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Abstract

This thesis studies various manifestations of monads in the mathematics of computation
and presents three applications of calculi based on monads.
The view that monads provide abstract mathematical interpretations of computational
phenomena led E. Moggi to use the internal language of a category with a strong monad,
which he called the computational lambda calculus, for describing denotational semantics
of programming languages. Moggi argued that models of complicated forms of compu-
tation could be described modularly by using semantic constructors for manipulating
monads.
For the first application, we describe a theory of exceptions in the computational lambda
calculus and give a computationally adequate interpretation of a fragment of ML, includ-
ing the exception handling mechanism, in models of this theory. To our knowledge no
other model of ML exceptions is available in the literature to date. We also show that
normalization fails when exceptions are added to the simply typed lambda calculus.
Building on top of the computational lambda calculus, A.M. Pitts proposed a predicate
calculus to reason about the evaluation properties of programs: the Evaluation Logic.
Following the tenets of synthetic domain theory, we interpret this logic in an ambient
category with set-like structure and a fully reflective subcategory of domains with a monad
for interpreting computation. We establish abstract conditions under which the monad
extends to the ambient category to ensure good interaction with the logical structure.
We also show that a monad and first order logical structure yield suitable evaluation
relations, which can be used to give a standard interpretation of Evaluation Logic when
higher order structure is not available.
For the second application, we focus on side effects and investigate the use of Evaluation
Logic in partial correctness reasoning. We show that, under fairly common circumstances,
monads for side effects admit an extension to the ambient category which is more natural
than that described for arbitrary monads and we validate special axioms for members of
this class. The resulting theory of computation with side effects is then put to work on
a textbook example of partial correctness specification.
For our third application, we consider Moggi’s modular approach to denotational se-
mantics. We develop the theory of this approach by determining which equations are
preserved by a fairly general class of semantic constructors and which ones are reflected
(conservativity). Moreover, we establish a correspondence between categories of com-
putational models and categories of theories of the metalanguage, along the lines of
Gabriel-Ulmer duality, in a type-theoretic framework. Using the Extended Calculus of
Constructions, we develop a semantics for parallel composition by combining elementary
notions of computation defined independently and we use LEGO to prove properties of
such semantics formally.
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1 Introduction

Programming language semantics is an area of applied mathematics which studies the

meaning of computer programs. The notion of “meaning” depends on the context of

discourse [Neu44,Flo67,SS71,Plo81].

In denotational semantics, programs are explained in terms of abstract mathematical

entities, called “denotations,” which model their implementation-independent behaviour.

In this context, formal metalanguages [Sco69,Plo77,Gor79,Plo85b,Abr87,Mog91b] can be

used to link programs and their denotations: on one side they provide a language for

addressing elements of mathematical structures, while on the other they provide a formal

framework in which programs can be interpreted by means of translations.

How tightly should a metalanguage match the mathematical objects it describes and

in what detail should it represent the structure of computation? In [Mog90a,Mog91b],

Moggi proposed a categorical view: the use of strong monads to represent notions of

computation abstractly and a formal metalanguage to match the categorical semantics.

This approach goes one step towards the identification of abstract reasoning principles

for computation. It also has a pragmatical significance, because abstraction is a basic

ingredient to achieve modularity.

This thesis presents three applications of monads to the semantics of computation: in

the first application monads provide a language for interpreting programs with exceptions;

in the second, they provide a formal basis for reasoning about computations with states; in

the third, they provide a structuring principle for a stepwise development of denotational

models. As we shall see, sometimes practice feeds back into theory.

1



1. Introduction 2

In this introduction, we describe the theoretical context of our exploration and, in the

last section, we summarize our main results and give the outline of the thesis.

Programs, meanings and logics

Mathematical descriptions of programming languages are needed for the analysis and

synthesis of computer programs. Both activities require logics to express the properties

of interest and to guide the reasoning. Different kinds of semantics and logics may be

appropriate for performing different tasks. Operational semantics, for example, yield

notions of program equivalence which can be used for proving correctness of optimization

steps, while denotational semantics may provide richer mathematical foundations for

formal methods.

The use of formal systems to support reasoning about properties of computer pro-

grams is appealing because it allows one to disregard the mathematical details of the

models. Such systems are available, for example, for reasoning about partial correctness

[Hoa69] and noninterference [Rey81] for imperative languages, temporal properties of con-

current systems [Sti92], evaluation properties of programs with higher-order functional

features [CP92,Pit91]. However, adopting the view of [Sco69] that formalism without

eventual interpretation is in the end useless, we regard program logics and mathematical

representations of the meaning of programs as parts of the same picture:

semantics
axiomatic

logics

programming
languages

meanings

denotational semantics
operational semantics

theory
model

In the next sections we shall encounter many inhabitants of this triangle; although most

of them are based on denotational semantics, many others can be found in the operational
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setting, where a basic example is the triad of CCS [Mil80], temporal logics and labelled

transition systems.

Each of the disciplines along the edges of this diagram addresses specific problems. At

the bottom, mathematical structures are matched against the programs they represent.

Operational and denotational semantics can be related by computational adequacy results,

as in [Plo85b,Abr90b,Fio94b]. In denotational semantics, the usual criteria for assessing

the well-fittedness of models are full abstraction [Mil77,Plo77,Wad76,HA80,AJM94,HO94]

and universality [Mey88].

On the left edge, axiomatic semantics is specially relevant to the study of formal

methods for program development and verification [Hoa69,Dij76,Gri81].

Finally, the most frequently asked questions on the right edge concern soundness and

completeness, both for models based on operational and on denotational descriptions. Ex-

amples of completeness results in the setting of process algebras are provided by [BA91],

where it is shown how to generate complete sets of axioms for strong bisimulation auto-

matically from SOS descriptions of programming languages, and by [Win85] which gives

a complete proof system for SCCS [Mil83], whose models are based on non-well-founded

sets [Acz88].

The completeness of logical theories can also be studied “functorially” (see section 6.5),

by identifying theories with categories with logical structure and models with structure-

preserving functors. A classical result in this setting is the conceptual completeness of

pretopoi [MR76]: if the functor Mod (T1) → Mod (T2) between categories of models in-

duced by composition by a logical functor F : T2 → T1 between pretopoi is an equivalence,

then F is an equivalence.

In the setting of domain theory, [Abr91] stresses the importance of “Stone-type”

duality theorems, relating theories (viewed as categories) with the categories of their

models, for understanding the relationship between semantics and program logics.
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Metalanguages in denotational semantics

As remarked in [Abr91], “denotational semantics are always based, more or less explicitly,

on a typed functional metalanguage.” Then, where should we place metalanguages in

the above picture?

A leading example of metalanguage, at least from a historical point of view, is PCF.

In 1969, D. Scott introduced a logic for computable functions, LCF [Sco69], to formalize

principles of mathematical reasoning about partial recursive functions. LCF has enough

power to axiomatize, for instance, integer arithmetics. The underlying term language of

this logic, named “Programming language for Computable Functions” (PCF) in [Plo77],

has been used to describe the semantics of non-trivial fragments of programming lan-

guages (including Pascal [AAW77]) through its standard interpretation in terms of cpos

and continuous functions.

Scott remarked that PCF was not a programming language because, although al-

lowing conditional expressions and recursive definitions, it featured neither assignments

nor gotos. A different view was adopted in [Plo77], where PCF was endowed with a re-

duction relation in order to study the connections between operational and denotational

semantics. A consequence of this approach, as advocated in [Plo91b, lecture III: Denota-

tional Semantics], is that not only can programming languages be interpreted by translat-

ing them into a metalanguage, but also one can relate their denotational and operational

semantics by exploiting a similar result proven once and for all for the metalanguage.

LCF was implemented by R. Milner in 1972 [Mil72,GMW79] and used as a mechanized

logic for proving correctness of computer programs [Wey72,AA74], including interpreters

and compilers [MW72,New75]. Structuring principles for LCF theories are sought in

[SB83].

More elaborate type theories have been proposed as frameworks for studying more

sophisticated programming language features, and even “implementational” issues such as

garbage collection; the latter was addressed in [Laf88,Wad91] among other applications

of linear logic to computer science. A logic for parametric polymorphism [Rey83] is
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proposed in [PA93], which is to System F what LCF is to PCF. However, this logic

accounts for neither recursive functions nor types, which are both crucial in domain

theory. Recursion is studied in FPC [Plo85a], a typed calculus which allows recursive

definitions of types, as PCF allows recursive definitions of functions. In FPC, the latter

can be obtained from the former as shown in [Gun92, 7.4]. Recursion is also addressed in

[Plo93], where second order intuitionistic linear logic is combined with a formal theory of

relational parametricity to obtain a framework in which general recursive type equations

have universal solutions, with corresponding principles of induction and co-induction. The

problem of finding appropriate logics for domain theory is a matter of current research.

We shall return to this point later on.

In the above examples, metalanguages play the role of formal interfaces to mathemat-

ical models, that of term languages of logics and that of “target” languages for expressing

denotations of programs. We can therefore place them in the centre of the triangle:

logics

modelsprogramming
languages

languages
meta-

The dashed lines indicate that programs are interpreted and reasoned about indir-

ectly through the metalanguage. This approach has the following advantages. On the

denotational edge, interpretations of different programming languages and notions of

computation can be more easily related if represented in the same formal framework. On

the axiomatic edge, program logics which refer to metalanguages, where computation is

represented in mathematical terms, are less likely to be affected by the idiosyncrasies of

specific programming languages.

As we shall see below, these benefits are further enhanced when an abstract notion of

computation is adopted. The next two sections introduce a metalanguage and program

logics based on this abstraction. They are used in this thesis to develop applications.
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Monads and the computational metalanguage

Denotational semantics of real programming languages are complicated and often require

a considerable mathematical overhead. Adequate descriptions of even simple computa-

tional gadgets such as local variables may need sophisticated tools such as possible worlds

[OT92]. Moreover, the mathematical structure used for describing one form of compu-

tation may be incompatible with that for describing another, so that models for several

interacting computational phenomena are often studied case by case.

As noted in [Mos92], the reason why conventional programming devices require elab-

orate “coding” techniques to be expressed in lambda notation is that the basic operations

of lambda abstraction and application give little grasp on program composition. Vari-

ous modifications of the theory of βη-equivalence have been proposed in order to study

features of programming languages. Examples are the call-by-name and call-by-value

lambda calculi introduced in [Plo75], which are shown to be correct with respect to the

corresponding evaluation mechanisms.

Another example is the λp-calculus introduced in [Mog86], which is shown to be sound

and complete with respect to interpretation in partial cartesian closed categories. The

approach adopted in this calculus, which was first pursued in [Plo85b], is to take partial

functions as primitive in domain theory, rather than total functions on spaces of partial

elements, as in the tradition of [Sco69]. Partial combinatory and lambda calculi are

described in [Fef95], while “free” logics for reasoning with possibly non-denoting terms

are surveyed in [Ben86].

A category pC of partial maps can be defined axiomatically as proposed in [Ros86,

Mog86] by choosing a class of monomorphisms closed under certain operations in a cat-

egory C of “total” maps. Intuitively, the morphisms in the chosen class represent domains

of partial functions. Under certain circumstances, there is an adjunction between C and

pC defining a “lifting” monad in C (see section 2.5), of which pC is the Kleisli category

(see [Mac71] for definitions).
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In [Mog90a,Mog91b], Moggi proposed a generalization of this scenario where monads

are taken as abstract notions of computation and program composition is abstractly

interpreted as composition in the Kleisli category. The metalanguage arising from this

categorical semantics of computation, called computational lambda calculus, is the internal

language of a cartesian closed category with a strong monad (see section 2.2). Examples

of computationally relevant monads are given in section 2.5.

The main feature of the computational lambda calculus is the explicit distinction

between types of values and types of programs, called computational types. These are

formed by applying a unary type constructor T : for every type A, there is a type TA

inhabited by the programs computing values of A. Of course, one can form computations

of computations and so on. Interpreting types as objects in a category C, T represents

a map obj (C) → obj (C). For instance, integer programs which may raise exceptions can

be interpreted as elements of the object T (int ) = int + E, where E interprets the type

of exceptions.

Besides the type constructor T , the metalanguage features two type-indexed families

of operations: val A : A → TA and letA,B : (A → TB) × TA → TB. Members of the

first family construct trivial computations from values: val A(a) is the program “return

a,” which, in the case of exceptions, corresponds to the injection A → A + E. The

operations of the family let perform program composition (while composition of functions

corresponds to substitution as usual in the lambda calculus) allowing a program of type

A → TB, accepting as inputs values of type A, to apply to computations, that is a term

of type TA. In the case of exceptions, letA,B(f, z) runs f on the value possibly produced

by z, while, if z raises an exception e, it returns e.

These operations are equipped with a set of equations, which give a complete axio-

matization of strong monads, where val corresponds to the unit, and let to an internal

version of Kleisli lifting.

Other operations and constant types given by a signature Σ may also be included

in the calculus, together with appropriate (equational) axioms, to make the notion of
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computation more concrete and represent specific programming languages. We shall

call MLT(Σ) such a particular theory in the computational lambda calculus. Computer

programs are interpreted by translations into MLT (Σ) mapping terms of type τ to terms

of type T ([τ ]), where ([τ ]) is the translation of τ . This paradigm is explained in chapter 3.

By hiding the concrete structure of the domains of interpretation and by providing an

abstract primitive operation of program composition, the computational metalanguage

allows the intricacies of concrete models to be left out of denotational descriptions. In

this way, such descriptions become simpler, because the mathematical structure required

for interpreting one device of a programming language need not appear in the semantic

equations which describe another. They also become easier to modify : if a new com-

putational feature is added to the language, e.g. a mechanism for raising and handling

exceptions, the domains of interpretation may have to change in order to accommodate

new mathematical structure, which may cause massive rewriting in a traditional denota-

tional description: in the case of exceptions, all semantic equations must deal with the

possibility that subterms might raise exceptions. What has changed is the notion of pro-

gram composition. However the equations need not change if this notion is captured by

a simple let .

The benefits of the monadic approach have been exploited in several applications

described in [Wad92], including a compiler for Haskell.

The abstraction over the notion of computation introduced by the use of monads

in denotational semantics provides a basis for investigating general reasoning principles

about programs and a structuring mechanism for a modular development of theories and

models of computation. These topics are explored in the next two sections.

Monads and program logics

General program logics, that is logics providing general principles for reasoning about

computation, may arise from an abstract understanding of program evaluation. The
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advantage of such logics is that programs from different languages, or from upgraded

versions of the same language, can be reasoned about within the same framework.

Below we consider a few semantic scenarios for program logics based on abstract

notions of computation: Fix-Logic, Evaluation Logic and modal operators in higher order

logic. In the next section we shall encounter another, where evaluation modalities, which

capture the notion of evaluation abstractly, are defined in a first order framework.

In the previous section, we saw that the idea of interpreting divergent computations

in categories of partial maps can be generalized to other forms of computation by us-

ing monads. Similarly, consider the principle of Scott-induction proposed in [Sco69] to

reason about recursively defined partial functions. This principle can be derived from

an axiomatization of the initial algebra of a lifting monad. Fix-Logic, the predicate cal-

culus proposed in [CP92], uses the computational metalanguage as term language and

is interpreted in a category with a strong monad whose underlying functor has initial

algebra. The assumption of such an algebra yields an abstract reasoning principle called

fix induction.

In Fix-Logic, programs and logic are integrated by means of modalities extending pre-

dicates on values to predicates on computations. However, this extension is rather trivial

as it only discriminates between computations of the form val (v). In Evaluation Logic

(EL) [Pit91], whose underlying type system is again the computational metalanguage,

A. Pitts introduced more general modalities in the context of intuitionistic first order pre-

dicate calculus to match operational descriptions of programs given in natural semantics

style [Kah88]. There are two “evaluation” modalities, called necessity and possibility, and

written respectively:

[x ⇐ E] φ(x) and 〈x ⇐ E〉 φ(x).

The intended meaning of these formulae is that the property φ(x) holds respectively

of any and of some values x produced by the evaluation of E, where x is a variable of
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a type A and E is a program of type TA. Programs can be related to the values they

compute by means of evaluation relations:

⇐A ⊆ A × TA,

whose intended meaning is captured by the formula (a ⇐ E) def= 〈x ⇐ E〉 (x = a), that

is: “E can evaluate to a.” Conversely, for most notions of computation, the evaluation

modalities can be defined from ⇐ as shown in section 4.8 using first order quantifiers.

The result is a powerful program logic which can be specialized by axiomatizing

appropriate operations to suit specific forms of computation. Other program logics can

be embedded into EL, including dynamic logic and Hoare logic (see [Pit91] and [Cen95]).

Several interpretations have been proposed of the evaluation modalities [Pit91,Mogb,

Moga], of which we give a detailed account in chapter 4 (where we also propose yet an-

other). Pitts’ original interpretation was based on hyperdoctrines, over which he defined

the notion of T -modality. Both hyperdoctrines and T -modalities are categorical struc-

ture that must be provided on top of a model of the underlying type theory in order to

interpret the logic.

A different approach was taken in [Mogb], where the logical structure is sought in

the same category where types are interpreted. The idea is to define modal operators by

making the categorical gear for interpreting computational types act upon that for inter-

preting logic. We shall call this semantics “standard” because interpretation is determined

only by the structure of a strong monad. The advantage of a standard semantics is that

it is subject to the same structuring mechanisms, based upon manipulation of monads,

which apply to the underlying metalanguage (see next section).

However, it is not immediately obvious that logic and computation should live in

the same semantic framework, as one may put limitations on the other. For example,

formulae of LCF are limited to conjunctions of inequalities in order to preserve chain-

completeness and hence admissibility for fixed point induction. In order to extend this

principle to first order logic, admissibility tests over formulae must be performed, as
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in Cambridge LCF [Pau87]. Similarly, Fix-Logic cannot be consistently extended with

intuitionistic implication or existential quantification, as shown in [CP92]. As for EL,

Moggi’s standard semantics needs higher order structure to interpret possibility, which is

not available in categories of domains, unless many interesting predicates, such as “f is

total” (which can be expressed in full EL as ∀n. 〈x ⇐ f(n)〉 true ), are cut off.

The aim of integrating logic and computation in a unified theory of semantics is pur-

sued in synthetic domain theory [Ros86,Pho90,Hyl90,Tay91,RS], where logic is interpreted

in an ambient category with set-like structure, typically a topos, and computation in a

full reflective subcategory of the former, with all the closure properties required to per-

form domain-theoretic constructions. The leading example of this setting is the effective

topos [Hyl82], with its many full subcategories of PERs [FMRS90].

A dual approach can be adopted in the framework of axiomatic domain theory [Fio94b,

FP94]. Instead of identifying inside a topos a good category of domains to interpret

computation, one can look “around” such a category for an appropriate topos to interpret

logic. In [Fio94a], it is shown that every small model of a given axiomatization of domains

has a full and faithful representation in a model of cpos and continuous functions living

in a suitable intuitionistic set theory.

If the logical structure is provided by an ambient category E , and the computational

structure by a strong monad T defined on a subcategory D of E , Moggi’s standard se-

mantics of EL requires an extension of T to E . This can be done by a general construction

as shown in section 4.6, provided D is fully reflective in E, as it happens in both the syn-

thetic and the axiomatic approaches mentioned above.

T -modal operators are proposed in [Mog91b] to give a uniform account of various

program logics in a higher order setting. Let T be a monad on E , and let > : 1 → Ω

classify the predicates of the logic; a T -modal operator is a T -algebra α : TΩ → Ω.

Given such an α, a predicate φ : A → Ω over values of type A can be lifted to one over

computations, written �αφ, as follows: �αφ
def= α ◦Tφ : TA → Ω.

In some cases, the notion of T -modal operator may be too strong: interesting operators
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may fail to satisfy the equations which make them algebras of a monad. Then, algebras

of the underlying functor of T can be considered instead.

Consider, for example, the “standard” operator α which classifies T> : T 1 → TΩ (if

T does not preserve subobjects, the image of this morphism can be used). The unit and

associative laws for such an α are given by special conditions, respectively on the unit

and the multiplication of T , viz. that they are cartesian (see definition 4.5.3). As shown

in chapter 5, the multiplication of the monad TX
def= (X × S)S for computation with side

effects does not satisfy this property and, in fact, the standard α for this monad is not

associative. Still, α is an interesting one: the modality �α maps φ to the predicate which

holds of all programs p such that, for all states s : S, p(s) = 〈x, s′〉 for some state s′ and

value x satisfying φ. Indeed, this modality can be used to interpret Hoare triples.

Monads and semantic modules

The problem of finding good structuring principles for programming language semantics

has been addressed in various contexts. In the context of model theory, institutions

[BG85], which use notions from category theory, provide a general framework for com-

bining small specifications into descriptions of complex models. In the context of algebraic

specification, [ST89] proposes a method for stepwise refinement of formally specified ML

modules leading to correct program implementations. In the context of denotational se-

mantics, [Mos88,Mos90] stress the importance of auxiliary notation as abstraction mech-

anisms to hide the detailed structure of the underlying data types from the semantic

equations.

Here, we concentrate on the use of monads as a structuring mechanism in denotational

semantics [Mog91c,CM93,CF94,LHJ95].

By introducing a layer of abstraction between programming languages and their con-

crete models, the computational metalanguage plays the role of an interface: to hide

the details of implementation. However, if part of the mathematical structure is hid-

den, some extra work is needed to get from a semantic description given in terms of the
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metalanguage to a concrete model. Since the domains for interpreting programs may be

quite complicated, it is crucial for usability of denotational semantics to develop tools for

managing such complexity. Moggi’s proposal ([Mog90a,Mog91c]) is to work stepwise to-

wards complicated models by means of semantic constructors, which allow computational

features to be adjoined and reasoned about one at a time.

The idea is to mimic the stepwise methodology for program development: viewing

theories as specifications and models as implementations, the problem of finding an im-

plementation of a complex specification L2 can be reduced to that of finding an imple-

mentation of a simpler specification L1 and a constructor [ST87] mapping models of L1

to models of L2.

In our setting, a specification is a theory MLT (Σ) of the computational metalanguage

over a signature Σ. An implementation of such a specification is a cartesian closed

category with a strong monad and additional structure to interpret Σ. Calling Mod (Σ)

the class of such objects, a semantic constructor is a function F : Mod (Σ1) → Mod (Σ2).

Starting from a model of a simple metalanguage MLT (Σ0), we can incrementally

construct a model of MLT (Σn) by providing a sequence of signatures Σi ⊂ Σi+1, with

0 ≤ i < n, and constructors F i : Mod (Σi) → Mod (Σi+1). In general, the latter involve

a reinterpretation of the type constructor T (that is, a change of monad) and of the

operations in Σi.

The core of a semantic constructor is a monad constructor [Mog90a], that is a function

mapping monads to monads. On top of that, structure for interpreting one signature must

be “converted” into structure for interpreting another. The effort here is to prove that

the structure produced by a constructor satisfies the axioms of the theory. In order to

establish such a result, it is useful to know which equations are preserved by a monad

constructor. Similarly, to study the conservativity of certain constructors, it is useful to

know which equations are reflected.

Logical frameworks can be used to support reasoning about properties of semantic

constructors, such as the ones mentioned above. Availability of several implementations
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of type theories running on computers [CAB+86,Mag92,LP92,DFH+93], makes it tempt-

ing to adopt one as a tool to develop programming language semantics. A framework

combining the Extended Calculus of Constructions (XCC) [Luo82] with the metalanguage

for computational monads was recently proposed in [Mog95b].

Type theories have long been used for formalizing various branches of mathematics

(as in the AUTOMATH tradition [deB70]) as well as for developing a general theory of

representation of formal systems (as in the ELF tradition [HHP87]). They provide self-

explaining primitive notation for formalizing mathematics, be it analysis [Jut77,CH85]

or metatheories of various forms of calculi [Ber91,Alt92]. Generally, implementations

provide machine-assistance in managing complicated syntax, environments for proof de-

velopment and libraries.

Besides these pragmatical benefits, there may also be theoretical reasons in using

powerful type theories to represent the constructions of denotational semantics. One

case is the following.

A correspondence is often established, in categorical type theory, between theories of

some formal calculus, with the appropriate notion of translation, and mathematical mod-

els, with the appropriate notion of morphism between models. Typical examples are the

simply typed lambda calculus [LS86] and the higher order polymorphic lambda calculus

[See87]. This correspondence can be exploited in the framework of functorial semantics

[KR77] to characterize certain maps between categories of models as relative interpreta-

tions induced by theory translations. For example, relative interpretation of finite limit

theories is characterized by the Gabriel-Ulmer duality established in [GU75]. Now, while

there is a direct correspondence between theories of the computational metalanguage and

cartesian closed categories with a strong monad, there is no good correspondence between

theory translations (at least the kind of translations one needs to represent semantic con-

structors) and strong monad morphisms. However, the correspondence is restored when

the metalanguage and its models are embedded into a type theory such as the Extended

Calculus of Constructions. In chapter 6, we explore this matter in detail.
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Summary of results and outline of the thesis

This thesis stems from three experiments with monads in denotational semantics: in

the first, we use the computational lambda calculus to give an adequate model of ML

exceptions; in the second, we use EL for reasoning about partial correctness of while-

programs; in the third, we develop in the Extended Calculus of Constructions (XCC,

[Luo82]) examples of semantic constructors and prove properties of constructed models

formally in LEGO [LP92].

While working out these applications, general questions were raised, sometimes re-

quiring the development of a piece of theory. For example, the involvement of non-trivial

mixed variance constructions in models of exceptions raised the question of whether nor-

malization is preserved if the simply typed lambda calculus is augmented with exceptions.

Evaluation relations were used to define left and right rules for necessity in EL, which

make the proof system more manageable; the problem arose of finding a standard inter-

pretation of such relations in a first order setting. Implementation in type theory sug-

gested that most semantic constructors can be presented as theory translations, provided

a general enough syntax is adopted; the natural question was how to characterize such

constructors intrinsically.

The body of the thesis is composed of six chapters: three of them present an applic-

ation; each is preceded by a chapter introducing and developing the relevant theory.

Chapter 2 contains some basic categorical definitions and introduces the compu-

tational metalanguage and its models based on monads. Examples of computationally

relevant monads are provided. We claim no originality here.

Chapter 3 studies the semantics of a small but non-trivial fragment of ML, including

the exception handling mechanism. To our knowledge, no other denotational description

of ML exceptions has been previously worked out.

We give a theory over the computational metalanguage, with operations to construct,

raise and handle exceptions. An abstract model of this theory is a bi-cartesian closed
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category with an object of exceptions which is a solution to a suitable recursive domain

equation. Recursion comes in because ML’s exceptions may have parameters of arbitrary

type and, in particular, parameters may be programs raising exceptions.

An analysis of the domain-theoretic constructions required to interpret the language

reveals that models include the structure to interpret diverging computations and this

suggests something that is not imediately clear from the operational semantics: programs

with exceptions may fail to terminate even if no recursion is used. In particular, as shown

in section 3.2, one can write a fixed point combinator for arrow types in the simply

typed lambda calculus with exceptions. This failure of normalization was also noticed

by M. Lillibridge in a yet unpublised paper [Lil95], which was unknown to us when we

obtained this result.

The programming language is interpreted by a translation into the metalangauage.

This interpretation is proven to be adequate with respect to a given operational semantics:

a program e evaluates to a value v if and only if the translation of e is provably equal

to the translation of v in the theory of the metalanguage. Part of the proof consists in

defining appropriate logical relations between terms and their denotations in a concrete

model in the category of cpos. Because of the recursive nature of computational types,

such relations cannot be defined by induction on the structure of types and they are

obtained instead by applying a technique suggested in [Pit].

There is a general pattern in the definition of logical relations for computational lan-

guages: two intertwined families are defined; members of one family, ≤, relate canonical

terms and values, while members of the other, �, relate general terms and computations.

Relations in the first family between canonical terms of type A → B and values in the

domain [[A → B]] = [[A]] → T [[B]], are defined “logically” by suitable conditions involving

relations of the second family between programs of type B and computations in T [[B]].

In section 3.6, � is defined “by hand” from ≤ by looking at the concrete structure of

computational types. However, we believe that � should be described more abstractly

as a canonical lifting of ≤ over computations. This is a matter of further research (see

chapter 8).
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Except for the notions of relational structure and admissible action used in the proof

of section 3.6, all material in this chapter is original.

Chapter 4 presents Evaluation Logic and addresses two questions about the interac-

tion between computational and logical structure: how to use the former to get a standard

interpretation of program logics in a synthetic domain theory setting and how to get such

an interpretation when higher order structure is not available.

Our presentation of the calculus includes equality and all connectives of first order

predicate calculus, while the one in [Pit91] has only equality, conjunction and disjunction,

and the one in [Mogb] includes no disjunction, existential quantification and possibility.

Note that the rules for necessity are different in [Pit91] and in [Mogb]. We adopt the latter

and call “standard” the corresponding version of the logic. In the choice of primitive and

derived rules, our presentation matches the view of strong monads as triples 〈T, val , let 〉,
while the one in [Mogb] matches the more familiar view including unit, multiplication

and strength.

We survey Pitts’ semantics based on hyperdoctrines [Pit91], Moggi’s first standard

semantics [Mogb] and his second [Moga], which was introduced to capture monads for

which the first would not work (e.g. the Plotkin powerdomain monad). Adopting the

interpretation in [Mogb], which is used in chapter 5, we describe models of the full

calculus.

As explained earlier, Moggi’s standard semantics (both of the above) require higher

order structure to interpret possibility and this is typically found in an ambient category

in which the category of domains is fully reflective. We consider a construction to extend

a monad T , defined on a category C, to a monad T̃ on an ambient category E of which

C is a fully reflective subcategory. We learnt this construction from Moggi but ours is

the observation that the category of T̃ -algebras is equivalent to that of T -algebras. This

result (theorem 4.6.3) says that T̃ is, in some sense, a “minimal” extension of T . We also

find abstract conditions allowing the extension to T̃ of the strength of T .
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Although models of computation do live in categories with higher order logical struc-

ture, it is not clear why this structure should be necessary to get a standard interpretation

of possibility and of the evaluation relations, as done in [Mogb]. We show how to obtain

evaluation relations just from an endofunctor T and first order structure. Such relations

can be integrated with evaluation modalities in a logic featuring left and right rules of

the form:

� left
Γ, φ(M) ` ψ Γ ` x ⇐ E

Γ, [x ⇐ E] φ(x) ` ψ
� right

Γ, x ⇐ E ` φ(x)

Γ ` [x ⇐ E] φ(x)
x 6∈ FV (Γ)

As we argue in chapter 4, such rules would simplify the structure of proofs in EL,

where each modality is instead related with each logical operator by a separate rule.

For most notions of computation the modalities of EL are definable from evaluation

relations by using first order quantification (see section 4.8), which means that, from our

interpretation of such relations, a standard model of the logic is obtained in a first order

framework, e.g. in a logos [FS90, 1.7]. We find the abstract conditions under which our

definition of the evaluation relations corresponds to the one in [Mogb].

Our original contribution in this chapter consists in the theorems on extending monads

to an ambient category (section 4.6) and the part on evaluation relations (section 4.8).

Chapter 5 sets Evaluation Logic to work on partial correctness.

Partial correctness specifications are formulae involving imperative programs and as-

sertions about their states. Assertions are formulae which, unlike specifications, are

interpreted “in a state.” We consider assertions of a very general form: they may con-

tain any term of the programming language, including expressions with loops and side

effects. There are two reasons for allowing such generality: first, the assumption made

in Hoare Logic that expressions have no computational content is violated by most com-

mon programming languages, which include devices such as function procedures or block

expressions. Second, this level of generality provides a good ground for testing the power

of the evaluation modalities as a mechanism for integrating logic and computation.
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We study the monad TX = (X × S)S
⊥ for partial computations with side effects: we

show that this monad satisfies the conditions required by the standard interpretation of

[Mogb] and validate the special axiom � val ∗ of section 4.1, which is used later to give a

formal account of assertions in EL.

