational semantics, aso = o; and Y8 % g; for any consequent; = f;.
By Proposition 2.2.5 we have thatngth(«;) < 1+ length(Xa) andlength(3;) <
length(Y B) + 1.

Definition 4.2.3 Assume that = min(|.X|, |Y|). Aneliminating subtableator Xa =

Y (3 iterates the construction of basic steps to dejpth

See Figure 4-4 for a sketch of an eliminating subtableau in the case|When|Y'|.
Notice that ifo/ = 3’ is a leaf of an eliminating subtableau th&ma = o’ andY 3 = '
for somew of lengthk.

In the case thatX| < |Y| each leaf of an eliminating subtableau f§ix = Y3

is either labellech, = ~3, which we call aresidual of the subtableau, a& has been

4.2. The tableau decision method 59

SN

a=yB- - o=

Figure 4—4: An eliminating subtableau faK o = Y 5.

eliminated, ora;a = (;5 wherea; and 3; need not be empty. Since the number of
iterations of basic steps|i& | there must be at least one residual arahd must persist
as suffixes throughout the subtableau. For any such subtableau we pick one residual node
and call ittheresidual. If insteadly’| < |.X'| similar remarks would apply except that the
residual then has the formu = 3.

The next step is to apply one of tiJB rules of Table 4-1 to each leather than
residualsof an eliminating subtableau. If the residuabis= v we applySUBL, and if
itis ya = we applySUBR. So assumgX | < |Y'|; then for each lead;ac = 3; 5 which

is not a residual we obtain

oo = 33

SUBL where a = (3 is the residual
oy =

Ifinstead|Y'| < | X| soya = gis the residualSUBR gives us the consequemnt = 3;7.

TheSUB rules are also forwards sound in the following sense:
Proposition 4.2.4 (Soundness cdUBL andSUBR) If o;a ~ ;3 then
e if a ~ yf@thena;y ~ ;, and
e if ya ~ g thena; ~ By

PROOF By Lemma 2.2.2 a substitution yieldsy3 ~ ;3 and by Proposition 2.2.2 we

geta;y = ;. The proof for the other half is entirely similar. O

60 Chapter 4. Deciding bisimilarity for normed BPA

From the above proof we see that 8lgB rules should be thought of as two-step rules
consisting of asubstitutionusing the residual followed by @ductionof the length of
the expressions involved according to Proposition 2.2.2. Notice that for any application

of SUB we have that

Proposition 4.2.5
L |o| < |Xo|and|y5| < Y5
2. length(ay) + length(~y) + length(3;) < 3ma + 1 for any application ofSUB.

The latter follows from Proposition 2.2.5. Also notice that the bound obtained here is
completely independent ééngth(«) andlength(f).

We can now define successful termination.

Definition 4.2.4 A residual or a consequent of an application oS8/B rule is asuc-

cessful terminaif it has one of the forms

1. o = B where there is a subtableau root above it also labetled 3.

It should be obvious that a node obeying termination condition 2 in the above relates
bisimilar processes. It turns out that this is also true of termination condition 1 in the
context of a successful tableau.

When a consequent &UB or the residual is not a terminal node we build a new
eliminating subtableau with it as root as described above, and continue in this fashion.
Therefore, a tableau is defined as successions of eliminating subtableaux as sketched in

Figure 4-5.

Definition 4.2.5 A successful tableais a tableau all of whose leaves are successful
terminals. If at any point in the construction of an eliminating subtableau we reach an

unsuccessful terminal then the resulting tableaurisuccessful

4.2. The tableau decision method 61

Figure 4-5: A tableau forX « = Y 3; some successful leaves are shown

Example 4.2.1 (Example 2.2.3 continued) Consider again= { X ©aYX + b,Y def

bX, A ¥ aC +b,C © pAA}. The tableau in Figure 4-6 is a successful tableau for
X = A. O

4.2.2 Decidability, soundness, and completeness

We now give the proof of correctness of the tableau method and give a complexity

measure in terms of an upper bound on the length of a tableau path.
Theorem 4.2.1 Every tableau forX o = Y 3 is finite.

PROOF If a tableau were infinite then it would have an infinite path. By definition such

a path could not contain either successful or unsuccessful terminals. By Proposition
4.2.5(2) such a path can not pass through infinitely many nodes which are consequents of
a SUB rule — for since there are only finitely many different equations with total length

< 3ma + 1 (by Proposition 2.2.6) the path would then contain some successful terminal
infinitely often. Otherwise the path must almost always pass through a residual; but

this also is impossible as the norm of a residual is strictly less than one directly above

62 Chapter 4. Deciding bisimilarity for normed BPA

X=A
aYX+b=aC+D
aY X =aC b=1>
Yx—cC PREFIX .
Yy —C SUB
bXX =bAA REC
XX = AA PREFIX
(@YX +0)X = (aC +b)A REC
aY XX =aCA bX = bA SUM
VXX —CA PREFIX ~Y—a PREFIX

YX —C SUB

REC

SUM
PREFIX

Figure 4—6: A successful tableau foX = A of Example 2.2.3

it by Proposition 4.2.5(1) and as the norms of the residuals are uniformly bounded by

max(|al, [5])- =

We can give a complexity bound on the tableau method in terms of the longest possible
path in any tableau foK o = Y 3. We measure the length of a path in terms of the total
number of basic steps, since this gives a measure of the number of transition matches

that we need to consider.

Theorem 4.2.2 Any path in a tableau foX o = Y3 has a length of at most

3ma +1 dma 1 . .
ma max(|a|, |ﬁ|7mA (T—I Z (] -]-)UJ)
Jj=2

basic steps, whereis the cardinality ofi ar.

PROOFE Any SUB consequent has a length of at mdst, + 1, so there can be at most
Z?Zf“(j — 1)o7 distinct SUB consequents along a path. Between any two of these
consequents there can be at mosts+] residuals, since the worst that can happen is
that the norm on each side decreased lipetween two consecutive residuals. Thus,

any containingSUB consequents has at most2a+!] y-3"s+!(j — 1)»7 subtableau

4.2. The tableau decision method 63

roots. The leftmost path in a tableau contains only residuals, and since their norms are
strictly decreasing there can be at mesix(|a/, | 3|) residuals along this path. Since any

subtableau can have a depth of at mastbasic steps, the result follows. a

Corollary 4.2.1 There are only finitely many tableaux for afyx = Y .

PROOFE This follows from the above theorem and the fact that the branching at any basic
step in any tableau is uniformly bounded by the maximal numb&t¥ consequents.

This is bounded b2 B whereBa = max{m |3X; € Var: X; & Ty agogy. O

The next theorem states soundness and completeness of the tableau method. The

proof of soundness relies on the notion of self-bisimulation introduced in section 2.2.5.
Theorem 4.2.3 X a ~ Y 3 iff there exists a successful tableau for. = Y 3.

PROOFE SupposeXa ~ Y 3. Then we can build a tableau féfa: = Y 8 which has the
property that for each nod€ = 3’ we haved’ ~ '. For by Propositions 4.2.1, 4.2.2,
4.2.3 and 4.2.4 we can at any point in the tableau construction choose true consequents.
By Theorem 4.2.1 this tableau construction must terminate and without unsuccessful
terminals.

Now assumeT is a successful tableau fofa = Y 3. We now show thafzt =
{(a, B) | &« = B is a basic node iif } is a self-bisimulation. By Lemma 2.2.1 this means
thatXa ~ Y §.

So supposéa’, 3') € R. We must then show that - o implies35” : 5" = 3"
with o . B". o/ = ' can either be a terminal or an internal node.

Supposer’ = ' is a terminal. If it is a terminal because of condition 2 we can
certainly match within el since the least congruence of any relation contains the
identity. Otherwise, ifo/ = ' is a terminal is due to condition 1, there is a previous

occurrence of’ = 3’ as a subtableau root. Then we have the following basic stép in

64 Chapter 4. Deciding bisimilarity for normed BPA

n __ 1 — "
Qp =Py - Oén—ﬂn

anda’ % o is matched by3’ “ 3" becauseT is successful anda”, 3!) € Rt for
1 < < n by definition of Rt.

Otherwisea/ = ' is an internal node. There are now two possibilities: eiREC
was applied ta' = 3’ or one of theSUB rules was.

SupposdREC was applied. Then we had the basic step

n __ 1 J— 1
Qp =Py - Oén—ﬂn

and just as in the above case, we can match wilijin
Now suppose &UB rule was applied. Suppose wlog that it was/BL. Further
assume that' = ' is X i = Y1510, thatX; € S gya0; andy; € 50, b; By

and that the residual wag, = v, ,:

Xiaiog = Y1816
Xiaiy = Y16

SUBL

By definition («v, 70/50) € Rt. EitherX,a,v, = Y14, is a terminal or a subtableau

root. In any case we must have that

a; b; .
Vai : Xiaiyo = aginy 3bj 2 by = ag, Y181 = Ba;61 With a0 <R—T>* BB (4.1)

If X017 = Y15, is aterminal, this follows from the same reasoning used in the case

whereo/ = ' is a terminal. Otherwise, we have the basic step

4.3. An equational theory 65

Xioy = Y16

REC
(i ajozg)onyo = (5= bjB25) B
SUM
1021017 = alﬂf(l)ﬁl s GOy = A Bon 1
PREFIX PREFIX
Q1017 = ﬂf(l)ﬂl Qg(n)17Y0 = Bon B1

Now, what are the transitions &f, o, oy andY; 3, 5, and how do we match them ? For
1 < i < mwe have thafi{; o oig = a0 and forl < j < n, Y18 6o % Baj 51 Bo. FoOr
anyX; o, o= agon o thereis (4.1) éqﬂlﬂobf—(;) B2y (i) B1Bo such thate; o o e B (i) P1-
We now have the matclay;a; oy . Bari)B1Bo. FOr sincens;a; v . B2y B, also
217050 <R—T>* Bas(iyB1Bo- Since(ag, 10/60) € R wethen haver,;oy g <R—T>* Bas(iyB15o,

as was to be shown. Finding a match for ang, 5, ﬁ> Baj 51 B0 is entirely similar. O

Corollary 4.2.2 For any normed system of BPA equations in GNRnda, 3 € Var*

it is decidable whethes ~ §.

PROOF A decision procedure goes as follows: Enumerate all the finitely many tableaux
for « = (3 (this is possible by Corollary 4.2.1). By Theorem 4.2.3- (3 iff we find a

successful tableau. O

4.3 An equational theory

Besides yielding a straightforward decision procedure, the tableau technique can also
be used to build a (weakly) sound and complete sequent-style equational theory for
bisimulation equivalence of normed BPA processes given in 3-GNF. For all that is
required is a family of sound rules that permit one to derive the roots of successful
tableaux. The proof system presented in this section is due to Colin Stirling.

The equational theory is somewhat non-standard in the arena of process algebras. As

it depends on assumptions, it is different in style both from Milner’s elegant equational

66 Chapter 4. Deciding bisimilarity for normed BPA

theory for regular processes with an explicit fixed point operaitil84] and the version
in [BK88] without /.
Since the theory is based on the tableau system from the previous section, we restrict
our attention to normed systems of process equations in 3-GNER betsuch a system.
The proof system appeals &ssumptionsf the form X« = Y 3. The basic sequent of
the system has the forin, E = F wherel is a set of assumptions ard F' range

over BPA expressions. A sequent is interpreted as follows:

Definition 4.3.1 We writeI" =5, E = F when it is the case that if the relation
{(Xa,YB) | Xa = YB € T}U{(Xi,E) | Xi € E; € A} is part of a bisimula-
tionthenE ~ F.

Thus, the special caskl=x E = F states thate ~ F (relative to the system of
process equations).

The proof system is given in Table 4—2. Equivalence and congruence ruleg-&re
The rulesR6-10 correspond to the BPA laws A1-A5 of Table 2-R11 andR12 deal
with recursion and have been dictated by the tableau metRdd. is an assumption
introductionrule, justified by the interpretation of sequents described abRl&2.is an
assumptioreliminationor discharge rule, which at the same time is a version of fixed
pointinduction. Notice that the rule is contextual in character, involving the BPA contexts

[o and[|5 where[] is a ‘hole’.

Definition 4.3.2 A proofof I' o £ = F'is a finite proof tree with the root labelled by
I' FAo E = F, with leaves that are instances of the axioRilgR6-10 or R11 and such
that the parent of a set of nodes is determined by an application of one of thér2Hgs
orR12. If ' ko E = F has a proof we simply writE Fx £ = F.

In our proof that the equational theory is weakly sound and complete it turns out to
be easiest to prove that it is in fastronglysound. In our proof we need to appeal to the

following standard characterization of the maximal strong bisimulation as a limit:

4.3. An equational theory 67

Definition 4.3.3 For any transition graphg = (Pr, Act,{ - }) define the family of

binary relations{~,, }*_, over Pr inductively as follows.
e p~yqqforall p,q e Pr,
® D~y qiff

— if p % p thendg’ with ¢ % ¢/ andp’ ~,, ¢’ and

— if ¢ % ¢/ then3p’ withp = p’ andp’ ~,, ¢'.