Two things should be remarked about these proofs. First, they are corollaries to more

general theorems stating that the monad constructors FT
def= T ( ×S)S preserves monads

satisfying the desired properties. We believe that one obtains greater insight into a notion

of computation from an analysis of constructors such as F than from the study of the

corresponding monad in isolation. Second, EL is used to reason about several interacting

notions of computation. For example, if T and Q are strong endofunctors, the necessity

modality for their composite can be obtained by composition as follows:

[x ⇐ z]TQ φ(x) ∼= [y ⇐ z]T [x ⇐ y]Q φ(x),

where the modalities are indexed by the notion of computation adopted in the evaluation.

In general, the strategy we adopt for reasoning about a notion of computation, say, to

validate axioms, is to look at it at a lower level of abstraction by breaking it into more

elementary pieces and then to prove the desired properties formally in the combined

theory of such pieces. We shall call “modular” proofs that follow this strategy.

Next, we consider a version of EL for computation with side effects, called ELse,

whose formulae are interpreted “in a state” and adopt it as a calculus of assertions. ELse

is a theory in the version of Evaluation Logic of [Pit91]. Rather than working in a non-

standard model of this theory (e.g. by interpreting predicates on a type A as subobjects

of [[A]] × S) we translate it into standard EL with constants for explicit manipulation of

states. We introduce suitable axioms for such constants and validate them for monads of

the form FT . Again, the proof is modular, in the sense discussed above. The soundness

of interpretation of ELse in EL is then proven by formally deriving each inference rule of

the former in the latter.

ELse can be used for reasoning about partial correctness. We generalize the familiar

formalism of Hoare triples to include a simple form of annotated while-programs, that is
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terms obtained by alternating commands and assertions. Partial correctness specifications

of possibly annotated while-programs are translated into ELse and the translation is

shown to preserve the theorems of Hoare Logic.

Then, we take the text-book example of a formally specified program for integer

division and prove its correctness in ELse. The proof requires fixed point induction to

handle the recursive computations arising from while-loops. As explained earlier, the

application of this rule in the presence of all connectives of first order logic includes a

test of admissibility over formulae. We propose an improvement of the test presented

in [Ten91] which recognizes more admissible formulae, e.g. the double negation of an

admissible formula. Our proof of correctness is acknowledged in [Ten].

All material presented in this chapter is original.

Chapter 6 presents and develops the theory of semantic constructors introduced by

E. Moggi in [Mog90a,Mog91c].

We introduce the notion of Σ-homomorphism (not in Moggi’s presentation), which

defines morphisms in the category of models of MLT(Σ). Σ-homomorphisms relate the

interpretations of each constant of Σ in the source and target models and hence they

can be used for studying semantic constructors from the point of view of the algebraic

properties that they preserve and reflect.

To this effect, we consider constructors F endowed with families of Σ-homomorphisms

M → FM, which we call “pointed.” Inspired by (but more general than) the parametric

extensions of [Mog90b], pointed constructors include the ones for exceptions and for

resumptions presented in chapter 7. We show that equations involving terms of a fairly

general class are preserved by pointed constructors (theorem 6.2.5). Axioms of theories of

computation can be validated in constructed models by using this result. We also consider

the dual issue of conservativity and show that equations (again subject to restrictions)

which are satisfied in a model FM are also satisfied in M (theorem 6.2.7).

Then, we study the “syntactic” presentation of constructors. This work stems from

a joint paper with E. Moggi [CM93], where a higher order metalanguage, HML, is used
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to describe models of computation and translations of HML theories, also called relative

interpretations, are used to describe semantic constructors. Our aim, here, is to give

an intrinsic characterization of the constructors that can be represented in this fashion.

Besides answering a mathematically natural question, this result may help finding more

general type theories to capture more general constructors.

A natural setting for studying relative interpretation is functorial semantics [KR77], in

which theories are viewed as categories with structure and models as structure-preserving

functors, generally in the category of sets. Translations T2 → T1 are also structure-

preserving functors. Hence, a translation maps models of T1 to models of T2 by composi-

tion. Gabriel and Ulmer [GU75] studied these maps for finite limit theories. They showed

that locally finitely presentable categories (see definition 6.5.3) are categories of models

of such theories and that functors between such categories (satisfying certain conditions)

correspond to relative interpretations. We establish a similar result for theories of HML.

We define models of HML, which are fibrations of a special form, called λω-categories.

The soundness and completeness of HML with respect to interpretation in these models

is proven. Then, we show that the category of HML theories is equivalent to the category

λω-Cat of λω-categories and that interpretation of such theories correspond to morphisms

in λω-Cat. Hence, we obtain a functorial semantics of HML, where the syntax disappears

and theories are abstractly represented as λω-categories. Next, we show that the category

Mod (T ) of models of a theory T is equivalent to the category [T, Sets ]lex of set valued

models of a finite limit theory T , which is locally finitely presentable. Moreover, we show

that the functors Mod (φ) : Mod (T1) → Mod (T2) induced by a relative interpretation

φ : T2 → T1 satisfy the conditions required by the Gabriel-Ulmer duality. This result is

used in theorem 6.8.12 to give a simple characterization of functors of the form Mod (φ).

The definition of semantic constructor is from [Mog90b]. Sections 6.3 and 6.4 use

material from [CM93]. Section 6.5 surveys standard results in functorial semantics. Sec-

tion 6.6 reviews some notions of fibred category theory used for modelling HML. All the

rest, including what is described above, is our own contribution.
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Chapter 7 develops in LEGO the semantic constructors for exceptions and for re-

sumptions described in [CM93] and uses the logic provided by the underlying type theory,

the Extended Calculus of Constructions, to prove properties of such constructors formally.

The type universe of XCC provides an intuitionistic set theory in which models of

computation are embedded, as in synthetic domain theory. “Domains” are inhabitants

of a type Dom and the embedding is provided by an externalization map E:Dom->Type.

From this data one can define suitable types and terms whose interpretation in a model

of the type theory determines a full internal subcategory Dom in the ambient category

of types. All the constructions developed in the applications refer to this category of

discourse.

Categorical structure in Dom is represented by suitable types whose inhabitants we

call structures. The computational metalanguage is encoded in the type theory and a

formal interpretation function is defined, mapping the syntax to Dom . This function is

parametric in the appropriate structure, that is: products, exponentials and a monad.

Semantic constructors are represented as functions returning structure for interpreting

one theory of the metalanguage from structure for interpreting another. We present two

constructors from [CM93], one for exceptions and one for resumptions. The correctness

of the first is proven in LEGO by showing that it maps monads to monads. The second

is used to define a model of parallel computation with interleaving.

Resumptions are constructed on top of a model featuring operators of fixed point and

nondeterministic choice. The constructor redefines these operations to adapt them to the

new notion of computation, where other operations for manipulating resumptions become

available. From these operations, we define an operator of parallel composition of which

we give a formal proof of commutativity. The proof uses properties of the abovementioned

operations, e.g. the uniformity of fixed points (see section 7.2). Hence, we prove lemmas

showing that such properties are preserved by the constructor of resumptions. Finally,

we make sure that all the pieces of structure being used are consistent with each other

by looking for them in a concrete model of the type theory based on PERs.
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The definitions of the exception and resumption constructors, and of the operator of

parallel composition are based on similar definitions in HML due to Moggi. All the rest

in this chapter is original.

Chapter 8 contains directions for further research.

Prerequisites.

• Category theory.

• Basic logic and type theory.

• Some feeling for LEGO (for chapter 7 and the appendices only).



2 The Computational Lambda Calculus

In this chapter we present a metalanguage MLT (Σ), called computational lambda calcu-

lus [Mog91b], featuring computational types and polymorphic operations (á la ML) in a

signature Σ to describe specific notions of computation. The first two sections contain

definitions and discussion of the relevant mathematical concepts, in particular that of

strong monad upon which the semantics of the metalanguage is based. MLT(Σ) is intro-

duced in section 2.3, while section 2.4 describes its interpretation in a cartesian closed

category with a strong monad and additional Σ structure. In the last section we present

some examples of computationally relevant monads.

2.1 Strong endofunctors

Definition 2.1.1 A monoidal category C = 〈C, ⊗, 1, α, λ, ρ〉 consists of a category C

with a bifunctor ⊗ : C × C → C which is associative up to a natural isomorphism

α : ( ⊗ )⊗ ∼= ⊗( ⊗ ) and an object 1 of C which is left and right unit for ⊗ up to natural

isomorphisms λ : 1⊗ ∼= and ρ : ⊗1 ∼= , subject to the coherence conditions described in

[EK66, II.1].

Definition 2.1.2 A monoidal category C is closed if each functor ⊗ B : C → C has a

specified right adjoint [B, ].

We write ηB
X : X → [B, X⊗B] for the unit of such an adjunction, εB

X : [B, X]⊗B → X

for the counit (i.e. evaluation) and Λf : X → [B, Y ] for the transpose of f : X ⊗B → Y .

If C is symmetric and closed, it is biclosed, that is also every B ⊗ has a right adjoint.

24
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Let C be a monoidal closed category. The bijection d e : C(A, B) ∼= C(1, [A, B]) is

defined as follows: the name df e : 1 → [A, B] of a morphism f : A → B is the element

Λ(f ◦λA). Conversely, the arrow egd : A → B of an element g : 1 → [A, B] is the morphism

(Λ−1g) ◦λ−1
A . Then edf ed = f and degde = g. We write LA,B,C : [B, C] ⊗ [A, B] → [A, C]

for the transpose of [B, C] ⊗ [A, B]⊗A
id⊗ε−→ [B, C] ⊗B

ε−→ C. Then, L(df e, dge) = df ◦ge.

Definition 2.1.3 A strong endofunctor T = 〈T, st 〉 on a monoidal closed category

C consists of a map on objects T : obj (C) → obj (C) and a family of morphisms

st A,B : [A, B] → [TA, TB], the functorial strength of T , satisfying the following equations:

did e = st ◦ did e (2.1)

st ◦L = L◦ (st ⊗ st ). (2.2)

The underlying functor T : C → C of a strong endofunctor T = 〈T, st 〉 on C maps A

to TA and f : A → B to e(st A,B ◦
df e)d : TA → TB.

Every monoidal closed category can be enriched over itself by taking the internal homs

[A, B] as hom-objects, names of identities did A
e : 1 → [A, A] as identity elements and L

as composition [EK66, Theorem 5.2]. The following is well known:

Proposition 2.1.4 Every strong endofunctor on a monoidal closed C can be viewed as a

C-functor on the category C enriched over itself and viceversa. The underlying functor of

the C-functor, as defined in [Kel82], is the same as that of the strong functor, as above.

Now we consider a different notion of strength and describe the correspondence with

the one above in the more general setting of a V-category C, for V monoidal closed.

C is said to be tensored over V if for every X ∈ V and A ∈ C there exists a tensor product

X ⊗ A ∈ C and V-natural isomorphisms

C(X ⊗ A, ) ∼= [X, C(A, )].
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Note that such isomorphisms give rise to an adjunction ⊗ A a C(A, ) : V ⇀ C0

between V and the underlying category of C, defined by

C0(X ⊗ A, B) def= V(1, C(X ⊗ A, B)) ∼= V(1, [X, C(A, B)]) ∼= V(X, C(A, B)).

The above adjunction yields natural isomorphisms αX,Y,A : X⊗(Y ⊗A) → (X⊗Y )⊗A

in C0 as implied by Yoneda and the following natural bijections:

X ⊗ (Y ⊗ A) −→ B

X −→ C(Y ⊗ A, B)

X −→ [Y, C(A, B)]

X ⊗ Y −→ C(A, B)

(X ⊗ Y ) ⊗ A −→ B

Theorem 2.1.5 ([Koc72, 1.3]) Let V be a symmetric monoidal closed category, let A
and B be V-categories tensored over V and let A 0 and B0 be their underlying categor-

ies. There is a one-to-one correspondence between V-functors A → B and functors

T : A 0 → B0 equipped with a natural family of morphisms tX,B : X ⊗ TB → T (X ⊗ B)

satisfying the following diagrams:

1 ⊗ TB

TB

λ

t
T (1 ⊗ B)

Tλ

(X ⊗ Y ) ⊗ TB

X ⊗ T (Y ⊗ B)

T ((X ⊗ Y ) ⊗ B)

α

X ⊗ (Y ⊗ TB) T (X ⊗ (Y ⊗ B))
t

t

id ⊗ t

Tα

In the light of the above result, t is often called the tensorial strength of T . We can

see the correspondence between tensorial and functorial strengths through Yoneda:

[B, C] −→ [TB, TC]

V(X, [B, C]) −→ V(X, [TB, TC])

C0(X ⊗ B, C) −→ C0(X ⊗ TB, TC)

X ⊗ TB −→ T (X ⊗ B)
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The constructions are as follows: morphisms st A,B : [A, B] → [TA, TB] are obtained

from t by transposing [A, B]⊗TA
t−→ T ([A, B]⊗A) T ε−→ TB. Vice versa, tX,B is obtained

from st as X ⊗TB
ηB⊗id−→ [B, X⊗B]⊗TB

Λ−1st−→ T (X⊗B). We refer to the aforementioned

paper for the proofs that the relevant diagrams commute.

From the above discussion we obtain an alternative definition of strong endofunctor

T = 〈T, t〉 on a symmetric monoidal closed category C as consisting of a (conventional)

functor T : C → C and a natural transformation tA,B : A ⊗ TB → T (A ⊗ B) satisfying

the commutative diagrams of 2.1.5. In the following definition, as in most of this thesis,

we consider strengths defined in cartesian closed categories, where the isomorphisms α,

λ and ρ are the canonical ones.

Definition 2.1.6 ([Mog90b]) Objects of the category of strong endofunctors are triples

〈C, T, t〉, where 〈T, t〉 is a strong endofunctor on a cartesian closed category C. Morphisms

〈C, T, tT〉 → 〈D, S, tS〉 are pairs (U, σ), where the functor U : C → D preserves the

cartesian closed structure on the nose and σ : UT
.→ SU is a natural transformation

making the following commute:

UT (A × B)UA × UTB

σid × σ

UtT

tS
UA × SUB S(UA × UB)

The equation expressing the diagram above in terms of the functorial strength is:

[UTA, σB] ◦Ust T = [σA, SUB] ◦st S, that is, σB(Ust A,B(f, w)) = st UA,UB(f, σAw). This is

an instance of diagram 2.6 of section 2.2 and it expresses the fact that σ is C-enriched.

The condition that U preserves the universal structure on the nose is only to simplify the

treatment, so that, for example, UA × UTB = U(A × TB).
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Remark. Strong endofunctors are the objects of a 2-category the 2-cells of which,

φ : (U, σ) ⇒ (V, ρ) : 〈C, T, tT〉 → 〈D, S, tS〉, are natural transformations φ : U
.→ V such

that Sφ ◦σ = ρ◦φT .

Remark. Two strong endofunctors T = 〈T, st T 〉 and S = 〈S, st S〉 defined on the same

monoidal closed category C have an obvious composite: TS = 〈TS, st T ◦st S〉, while their

tensorial strengths are composed as follows to obtain:

tTS def= X ⊗ TSB
tTX,SB−→ T (X ⊗ SB)

T tSX,B−→ TS(X ⊗ B).

2.2 Strong monads

In section 2.1 we showed an equivalence between two definitions of strong endofunctor:

the first involving a map of objects T and a family st of morphisms, the second involving a

functor T and a natural transformation t. The former is more syntactic, in the sense that

T may be viewed as a type constructor and st as a family of uniformly typed operations

in the internal language of a category. Note that a map on objects T plus the operations

of t do not suffice to make T a functor.

In this section we follow the same approach for strong monads on which Moggi’s

computational metalanguage is based. The minimal version of this calculus described

in [Mog91b] requires only the structure of a monad; however, a strength is needed to

interpret terms with more than one free variable. First we introduce strong monads T as

made of type constructors and operations defined in cartesian closed categories C. This

definition is adopted in chapter 6 to represent monads in a type theory. Then we show in

the internal language of C (with “signature” T ) that strong monads correspond to monads

over C, which look more familiar to the category theorist. In the following section, we

present Moggi’s computational metalanguage as a sugared version of the language of

strong monads.
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Definition 2.2.1 A strong monad M = 〈T, val, let 〉 on a cartesian closed category C

consists of a map on objects T : obj (C) → obj (C) and two families of morphisms

valA : A → TA and letA,B : [A, TB] × TA → TB such that, for any f : A → TB

and g : B → TC, the following diagrams commute:

did e

[TA, TA]

[A, TA]
dval e

Λlet

1 1 × A A

TB

df e × val f

λ

[A, TB] × TA
let

dge × (let ◦(df e × id ))

Λ(let ◦(dge × f)) × λ

[B, TC] × TB

TC

1 × (1 × TA)

[A, TC] × TA
let

let

Note that let is an internal version of the lifting operation defined for Kleisli triples

(another presentation of monads; see [BW85]).

In the following, we sometimes use lambda notation to address morphisms of a

cartesian closed category C. This is fairly standard practice in category theory, where one

speaks of the internal language of C, as in [LS86, I.10.6]. In particular, our category is

endowed with families of morphisms valA : A → TA and letA,B : (A → TB) × TA → TB

satisfying the following equations: for all x : A, z : TA, f : A → TB and g : B → TC,

letA,A valA z = z (2.3)

letA,B f (valA x) = fx (2.4)

letB,C g (letA,B f z) = letA,C (λx : A. letB,C g (fx)) z (2.5)

where “let f z” stands for let (f, z). Moreover we shall write “let f” for (λz. let f z) and,

in general, assume left associativity in unbracketed expressions. These equations are just

the Curry-ed version of the diagrams in definition 2.2.1.
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Proposition 2.2.2 A strong monad M = 〈T, val, let 〉 has an underlying strong endo-

functor with the same map T on objects and strength

st A,B : [A, B]
[A,val]−→ [A, TB] Λlet−→ [TA, TB].

Proof. The above diagrammatical description of st translates in the internal language

as st A,B f
def= letA,B (λx : A. valB(fx)). Then, equation 2.1 follows immediately from

axiom 2.3: st (λx. x) def= let (λx. valx) = let val = λz. z.

Similarly, let g : A → B and f : B → C; since Lf g = λx. f(gx), equation 2.2 follows

from 2.4 and 2.5:

L (st B,C f) (st A,B g) z

= st B,C f (st A,B g z)

= letB,C (λy : B. valC (fy)) (letA,B (λx : A.valB (gx)) z)

= letA,C (λx : A. letB,C (λy : B. valC (fy)) (valB (gx))) z

= letA,C (λx : A. valC (f(gx))) z

= st A,C (λx : A. f(gx)) z

= st A,C (Lf g) z.

�

Remember that a C-natural transformation σ : (T, st T ) → (S, st S) is a family of

morphisms σA : TA → SA such that:

[TA, σB]

[A, B]

[TA, SB]

[TA, TB]

[σA, SB]

st S

st T

[SA, SB]

(2.6)

Proposition 2.2.3 Let C be a cartesian closed category; there is a one-to-one corres-

pondence between strong monads 〈T, val, let〉 on C as defined in 2.2.3 and C-monads

〈T, st , η, µ〉.
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Proof. We sketch the direction from strong monads to C-monads. From the following

constructions: ηA
def= valA : A → TA and µA

def= letTA,A(λz : TA. z) : T 2A → TA, unit

and associativity laws as well as naturality follow from routine calculations. We show

C-enrichment. In the case of η, diagram 2.6 corresponds to:

[TA, TB]

[A, TB]

[val , TB]

Λlet

[A, val ]

[A, TB]

[A, B]
[A, val ]

which commutes because [val, TB] ◦Λlet = id [A,TB], that is, in the internal language,

λx : A. letA,B f (valA x) = f . Similarly, 2.6 specializes for µ as follows:

[A, B]

st T

[TA, TB]
[µA, TB]

[TA, TB]
st T

[T 2A, µB]

st T

[T 2A, T 2B]

[T 2A, TB]

which, for f : A → B and w : T 2A amounts to:

µB(st TA,TB (st A,B f)w)

= letTB,B(λz : TB. z) (letTA,TB (λz : TA. valTB (st A,B f z))w)

= letTA,B(λz : TA. letTB,B (λz : TB. z) (valTB (st A,B f z)))w

= letTA,B (st A,B f)w

= letTA,B (λz : TA. letA,B (λx : A. (valB(fx)) z)w

= letA,B (λx : A. valB (fx)) (letTA,A (λz : TA. z)w)

= st A,B f (µAw).

�
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From the correspondence established by Theorem 2.1.5 we get an alternative view of

a strong monad in a cartesian closed category C as a 4-tuple 〈T, t, η, µ〉 consisting of a

strong endofunctor 〈T, t〉 and a monad 〈T, η, µ〉 such that:

id × η

η

A × TBA × B

t

T (A × B)

id × µ

A × TB

A × T 2B

t

t
T (A × TB)

T (A × B)

T 2(A × B)

µ

Tt

(2.7)

Such diagrams follow from 2.3, 2.4 and 2.5, for η and µ defined as in the proof of

Proposition 2.2.3 and t A,B
def= A × TB

(Λval)×id−→ [B, T (A × B)] × TB
let−→ T (A × B), that

is: t(x, w) def= let (λy. val(x, y))w.

Definition 2.2.4 Objects of the category of strong monads are 5-tuples 〈C, T, t, η, µ〉,

where 〈T, t〉 is a strong endofunctor on a cartesian closed category C and 〈T, η, µ〉 is

a monad on C such that t, η and µ satisfy 2.7. Morphisms from 〈C, T, tT , ηT , µT 〉 to

〈D, S, tS, ηS, µS〉 are morphisms (U, σ) of the underlying strong endofunctors such that:

SUAUA

UTA

σ

ηS

UηT

UT 2B SUTB S2UB

µS

SUB
σ

UµT

σ Sσ

UTB

In [Mog90b] strong monad morphisms are presented in terms of val and let . In

this case, given x : UX, f : UX → UTY and w : UTX, the equations are: val x =

σ(Uval (x)) and σY (U let X,Y f w) = let UX,UY (σY ◦f) (σXw).

Remark. Monad morphisms (U, σ) are similarly defined in [Str72], but with σ reversed.

We adopt the above version because it simplifies the theory of semantic constructors

discussed in section 6.2.
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Remark. Strong monads are objects of a 2-category where 2-cells φ : (U, σ) ⇒ (V, ρ)

are the same as those of the underlying 2-category of strong endofunctors.

Remark. Unlike strong endofunctors, strong monads compose only occasionally. Two

monads 〈T, ηT , µT 〉 and 〈S, ηS , µS〉 on a category C give rise to a composite 〈TS, ηTS, µTS〉

on C when a distributive law λ satisfying suitable diagrams is provided (see [BW85, 9.2]).

In that case, ηTS = TηS ◦ηT and µTS = TµS ◦µT ◦TλS. The same situation holds for

strong monads, for which λ is also required to be C-natural.

2.3 The computational lambda calculus

In [Mog91b], Moggi proposed the use of monads for modeling computations and a formal

metalanguage, the computational lambda calculus MLT (Σ), to describe denotations of

programs. The signature Σ, in which the metalanguage is parametric, contains operations

for describing specific notions of computation; in chapter 3, for example, we present a

metalanguage with operations for raising and handling exceptions. Singling out such

operations is convenient in view of the modular approach to denotational semantics that

we explore in in chapter 6. Here, we present MLT (Σ) as a special form of lambda calculus

and in the next section we define its interpretation in a cartesian closed category equipped

with a strong monad and Σ-structure.

First we extend the usual definition of typed lambda calculus to capture a family of

languages whose signatures may include type constructors and polymorphic operations.

We write L(Σ) for a generic member of this family with signature Σ.

Let Στ be a collection of constant type symbols K, each associated with a nat-

ural number ατ (K) called its arity. Let χ be a collection of type variables. We call

Στ -polytypes, dropping “Στ” when possible, the expressions freely generated from the

following rules:
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A1. 1 is a polytype;

A2. X ∈ χ is a polytype;

A3. if K ∈ Στ , ατ (K) = n and τ1, . . . τn are polytypes, then K(τ1, . . . τn) is a polytype

(brackets are omitted when n = 0, in which case K is called “nullary”);

A4. if σ and τ are polytypes, then so is σ × τ ;

A5. if σ and τ are polytypes, then so is σ → τ .

By writing a polytype as τ (X1, . . .Xn), we mean that all type variables of τ are

in X1, . . . Xn. By Στ -types we mean Στ -polytypes with no variables. We call closed

type scheme a nonempty list of polytypes τ1(X1, . . .Xn), . . . τm(X1, . . . Xn), τ (X1, . . . Xn),

written ∀X1, . . .Xn. τ1, . . . τm −→ τ (∀X1, . . . Xn. τ when m = 0).

A signature of a typed lambda calculus L(Σ) is a 4-tuple Σ = (Στ , ατ , Σε, αε) where Στ

and ατ are as above, Σε is a collection of operation symbols and αε associates with each

op ∈ Σε a closed type scheme called its arity. We write op : ∀X1, . . .Xn. τ1, . . . τm −→ τ

when αε(op ) = ∀X1, . . . Xn. τ1, . . . τm −→ τ .

A typed lambda calculus L(Σ) consists of collections of types, typed terms and

equations between terms, each satisfying the closure conditions specified below. Let

Σ = (Στ , ατ , Σε, αε); the types of L(Σ) are Στ -types as defined above. Let χτ be a col-

lection of varibles, one for each type τ . The terms of L(Σ) are freely generated by the

following rules: writing M : τ for “M is a term of type τ ,”

B1. ∗ : 1;

B2. if x ∈ χτ , then x : τ ;

B3. if op : ∀X1, . . .Xn. τ1, . . . τm −→ τ is an operation in Σε, σ1, . . . σn are types, and

Mj : τj(σ1, . . . σn) for j = 1, . . . m, then op σ1,...σn
(M1, . . .Mm) : τ (σ1, . . . σn);
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B4. if M : σ and N : τ , then 〈M, N〉 : σ × τ ;

B5. if M : σ × τ , then π1(M) : σ and π2(M) : τ ;

B6. if M : σ → τ and N : σ, then MN : τ ;

B7. if x ∈ χσ and M : τ , then λx : σ. M : σ → τ .

When the types are understood we shall drop the indices of the constant operations.

We shall also drop the parentheses when the precedence is understood. The usual notions

of free and bound variables, and of substitution extend immediately to L(Σ). Rather than

decorating variables with their type, we shall use typing contexts to type-check terms. A

typing context Γ is a list Γ = (x1, . . . xn) of variables, where no xi is repeated. Such a list

is written (x1 : τ1, . . . xn : τn), with xi ∈ χτi, to make the type of each variable explicit.

We write Γ ` M : τ when M is a term of type τ in L(Σ) whose free variables are in

context Γ and call Γ a context for M .

Note that there are no polymorphic terms in L(Σ): although, as we shall see in the

next section, operations in the signatures we consider may have a polymorphic intended

meaning, polytypes and type schemes live only in the metatheory. Formally, we decorate

operations with type indices so as to type-check terms such as nil A where nil : ∀X.list (X).

Informally, we drop indices when we can.

Equations have the form M =Γ N , where M and N are terms of same type in context

Γ. The collection of equations of L(Σ) is called the theory of L(Σ). Such a theory

is required to be closed under the usual inference rules of typed lambda calculi with

unit and product types (see [LS86]). Theories include a special set of axioms, typically

involving constants in Σ, such that anything in the theory derives from the axioms via

the inference rules. When M =Γ N is in the theory of L(Σ), we write Γ ` M = N .

Equations are indexed by contexts in order for theories to make sense of possible

empty types. For example, let L(Σ) contain no closed terms of type ∅ ∈ Στ and let the
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following be an axiom:

x : τ, y : τ ` λz : ∅. x = λz : ∅. y.

From this equation, x : τ, y : τ, z : ∅ ` x = y follows. Interpreting ∅ in Sets as the empty

set, the theory equates any two elements of an arbitrary set τ provided an element of the

empty set can be found. If the indices were not there, the proviso would be lost, and

soundness lost with it.

Let Στ be a collection of constant type symbols not including T and let ατ be defined

on Στ ∪ {T}, with ατ(K) = 0 for K ∈ Στ and ατ (T ) = 1. Let Σε be a collection of

operation symbols not including val and let , let αε map them to closed type schemes

formed from polytypes over Στ ∪ {T} and let ᾱε extend αε to Σε ∪ {val , let } with

val : ∀X. X −→ TX and let : ∀X, Y. (X → TY ), TX −→ TY .

Definition 2.3.1 A computational lambda calculus, or computational metalanguage,

MLT (Στ , Σε, αε) is a typed lambda calculus L(Στ ∪ {T}, ατ , Σε ∪ {val , let }, ᾱε) with Στ ,

Σε, αε, ατ , and ᾱε as above and with axiom schemes including equations 2.3, 2.4 and 2.5.

By abuse of notation we use “Σ” also to range over signatures (Στ , Σε, αε) of com-

putational metalanguages. We write MLT for the theory of MLT (∅) including no other

axioms than 2.3, 2.4 and 2.5. In [Mog91b], MLT is presented in a sugared version, with

the operator let written in the form:

Γ ` M : Tτ Γ, x : τ ` N : Tσ

Γ ` let x ⇐ M in N : Tσ

where x is bound in (let x ⇐ M in N). In the following we shall sometimes adopt the

above syntax which we take as an abbreviation for let (λx : τ. N) M . In particular, 2.3,

2.4 and 2.5 can be rewritten as:

T.η let x ⇐ M in val(x) = M

T.β let x ⇐ val(M) in N = N [M/x]

T.assoc let y ⇐ (let x ⇐ L in M) in N = let x ⇐ L in (let y ⇐ M in N).
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The following ξ rules are derivable from β-reduction and the ξ rules for lambda ab-

straction and application. Note that this would not be possible had we taken

let x ⇐ M in N as primitive notation.

M = N
val.ξ

val(M) = val(N)

M = M ′ N = N ′

let.ξ
(let x ⇐ M in N) = (let x ⇐ M ′ in N ′)

The converse of val.ξ expresses a mono requirement: given an interpretation of

MLT (Σ) in a strong monad T (as shown in the next section), this corresponds to the

unit η of T being a monomorphism:

val(M) = val(N)
mono

M = N

Such a property is required of “computational models” (λc-models) in [Mog91b], as

it allows a view of η as an existence predicate, like in a logic of partial elements. The

availability of such a predicate makes it possible to reconstruct the base category from the

Kleisli category of a monad. In particular, there is a correspondence between categories

with a monad satisfying mono and theories (of programming languages) with equivalence

and existence predicates. We shall use the mono requirement to prove Proposition 3.7.4.
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2.4 Structures and interpretation

In [Rey83], Reynolds suggested that satisfactory models of polymorphic languages should

exclude ad hoc polymorphism. The concept of parametric polymorphism, usually credited

to Strachey, expresses the informal requirement that instances of polymorphic entities are

assigned uniform meaning.

This can be made more precise by considering relational parametricity [Rey83]. As-

sume some notion of relation A ↔ B between objects A and B in a category C. Let

ρ1, ρ2 : χ → Obj (C) be assignments to the type variables in χ; the members of a type-

indexed family R of relations Rτ : [[τ ]]ρ1 ↔ [[τ ]]ρ2 are called logical if R satisfies certain

closure conditions (see [Plo73,Mit90] for definitions). In particular, if C has exponentials,

a logical relation Rσ→τ is defined from Rσ and Rτ as follows:

Rσ→τ = {f, g | ∀ a, b. Rσ(a, b) ⊃ Rτ(fa, gb)}.

A polymorphic operator ω is called relationally parametric if its instances satisfy

any logical relation. More precisely, we say that an Obj n-indexed family of morphisms

ωX1,...Xn : [[σ]]X1,...Xn → [[τ ]]X1,...Xn is relationally parametric if ωA1,...AnRσ→τ ωB1,...Bn for

all type assignments A1, . . .An and B1, . . .Bn, and logical relations in a family R. This

can be expressed diagrammatically as:

[[τ ]]A1,...An

[[τ ]]B1,...Bn

[[σ]]A1,...An

ωA1,...An

Rτ

[[σ]]B1,...Bn

ωB1,...Bn

Rσ

Example. Let ρ1, ρ2 : χ → obj (C) be type assignments, and let h : ρ1 → ρ2 be a

collection of morphisms hX : ρ1(X) → ρ2(X), indexed by χ; h induces a logical relation



2. The Computational Lambda Calculus 39

', where a 'X b if and only if b = hXa. Using this notion of logical relation, an operator

Y of arity ∀X. (X → X) −→ X is relationally parametric when, for all h : A → B,

f : A → A and g : B → B, if hf = gh then YBg = h(YAf). A “uniform” fixed-point

operator Y in Cpo , the category of cpos, is defined by Plotkin as one that satisfies the

above property restricted to strict maps h.

�

Properties such as uniformity are not algebraic, that is they cannot be enforced on

models by means of equations. Therefore, models of the computational metalanguage

may have to be provided with built-in parametricity. In chapter 7 we use a uniform

fixed point operator Y to define structures for denotational semantics. There, we adopt a

more powerful metalanguage, the Extended Calculus of Constructions [Luo82], in which

domain theoretic properties can be axiomatized.

Remark. The notion of naturality can be related to parametricity. Let list be the

unary type constructor of LISP. The operator cons , of arity ∀X. X, list (X) −→ list (X),

satisfies the condition that, for all f : A → B,

list (f)(cons A a l) = cons B f(a) (list (f) l),

where list (f) is often written map(f) (see remark in section 6.3). Similarly, the equation

list (f) nil A = nil B holds, where nil is a polymorphic operator of arity ∀X. list (X). These

conditions express the naturality of cons and nil . In order to express naturality in terms

of parametricity, one should explain how a relation Rlist(A) is defined logically from RA.

The notion of action of a functor on a relational structure (see section 3.6), can be used

to this extent.

�

Let C be a cartesian closed category and let Στ be a collection of type construct-

ors, with arities given by a map ατ . A Στ -structure on C is a collection of functions

[[K]] : obj (C)n → obj (C), with n = ατ(K), one for each K ∈ Στ .
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An interpretation [[τ ]] of a Στ -polytype τ (X1, . . .Xn) in a Στ -structure is a map

obj (C)n → obj (C) defined from the interpretation of the constants in Στ and from the

obvious interpretations of 1, × and →. When τ is a type, [[τ ]] is an object of C. Inter-

pretation of types extends to contexts, with [[x1 : τ1, . . . xn : τn]] = [[τ1]] × . . . × [[τn]].

Lemma 2.4.1 Let τ (X1, . . . Xn) be a polytype and let σi, i = 1, . . . n, be types; then,

[[τ (σ1, . . . σn)]] = [[τ ]][[σ1]],...[[σn]].

Proof. By trivial induction on the structure of τ . �

An interpretation [[op]] of an operation op : ∀X1, . . .Xn. τ1, . . . τm −→ τ is an Obj (C)n-

indexed collection of morphisms [[op ]]A1,...An : [[τ1]]A1,...An × . . . [[τm]]A1,...An → [[τ ]]A1,...An .

Such a collection may be required to satisfy parametricity to obtain well behaved models.

A Σε-structure on C consists of an interpretation [[op]] for each op ∈ Σε. A Σ-structure

on C consists of a Στ and a Σε structure.

An interpretation [[ ]] of L(Σ) in a Σ-structure on C maps types to objects of C and

terms M of type τ to morphisms [[M ]]Γ : [[Γ]] → [[τ ]], parametrically in a context Γ such

that Γ ` M : τ . When using lambda-notation to address morphisms in C, the free

variables of [[M ]]Γ are the ones in Γ. The interpretation [[M ]]Γ is defined by structural

induction on M as follows:

C1. [[∗]]Γ = ! : [[Γ]] → 1;

C2. [[xi]](x1:τ1,...xn:τn) = πi : [[τ1]] × . . . × [[τn]] → [[τi]];

C3. [[op σ1,...σn
(M1, . . .Mm)]]Γ = [[op]][[σ1]],...[[σn]] ([[M1]]Γ, . . . [[Mm]]Γ);

C4. [[〈M, N〉]]Γ = 〈[[M ]]Γ, [[N ]]Γ〉;

[[πi(M)]]Γ = πi[[M ]]Γ;

C5. [[M N ]]Γ = [[M ]]Γ[[N ]]Γ;

[[λx : σ. M ]]Γ = λx : [[σ]]. [[M ]]Γ,x:σ.
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In the above definition we used the fact that, for all terms M but lambda abstractions,

a context for M is also a context for its immediate subterms. Moreover, if Γ is a context

for λx : σ. M , then (Γ, x : σ) is a context for M . In the clause for lambda abstraction, we

defined interpretation at a context Γ by using interpretation at a bigger context (Γ, x : σ).

However, this does not break the induction since the latter is applied to a smaller term.

In C3 we used lemma 2.4.1.

Definition 2.4.2 A model of L(Σ), or Σ-model, is a pair (C, A), where C is a cartesian

closed category and A is a Σ-structure on C satisfying the axioms of L(Σ).

Example. Any theory L(Σ) has a syntactic model T (Σ). The underlying category of

T (Σ) is the cartesian closed category whose objects are Στ -types and whose morphisms

are freely generated from morphisms [M ] : 1 → τ , where [M ] is the equivalence class of

closed terms N such that ` M = N . This category has an obvious Στ structure and

Σε structure assigning to every op : ∀X1, . . . Xn. τ1, . . . τm −→ τ and types σ1, . . . σn a

morphism [[op ]]σ1,...σn = [λx1 : τ̃1, . . . xm : τ̃m. op (x1, . . . xm)](x1, . . . xm), where τ̃i stands

for τi(σ1, . . . σn).

�

Proposition 2.4.3 (Soundness) All theorems of MLT are true in a cartesian closed

category with a strong monad.

Proof. Let Σ consist of Στ = {T} and Σε = {val , let } of appropriate arities; MLT

is of the form L(Σ). Any monad 〈T, val , let 〉 is a Σ-structure on C and, by definition,

it satisfies axioms 2.3, 2.4 and 2.5. Then, the result follows from soundness of typed

lambda calculi with products and unit type with respect to interpretation in cartesian

closed categories. �

Proposition 2.4.4 (Completeness) MLT is complete with respect to interpretation in

cartesian closed categories with a strong monad.
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Proof. The argument in the proof of soundness can be reversed: any model of MLT is a

cartesian closed category with a strong monad. Completeness follows from the existence

of a syntactic model where equations are satisfied only if provable. We do not make this

proof any more formal as it just repeats a similar one given in section 6.7 for a more

powerful type theory. �

Models of L(Σ) are made of universal structure and “additional” structure to interpret

the operations in Σ. In this chapter, we restricted the former to cartesian closedness, as

universality was only meant for the unit type, products and exponentials. Metalanguages

with a richer set of universal types can also be considered, for example, including sums,

recursive types, (strong) natural numbers and so on. However, it may be impossible

to interpret certain computational features in categories that are too rich in universal

structure. A typical example is the inconsistency of coproducts, which are used in the next

chapter to interpret exceptions, with fixed points in cartesian closed categories [HP90].

2.5 Examples of computationally relevant monads

Lifting. A lifting monad can be used to give an account of partiality. Let A be a set

and let A⊥ = {X ⊆ A | |X| ≤ 1}. There is a bijection between partial functions A ⇀ B

and total functions A → B⊥, natural in A and B, mapping f : A ⇀ B into f † such

that f †(a) = {b | f(a) is defined and equal to b}. The adjunction given by this bijection

defines a monad in the category of sets, which we call the lifting monad:

TA
def= A⊥

where η = id † satisfies the mono requirement and µ maps ∅ 7→ ∅ and {X} 7→ X. Such a

monad is strong, with (st f)∅ = ∅ and (st f){a} = {f(a)}. Note that the above “internal”

definition of lifting generalizes to the category of cpos and also to topoi.

An appropriate operation to include in a metalanguage for nontermination is

⊥X : TX, which yields the always diverging computation for each type X. This choice is
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justified as follows. The lifting monad on the category of sets arises from an adjunction

Sets ⇀ PSets , where PSets is the category of sets A with a “point” ⊥A : 1 → A; morph-

isms are point preserving functions. The right adjoint is the obvious forgetful functor

PSets → Sets . This functor is monadic. In fact, any pointed set (A, ⊥A) is a Σ-algebra

on A and every A⊥ is the free language over Σ generated by A. Similar constructions can

be carried out for finitary monads on arbitrary categories (with appropriate structure),

among which the finite powerset monad Pfin and the monad for exceptions TX = X +E

(see below for both cases).

Remark. In general, studying the Kleisli category of a monad T (in the example above,

the category of partial functions) helps understanding the way in which programs com-

pose. On the other hand, the study of T -algebras may provide some insight as to which

operations to include in a metalanguage for T -computations.

�

The above definition of lifting can be made more general. A class of admissible monos

(Rosolini) in a category C is a class of monos containing all the identities and closed under

composition and pullback along arbitrary morphisms (see definition 4.3.8). Let N be a

class of admissible monos in C. A N -partial map [m, f ] : A ⇀ B, is an equivalence class

of pairs (m, f) with domain m : X � A ∈ N and f : X → B. We drop “N ” when

understood. Partial maps compose in the category pC of partial maps: [m, f ] ◦[n, g] is

[n ◦g−1m, f ◦m−1g]. A lifting monad 〈( )⊥, η, µ〉 in C is given by an adjunction C ⇀ pC

in which the inclusion C → pC sending f into [id , f ] is left adjoint. Above we wrote ( )†

for the natural isomorphism given by such an adjunction. Note that there can be no two

lifting monads 〈( )⊥, η, µ〉 and 〈( )⊥, η, µ′〉 with µ 6= µ′, so that 〈( )⊥, η〉 is good enough

notation for lifting.

The transpose h† of a partial map is sometimes said to classify h. More generally,

a partial map classifier for an object A is an object Ã together with a mono A � Ã

such that, for any N -partial map [m, f ] : X ⇀ A there exists a unique total morphism

χ[m, f ] : X → Ã forming the following pullback:
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A

X

f

m

χ[m, f ]
Ã

The monad 〈( )⊥, η〉 provides partial map classifiers ηA : A� A⊥ ∈ N for all objects

A of C. Conversely, partial map classifiers for all objects give a lifting monad whose

Kleisli category is pC.

If C has initial object ∅ and ?1 : ∅ → 1 is admissible, then ⊥A : 1 → A⊥ is obtained

by transposing [?1, ?A]. However, in order to validate interesting axioms involving such

operations, additional assumptions may be necessary. For example, if ∅ is strict, that is

if any morphism into ∅ is an isomorphism, then (let f ⊥A) = ⊥B for any f : A → B⊥.

This is easy to see by writing (let f) as µB ◦f⊥ and using lemma 5.1.6 stating that any

map h : A → B is the pullback of h⊥ along ηB .

Nondeterminism. The bijection † described above, which involves partial functions,

can be extended to arbitrary relations: there is a natural bijection between relations

r : A ↔ B and functions r†A → PB such that r†(a) = {b | r(a, b)}. The resulting

adjunction yields the powerset monad:

TA
def= PA

in the category of sets, in which η
def= id † satisfies the mono requirement and µ(H) is⋃

X∈H X. Again, there is a strength st f X
def=
⋃

x∈X f(x).

The obvious operation to include in a metalanguage for nondeterministic computa-

tions is or : ∀X. TX, TX −→ TX, with [[or ]](X, Y ) = X
⋃

Y .

Note that the finite powerset monad on Sets arises as the classifying monad for the

theory of semilattices, that is as the monad whose algebras are semilattices. As for lifting,

the operation or (the join of a semilattice) associated with this monad is suggested by

an analysis of the category of algebras.
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Exceptions. Many programming languages feature mechanisms for “giving up” com-

putations when exceptional situations arise. If a recovery action is to be attempted, it

should be possible to perform a case analysis of programs, branching on whether or not

an exception has occurred. Hence, designating an object E to interpret the outcome of

aborted computations, the object

TX
def= X + E

provides suitable denotations for programs of type X in a category with sums. In par-

ticular, this T is the object map of a strong monad 〈T, val, let〉 where val = inj 1 and

(let N M) = case (M, N, inj 2). This yields a multiplication µ(w) = case (w, id , inj 2) and

a strength t(x, z) = case (z, λ y. inj 1(x, y), inj 2).

Let’s consider this monad from the point of view of the operations. Given an object

E in a category C, the slice category E/C has morphisms with domain E in C as objects

and commuting triangles f ◦a = b as morphisms f : a → b. The category C has sums

of the form ( ) + E if and only if the forgetful codomain functor E/C → C has left

adjoint. Indeed, E/C is the Eilenberg-Moore category of the above monad T . T -algebras

X + E → X can be viewed as handlers E → X, while in the next chapter, where

exceptions are studied in detail, we shall see that suitable operations to raise exceptions

arise from suitable assumptions on the structure of E (see end of section 3.5).

Resumptions have long been used in denotational semantics to capture the phe-

nomenon of interruption in program evaluation. Clearly enough, the meaning of the

program running P1 and P2 in parallel cannot be described in terms of nondeterministic

functions [[P1]] and [[P2]] since it must take into account interleaved executions of the two

programs. Hence, it should be possible to single out the atomic steps of a computation

and the interpretation of a program of type A should be an object producing a value of

type A after a finite number of atomic steps. For example, reading “inj 1(v)” as “return

v” and “inj 2(. . .)” as “make one step and (. . . ),” the program inj 2(inj 2(inj 1(v))) returns

v after two (rather boring) atomic steps. Such programs can be interpreted as elements
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of the object

TA
def= µX. A + X

in a category C, where µ(F ), written µX.F (X), is a “fixed point” operator on endofunc-

tors F : C → C, that is Fµ(F ) ∼= µ(F ). Inductive types (see section 6.3) such as µ(F )

are interpreted in categories C in which every (suitable) functor F has an initial algebra

Fµ(F ) → µ(F ). In that case, the above equation defines the object map of the strong

monad of resumptions, where val = inj 1, let f (inj 1a) = f(a) and let f (inj 2z) = let f z.

Programs of the kind described above are not so interesting because nothing much

happens during an atomic step. In section 7.2 we show how to apply the simple resump-

tion mechanism described above to computationally more elaborate situations, such as

when programs sharing the same memory run in parallel, and we present operations

appropriate for describing the mathematics of resumptions.

Remark. Lambda calculi of the form L(Σ) lack the syntactic means to describe induct-

ive types. Signatures Στ , for example, are not defined to include higher order constructors

of the form µ : (type → type ) → type .

Interactive input is similar to resumption in that evaluation may have to be inter-

rupted to input a value. The strong monad for interactive input features:

TA
def= µX. A + XI

where I is the type of the input values. Again, the unit η is inj 1, while µ(inj 1z) = z

and µ(inj 2w) = inj 2(µ◦w). For the strength, let f : A → B, st f (inj 1a) = inj 1(fa)

and st f (inj 2z) = inj 2((st f) ◦z). From these data one obtains let f def= µ◦Tf , that is:

let f (inj 1a) = f(a) and let f (inj 2z) = inj 2((let f) ◦z).

Given the above monad, an obvious operation to include in the metalanguage is

input : TI , to be interpreted as inj 2(inj 1). This operation can be used to input values

on the fly: let I interpret the type of integers,

[[n + input ]] = let x ⇐ input in val (n + x) = inj 2(λx : I. inj 1(n + x)).
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Others. A detailed discussion of computationally relevant monads can be found in

[Mog90a]. Here we present a few examples.

TA = A × M complexity, for M a monoid, see [Gur91].

TA = (A × S)S side effects, discussed in chapter 5.

TA = µX. A + (O × X) interactive output, see [Mog90a].

TA = R(RA) continuations, ibid.

(TA)k =
∑

n:N A(F nk) dynamic allocation, ibid.

The latter is defined in a functor category CK , where the objects of K intuitively represent

stages of memory allocation and F : K → K increments the memory with one new

location. A natural transformation σ : id K
.→ F is also required, where Aσk(x) : AFk

represents x : Ak after a new allocation.



3 Application: exceptions

In this chapter, the computational metalanguage is used to study the semantics of a frag-

ment of Standard ML, called TMLE (Tiny ML with Exceptions), including the exception

handling mechanism. To our knowledge, no denotational description of ML exceptions

has been given before.

The fragment that we consider is nontrivial because ML’s exceptions have the capabil-

ity of passing parameters to exception handlers and this has interesting consequences both

on the metatheory of TMLE and on its semantics. One consequence is that, although

the language provides no syntactic facilities for declaring either recursive functions or

recursive types, programs may still fail to terminate. In fact, we discovered that, just

like when adding references to the simply typed lambda calculus, it is possible to write a

fixed point combinator in TMLE for any functional type. This failure of normalization

has been noticed before in [Lil95]. However, the result, which is yet unpublished, was

rediscovered by us independently.

As mentioned in section 2.5, models of nontermination generally involve a lifting

monad. Even before realizing that TMLE programs could loop, we were led to lift

computational types because a recursive domain equation arises in the interpretation of

the type of exceptions. In fact, on the one hand the type of exceptions must be included

in all computational types, as programs may produce exceptions, while on the other it

must include computational types, as exceptions can carry programs as parameters.

Modelling the language in the cartesian closed category of complete posets, there

are two places in which one can look for solutions to recursive equations: one is the

subcategory of objects with least element and strict maps, and the other is the category

48
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of partial maps. We prefer the second approach to the first because it allows us to adopt

the categorical sums of the (total) category of cpos in the interpretation of computational

types. The universal property of such sums allows exceptions to be captured by a case

analysis of the outcome of a computation. The universality of sums is crucial in the

soundness proof of section 3.5.

In section 3.1, we define the language TMLE and its operational semantics. Then,

we give an axiomatic account of exceptions by presenting a theory MLT(Σ) of the com-

putational lambda calculus featuring exception constructors and operations of raise and

handle (section 3.3). In section 3.5 we give an interpretation [[ ]]MLT (Σ) of this metalan-

guage in a cartesian closed category with appropriate structure and prove it sound. In

section 3.4, TMLE is interpreted via a translation ([ ]) into MLT (Σ), while the denota-

tional semantics obtained by composing [[ ]]MLT (Σ) with ([ ]) is shown to be adequate with

respect to the given operational semantics in section 3.7.

The proof of adequacy is based on the definition of a suitable family of logical relations

[Mit90]. Because of the circularity in the type of exceptions, such a family cannot be

defined by induction on the structure of types and a proof of its existence is required. We

follow the trace of a similar proof given by A. Pitts in [Pit] for a fragment of ML with

one recursive type. Our case, however, is more involved than Pitts’ because the notion of

computation itself upon which interpretation is based (that is the monad TX = (X+E)⊥)

carries the seed of recursion (viz. the type E). A lesser difference with [Pit] is that we

solve our recursive equations in a category of partial maps, rather than in one of strict

maps.

The monadic setting in which adequacy is proven highlights the existence of two inter-

twined families of logical relations, one between semantic values and (strongly) canonical

TMLE terms, and the other extending the first to computations and arbitrary expres-

sions of the language. This seems to be a general pattern when proving computational

adequacy with logical relations and it can be exploited to develop such proofs modularly.

The idea is to make semantic constructors (section 6.2) work not only on monads T but

also on the actions of T on relational structures (section 3.6).
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3.1 Tiny ML with Exceptions

Like in ML, TMLE exceptions can carry values, which we call arguments. We assume

a possibly infinite set E = {ε1, ε2 . . .} of exception names and a function ζ from E to

the types of TMLE, mapping each ε into the type of its argument. To give programs

something to do to, besides raising and handling exceptions, we assume a type nat of

natural numbers, a constant n for each natural number n and a binary function symbol

Op to perform some arithmetical operation op. These are the formation rules for types

and expressions of TMLE:

(nat)
` nat type

(exc)
` exc type

` σ1 type ` σ2 type
(arrow)

` σ1 → σ2 type

(var)
x1 : σ1, . . .xn : σn ` xi : σi

1 ≤ i ≤ n

(n)
` n : nat

Γ ` e1 : nat Γ ` e2 : nat
(Op)

Γ ` Op(e1, e2) : nat

Γ ` e : nat Γ ` e1 : σ Γ ` e2 : σ
(if)

Γ ` if e = 0 then e1 else e2 : σ
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Γ, x : σ ` e : τ
(fn)

Γ ` fn x :σ ⇒ e : σ → τ

Γ ` e1 : σ → τ Γ ` e2 : σ
(appl)

Γ ` e1e2 : τ

Γ ` e : ζ(ε)
(ε)

Γ ` ε(e) : exc

Γ ` e : exc
(raise)

Γ ` raise τ e : τ

Γ ` e1 : τ Γ, x : ζ(ε) ` e2 : τ
(handle)

Γ ` e1 handle ε(x) ⇒ e2 : τ

This is the intuitive meaning of the operations raise and handle: an exception named

ε is raised by raise τ ε(e), where the program e, of type ζ(ε), is meant to produce a value

to be passed to a handler. The typing rule for raise in ML is

Γ ` e ⇒ exc
(ML raise)

Γ ` raise e ⇒ τ

where the symbol “⇒” relates what in ML literature are called phrases and semantic

objects. Since τ does not occur in the premise, this rule allows raised exceptions to

have arbitrary type. Instead, we index the term constructor raise with the types of the

language to avoid polymorphic type checking.

In e1 handle ε(x) ⇒ e2, if e1 raises an exception ε(v), the handler e2 is executed with

x bound to v; otherwise the value of e1 is returned. Exceptions propagate throughout

their context until they are handled. The evaluation of exception raising is eager : for

example, raise nat ε(raise nat ε(4)) handle ε(x) ⇒ x evaluates to 4 rather than (lazily)
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to raise nat ε(4). On the other hand, conditional expressions must be lazy in each branch,

since we want if 0 = 0 then b else raise nat ε(e) to raise no exception.

We distinguish between canonical and strongly canonical terms, the former ranged

over by c and the latter by b :

b ::= n | ε(b) | fn x :σ ⇒ e

c ::= b | raise σ b.

The idea is that, among the canonical terms, the strong ones represent values that

programs compute while the rest is computational gear. In TMLE, the gear is just raised

exceptions. However in ML, one has semantic judgements such as s, Γ ` phrase ⇒ A, s′

includeing an environment Γ, states s and s′, and a semantic object A, which may be, for

instance, the constant FAIL, which is neither a value nor an exception, but rather the

operational means of expressing a matching failure.

The operational semantics of TMLE is a relation between the closed terms and the

closed canonical terms of the language. This relation is defined by the following rules:

(b)
b b

e1  n1 e2  n2
(Op1)

Op(e1, e2) m
m = n1 op n2

e1  raise nat b
(Op2)

Op(e1, e2) raise nat b

e1  n e2  raise nat b
(Op3)

Op(e1, e2) raise nat b

e 0 e1  c
(if1)

if e = 0 then e1 else e2  c
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e n e2  c
(if2)

if e = 0 then e1 else e2  c
n 6= 0

e raise nat b ` e1, e2 : σ
(if3)

if e = 0 then e1 else e2  raise σ b

e1  fn x :σ ⇒ e e2  b [b/x]e c
(app1)

e1e2  c

e1  raise σ→τ b
(app2)

e1e2  raise τ b

e1  b′ e2  raise σ b ` e1 : σ → τ
(app3)

e1e2  raise τ b

e b
(ε1)

ε(e) ε(b)

e raise ζ(ε) b
(ε2)

ε(e) raise exc b

e b
(rs1)

raise σ e raise σ b

e raise exc b
(rs2)

raise σ e raise σ b

e1  b
(hnd1)

e1 handle ε(x) ⇒ e2  b

e1  raise σ ε′(b)
(hnd2)

e1 handle ε(x) ⇒ e2  raise σ ε′(b)
ε′ 6= ε
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e1  raise σ ε(b) [b/x]e2  c
(hnd3)

e1 handle ε(x) ⇒ e2  c

Remark. In the operational semantics of TMLE, every judgement has at most one

derivation.

Remark. Exploiting the call-by-value discipline in function application, one can define

sequential composition (e1; e2) as (fn x :σ ⇒ e2)e1, where e2 does not contain free occur-

rences of x.

3.2 Exceptions and termination

Let α be an arbitrary TMLE type. Given an exception constructor ε with parameter

of type ζ(ε) = exc → α, it is possible to write a looping program ⊥α of type α: let

K : exc → α be the term fn x :exc ⇒ ((raiseα x) handle ε(y) ⇒ y(x)), then

⊥α
def= Kε(K).

Using the same technique, it is possible to define a fixed point combinator Yα→β

for arrow types. Let ε have parameter of type ζ(ε) = exc → (α → β). Given any

term p of type (α → β) → (α → β), let Kp of type exc → (α → β) be the term

fn x :exc ⇒ ((raiseα→β x) handle ε(y) ⇒ p (y(x))); then,

Yα→β
def= fn p : (α → β) → (α → β) ⇒ (fn z :α ⇒ Kp ε(Kp) z).

The reason why TMLE programs can loop is that handle treats exception constructors

as such by providing a sort of case analysis on exc. Note that the same would happen

even if exceptions were not first class objects. Indeed, we would still be able to write
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a fixed point combinator for arrow types if the language included no type exc at all

and the construction and raising of exceptions were grouped together by a single term

constructor:

Γ ` e : ζ(ε)
(raise ε)

Γ ` raise τ ε(e) : τ

Remark. In [dG95], a lambda calculus with an ML-like exception handling mechanism

is presented, in which the evaluation of well typed expressions cannot give rise to uncaught

exceptions. In this calculus, all terms strongly normalise.

Remark. In an unpublished manuscript [Lil95], Mark Lillibridge noticed that adding

exceptions to the simply typed lambda calculus makes normalization fail. In that paper,

the untyped lambda calculus is encoded in a typed language with exceptions to conclude

that exceptions are strictly more powerful than callcc . The argument uses results ob-

tained in [HL93] proving strong normalization for an extension of F ω with callcc and

abort . However, the results in [HL93] only concern particular evaluation strategies, and

it is not clear to us how that generalizes to arbitrary strategies.

Remark It is possible to mimic the raise and handling of exceptions with callcc by

using a global stack to store handlers. Here is the ML code:

val stack = ref(nil): (unit -> unit) list ref;

fun push = ...

fun pop = ...

fun raise () = pop stack ();

infix handle;

fun A handle B =
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callcc(fn k =>

((push stack (fn x => throw k (B())));

(let val res = A() in ((pop stack);res) end)));

3.3 A theory of exceptions

In this section we present the equational theory of a metalanguage MLT(Σ) for compu-

tations with exceptions, which we use to give the denotations of TMLE programs. As

for TMLE, we assume a function ζ from the set E = {ε1, ε2 . . .} of exception names

into the types of the metalanguage, mapping each exception name into the type of

its argument. The signature Σ includes constant type symbols N and E, with arities

ατ (N) = ατ(E) = 0, and the following constant operation symbols:

n : N,

op : N, N −→ N,

cond : ∀X. N, X, X −→ X,

ε : ζ(ε) −→ E,

raise : ∀X. E −→ TX,

handle ε : ∀X. TX, (ζ(ε) → TX) −→ TX.

The constant N represents the type of natural numbers. As in TMLE, we assume

a constant n for each natural number n and a binary function op representing some

arithmetical operation op . The conditional cond branches on the value zero of its first

argument.

The constant E is the type of exceptions, whose constructors are the operations ε,

one for each exception name. The operation raise τ allows exceptions to be raised in any

context C[ ] in which “ ” holds the place of a term of type τ . The portion of a program

following the raise of an exception is disregarded. In TMLE, this could be phrased:

(raise; N) = raise, while, of course, (N ; raise) = raise should not hold.
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The first argument to handle ε is the body whose possible exceptions are to be handled,

while the second is a handler. There is nothing to be handled when the body is a value.

Moreover, only an exception whose name is ε should be captured by handle ε.

Formalizing the above description of the theory of exceptions, the axioms of MLT (Σ)

are the following:

(op ) op(n, m) = n op m,

(cond .0) cond (0, M, N) = M,

(cond .n) cond (n, M, N) = N (n 6= 0),

(exception .η) let x ⇐ raise (U) in N = raise (U),

(handle .η) handle ε(val(M), H) = val(M),

(handle .β1) handle ε(raise (ε L), H) = HL,

(handle .β2) handle ε(raise (ε′L), H) = raise (ε′L) (ε′ 6= ε).

From the β and the ξ-rule for lambda application, the ξ-rules for ε, raise and handle

are derivable:

L1 = L2
(exception .ξ)

ε(L1) = ε(L2)

and similarly for the others.

Remark. Some of the axioms above are not “robust,” meaning that they may need to

be rewritten in order to describe the behaviour of exceptions in more complicated com-

putational settings than TMLE. For example, handle .η is rather weak when exceptions

are considered in combination with side effects. In that case, we would like it to hold

not only of values, but also of nonexceptional computations which alter the state. In the

next chapter we introduce a family of evaluation relations ⇐X⊆ X × TX, where v ⇐ M

is read “M evaluates to v.” These predicates can be used to write more general axioms

such as:

v ⇐ M ⊃ (v ⇐ handle ε(M, H)).
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3.4 Interpretation of the language

TMLE is interpreted via a translation ([ ]) into the computational metalanguage MLT (Σ)

for exceptions, that is [[e]]TMLE
def= [[([e])]]MLT(Σ). Types are translated as follows:

([nat]) = N,

([exc]) = E,

([σ1 → σ2]) = ([σ1]) → T ([σ2]).

The translation of types extends to typing contexts in the obvious way. We assume

that TMLE and MLT (Σ) share the same set E of exception names and that ([ζ(ε)]) = ζ(ε).

Terms are translated as follows:

([x]) = val (x),

([n]) = val (n),

([Op(e1, e2)]) = let x1 ⇐ ([e1]) in let x2 ⇐ ([e2]) in val (op (x1, x2)),

([if e = 0 then e1 else e2]) = let x ⇐ ([e]) in cond (x, ([e1]), ([e2])),

([fn x :σ ⇒ e]) = val (λx : ([σ]). ([e])),

([e1e2]) = let f ⇐ ([e1]) in let x ⇐ ([e2]) in fx,

([ε(e)]) = let x ⇐ ([e]) in val (ε x),

([raise σ e]) = let x ⇐ ([e]) in raise ([σ])(x),

([e1 handle ε(x) ⇒ e2]) = handle ε(([e1]), λ x : ζ(ε). ([e2])).

All strongly canonical terms b : σ translate into terms ([b]) = val (|b|), where |b| : ([σ]) is

the translation of b as a value rather than as a computation. Terms that are mapped to let
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expressions are strict when it comes to raised exceptions. Therefore, if exceptions are to be

handled, the subterms of handle must not be filtered by a let, but passed immediately to

handle . Similarly, as required from the operational semantics, if then else is strict in its

first argument but not in the others. Note that ([e1e2]) gives a call-by-value interpretation

of function application, according with the operational semantics.

Proposition 3.4.1 (Static adequacy) TMLE terms of type τ are interpreted as terms

of type T ([τ ]), that is, Γ ` e : τ is derivable in TMLE if and only if ([Γ]) ` ([e]) : T ([τ ]).

Proof. By induction on the derivation of the typing judgements. For example, a deriv-

ation of Γ ` raise σ e : σ in TMLE must contain a subderivation of Γ ` e : exc. Then,

using the inductive hypothesis,

([Γ]) ` ([e]) : TE

([Γ]), x : E ` x : E

([Γ]), x : E ` raise ([σ])(x) : T ([σ])

([Γ]) ` let x ⇐ ([e]) in raise ([σ])(x) : T ([σ])

([Γ]) ` ([raise σ e]) : T ([σ]).

�

In section 3.7, where we prove that the above interpretation is adequate with respect

to the operational semantics, we shall use the following substitution lemma, whose proof

is easy enough to be left out.

Lemma 3.4.2 ([[b/x]e]) ≡ [|b|/x]([e]).
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3.5 Interpretation of the metalanguage

In this section we describe a categorical interpretation of MLT (Σ) and prove its sound-

ness. The proof only relies on an axiomatic description of models: first we define the

interpretation in terms of an abstract categorical structure, and only after proving its

soundness do we look for a concrete category that exhibits such a structure.

The metalanguage is interpreted in a cartesian closed category C with initial object ∅

and coproducts. The injections are written injX1,X2
i : Xi → X1 +X2, i ∈ {1, 2}, dropping

the superscripts when types are understood. When using lambda notation, we write

case (f, g, x) : Y for the morphism mediating f : X1 → Y and g : X2 → Y applied to

x : X1 + X2. As usual, we write case (f, g) for λx. case (f, g, x). Other structure is also

needed in C; we introduce it while spelling out the interpretation.