Theorem 4.3.1[Mil89] For any image-finite transition graph we have

Theorem 4.3.2I1f ' FA Xa =Yg thenT'=xA Xa=Y[

PROOE Contraposition. Assume that we have a proofiof-, Xa = Y3 but that
Tha Xa =Y. Then{(Xa,YB) | Xa=YB e TIU{(X;, E)) | X; &€ E; € A}is part
of a bisimulation butX« ¢ Y 3; consequently, ad defines an image-finite transition
graph, Theorem 4.3.1 says that: £, Y 3 for somen.

Observe that if we ignore the hypotheses, tR@r5,R12 preserve-,, and in all other
rules excepR11 the conclusion is true for alt,,. For instance, foR12 we have that if
Ea ~, FAthenXa ~, Y3 becauseX ¥ F € A andY ¥ F € A. Similarly, for R3
E ~, FandF ~, G imply thatE ~, G. Now significantly, in the case d&@5 we can
strengthen this to say that, ~,, F; andE, ~,_, F; imply that £, Ey ~,, F1F5 (when
|E1| > 0.)

Now consider the proof tree fdr - Xa = Y 3. SinceXa ¢, Y3, by the above
observations, there is a pathto some leaf in the proof tree such that for every node
[; Fa a; = 5;(1 <i < m) alongm we haven; ¢, ; for somek;. For each choosek;
such that it is the least number with this property.

The leaf ofr cannot be an assumptionlinsincel” is part of a bisimulation. Nor can it

be an identity. The only other possibility is that the leaf at the end of the path is an instance

68 Chapter 4. Deciding bisimilarity for normed BPA

of R11 ofthe forml”, X'o/ =Y’ A X'o/ =Y’/ and suchthak’a/ «,, Y’ where
k., is the least number with this property. Assume thiat2 £’ € A andY’ & F' € A.

As X'o/ = Y'3 has been eliminated as a hypothesis in the course of the proof, there
must be an application 12 onr with premisel’; o E'a’ = F'3’ somewhere on the
pathw. On the subpath between this premise and thelleaf'a’ = V'3’ o X'a/ =
Y’ 3’ there must be at least one application of the congruenc&éule order to build up
the expressiong”’ andF’; this can be shown, once we take into account the easily proven
fact that in any sentence a of proof, with conclusien= F' either bothE and F' are
guarded or neither is. By the above observation on the soundn&$swi-.t. ~, every
nodec; = 3; on the subpath must have ~, g; for all £ < k,,. SinceE’ andF' are
guarded, in at least one applicationR® an equation derived from’X'a/ = Y’ must
be the right-hand premise (possibly simply to introduce action prefixes). Thus we must
in fact have that?’o’ ~, F'' for somek > k,,. But this implies thatX'o' ~, Y'3' for

somek > k,,, a contradiction of our assumption th&ta’ 4, Y’ O

The completeness proof depends on simulating the tableau construction using the
proof rules. We first show that the thinning rule usually found in sequent-based proof

systems is a derived rule in ours.
Lemma 4.3.1 (Thinning)If ' o E = F thenI’,I" o E = F for anyI".

PROOFE Consider a proof off Fo F = F. Clearly, any leafl’; -o E; = F;
can be replaced by, I’ o E; = F; yielding a proof tree with nodes of the form

I';;, I Fa E;; = Fi; whenever the original proof hdd,; Fa E;; = Fi;. O

The completeness proof rests on a number of lemmas and definitions which tell us how
to determine our sets of hypotheses throughout a proaf@f~ Y 5 from a successful
tableau forXo ~ Y j.

Definition 4.3.4 In asuccessful tableal, we define the set obmpanion nodeSom (Eqa’ =

4.3. An equational theory 69

Fp') foranodeE«’ = F[3' as the set of nodes along the path to the root dat cor-
respond to an instance of a successful terminal for termination condition 1.

For any subtablead’ of T the setBasict/(Ea’ = F{3') foranodeEa’ = Fj3'in
T’ is the set of basic nodes on the path starting abbwé = F'3' and ending at the root
of T'.

Proposition 4.3.1 For any nodeF o’ = F' in a successful tableali we have
Com(Ed' = Ff') C Basict(Ed' = Ff3')

Lemma 4.3.2 Let T’ be a subtableau of a successful tabl@asuch thafT’ is built using

only basic steps, has rodf'a/ = Y'’ and leavesy, = fi,...,a, = (3,. If for somel’
we havd Fx o; = f;forl < i < nthenl' Fx X'a’ = Y’ with a proof tree with nodes
of the forml’, Basicy (E"a" = F"3") Fa E"o" = F"(" for any nodeE"o” = F" 3"
inT'.

PrOOF Induction ind, the depth w.r.t. basic steps f.

d = 1: T' consists of one basic step:

Xla/ — Y,/BI
REC
(X aiaq)a’ = (X7_, 0;8;) 0
! / / / SUM
a1 = by Byl o Ogn) Q) = 03,0
, , PREFIX , , PREFIX
a @ = ﬂf(l)ﬂ Qg(n) — B3

wherel’ Fa a;of = By for 1 < i < m andl' Fa ay;o’ = ;6 for1 < j < n.

Since we have that
Basicy (o = ;') = Basicy (oo’ = 3;6') = {X'o =Y'f'}

for any consequents, Lemma 4.3.1 tells us that

70 Chapter 4. Deciding bisimilarity for normed BPA

T, X'a) =Y'f Fa aya! = By for1 <i<m
and

D, X'o =Y'f Fa apye =38 for1 < j<n
Repeated use &5 followed by repeated use &4 gives us

DX'e" =Y'0 Fa O aiay)d = (D b;8)8
i=1

j=1

Finally, byR12 we getl’ - X'a/ = Y'.

Step (assuming fodl): The first basic step of the subtableau is as in the base case.

By induction hypothesis we have that
Ao =By forl <i<m
and
LA ogpe =36 forl <j<n
And by Lemma 4.3.1 we get that
D, X'o =Y'f Fpa i = By forl <i<m
and
D, X' =Y Fa agpa’ =56 for1 <j<n

The proof now proceeds as for the base case. O

Lemma 4.3.3 Given a successful tabledy for any X o = Y 3 that is a terminal or the

root of an eliminating subtableau we hatem(Xa =Y) Fa Xa =Y.

4.3. An equational theory 71

PrOOE Induction in the structure ofF.

Base case Xa = Y3 is a terminal: Xa = Y/ is either a terminal due to termi-
nation condition 2 or termination condition 1. In the former cd&&kjmmediately gives
usCom(Xa=Yp3) Fa Xa=Yf. Inthe latter caseXa =Y € Com(Xa =Y f3)

so we get desired result iRA11.

Step:Now X« = Y 3 is root of the subtableall’:

=N

a="f - e CZZZ%? “S'UBL
By induction hypothesis, we haw€om(a = v3) Fa a = v and for anySUB

consequent (assume wlog that it38BL) Com(o;y = ;) Fa ;v = f;. But since

there are no terminals withifi’ we have thaCom(«a = v3) = Com(a;y = ;). By

R1, we getCom(a = v3) Fa = g and byR5 Com(a = v0) Fa ay8 = Bif.

By R3 this impliesCom(a = v3) Fa oo = 3;4. By Lemma 4.3.2 we then get

Com(Xa =Yp3) Fa Xa =Y as desired. Note also that by Lemma 4.3.2 that for

any nodeE"o” = F"3"in T' we haveBasict (E"o" = F"(") Fa E"o” = F'". O

Theorem 4.3.31f Xa ~ Y 8 (with respect ta\) thenP-, Xa =Y 3

PROOFE By Theorem 4.2.3 we know that o = Y/ has a successful tabledu For

each node" o = F"in T we have thatBasict (E"a" = F'p") = E"a" = F"(.

If E"o” = F"[3 is a subtableau root or a terminal, this follows from Lemma 4.3.3,
Proposition 4.3.1 and Lemma 4.3.1. H'a” = F"3 is a node in an eliminating
subtableau, it follows from the remarks at the end of the proof of Lemma 4.3.3 and

Lemma 4.3.1. SincBasict (Xa =Y 3) = 0, the result follows. O

72 Chapter 4. Deciding bisimilarity for normed BPA
4.4 Extracting fundamental relations

In Section 4.2 we have seen that the tableau system presented generates a self-bisimulation
in case of successful termination. In this section we show another relationship with the
work of Caucal [Cau90a] in that we give auxiliary tableau systerfor extracting a
fundamentatelation R from a successful tableau oo = Y 5 with the property that
Xa o Y.

One can think of the least congruenee.« of a relationR as the set of equations
provable within equational logic (with added congruence rules) usiagaxioms. Thus,
we can we view a fundamental relation with the above property as constituting a ‘local
axiomatization’ of~ , relative toA and the root equatioX oo = Y 3.

Throughout the following we shall assume the existence of a successful tabieau
Xa=Yg.

The fundamentalobservation is that for the eliminating subtableau for = Y 3
we must, wherx = (3 is the residual, hav® 3 ~ X~ and thus by Proposition 2.2.2
Y ~ X~; assume now wlog that andY” are not the same variable. Singg = | X |
we know thatY” does not occur iK'+, so (Y, X~) is a fundamental relation. Clearly,
if we let R = {(«,70), (Y, X7)} we haveX« o Y 3. The auxiliary tableau system
now gradually modifies and extendsuntil it becomes a fundamental relation with this
property. While doing this we may need to introduce new goals.

The auxiliary tableau system is built around sequents of the #@rim " whereR
is a finite subset of/ar x Var™ andT is a finite set of equations ovéfar*. Since
the relations? constructed are all fundamental (by Proposition 4.4.2 below), they are all
confluent and strongly normalizing, so for amyts unique normal forna | R is known
to exist.

At all times during the auxiliary tableau construction we rewrite as much aé

much as possible using. We may then need to introduce new goals or extendhere

'Pun intended.

4.4. Extracting fundamental relations 73

are in general three possible situations possibly at any point where this can happen:

e Ifanequationa = Y 5 hastheresidual = v andRU{ (Y, X)} is fundamental
we simply extendr with the pair(Y, Xv). This justifies the rul&XTEND.

e If an equationX« = Y/ has the residuak = 3 but R U {(Y, Xv)} is not
fundamental becausé € Dom(R) with (Y, X;71) € R for someX;~,. Then we
must also compar&;v; and.X~. This gives rise to the rulEOMPARE.

e If an equationX« = Y/ has the residuak = 3 but R U {(Y, Xv)} is not
fundamental even though ¢ Dom(R) because some variablgé € Dom(R)
occurs inX . We must rewriteXy and can then ad@, (Xv) | R) to R. Thisis
the basis of the rul&fPDATE.

The ruleREWRITE tells us that we must rewrite using whenever possible. And
finally there are the rule€ONGL and CONGR whose purpose is to remove identical
heads and tails from equatiorfSONGR is strictly speaking not necessary but has been
included for reasons of symmetry.

The rules have the followingriority: CONGL must always be used whenever
possible to remove identical leftmost variables. Next in prioritRBNVRITE. Finally,
the other rules have equal priority. Thus we seeREMVRITE will only be used between
updatings ofR, as desired.

The rules in Table 4-3 are sound w.k{..

Definition 4.4.1 A relation R C Var x Var™ is said to be~ -consistenif R C ~.
Similarly, a set of equationE is called ~ -consistenif for all o/ = 3’ € I'' we have

o ~ 3.

Proposition 4.4.1 (Soundness undey) If R’ - I'" hasR' andI” ~ -consistent then for

the consequemt” -; I of any rule applicationtd?’ -, I/, R” andI” are~ -consistent.

74 Chapter 4. Deciding bisimilarity for normed BPA

PROOF The soundness d&&XTEND, COMPARE, UPDATE andREWRITE follows
from Proposition 2.2.2. The soundnessG@®NGR follows from Lemma 2.2.2. The
only mildly interesting case IEKONGL. But if ad; ~ ad, we have for anyw € Act such
thata 5 € thatad; = §; which is matched by somes, = pd, with §; ~ pds. Since by
Proposition 2.2.19,| = |d2| and|d,| = |pd2| we get|p| = 0, which implies thap = e.O

The rules also preserve fundamentality:

Proposition 4.4.2 If in R' = " we have thaf?’ is fundamental and- -consistent and
' is ~ -consistent, then for the consequéiit, I'” of any rule application ta?’ -, T

we have thaf?” is fundamental.

PROOFE For EXTEND, preservation of fundamentality is required by the side condition.
In the case ofCOMPARE, REWRITE, CONGL andCONGR, R’ is not changed. In
UPDATE we know thatt” ¢ Dom(R) soR'U{(Y, (X~) | R')} isalso functional. Since

R' was assumed fundamental, no variabléXiy) | R’ occurs inDom(R’). Finally, by
Proposition 4.4.1Y ~ (X~) | R'so|Y| = [(X~) | R'|. O

We can now be precise about the notion of an auxiliary tableau.

Definition 4.4.2 An auxiliary tableaufor R F; I' is a maximal sequence of sequents
Rot: To,Ri b+ Ty,...,Ry 1y Ty, Ry b T, WwhereR ;T = Ry + Ty and for
all i > 0 R;.1 F I';1 is the consequent of using a rule in Table 4-3 with—; I'; as
premise. An auxiliary tableau is finite if for somall equations inl’,, are identities (i.e.

of the forma/ = ' for somex’).
Lemma 4.4.11f T is ~ -consistenall auxiliary tableaux forf) -, T" are finite.

PROOFE Every time an equation’ = 3’ is replaced in a rule application, it is replaced
by equations whose norms are €ll|o/| = |3'|. At least one of these new equations has
norm< |«'|. Thus we must eventually reach a situation where all equations in a sequent

are identities, possibly of the form= e. O

4.4. Extracting fundamental relations 75

Theorem 4.4.11If R, is fundamental and- -consistent and, is ~ -consistent, then for
any finite auxiliary tableaw?y - I'y, ..., R, - T',, we havex o G with R = R, for

anya =g €T.

PROOF We proceed by induction in.

n = 1. The auxiliary tableau i, . ', R - T, and every equation = S in I’ is an
identity. Thus, obviouslw e 3. We now proceed by case analysis, looking at the rule
usedonalXa =Yg el.

If the rule wasEXTEND, we havea o ~v(3 anda’ o g foranyo’ = g € T".
Therefore X a o Xvyfand X« o Y /3 as desired.

Had the rule beetPDATE, we would havey | R o (v0) 4 Rso« o ~(and
Y o X, so againX « o X4 implying X a e Y.

If the rule wasREWRITE, we would have(X«a) | R o (Y3) | R implying
Xa o Y (.

And if the rule used had beeDOMPARE, we hadX;v, o X~y and o o 3
andY o X17v:. ButthenY s o X170 and X v, 8 o X~3, which implies that
Y3 o X~ and againX « o Y.

CONGL andCONGR are immediate.

Step: The auxiliary tableau is nowrq + 'y, Ry Fr Iy ..., R, F ', and Ry F+
ry,...,R, F T, isanauxiliary tableau foRk; +; ', sofor every equation’ = ' € T’y

by induction hypothesis’ o 3’ . The proof proceeds exactly as in the base case.

From the above theorem and Lemma 4.4.1 we now get the desired result:

Corollary 4.4.1 If Xa ~ Y3 by the successful tableal, for any auxiliary tableau
O Xa=Y3,...,R, - T, we haveX o e Y 3 whereR = R,,.

76

Chapter 4. Deciding bisimilarity for normed BPA

Rules within subtableaux

REC

PREFIX

SUM

Xa=Yp def def
—_ whereX = FandY = F
Ea=Fp(
ac = afi
a=[

(X aii)ar = (52, b;87) 8
{aiciar = byiiy By B3y {agiyogma = bi8i8}_

fAL ... om}—={1,...,n}
where g: {1,...,n} = {1,...,m}

withm,n > 1

Rules for new subtableaux

SUBL

SUBR

a0 =P8 herea = 4 is the residual
oGy = ﬁz
o= B whereya = (3 is the residual
a; = ﬁz”y

Table 4—1: The tableau rules

4.4. Extracting fundamental relations

Equivalence
R1 'AE=F
A E=F
R2 PR
I'A F=F
R3 F'FAE=F I'FAF =G
r l_A E = G
Congruence
R4 Fl_AElel Fl_AE2:F2
Fl_AE1+E2:F1 +F2
R5 Fl_AElel Fl_AE2:F2
F I_A E1E2 — F1F2
BPA axioms
R6 A E+F=F+F
R7 FFA(E+F)+G=FE+(F+QG)
RS I''AEF+FE=F
R9 kA (E+ F)G =EG+ FG
R10 I'+A E(FG) = (EF)G
Recursion
R11 ILXa=YfBka Xa=Yp
R12 F,XO[= Yﬁ l_A FEa = Fﬁ def def

X=E, Y=FeA

Tha Xa=Yp

Table 4-2: Rules of inference in the equational theory

78 Chapter 4. Deciding bisimilarity for normed BPA

EXTEND Rby Xa=Yp T if « = 4B is the residual of
R)Y =Xyt a=~8,T .
Xa=YpgandR,Y = X« is

fundamental
COMPARE Rbr Xa=Y4 T if Y € Dom(R) anda = 74 is
Rt X1y = Xv,a =93, .
the residual forXo = Y3 but
(Y, lel) S R

UPDATE Ry Xa=Y3,T
RY =(Xy)IRr () L R=(B) L RT

if Y ¢ Dom(R) anda = (3 is
the residual forXo = Y3 but

some variabl&Z € Dom(R) oc-

cursinX~
REWRITE Rb: Xa=Y5T if (Xa) | R# Xaor
Ry (Xa) L R=(YP) L RT
YB)LR#Yp
CONGL R |_-|— 04(51 = 0462, r
Rbqd, =051
CONGR R |_-|— 041(5 = 0426, r
R l_T a1 = Qa, r

Table 4-3: Rules of the auxiliary tableau system

Chapter 5

Introducing silent actions

In this chapter we extend the decidability result obtained in the previous chapter by using a
similar tableau method to show that the branching bisimilation equivalence introduced by
van Glabbeek and Weijland in [vGW89Db] is decidable for the class of normed recursively
defined BPA processes with silent actions.

Section 5.1 introduces the notion of branching bisimilarity. Section 5.2 introduces the
class of normed BPRyc processes. In Section 5.3 we describe the tableau system, prove
its soundness and completeness, give a complexity measure and establish the decidability

result for branching bisimilarity.

5.1 Branching bisimilarity

The processes that we will be looking at have their behavioural semantics given by
transition graphs with silent actions. For comparison we first describe the notion of
weak bisimulation equivalence, introduced by Milner [Mil80,Mil89]. This equivalence
is essentially bisimulation equivalence defined on the denwveaktransition relations

that disregard silent actions.

Definition 5.1.1 For a transition graphg = (Pr, Act U {7}, —) with silent actionr,

theweak transition relation§ == | s € Act U {¢}} are givenby= = 5 % &

79

80 Chapter 5. Introducing silent actions

T %

fora € Actand = = 5

In the definition below, we use the ‘observational’ mapping Act U{7})* — Act*
which is the homomorphic extension of the function definedbby) = a for a € Act
ando(r) = .

Definition 5.1.2 [Mil89] Aweak bisimulatiorong is a symmetric relatio® C Pr x Pr
such that wheneverRg for anya € Act U {7} we have thap - p' implies that there
exists a;’ such thaty 4):('@ ¢ with p' Rq'. We definex by

~ = {(p, q) | pRq for some weak bisimulatioR }
If p ~ q we say thap andq are weakly bisimilat

The notion of branching bisimilarity was put forward by van Glabbeek and Weijland

in [vGW89b] as an alternative to weak bisimulation.

Definition 5.1.3 [vGW89b] A branching bisimulation (bl)n G is a symmetric relation
R C Pr x Prsuch that wheneverRq for anya € ActU {7} we have thap % p’ implies

e o =7 andp Rqor
e there exisy/, ¢’ such thaty == ¢} % ¢’ with pRq}, p'Rq’

We definex;, by
~ = {(p,q) | pRq for some bz}

If p =, ¢ we say thap andq are branching bisimilar

Unlike weak bisimulation equivalence, changes in branching properties caused by
individual T-transitions must always be taken into account in branching bisimulation.
(Example 5.2.2 provides an example of the importance of this, namely two processes
that are weakly bisimilar but not branching bisimilar). An equivalent definition which
reflects thisstuttering propertybetter is the one below which we will be using in the

tableau system presented in Section 5.3.

5.2. Normed BPfec 81

Proposition 5.1.1 A branching bisimulation og is a symmetric relatiok C Pr x Pr

such that wheneverRq for anya € Act U {7} we have that ip % p' then either

e ¢ =7 andp Rq or

T

e there existy),...,q,,¢ such thaty = ¢ > ¢, > -+ 5 ¢, = ¢ with pRq] for

0<i<nandpRq.

van Glabbeek proves that the above notion of branching bisimilarity is indeed equiv-
alent to that of Definition 5.1.3 by introducing a notion of what he calls a semi-branching
bisimulation where the conditions for matchings p’ have been relaxed to allow matches
of the formq == ¢’ with p’Rq¢’. He then proceeds to show that the maximal semi-bb
satisfies the stuttering property of Definition 5.1.1. For the details of the proof, see
[vG90a].

5.2 Normed BPAec

Extending BPA with silent actions gives us the class of processegBHEK88]. Again,
these are processes given by systems of defining equatieng X; “ g, |1 <i<m}.

The process expressiofs are now given by the syntax
Ei:=a|7|E+Ey | E1Ey | X

wherer is a new, silent action not inlct. As in the previous chapter, elements of
Var* will be denoted by Greek letters:, 3, . .. The operational semantics given by the
transition relationg % |a € Act U {7}} is as given in Definition 2.2.3.

We restrict our attention taveakly normeaystems of equations.
Definition 5.2.1 Theweak normof any X € Var is given by

| X]|| = min{length(w) | X == ¢, w € Act*}

82 Chapter 5. Introducing silent actions

A system of defining equationsis weakly normedf forany X € Var 0 < || X]|| <

oo. The maximal norm of any variable ik is defined by\/x = max{||X||| X € Var}.

Since norms must be strictly positive, all variables must eventually perform an ob-
servable action and processes can therefmteterminate silently. While this is an
important restriction, it is also in analogy with the requirement that a grammar has no
empty productions.

In Section 5.3 we shall also need the notion of norm from the previous chapter; to
avoid confusion we shall refer {6(| as thestrong normof X. Clearly, if A is weakly
normed it is also strongly normed.

Finally, we again restrict our attention to systems of defining equations givén in
Greibach Normal Form3(GNF). As before, this is actually no real restriction, since by
Theorem 2.2.1 any system of equatiahsn BPAec can effectively be rewritten to a
A" which isstronglybisimilar to A and therefore normed iff is [BBK87a]. This once
again leaves us with transition graphs whose states are strings of process variables; the
further restriction to variable sequences of length at magtiarantees limited growth
when determining single transitions: Proposition 2.2.5 again applies.

Because weak norms are assumed strictly positive, we retain the simple relationship

between lengths and norms of Proposition 2.2.6:

Proposition 5.2.1 For a € Var* length(a) < ||o|| and||a|| < Malength(c).
The weak norm is additive under sequential composition:

Proposition 5.2.2 For a, § € Var* ||af]| = ||a|| + || 5]]-

PROOF As for Proposition 2.2.1. O

Definition 5.2.2 Theobservational languade,,; (X) accepted by a variabl& is defined
BY Lops (X) = {w | X 25 ¢}.

5.2. Normed BPfec 83

A-btepeTeac btepec - Toacn L o
a{ a{ L a\ :
€ 2 C 2 — C"~— e
XL xy-b XY? b EEEEE _ b, xynb ERRES
LT T N T
€ c Y- - Y2 - T ’ - yn - L

Figure 5-1: Transition graphs fo; = {4 e+ bBC;, BY r4; 0¥ c} (top) and

Ay ={X o +bxY; V¥) (bottom)

We have
Proposition 5.2.3 [vG90a]If o =, B thenLyps(a) = Lops ().
Note that for weakly normed systems this implies

Proposition 5.2.4 a =, 3 implies that]|«|| = ||5]]-

Example 5.2.1 ConsiderA;, = {A % ¢ +bBC; B r4; ¢ ¥ ¢} andA, = {x &
a+bXY;Y o c} (cf. Example 2.2.1). The transition graphs are shown in Figure 5-1.
For A; we haveLy,s(A) = {b"ac™ | n > 0}, Lops(B) = Lops(A) @and Ly (C) = {c}.

X =, A because of the branching bisimulation

(XY™, AC™) | n > 0} U {(XY™, BC™) |n > 1} U {(Y",C") |n > 1} U {(e,)}

84 Chapter 5. Introducing silent actions

For the tableau system we need the counterparts of Proposition 2.2.2 and Lemma
2.2.2. (The proofs that follow utilize the notion of bb from Definition 5.1.3.) Firstly,

/%, IS a congruence w.r.t. sequential composition:
Proposition 5.2.5 If a; & 51 and s =2, 52 thenay as =4 81 52

PROOFE R = {(ayan, /1 52)|1me (1, an =y B2 } IS @ bb. Itis obvious thak is symmetric.
Supposéa; s, B15;) € R. If aas - o this must be due to either = o/ ora; = eand
oy = . In the former case; o, = o s, in the lattera, ay % o). If o % o there are
two possibilities. Eithet. = 7 anda] =, 3, but then(a s, 51 32) € R. Or there exist
B, B with 3== 31 % 3! such thaty; ~;, 3, anda/, ~, 5. Thenp, B, == 3,5, B Ba
and (ayas, B152) € R, (ajas, B 52) € R. If o = ¢ we must haved; = ¢ and thus
By == B4 % B with ay = 35 andad, = 34, S0(aaz, B13%) € Rand(ayaly, 318Y) € R.
O

The other result is a new version of the ‘split’ lemma.
Lemma 5.2.1 If a;a =~y s thenay ~ as.

PROOF By Proposition 5.2.2|«; || = ||az||, and since all variables are normed, = ¢

iff g =e. NOWR = {(aq, an) | cya = apa} is a bb. It is obvious thaR is symmetric.
Supposéay, ay) € Randa; # €. Then alsay, # «, since||ay|| = ||az||. Soifa; = o
thena o % o/« can either be matched ly= 7 anda/« ~4 asa, implying o/, R, or
by ava == aba % afa with oo ~, o andalya =, o, a. The latter holds, since weak

norms are positive, s@,a == -% becauser, == % . O

It is important to note that this doe®t hold for weak bisimulation. The following

counterexample arose in a discussion with Kim Larsen and is due to him.