We assume a strong natural numbers object [LS86, I.9] 1 z→ N
s→ N to interpret N.

Note that, since we have sums, this is the same as assuming an initial algebra for the

functor FX = 1 + X. Let a : 1 → A and f : A → A, we write [a, f ] : N → A for the

unique morphism such that [a, f ] ◦z = a and [a, f ] ◦s = f ◦ [a, f ]. Arithmetical operations

can be defined as usual. For example, writing n for the morphism sn(z), we can interpret

op as plus (m, n) def= [m, s]n.

Let K : N, L : N, M : σ and N : σ in a context Γ,

[[ n ]]∅ = sn(z),

[[ op(K, L)]]Γ = op ([[K]]Γ, [[L]]Γ),

[[cond (L, M, N)]]Γ = [ [[M ]]Γ,x:1 , [[N ]]Γ,x:σ ] [[L]]Γ.

As for computational types, since they must accommodate nonterminating programs,

we assume a lifting monad 〈( )⊥, val ⊥, let ⊥〉 in the category C. Then, choosing an object

E in C to interpret E, we use the following strong monad to model computational types:
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TX = (X + E)⊥,

val (v) = val⊥(inj 1(v)),

let (f) = let⊥(case (f , raise )),

where raiseX
def= val ⊥ ◦ inj 2 : E → TX.

Remark. The above definition makes sense for any strong monad in the place of ( )⊥.

This is, in fact, a first example of monad constructor (see chapter 6), that is, an operation

F that, given a monad T , returns a new monad (FT )X = T (X + E) to interpret

T -computations with exceptions. In section 7.2, we prove in LEGO that, if T is a strong

monad, so is F(T ).

�

The interpretation of ε, raise and handle ε is defined in terms of two E-indexed families

of morphisms ε : [[ζ(ε)]] → E and ε : E → [[ζ(ε)]] + E satisfying the following equations:

ε(ε d) = inj 1(d) (3.1)

ε(ε′d) = inj 2(ε
′d) (ε′ 6= ε). (3.2)

Intuitively, ε extracts the argument of any exception with name ε while it returns the

others unaltered. Let U : E, L : ζ(ε), M : Tτ and H : ζ(ε) → Tτ in a context Γ,

[[ε L]]Γ = ε [[L]]Γ,

[[raise σ U ]]Γ = raise [[σ]][[U ]]Γ = val ⊥(inj 2[[U ]]Γ),

[[handle ε(M, H)]]Γ = let⊥(case (val , H)) [[M ]]Γ,

where H = λx : E. case ([[H]]Γ , raise , εx) : E → T [[τ ]] is a function that leaves exceptions

whose name is not ε unchanged while running the handler on the argument of the others.

Summarizing the structure described so far, a model of MLT (Σ) consists of:
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universal structure: a cartesian closed category C with sums, initial object ∅ and a

strong natural numbers object 1 z→ N
s→ N;

additional structure: a lifting monad ( )⊥ on the category C, an object E and op-

erations ε : [[ζ(ε)]] → E and ε : E → [[ζ(ε)]] + E satisfying equations (3.1) and

(3.2).

Theorem 3.5.1 (Soundness) ` M = N ⊃ [[M ]] = [[N ]].

Proof. It is required to prove that the interpretation satisfies the axioms of section 3.3.

We provide details only for the ones involving the operations on exceptions, since (op ),

(cond .0) and (cond .n) follow from routine calculations. Let x : σ, N(x) : Tτ , U : E,

L : ζ(ε), M : τ and H : ζ(ε) → Tτ ,

(exception .η) [[let x ⇐ raise (U) in N(x)]] = let [[N ]] [[raise(U)]] =

let⊥(case ([[N ]] , raise )) val⊥(inj 2[[U ]]) =

case ([[N ]] , raise , inj 2[[U ]]) = raise [[U ]] = [[raise U ]];

(handle .η) [[handle ε(val (M), H)]] = let⊥(case (val , H)) val⊥(inj 1[[M ]]) =

case (val , H , inj 1[[M ]]) = val [[M ]] = [[val (M)]];

(handle .β1) [[handle ε(raise (ε L), H)]] = let⊥(case (val , H)) val⊥(inj 2(ε[[L]])) =

H(ε[[L]]) = (λx : E. case ([[H]] , raise , εx)) ε[[L]] =

case ([[H]] , raise , ε(ε[[L]])) = case ([[H]] , raise , inj 1[[L]]) =

[[H]] [[L]] = [[HL]];

(handle .β2) [[handle ε(raise (ε′L), H)]] = (as above). . . H(ε′ [[L]]) =

(as above). . . case ([[H]] , raise , εi(ε′ [[L]])) =

case ([[H]] , raise , inj 2(ε′[[L]]) = raise (ε′ [[L]]) = [[raise(ε′L)]].

�

In the proof of lemma 3.7.3 we shall see that adequate models of the metalanguage

should also satisfy the following additional properties:
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1. the pullback of 1 z→ N
s← N is 1 ← ∅ → N and s is a mono;

2. for all objects X in C, the pullback of X
inj1−→ X + E

inj2←− E is X ← ∅ → E.

Proposition 3.5.2 In any nontrivial category satisfying the requirement (1) above, if

n 6= m, then sn(z) 6= sm(z).

Proof. Suppose sn(z) = s(sn+mz). Since s is a mono, it must be z = s(smz). Therefore,

since 1 ×N N = ∅, there is a morphism 1 → ∅ mediating the pair 1 id←− 1 smz−→ N. �

Proposition 3.5.3 Let Γ ` M : τ and Γ ` U : E; in any nontrivial category satisfying

the requirement (2) above, [[val(M)]]Γ(d1) 6= [[raise τU ]]Γ(d2) for all d1, d2 : 1 → [[Γ]].

Proof. If val⊥(inj 1[[M ]](d1)) = [[val(M)]](d1) = [[raise τU ]](d2) = val⊥(inj 2[[U ]](d2)),

since val⊥ is a mono, inj 1[[M ]](d1) = inj 2[[U ]](d2). Hence there is a morphism 1 → ∅

mediating the pair [[M ]](d1) : 1 → [[τ ]] and [[U ]](d2) : 1 → E. Therefore, the category is

trivial. �

We find the above semantic structure in Cpo , the category of cpos (complete posets;

no least element required) and continuous functions. This category has the universal

structure required of models of MLT (Σ). In particular, (X1, v1)+(X2, v2) = (X1]X2, v),

where ] is the operation of disjoint union and, for i, j ∈ {1, 2}, inj i(x) v inj j(y) if and

only if i = j and x vi y. However we choose E, the injections inj 1 and inj 2 satisfy the

additional condition (2). Cpo has a strong natural numbers object (ω, vid), where vid is

the discrete ordering. The obvious z and s satisfy the additional condition (1).

Lifting is defined by adjoining a least element. This operation is the object map of a

lifting monad defined by an adjunction Cpo ⇀ pCpo , as described in section 2.5. The

category pCpo has cpos as objects and partial continuous functions as morphisms. The

domain of such a function f : A ⇀ B is a Scott-open subcpo of A. We write “f(d) ↓”

to mean that d is in the domain of f . If f(d) ↓ and f(d) = c we write “f(d) ↓ c.” The
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category pCpo is Cpo -enriched, with f v g : A ⇀ B if, for all d ∈ A, f(d) ↓ c1 implies

g(d) ↓ c2 for some c2 such that c1 v c2.

The information carried by an exception is its name ε and its argument of type ζ(ε).

Since the handling of an exception requires a case analysis over the name, it makes sense

to think of exceptions as elements of an E-indexed sum

E ∼=
∑
ε∈E

[[ζ(ε)]]. (3.3)

This equation is in fact recursive: arguments of exceptions can be arbitrarily typed

and, in particular, they can be programs raising exceptions, so that E may again pop

out of any of the summands [[ζ(ε)]]. Following the approach in [Fio94b], we look for a

solution to (3.3) in the category of partial maps (pCpo ). This category has only partial

exponentials, that is objects of the form A → B⊥. However, this is not a problem,

since we assumed that ζ(ε) = ([ζ(ε)]) and hence all exponentials in (3.3) are of the form

A → TB.

It is possible to solve recursive domain equations X ∼= F (X, X) in pCpo when the

functor F : pCpo op × pCpo → pCpo is locally continuous (the idea of using categories

of partial maps for denotational semantics is originally from [Plo85a] and was recently

developed in [Fio94b], to which we refer for details). Using this feature, we obtain the

object E to interpret exceptions as the minimal invariant [Fre90] of a suitable functor

defined below. As we shall see, the invariance of E yields a canonical family of operations

ε and ε, while minimality yields a universal property to be used in the adequacy proof of

section 3.7.

Let F be the family of functors Fσ = pCpo op × pCpo → pCpo , indexed by the types

of TMLE, defined by simultaneous induction as follows:

Fnat(X, Y ) = N,
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Fexc(X, Y ) = Y,

Fσ→τ(X, Y ) = Fσ(Y, X) → (Fτ(X, Y ) + Y )⊥,

where ( ) → ( )⊥ is partial exponentiation. All functors in F are locally continuous and,

hence, so is FE(X, Y ) def=
∑

ε∈E Fζ(ε)(X, Y ). Let E be the minimal invariant object of FE .

It is easy to verify that [[σ]]TMLE = Fσ(E, E). Then,

E ∼=
∑
ε∈E

Fζ(ε)(E, E) =
∑
ε∈E

[[ζ(ε)]]TMLE =
∑
ε∈E

[[ζ(ε)]]MLT(Σ).

Let α : FE(E, E) → E be the above isomorphism; we call ε : [[ζ(ε)]] → E the compon-

ents of α, that is, α(ε, d) = ε(d). Moreover, since E contains only elements of the form

ε(d), the equations (3.1) and (3.2) define ε completely.

Remark. Unlike ML, TMLE has no facilities for declaring exceptions. Of course, the

monad TX = (X + E)⊥ could not model dynamic creation of exceptions, as E would

have to change dynamically in order to accomodate new exceptions. To capture such

a situation, a “possible world” semantics can be adopted, like in [OT92] for modelling

dynamic allocation.

3.6 Semantic approximation of TMLE programs

Composing the translation ([ ]) of section 3.4 with the interpretation of the metalanguage

defined in section 3.5, we obtain an interpretation [[ ]]TMLE of TMLE. To make sure that

[[ ]]TMLE agrees with the operational semantics (computational adequacy), one would like

to show that, if a program denotes a natural number n, then it evaluates to n. Proving

such a statement is not easy, since straight induction on the structure of the program fails

in the case of function application. Hence, the inductive hypotheses must be strenthened

and this leads to proof techniques involving logical relations (see section 2.4).
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Here we show the existence of a family of logical relations ≤, which we call formal

approximation (see below) between semantic objects and TMLE programs. This family

is used in the next chapter to show that [[ ]]TMLE is computationally adequate. We believe

that ≤ is also interesting in its own right, as it provides an example of a logical relation

involving computational types.

In [Plo91a], a family of relations ≤σ between semantic values in [[σ]] and canonical

terms of type σ is defined for a metalanguage with recursive types. Using such relations,

one can write a statement M �σ M implying that the program M terminates if the

mathematical expression M denotes. Then, computational adequacy is proven by showing

that [[M ]] �σ M . Sometimes the argument is complicated by the fact that ≤σ cannot

be defined by induction on σ, and hence a lengthy proof is required of the existence of

such a relation. In the case of Plotkin’s metalanguage, the problem arises from recursive

types; for TMLE, it arises from the recursive type of exceptions.

We call Expσ the set of all closed TMLE terms of type σ and Canσ ⊆ Expσ the set

of all strongly canonical terms. Following [Plo91a], we look for a type-indexed family

≤ of relations of the form ≤σ⊆ [[σ]]TMLE × Canσ to provide an appropriate notion of

semantic approximation of TMLE expressions. We require that the members of such a

family satisfy the following conditions:

A1. for all b ∈ Canσ, the set {d | d ≤σ b} is closed under taking least upper bounds of

countable chains;

A2. n ≤nat n;

A3. ε(d) ≤exc ε(b) if and only if d ≤ζ(ε) b;

A4. f ≤σ→τ (fn x :σ ⇒ e) if and only if f(d) �τ [b/x]e for all d and b such that d ≤σ b,

where M �τ e stands for the conjunction of the two statements:

B1. if M = val (d), then e b, for some b such that d ≤τ b;
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B2. if M = raise τ (d) then e raise τ b, for some b such that d ≤exc b.

Considering B1, the relation �τ⊆ T [[τ ]] × Expτ can be viewed as extending ≤τ over

computations and programs.

We call the members of a family satisfying clauses A1-4 formal approximation rela-

tions. Considering the mutual recursion in A3 and A4, such a family cannot be defined

by a simple induction on types. Moreover, let Rel be the complete lattice of type-indexed

families of relations Rσ ⊆ [[σ]]TMLE × Canσ ordered by type-wise inclusion; the operation

φ : Rel → Rel obtained by reading clauses A2-4 as a system of equations Rσ = φσ(R) is

not monotone, as R occurs both positively and negatively in the right hand side of A4.

Hence, ≤ cannot be obtained by applying standard techniques of fixed point construction

to φ.

Note that this same problem arises when computations use a memory where values

of arbitrary type can be stored. The following example generalizes the Tiny-ML example

considered in [Pit91], where memory locations could only contain integers.

Example. Let ≤ρ be the relation between semantic and syntactic states derived from

a family ≤σ, where ρ assigns to each memory location l the type ρ(l) of value stored in

it. In the case of state computations, the statement M �σ e spells out as: if M ↓ d

then, for all a, S, S ′, s, if d(S) ↓ (a, S ′) and S ≤ρ s, then there exist c and s′ such that

s, e s′, c and a ≤σ c and S ′≤ρ s′. Note that the definition of ≤σ depends on ≤ρ which

may involve types more complicated than σ.

�

Following the approach proposed in [Pit93], we obtain a family of formal approxim-

ation relations from a suitably defined invariant relation on the recursive object E of

exceptions. The argument follows the trace of the proof of adequacy given in [Pit] for

a small fragment of ML with a single recursive datatype declaration. However, some

definitions and results obtained in that paper must be rephrased to apply to our setting,
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as they refer to the category Cppo⊥ of cpos with least element and strict continuous

functions.

Definition 3.6.1 ([Pit, 4.1]) A relational structure R on a category C is specified by

the following data:

• for each object A of C, a set R(A) of ‘relations on A;’

• for each morphism f : A → B in C, a binary relation between elements R ∈ R(A)

and elements S ∈ R(B), written f : R ⊂R S (or just f : R ⊂ S). These binary

relations are required to satisfy the following properties:

- id A : R ⊂ R, for all R in R(A);

- if f and g are composable, f : R ⊂ S and g : S ⊂ T , then g ◦f : R ⊂ T .

If R is a relational structure on pCpo , a relation S ∈ R(B) is said to be admissible

[Pit, 4.3] when, for all R ∈ R(A), the subset

[R, S] def= {f | f : R ⊂ S}

of pCpo (A, B) contains the always undefined function and is closed under taking least

upper bounds of countable chains (chain-complete).

Let F : pCpo op ×pCpo → pCpo be a functor; an admissible action of F on a structure

R on pCpo is a family of operations FA,B : R(A) × R(B) → R(F (A, B)) such that

C1. if S ∈ R(B) is admissible, so is FA,B(R, S), for any R ∈ R(A);

C2. if f : A2 ⇀ A1 is such that f : R2 ⊂ R1 and g : B1 ⇀ B2 is such that g : S1 ⊂ S2,

with S2 admissible, then F (f, g) : FA1,B1(R1, S1) ⊂ FA2,B2(R2, S2).

We usually drop the subscripts in FA,B. Of course, a functor may have more than one

admissible action on a relational structure, so it is actually by an abuse of notation that

we call an admissible action by the name of its corresponding functor.
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Let Can be the set {c : σ | c ∈ Canσ}, that is, the set of all strongly canonical terms

tagged with their types; below, we use the following relational structure R on pCpo :

• a relation on R(A) is a subset of A × Can ;

• f : R ⊂ S if and only if, for all (d, b : σ) ∈ R, f(d) ↓ d′ implies (d′, b : σ) ∈ S.

Usually, we drop the type tag. It is easy to see that a relation S in R is admissible if

and only if, for all b, the set {d | (d, b) ∈ S} is chain-complete. Admissibility is used in

the proof of theorem 3.6.2.

Let A be a cpo; we call Radm(A) the set of all admissible relations in R(A). Clearly

Radm(A) is closed under taking arbitrary intersections and so it is a complete lattice

ordered by inclusion.

The inverse image of a relation R ∈ R(A) along a partial function f : B ⇀ A is

defined as f∗R = {(d, b) | if f(d) ↓ d′, then (d′, b) ∈ R} ∈ R(B). Clearly, f : f∗R ⊂ R

and, if f : S ⊂ R, then id : S ⊂ f∗R. The operation f∗ : R(A) → R(B) is monotone and

it satisfies id ∗
A = id R(A) and (f ◦g)∗ = g∗ ◦f∗. Moreover, it is easy to verify that, since

the domain of f is Scott-open, f∗ preserves admissibility.

Theorem 3.6.2 Let F : pCpo op ×pCpo → pCpo be a locally continuous functor with an

admissible action on R and let α : F (D, D) ∼= D be its minimal invariant object. There

exists an admissible relation ∆ ∈ R(D) such that

- α : F (∆, ∆) ⊂ ∆ and

- α−1 : ∆ ⊂ F (∆, ∆).

An admissible relation ∆ satisfying these conditions is called F -invariant. In [Pit] it

is shown that an invariant relation for a locally continuous F : Cppo op
⊥ ×Cppo⊥ → Cppo⊥,

if it exists, is unique; the proof also adapts to pCpo .

To prove theorem 3.6.2, we need the following:
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Lemma 3.6.3 Let F , D and α be as above; a relation ∆ ∈ R(D) is F -invariant if and

only if ∆ = (α−1)∗F (∆, ∆).

Proof. (If) Using f : f∗R ⊂ R,

- α : F (∆, ∆) = (α−1 ◦α)∗F (∆, ∆) = α∗((α−1)∗F (∆, ∆)) = α∗∆ ⊂ ∆ and

- α−1 : ∆ = (α−1)∗F (∆, ∆) ⊂ F (∆, ∆).

(Only if) Noticing that R ⊆ S if and only if id : R ⊂ S,

- composing α : F (∆, ∆) ⊂ ∆ and α−1 : (α−1)∗F (∆, ∆) ⊂ F (∆, ∆) we obtain

id = α ◦α−1 : (α−1)∗F (∆, ∆) ⊂ ∆, and

- since f : R ⊂ S implies id : R ⊂ f∗S,

α−1 : ∆ ⊂ F (∆, ∆) implies id : ∆ ⊂ (α−1)∗F (∆, ∆).

�

Using the lemma, we prove theorem 3.6.2 by showing that there exists a fixed point

of the operation φ : Radm(D) → Radm(D) defined as

φ(R) = (α−1)∗F (R, R).

We follow the trace of [Pit, section 4], to which we refer for more detail. First,

we separate and negative occurrences of the variable R in φ(R) and obtain the functor

ψ : Radm(D)op × Radm(D) → Radm(D), where ψ(R, S) = (α−1)∗F (R, S), from which

φ(R) can be recovered as ψ(R, R). “Dualising” ψ, one obtains a monotone function

ψ† : Radm(D)op × Radm(D) → Radm(D)op × Radm(D), i.e. ψ†(R, S) def= (ψ(S, R), ψ(R, S)).

Then, the Knaster-Tarski fixed point theorem yields a pair of admissible relations

(∆−, ∆+) = ψ†(∆−, ∆+) = (ψ(∆+, ∆−), ψ(∆−, ∆+)). From the universal property of

this object it follows easily that ∆+ ⊆ ∆−.

The opposite inclusion also holds. In fact: Let δ : pCpo (D, D) → pCpo (D, D) be

defined as δ(f) = α ◦F (f, f) ◦α−1. Since F is a locally continuous functor, δ is continuous.

Since ∆− = ψ(∆+, ∆−), we have id : ∆− ⊂ (α−1)∗F (∆+, ∆−). Composing this inclusion

with α−1 : (α−1)∗F (∆+, ∆−) ⊂ F (∆+, ∆−), we obtain α−1 : ∆− ⊂ F (∆+, ∆−). Similarly,
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one obtains α : F (∆−, ∆+) ⊂ ∆+. Given f : ∆− ⊂ ∆+, the admissible action of F yields

F (f, f) : F (∆+, ∆−) ⊂ F (∆−, ∆+), which, composed with the above inclusions, yields

δ(f) = α ◦F (f, f) ◦α−1 : ∆− ⊂ ∆+. Hence, δ restricts to [∆−, ∆+] → [∆−, ∆+]. Since

[∆−, ∆+] contains the always undefined function and it is chain-complete (because ∆+ is

admissible), the least fixed point of δ is in [∆−, ∆+]. Since, by the universal property of

D, this fixed point is the identity, id : ∆− ⊂ ∆+ yields ∆− ⊆ ∆+. Therefore, ∆− = ∆+

is a fixed point of φ as required. This concludes the proof of theorem 3.6.2.

�

Let F be the family of functors defined in section 3.5; a type-indexed family F̃ , whose

elements F̃σ are families of operations (F̃σ)A,B : R(A) × R(B) → R(Fσ(A, B)) is defined

as follows:

F̃nat(R, S) = {(n, n : nat) |n ∈ N},

F̃exc(R, S) = {(d, b : exc) | (d, b : exc) ∈ S},

F̃σ→τ (R, S) = {(f, fn x :σ ⇒ e : σ → τ ) | for all (d, b : σ) ∈ F̃σ(S, R),

- if f(d) ↓ val (d′) then [b/x]e b′ and (d′, b′ : τ ) ∈ F̃τ(R, S);

- if f(d) ↓ raise τ (d
′) then [b/x]e raiseτ (b

′) and (d′, b′ : exc) ∈ S}.

Proposition 3.6.4 For all TMLE types σ, F̃σ is an admissible action of Fσ on R.

Proof. We prove condition C1 by induction on the structure of σ, simultaneously for

all members of F̃ . The cases where σ is nat or exc are trivial. As for σ → τ , let

S ∈ R(B) be admissible, let R be any relation in R(A) and let 〈fi〉 be a countable chain

of elements of Fσ→τ (A, B) such that, for all i ∈ ω, (fi, fn x :σ ⇒ e) ∈ F̃σ→τ (R, S); we

show that (fω, fn x :σ ⇒ e) ∈ F̃σ→τ(R, S), where fω = t〈fi〉. Let (d, b) ∈ F̃σ(S, R). If

fω(d) ↓, there must exist an n such that fm(d) ↓ for all m ≥ n and fω(d) = t〈fi+n(d)〉.

If fω(d) ↓ val (d′), then, it must be fm(d) ↓ val (dm), and hence [b/x]e  b′ for some b′

such that (dm, b′) ∈ F̃τ (R, S) for all m ≥ n. Since d′ = t〈di+n〉, applying the inductive



3. Application: exceptions 72

hypothesis to F̃τ , it must be (d′, b′) ∈ F̃τ(R, S) as required. A similar argument yields the

required property when fω(d) ↓ raise τ(d′) and this concludes the proof of condition C1.

Note that the determinacy of evaluation in TMLE is used in the above argument (e.g.

by assuming that there exist one b′which works for all m ≥ n). As expected, this fails in

the case of unbounded nondeterminism.

For C2, let R1 ∈ R(A1), R2 ∈ R(A2), S1 ∈ R(B1) and S2 ∈ R(B2); let f : A2 ⇀ A1

be a morphism such that f : R2 ⊂ R1 and let g : B1 ⇀ B2 be one such that g : S1 ⊂ S2;

we show that Fσ(f, g) : (F̃σ)A1,B1(R1, S1) ⊂ (F̃σ)A2,B2(R2, S2). Again, the proof is by in-

duction on the structure of σ, where the cases σ = nat and σ = exc are trivial.

We show Fσ→τ(f, g) : F̃σ→τ (R1, S1) ⊂ F̃σ→τ (R2, S2). Let h ∈ Fσ→τ (A1, B1), that is,

h : Fσ(B1, A1) ⇀ (Fτ(A1, B1) + B1), we are required to prove that, if (h, fn x :σ ⇒ e)

is in F̃σ→τ (R1, S1) and Fσ→τ(f, g)(h) ↓ k, then (k, fn x :σ ⇒ e) is in F̃σ→τ(R2, S2). Note

that k = Fσ→τ (f, g)(h) = (Fτ(f, g) + g) ◦h ◦Fσ(g, f).

Let (d, b) ∈ F̃σ(S2, R2). Assume that k(d) ↓ val (d1). There must be a d2 such that

h(Fσ(g, f)(d)) ↓ val (d2) and Fτ(f, g)(d2) ↓ d1. Since h(Fσ(g, f)(d)) ↓ val (d2), it must be

Fσ(g, f)(d) ↓ d3. Then, by the inductive hypothesis on Fσ(g, f), (d3, b) ∈ F̃σ(S1, R1) and

hence, from the assumption that (h, fn x :σ ⇒ e) ∈ F̃σ→τ (R1, S1), it follows that there

exists a b′ such that [b/x]e b′ and (d2, b
′) ∈ F̃τ(R1, S1). Using the inductive hypothesis

on Fτ (g, f), we get (d1, b
′) ∈ F̃τ(R2, S2). So, we have shown that, if k(d) ↓ val (d1), then

[b/x]e b′ and (d1, b
′) ∈ F̃τ(R2, S2).

On the other hand, if k(d) ↓ raise τ (d1), it must be h(Fσ(g, f)(d)) ↓ raise (d2) for some

d2 such that g(d2) ↓ d1. Following the same reasoning as above, we obtain Fσ(g, f)(d) ↓ d3

for some d3 such that (d3, b) ∈ F̃σ(S1, R1). From the assumption on h, there must exist

a b′ such that [b/x]e  raiseτ(b′ ) and (d2, b
′ ) ∈ S1. Since g : S1 ⊂ S2, we obtain

(d1, b
′) ∈ S2 as required. So, we have shown that (k, fn x :σ ⇒ e) is in F̃σ→τ(R2, S2), and

hence Fσ→τ (f, g) : F̃σ→τ (R1, S1) ⊂ F̃σ→τ(R2, S2) as required. �

In view of the above proposition, we shall remove the tilde from F̃ . Note that condition

C2 is satisfied by the members of F without the admissibility condition on S2.



3. Application: exceptions 73

Theorem 3.6.5 There exists a type-indexed family of relations ≤σ⊆ [[σ]]TMLE × Can σ

satisfying the clauses A1-4.

Proof. The family of operations (FE)A,B : R(A) × R(B) → R(FE(A, B)) defined as

FE(R, S) = {((ε, d), ε(b) : exc) | (d, b : ζ(ε)) ∈ Fζ(ε)(R, S)} is an admissible action on R
of the functor FE defined in section 3.5. This can be shown with routine calculations

using proposition 3.6.4. Let ∆ ∈ R(E) be an invariant relation of FE , which exists by

theorem 3.6.2. Note that, since α−1(ε(d)) = (ε, d), the inclusion α−1 : ∆ ⊂ FE(∆, ∆)

implies that any pair in ∆ is of the form (ε(d), ε(b) : exc), and hence ∆ = Fexc(∆, ∆).

We show that the relations ≤σ
def= Fσ(∆, ∆) form a family of approximation relations.

First, note that, for all σ, Fσ(∆, ∆) ⊆ [[σ]]TMLE × Can σ. Moreover, since ∆ is ad-

missible, so is Fσ(∆, ∆) and hence clause A1 is satisfied. Clauses A2 and A4 are also

satisfied, trivially. As for A3, we have to show that (ε(d), ε(b) : exc) ∈ ∆ if and only if

(d, b : ζ(ε)) ∈ Fζ(ε)(∆, ∆). Since α−1 : ∆ ⊂ FE(∆, ∆), if (ε(d), ε(b) : exc) ∈ ∆, then

((ε, d), ε(b) : exc) ∈ FE(∆, ∆) and hence (d, b : ζ(ε)) ∈ Fζ(ε)(∆, ∆). Conversely, if

(d, b : ζ(ε)) ∈ Fζ(ε)(∆, ∆), then ((ε, d), ε(b) : exc) ∈ FE(∆, ∆) and (ε(d), ε(b) : exc) ∈ ∆

follows from α : FE(∆, ∆) ⊂ ∆. �

3.7 Computational adequacy

One of the criteria traditionally considered in the literature to establish how well de-

notational semantics captures the observable behaviour of programs is computational

adequacy. Adequacy is concerned with the data produced by programs. For example, it

requires that, if v is a canonical term of ground type, [[MN ]] = [[v]] if and only if MN  v.

However, it does not say how [[M ]] should behave when applied to possible elements of

its domain which are not denoted by any N in the language: adequate models may fail

to equate the denotations of two terms which agree on all operational observations. In

[Blo88] and [Mey88], a denotational semantics is said to be computationally adequate
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with respect to a set O of observations when, for all closed terms M and M ′ of ground

type, [[M ]] = [[M ′]] if and only if M ∼=O M ′, that is if and only if M and M ′ agree on all

observations in O.

Here we use operational semantics to observe TMLE programs. Therefore, since we

interpret the programming language via a translation into the metalanguage, it makes

sense to state computational adequacy as the requirement that the theory of the metalan-

guage and the operational semantics agree: let e be a closed TMLE program of type nat,

` ([e]) = ([n]) if and only if e n.

Remark. A stronger version of the if direction of this statement holds, as shown by

theorem 3.7.1, in which no restriction is put on the type of e. However, the only if direction

does not apply to arrow types or exceptions. Since the latter may include parameters of

arbitrary type, equations such as ([ε(fn x :σ ⇒ x)]) = ([ε(fn x :σ ⇒ (fn x :σ ⇒ x)x)]) are

clearly derivable in MLT (Σ) but neither of the two TMLE terms involved evaluates to

the other.

Remark. If the programming language allowed nondeterministic computations, the

above statement of adequacy would not do: equality must be replaced by a membership

predicate, relating programs with the values they may possibly produce. Note that

membership is an example of evaluation relation ⇐X⊆ X × TX, which we met already

at the end of section 3.3. Using such predicates, adequacy can be rephrased as follows:

` n ⇐ ([e]) if and only if e n.

Theorem 3.7.1 (Adequacy: if) Let e and c be closed TMLE programs, with c canon-

ical; if e c, then ` ([e]) = ([c]).

Proof. The proof is a rather lengthy induction on the derivations of operational judge-

ments. As an example we consider derivations of e1 handle ε(x) ⇒ e2  c from (hnd3).
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It must be that e1  raise σ ε(b) and [b/x]e2  c with shorter derivations and hence,

by inductive hypothesis, ([e1]) = ([raise σ ε(b)]) and ([[b/x]e2]) = ([c]) are derivable. Then,

omitting type indices:

([e1]) = ([raise ε(b)])

([e1]) = let x ⇐ val (ε|b|) in raise (x)

([e1]) = raise (ε|b|)
handle ε(([e1]), λ x. ([e2])) = handle ε(raise (ε|b|), λ x. ([e2]))

handle ε(([e1]), λ x. ([e2])) = (λx. ([e2]))|b|
([[b/x]e2]) = ([c])

[|b|/x]([e2]) = ([c])

handle ε(([e1]), λ x. ([e2])) = ([c])

([e1 handle ε(x) ⇒ e2]) = ([c])

�

An immediate consequence of the above and theorem 3.5.1 is the following:

Corollary 3.7.2 Let e and c be as above; if e c, then ` [[e]]TMLE = [[c]]TMLE.

In order to prove the “only if” direction of the adequacy theorem, we use the fact

that all TMLE programs are semantically aproximated by their interpretation. This is

established by the following lemma, where � and ≤ are the families of approximation

relations described in the previous section.

Lemma 3.7.3 Let Γ ` e : σ be a TMLE program, where Γ = (x1 : σ1, . . . xn : σn), and

let di ≤σi bi, for 1 ≤ i ≤ n; then, [[([e])]]Γ(d1. . . . , dn) �σ [bi/xi]e.

Proof. We write [[e]](d) for [[([e])]]Γ(d1, . . . dn) and [ b ]e for [b1/x1] . . . [bn/xn]e; for such d

and b, we shall understand that di ≤σi bi, for 1 ≤ i ≤ n. The proof is by induction in the

derivation of Γ ` e : σ. The cases where the last rule applied is (var) or (n) are trivial.

(Op). [[Op(e1, e2)]](d ) = let (λx : N. let (λy : N. val (op (x, y))) [[e2]](d )) [[e1]](d ); if this

expression denotes val (m), then [[e1]](d ) cannot be ⊥ since (let f) is strict, for any f ,
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and val (m) = val⊥(inj 1 m) is different from ⊥. Similarly, [[e1]](d ) cannot be raise (z). In

fact, from

let (. . .) raise (z) =

let⊥(case ((. . .), raise )) val⊥(inj 2 z) =

case ((. . .), raise , inj 2(z)) =

raise (z)

it would follow val⊥(inj 1 m) = val⊥(inj 2 z), which cannot be, since inj 1(m) 6= inj 2(z)

and val⊥ is injective. Therefore, [[e1]](d ) must be val (n1), for some n1, and hence

[[Op(e1, e2)]](d ) = let (λy : N. val (op (n1, y))) [[e2]](d ). By inductive hypothesis, we can

assume [ b ]e1  b1, for some b1 such that n1 ≤nat b1, which means that b1 ≡ n1. By

a similar argument, we obtain [ b ]e2  n2 and m = op (n1, n2). Then, from (Op1),

[ b ]Op(e1, e2) m.

Alternatively, assume [[Op(e1, e2)]](d ) is raise (d). As [[e1]](d ) cannot be ⊥, it must

either be val (n) or raise (z). In the first case, we can assume [ b ]e1  n. Moreover, it is

easy to see that [[e2]](d ) can be neither a value nor ⊥. So we assume [[e2]](d ) = raise (w).

Then,

raise (d) = let (λx : N. let (λy : N. val (op (x, y))) raise (w)) val (n) =

let (λy : N. val (op (n, y)))raise (w) =

let⊥(case (λy : N. val (op (n, y)) , raise ))val⊥(inj 2 w)

case (λy : N. val (op (n, y)) , raise , inj 2(w)) = raise (w)

forces w = d. The inductive hypothesis on [[e2]](d ) yields [ b ]e2  raisenatb for some b

such that d ≤exc b. Then, using (Op3), we obtain [ b ]Op(e1, e2) raisenatb as required.

A similar argument yields the result in the case of [[e1]](d ) = raise (z).

(if). [[if e then e1 else e2]](d ) = let [λx : 1. [[e1]](d ) , λ x : σ. [[e2]](d )] [[e]](d); assume

this expression denotes val (d). Since it must be [[e]](d) = val (n), we can assume [ b ]e n.

If n = 0, from the definition of [ , ], we obtain [[if e then e1 else e2]](d ) = [[e1]](d ).
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Then, assuming [ b ]e1  b for a b such that d ≤σ b, the result follows from (if1). Similarly,

the result follows from (if2) when n 6= 0. The case where [[if e then e1 else e2]](d ) is

raise (d) follows the same pattern as for (Op).

(fn). Since [[fn x :σ ⇒ e]](d ) = val (λx : [[σ]]. [[e]](d)), we are required to prove that

λx : [[σ]]. [[e]](d) ≤σ→τ fn x :σ ⇒ [ b ]e. This amounts to showing that, for d and b such

that d ≤σ b, [[e]](d, d) �τ [ b, b]e, which is immediate by inductive hypothesis.

(appl). [[e1e2]](d ) = let (λf : [[σ]] → T [[τ ]]. (let f [[e2]](d ))) [[e1]](d ). Assume this expres-

sion denotes val (d). As above, [[e1]](d ) must be val (f), for some f , and so we have

[[e1e2]](d ) = let f [[e2]](d ). By the inductive hypothesis on e1, [ b ]e1  fn x :σ ⇒ e, with

f ≤σ→τ fn x :σ ⇒ e. By a similar argument, [[e2]](d ) = val (d1), [[e1e2]](d ) = f(d1),

[ b ]e2  b1 and d1 ≤σ b1. Then, from the assumptions, val (d) = f(d1) �τ [b1/x]e  b2

and d ≤τ b2. Applying (app1), we obtain [ b ](e1e2) b2 as required.

Alternatively, if [[e1e2]](d ) = raise (d), [[e1]](d ) must be either val (f) or raise (z). In

the first case, we can assume [ b ]e1  fn x :σ ⇒ e and f ≤σ→τ fn x :σ ⇒ e. From

let f [[e2]](d ) = raise (d), [[e2]](d ) can be either val (d1) or raise (z). In the first case, we

can assume [ b ]e2  b1, for some b1 such that d1 ≤σ b1. From the assumptions, we obtain

raise (d) = f(d1) �τ [b1]e and hence [b1]e  raiseτ b for some b such that d ≤exc b.

Then, from (app1), [ b ](e1, e2)  raiseτ b as required. The cases where e1 or e2 raise

exceptions follow the same routine.

(ε). [[ε(e)]](d) = let (λx : [[ζ(ε)]]. val(ε(x)))[[e]](d). Assume this expression denotes

val (d). It cannot be that [[e]](d) = raise (d1), because this would imply the identity

val (d) = let⊥(case (λx : [[ζ(ε)]]. val (ε(x)) , raise )) val⊥(inj 2 d1) = raise (d1). Hence, it

must be [[e]](d) = val (d1) and we can assume [ b ]e  b, for some b such that d1 ≤ζ(ε) b.

From (ε1), [ b ]ε(e) ε(b). From val (d) = let (λx : [[ζ(ε)]]. val (ε(x))) val (d1) = val (ε(d1)),

we have d = ε(d1) ≤exc ε(b) as required.

Otherwise, if [[ε(e)]](d) = raise (d), it is easy to verify that there must be a d1 such

that [[e]](d) = raise (d1) and therefore we can assume [ b ]e  raise b, for some b such

that d1 ≤ exc b. Hence, applying the rule (ε2), we obtain [ b ]ε(e) raiseexc b. Moreover,
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from raise (d) = let (λx : [[ζ(ε)]]. val (ε(x))) raise (d1) = raise (d1), it is d = d1 ≤exc b as

required.

(raise). The expression [[raiseσe]](d ) = (let raise ) [[e]](d) cannot denote a value.

Assume it denotes raise (d). Since [[e]](d) cannot be ⊥, it must be either val (d1) or

raise (d1). In the first case, we can assume [ b ]e  b, for some b such that d1 ≤ exc b.

Moreover, from raise (d) = (let raise )(val d1) = raise (d1), it follows that d = d1. Then,

by (rs1), [ b ]raiseσe raise σb as required.

Otherwise, if [[e]](d) = raise (d1), we can assume [ b ]e  raiseexc b, for some b

such that d1 ≤ exc b, and hence, by (rs2), [ b ]raiseσ e  raiseσ b. Moreover, from

raise (d) = (let raise ) (raise d1) = let⊥(case (raise , raise )) val⊥(inj 2 d1) = raise (d1), it

follows that d = d1 and hence d ≤ exc b as required.

(handle). [[e1 handle ε(x) ⇒ e2]](d ) = let⊥(case (val , e2)) [[e1]](d ), where e2 stands

for λx : E. case (λx : [[ζ(ε)]]. [[e2]](d ) , raise , ε x). Assume this expression denotes val (d);

then, [[e1]](d ) denotes either val (d1) or raise (d1). In the first case, we can assume that

[ b ]e1  b, for a b such that d1 ≤σ b. Then, by (hnd1), [ b ](e1 handle ε(x) ⇒ e2) b and,

from val (d) = let⊥(case (val , e2)) val (d1) = val (d1), we have d = d1 ≤σ b as required.

If [[e1]](d ) = raise (d1), we can assume [ b ]e1  raiseσ b1 and d1 ≤ exc b1. Moreover,

val (d) = let⊥(case (val , e2)) raise (d1) = e2(d1) = case (λx : [[ζ(ε)]]. [[e2]](d ) , raise , ε d1).

From the definition of ≤ exc, it must be d1 = ε1(d2) and b1 = ε1(b2), for some ε1 and

d2 ≤ζ(ε1) b2. Moreover, it must be ε = ε1 because, otherwise,

val (d) =

case (λx : [[ζ(ε)]]. [[e2]](d ) , raise , ε(ε1 d2)) =

case (λx : [[ζ(ε)]]. [[e2]](d ) , raise , inj 2(ε1 d2)) =

raise (ε1(d2)).

Hence, from ε(ε d1) = inj 1(d1), we obtain val (d) = [[e2]](d, d2) and so we can assume

[ b, b2]e2  b, for some b such that d ≤σ b. Then, [ b ](e1 handle ε(x) ⇒ e2)  b follows

from (hnd3) as required.
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Finally, if [[e1 handle ε(x) ⇒ e2]](d ) = let⊥(case (val , e2)) [[e1]](d ) = raise (d), then

[[e1]](d ) can be neither a value nor ⊥. So, it must be [[e1]](d ) = raise (d1) and we can

assume [ b ]e1  raiseσ b1, for some b1 such that d1 ≤ exc b1. As above, it must be

d1 = ε1(d2) and b1 = ε1(b2), with d2 ≤ζ(ε1) b2. From the assumptions, we have:

[[e1 handle ε(x) ⇒ e2]](d ) =

let⊥(case (val , e2)) raise (ε1 d2) = e2(ε1 d2) =

case (λx : [[ζ(ε)]]. [[e2]](d ) , raise , ε(ε1 d2)).

If ε = ε1, we obtain raise (d) = [[e2]](d, d2), and we can assume [ b, b2]e2  raiseσ b, for

b such that d ≤ζ(ε) b. Then, applying (hnd3), [ b ](e1 handle ε(x) ⇒ e2) raiseσ ε(b) as

required. Otherwise, if ε 6= ε1, we obtain raise (d) = raise (d2), which implies d = d2 and

hence d ≤ζ(ε1) b2, Moreover, applying (hnd2), [ b ](e1 handle ε(x) ⇒ e2) raiseσ ε1(b2)

as required. �

Theorem 3.7.4 (Adequacy: only if) Let e be a closed TMLE program of type nat; if

` ([e]) = ([n]) then e n.

Proof. By soundness of MLT(Σ), it is required to prove that, if [[e]]TMLE = val (n), then

e n. Assuming [[e]]TMLE = val (n), lemma 3.7.3 ensures that there exists a b such that

e b and n ≤ nat b. By definition of ≤ nat, b must be n and hence e n. �



4 Evaluation Logic

In Moggi’s categorical semantics of computations, a strong monad T provides the ab-

stract structure for interpreting computations: it provides computational types TX, for

modelling programs computing values of type X, and a canonical lifting of computations

with a parameter of type X to computations with a parameter of type TX. In this frame-

work, composition of programs is captured with no commitment to any specific form of

computation.

Evaluation Logic (EL) applies the same idea to first order predicate calculus: pre-

dicates φ over values of type X lift to predicates over programs of type TX, expressing

the property of producing values satisfying φ, independently of the notion of evaluation.

Since the term language of the logic, that is the computational lambda calculus, stems

from an attempt to explain computation abstractly, EL’s semantics calls for an abstract

understanding of the interaction between logic and computation.

Typically, interpretation of programs require domain-like objects. Categories of such

objects can hardly accommodate anything more than a geometric logic. However, there

are nonobservable properties, such as “f is total,” which can be expressed in EL, viz.

∀n. 〈x ⇐ fn〉 true , but cannot be classified in a category of predomains. Even if not

classifiable, such predicates could still be interpreted in such a category, without resorting

to topos-teoretic structure. Nevertheless, as shown in section 4.4, having a subobject

classifier allows a “standard” interpretation of the logic from the categorical structure

of a strong monad T . Since standard interpretation is desirable for modularizing the

construction of categorical models, as we see in chapter 5, we regard models with a

classifying object as desirable.

80
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An expressive program logic with a standard semantics can be obtained in the setting

of synthetic domain theory. Based on the slogan that domains are sets, synthetic domain

theory seeks a category C with all good properties for interpreting computations and

which is fully reflective in an ambient topos E , with all good properties for interpreting

logics. There are many significant examples of this situation among subcategories of

PERs in the effective topos. Since standard models require a strong monad T to “act”

on predicates, which live in E , we must understand under what circumstances T , whose

natural domain is the category C, where computations run, can be assumed to live in E ,

where the logic is interpreted.

In section 4.1 we introduce the calculus. Section 4.2 presents Pitts’ original semantics

[Pit91] based on hyperdoctrines. The following three sections describe a standard inter-

pretation of EL based on the simplifying assumptions that a strong monad T is available

in the category E where the logic is interpreted and that it has good interaction with

the logical structure. Section 4.6 shows that the first of these assumptions can be made

with no loss of generality because any monad T on a category C can be extended to a

monad T̃ on an ambient category E in which C is fully reflective by composing T with the

reflection. While the construction of T̃ is well known, we claim the observation that the

category of T -algebras is equivalent to the category of T̃ -algebras (theorem 4.6.3). This

equivalence shows that T̃ is in a sense “minimal” among the monads on E which extend

T . We also find necessary and sufficient conditions to make T̃ strong when T is strong.

Section 4.7 describes a more general standard semantics for Evaluation Logic, intro-

duced in [Moga] to overcome the failure of the second of the above assumptions.

In the last section we propose a new standard semantics based on evaluation relations.

We already came across such relations on several earlier occasions: in section 3.3 we gave

an example of their use for expressing general axioms of a computational metalanguage,

while in section 3.7 we suggested the use of evaluation relations to state metatheoret-

ical properties such as computational adequacy. Moreover, in section 4.4 we show the

pragmatical advantages of using such predicates in a program logic: in the context of
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Evaluation Logic, they provide left and right rules for the box modality (see next sec-

tion), thus making the proof system more manageable.

Evaluation relations can be defined from an endofunctor and first order quantification

and hence they may provide a standard interpretation of Evaluation Logic when the

structure required in [Moga] is not available. We also show how our definition relates with

the one in [Mogb] where higher order structure is required. This is our main contribution

in this chapter.

Some of the propositions stated below are left unproven. When this happens, the

result is either well known or it follows from routine calculation or the proof is available

in the cited literature.

4.1 The calculus

Evaluation Logic is a typed predicate calculus with equality and “evaluation” modalities

based on the computational lambda calculus presented in chapter 2.

The types and terms of the logic are the same as in section 2.3. The well-formed

formulae are given by formation judgements Γ ` φ prop which are derived from the

following rules:

` false prop

Γ ` M : τ Γ ` N : τ

Γ ` M = N prop

Γ ` φ prop Γ ` ψ prop

Γ ` φ ⊃ ψ prop
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Γ ` φ prop Γ ` ψ prop

Γ ` φ ∧ ψ prop

Γ ` φ prop Γ ` ψ prop

Γ ` φ ∨ ψ prop

Γ, x : τ ` φ prop

Γ ` ∀x : τ. φ prop

Γ, x : τ ` φ prop

Γ ` ∃x : τ. φ prop

Γ, x : τ ` φ prop Γ ` M : Tτ

Γ ` [x ⇐ M ] φ prop

Γ, x : τ ` φ prop Γ ` M : Tτ

Γ ` 〈x ⇐ M〉 φ prop

We write “true ” for ∗ = ∗ and “¬φ” for φ ⊃ false . The modal operators above are

called necessity and possibility and will sometimes be written “�” and “♦.” We assume

that such operators have the same precedence of ∀ and ∃, which we assume higher than

that of all other logical connectives.

The intended meaning of [x ⇐ M ] φ is that for all values x to which M : TX

evaluates, φ(x) holds, while 〈x ⇐ M〉 φ says that there exists a value x to which M

evaluates such that φ(x). Indeed, � and ♦ are more quantifiers over values produced by

computations than they are modalities in the traditional sense. It may help the intuition

to consider the following set theoretic interpretation for computations with side effects.

Let the computational type TX be defined as (X × S)S
⊥.
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[[w : TX ` [x ⇐ w] φ prop ]] = {w | ∀ s, x, s′. ws = (x, s′) ⊃ φ(x)} (4.1)

[[w : TX ` 〈x ⇐ w〉 φ prop ]] = {w | ∃ s, x, s′. ws = (x, s′) ∧ φ(x)} (4.2)

The basic truth judgements of the logic are intuitionistic sequents in context, written

Γ; ∆ ` φ, where Γ is a type context, ∆ a finite set of formulae and φ is a formula,

expressing the fact that φ is logically entailed by the assumptions in ∆. We write Γ ` φ

for Γ; ∅ ` φ. In [CP92] it is argued that, an intuitionistic framework is more suitable

than a classical one for capturing the behavioural properties of computation.

The rules for deriving truth judgements include the axioms of the computational

lambda calculus introduced in section 2.3, the standard rules for intuitionistic predicate

calculus with equality, and the following rules concerning the evaluation modalities. We

divide them into general and special depending on whether or not they describe inferences

that can be made for any notion of computation. Furthermore, we distinguish between

rules that involve only the structure of a strong endofunctor and rules involving the

operation of a monad.

General axioms for strong endofunctors:

� true
Γ ` M : Tτ

Γ ` [x ⇐ M ] true
♦ false

Γ ` M : Tτ

Γ ` ¬〈x ⇐ M〉 false

Γ, x : τ ; ∆, φ ` ψ
� intro

Γ, z : Tτ ; ∆, [x ⇐ z] φ ` [x ⇐ z] ψ
x 6∈ FV (∆)

Γ, x : τ ; ∆, φ ` ψ
♦ intro

Γ, z : Tτ ; ∆, 〈x ⇐ z〉 φ ` 〈x ⇐ z〉 ψ
x 6∈ FV (∆)
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Γ ` M : Tτ Γ, x : τ ` φ prop Γ, x : τ ` ψ prop
� ∧

Γ; [x ⇐ M ] φ, [x ⇐ M ] ψ ` [x ⇐ M ] (φ ∧ ψ)

Γ ` M : Tτ Γ, x : τ ` φ prop Γ, x : τ ` ψ prop
♦ ∨

Γ; 〈x ⇐ M〉 (φ ∨ ψ) ` 〈x ⇐ M〉 φ ∨ 〈x ⇐ M〉 ψ

Γ ` M : Tτ Γ, x : τ ` φ prop Γ, x : τ ` ψ prop
� ♦

Γ; [x ⇐ M ] φ, 〈x ⇐ M〉 ψ ` 〈x ⇐ M〉 (φ ∧ ψ)

General axioms for strong monads:

� val
Γ ` M : τ Γ, x : τ ` φ prop

Γ; φ(M) ` [x ⇐ val(M)] φ
♦ val

Γ ` M : τ Γ, x : τ ` φ prop

Γ; 〈x ⇐ val(M)〉 φ ` φ(M)

Γ ` M : Tτ Γ, x : τ ` N : Tσ Γ, y : σ ` φ prop
� let

Γ; [x ⇐ M ] [y ⇐ N ] φ ` [y ⇐ (let x ⇐ M in N)] φ

Γ ` M : Tτ Γ, x : τ ` N : Tσ Γ, y : σ ` φ prop
♦ let

Γ; 〈y ⇐ (let x ⇐ M in N)〉 φ ` 〈x ⇐ M〉 〈y ⇐ N〉 φ

Special axioms for strong endofunctors:

Γ ` φ prop Γ, x : τ ` ψ prop
� ⊃

Γ; φ ⊃ [x ⇐ M ] ψ ` [x ⇐ M ] (φ ⊃ ψ)

Γ ` M : Tτ Γ, x : τ, y : σ ` φ prop
� ∀

Γ; ∀ y : σ. [x ⇐ M ] φ ` [x ⇐ M ] ∀ y : σ. φ

Γ ` M : Tτ Γ, x : τ, y : σ ` φ prop
♦ ∃

Γ; 〈x ⇐ M〉 ∃ y : σ. φ ` ∃ y : σ. 〈x ⇐ M〉 φ

Γ ` M : τ Γ ` N : τ Γ ` L : Tσ Γ, x : σ ` φ prop
♦ =

Γ; M = N ∧ 〈x ⇐ L〉 φ a` 〈x ⇐ L〉 (M = N ∧ φ)
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Special axioms for strong monads:

Γ ` M : Tτ Γ, x : τ ` N : σ Γ, y : σ ` φ prop
� T ∗

Γ; [y ⇐ (let x ⇐ M in val(N))] φ(y) ` [x ⇐ M ] φ(N)
(a for ♦ T ∗)

Γ ` M : τ Γ, x : τ ` φ prop
� val ∗

Γ; [x ⇐ val(M)] φ ` φ(M)
(a for ♦ val ∗)

Γ ` M : Tτ Γ, x : τ ` N : Tσ Γ, y : σ ` φ prop
� let ∗

Γ; [y ⇐ (let x ⇐ M in N)] φ ` [x ⇐ M ] [y ⇐ N ] φ
(a for ♦ let ∗)

Note that the opposites of � ∧, ♦ ∨, � ⊃, � ∀ and ♦ ∃ follow from � intro , ♦ intro

and the usual axioms for ∧, ∨, ⊃, ∀ and ∃. Except for quantification (∀ and ∃) and

implication (⊃), which are not considered in [Pit91], Pitts’ axioms are the same as the

above general and special axioms, provided ∆ is empty in � intro and ♦ intro . The

reason for such a restriction is discussed in section 5.3.

Remark. The above axioms are presented so as to match the 〈T, val, let〉 view of a

strong monad. In [Mogb], a different set of axioms is given, matching the 〈T, η, µ, t〉

view. Moggi’s axioms are equivalent to our general rules for necessity plus � T ∗. In

particular, Moggi’s � µ is an instance of � let , � t∗ follows from � ∧ and � T ∗, while

� T follows from � val and � let . Note also that � T ∗ follows from � val ∗ and � let .

Remark. � val ∗ implies the mono requirement, that is val(M) = val(N) ` M = N .

In fact, taking φ(x) ≡ (x = N), we have:

φ(N) ` [x ⇐ val(N)] φ(x) ` [x ⇐ val(M)] φ(x) ` φ(M) ≡ (M = N).

Remark. As pointed out in [Pit91], the following evaluation properties of a program

M : Tτ can be expressed in the logic:
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“M can evaluate to v” (written v ⇐ M): 〈x ⇐ M〉 (x = v)

“M can produce a value” (M ⇓): 〈x ⇐ M〉 true

“M cannot produce a value” (M ⇑): [x ⇐ M ] false

Others, such as “M must evaluate to v” cannot be expressed.

4.2 Hyperdoctrine semantics

Pitts’ interpretation of Evaluation Logic is based on Lawvere’s categorical notion of hy-

perdoctrine ([Law69,Law70]). Such a notion can be variously specialized in order to suit

the particular features of the logic being considered. We first focus on the connectives of

the calculus presented in section 4.1 and later on the modalities.

Definition 4.2.1 A first order hyperdoctrine over a category C with products is a pseudo-

functor H : Cop → Preord such that:

• each fibre H(X) is a Heyting prealgebra, that is it has finite meets, joins and Heyting

implication; moreover, the functions H(f) preserve this structure;

• for all projections πX : Y ×X → Y , the functions H(πX) have left and right adjoints

∃X a H(πX) a ∀X satisfying the Beck-Chevalley condition: for all f : A → B,

∼=

H(B × X)

H(f)

∃X , ∀X

H(A)

∃X , ∀X

H(B)

H(f × X)
H(A × X)

In the above definition C is called the base category; meets and joins are written ∧
and ∨, with > and ⊥ the empty ones; Heyting implication, written ⇒, is such that
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( ) ∧ φ a φ ⇒ ( ); the functions H(f) are called reindexing and written f∗. If posets are

used instead of preorders, H is a functor and the diagram above commutes strictly.

Note that, when infinite joins are available, and reindexing preserves them, an ad-

junction f∗ a ∀f is obtained by defining ∀fφ
def=
∨ {ξ | f∗ξ ≤ φ}. Similarly, ∃f a f∗ is

obtained from infinite meets.

Remark. To model a calculus including a formal treatment of proofs, a more general

notion of hyperdoctrine would be required, where fibres are general categories. On the

other hand, we do not require the fibres to be posets so as to have hyperdoctrines of

classes of admissible monos, as in section 4.3.

Definition 4.2.2 A first order hyperdoctrine H is said to have equalities if there exist

left adjoints ∃∆×id to reindexing along morphisms ∆×id : A×B → (A×A)×B satisfying

the Beck-Chevalley condition:

HA

H(A × A) H((A × A) × B)

H(A × B)
π∗

π∗

∃∆×id∃∆
∼=

Writing “=” for ∃>, the above adjunction states that x, y : X; x = y ` φ(x, y) if and

only if x : X; true ` φ(x, x).

Digression on Frobenious reciprocity. In [Pit91], where the logic features no con-

nective ⊃ and the fibres need not have exponentials, the functions ∃∆×id are required to

satisfy Frobenious reciprocity:

Definition 4.2.3 Let f : A → B be a morphism in a category C and let ∃f a f∗ for

a hyperdoctrine H on C. We say that ∃f satisfies Frobenious reciprocity when, for all
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φ ∈ HA and ψ ∈ HB,

(∃fφ) ∧ ψ ∼= ∃f(φ ∧ f∗ψ).

The logical intuition behind Frobenious reciprocity is that ∃ y. (φ(x, y) ∧ ψ(x)) if and

only if (∃ y. φ(x, y)) ∧ ψ(x). The following proposition shows that, in a first order hyper-

doctrine, all functions ∃f satisfy this property.

Proposition 4.2.4 Let f be an arbitrary morphism in a category C, and let ∃f a f∗ for

a first order hyperdoctrine over C. The function ∃f satisfies Frobenious reciprocity.

Proof. There is an obvious morphism ∃f(φ ∧ f∗ψ) → (∃fφ) ∧ ψ. The inverse to this is

obtained by exploiting the fact that f∗ preserves exponentials in the fibres:

∃f (φ ∧ f∗ψ) → ∃f(φ ∧ f∗ψ)

φ ∧ f∗ψ → f∗∃f (φ ∧ f∗ψ)

φ → (f∗ψ) ⊃ f∗∃f(φ ∧ f∗ψ)

φ → f∗(ψ ⊃ ∃f (φ ∧ f∗ψ))

∃fφ → ψ ⊃ ∃f(φ ∧ f∗ψ)

(∃fφ) ∧ ψ → ∃f (φ ∧ f∗ψ)

�

The definition of hyperdoctrine is often given (e.g. [Pav90]) by requiring left and right

adjoints to reindexing along arbitrary morphisms. However such adjoints can be obtained

from the adjoints along projections when the hyperdoctrine has equality:

Proposition 4.2.5 For a first order hyperdoctrine with equality on a category C with

products, there exist left and right adjoints ∃f a f∗ ` ∀f for any morphism f in C.

Proof. Let Γ, x : A ` M(x) : B; logically, the proposition Γ, y : B ` ∃M(φ(x)) prop

is defined as ∃x. (y = M ∧ φ) and Γ, y : B ` ∀M(φ(x)) prop as ∀x. (y = M ⊃ φ). The

bijection defining the adjunction for ∀M is shown below while that for ∃M is derived

similarly.
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Γ, x : A; ψ(M) ` φ(x)
===========================
Γ, y, B, x : A; ψ(y) ∧ y = M ` φ(x)
============================
Γ, y, B, x : A; ψ(y) ` y = M ⊃ φ(x)
============================
Γ, y, B; ψ(y) ` ∀x. (y = M ⊃ φ(x))

�

First order predicate calculus with equality is interpreted in a first order hyperdoctrine

with equality H as follows. A formation judgement Γ ` φ prop is interpreted as an object

of H[[Γ]], which we write “[[φ]]” or even “φ” when no confusion arises. A truth judgement

Γ; ∆ ` φ is true when
∧

∆ ≤ φ in the poset [[Γ]]. The interpretation [[·]] of a formula is

recursively defined as follows:

[[false ]] def= ⊥

[[M = N ]] def= = (M, N)

[[φ ⊃ ψ]] def= φ ⇒ ψ

[[φ ∧ ψ]] def= φ ∧ ψ

[[φ ∨ ψ]] def= φ ∨ ψ

[[∀x : X. φ]] def= ∀Xφ

[[∃x : X. φ]] def= ∃Xφ

We now turn to the evaluation modalities.

Definition 4.2.6 (Pitts) Let T be a strong monad on a category C with products; a

T -modality on a (first order) hyperdoctrine H over C is specified by a family of order-

preserving functions

�A,B : H(A × B) → H(A × TB),

one for each pair of objects A and B in C, satisfying the following conditions:

• (naturality) for all f : A → B in C, �A,C ◦ (f × id C)∗ = (f × id TC)∗ ◦�B,C;

• (unit) for all A and B in C, (idA × valB)∗ ◦�A,B = id ;
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• (lifting) for all f : A × B → TC in C, �A,B ◦ 〈π, f〉∗ ◦�A,C = 〈π, (let f)〉∗ ◦�A,C.

T -modalities� and ♦ are used in [Pit91] to interpret the evaluation modalities as follows:

[[Γ, z : Tτ ` [x ⇐ z] φ]] def= �Γ,τφ

[[Γ, z : Tτ ` 〈x ⇐ z〉 φ]] def= ♦Γ,τφ

The general and special axioms of section 4.1 are sound with respect to the above inter-

pretation, provided � and ♦ have the following properties:

• � preserves finite meets;

• ♦ preserves finite joins;

• ♦φ ∧�ψ ≤ ♦(φ ∧ ψ);

• ∃∆×id(♦φ) = ♦∃∆×idφ;

• � commutes with ∀X ;

• ♦ commutes with ∃X.

In [Pit91], several examples of operators in concrete models are given. Among them,

the modalities for computations with side effect are based on a hyperdoctrine H over the

category of cpos such that H(A), that is the semilattice of propositions on A, contains

subsets of A × S, where S is the cpo of states.

The interpretation of Evaluation Logic just described requires the additional structure

of a hyperdoctrine and T -modalities. However, a particular hyperdoctrine may be avail-

able on the category C, for which an appropriate modality for interpreting � (possibly

not T -modal, but still validating the general axioms) can be defined automatically from

the monad T . Moreover, if such a hyperdoctrine has higher order structure, an appro-

priate modal operator ♦ can be defined from �. Moggi calls such models “standard.”

We present standard interpretations in sections 4.4 through 4.7 after few mathematical

preliminaries.
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4.3 The logic of a class of admissible monos

In “standard” models, the structure required to interpret the logic is to be found in the

same (base) category where types are interpreted. The idea is to define modal operators

by making the categorical gear for interpreting computational types act upon that for

interpreting the logic.

Logical structure can be found in topoi. They provide models for higher order logics,

where predicates on a type A are interpreted in the category Sub (A) of subobjects of

A. Such an interpretation relies on several features of topoi: for example, for every A,

Sub (A) is a Heyting algebra; for any f : A → B there is a (logical) structure-preserving

reindexing functor f∗ : Sub (B) → Sub (A) with left and right adjoints; Ω is an internal

Heyting algebra, and so on.

Various fragments of logical systems can be interpreted in arbitrary categories in

which only restricted classes M of subobjects are considered. For example, geometric

logics such as that described in [Vic89], with operators
∨

and ∧, can be modelled by the

algebra of “observable” properties of cpos, where elements of M are domains of partial

continuous functions or Scott-opens.

First we show what kind of structure M in a category C allows interpretation of

predicate calculus. Then, in order to find suitable interpretations for the evaluation

modalities, we study the interaction between structures M and strong monads for inter-

preting computation. Here, M-functors and M-natural transformations are introduced.

We use fibrations to show how such objects arise naturally as 1 and 2-cells in a 2-category

of categories with structure.

Definition 4.3.1 A class of display maps D in a category C is a collection of morphisms

of C such that:

• D contains all the identities;
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• D is closed under composition;

• if d ∈ D and f is an arbitrary morphism in C with the same target, a pullback of d

along f exists and, for any such pullback, f−1d ∈ D.

In [Tay92], Taylor adopts a more liberal approach in defining the notion of display

structure, which is a class of morphisms closed under a functorial choice of pullbacks.

Display maps arise in categorical models of dependent types, where they act as pro-

jections of dependent contexts: for every type τ depending on a context Γ, a context

Γ, x : τ is defined together with a projection Γ, x : τ → Γ for modelling weakening. The

“comprehension” of τ in Γ, x : τ can be abstractly modelled as follows. Let C→ be the

category whose objects are arrows of C and morphisms are commuting squares and let

cod : C→ → C be the codomain fibration.