Example 5.2.2ConsiderA = {X = aY)Y = a+7X,A =a+aB,B = a}. As
| X|| = 2,||Y]] = 1,]|A|| = 1 and||B|| = 1, A clearly obeys all requirements stated
above. ltis easily seen that ~ BY and thatd % B. However, we havelY ~ BY,

5.3. Atableau system for branching bisimulation 85

since{(AY, BY), (BY, X), (YY), (¢,¢), (X, X)} is a weak bisimulation. The problem

lies in the fact that weak bisimilarity does not require the results of intermediate steps in
weak transitions to be related. In particuldd” % BY is matched byBY == X. The

latter is due taBY % Y 5 X, where we clearly have thaty” # Y. O

5.3 A tableau system for branching bisimulation

5.3.1 Building tableaux

A tableau for determining branching bisimilarity is a maximal proof tree built using the
proof rules in Table 5-1. Tableaux consist of a number of subtableaux. These are built
from successive applications of ti8TEP rule, which corresponds to the notion of a
basic step in Chapter 4 (Definition 4.2.2).

STEP is applicable iff there is a possibility of matching transitionspdssible match
is any set of equations whose sides are the results of successful matching transitions

according to the definition of branching bisimilarity in Proposition 5.1.1:

Definition 5.3.1 A set of equationd/ is a possible matclior o« = g if for anya € Act

we have that it = o/ then either
e g=7ando =3 € M or

o there exists) = 3,...,8., 3 st. By > B = -+ = B, = witha =3/ € M

for0 <i<nando' = € M.

and similarly for anys % /.

This definition appears to allomfinitely many possible matches, since there seems
to be no bound on the lengthof a matching transition sequence. However, this is not

the case. Firstly, we have

86 Chapter 5. Introducing silent actions

Proposition 5.3.1 If a =, # we can find a possible match/ for « = such that
whenevern % o' is matched by3, = 3,..., 3., 3’ suchthat3, > 3, & --- 5 3. = 3

witha =gl € M for0 <i<nando' = "€ M all g/ (0 <i <n) are distinct.

PROOF. If some stated; occurred twice ing, = g; = --- = 3, = 3’ we could remove

any states between the two occurrences;aind still have a matching sequence. O

Secondly, we have

Proposition 5.3.2 If Xa =, Y3 and Xa % o/« is matched by 3 == 3/3 % 3’3 any
intermediate statg” in Y 3 == 3,3 haslength(") < Ma + length(f3). Furthermore,
length(B'8) < Ma + length(B) + 1

PrROOF. For any single transition step = 3, in Y3 == /3| 3 Proposition 2.2.5 applies,
solength(fB2) < 1+ length(/3;). Moreover, we must havg, ~, X « so by Proposition
5.2.4 we have|3,|| = ||Xal|. Thus, in the worst case, whef@’|| = Ma, we would

have replaced” by a sequence a¥/, variables each having weak nofim a

The outbranching is a multiple of the boust ,- on the number of single transition

steps forX a = Y 3; this factor only depends on the leftmost variables.
Definition 5.3.2 By y is the cardinality of
{o/ | X S ad,ae At U{r}} U{p |YB S B a € Act U{T}}

Proposition 5.3.3 Let v be the cardinality o ar. If Xa =, Y3, there is a possible
match forXo = Y8 with at mostBx y ¥7%,(j — 1)v/ equations in a match, where

K = Ma + 1+ max(length(a), length(f)).

PROOFE By Proposition 5.3.2, we see that there is a possible matcH tor= Y § with
expressions with lengths bounded®y= M +1+max(length(a), length(3)). Sothe
total length on an expression is at m@&t, meaning that there are at m@jfz (j—1)0v?

different equations for any o % o/« in a possible match. O

Clearly,STEP is forwards sound in the following sense:

5.3. Atableau system for branching bisimulation 87

Proposition 5.3.4 (Forwards soundness &ITEP) If a =, (3, then there is a possible

matchM such that whenever’ = 5’ € M we haven’ =, 5.

The tableau construction procedure is analogous to that presented in Section 4.2. An
eliminating subtableau fak' o« = Y consists of attempted matches to the depth where
an equation of the form = ~(3 is reached. WhenX| < |Y| each non-residual leaf
of an eliminating subtableau fo¥ o = Y 3 is either labellecv = v/ (aresidualof the
subtableau), ot;oe = ;3. Because the number of successive attempted match&s is
there is at least one residual and since all norms are strictly positaugg 5 must persist
as suffixes throughout the subtableau. As before, for any such subtableau we pick one
residual node and call theresidual. If instead’| < | X | the same holds, only now the
residual isya = (3.

Unless a subtableau leaf is a successful terminal (Definition 5.3.4 below) it is used
as the basis of a new subtableau. However, before a new subtableau is constructed, for
every leaf one of th&UB rules is used to trim the length of the expressions in the new
subtableau root. ThBUB rules work just as th8&UB rules in the previous chapter, and

are forwards sound in the same sense:

Proposition 5.3.5 (Soundness o8UBL andSUBR) If o, &, 3;3 and a ~;, v then

;Y = B If you = B theno, =, By

PROOFE Exactly as in the proof of Proposition 4.2.4, only now using Propositions 5.2.5
and 5.2.1. O

The rules are only applied to nodes that areteaiinal Terminal nodes can either

be successfubr unsuccessful

Definition 5.3.3 A tableau node is annsuccessful termind it has one of the forms

1. a = gwith ||a|| # ||8]]

2. a = pwitha # ¢, 8 # ¢ and no possible match exists (i£TEP is inapplicable).

88 Chapter 5. Introducing silent actions

In both of these cases it is obvious that the expressions compared are not branching
bisimilar. Thus, whenever we see an unsuccessful terminal the whole tableau construction
aborts.

The nodes that can be successful terminals are those that are potential roots of

eliminating subtableaux:

Definition 5.3.4 Aresidual or consequent of an application &38B rule is asuccessful

terminalif it has one of the forms

1. o = [where there is another subtableau root above it on the path from the root
also labelledy =

2. a =«
X=A
€E=¢€ XY =BC STEP
Xy =pc S
XY = AC XYY = BCC Y=C STEP
Y= SUBL XY — BC SUBL R STEP

Figure 5-2: A successful tableau foX = A

Example 5.3.1 (Example 5.2.1 cont.) The tableau in Figure 5-2 is a successful tableau
for X = A. O

5.3.2 Termination, completeness, and soundness

It is important for our decidability result that all tableaux are finite. This follows from

reasoning entirely similar to that for the tableau system for strong bisimulation.

Theorem 5.3.1 For any equationy = (5 all tableaux are finite.

5.3. Atableau system for branching bisimulation 89

PROOE Since our tableaux are finitely branching by Proposition 5.3.3, bpidfs
Lemma an infinite tableau would have an infinite path. This would then be caused by the
combined absence of unsuccessful termination and the successful termination condition
1 along that path. Since we have assurBgadNF and normedness, there is a uniform
bound on the total length of the consequent 8B rule. Assume wlog that we have a

subtableau with roak o« = Y3 and that &UBL rule was applied to a subtableau leaf:

ara = 313

SUBL
ary = B

Since the depth of the subtableau is at mast, repeated applications of Proposi-
tion 5.3.2 tell us thatength(a;) < ma(Ma + 1), length(3;) < ma(Ma + 1) and
length(y) < ma(Ma + 1). This implies a uniform bound on the length®f)B conse-
quents of3ma (Ma + 1), so there can be no infinite path through infinitely m&tyB
applications since there are of course only finitely many different equations of any given
length. Nor can an infinite path pass through infinitely many residuals. For if a residual
ap = [y is above the residual; = ; we have that|ag|| = ||5o]| < ||ai]| = ||51]]-
By Proposition 5.2.1, any subsequence of residuals therefore has a uniform bound on the

total lengths of expressions compared, again ensuring termination. a

It is easily seen that the tableau system is complete:
Theorem 5.3.21f a = 3, « = 3 has a successful tableau.

PROOFE By the forwards soundness of tiBTEP and SUB rules (Propositions 5.3.4
and 5.3.5) we can use the tableau rules in such a way that only valid consequents arise.

Clearly this must give rise to a finite, successful tableau. O

Finally we must show soundness of the tableau system, namely that the existence
of a successful tableau fer = indicates thaty ~;, 5. This follows from the fact

that the tableau system tries to construct a ‘self-branching bisimulation’, which, if a

90 Chapter 5. Introducing silent actions

successful tableau is reached, consists of the symmetric closure of the set of nodes in
the successful tableau. This notion is the counterpart of the notion of a self-bisimulation
defined in Section 2.2.5 and used in the proof of Theorem 4.2.3. In order to define
the corresponding notion for branching bisimulation, we need a simple rephrasing of

Proposition 5.1.1:

Proposition 5.3.6 A branching bisimulation on a transition grapf is a symmetric
relation R C Pr x Pr such that wheneverRq for anya € Act U {7} we have that if
P =po—pi— - Ppm— p then there exisfy, qi, - . . , ¢m, ¢ Such thaty, = ¢ andp; Rg;

forl1 <i<m,p'Rq¢ and fori < m

g = ;i = gi+1 Or
— there exist;,, . . ., i, suchthay; = ¢;, = --- i, ,, = ¢iy1 Withp; Rg;; for
1< j<n()
and either

e o = 7 andg,, = ¢ or

e there exist,,, . . ., ¢m,,, Such thaiy, = gm, = - Gm, ., — ¢

PROOE Clearly, any relation that satisfies the conditions of the proposition is a bb (let
m = 0). For the reverse direction, suppgse- py — p1 — - --pm — p'. One then uses

a straightforward induction im.
Base case = 0: This is immediate, since here the definitions coincide.

Step - assuming for, = k: Here we know by induction hypothesis that the transition
sequence = py — p1 — ---p, can be matched according to the conditions in
the proposition. We then extend the match to comygr= p' by appealing to
Proposition 5.1.1.

5.3. Atableau system for branching bisimulation 91

O

Recall that o is the least congruence under sequential composition contaiing

(Definition 2.2.9).

Definition 5.3.5 A branching bisimulation up to sequential congruence (sbh)sym-
metric relation R C Var* x Var* such that whenevetR3 o = ¢ iff 5 = ¢ and
foranya € Act U {7} we have that itv = ay > a; = -+ a,, — o/ then there exist

Bo, B1y -+, Bm, 8" such thatg, = 3 and o; o Giforl < i< m,d o 3 and for

1< m
e —[i=pino0r
— there eXiSﬁil, ce ’ﬁin(i) s.t. 5 54 /Bil 5. ﬁin(i) 54 ﬁi+1 with o; ?* ﬂz] for
1<j <nfi)
and either

e ¢ =Tandg, = or

o there exisB,,, - - -, B, St B = By = =+ By — B With o+ [Imj fOr

1 <j < n(m).

The reason why a bisimulation up to sequential congruence can be said to be an
essential part of a bisimulation lies in the following result, which is a generalization of

Lemma2.2.1.
Lemma5.3.1If Ris an sbb then?* is a bb.

PROOEF It is clear that e is symmetric. Now suppose o (3; we must show that
we can match transitions withira]?* as required by Definition 5.3.% o £ must be

due tox — "3 for somen, and the proof now proceeds by inductiomin

92 Chapter 5. Introducing silent actions

Base case In = 0 is obvious, since: = (in this case.

Base case 2; = 1 must havex = ooy, 5 = of8yx With agRSy. If ag = [y = €, we

are done. Otherwise, if # ¢ any transition sequence
aD o 5oy, a (5.1)

is due to

with o;; = o;a9x for 1 < i < m ando’ = o'apy. It is easy to see that this transition

sequence can be matched by

oBox 5 160X = comBoX = U’ﬁoX

with ;) o o:Box forall 1 <i < mande’agy o o' Box.

If o =€, (5.1) becomes

Qo X l> Qo1 X l> e Qom X i> OZE)X (52)
dueto
Ozol>0é()1l> "'Oé()mi>0zg
There exist3y, . . ., Bom, 3, Where for alli either 5y; = [y;41 for i > 1 or there exist
Boits -+ ﬁ(l)m(i) such thatdy = Sy — - - * Boon(0) 5 Bor = - Bom = - * Bomn(m) = By

is a matching transition sequence wit§) o Boij for1 < i <mandl < j < n(i)and

o e By If a = 7, possiblys;,, = ;. Here (5.2) is matched by

ﬁng"'501Xl>"'50mxl>"'i>ﬁ(l))<

where possiblyj;,, x = G)x.