Definition 4.3.2 (Jacobs) A comprehension category is a functor P : E → B→ such

that:

• cod ◦P : E → B is a fibration;

• if f is cartesian in E, then Pf is a pullback in B.

The idea is that, if σ and τ are objects in the fibre over [[Γ]] interpreting types

Γ ` σ type and Γ ` τ type , the (weakened) judgement Γ, x : τ ` σ type is interpreted

by reindexing σ along Pτ : [[Γ, x : τ ]] → [[Γ]]. In [Jac91], Jacobs defines display maps to

be morphisms of the form Pτ . This is slightly more general than definition 4.3.1, as we

argue below.

Proposition 4.3.3 Let D be a class of display maps; let D also indicate the category

whose objects are elements of the class D and morphisms are commuting squares. The

inclusion D ↪→ C→ is a comprehension category.
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This proposition justifies the use of terms such as “fibres,” “reindexing” etc. in the

context of a category with a class of display maps.

It is easy to verify that D ↪→ C→→ C is a fibration whose cartesian morphisms are

pullback squares. Morphisms in the fibre DA over A are commuting triangles, and the

reindexing functor f∗ is pulling back along f .

On the other hand, if an inclusion E ↪→ C→ is a comprehension category, the objects

of E need not yield a class of display maps. In fact, such a class must be closed under

any choice of pullbacks, and hence all isomorphisms must be included in it. Hence, for

example, the class of all identities is not a class of display maps although it forms a

comprehension category E = C ↪→ C→.

Definition 4.3.4 Let D be a class of display maps in C; a fibration p : E → C is said to

have D-products (D-sums) when:

• for all d ∈ D, d∗ has right (left) adjoint, written d∗ a ∀d (∃d a d∗);

• the Beck-Chevalley condition holds, that is, for all pullbacks of elements d ∈ D
as below, the canonical natural transformation g∗∀d

.→ ∀bf
∗ (∃bf

∗ .→ g∗∃d) is an

isomorphism.

b

f

d

g

When p : E → C is understood, we say that E has D-products (sums). We understand

that a class D of display maps is the source of the fibration D ↪→ C→ → C.

Let C be a category with binary products. The cartesian projections of C, that is

morphisms that are part of a product diagram, form a class Dπ of display maps. We say

that a fibration has indexed products (sums) if it has Dπ-products (sums). Similarly, if
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S is an object of C, the class of morphisms · → A such that S ← · → A is a product

diagram forms a class DS of display maps and a fibration with DS-products (sums) is

said to have S-indexed products (sums). If π : A× S → A is in DS and A is understood,

we write ∀S for ∀π.

Proposition 4.3.5 Any class D of display maps has D-sums, where ∃db = d◦b.

Proposition 4.3.6 Let D be a class of display maps. All fibres DA have terminal object

1A and binary products a ×A b
def= ∃b(b∗a) and reindexing preserves them.

It is well known that, if C is a category with finite limits, C→ has C→-products if and

only if all slice categories C/A are cartesian closed and reindexing preserves such structure

(that is: cod : C→→ C is a fibred CCC). This result can be generalized to arbitrary classes

of display maps. Here we show one direction:

Proposition 4.3.7 In a class of display maps D with D-products, all fibres have expo-

nentials and reindexing preserves them.

Proof. Let b : B → A in D; the exponential ( )b in the fibre DA is defined by the

equation db def= ∀bb
∗d, as shown by the following figure:

b∗

∃b

MBMA MA

( ) ×A b

b∗

∀b

( )b
A

In order to show preservation of exponentials, let b, d ∈ DA and let f have codomain A

in C. Applying the Beck-Chevalley condition to the square
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b

f

f∗b

g

we obtain: f∗(db) def= f∗∀bb
∗d ∼= ∀f∗bg

∗b∗d ∼= ∀f∗b(f∗b)∗f∗d
def= (f∗d)f∗b. �

Definition 4.3.8 (Rosolini) A class of admissible monos M is a class of display maps

whose elements are all monos.

Elements of a class of admissible monos can be used for interpreting formulae in

different fragments of predicate calculus, each fragment requiring different properties of

M. A trivial example of class of admissible monos in C is that of all isos in C, modelling

the predicates true . This class is reflective in C→, with the unit of the reflection mapping

f : A → B to id B. If C has strict initial object 0, that is one such that any map into it

is an isomorphism, false can be interpreted by adding to the above class all morphisms

0 → A. The collection of all monos in a category C with pullbacks forms a class of

admissible monos M. If C is a topos, there is a reflection C→→ M, whose unit ηf is the

image of f .

With the structure described so far, we can interpret the negative fragment of predicate

calculus with equality: let M be a class of admissible monos such that:

• M has M-products;

• ∆ ∈ M;

• M has indexed products.

From proposition 4.3.6, each fibre has a terminal object to interpret true and binary

products to interpret ∧. The first condition above allows the interpretation of implication,
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as shown by proposition 4.3.7. The second implies that ∆× id ∈ M. The third condition

yields ∀X for all types X (and, since M has equalities, also ∀f for arbitrary f).

The interpretation of disjunction requires additional closure properties of M. One

way to proceed is to assume sums in C and a factorization system (see section 4.7), so

that A
⋃

B � C is the image of the mediating morphisms A + B → C. The expected

properties of
⋃

, such as idempotence, hold in this setting. Another way is to use the

same construction as in Sets , that is pulling back A along B and pushing out the result.

However this construction yields an idempotent opertator only when C is a pre-topos. A

third possibility is to resort to higher order structure:

Definition 4.3.9 Let C be a category with terminal object 1. A monomorphism

> : 1 → Σ is called a classifier if, for every f in C with codomain Σ, f−1> exists

and, moreover, f−1> = g−1> implies f = g. A mono of the form f−1> is called a

Σ-object and f is called its classifying map. A classifier is called a dominance if the class

of Σ-objects is closed under composition.

Clearly, the Σ-objects of a dominance form a class of admissible monos. Alternatively,

one can waive the condition that a classifier has domain 1 (then, for example, id 0 would

be one) and define a dominance as a classifier whose Σ-objects form a class of admissible

monos. Then, the domain of a dominance is forced to be a terminal object in C because

the identities are classified.

There can be several (not isomorphic) dominances in a category. For example, in the

category Cpo of cpos and continuous functions, id 1 is a dominance classifying the class

of all isos, while > : 1 → {⊥ ≤ >} classifies the Scott-opens. The two-element poset

{⊥ ≤ >} is called Sierpiński space.

If the class M of Σ-objects of a dominance satisfies some of the closure properties

described earlier in this section, one can interpret first order predicate calculus in M.

Proposition 4.3.10 Let > be a dominance in a category C and let the class M of its

Σ-objects have indexed and M-products. The fibres of M are Heyting prealgebras, rein-
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dexing preserves the structure and has left and right adjoints satisfying the Beck-Chevalley

condition.

The idea is to view Σ as an “object of propositions” and to define first order logical

operators using implication and (higher order) universal quantification. In particular, let

ξ
def= π∗

Γ> be the mono interpreting the generic predicate Γ, ξ : Σ ` ξ prop in MΓ×Σ and

let ∀ξ stand for ∀Σ; from ⇒ and ∀X, which we get from the above structure as shown

earlier, we define ⊥, ∨ and ∃X in MΓ as follows:

⊥ def= ∀ξξ

φ ∨ ψ
def= ∀ξ((φ ⇒ ξ) ⇒ (ψ ⇒ ξ) ⇒ ξ)

∃Xφ
def= ∀ξ(∀X(φ ⇒ ξ) ⇒ ξ).

Remark. The structure described in proposition 4.3.10 defines a tripos ([HJP80]) in

C. In fact, tripoi are more general structures, which only require a generic predicate (>

for the fibration M) where no uniqueness is required of the classifying maps. However,

uniqueness makes it easy to find “horizontal” (that is internal) structure corresponding

to that just described. For example, ∀B yields a map C(A × B, Σ) → C(A, Σ) natural in

A; hence, applying Yoneda to C( , ΣB) ∼= C( × B, Σ) .→ C( , Σ), we obtain an internal

∀B : ΣB → Σ.

4.4 Endofunctors and classes of admissible monos

What is still missing of a standard model of EL is the modalities. In this section we

describe a simple interpretation of � and ♦ in a category with a class of admissible

monos and validate the axioms for strong endofunctors, while in the next section we deal

with the ones for monads.

Let C be a category with a class of admissible monos M as in proposition 4.3.10,

and let 〈T, t〉 be a strong endofunctor mapping M to M; the following semantics for
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the evaluation modalities, proposed in [Mogb], is called standard in the sense that it is

completely determined by the strong endofunctor 〈T, t〉:

(4.3)
Γ, x : X ` φ prop

Γ, w : TX ` [x ⇐ w] φ prop

φ

�Γ,Xφ
def= t∗Γ,XTφ

(4.4)
Γ, x : X ` φ prop

Γ, w : TX ` 〈x ⇐ w〉 φ prop

φ

♦Γ,Xφ
def= ∀ξ(�Γ×Σ,X(φ ⇒ ξ) ⇒ ξ)

The interpretation of ♦ suggests that in a higher order Evaluation Logic, possibility

can be expressed in terms of necessity:

〈x ⇐ z〉 φ
def= ∀ξ : Σ. ([x ⇐ z] (φ ⊃ ξ) ⊃ ξ).

Note that (4.2) of section 4.1 is obtained by interpreting this formula in the category of

sets.

Lemma 4.4.1 The axiom � ∧ is sound with respect to (4.3) in a category with a class of

admissible monos M when T preserves meets. All other �-ed general axioms for strong

endofunctors are sound with respect to interpretation in a category with the structure

described in proposition 4.3.10. In particular, � ♦ is sound when ♦ is interpreted as in

(4.4).

Proof. All diagrams involved in the proof of proposition 4.4.1 are quite simple. To give

an example, we show that � ♦ is a consequence of the axioms for ∀ and �:

φ, ψ, (φ ∧ ψ) ⊃ ξ ` ξ

φ, (φ ∧ ψ) ⊃ ξ ` ψ ⊃ ξ

[x ⇐ w] φ, [x ⇐ w] ((φ ∧ ψ) ⊃ ξ) ` [x ⇐ w] (ψ ⊃ ξ)

[x ⇐ w] φ, [x ⇐ w] ((φ ∧ ψ) ⊃ ξ), [x ⇐ w] (ψ ⊃ ξ) ⊃ ξ ` ξ

[x ⇐ w] φ, [x ⇐ w] (ψ ⊃ ξ) ⊃ ξ ` [x ⇐ w] ((φ ∧ ψ) ⊃ ξ) ⊃ ξ

[x ⇐ w] φ, ∀ ξ. ([x ⇐ w] (ψ ⊃ ξ) ⊃ ξ) ` ∀ ξ. ([x ⇐ w] ((φ ∧ ψ) ⊃ ξ) ⊃ ξ)

[x ⇐ w] φ, 〈x ⇐ w〉 ψ ` 〈x ⇐ w〉 (φ ∧ ψ)
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�

In order to validate the axioms for ♦, additional properties are required of �. Such

properties are expressed in the logic by � ∀ and � ⊃.

Definition 4.4.2 (Moggi) Let C, 〈T, t〉, M and � be as above and let M have D-

products, for D a class of display maps. We say that � commutes with D-products if

diagrams of the following form commute: let d : A → B in D,

MA×TC

�B,C

MB×C MB×TC

∀d×id ∀d×id

�A,CMA×C

� ∀, which is known in the context of modal logics as Barcan formula, is just the

EL spelling of the diagram above, with D def= Dπ the class of cartesian projections. It is

easy to verify that � ⊃ is sound when M has M-products and � commutes with them.

Note that, in any fibred cartesian closed M, for m : B → A ∈ M, m∗ always has a right

adjoint ∀m. In fact, defining ∀mn
def= (m ◦n)m, we have:

MA(l, (m ◦n)m) ∼= MA(l ×A m, m ◦n) = MA(m ◦m∗l, m ◦n) ∼= MB(m∗l, n).

Theorem 4.4.3 The general and special axioms for strong endofunctors are sound with

respect to interpretation (4.3,4.4) in a category as in proposition 4.3.10 when � commutes

with indexed and M-products.

To prove this theorem, we introduce evaluation relations (a ⇐A w), to be read “pro-

gram w evaluates to value a,” over A × TA, and use them to obtain “left” and “right”

rules for �. This makes the proof theory of the logic more manageable. Following the

same idea of (4.4), define:

a ⇐A w
def= ∀φ : ΣA. ([x ⇐ w] φ(x) ⊃ φ(a)) (4.5)
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as in [Mogb]. It is quite easy to verify that [x ⇐ w] (x ⇐ w) holds in all models satisfying

� ∀ and � ⊃ [Mogb, Theorem 2.13]. We call the following derived rules, � right and

� left respectively:

∆, x ⇐ w ` φ(x)
x 6∈ FV (∆)

∆, [x ⇐ w] (x ⇐ w) ` [x ⇐ w] φ(x)

∆ ` [x ⇐ w] φ(x)

∆, φ(M) ` ψ

∆ ` M ⇐ w

∆ ` ∀P. ([x ⇐ w] P (x) ⊃ P (M))

∆ ` [x ⇐ w] φ(x) ⊃ φ(M)

∆, [x ⇐ w] φ(x) ` ψ

Note that, using � left , one can derive the converse of � right . Theorem 4.4.3 follows

from Lemma 4.4.1 by showing that all general axioms for ♦ and special axioms for strong

endofunctors are derivable from the axioms for �, � right and � left . As an example,

we show the derivation of ♦ ∨:

φ, φ ⊃ ξ ` ξ x ⇐ w ` x ⇐ w
� left

x ⇐ w, φ, [x ⇐ w] (φ ⊃ ξ) ` ξ

x ⇐ w, φ ` ∀ ξ. ([x ⇐ w] (φ ⊃ ξ) ⊃ ξ)

x ⇐ w, φ ` 〈x ⇐ w〉 φ ∨ 〈x ⇐ w〉 ψ

. . . same as before

x ⇐ w, ψ ` 〈x ⇐ w〉 φ ∨ 〈x ⇐ w〉 ψ

x ⇐ w, φ ∨ ψ ` 〈x ⇐ w〉 φ ∨ 〈x ⇐ w〉 ψ

x ⇐ w ` (φ ∨ ψ) ⊃ (〈x ⇐ w〉 φ ∨ 〈x ⇐ w〉 ψ)
� right

` [x ⇐ w] ((φ ∨ ψ) ⊃ (〈x ⇐ w〉 φ ∨ 〈x ⇐ w〉 ψ))

∀ ξ. ([x ⇐ w] ((φ ∨ ψ) ⊃ ξ) ⊃ ξ) ` 〈x ⇐ w〉 φ ∨ 〈x ⇐ w〉 ψ

〈x ⇐ w〉 (φ ∨ ψ) ` 〈x ⇐ w〉 φ ∨ 〈x ⇐ w〉 ψ

Note that the condition of Lemma 4.4.1 that T preserves meets in the M-fibres

disappears in the above theorem since � ∧ is a consequence of � ⊃ and � ∀ as shown

below:
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[x ⇐ w] φ ` [x ⇐ w] φ

[x ⇐ w] φ, x ⇐ w ` φ

[x ⇐ w] ψ ` [x ⇐ w] ψ

[x ⇐ w] ψ, x ⇐ w ` ψ

[x ⇐ w] φ, [x ⇐ w] ψ, x ⇐ w ` φ ∧ ψ

[x ⇐ w] φ, [x ⇐ w] ψ, ` [x ⇐ w] (φ ∧ ψ)

4.5 Monads and classes of admissible monos

Proposition 4.5.1 The general axioms for strong monads are sound with respect to

interpretation in a category with the structure described in proposition 4.3.10.

Next, we study the interaction between a class of admissible monos M and a strong

monad T in order to find suitable conditions for validating the special axioms for strong

monads.

In models satisfying � T ∗, substitution in modal formulae corresponds to pullbacks.

A minimal condition for the latter is that T preserves pullbacks of elements of M along

morphisms of the form f × id . Moggi calls such functors strongly mono preserving and

notices that they are not closed under composition. This may be unfortunate, since one

cannot verify this property for complex functors by verifying it holds for their components,

as we do in the next chapter. Definition 4.5.2 below imposes a stronger requirement on

functors T that is preserved under composition and guarantees a good behaviour of the

modalities under substitution.

Comprehension categories are the objects of a (two-)category Comp whose morphisms

P → Q are fibration morphisms (F, G) : cod ◦P → cod ◦Q making the following diagram

commute:

C→

C B

B→

cod

P
E H

cod

Q

G

F

F→
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From this diagram it is clear that, when E and H are classes of admissible monos (or,

for that matter, classes of display maps), and P and Q the inclusions, G is completely

determined by F . In this case, we write F →: E → H the restriction of the homonym-

ous functor C→→ B→. We call CatM the full subcategory of Comp whose objects are

categories with a class of admissible monos.

Definition 4.5.2 Morphisms in CatM are called M-functors.

Unfolding this definition, an M-functor (C, M) → (B, N ) is a functor F : C → B such

that m ∈ M implies Fm ∈ N and F preserves pullbacks of elements of M (the cartesian

morphisms of cod ◦P). Obviously, M-functors are strongly mono preseving, thus making

� commute with substitution.

Remark. An M-functor F : C → D is a functor that lifts to the categories of partial

maps, that is to a functor pF : pC → pD (see 2.5).

�

When T is an M-functor, � T ∗ is sound. In fact, note that, for N : τ → σ, the sequent

w : Tτ ` let x ⇐ w in val(N) : Tσ is interpreted as TN and hence � T ∗ corresponds

to the implication (TN)∗Tφ ⊃ T (N∗φ), while the opposite holds because (TN)∗Tφ is a

pullback.

Digression on enriched M-functors. Let M be a class of admissible monos in

a category C enriched over itself and let C have pullbacks of morphisms of the form

(m ◦ ) : [X, dom (m)] → [X, cod (m)], for m ∈ M. Then, M is a C-category. In particu-

lar, for m : A → B and n : C → D in M, the object [m, n] is the vertex of the vertex of

the (inner) pullback square in the diagram below.



4. Evaluation Logic 104

[A, C]

[A, D]

[TA, TC]

[TA, TD][TB, TD]

◦m

t

t

◦Tm

Tn ◦

n ◦π1

π0

t

[m, n]

[B, D]

The morphism mediating the pair id A : [A, A] ← 1 → [B, B] : id B is the identity

map id m : 1 → [m, m] and composition is similarly defined. It is easy to verify that

cod : M → C is a C-functor with the projection π1 : [m, n] → [B, D] as strength.

Moreover, a strong endofunctor 〈T, t〉 : C → C lifts to a strong endofunctor 〈T →, t→〉 on M

with t→: [m, n] → [Tm, Tn] the morphism mediating [TA, TC] t ◦π0← [m, n] t ◦π1→ [TB, TD]

in the diagram above.

A strong M-endofunctor is a strong endofunctor T such that the morphism of C-

endofunctors T ◦cod = cod ◦T →: M → C is a morphism of fibrations.

�

In order to validate the val ∗ and let ∗ axioms, we introduce the two-categorical notion

of M-cartesian natural transformation. CatM is a two-category whose 2-cells F ⇒ G

are natural transformations σ : F
.→ G making the following diagram commute: writing

σ→
m = (σA, σB) for m : A → B ∈ M,

M
F→

G→

Nσ→

F

σ BC

G

codcod

Definition 4.5.3 Given M-functors F and G, a natural transformation σ : F ⇒ G is

called M-cartesian when the components of σ→ are catresian.
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Unfolding this definition, σ : F
.→ G is called M-cartesian when the naturality diagrams

are pullbacks:

σ

Gm

σ

Fm

Examples of M-cartesian natural transformations are the unit of the lifting monad

described in 2.5 and that of the state readers monad described in 5.1. A nonexample is

the unit of TX = 1.

Proposition 4.5.4 M-cartesian natural transformations are closed under horizontal and

vertical composition.

In particular, if 〈T, tT 〉 and 〈S, tS〉 are strong M-endofunctors with tT and tS M-

cartesian, then tTS is also M-cartesian, just by straight composition of pullbacks. The

condition that the tensorial strength t of an M-functor T is M-cartesian can be expressed

in Evaluation Logic with the following equivalence:

Γ, x : τ ` φ prop Γ, y : σ ` ψ prop
� t∗

Γ, x : τ, z : Tσ; [y ⇐ z] (φ ∧ ψ) a` φ ∧ [y ⇐ z] ψ

While the left-to-right entailment holds in any model of the general axioms, � t∗ does

not hold, for example, when computations may fail to terminate, since any nonterminating

z would make the formula to the left vacuously true. An immediate consequence of � t∗

is:

Γ, z : Tτ ; [x ⇐ z] φ ` φ x 6∈ FV (φ).

When η is M-cartesian, � val ∗ is sound. Moreover, ♦ val ∗ can be derived from � val ∗

even in models where � ⊃ and � ∀ do not hold. In section 4.1 we remarked that the
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mono requirement follows from � val ∗. Now we show that, in models satisfying this rule,

the components of η are strong monos.

We write f ↓ g, for two arbitrary morphisms f and g in a category C, when they

satisfy the following diagonal fill-in property: for all u and v such that v ◦f = g ◦u, there

exists a unique h such that

hu v

f

g

The strong monos of C are the monos m such that e ↓ m for all epis e in C. Any

equalizer is a strong mono. When η is M-cartesian, its components are equalizers, as

shown by the following diagram:

η Tη

η

ηT

When T is an M-functor and µ is M-cartesian, � let ∗ is sound. From � let ∗, � ⊃

and � ∀, one can derive ♦ let ∗. The property that µ is M-cartesian is expressed in [Mogb]

by the axiom � µ∗, which is an instance of � let ∗. As we shall see in section 5.3, such

a property gives to � a stronger modal flavour: in the formula [x ⇐ M ] φ, whatever

evaluation goes on in φ, happens “after” the evaluation of M .
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4.6 Monads in the ambient category

Let C be a full reflective subcategory of E , let R a I be the reflection, with unit ρ and

counit ε, and let T = 〈T, η, µ〉 be a monad on C. The adjunction F TR a IUT shown in

the diagram below defines a monad T̃ on E .

C

U T̃

R

F T̃

I

E T̃

FT

E CT

K

UT

Note that, since I is full, ε is invertible, and ε−1
X = ρX . The unit of T̃ is η̃ = ηR ◦ρ,

the multiplication is µ̃ = µR ◦T (ρTR)−1, while the counit of the adjunction F TR a IUT

is ε̃α:TX→X = α ◦Tρ−1
X : µRX → α. The functor K : CT → E T̃ of comparison with algebras

is: K(α : TX → X) = IUT ε̃α = α ◦Tρ−1
X . Below we prove that such a functor is half of

an adjoint equivalence of categories. This result shows that the extension T̃ of T to the

ambient category, which is needed for a standard semantics of Evaluation Logic, is in a

sense “minimal.”

Lemma 4.6.1 Any full reflective subcategory C of a category E is closed under retrac-

tions. In particular, if A is a retract of some object in C, then ρA : A ∼= RA.

Proof. Let A
a→ B

b→ A = id A with B in C and let k = b ◦ρ−1
B
◦Ra : RA → A. Then:

k ◦ρA = b ◦ρ−1
B
◦Ra ◦ρA = b ◦ρ−1

B
◦ρB ◦a = id A and

ρA ◦k = ρA ◦b ◦ρ
−1
B
◦Ra = Rb ◦Ra = id RA.

�

Corollary 4.6.2 Let H : J → C and let ν : l
.→ IH be limiting in E ; then ρl is an iso

and ν ◦ρ−1
l : IR l

.→ IH is also a limit in E with vertex in C.
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Proof. Let h : IR l → l be mediating for the cone (ρIH)−1 ◦IRν : IR l
.→ IH as in the

diagram.

l

ρl

IR l

h

IRIH

ρIH (ρIH)−1

IH

IRν

ν

From ν ◦h ◦ρl = (ρIH)−1 ◦IRν ◦ρl = ν it follows that h ◦ρl = id l. Then Lemma 4.6.1

applies and IR l ∈ C is a limit for IH. �

Note that lemma 4.6.1 is also a direct consequence of its corollary since sections are

limits. In particular, if A
a→ B

b→ A = id A, a is a split equalizer of a ◦b and id B.

Theorem 4.6.3 Let T be a monad in a category C which is fully reflective in a category

E and let T̃ be the extension of T to E obtained as above. The category of T̃ -algebras is

equivalent to the category of T -algebras and the comparison functor K is the equivalence.

Proof. Let H : E T̃ → CT be the functor mapping α : TRA → A to ρA ◦α and h : α → β

to R(h). Note that H(h) = (ρ◦h)†, where ( )† is the natural isomorphism given by R a I

and inverse to ( ◦ρ). We prove the theorem by showing that H is full (i) and faithful (ii)

and that every T -algebra α is isomorphic to the H image of the T̃ -algebra Kα (iii).

(i) Let α : TRA → A and β : TRB → B be T̃ -algebras, and let f : H(α) → H(β)

be a morphism of T -algebras. Calling h : A → B the morphism β ◦T (f ◦ρA) ◦ηA, a simple

calculation shows that ρB ◦h = f ◦ρA and hence H(h) = (ρB ◦h)† = (f ◦ρA)† = f .

(ii) Let h, k : A → B be a morphisms between T̃ -algebras α and β as above and

let H(h) = H(k). Since β is a retraction, by lemma 4.6.1 ρB is an iso. Then, ρB ◦h =

H(h) ◦ρA = H(k) ◦ρA = ρB ◦k implies h = k.

(iii) Let α : TA → A; the unit ρA : A → RA, which is an iso because A is in C, lifts

to an isomorphism α → HKα of T -algebras. Moreover, it is routine to verify that H is
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left (and right) adjoint to K, where, for α : TRA → A and β : TB → B, the transpose

of f : α → Kβ is f† : RA → B viewed as an algebra morphism Hα → β. �

Next theorem establishes a necessary and sufficient condition for the reflection R of

E in C (not necessarily full), and hence for the monad T̃ obtained as described above, to

have tensorial strength.

Theorem 4.6.4 Let C be a reflective subcategory of a category E with products, let R be

the reflection, with unit ρ, and let T = 〈T, η, µ〉 be a monad on C. The monad T̃ defined

as above has a tensorial strength if and only if R preserves products.

Proof. (If) This is an immediate consequence of A. Kock’s result in [Koc72], which

establishes a one to one correspondence between strengths and monoidal structures for

monads over symmetric monoidal closed categories. In particular, if the the natural

transformation ξA,B : RA × RB → R(A × B) is the monoidal structure of R, then

rA,B
def= ξA,B ◦ (ρA ×1) is a tensorial strength. However, monoidal functors are not required

to preserve the monoidal structure, i.e. ξ need not be an iso, so we have to work in the

only if direction.

(Only if) We show that ξA,B
def= µA×B ◦RrB,A ◦rRA,B : RA×RB → R(A×B) is inverse

to the transpose (ρA × ρB)† of ρA × ρB (since I preserves limits, we won’t distinguish

between products in C and in E). To show ξA,B is a right inverse we prove that ξA,B ◦ (ρA×

ρB)† ◦ρA×B = ρA×B . In fact,

ξA,B ◦(ρA × ρB)† ◦ρA×B =

ξA,B ◦(ρA × ρB) =

µA×B ◦RrB,A ◦rRA,B ◦(1 × ρB) ◦ (ρA × 1) =

µA×B ◦RrB,A ◦ρRA×B ◦(ρA × 1) =

µA×B ◦ρR(A×B) ◦rA,B ◦(ρA × 1) =

rA,B ◦(ρA × 1) = ρA×B .
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By a similar chase, ξA,B is also shown to be a left inverse. Here the fact that (ρA ×

ρB)† = 〈Rπ, Rπ〉 is also used. �

Note that the property of preserving products is satisfied by interesting known re-

flections of the effective topos Eff. For example, the category of strictly effective objects

in Eff is an exponential ideal (that is XY is strictly effective for X strictly effective and

arbitrary Y ) and this is necessary and sufficient condition for a full reflection to preserve

products.

Proposition 4.6.5 Let T , T̃ , R and ρ be as above. If T has tensorial strength t and R

preserves products, T̃ has tensorial strength t̃A,B
def= TξA,B ◦ tRA,RB ◦(ρA ×1), where ξ is the

tensorial structure of the reflection.

The extension of T to the ambient category E presented above has the questionable

feature of mapping everything inside C. For example, if T is the identity on C, T̃ is the

reflection R, while the identity on E would be a more natural choice. Moreover, when

the interpretation described in 4.4 is adopted, T̃ may not have nice interaction with M

even if T does. In section 5.2 we adopt a different solution to extend the monad ( ×S)S
⊥

for side effects.

4.7 Standard semantics

There are significant cases in denotational semantics where the interpretation (4.3) of

� described in section 4.4 goes wrong. For example, let T be Plotkin’s powerdomain

functor TX = F (X⊥), where FA is the free semilattice over the cpo A. In [Moga], Moggi

noticed that this functor fails to map monos to monos and proposed a new semantical

framework for interpreting EL, where extra structure is required in the category hosting

the logic while less is expected from the monad T over the category hosting programs.

We only give a sketchy account of this setting (see [Moga] for details) since the simpler
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interpretation described above is enough to present our next application. It is assumed

that:

• a stable factorization system (E, M) is available in a category E with finite limits;

• cod : E→→ E has a full reflective subfibration q : C → E ;

•
T−→

q↘↙q is a monad fibred over E .

Via the reflection E→→ C, T is extended to a monad T̃ : E→→ E→ fibred over E as done

in section 4.6, thus allowing interpretation of computational types in E . However, the

above setting is more general, since dependent types are also supported. While describing

our notation, we recall the standard interpretation of dependent types in a fibration

E→→ E .

Contexts are interpreted as objects of E and we write them as sequences (A, B . . .)

of types. Types Γ ` A type are morphisms (Γ, A) → Γ of E . Terms Γ ` M : A are

morphisms M : Γ → (Γ, A) such that A ◦M = id . Propositions Γ ` φ prop are monos

� Γ in M. For the interpretation of val and let , note first that, from a monad T fibred

over E, one obtains a strong monad TI in each fibre E/I , and hence a strong monad T1 in

E ∼= E/1. While the interpretation of val is quite straightforward, some attention must

be paid to the binding discipline of let :

Γ ` σ, τ types Γ ` N : Tσ Γ, x : σ ` M : Tτ

Γ ` let x ⇐ N in M : Tτ

The interpretation of let is [[let x ⇐ N in M ]] def= µ◦TΓM
′◦N , as in the diagram below:

(Γ, σ, T τ) (Γ, T τ) (Γ, T 2τ)

M ′
Tτ Tσ

TM ′

NM
Tτ

µ
(Γ, Tσ)

Γ(Γ, σ)
σ
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Remark. Note that, while M may “depend” on x, not so its type. This situation can

be generalized by assuming an evaluation predicate σ
v←− (⇐σ) p−→ Tσ as in section 4.8.

Then, from a type Γ, x : σ ` τ type , a new type Γ, w : Tσ ` Πx ⇐ w. τ type is obtained

by pulling back τ along v and then applying ∀p.

�

The factorization system comes in for interpreting �. Different factorization systems

may be available in a category C and each choice may allow interpretation of different

logical features. For example, the regular monos in the category of ω-sets have a classifier

1 → ∇2, which allows interpretation of higher order quantification. Below we provide

the relevant definitions and sketch the interpretation of �.

Definition 4.7.1 A factorization system in a category C is a pair (E, M) of classes of

morphisms of C such that: (A) both contain all isos and are closed under composition and

(B) all morphisms in C are uniquely (up to isomorphism) of the form m ◦e for m ∈ M

and e ∈ E. A factorization system is called stable if pullbacks of m ◦e, for m ∈ M and

e ∈ E, factorize into m′◦e′ as below:

e m

m′e′

On factorization systems see [FK72] and the more recent [CJKP94]. As in [FK72], we

write H↑ def= {e in C | ∀h ∈ H. e ↓ h} and H↓ def= {m in C | ∀h ∈ H. h ↓ m}, for H a class of

morphisms in C and f ↓ g as in section 4.5. Proposition 4.7.4 gives an alternative view

of factorization systems.

Definition 4.7.2 A prefactorization system in a category C is a pair (E, M) of classes

of morphisms of C such that E = M↑ and M = E↓.

Lemma 4.7.3 A factorization system is a prefactorization system.
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Proof. First we show that, for all e ∈ E and m ∈ M , e ↓ m. Let v ◦e = m ◦u and let

u = A
e′−→ U

m′−→ C and v = B
e′′−→ V

m′′−→ D be their factorizations. Then m ◦m′◦e′

and m′′◦e′′◦e are both factorizations of the same morphism and hence there must be an

isomorphism φ : V → U making the appropriate diagrams commute. It is routine to

verify that m′′◦φ ◦e′ : B → C is an appropriate diagonal fill-in morphism. The above

shows that E ⊆ M↑ and M ⊆ E↓. To see that M↑ ⊆ E, take f ∈ M↑ and write it

f = m ◦e; m has an inverse to fill in the square m ◦e = id ◦f . Hence f ∈ E because of

4.7.1.(A). Similarly for E↓ ⊆ M . �

Proposition 4.7.4 (E, M) is a factorization system in C if and only if it is a prefac-

torization system and all morphisms in C are of the form m ◦e for some m ∈ M and

e ∈ E.

Proof. The “only if” half of this follows immediately from the lemma. In the other

direction, it is easy to see that E and M in a prefactorization system satisfy 4.7.1.(A).

Moreover, if a factorization f = m ◦e exists for any f in C, it must be essentially unique.

In fact, from a square m ◦e = m′◦e′, one obtains two opposite fill-in diagonals which are

easily shown to be each other’s inverse. �

Remember that a monomorphism (epimorphism) is called regular when it is an equal-

izer (coequalizer). A category is called regular when it has finite limits, coequalizers and

pullbacks of regular epis are regular epis. If m is a regular mono, e ↓ m for any epi e.

In general, the converse does not hold, that is, elements of (regular monos)↑ need not be

epis. Same thing for monos and regular epis. However, it is the case that:

Proposition 4.7.5 Regular epis and monos form a stable factorization system (ER, M)

in a regular category.

Proof. Let m ◦u = v ◦e for m : A → B a mono and e : C → D the coequalizer of f

and g. The fill-in diagonal is the mediating morphism D → A obtained from u ◦f = u ◦g.



4. Evaluation Logic 114

Then we only have to show that any f has a factorization f = m ◦e for some m ∈ M and

e ∈ ER, as the uniqueness follows from the fill-in property. Let (h, k) be the kernel pair

of f and let e : B → D be their coequalizer. Since f ◦h = f ◦k, we obtain a mediating m

such that f = m ◦e. Let (u, v) be the kernel pair of m. It is easy to show that, since e is

epi, so is the mediating g : A → C; then, from u ◦g = v ◦g we get u = v and hence m is a

mono. �

Note that the class M of a (proper) factorization system in E is a class of admissible

monos and it extends to one fibred over E . A mono m ∈ MΓ,X is a morphism in the fibre

C/Γ and so is Tm−→ TX. Define �Γ,Xm ∈ MΓ,TX to be the image of Tm.

Remark. It would be interesting to rephrase the above semantics in terms of an arbit-

rary fibration, using comprehension categories or, alternatively, locally small fibrations.

4.8 Evaluation relations

In the previous section we saw that a general standard semantics of the evaluation mod-

ality � requires a category with a stable factorization system. We also saw that the

proposed standard interpretation of ♦ requires structure to support higher order quanti-

fication. When such structure is available, an evaluation relation (a ⇐A w) over A× TA

can be defined from � as in 4.5. However, given evaluation relations, only first order

structure is needed to define � and ♦:

[x ⇐ w] φ(x) def= ∀x : A. x ⇐ w ⊃ φ(x) (4.6)

〈x ⇐ w〉 φ(x) def= ∃x : A. x ⇐ w ∧ φ(x) (4.7)

Categorically, this corresponds to having a monic pair A
p1←− (⇐A) p2−→ TA and

defining �φ as ∀p2(p
∗
1φ) and ♦φ as ∃p2(p

∗
1φ).

When � and ♦ are defined as above, all the axioms for strong endofunctors of sec-

tion 4.1 are derivable, from the rules of first order predicate calculus. Then, we observe
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that there are cases, for example when working in a logos [FS90, 1.7], in which � and ♦
can be defined from ⇐ but not vice versa.

Remark. Definitions (4.6) and (4.7) sometimes fail to yield the “expected” modalities.

For example, let T be the monad for dynamic allocation of section 2.5, where (a ⇐ w)

is read “w represents the value a after a few allocations,” and new : T (Loc) is an

operation for creating new locations. While there is no value l : Loc such that l ⇐ new ,

〈x ⇐ new 〉 true holds for a ♦ defined as in [Mogb, example 4.11].

�

In section 4.4, we also observed that, given an evaluation relation and rules for the

modalities in left and right form, such as � left and � right , inferences about modal

formulae are easier than by using the rules in section 4.1, where each modality is related

separately with each logical operator. The example was the derivation of ♦ ∨. Note that

� left and � right are derivable for � defined as in (4.6).

The above observations suggest that evaluation relations may yield both semantic and

proof-theoretic benefits: a more general standard semantics and a more manageable proof

system. A denotational account of evaluation could also allow a systematic approach to

the study of computational adequacy.

In most cases there is an obvious evaluation relation associated with each notion of

computation. Here are some examples (for the monad of dynamic allocations, described

in 2.5, we write σn
k : k → F nk for the morphisms σ0

k = id k and σn+1
k = σFnk ◦σ

n
k ):

Notion of computation TA a⇐ z

exceptions A + E inl (a) = z

side effects (A × S)S ∃ s1, s2. z(s1) = 〈a, s2〉

nondeterminism P(A) a ∈ z

dynamic allocation (TA)k =
∑

n:N A(F nk) zk = (n, Aσn
k (ak))
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Given an endofunctor T : C → C, evaluation relations can be obtained from first order

structure as follows. Assuming a lifting monad 〈( )⊥, θ〉 (see 2.5) in C,

a ⇐A z
def= ∀ f : A → A⊥. (Tf)z = (Tθ)z ⊃ ∃x : A. fx = θa. (4.8)

For all monads mentioned above, this formula produces the expected evaluation rela-

tion. The purpose of the lifting is to have “enough” morphisms f over which to quantify,

even in degenerate cases such as A = 1.

Remark. If the mono requirement is satisfied (see 2.3), the above ⇐ satisfies the axiom

a ⇐ val (a). If � is defined by (4.6), formulae such as � let (4.1) can be derived from

a ⇐ let (f, z) ⊃ ∃x. x ⇐ z ∧ a ⇐ fx.

�

Below we show the conditions under which (4.8) is equivalent to (4.5). Let φ : X � A;

we adopt the interpretation [x ⇐ w] φ
def= ∃ z : TX. (Tφ)z = w.

Theorem 4.8.1 If T preserves pullbacks of the unit θ of the lifting monad, then (4.5)

implies (4.8).

Proof. Let f : A → A⊥, and let φ be the domain of f :

X A

φ θ

A
f

A⊥

Assuming (Tf)w = (Tθ)w, there exists z : TX such that (Tφ)z = w:
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w

TA

TA

Tθ

TA⊥
Tf

1

w Tφ

z

TX

Then, from (4.5), φ(a) holds and, therefore, there exists an x : A such that fa = θx:

X A

θ

A
f

A⊥

φ

1 x

a

�

Theorem 4.8.2 If the unit θ of the lifting monad classifies all predicates of the logic,

(4.8) implies (4.5).

Proof. Let φ be a predicate on A and let f be the transpose of the partial map [φ, φ] :

A ⇀ A, that is:

φ
X A

φ θ

A
f

A⊥

Assuming [x ⇐ w] φ, that is a z such that (Tφ)z = w, one has:

(Tf)w = (Tf)(Tφ)z = (Tθ)(Tφ)z = (Tθ)w
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and hence, from (4.8), there exists x : A such that fx = θa. Then, a factorizes through

φ because:

φ
X A

θ

A
f

A⊥

x

a

φ

1

�



5 Application: partial correctness

Partial correctness specifications are statements involving programs and assertions about

their states. A well known example of a formal calculus based on such specifications is

Hoare Logic (HL), which gives an intuitive grasp of simple while-programs.

To deal with more elaborate forms of computation than expressed by while-programs,

HL requires some alteration. For instance, expressions of the programming language can

be admitted inside assertions in so far as they are free from computational phenomena

such as nontermination, side effects or exceptions. This “mathematical purity” is violated

by many common programming devices such as function procedures, or block expressions.

In the block expression begin C result E, for example, the command C may fail

to terminate, in which case the value of the whole expression is undefined, or it may

modify variables which are not local to it. As for E, it may try to divide a number

by zero, which may raise some exception. All such cases invalidate Reynolds’ approach

to program specification and are in fact proscribed in [Rey81]. Tennent [Ten91] admits

possibly undefined expressions in the assertion language by introducing atomic formulae,

such as Kleene equalities, “localizing” the effects of nontermination. Still, it is not clear

how meaningful a reasoning can be carried out in the style of Hoare triples with partial

expressions.

As for expressions with side effects, noninterference specifications must be introduced

for reasoning about assignments. The problem, here, is that assertions may change the

state in which expressions are evaluated, as in the following instance of the assignment

axiom: {begin b := false result ¬b} b′ := ¬b {begin b := false result b′}, which is false

in all states where b is true. To prevent this, assertions should not interfere with the

119
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value of the expression being assigned, that is, in the example above, (b := false )#¬b.

Sophisticated semantic tools must be used for languages with block structure to correctly

validate equivalences of programs involving nonlocal variables: possible world semantics

([OT92,OT93]) provides a safe barrier to affecting nonlocal states.

For more than two decades Hoare Logic has been adapted to cope with a variety of

computational features, including procedures, local variables, gotos and parallelism (see

[Apt81]). Most of the proposed variations have the flavour of ad hoc solutions: every time

a new set of proof rules and axioms are proposed to give an account of a programming

construct, new semantics and new proofs of soundness must be found, most of the time

from scratch. Such a painstaking process can be simplified and made more systematic by

basing the logic on an abstract notion of computation.

In chapter 1 we argued that Moggi’s approach to denotational semantics based on

monads supports a modular view of computation ([Mog90b,Wad92,CM93,Cen94]). The

problem of finding robust theories of computation, that is to find sets of proof rules and

axioms capable of surviving modifications to the semantics, can be addressed in the formal

framework of Evaluation Logic, which is based on Moggi’s monadic approach. Still, we

must first understand if, in this framework, simple things can be done in a simple fashion.

With this goal in mind, we set EL to work on partial correctness.

In section 5.1 we study the interaction between the monad TX = (X×S)S
⊥ to interpret

possibly nonterminating computations with side effects and a class of admissible monos

M to interpret formulae. We give appropriate closure conditions on M to guarantee

a natural behaviour of formulae with respect to substitution and we validate axioms to

be used later on. In section 5.2 we adopt the semantic setting of section 4.6, where a

strong monad T is defined on a category C “of predomains,” which is fully reflective

in an ambient category E “of sets.” We look for the abstract properties such models

should have in order to validate the axioms introduced in section 5.1. In particular, we

establish sufficient conditions for the monad TX = (X × S)S
⊥, which we assume defined

in C, to extend directly to E , without using the reflection, as proposed in 4.6. It would

be interesting to see whether other variations of the side-effects monad, e.g. the ones
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involving Phoa and Taylor’s synthetic version of Plotkin powerdomains, would support a

similar extension.

Then we consider a different set of axioms, proposed by Pitts in [Pit91], where EL’s

evaluation modalities have a stronger modal flavour. In section 5.3 we present a transla-

tion of this calculus, which we call ELse, into EL making implicit state variables visible.

Using the results of 5.1 we show that the constants employed in this translation are

defined for a large class of models and that theorems are translated into theorems.

In section 5.4 we show that Hoare Logic translates very naturally in ELse without

committing to any of HL’s assumptions as to the computational behaviour of expressions.

Again, all theorems in HL are shown to be derivable in ELse. Moreover, the translation

extends to annotated programs, that is programs which syntactically include assertions

such as loop invariants, thus supporting Floyd-Hoare’s method of inductive assertions

(see [Hes92]) which is of practical importance in proofs of correctness. In 5.5 we develop

a full proof of correctness for a textbook example of a while-program for integer division

using, besides the axioms previously introduced, Scott induction. Section 5.6 discusses

the admissibility of this principle.

5.1 Nontermination and side effects

State readers. First we consider simple computations of the form QA
def= AS, which

we call state readers. Note that, if M is a class of admissible monos, m ∈ M need not

imply mX ∈ M. For example, taking as M the class of Scott-opens in the category of

cpos and η : N → N⊥ the property of being defined, ηN is the nonobservable predicate

“f is total” on partial continuous functions.

Lemma 5.1.1 Let S be an object in a category C such that ( )×S a ( )S. For all objects

A in C, there is an adjunction π∗ a ∀s : C/A ⇀ C/A × S. In particular, ∀sf ∼= η∗fS for

η the unit A → (A × S)S, and vice versa fS ∼= ∀sε
∗f , where ε is the evaluation map.
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Lemma 5.1.2 Let M ⊆ M′ be classes of admissible monos both with S-products, and

let ∀s and ∀′s be the respective families of quantifiers. If m ∈ M then ∀sm ∼= ∀′sm.

The above is an instance of a well known more general result, the absoluteness of

indexed products (see [HP89, proposition 2.8]).

Theorem 5.1.3 Let a class of admissible monos M have S-products ∀S. For m ∈ M,

mS ∼= ∀sε
∗m ∈ M and Q

def= ( )S is an M-functor.

Proof. ( )S preserves limits because it is a right adjoint, so it is enough to show that

mS ∈ M if m ∈ M. By lemma 5.1.1, there is an adjunction π∗ a ∀′s : M′
A ⇀ M′

A×S ,

where M′ is the class of all monos in C, and mS ∼= ∀′sε∗m. Therefore, since M ⊆ M′, by

lemma 5.1.2, mS ∼= ∀sε
∗m ∈ M. �

Breaking into the structure of state readers, we can express � and computational

lifting for Q-computations in terms of ∀ and λ. Later we employ such axioms to validate

properties of more complex computations built from Q.

Γ, x : X ` φ(x) prop
� Q

Γ, r : QX; ∀ s. φ(r(s)) a` [x ⇐ r]Q φ(x)

x : A ` e(x) : B
let Q

r : QA ` let x ⇐ r in [e(x)] = λs. e(r(s))

Lifting. Let ( )⊥ be a lifting monad defined from a class of admissible monos N as

described in section 2.5. Like Q above, ( )⊥ preserves monos, but m ∈ N need not imply

m⊥ ∈ N . A counterexample is m : 0 → 1 when N is the class of Scott-opens. However,

the class of admissible monos M that we consider for interpreting the logic will contain,

in general, more than domains of admissible partial functions and should not be confused

with the class N of such domains from which ( )⊥ is defined. We will assume N ⊆ M.

Theorem 5.1.8 establishes a sufficient condition on a class of admissible monos M to

make ( )⊥ an M-functor.
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Lemma 5.1.4 Let f : B → A be a map in C. If f∗ a ∀f : C/A ⇀ C/B, then the

exponential yf is defined for all y in C/A and yf ∼= ∀ff
∗y.

Proof.

x −→ ∀ff
∗y

f∗x −→ f∗y

x ×A f = f ◦f∗x −→ y

�

Lemma 5.1.5 Let m : B → A be a mono. If the exponential ym is defined for all y in

C/A, then m∗ a ∀m : C/A ⇀ C/B and ∀mf ∼= (m ◦f)m.

Proof.

x −→ (m ◦f)m

x ×A m = m ◦m∗x −→ m ◦f

m∗x −→ f

�

Lemma 5.1.6 If a lifting monad 〈( )⊥, η〉 is defined in a category C with pullbacks, then

η∗
A a ∀ηA

: C/A⊥ ⇀ C/A. In particular, for f : B → A, ∀ηA
f = χ(ηB, f) = f⊥.

Lemma 5.1.7 Lifting preserves pullbacks.

Proof. Let Z = X ×AY be the vertex of the pullback of f along g, and let h : W → X⊥

and k : W → Y⊥ be such that f⊥ ◦h = g⊥ ◦k. The mediating W → Z⊥ is obtained from

the obvious mediating W ′→ Z, where W ′= (h∗ηX) ×W (k∗ηY ). �

Theorem 5.1.8 Let a class of admissible monos M and a lifting monad 〈( )⊥, η〉 be

defined in C, and let the components of η be in M. If M has M-products, ( )⊥ is an

M-functor.
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Proof. Let m : B � A in M. By lemma 5.1.6, ∀ηA
: C/A ⇀ C/A⊥ exists and

m⊥ = ∀ηA
m. By lemma 5.1.4, ηA-powers exist in C/A⊥, and, by lemma 5.1.5, we have

(ηA ◦m)ηA ∼= ∀ηA
m = m⊥. But the exponential (ηA ◦m)ηA in C/A⊥ must also be exponen-

tial in MA⊥ , hence m⊥ ∈ M by hypothesis. Lemma 5.1.7 finishes the job. �

Theorem 5.1.9 Let M be a class of admissible monos in C with M and S-products.

The strong endofunctor ( × S)S
⊥ is an M-functor and hence �A,B : MA×B → MA×TB

commutes with substitution.

Proof. Since ( ×S) is an M-functor for any M, the result follows from Theorem 5.1.3,

Theorem 5.1.8 and from the fact that M-functors compose. �

Cartesian units. Now we consider a family of monads suitable for interpreting com-

putations with side effects. If T is a strong monad, one can model T -computations with

side effects using the monad FT = T ( ×S)S . For example, we just showed that ( ×S)S
⊥

is an M-functor by showing that F preserves M-functors and that ( )⊥ is one. We shall

procede similarly to show that ( × S)S
⊥ validates the axiom � val∗ (see section 4.1). We

believe that one obtains greater insight into a notion of computation from an analysis

of constructors such as F above than from the study of the corresponding monad in

isolation.

Below we use EL to address the elements of a class of admissible monos M defined

in a category with a strong endofunctor T . If φ ∈ M, Tφ is written [x ⇐ z] φ(x).

Similarly, a restricted form of the computational metalanguage can be used when only a

strong endofunctor (rather than a monad) is available on C; in this case, T (f) is written

let x ⇐ z in val(f(x)). When several such endofunctors are involved, we decorate the

above operations with indices. For example:

[x ⇐ z]TQ φ(x) ∼= [y ⇐ z]T [x ⇐ y]Q φ(x)

let TQ x ⇐ z in valTQ(e) = let T y ⇐ z in valT (let Q x ⇐ y in valQ(e)).
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The condition that the unit of a monad T is M-cartesian is expressed in EL by the

equivalence [x ⇐ valT (x)]T φ(x) ∼= φ(x). For example, let T be ( )S , from � Q we have:

[x ⇐ val(x)] φ(x) ∼= ∀ s. φ((λs. x)s) ∼= ∀ s. φ(x) ∼= φ(x). Here we assumed that S is not

empty. Lemma 5.1.6 shows that the unit of ( )⊥ is also cartesian and hence, to get the

result for ( × S)S
⊥, we only have to show:

Theorem 5.1.10 F preserves monads with cartesian units.

Proof. Splitting FT into its components and spelling out the �modalities for Q
def= ( )S

and R
def= ( × S) as shown above:

[x ⇐ z]FT φ(x) ∼= [w ⇐ z]Q [y ⇐ w]T [x ⇐ y]R φ(x) ∼= ∀ s. [x, s′⇐ z(s)]T φ(x)

Then, writing valFT (x) as λs. valT (x, s) and assuming T satisfies � val∗, we have:

[x ⇐ val(x)] φ(x) ∼= ∀ s. [x, s′⇐ (λs. valT (x, s))s]T φ(x)

∼= ∀ s. [x, s′⇐ valT (x, s)]T φ(x) ∼= ∀ s. φ(x) ∼= φ(x)

�

Next we show that lifting preserves cartesian closed structure in the fibres. This is

more precisely stated below, in the corollary to the following more general:

Theorem 5.1.11 Let 〈( )⊥, η〉 be a lifting monad in C and let the exponential xy be

defined in C/A; then (x⊥)y⊥ is defined in C/A⊥ and (xy)⊥ ∼= (x⊥)y⊥ .

Proof. We show that there exists an isomorphism C(z, (xy)⊥) ∼= C(z, (x⊥)y⊥), natural

in z:
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z −→ (xy)⊥ ∼= ∀ηA
(xy)

η∗
Az −→ xy

η∗
Az × y −→ x

ηA ◦(η
∗
Az × y) −→ ηA ◦x

(ηA ◦η
∗
Az) × y⊥ −→ ηA ◦x

ηA × (z × y⊥) ∼= (ηA × z) × y⊥ −→ ηA ◦x

z × y⊥ −→ (ηA ◦x)ηA ∼= x⊥

z −→ (x⊥)y⊥

�

Corollary 5.1.12 Let a class of admissible monos M and a lifting monad 〈( )⊥, η〉

be defined in C, and let the components of η be in M. If M has M-products, then

(mn)⊥ ∼= (m⊥)n⊥ , for m and n in the same M-fibre.

Note that the equivalence established in the above corollary can be expressed in EL

as follows (a similar axiom also holds for ( × S)):

Γ, w : X⊥; [x ⇐ w]⊥ (φ ⊃ ψ) a` [x ⇐ w]⊥ φ ⊃ [x ⇐ w]⊥ ψ

Part “`” of the above axiom holds for ( )⊥-computations but not all interpretations

of T validate it; for example, it does not hold for nondeterministic computations.

5.2 Side effects in the ambient category

Combining the synthetic domain theory view of domains as sets with Moggi’s view of

monads as notions of computation, one gets a scenario for denotational semantics where

a strong monad T is defined on a category C of predomains which is fully reflective in a

category E of sets. In section 4.6 we showed that T can always be extended to a monad
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T̃ = TR : E → E , where R is the reflection, so that the respective categories of algebras

are equivalent. Moreover, under mild conditions T̃ also has a tensorial strength.

However, assuming a class M of monos to interpret predicates in E, the interpretation

of EL described in 4.1 requires T̃ to interact nicely with M. For example, T̃ should

preserve monos in M; when T is the identity functor, this amounts to R preserving

monos and this need not happen in general.

Example. Given an element q of a poset Q, let [q] def= {x |x ≤ q or q ≤ x}. Consider

the functor R : Poset → Set mapping a poset Q into the set {[q] | q ∈ Q} of maximal

subsets of connected elements. It is immediate to verify that R is a full reflection. Let 2

be the vertical two-element poset and 2 the horizontal one. There is a mono m : 2 → 2

in Poset but no monos R2 = 2 → 1 = R2 in Set . So R cannot preserve monos.

�

We conclude that, to make the interpretation 4.3 work in the general case, additional

conditions are required to make T̃ behave properly, such as R preserving finite limits

(although something milder would be enough). Here we consider a simpler solution where

T̃ is essentially the same functor as T , thus making the results established in section 5.1

directly applicable to T̃ . Note, however, that similar constructions may not be available

for all T . There is a natural T̃
def= ( × S)S

⊥ in E which restricts to T in C. We show that

each piece of the structure of T can be found in E extending the corresponding structure

in C.

First, the inclusion C ↪→ E preserves binary products because it is a right adjoint;

assuming that R preserves binary products too, the inclusion also preserves exponentials;

in fact, let A and B be in C and let BA be their C-exponential; then:

E(X, BA) ∼= C(RX, BA) ∼= C(RX × A, B) ∼= C(RX × RA, B) ∼=
C(R(X × A), B) ∼= E(X × A, B).

So, the only problem in taking T̃ = ( ×S)S
⊥ is to find a suitable lifting monad to extend

〈( )⊥, η〉.
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Lemma 5.2.1 Let 〈R, I, ρ〉 : E ⇀ C be a reflection of a category E into its full subcategory

C and let t : 1 → Σ be a dominance in C. If R preserves pullbacks of t, then t is a

dominance in E .

Proof. We have to show that t is generic in a class of Σ-subobjects in E closed under

composition. Without loss of generality we assume t = Rt. Let m = h−1t = k−1t. Since

R preserves pullbacks of t, both Rh and Rk classify Rm, so Rh = Rk and hence h = k.

This shows that t is generic. Let m = f−1t : C → B, n = g−1t : D → C and let h be

the unique morphism whose transpose h† classifies Rn ◦Rm. Since the squares describing

naturality of ρ on n and m are pullbacks, it must be n ◦m = h−1t, which makes n ◦m a

Σ-subobject. �

Let t be a dominance in C; 〈( )⊥, η〉 is defined in C iff t∗ a ∀t : C/Σ ⇀ C. However,

if, for example, E is locally cartesian closed, such an adjunction is also defined in E, as

follows from lemma 5.1.5.

Theorem 5.2.2 Let 〈R, I, ρ〉 : E ⇀ C be a reflection of a category E in its full subcategory

C and let 〈( )⊥, η〉 be a lifting monad in C. If the reflection preserves pullbacks of t = η1

and the reindexing functor along t has right adjoint ∀t : E → E/Σ, then 〈( )⊥, η〉 extends

to a lifting monad on E.

Proof. By lemma 5.2.1, t is a dominance in E . Then ∀t provides each object of E with

classifiers of partial maps whose domains are Σ-subobjects. So we have to check that,

for every object A of C, ηA is a Σ-partial map classifier in E. Let (m, f) : B ⇀ A be a

Σ-partial map, and let f † be the transpose of f as in the diagram.

B

C

Rm

RC

RB

A

A⊥

m ηA

ρB

ρC f †

χ(Rm, f †)
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Since R preserves pullbacks of t, Rm is a Σ-subobject in C. Let χ(Rm, f †) : RB → A⊥

classify (Rm, f †) in C; it is easy to verify that, since the square describing naturality of

ρ on m is a pullback, χ(Rm, f †) ◦ρB classifies (m, f) in E . �

5.3 Assertions

We now have a semantic setting in which to interpret a theory of the Evaluation Logic

for possibly nonterminating programs with side effects and we know that substitution

and � val∗ hold in this setting. However, there is something “modal” to reasoning about

while-programs with Hoare-triples that makes Hoare-like logics particularly intuitive and

which is not captured by the above semantics.

If we want formulae to be interpreted “in a state,” like assertions in Hoare Logic, we

must adopt a nonstandard interpretation of EL, as in [Pit91], where formulae with a free

variable of type X are interpreted as predicates over X × S, for S the interpretation of

states. Then, modelling computations on X as partial maps S ⇀ (X × S), we can give

the following set theoretic interpretation of the evaluation modalities ([Pit91]), where side

effects are “passed” across the brackets (compare it with the corresponding equations in

section 4.1):

[[w : TX ` [x ⇐ w] ϕ assert ]] = {w, s | ∀x, s′. ws = (x, s′) ⊃ ϕ(x, s′)}

[[w : TX ` 〈x ⇐ w〉 ϕ assert ]] = {w, s | ∃x, s′. ws = (x, s′) ∧ ϕ(x, s′)}

Here, we adopt as primitive calculus Moggi’s version of the Evaluation Logic, EL

([Mogb]), which is based on a standard semantics, and derive inference rules for a calculus

of assertions to be used in reasoning about programs without explicit reference to the

states of computation. In the derived calculus of assertions, which we call ELse, the

evaluation modalities have the above intuitive meaning. ELse is essentially the Evaluation

Logic proposed by Pitts in [Pit91] with a few special constants to get hold of simple
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imperative programming constructs. We shall call “assertions” the formulae of ELse and

“propositions” those of EL.

ELse. ELse has the same syntax as EL. The term language is the computational lambda

calculus over a signature Σ which includes: the type Int of integers with the usual

arithmetical operations; the type Bool of booleans with the usual boolean operations

and the conditional cond X : Bool → X → X → X; the operations up l : Int → T 1

and ct l : T (Int ) respectively of memory update and lookup; a fixed point operator

rec : (T 1 → T 1) → T 1, with the fixed point property rec (M) = M(rec (M)). Intuitively,

the program upl(n) assigns value n to the memory location l, while the computation ct l

returns the value in l. For these operators we adopt the axioms given in [Pit91]. Simple

while-programs can be translated into the computational metalanguage over Σ as shown

in section 5.4. The inference rules of ELse include all general and special axioms of

section 4.1, with empty ∆ in � intro and ♦ intro . Hence, ELse extends the calculus in

[Pit91] to include all operators of first order predicate calculus.

Notational conventions. We let e1; e2 stand for let x ⇐ e1 in e2 when x is not free

in e2. Similarly, when p : T 1, we drop the dummy z in [z ⇐ p] θ and write [p] θ instead.

When no confusion arises, we shall informally use logical variables as names for locations.

So, if ~x = x1, . . . xn, we write [~x ⇐ ct ] θ for the formula [x1 ⇐ ct x1] . . . [xn ⇐ ct xn] θ

and let ~x ⇐ ct in e for let x1 ⇐ ct x1 in (. . . (let xn ⇐ ct xn in e) . . .). Finally, we

simply write up (~x) for upx1
(x1); . . .upxn

(xn).

Examples. An example to illustrate the different meaning of necessity in ELse and EL

is the judgement [u ⇐ ctx] u ≥ 0 ` [upx(−1)] [u ⇐ ctx] u ≥ 0, which is derivable from

� intro in EL, but false in ELse, where � intro is subject to the restriction mentioned

above. Conversely, ` [upx(1)] [u ⇐ ctx] u ≥ 0 is derivable in ELse but false in EL, since

� let∗, which is an axiom in ELse, is not sound under the interpretation (4.3) of EL
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when the µ of the monad T is not M-cartesian. Note that already the monad ( )S fails

to satisfy this axiom.

Translating assertions into propositions. Assertions Γ ` ϕ assert translate into

propositions Γ, s : S ` ([ϕ])s prop , where ([ϕ])s may contain a free variable s. All theorems

in ELse are shown to be derivable in EL once the invisible state variables have been made

explicit.

As suggested in [Mogb], there is an obvious way of “simulating” ELse’s modalities in

EL in the case of computations with side effects: the idea is to implement propagation of

states across formulae manually, via two constants h : S → T 1 and k : TS. Intuitively, the

program h(s) updates the current state with s, while k is the computation that returns the

current state as value. Such gadgets are defined, for example, for all monads in the family

F of section 5.1, which includes models for partial and nondeterministic computations

with side effects. Let H be an arbitrary monad and let T
def= FH = H( × S)S. Then,

h(s) def= valQH(∗, s) = λs′. valH(∗, s) and k
def= λs. valH (s, s). For the two constants h and

k we assume the following special axioms: let skip be the trivial program val(∗) : T 1,

Ax 1 h(s); k = h(s); val(s)

Ax 2 let s ⇐ k in h(s) = skip

� h [x ⇐ (let y ⇐ w in (h(s); z))] φ ` [y ⇐ w] [x ⇐ h(s); z] φ

� k
Γ ` [s ⇐ k] φ
===========
Γ, s : S ` φ

Proposition 5.3.1 Ax 1/2 � h and � k are valid for all monads of the family F .

Proof. Again we use EL as the internal logic of a category where the functor R
def= ( ×S)

and the monads H and Q
def= ( )S are defined. We only show the argument for Ax 1, as

for the others a similar routine is repeated.
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h(s); val(s) = let QHR x ⇐ h(s) in valQHR(s) =

let QH y ⇐ valQH(∗, s) in valQH(let R x ⇐ y in valR(s)) =

valQH(let R x ⇐ 〈∗, s〉 in valR(s)) =

valQT 〈s, s〉 = valQ((λs′. valT (s′, s′))s) =

let QHR x ⇐ valQH(∗, s) in λs′. valT (s′, s′) = h(s); k.

�

Let K : TX → T (X × S) be the operator

K(w) def= (let x ⇐ w in (let s ⇐ k in val(x, s))).

Intuitively, K runs the computation w and returns the final state as part of the result.