5.3. Atableau system for branching bisimulation 93

Stepyr = k+ 1 assuming fok, wherek > 1: Here there is ap such thaty N kp N B.
By induction hypothesis, we must have that (5.1) is matched ygiegp, p1, - . -, pm,

whereq; < pi and eithemp; = p;, or there exisp;, . . ., pin(;) Such that

pi = pir = - Pin(3) = pis1 (5.3)
with «; 3 Py for 1 < j < n(i) and eitherp,, = p' with a = 7 or there exist

Pmls - - - Pmn(m) SUCH that

Each transition sequence of the form (5.3) can be matcheél By, ; such that either

B; = Bi+1 Or there exis;y, . . ., Bix;) sSuch that

ﬁi l> ﬂil l> ﬁiZ e ﬁzkZ l> ﬁi—l—l

such that for alll < i < m we havep; e B3; andp; e Bij for 1 < j < n(i). And if
pm 7 p we can match similarly witlt,, = --- % 3. By transitivity of -+ We see

that the concatenation of the matching sequences

T, T,

ﬂo_>ﬂl_>l>ﬂml>i>ﬁ’

constitutes the desired matching sequence of transitions for (5.1). O

Corollary 5.3.1 «a =, § iff there is an sblk such thainR.
PrROOFE From the above and from the fact that any bb is an shb. O

We now have
Theorem 5.3.3If o = # has a successful tableduthen
Rr ={(d/,3) | o/ = § or B’ = o is an equation irT }

is an shb.

94 Chapter 5. Introducing silent actions

PROOE It is obvious thatRt is symmetric. Since all variables have positive norms, we
see that' = ¢ iff 5’ = e. We must now show that for any/’, ') € Ry any transition

sequence

o Hal D al S A (5.4)

m

can match within<R—>* . We now proceed by induction in the lengthof ther-transition.
T
Base casey = 0: Here (5.4) isx' % o/, and there are now four cases to be considered,

depending on where ifi o/ = /' is found.

e If o/ = (' is a successful terminal due to condition 2, it is obvious that we can

match within Pl since any least congruence contains the identity.
T

o If o/ = 3’ is a successful terminal due to condition 1 this means that there is a
subtableau root above it also labelled= '. This node must be the premise of a
STEP application, and becaugdeis successful, a possible match exists so we can

find a matching sequence
ﬁ, l> 6{11 l> .. l> /Biln(l) i> ﬁ”

where(c/, 37;) € Ry for1 < j <n(1)and(a”, 8") € Rr.

e If o/ = (' is aninternal node and the premise G BEP, we proceed exactly as in

the previous case for termination condition 1.

e If o/ = (' is an internal node and the premise @B, assume wlog that the rule
applied wasSUBL. Further suppose’ = ' is X oy = Y; 5,6 and thath =

is the residual. Then we have

Xioga = Ylﬁlﬂ
Xjoy =Y16

SUBL

5.3. Atableau system for branching bisimulation 95

If X104y = Y15 is a terminal node it can either be an identity (condition 2) or a
repeated occurrence (condition 1). In the former case we know that the transition
X717 % o ayy can be matched by; 3 373, wherea” o,y = 373, so clearly
oy . BB

In the latter case the situation is the same as WBIEBP is applied to theSUB
consequent. Here the transitioh o,y = o/« will be matched either by; 3,

(if @ = 7) with o/ oy yR1Y1 3, or by some

Yif = 81161 = - = Bl B = Ba b

with (a1, B7;61) € Ry for 1 < j < n(1) and (a1, B61) € Rr. Clearly
Xioqa 5 iff Xjay7 % and thus (5.4) is of the fornY; a; o = o//a; o which can

be matched either by; 5,3 if a = 7 or by

YiBiB = Bl1hB - = BunbiB = B 618

For then X, o, o e Bi;pp for 1 < j < n(1) and oo« o BB . This
holds, sincex P 76 and X,ayyRr), 61 implies X,a,7f P B1;0.8 giving
X« . B1;6:8 and agayBRr B, 613, implying oo a . Bu 3. Simi-

larly, o/ a; o o Yi16:0.

Step: Supposey & o) & ---a! % a". If o = 3 is a terminal because of condition
2, it is obvious that we can match Withiﬁ}%—w . Otherwise, by the base case we know
T

thato’ = o can be matched either ly; e G' or by
T

Q,
BB 5 By = B

where o . Bi; for 1 < j < n(1) and o4 . B1. Now if (of,3]) € Ry (or
(o, #") € Rt) we know by induction hypothesis that we can match the transition

sequencey; = ---a/ % o within ¢+ SO our match for (5.4) simply consists in
T

96 Chapter 5. Introducing silent actions

combining these two matches. From the base case we see that the only case where it
mightnotbe the case thdt;, 3]) € Rt or (o}, /') € Rt iswhena’ = /' is the premise
of a SUB rule. So assume wlog that the rule applied &$BL and thato’ = ' is

X =Y 3,6 with a« = v as the residual. Then we have

Xioga = 3/1515
Xjoy =Y16

SUBL

So hereX,a;a = Xyazaia, SO consequently), = 3 is of the form X,as010 =
Yéﬁgﬁlﬁ with either(XQOZQOZI’Y, }/26251) € Rt or XgOéQOél’)/ = }/Qﬁgﬁl, if we are dealing

with a terminal of type 2. A closer look at the transition sequemce’ ---ao! % o

m

reveals that it is of the form

Xoooya = azaia- -+ = appoa 5 o oo (5.5)
which is due to
Xotpo1y = a0y« -+ - oy — o oy

Both in the cases wheki,as 1y = Y5555, is a terminal of type 2 and when we have
(Xoagan7, Yafa/31) € Rr, we know (in the latter case by induction hypothesis) that there

must exist3; 4, for 3 < i < m andp{ 3, such that either

Baf = B3P B+ = B

or,ifa =1

Bab = BaBr -+ BB = By B

with o0y o G0 and eithers; 3, = (116, or there are3;; 6, for 1 < j < n(i)
T

such that3; 81 = B 1 = -+ Biy1 1 With oy <R—T>* Bijfr and of aqy <R—T>* By If

a # 7, we can also havg,,; 5, for 1 < j < n(m) with 8,81 = B = -+ = 675

anda,, a7y . Bmjf1 andaf oy .. Bm1. At any rate, our match for the sequence
T T

5.3. Atableau system for branching bisimulation 97

o B af 5 ---al, % o consists of the concatenation of the matchdbes o) and that
for (5.5), which is either

Bofi B B3P+ BB+ 5L 5B

or,ifa=1

Bofrf = Bsf1B -+ Pmfr B = B BB

with 5,6, 8 for3 < i < mandif ;515 # Bi+1 616 the additional;; 3, 5 for1 < j < n(i).
Clearlya;aya <+ 5if1 3, aiona e G008, efana o+ B B fandamarar <+ B 019,
the latter if 3,,, # (7. O

So we now get the soundness of the tableau system as

Corollary 5.3.2 If a = 3 has a successful tableau thernv, S.

5.3.3 Complexity of the tableau system and decidability

The complexity of the tableau system can be measured in terms of the maximal depth
of a tableau, i.e. the length w.r.6TEP applications of the longest possible path in a
successful tableau for an equatidiy = Y 5. Letwv be the cardinality od/ar. By the
discussion in the proof of Theorem 5.3.1 we have that®di3 consequent has a length

of at mosBBma (Ma + 1), so an upper bound on the number of distlBoiB consequents
along any tableau path 52" 2*"(j — 1)v7. Between any tw@UB consequents
there are at mo§M1 residuals, since the worst that can happen is that the total
norm decreases ¥ in every subtableau along the way. Thus, any path that contains
SUB consequents can have at mb@%} Z?ZZAM“?’(]' — 1)v’ subtableau roots.

As for the leftmost path, all of whose subtableau roots are residuals, there can be at most
max(||a||, ||3]]) residuals, since the norm of the residuals is strictly decreasing. So, since
a subtableau can have a depth wSTEP applications of at most 5, any path can have

a length of at most

98 Chapter 5. Introducing silent actions

3ma(Ma+1)
D SER TR B

ma max({e], |[5]], [

STEPs.

We also have an upper bound on the outbranching of any tableakidos Y j.
This follows from the fact that there is a uniform upper bound on the total length of any
subtableau root in any tableau fara = Y 3. Any subtableau root along the leftmost
path is a residual and has its total length boundea@ bwix(||«||, ||3]|). Since, as we
saw, anySUB consequent has its length boundedby, (Ma + 1), and thus also has a
norm of at mos8ma (Ma + 1), any of its following residuals must also have a length of

at most3ma (Ma + 1). So the length of any subtableau root is bounded by

L = max(2max(||al, ||5]]), 3ma(Ma + 1))

By repeated applications of Proposition 5.3.2 we see that any node in a subtableau
has a length of at mo&ina (Ma + 1) + L. By Proposition 5.3.3 this means that there is
a uniform upper bound on the numberFEP consequents at any point in any tableau
for Xa =Y of
ZmA(MA—l—l)—i-L

max{Bxy | X,Y € Var} > (j— 1! (5.7)

i=2

Theorem 5.3.4 For any X a = Y 3 there are finitely many possible tableaux.

PrROOF From (5.6) and (5.7). O

Theorem 5.3.5For any weakly normed\ it is decidable whether or nat =, 5 for

a, € Var®.

PROOF A naive decision procedure fox, constructs all the finitely many tableaux for

a = 3, answering ‘yes’ if a successful tableau occurs and ‘no’ otherwise. a

5.3. Atableau system for branching bisimulation 99

Just as the system in Chapter 4, this tableau system has exponential complexity in
terms of the longest possible path of a generated tableau. But again, in the case of a
successful tableau we get additional information in the form of a finite relation whose
congruence closure w.r.t. sequential composition is a bisimulation containing the initial

equation.

100 Chapter 5. Introducing silent actions

Rule within a subtableau

STEP a=p where{oq = (... = (i}
a1=51---041c:5k

is a possible match far = 3

Rules for new subtableaux

SUBL i = Siff wherea = 74 is the residual
oy =0

SUBR oo = B8 whereya = (3 is the residual
a; = By

Table 5-1: The tableau rules

Chapter 6

Negative results

In [HT90] Huynh and Tian have shown that the readiness and failures equivalences are
undecidable for BPA processes. In this chapter we give an alternative account of their
proof and examine all other equivalences in Figure 1-1, showingitireof them are
decidable for normed BPA processes and that a number of preorders are also undecidable.
This we do by reducing language containment for deterministic processes to the various
preorders and reducing language equivalence and in one case trace equivalence for

normed BPA processes to the equivalences.

6.1 Deterministic BPA processes

In what follows the undecidability of language inclusion for simple grammars, a result

established by Friedman in [Fri76], is crucial.

Definition 6.1.1 [KH66] A simple grammais a context-free grammar in GNF such that

there are no two distinct production$ — aa;, A — aay for any nonterminal.

Thus, we see that simple grammars correspondei@rministicsystems of BPA
equations in GNF. For simple context-free grammars the language equivalence problem

was proved to be decidable by Korenjak and Hopcroft [KH66]. However, as was later

101

102 Chapter 6. Negative results

shown by Friedman, the language containment problemdgcidable The proof of this
consists in a reduction from the halting problem via the Post correspondence problem:
Given a Turing machiné/ and an inputy we can effectively construct a Post system
and from it two simple grammars such that language inclusion holds iff the Post system
has a match iffi/ halts onw. Reformulated in the BPA framework, Friedman’s theorem

reads:

Theorem 6.1.1Let A be a normed and deterministic system of BPA equations. It is
undecidable whethek(«) C L(3) for «, 5 € Var*.

However, itis important to note that for deterministic BPA processes trace equivalence

and bisimulation equivalence coincide:

Proposition 6.1.1 If A is a deterministic normed system of BPA equatidns«) =
Tr(B)iff a ~ g foranya, 3 € Var*.

PrROOE {(a, 3) | Tr(«) = Tr(B)} is a bisimulation. Since\ is deterministic, there
is exactly onen’ such that % o'. SinceTr(a) = Tr(3) we know that there also is
exactly one3’ such that? % ' and thatl'r(o/) = T'r('). The other half of the proof is

similar. O

Consequently, in the deterministic case the linear/branching time hierarchy collapses
(see also [Eng85] and [vG90a]), and since language equivalence is decalbbtpiv-
alences arédecidablein this case. However, we already know from Theorems 2.2.2 and
2.2.3 that the language and trace equivalences are undecidable for the full BPA, so there

are bound to be differences in the general case.

6.2 Simulation equivalence

We start off with simulation and simulation equivalence.

6.3. n-nested simulation equivalence 103

Definition 6.2.1 A binary relationR? between processes isanulationiff whenevepRq
then for eachn € Act p 5 p' = 3Jg:q¢-> ¢ Ap'Rq. A procesy is simulatedby a
process;, notationp S, iff there is a simulation relatiol® with pRq. Two processes

andq are simulation equivalentwrittenp < g, iff p Sqg andq Sp.

We first show that that simulation is undecidable for deterministic normed BPA
processes. This is a direct corollary of Theorem 6.1.1; this was pointed out to me by

Didier Caucal.
Theorem 6.2.1 Simulation is undecidable for deterministic normed BPA processes.

PROOF Let A define a normed deterministic BPA process andlet € Var*. Now let

v/ be a new action not irlct. We then have

L(e) C L(B) iff ay/SBY

asa andg are deterministic. With this observation, we reduce language containment for
deterministic normed BPA processes to the simulation preorder for deterministic normed

BPA processes. O

Theorem 6.2.2 Simulation equivalence is undecidable for normed BPA processes.

PROOF We can reduce simulation to simulation equivalence by the following observation,

which was pointed out to me by Jan Friso Groote:

alSp iff a+ <+ p.

6.3 n-nested simulation equivalence

The notion ofn-nested simulation equivalence was introduced by Groote and Vaandrager
[GV89] in their study of thayft/tyxtformat for structured operational semantics because

2-nested simulation equivalence is the completed trace congruence for this format.

104 Chapter 6. Negative results

Definition 6.3.1 For all n € N, n-nested simulationwritten S, is inductively defined

by
e pG'q for all processep andg,
o p Gty iff there is a simulation relatio® C (S") ! with pRy.
Two processes andg are n-nested simulation equivalentrittenp +" ¢, iff pS"¢ and

qS"p.

Note thatl-nested simulation is just simulation and that therefbreested simulation

equivalence is simulation equivalence.

Lemma 6.3.1 For all n € N, n-nested simulation is a precongruence under action

prefixing anc4-.

PrOOE Induction inn.

n =1: This simply states that is a precongruence under action prefixing and

Clearly if pS ¢ andp & ¢’ we have thatp S aqg andp +p' S g + ¢'.

Step - assuming for: Here if p "' ¢ we have that there is a simulatighC (S") !
such thatpRq. But then, since; S"p we must by induction hypothesis have
aqS"ap and thusRk U {(ap, aq)} is a simulation withR U {(ap,aq)} C (S")~".

The proof for+ is entirely similar.

O

The undecidability proof that follows is due to Jan Friso Groote. The class of
processes defined in the following can be used to reduce simulation to»butkted
simulation andr-nested simulation equivalence.

Some of these processes are depicted in Figure 6-1.

6.3. n-nested simulation equivalence

r(p,q): s'(p, q):

r*(p,q): s*(p, q):

3
L)
i

Figure 6-1: r"(p, q) ands™(p,q) forn =1,2,3

105

Definition 6.3.2 Letp andq be processes and letbe an action. The processe¥p, q)

ands™(p, q) for n > 0 are inductively defined by:

r'(p,q) =p+q, s'(p,q) = p,

" (p,q) = ar™(p,q) +as"(p, q),

Observe that i) andq are normed BPA processes, then soréf, ¢) ands™(p, q).

"M (p,q) = ar™(p,q).

Lemma 6.3.2 Letp andq be processes. For all > 0 it holds that

1. s"(p,q) S"r"(p,q),

2. ™(p,q) S"s"(p, q) iff ¢ Sp.

PROOF. Both proofs proceed by induction. For 1 we have

n =1: The lemma then reduces pd p + ¢ which obviously holds.

Step - assuming for: Define for processgsandg the simulation

R = {(ar"(p,q),ar"(p,q) + as"(p,q))} U Id

106 Chapter 6. Negative results

whereld is the identity relation. R C (S")~!, as we have™(p,q) S"r"(p, q)
ands"(p, q) S"r"(p, q) by induction hypothesis, which by Lemma 6.3.1 gives us

ar™(p,q) + as™(p,q) S"ar"(p, q).

For 2 the proofis

n =1: The lemma here reduces jpo+ ¢S p iff ¢S p. If there is a simulatior? with
qRpthen{(p+q,p)} U RUId s a simulation. And i) + ¢ Rp for a simulationR,
then{(¢,p)} U R is a simulation.

Step - assuming for: For the ‘if’ direction suppose for processeandq thatg Sp and
™ (p, q) G"s"(p, q). Then define

R = {(ar™(p,q) + as"(p,q), ar"(p,q))} U (G") "

R C (S")~! since Lemma 6.3.1 gives us™(p,q) S"ar"(p,q) + as"(p,q), SO
r(p, q) G st (p, ¢). For the ‘only if’ direction suppose & p. By induc-
tion hypothesis™(p,q) Z" s"(p,q). So also have(p,q) &""'s"t1(p,q),
for any candidate simulation would be one containing the pair"(p,q) +
as"(p,q),ar™(p,q)). Asr"(p,q) = s"(p,q) can only be matched by the tran-
sition s"*1(p, q) = r*(p, q) it must be that(s"(p, q¢),"(p,q)) € R. But since
R C (S")"! we would have™(p, q) S"s"(p,),

Theorem 6.3.1 For n > 0 n-nested simulation ana-nested simulation equivalence are

undecidable for normed BPA processes.

PROOF We reduce simulation te-nested simulation using the following observation:

qSp it r"(p,q) S"s"(p, q).

We reduce simulation ta-nested simulation equivalence using:

qSp iff r"(p,q) <" " (p,q).

6.4. n-bounded-tr-bisimulation 107

Becausen > 0 both facts follow directly from Lemma 6.3.2. As simulation is unde-
cidable,n-nested simulation and-nested simulation equivalence cannot be decidable.
O

One should notice here that the limit of thenested simulation equivalences as

n — w is strong bisimulation equivalence:

Theorem 6.3.2[GV89] For any finitely branching labelled transition graph we have

Sowe here have the odd situation, because of Theorem 6.3.2 and the results of Chapter

4, that while~ is decidable, it is the limit of a series of undecidable approximations.

6.4 n-bounded-tr-bisimulation

We now considen—bounded-tr-bisimulation. This equivalence is a generalization of
trace equivalence and tipessible futures equivalenoé [RB81], in thatl-bounded-tr-

bisimulation corresponds to the former aldounded-tr-bisimulation to the latter.

Definition 6.4.1 We definen-bounded-tr-bisimulationwritten ~7., inductively as fol-

troy

lows.
e p ~Y ¢forall processep andg,
o p~ptt qiff
— if p = p’ then3q' with ¢ = ¢’ andp’ ~7. ¢’ and
— if ¢ = ¢’ then3p’ with p = p’ andp’ ~7. ¢'.
This notion of equivalence also arises naturally as the consecutive approximations
of bisimulation equivalence [Mil80,Mil89]. For finitely branching transition graphs, and

therefore for BPA processes, the limit of thebounded-tr-bisimulations for — w

coincides with bisimulation equivalence:

108 Chapter 6. Negative results

Theorem 6.4.1 [Mil89] For any finitely branching labelled transition graph we have
~J g m N?T‘
n=0
The following proof uses the same reduction that was employed in [KS90] to show

that n-tr-bisimulation for regular processes is PSPACE-complete. The following easy

lemma is crucial:
Lemma 6.4.1 [KS90] Letp andq be processes. For atl > 0 it holds that
P~ qiff p+g -~y pandp + g~y g
Lemma 6.4.2 [KS90] Letp andq be processes. For all > 0 it holds that
P~ qiffalp +q) ~5H ap + ag

PrOOF For the ‘if’ half we prove the contrapositive, stating thatt},. ¢ implies that
a(p+q) £ ap+aq. Assumep A7 q. Butthena(p+q) % p+qwhereasip +aq - p
andap + aq % q. Sincep 1. q we have by the previous lemma that either ¢ % p
orp+q #% q, so clearlya(p + q) #5t ap + ag. The ‘only if half of the proof
also proceeds by contraposition, showing that+ ¢) 5t ap + ag impliesp A7 q.
Assumingz(p+q) £ ap+aq, the action string that distinguishe® + ¢) andap + aq
must bea, since for any longer string the w-derivatives are identical. Thus, either

p+q AL porp+q % g, and again by the previous lemma/}. q. O

Theorem 6.4.2 For n > 0 n-bounded-tr-bisimulation is undecidable for normed BPA

processes.

PROOF We reducen-bounded-tr-bisimulation ta + 1-bounded-tr-bisimulation using
Lemma6.4.2. Since-bounded-tr-bisimulation is trace equivalence, which is undecidable

(Theorem 2.2.3), the result follows. O

So the consequence of the above result, seen in conjunction with Theorem 6.4.1 and
the results in Chapter 4, is again the rather odd one-thiat decidable while none of

these non-trivial approximations are!

6.5. Failures, readiness, failure-trace and ready-trace equivalences 109

6.5 Failures, readiness, failure-trace and ready-trace equiv-
alences

In their paper [HT90] Huynh and Tian show that failure equivalence [BHR84] and
readiness equivalence [BKO88,0H86] are undecidable for normed BPA processes. Here
we give an alternative account of their technique, using a simpler transformation to show

that ready trace and failure trace equivalence are undecidable.
Definition 6.5.1 For any procesg, define
failuresp) = {(w, X) |} :p S Vaec X :p 2},

readiegp) = {(w, X) | T :p=>p,p > < a€ X}

Processeg and ¢ are failures equivalentwritten p~ ;q, iff failures(p) = failuregq).

Processep andq are readiness equivalentrittenp ~, ¢, iff readiegp) = readiegq).

The proof technique of Huynh and Tian involves defining a class of processes, called
locally unary processes, for which failures and readiness equivalence coincide with

completed trace equivalence.

Definition 6.5.2 [HT90] A proces is locally unaryiff for eachp’ with p = p' there is

at most one: € Act such thap' % .
Lemma 6.5.1 [HT90] If p andq are locally unary normed processes then
pr~rq iff p~yg iff L(p) = L(g).

PROOR[HTOQ] It is sufficient to show that.(p) = L(q) impliesp ~, ¢q. Suppose
L(p) = L(q) and (w, X) € readiegp). If X = () we havew € L(p) and hence
(w,0) € readies(q). Otherwise, since is locally unary we haveX = {a} for some

a € Act. Sincep is normed, there must be@ € Act* such thatwaw' € L(q).

110 Chapter 6. Negative results

SinceL(p) = L(q) andgq is locally unary and normed, we must therefore also have that

(w,{a}) € readiegq). O

The idea is now, given A to construct a locally unard’ containing the variables
of A such thatL(«) = L(3) in A if and only if L(a) = L(f5) in A’. The following
construction accomplishes this. The idea is simply to precede any actior¢#bthat

indicates that a nondeterministic choice has been made.

Definition 6.5.3 Given a system of equationsin GNF letA’ have the action sedct’ =
ActU{#} (Wwhere# is a new action) and process variabléar’ = Varu{X,|a € Act}.

For every process equation il

def
X; = X aj0,

create the equations

aj
in the new system\’.

It is obvious that\’ is normed iffA is (in fact if | X| = k£ in A then| X | = 2k in A).

We now have
Proposition 6.5.1 A’ is locally unary.

PROOF If a state in the transition graph fax’ is of the form X~ with X € Var we
must haveX ~ # and nothing else. Otherwise, if it is of the fotkn,+ we can only have

Xy > O
The following is now obvious from the definition af’.

Proposition 6.5.2 For a € Var* we havey-% o/a” in A iff a 5 X,a'a” % o/a’ in A,

6.5. Failures, readiness, failure-trace and ready-trace equivalences 111
We therefore also see that

Proposition 6.5.3 For a € Var* biby...b, € L(«) relative to A iff #b,#bs...#b,, €

L(«) relative toA'.

Theorem 6.5.1[HT90] Failures and readiness equivalence are undecidable for normed

BPA processes.

PROOFE From Proposition 6.5.3 we can reduce language equivalence for normed BPA
processes to language equivalence for locally unary processes and the theorem now

follows from Lemma 6.5.1. O

The above ideas can also be used to prove that failure trace and ready trace equivalence
are undecidable. For normed BPA, failure trace equivalence [vG90b] coincides with the

notion of refusal testing [Phi87].

Definition 6.5.4 Therefusal relation for 4 C Act is defined for any processesy
by p A q iff p = ¢ and whenever € A, p A . Thefailure tracerelations = for
u € (Act UP(Act))* are defined as the reflexive and transitive closure of the refusal and

transition relations. Define
failure-tracegp) = {u € (Act UP(Act))* | Ip' :p = '}

Processeg and g are failure-trace equivalenwrittenp ~ . ¢ iff failure-tracegp) =

failure-tracegq).

The definition of ready trace equivalence that we use here is a characterisation presented
in [vG90Db].

Definition 6.5.5 Define

ready-tracép) = {Apa1 A ... a, A, |

112 Chapter 6. Negative results

oy Pn P =Do > p1e DD, Di— = a€ A;,0<i<n}

Processe® and ¢ are ready trace equivalentritten p ~,,,. ¢, iff ready-tracép) =

ready-tracéq).

Lemma 6.5.2 If pandg are locally unary normed processes thew s, ¢iff L(p) = L(q)

iff P ~rir 4-

PROOE It is enough to show that(p) = L(q) impliesp ~, ¢ andp ~,, g. Define

h: (Act UP(Act))* — Act* as the homomorphic extension of

h(u) =

e ifue P(Act)
u otherwise.

Then, ifu € failure-tracegp) clearly for somev € Act*, h(u)v € L(p). Thus, since
L(p) = L(q) we must havé:(u)v € L(q) and sincey is locally unary and normed, it is
now easy to see that € failure-tracegq). For the other part of the proof, note that if
ApaiAras . .. ay A, is a ready trace for a locally unary process,All(0 < i < n) are
singleton sets and,, is the empty set or a singleton set. Then i ready-tracép) we
have a € Act* suchthat(u)v € L(p). SinceL(p) = L(q) we musthavé(u)v € L(q),

and sincey is locally unary and normed we getc ready-tracéq). O

Corollary 6.5.1 Failure trace equivalence and ready trace equivalence are undecidable

for normed BPA processes.

6.6 Ready-simulation or 2/3-bisimulation

The notion of ready simulation (or 2/3-bisimulation) originated in work by Bloom, Istrail
and Meyer [BIM90] and Larsen and Skou [LS90]. It is the completed trace congruence
induced by the GSOS-format [BIM90].

6.6. Ready-simulation or 2/3-bisimulation 113

Definition 6.6.1 ArelationR between processes iseady simulationffitis a simulation
and whenevepRq then for eachn € Act we havep % if ¢ % . We say that; ready
simulates, written p G,.q, iff there is a ready simulatio® with pRq. Two processes

andq areready simulation equivalenirittenp <, q, iff pS,.q andq §,p.

The idea behind the proof in this section is to find a class of processes where the
ready simulation and simulation preorders coincide. The following class of processes,

introduced by Jan Friso Groote, is essential here:

Definition 6.6.2 A system of process equatiansin GNF is said to béwo-step deter-

ministiciff whenever % o, % anda % a, % thena; = ..

Note that the notion of being two-step deterministic is strictly weaker than that of being
deterministic.

We now show that for locally unary, two step deterministic processes language
inclusion coincides with ready simulation. We use the construction of Definition 6.5.3
to show that language inclusion for deterministic processes can be reduced to language
inclusion for unary locally, two-step deterministic processes. This enables us to show
that ready simulation is undecidable for locally unary, two step deterministic processes.

The following two results follow immediately from Propositions 6.5.2 and 6.5.3. Let

A andA’ be given as in Definition 6.5.3.

Proposition 6.6.1 If A is deterministic, ther\’ is two-step deterministic.

Lemma 6.6.1 For a, f € Var* L(a) C L(B) in Aiff L(a) C L(f5) in A'.

PrROOF Directly from Proposition 6.5.3. O

The next lemma is due to Jan Friso Groote.

Lemma 6.6.2 Let A’ define a normed BPA process in GNFAf is locally unary and
two-step deterministic, then for amy 5 € Var* we haveL(«) C L(S) iff a/ S, 8v/

(where,/ is a new action not occurring irct’).

114 Chapter 6. Negative results

PROOE The ‘if’ half is obvious, so it suffices to prove the ‘only if’ half. We define the

relation

R ={(av,8V) [L(a) € L(B)}
and show that it is a ready simulation. This is easy for the pgir,/). So we only
consider pairga./, 5/) whereq, 3 # .

First we show that i3,/ = thena,/ % . So, assumg,/ = . First observe, as is
normed, thatey/ " %" for somen > 0. As L(a) C L(8), By "% . As 3 is locally
unary, it must be that = b,. Hencea/ % .

Now we show that? is a simulation relation. Assunte./, 3y/) € Randay/ - «'.
There is exactly one actidnsuch thaty’ % . If b = v/ theno/ = /. Moreover, there
is somep’ such that3/ % 3’ 4 Clearly3’ =/, so(a/,) € R. If b # / then

o = o/ for somea” and, as\’ is two-step deterministic
L(a"\/) = {bw | abw € L(ay/),w € (Act™)\/}.

As A’ is two-step deterministic, there is exactly ofesuch that3/ = (' bp = B/
andL(p"y/) = {bw | abw € L(B+/)}. As clearlyL(«"/) C L(3"y/) it follows that

(a//\/, ﬂ”\/) € R. 0

We now have the following:
Theorem 6.6.1 Ready simulation is undecidable for normed BPA processes.

PROOFE We reduce language containment for deterministic processes to ready simulation
for locally unary, two step deterministic processes. Given a deterministiet o, 5 €
Var*. We now have the following (strongly relying upon Lemmas 6.6.1 and 6.6.2),

where,/ is a new action:

L(a) CL(B)inA iff L(a) C L(f)in A’
iff ay/C.Ayin A

6.6. Ready-simulation or 2/3-bisimulation 115

Theorem 6.6.2 Ready simulation equivalence is undecidable for locally unary normed

BPA processes.

PROOFE As in the proof of Theorem 6.2.2, we can reduce simulation to ready simulation

equivalence by the following observation, first made by Jan Friso Groote:

aGf it a+ e, 6.

Chapter 7

Conclusion

In this final chapter we summarize the results of the previous chapters, describe open

problems and outline directions for further work on these.

7.1 Summary of the main results

We have shown (i€hapter 3) that a modal mu-calculus with lab€]s, ..., n — 1} can

define theSn.S -definablen-ary tree languages up to an observational equivalence. The
main idea in the proof is an application of Rabin’s theorem, which states thatittie
definable languages correspond toithary Rabin-recognizable tree languages. For any
Rabin-recognizable tree langua@ieve can, by extending our alphabet with a ‘silent’
label, by using an encoding scheme for the Rabin automdtoacceptingL, express

the transition relation and acceptance condition4grwithin the mu-calculus such that

a set of trees equivalent tb is defined. InChapter 4 we have given an alternative

and much simpler proof of the decidability of bisimulation equivalence for normed BPA
processes, first proved by Baeten, Bergstra and Klop [BBK87b,BBK87a] and later by
Caucal [Cau88,Cau90a]. Our decidability proof uses a tableau system closely related
to the branching algorithms employed in the study of equivalence problems in language

theory [KH66,Cou83]. If a successful tableau for an equationa 3 exists, the tableau

116

7.2. Various kinds of infinite transition graphs 117

provides us with a finite witness for a bisimulation containing/). This witness is

a self-bisimulation in the sense of [Cau88,Cau90a], which means that we by taking its
congruence closure w.r.t. sequential composition get a (potentially infinite) bisimulation
containing(a, 3). The length of the longest possible path in any tableau for a given
equation over variables in a system of process equattohas been found. We have
presented a sequent-based equational theory for bisimilarity over normed BPA processes
in 3-GNF, a result due to Colin Stirling. Its existence follows directly from the tableau
system; the theory is shown to be strongly sound and weakly complete. Finally, we have
shown how to extract a fundamental relati@rfas in the work of [Cau88,Cau90a]) from

a successful tableau far = 3 such thatw e (3. This is done via another so-called
auxiliary tableau system. Then, @hapter 5 we introduced silent actions into normed
BPA, considering a class of BPA processes with the restriction that process termination
must involve performing an observable action. We have then shown how the decidability
method of Chapter 4 could be modified to apply to van Glabbeek’s branching bisimulation
equivalence. IrChapter 6 we completed the picture by showing ttedk equivalences
below bisimulation in the linear/branching time hierarchy are undecidable for normed
BPA processes is-GNF and thus that they are undecidable for BPA processes in general.
The proofs involve reductions to the language inclusion problem for simple grammars
of [Fri76], and the language and trace equivalence problems for normed BPA processes.
The rest of the chapter consists of a discussion of open problems that relate to the work

in this thesis and how these may be approached.

7.2 Various kinds of infinite transition graphs

A main theme of this thesis has been the exploration of infinite-state transition graphs, in

particular their logics and equivalences. Several questions remain open here.

118 Chapter 7. Conclusion

7.2.1 SnS-definable tree languages

It is indeed possible that the mu-calculus with label f&t .., n — 1} andSnS are
entirely equi-expressive, not just modulo some equivalence. However, it is very unlikely
that we will ever find a direct translation froswn.S to the mu-calculus. For if we do,

this translation must have a hideous complexity, since the mu-calculus is elementary and
SnS is not. The encoding scheme employed in Chapter 3 does not contradict this; the
extraction of a Rabin automaton from a formuladnsS can introduce an exponential

blowup of the number of states every time a negation is considered [Rab69].

7.2.2 Context-free graphs

Aninteresting question that should be asked in the combined light of our equi-expressiveness
result and the results in Chapters 4 to 6 is what happens when we look at the so-called
context-free graphf which the transition graphs of normed BPA form a subclass.

Context-free graphs correspond to the transition graphs for pushdown automata. From
the point of view of bisimulation equivalence, pushdown automata are more expressive
than context-free grammars: Caucal and Monfort have shown [CM90] that there exist
pushdown automata whose transition graphs are not bisimilar to any graph for a context-
free grammar/normed BPA process.

Muller and Schupp have shown [MS85] that the counterpastaf for context-free
graphs, the monadic second-order theory of context-free graphs, is decidable. One may
now wonder how the mu-calculus with label sétis related to the monadic second-
order theory of context-free graphs over A more general question is how the monadic
second-order theory of (finitely branching) transition graphs is related to the mu-calculus.
It is not immediately clear exactly how one would approach this problem; the result for
SnS relied on the correspondence with Rabin automata. Rabin automata were originally
introduced because they provide one with a way of reducing the satisfiability of an

Sn.S formula to the question of whether the language accepted by an automaton is empty.

7.2. Various kinds of infinite transition graphs 119

In [MS85] Muller and Schupp use a tiling technique for approaching the decidability
problem. Whether this could be of use in establishing an equi-expressiveness result is

not obvious.

Since the transition graphs of normed BPA processes form a proper subclass of the
context-free graphs, one may also wonder whether the decidability result for bisimilarity

extends to pushdown automata.

The problem lies with the ‘split’ lemma, since it relies on the fact that the states in
the transition graph of a normed BPA process given in GNF are sequences of process
variables - any part of a string of variables is therefore itself a state. This is not the case
when we look at pushdown automata. Here a state in the transition graph is of the form
qw whereg is the state of the automaton amds a string representing the contents of the
stack. So we will have to use a different approach.

Here the various characterizations showing the regularity of context-free graphs may
be of interest. The decomposition result used by Baeten, Bergstra and Klop, stating that
a transition graph for a normed BPA process has finitely many connected fragments up
to translation equivalence, is a special case of a result established by Muller and Schupp
[MS85]. In the formulation of Caucal [Cau90b] this result says that the context-free

graphs are exactly those generated by some deterministic graph grammar.

7.2.3 Unnormed BPA

We have seen that almost all equivalences are undecidable for BPA, but for bisimulation
equivalence the case is certainly not closed, for we have only dealt with normed BPA.
Since an important application of process calculi is the modelling of systems that do not
terminate, the case where processes can have infinite norms is relevant indeed. A result
due to Baeten and Bergstra shows that in the case where the system of equations is guarded
andnoneof the process variables have a finite norm the solutions to the defining equations

are regular processes and thus have finite transition graphs. Intuitively, this should not

120 Chapter 7. Conclusion

surprise us since any process term that follows an unnormed variable can never give rise
to a transition — any summardy; X, in a GNF process equation wher€, | = co will

reduce tonX;. We therefore see that the only interesting case is the case where some
process variables are normed and others are not. The main problem that prevents us from
a direct extension of our result is again the ‘split’ lemma (Lemma 2.2.2), here since it
no longer holds in the unnormed case. What this tells us, though, is that if we want to
use the tableau method, we need to find another way to limit the growth of expressions.
A decidability result for the case where all processes involveddaterministichas

been dealt with by Caucal in [Cau86] in which it was shown that language equivalence
for simple context-free grammars is decidable. As was noted in Chapter 6, simple
grammars correspond to deterministic BPA processes, so here bisimulation and language
equivalence coincide. The approach used in [Cau86] is somewhat similar to that of
[Cau88,Cau90a], in that it is shown thatis a Thue congruence. Here, however, one
cannot rely on properties of the usual norm. Instead a prefix rjotjmgiven as the

homomorphic extension aiN, +) of

IX| i |X] < oo

X1y = .
0 if |.X|=o00

is used. Caucal's decision procedure consists of two semi-decision procedures, one
searching for the finite relation generatingand another searching for a bisimulation
error. It is not obvious how or if we could use this to find a tableau decision method
similar to that used in this thesis. Moreover, Caucal’s method does not provide us with a

way of extracting a complete axiomatization as was done in Chapter 4.

7.2.4 Beyond BPA

A natural and obvious extension of BPA would be to allow a notion of parallelism.
However, as we introduce more operators, we will eventually reach a process language

where bisimilarity is undecidable. But it might be that one could isolate a class of

7.3. Complexity bounds 121

static operators such that strong bisimilarity (and possibly also weak bisimilarity) would
remain decidable; here the view of static constructs put forward in eig8gfimay have
something to offer. In particular one may wonder if the parallel should include some
form of communication or simply be the merge operator. The case for weak equivalence
is of course especially interesting here if synchronization becomes a possibility.

One of the many problems with going beyond sequential composition is that we in
general no longer have finitely many process expressions with a given norm. If we are
to use a tableau method similar to that used in Chapters 4 and 5, we will probably need a

very different tableau system.

7.3 Complexity bounds

Even though we have established thais decidable for normed BPA, it remains to be
seen if the decidability is realistic. In other words: what is the lower complexity bound
? The proof due to Baeten, Bergstra and Klop gives no idea as to the complexity bound
of the decision method that they employ. It would be interesting to have a more precise
estimate of the value af (A4, A,, d), the level above which a periodic bisimulation must
exist, and compare this with our complexity bound in terms of the length of a longest
path. Caucal’s proof has a decision algorithm which enumerates all the finitely many
fundamental relations oWiar x Var™, filtering out the ones that are self-bisimulations
and ordering them undef. This algorithm must be exponential in the number of

variables but a more careful analysis is required.

7.4 \Weak equivalences

The results of Chapter 6 show that almost all the weak counterparts of the equivalences
in the linear/branching time hierarchy are undecidable, but there are still several open

guestions for the weak versions of bisimulation equivalence. For branching bisimulation

122 Chapter 7. Conclusion

over BPAgcas considered in Chapter 5, the restriction to processes with strictly positive
norms is rather strong, as it rules out the possibility of a process terminating silently.
A problem with having nullary norms in the tableau system is that we no longer are
guaranteed that and 3 persist throughout an eliminating subtableau o = Y3,

since a match foXo % may require access to observable actions ingideSo the
natural question is whether there is a way of introducing nullary norms. Moreover, we
would of course also want to get rid of the restriction of normedness altogether. However,
since this problem also needs to be tackled for strong bisimulation equivalence, it seems
that progress must first be made here before we can give any answer for the branching
bisimulation case. Last, but not least the questions for weak bisimilarity all remain open.
As we saw, Lemma 5.2.1 does not hold for this equivalence so a different approach must

be used in that case.

7.5 Equational theories

It would be nice to give another formulation of the theory presented in Section 4.3 that did
not have to use the simultaneous fixed-point inductionR1l2. In particular, we would

want a formulation that used explicit fixed points in process expressions and extended to
all BPA processes. The importance of such an equational theory for the full BPA is that it
would generalize the axiomatization for regular processes [Mil84]. However, the crucial
difficulty in extending Milner’s theory centres on the appropriate fixed-point induction
rule. A case to ponder on is thgiX.aX)E ~ (uX.aXXF) forany E andF.

Finally, it would be interesting if we could give a syntax-directed version of our
tableau system for branching bisimulation since this could give us an equational theory
of ~;, over normed BPA. along the same lines. A naive approach would be to add
the 7-laws for branching bisimulation to our equational theory for strong bisimilarity.
However, this theory wouldotbe able to simulate the tableau construction, in particular

the STEP rule. R12 is the rule that corresponds to tR&EC rule in the tableau system

7.5. Equational theories 123

in Chapter 4, and in order to determine the transitions8T&P application toa = 3
we may need to use the defining equations a different number of times on each side of
this equation — think of the case where we are comparing a process with silent actions to

one without.

Bibliography

[Abr87]

[BBK87a]

[BBKS7b]

[BCGSS]

[BHR84]

[BIMOO]

[BK84]

[BK88]

S. Abramsky. Observational equivalence as a testing equival@éheeret-
ical Computer Scien¢®3:225-241, 1987.

J.C.M. Baeten, J.A. Bergstra, and J.W. Klop. Decidability of bisimulation
equivalence for processes generating context-free languages. Technical
Report CS-R8632, CWI, September 1987.

J.C.M. Baeten, J.A. Bergstra, and J.W. Klop. Decidability of bisimulation
equivalence for processes generating context-free languagesCla 259

pages 93—-114. Springer-Verlag, 1987.

M.C. Browne, E.M. Clarke, and O. Grumberg. Characterizing Kripke struc-
tures in temporal logicTheoretical Computer Sciencgl:115-131, 1988.

S.D. Brookes, C.A.R. Hoare, and W. Roscoe. A theory of communicating
sequential processedournal of the ACM31:560-599, 1984.

B. Bloom, S. Istrail, and A. Meyer. Bisimulation can’t be traced. Technical

Report TR 90-1150, Cornell University, August 1990.

J.A. Bergstra and J.W. Klop. Process algebra for synchronous communica-
tion. Information and Contrql60:109-137, 1984.

J.A. Bergstra and J.W. Klop. Process theory based on bisimulation seman-

tics. In J.W. de Bakker, W.P de Roever, and G. Rozenberg, editNiES

124

Bibliography 125

[BKO8S]

[BS90]

[Biic60]

[Cau86]

[Cau88]

[Cau90a]

[Cau90b]

[CES1]

[CM9O]

354, pages 50-122. Springer-Verlag, 1988.

J.A. Bergstra, J.W. Klop, and E.-R. Olderog. Readies and failures in the al-
gebra of communicating process&AM Journal on Computind.7:1134—
1177, 1988.

J. Bradfield and C. Stirling. Verifying temporal properties of processes. In
LNCS 458pages 115-125. Springer-Verlag, 1990.

J.E. Bichi. On a decision method in restricted second order arithmetic.
In Logic, Methodology, and Philosophy of Scienpages 1-11, Stanford,
1960.

D. Caucal. Bcidabilie de I'egali€ des langages afrigues infinitaires
simples. InProceedings of STACS 86, LNCS 2ffges 37-48. Springer-
Verlag, 1986.

D. Caucal. Graphes canoniques de graphesbatmes. Rapport de
Recherche 872, INRIA, Juillet 1988.

D. Caucal. Graphes canoniques de graphé&bradgies. Informatique
théorique et Applications (RAIR0O24(4):339-352, 1990.

D. Caucal. On the regular structure of prefix rewritingPiloceedings of
CAAP 90, LNCS 431Springer-Verlag, 1990.

E.M. Clarke and E.A. Emerson. Using branching time temporal logic to
synthesize synchronization skeletonsLNCS 131 pages 52—71. Springer-
Verlag, 1981.

D. Caucal and R. Monfort. On the transition graphs of automata and gram-
mars. Technical report, IRISA, 1990.

126

[Cou83]

[Dam90]

Bibliography

B. Courcelle. An axiomatic approach to the Korenjak-Hopcroft algorithms.
Mathematical Systems Thepy6:191-231, 1983.

Mads Dam. Translating7'L* into the modalu-calculus. Technical Re-
port ECS-LFCS-90-123, Laboratory for Foundations of Computer Science,
November 1990.

[DNMV90] R. De Nicola, U. Montanari, and F.W. Vaandrager. Back and forth bisim-

[DNV9O]

[Eng85]

[ES84]

[Fri76]

[GHO1]

[Gro89]

ulations. In J. Bergstra and J.W. Klop, edito®ONCUR 90, LNCS 458
pages 152-165. Springer-Verlag, August 1990.

R. De Nicolaand F.W. Vaandrager. Three logics for branching bisimulation.
In Proceedings of 5th Annual Symposium on Logic in Computer Science
(LICS 90) IEEE, Computer Society Press, 1990.

J. Engelfriet. Determinacy> (observation equivalence trace equiva-
lence). Theoretical Computer Sciencg&6(1):21-25, 1985.

E.A. Emerson and R.S. Street. The propositional mu-calculus is elementary.
In Proceedings of 11th ICALP, LNCS 1 fiages 465-472. Springer-Verlag,
1984.

E.P. Friedman. The inclusion problem for simple languageseoretical

Computer Sciencd.:297-316, 1976.

J.F. Groote and #ttel. Undecidable equivalences for basic process algebra.
Technical Report ECS-LFCS-91-169, Department of Computer Science,
University of Edinburgh, August 1991.

J.F. Groote. Transition system specifications with negative premises. Report
CS-R8950, CWI, 1989. An extended abstract appeared in J.C.M. Baeten
and J.W. Klop, editorsProceedings of CONCUR 9@msterdam LNCS

458 pages 332—-341. Springer-Verlag, 1990.

Bibliography 127

[GV89] J.F. Groote and F.W. Vaandrager. Structured operational semantics and
bisimulation as a congruence (extended abstract). In G. Ausiello, M. Dezani-
Ciancaglini, and S. Ronchi Del la Rocca, editoBspceedings of 16th
ICALP, LNCS 372pages 423-438. Springer-Verlag, 1989. Full version to

appear innformation and Computation

[Hen89] M. HennessyAlgebraic Theory of ProcesseMIIT Press, 1989.

[HM85] M. Hennessy and R. Milner. Algebraic laws for nondeterminism and con-

currency.Journal of the ACM32(1):137-161, January 1985.

[Hoa88] C.A.R. HoareCommunicating Sequential ProcessBgentice-Hall, 1988.

[HS91] H. Hittel and C. Stirling. Actions speak louder than words: Proving bisim-
ilarity for context-free processes. Rroceedings of 6th Annual Symposium
on Logic in Computer Science (LICS 9pages 376—-386. IEEE Computer
Society Press, 1991.

[HT87] T. Hafer and W. Thomas. Computation tree logi€ L* and path quantifiers
in the monadic theory of the binary tree. roceedings of 11th ICALP,
LNCS 267 pages 269-279, 1987.

[HT90] Dung T. Huynh and Lu Tian. On deciding readiness and failure equivalences
for processes. Technical Report UTDCS-31-90, University of Texas at
Dallas, September 1990.

[HU79] J. Hopcroft and J.D. Ullmarintroduction to Automata Theory, Languages,
and ComputationAddison-Wesley, 1979.

[HUt88] H. Huttel. Operational and denotational properties of a modal process logic.

Master’s thesis, Aalborg University Centre, 1988.

128

[HUt90]

[HUt91]

[KH66]

[Koz83]

[KS90]

[LS90]

[Mey75]

[Mil8O0]

[Mil84]

Bibliography

H. Hattel. SnScan be modally characterizedheoretical Computer Sci-
ence 74:239-248, 1990.

H. Huttel. Silenceis golden: Branching bisimilarity is decidable for context-
free processes. Broceedings of CAV9Epringer-Verlag, 1991. To appear.
The full version is available as Report ECS-LFCS-91-173, Department of

Computer Science, University of Edinburgh.

A.J. Korenjak and J.E. Hopcroft. Simple deterministic language$rin
ceedings of Seventh Annual IEEE Symposium on Switching and Automata

Theory pages 3646, 1966.

D. Kozen. Results on the propositionatalculus. Theoretical Computer
Science27:333—-354, 1983.

P.C. Kanellakis and S.A. Smolka. CCS expressions, finite state processes,
and three problems of equivalendeformation and Computatiqr86:43—
68, 1990.

K.G. Larsen and A. Skou. Bisimulation through probabilistic testing. In
16th Symp. Principles of Programming Languagesges 344—-352. ACM,
January 1990.

A.R. Meyer. Weak monadic second order theory of successor is not elemen-
tary recursive. IrProceedings of Boston Univ. Logic Colloquium, LNCM

453 pages 132-154. Springer-Verlag, 1975.

R. Milner. A Calculus of Communicating Systems, LNCS Springer-
Verlag, 1980.

R. Milner. A complete inference system for a class of regular behaviours.
Journal of Computer and System Scien@&439-466, 1984.

Bibliography 129

[Mil89] R. Milner. Communication and Concurrencyrentice-Hall International,
1989.

[MS85] D. Muller and P. Schupp. The theory of ends, pushdown automata and
second order logicTheoretical Computer Sciencg7:51-75, 1985.

[Niw88] D. Niwinski. Fixed points vs. infinite generation. FProceedings of 3rd
Annual Symposium on Logic in Computer Science (LICS @8)es 402—
409, Edinburgh, 1988. IEEE Computer Society Press.

[OHB6] E.-R. Olderog and C.A.R. Hoare. Specification-oriented semantics for com-

municating processe#cta Informatica 23:9-66, 1986.

[Par81] D.M.R. Park. Concurrency and automata on infinite sequences. In
P. Deussen, editoRroceedings of 5th GI Conference LNCS 1péges
167-183. Springer-Verlag, 1981.

[Phi87] I.C.C. Philips. Refusal testingheoretical Computer Science0:241-284,
1987.

[Plo81] Gordon Plotkin. A structural approach to operational semantics. Technical

Report FN-19, Computer Science Department, Aarhus University, 1981.

[Rab69] M.O. Rabin. Decidability of second-order theories and automata on infinite
trees.Transactions of the AM341:1-35, 1969.

[Rab77] M.O. Rabin. Decidable theories. In Barwise, edittandbook of Mathe-
matical Logig pages 595—-629. North-Holland, 1977.

[RB81] W.S. Rounds and S.D. Brookes. Possible futures, acceptances, refusals and
communicating processes. Rroc. 22nd Annual Symposium on Founda-
tions of Computer Sciencpages 140-149, New York, 1981. IEEE.

130

[Sti87]

[Sti91]

[SW89]

[Tho90]

[VG90a]

[VG90b]

[VGW89a]

[VGWS89b]

[VWS83]

[Wolg3]

Bibliography

C. Stirling. Modal logics for communicating systemBheoretical Com-
puter Scienced9:311-347, 1987.

C. Stirling. Modal and temporal logics. In Abramsky, editdandbook of

Logic in Computer Scienc®xford University Press, 1991. To appeatr.

C. Stirling and D. Walker. Local model checking in the modal mu-calculus.
In LNCS 351 pages 369-383. Springer-Verlag, 1989.

W. Thomas. Automata on infinite objects. In van Leeuwen, editand-
book of Theoretical Computer Sciengeages 133-191. North-Holland,
1990.

R.J. van GlabbeelkComparative Concurrency Semantics and Refinement
of Actions PhD thesis, CWI/Vrije Universiteit, 1990.

R.J. van Glabbeek. The linear time — branching time spectrum. In J.C.M.
Baeten and J.W. Klop, editorBroceedings of CONCUR 9@ msterdam
LNCS 458pages 278-297. Springer-Verlag, 1990.

R.J. van Glabbeek and P.W. Weijland. Refinement in branching time se-
mantics. Report CS-R8922, CWI, Amsterdam, 1989. Also appeared in:
Proceedings of AMAST, May 1989, lowa, USA, pp. 197-201.

R.J. van Glabbeek and W.P. Weijland. Branching time and abstraction in
bisimulation semantics (extended abstract). In G.X. Ritter, edittoyma-

tion Processing 89ages 613—618. North-Holland, 1989.

M. Vardi, P. Wolper, and A.P. Sistla. Reasoning about infinite computation

paths. InProceedings of 24th IEEE FOCBages 185-194, 1983.

P. Wolper. Temporal logic can be more expressiméormation and Contrql
56:72—-99, 1983.