An assertion Γ ` ϕ assert in ELse is translated into a proposition Γ, s : S ` ([ϕ])s prop

in EL as follows:

([e1 = e2])s
def= e1 = e2

([ϕ ∧ ϑ])s
def= ([ϕ])s ∧ ([ϑ])s (and similarly for all other first order connectives)

([ [x ⇐ w] ϕ])s
def= [x, s′ ⇐ h(s); K(w)] ([ϕ])s′

Proposition 5.3.2 If Γ; ∆ ` φ is a theorem in ELse, Γ, s : S; ([∆])s ` ([φ])s is a theorem

in EL with � val ∗, Ax 1/2, � h and � k.

Proof. All axioms in ELse can be translated and derived in El. Here we show a deriv-

ation of the axiom (� let∗), which best illustrates the differences between the two logics

of assertions and of propositions. From Ax 2 and � h the following sequent is derivable:

Lm K [x ⇐ (let y ⇐ w in z)] φ ` [y, s ⇐ K(w)] [x ⇐ h(s); z] φ.

Then:
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([ [y ⇐ (let x ⇐ z in w)] ϕ])s

[y, s1 ⇐ h(s); K(let x ⇐ z in w)] ([ϕ])s1

[y, s1 ⇐ h(s); let y1 ⇐ (let x ⇐ z in w) in let s2 ⇐ k in [y1, s2]] ([ϕ])s1

[y, s1 ⇐ (let x ⇐ (h(s); z) in K(w))] ([ϕ])s1
(Lm K)

[x, s2 ⇐ K(h(s); z)] [y, s1 ⇐ h(s2); K(w)] ([ϕ])s1

[x, s2 ⇐ h(s); K(z)] [y, s1 ⇐ h(s2); K(w)] ([ϕ])s1

([ [x ⇐ z] [y ⇐ w] ϕ])s

�

Note that a slightly stronger version of the axioms in [Pit91] can be derived in EL.

Consider the axiom:

Γ, x : X; ∆, ϕ ` ψ
� intro

Γ, w : TX; ∆, [x ⇐ w] ϕ ` [x ⇐ w] ψ
(x 6∈ FV (∆), ∆ state-free)

In [Pit91] ∆ must be empty, as usually happens in modal logics. This condition can

be explained in our setting by noticing that one thing the modality does, as is clear from

the above definition of ([ [x ⇐ w] ϕ])s, is to bind a hidden state variable implicitly free in

ϕ and ψ. Hence such a variable should not be free in ∆, that is, ∆ should be independent

of the state. One easy way to meet such condition is by requiring that ∆ contains no

modalities. That’s how we shall read the side condition of � intro and how we shall use

it in section 5.5.

The following proposition is an immediate consequence of 5.1.10, 5.2.2, 5.3.1 and 5.3.2.

Proposition 5.3.3 Models of the form F(H), where the unit of H is cartesian, support

a standard interpretation of ELse.
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5.4 Partial correctness

Partial correctness can be expressed by using an operation tr mapping annotated programs

to assertions. An elementary annotated program is a pair (p, θ), where the assertion θ

is understood as a postcondition of p : T 1. Intuitively, tr (p, θ) is the weakest liberal

precondition of p satisfying θ, which is expressed in ELse by the formula [p] θ. This can

be extended to a simple form of annotated programs Q obtained by alternating programs

and assertions:

Q ::= nil | (p, θ); Q

In particular, (skip , θ); Q is an annotated program that starts with an assertion and

Q; (p, true ) is one that ends with a program. The function tr is defined as follows:

tr (nil ) = true

tr ((p, θ); Q) = [p] (θ ∧ tr (Q)).

Intuitively, tr (Q) is satisfied by all states s such that all assertions in Q are true when

they are reached during the execution of Q in s.

Annotation may provide valuable information for proving correctness. For example,

the following derivable rule infers ζ ` tr ((p, θ); Q) from ζ ` tr (p, θ) and θ ` tr (Q). Such

a rule is used in 5.5 and referred to as TR Trans:

ζ ` tr (p, θ)

ζ ` [p] θ

θ ` tr (Q)

` θ ⊃ tr (Q)

` [p] (θ ⊃ tr (Q))

ζ ` [p] (θ ∧ tr (Q))

ζ ` tr ((p, θ); Q)

Given an input condition θ and an annotated program Q, we say partial correctness

specifications are statements of the form θ ⊃ tr (Q). This echoes the usual view of Hoare
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triples in modal frameworks, where {ϑ}P{ζ} is interpreted as ϑ ⊃ [P ] ζ (see, for example,

the account of Hoare Logic in the modal mu-calculus given in [BS92]). Note also that, as

one would expect in such contexts, the above formula can be converted into a statement

of total correctness by changing [p] into 〈p〉 in the definition of tr .

Next we translate Hoare triples involving programs of a while-language into state-

ments of partial correctness in ELse and show that all theorems of Hoare Logic translate

into theorems of ELse.

Hoare Logic’s assertion language is a first order language L with equality (see [Apt81]).

In the following we take L to be Peano arithmetic with minus. It will be convenient to

assume that variables of L are variables of ELse, so that ϑ ∈ L is also an assertion in

ELse.

Terms of type X in L are translated into terms of type TX of ELse by a family of

functions ([ ])Γ, indexed by (integer) contexts Γ = x1 : Int , . . . xn : Int .

([x])Γ = ct x if x 6∈ dom (Γ)

([x])Γ = [x] if x ∈ dom (Γ)

([n])Γ = [n]

([t1 + t2])Γ = let x ⇐ ([t1])Γ in let y ⇐ ([t2])Γ in [x + y]

([absurd ])Γ = absurd

([t1 = t2])Γ = [x ⇐ ([t1])Γ] [y ⇐ ([t2])Γ] x = y and similarly for ≤, ≥, >, and <

([φ ∧ ψ])Γ = ([φ])Γ ∧ ([ψ])Γ and similarly for ∨ and ⊃

([∀x.φ])Γ = ∀x.([φ])Γ,x and similarly for ∃.

The translation enforces EL’s disciplined interaction between logic and computation

on HL. Logical and program variables, which are distinct in EL but not in HL, are

separated, thus making explicit that bit of “computation” which is going on in HL’s

assertions: reading the memory. A possibly open ϑ ∈ L is translated into a closed

assertion ([ϑ]) in which free variables x are replaced by constants state readers ct x whereas

bound variables are treated as genuine logical variables.
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Example. The assertion x = y holds of all states where locations x and y contain the

same value. However, ∀x. x = y requires the content of y to be equal to any integer x.

Our translation distinguishes between logical and program variables as follows:

([x = y]) = [u ⇐ ct x] [v ⇐ ct y] u = v

([∀x. x = y]) = ∀u. [v ⇐ ct y] u = v

�

The language W of while-programs, is the least class of programs such that:

• for every variable x ∈ Ide and L-term t, x := t ∈ W;

• if C, C1 and C2 ∈ W, then C1; C2 ∈ W and, for every quantifier-free formula B ∈ L,

if B then C1 else C2 and while B do C od ∈ W .

A while-program P is translated into a closed ELse-term ([P ]) of computational type

T 1 as follows (we omit the subscripts Γ):

([x := t]) = let x ⇐ ([t]) in upx(x)

([C1; C2]) = ([C1]); ([C2])

([if B then C1 else C2]) = let b ⇐ ([B]) in cond (b, ([C1]), ([C2]))

([while B do C od]) = rec (λp : T 1. (let b ⇐ B in cond (b, ([C]); p , skip ))).

Note that here B is parsed as a boolean expression.

In the next section we prove the correctness of a program for integer division. This

program is annotated with a loop invariant, which provides a guideline for the proof.

Simple annotated while-programs of the form (C1{ϑ1}; C2{ϑ2} . . .), obtained by altern-

ating commands with assertions, translate straightforwardly into annotated programs

((([C1]), ([ϑ1])); (([C2]), ([ϑ2])) . . .). This is not yet satisfactory since annotations should also

be allowed, for example, in the body of while-loops. To handle this situation, the lo-

gic should be extended with recursive definitions of predicates, but we shall forgo this

pleasure for the moment.
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Hoare triples translate straightforwardly into partial correctness specifications in ELse:

{ϑ}P{ζ} def= ([ϑ]) ⊃ tr ([P{ζ}])

Lemma 5.4.1 For all L-terms t with free variables ~y, ~x, ([t])~y = let ~x ⇐ ct in [t]. For

all formulae ϑ(~y, ~x) ∈ L, ([ϑ])~y a` [~x ⇐ ct ] ϑ.

Lemma 5.4.2 (Substitution) Let ϑ(x) and t be in L. ([ϑ(t)])Γ a` [x ⇐ ([t])Γ] ([ϑ(x)])Γ,x.

Proposition 5.4.3 If {ϑ}P{ζ} is a theorem in Hoare Logic, ([ϑ]) ` tr ([P{ζ}]) is derivable

in ELse.

Proof. As an example, we show the derivation of the axiom for assignment:

{φ(t)}x := t{φ(x)}.

For simplicity we assume that x is the only free variable in φ. The proof is presen-

ted in a natural deduction style and it makes use of the derivable judgement Lm 3:

Γ; φ ` [upy(x)] [x ⇐ cty] φ (φ state-free) from section 5.5.

([φ(t)])
by lemma 5.4.2

[x ⇐ ([t])] ([φ(x)])x
by lemma 5.4.1

[x ⇐ ([t])] φ(x)
by Lm 3

[x ⇐ ([t])] [upx(x)] [x ⇐ ct ] φ(x)

[let x ⇐ ([t]) in upx(x)] [x ⇐ ct ] φ(x)
by lemma 5.4.1

[([x := t])] ([φ(x)])

tr ([x := t {φ(x)}])

�
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5.5 Integer division

Here we consider a classic textbook example, a partial correctness specification {ϑ}P{ζ}

of a while-program for integer division. We translate such specification in ELse as shown

in section 5.4 and derive it in the calculus of assertions. In fact, we derive a stronger

version ([{ϑ}P ′{ζ}]), where P ′ is obtained by annotating P with a loop invariant.

Besides TR Trans introduced above, we use the following special axioms for cond ,

up and ct :

Γ; ∆, b = true ` φ(M) Γ; ∆, b = false ` φ(N)
Cond

Γ; ∆ ` φ(cond (b, M, N))

Γ ` [x ⇐ cty] φ
================ Ct Up

Γ, x : X ` [upy(x)] φ

Moreover, in reasoning about while-loops, we use Scott-induction:

Γ; ∆ ` φ(↑) Γ, p : T 1; ∆, φ(p) ` φ(M(p))
Ind

Γ; ∆ ` φ(rec (M))
(φ inductive in p)

where ↑ stands for the always diverging program rec (λp. p). The side condition of Ind

asks for fixed-point admissibility: since our predicates (and assertions) are arbitrary sub-

sets of domains, not all formulae Γ, x : X ` φ prop are suitable for fixed-point induction

on x. In section 5.6 we give a criterion for establishing the side condition; we show that

admissibility of a proposition φ can often be checked via syntactic analysis of φ (similarly

for assertions) and prove the soundness of the proposed algorithm.

The following derivable sequents are used in the proof below:

Lm 1 Γ; ∆, [x ⇐ w] (φ ⊃ ψ) ` [x ⇐ w] φ ⊃ [x ⇐ w] ψ

Lm 2 Γ, w : TX; φ ` [x ⇐ w] φ (x 6∈ FV (φ), φ state-indep.)

Lm 3 Γ; φ ` [upy(x)] [x ⇐ cty] φ (φ state-indep.)

Lm 4 Γ; ∆, [upy(x)] φ a` [upy(x)] [x ⇐ cty] φ
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These are the definitions of P , P ′, θ, ζ and their translation in ELse:

{ϑ}P{ζ} def= {x ≥ 0 ∧ y ≥ 0}P{a · y + b = x ∧ b ≥ 0 ∧ b < y}

P
def= b := x ; a := 0 ; while b ≥ y do b := b − y ; a := a + 1 od

ξ
def= a · y + b = x ∧ b ≥ 0

P ′
def= b := x ; a := 0 ; {ξ} ; while b ≥ y do b := b − y ; a := a + 1 od

([{ϑ}P{ζ}]) ≡ ([x, y ⇐ ct ] ϑ) ⊃

[let x ⇐ ctx in upb(x) ; upa(0) ; rec (λp : T 1. let b, y ⇐ ct in

cond (b ≥ y,

let b, y ⇐ ct in upb(b − y) ; let a ⇐ cta in upa(a + 1) ; p,

skip ))] [x, y, a, b ⇐ ct] ξ ∧ b < y

([{ϑ}P ′{ζ}]) ≡ ([x, y ⇐ ct ] ϑ) ⊃

tr ((let x ⇐ ctx in upb(x) ; upa(0) , [x, y, a, b ⇐ ct] ξ) ;

(rec(. . .) , [x, y, a, b ⇐ ct] ξ ∧ b < y))

≡ ([x, y ⇐ ct ] ϑ) ⊃

[z ⇐ (let x ⇐ ctx in upb(x) ; upa(0))] (([x, y, a, b ⇐ ct] ξ) ∧

[w ⇐ rec(. . .)] [x, y, a, b ⇐ ct] ξ ∧ b < y)

We derive the above formula in natural deduction style, which allows greater com-

pactness. Some obvious steps are omitted.

1. since ϑ ⊃ (0 · y + x = x ∧ x ≥ 0) is a tautology:

[upb(x); upa(0)] (ϑ ⊃ (0 · y + x = x ∧ x ≥ 0))

2. from 1:

([upb(x); upa(0)] ϑ) ⊃ [upb(x); upa(0)] 0 · y + x = x ∧ x ≥ 0

3. since θ is state-independent, from 2:

ϑ ⊃ [upb(x); upa(0)] 0 · y + x = x ∧ x ≥ 0
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4. from 3:

[x, y ⇐ ct ] (ϑ ⊃ [upb(x); upa(0)] 0 · y + x = x ∧ x ≥ 0)

5. from 4:

([x, y ⇐ ct ] ϑ) ⊃ [x, y ⇐ ct ] [upb(x); upa(0)] 0 · y + x = x ∧ x ≥ 0

6. from 5:

([x, y ⇐ ct ] ϑ) ⊃ [x, y ⇐ ct ] [upb(x); upa(0)] [a, b ⇐ ct] ξ

7. from 6:

([x, y ⇐ ct ] ϑ) ⊃ [let x ⇐ ctx in upb(x); upa(0)] [x, y, a, b ⇐ ct] ξ

8. since [↑] absurd is a tautology, obtain Φ(↑) ≡

([x, y, a, b ⇐ ct ] ξ) ⊃ [↑] [x, y, a, b ⇐ ct] ξ ∧ b < y

9. since b < y ⊃ (ξ ⊃ (ξ ∧ b < y)) is a tautology:

[up (x, y, a, b)] (b < y ⊃ (ξ ⊃ (ξ ∧ b < y)))

10. from 9:

[up (x, y, a, b)] (b < y ⊃ (ξ ⊃ [skip ] [x, y, a, b ⇐ ct] ξ ∧ b < y))

11. from 10:

([up (x, y, a, b)] b < y) ⊃ [up (x, y, a, b)] (ξ ⊃ [skip ] [x, y, a, b ⇐ ct] ξ ∧ b < y)

12. since b < y is state-independent, from 11 obtain b < y ⊃ Ψ(skip ) ≡

b < y ⊃ [up (x, y, a, b)] (ξ ⊃ [skip ] [x, y, a, b ⇐ ct] ξ ∧ b < y)

13. assume Φ(p) ≡
([x, y, a, b ⇐ ct ] ξ) ⊃ [p] [x, y, a, b ⇐ ct] ξ ∧ b < y

14. from 13:

[upb(b − y); upa(a + 1)] (([x, y, a, b ⇐ ct ] ξ) ⊃ [p] [x, y, a, b ⇐ ct] ξ ∧ b < y)

15. since (b ≥ y ∧ ξ(x, y, a, b)) ⊃ ξ(x, y, a + 1, b − y), by Lm 3:

(b ≥ y ∧ ξ) ⊃ [up (x, y); upb(b − y); upa(a + 1)] [x, y, a, b ⇐ ct ] ξ
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16. from 14 and 15:

(b ≥ y ∧ ξ) ⊃

([up (x, y); upb(b − y); upa(a + 1)] (([x, y, a, b ⇐ ct ] ξ) ⊃
[p] [x, y, a, b ⇐ ct] ξ ∧ b < y)∧

[up (x, y); upb(b − y); upa(a + 1)] [x, y, a, b ⇐ ct ] ξ)

17. from 16:

(b ≥ y ∧ ξ) ⊃ [up (x, y); upb(b − y); upa(a + 1); p] [x, y, a, b ⇐ ct] ξ ∧ b < y

18. from 17:

[up (x, y, a, b)]

(b ≥ y ⊃ (ξ ⊃ [upb(b − y); upa(a + 1); p] [x, y, a, b ⇐ ct] ξ ∧ b < y))

19. since b ≥ y is state-independent, from 18:

b ≥ y ⊃

[up (x, y, a, b)] (ξ ⊃ [upb(b − y); upa(a + 1); p] [x, y, a, b ⇐ ct] ξ ∧ b < y)

20. from 19 obtain b ≥ y ⊃ Ψ(let . . .) ≡

b ≥ y ⊃ [up (x, y, a, b)] (ξ ⊃
[let b, y ⇐ ct in upb(b − y); let a ⇐ cta in upa(a + 1); p]

[x, y, a, b ⇐ ct] ξ ∧ b < y)

21. from 12 and 20, by Cond obtain Ψ(cond (. . .)) ≡
[up (x, y, a, b)] (ξ ⊃

[cond (b ≥ y,

let b, y ⇐ ct in upb(b − y); let a ⇐ cta in upa(a + 1) ; p,

skip ))] [x, y, a, b ⇐ ct] ξ ∧ b < y

22. from 21, by Ct Up

[x, y, a, b ⇐ ct ] (ξ ⊃

[cond (b ≥ y,

let b, y ⇐ ct in upb(b − y); let a ⇐ cta in upa(a + 1) ; p,

skip ))] [x, y, a, b ⇐ ct] ξ ∧ b < y
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23. from 22:

([x, y, a, b ⇐ ct ] ξ) ⊃

[x, y, a, b ⇐ ct ]

[cond (b ≥ y,

let b, y ⇐ ct in upb(b − y); let a ⇐ cta in upa(a + 1) ; p,

skip ))] [x, y, a, b ⇐ ct] ξ ∧ b < y

24. from 23 obtain Φ(M(p)) ≡
([x, y, a, b ⇐ ct ] ξ) ⊃

[let b, y ⇐ ct in

cond (b ≥ y,

let b, y ⇐ ct in upb(b − y); let a ⇐ cta in upa(a + 1) ; p,

skip )] [x, y, a, b ⇐ ct] ξ ∧ b < y

25. by Ind, from 8 and 13. . . 24 obtain Φ(rec (M)) ≡

([x, y, a, b ⇐ ct ] ξ) ⊃
[rec (λp : T 1. let b, y ⇐ ct in

cond (b ≥ y,

let b, y ⇐ ct in upb(b − y); let a ⇐ cta in upa(a + 1) ; p,

skip ))] [x, y, a, b ⇐ ct] ξ ∧ b < y

26. from 7 and 25, by TR Trans:

([x, y ⇐ ct ] ϑ) ⊃ tr ((let x ⇐ ctx in upb(x) ; upa(0) , [x, y, a, b ⇐ ct] ξ) ;

(rec(. . .) , [x, y, a, b ⇐ ct] ξ ∧ b < y)).
�
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5.6 Inductive formulae

Scott-induction was used in section 5.5 to prove properties of while loops. Here we

establish a sufficient syntactic condition on formulae φ(x) to ensure their admissibility

for fixed-point induction on x. In view of theorem 5.6.1, this condition can be expressed

as x 6∈ free −(φ), where the set free − is defined, together with its dual free +, as follows:

free −(absurd ) = ∅

free −(t1 ≤ t2) = ∅ and similarly for ≥, >, <, and =

free −(φ ∧ ψ) = free−(φ) ∪ free −(ψ) and similarly for ∨

free −(φ ⊃ ψ) = free+(φ) ∪ free −(ψ)

free −(∀x. φ) = free−(φ) − {x}
free −(∃x. φ) = free (φ) − {x}

free −([x ⇐ t] φ) = free−(φ) if x 6∈ free−(φ)

= free−(φ) ∪ free (t) − {x} otherwise

free +(absurd ) = ∅

free+(t1 ≤ t2) = ∅ and similarly for ≥, >, <, and =

free +(φ ∧ ψ) = free +(φ) ∪ free+(ψ) and similarly for ∨

free +(φ ⊃ ψ) = free −(φ) ∪ free+(ψ)

free+(∀x. φ) = free (φ) − {x}
free+(∃x. φ) = free +(φ) − {x}

free +([x ⇐ t] φ) = free (φ) ∪ free (t) − {x}

In the following theorem we take cpos as our domains. However, the proof also goes

through in the context of models of synthetic domain theory. e.g. with extensional PERs,

adopting the appropriate notion of ω-chain.
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Theorem 5.6.1 Let Γ, x : X ` φ be a formula in EL.

A. If x 6∈ free −(φ), then, for all u ∈ [[Γ]] and ω-chains 〈dn〉, if [[φ]](u, di) for all di in 〈dn〉,

then [[φ]](u, t〈dn〉).

B. If x 6∈ free +(φ), then, for all u ∈ [[Γ]] and ω-chains 〈dn〉, if [[φ]](u,t〈dn〉), then [[φ]](u, di)

for some di in 〈dn〉.

Proof. We just discuss the interesting cases: implication and necessity. Assume x 6∈

free −(φ ⊃ ψ), that is, x 6∈ free+(φ) and x 6∈ free −(ψ). Let 〈dn〉 be an ω-chain such that

[[φ ⊃ ψ]](di) for all di ∈ 〈dn〉. Assume [[φ]](t〈dn〉). Since x 6∈ free +(φ), it must be [[φ]](di)

for infinitely many di in 〈dn〉, otherwise, pruning such elements from 〈dn〉, one would

get a subchain with the same l.u.b. and with no elements satisfying [[φ]]. So, there is a

subchain 〈cn〉 of 〈dn〉 all elements of which satisfy [[φ]]. Then, by the assumption, [[ψ]](di)

for all di in 〈cn〉, and hence, since x 6∈ free −(ψ), t〈cn〉 = t〈dn〉 satisfy [[ψ]]. This shows

that [[φ ⊃ ψ]](t〈dn〉).

The definition of free−([x ⇐ z] φ) says that, if φ is ω-inductive in x, then [x ⇐ z] φ

is ω-inductive in z; also, if ψ(x, y) is ω-inductive in x, then [y ⇐ z] ψ(x, y) is ω-inductive

in x. We show the first of these statements. Assume ∀s. φ(zi(s)) holds for all zi in the

ω-chain 〈zn〉, show that ∀s. φ(t〈zn〉s) holds. For an arbitrary s̄, all elements of 〈zn(s̄)〉

satisfy φ by hypothesis; then, since φ is ω-inductive in x, φ(t〈zn(s̄)〉) = φ(t〈zn〉s̄) must

hold. �

Remark. Theorem 5.6.1 improves a similar one in [Ten91]. In particular, it allows

formulae such as ¬(¬(x v 7)), rejected in [Ten91], to be recognized as admissible.

Remark. In the above proof we used the interpretation of necessity as in EL, rather

than as in ELse. This is in fact the worse case, since it involves a quantification over states

and, hence, x 6∈ free +(φ) implies neither x 6∈ free +([y ⇐ z] φ) nor z 6∈ free +([y ⇐ z] φ).

However, such quantification disappears in ELse and hence the admissibility conditions

for fixed-point induction are more liberal for assertions than for formulae.
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Remark. In view of the last remark, we conclude that theorem 5.6.1 validates the use

of Scott induction in section 5.5, since p 6∈ free −(Φ(p)).



6 Semantic constructors

In this chapter we present and develop the theory of semantic constructors (see chapter 1),

which were introduced by E. Moggi in [Mog90a,Mog91c] with the intention of achieving

a modular approach to the study and development of denotational semantics.

To what extent can different notions of computation be studied in isolation? Which

properties do models produced by a constructor retain of the models from which they are

constructed and upon which properties are they conservative? We address these questions

in the first two sections of this chapter. In the rest, we discuss the syntactic presentation

of constructors, a technique introduced in [CM93], and relate the power of constructors

with that of the metalanguages that are used to present them syntactically.

A direct method for presenting a constructor is to produce structure for interpreting

one metalanguage from structure for interpreting another. In the next chapter, we develop

applications where constructors for exceptions and resumptions are presented in this

fashion by using the Extended Calculus of Constructions as metalanguage.

Here, we focus on an indirect method, where constructors are presented in a purely

syntactical fashion as translations of metalanguages. In general, a translation L2 → L1 of

formal languages yields, contravariantly, a relative interpretation Mod (L1) → Mod (L2)

mapping models of one language into models of the other [KR77]. This situation extends

to logical theories, where it is understood that theorems of one theory are translated into

theorems of the other. For example, given a strong monad in a category C, a translation

MLT → MLT gives a recipe to construct a new strong monad on C.

For some logics, a dual construction is also available. Let L1 and L2 be theories

expressed in universal Horn clauses ([Kea75]). Such theories can be viewed as categories

146
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th (Li) with finite limits (lex categories) in the same way as categories with finite products

provide views of algebraic theories where no distinction is made between primitive and

derived operations. In fact, this is the basic idea of categorical logic:

“a logical theory has an intrinsic existence independent of its presentation,

and this existence is best represented by a category” ([See82]).

In this framework, one speaks of “functorial semantics” because interpretation of a theory

L in a category C with appropriate structure is viewed as a structure-preserving functor

th (L) → C. A well known result of P. Gabriel and F. Ulmer ([GU75]) states that any

filtered colimit-preserving functor Mod (L1) → Mod (L2) with a left adjoint arises as

relative interpretation from a lex functor th (L2) → th (L1) and hence from a translation

L2 → L1. The natural question is whether a similar duality can be established for theories

of the computational metalanguage and whether a sufficiently rich class of constructors

Mod (Σ1) → Mod (Σ2) can be obtained from translations MLT(Σ2) → MLT (Σ1).

In the setting of Gabriel-Ulmer duality, translations and interpretations live in the

same category (of lex categories) and relative interpretation is studied as composition.

To mimic this situation, we need a presentation-independent view of a theory MLT (Σ)

as an object of Mod (Σ). A natural candidate would be the syntactic category T (Σ)

described in section 2.4. This category has a canonical strong monad and canonical Σ

structure. Moreover, interpretation of MLT(Σ) in a Σ-model (C, T, A) corresponds to

a morphism ([[ ]], id ) = T (Σ) → (C, T, A) in Mod (Σ). However, interpretations and

structure preserving functors do not coincide: since interpretation requires [[Tτ ]] = T [[τ ]],

morphism ([[ ]], σ) : T (Σ) → (C, T, A) correspond to interpretations only when σ = id .

This suggests that, in order for translations to capture interesting constructors, a

more powerful syntax must be used than that of the computational metalanguage. For

example, the constructor for resumptions (FT )X def= µY. T (X + Y ) that we present in

the next chapter needs inductive types, which cannot be axiomatized in MLT(Σ). The

examples that we present in this chapter are written in HML, an expressive type theory,

similar to the one in [Mog91a], in which the computational metalanguages can be easily
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axiomatized. We give an intrinsic characterization of the constructors that can be presen-

ted in HML. This characterization generalizes to presentations in any formal language

whose models are described by finite limit theories; examples are the simply typed and

the higher order polymorphic lambda calculi.

Synopsis. In section 6.1 we define the category Mod (Σ) of models of MLT (Σ) introdu-

cing the notion of Σ-homomorphism (not in Moggi’s presentation). In 6.2 we introduce

semantic constructors and we investigate the properties of a particular class of them,

called “pointed.” Examples of such constructors are the ones for exceptions, resump-

tions, interactive input and output. In particular, we determine a class of equations

preserved by pointed constructors (theorem 6.2.5) and one whose equations are reflec-

ted (that is, a sublanguage of MLT (Σ) over which pointed constructors are conservative;

theorem 6.2.7). Preservation of equations is also addressed in [Mog90b]. Our treatment

differs from Moggi’s in that the latter considers a more restricted class of constructors

and puts more constraints on the metalanguage (viz. lambda abstraction only on constant

types). In section 6.3 we present HML and, in 6.4, we use it to present a rather powerful

constructor that can be specialized to capture models of several forms of computation.

Most of the material presented 6.3 and 6.4 is from [CM93] and we claim no originality

there. After introducing the basic ideas of functorial semantics in section 6.5, we invest-

igate the properties of categories of models of HML theories in 6.6 and 6.7. The class of

syntactic constructors corresponding to HML translations is characterized in 6.8.

6.1 Categories of Σ-models

In section 2.4 we defined a suitable notion of signature for a typed lambda calculus L(Σ)

and a notion of Σ-model, that is, a category in which the relevant structure is singled out.

Some of the structure may be defined by universal properties and we called “additional”

all the rest. It is reasonable to expect that models form a 2-category Mod (Σ) whose
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1-cells are functors preserving the universal structure, while additional requirements (see

example below) may be appropriate to relate the additional structure.

Example. Strong monad morphisms (C, T ) → (D, S) were defined in section 2.2 as

pairs (U : C → D, σ : UT
.→ SU) where the functor U preserves the universal structure

of C in D, while the natural transformation σ relates the monads T and S with suitable

diagrams.

�

Here we describe categories of models of computational metalanguages MLT (Σ), whose

objects we shall henceforth call Σ-models and whose morphisms are strong monad morph-

isms with extra conditions relating Σ-structures. In the next section the semantic con-

structors of the modular approach are introduced as natural maps between categories of

models.

Defining morphisms between Σ-models is not straightforward because the usual mixed

variance problem gets in the way of relating the Σ structure of the two models. In fact

we must restrict signatures as shown below. (The notions of type scheme, polytype etc.

were defined in section 2.4.)

A polytype is called computationally positive (negative) when it contains no negative

(positive) occurrences of the type constructor T (we shall usually drop the word “com-

putationally”. More formally: 1, K ∈ Στ and X ∈ χ are both positive and negative

polytypes; if τ1 and τ2 are both positive (negative), so is τ1 × τ2; if τ1 is negative (pos-

itive) and τ2 is positive (negative), τ1 → τ2 is positive (negative); if τ is positive, so is

Tτ . For example, (T (K → TX) → X) → TX is positive, while TX → TX is neither

positive nor negative. It is easy to verify that a polytype is both positive and negative if

and only if it contains no occurrences of T .

Positive (negative) polytypes are not closed under “indiscriminate” substitution. As

in section 6.2 we need a closure result, we characterize well behaved substitution in

Lemma 6.1.1.
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A type variable is said to “occur positively (negatively)” in a polytype according to

the following rules: X occurs neither positively nor negatively in τ if it does not occur

in τ ; X occurs positively in X; X occurs positively (negatively) in τ1 × τ2 if it occurs

positively (negatively) in τ1 or in τ2 or in both; X occurs positively in τ1 → τ2 if it occurs

positively in τ2 or negatively in τ2 or both; X occurs negatively in τ1 → τ2 if it occurs

negatively in τ2 or positively in τ2 or both; X occurs positively (negatively) in Tτ if it

occurs positively (negatively) in τ .

Let σ and τ be polytypes. We say that the substitution [σ/X]τ is sign-preserving

when σ is positive if X occurs positively in τ and σ is negative if X occurs negatively

(hence σ must be both when X occurs both ways). We call sign-reversing the obvious

converse.

Lemma 6.1.1 Sign-preserving substitution preserves positive polytypes; sign-reversing

substitution preserves negative polytypes.

Proof. Let α, β and γ range over the symbols + and −, to be read as “positive” and

“negative,” and let ᾱ be the complement of α. We write (αβγ) for the statement “if τ is

α, X occurs β-ly in τ and σ is γ, then [σ/X]τ is α.” We show the cases (+++), (−−+),

(+ − −) and (− + −) by induction on τ .

For τ = 1 and τ = K ∈ Στ all four cases hold trivially. For τ = X, (+ + +) holds

because [σ/X]X is positive for positive σ, while the other cases hold trivially because

their hypotheses are not satisfied. For τ = τ1 × τ2, each statement holds because, using

the inductive hypothesis, the same statement must hold for τ1 and τ2. For τ = τ1 → τ2,

(αβγ) holds because, using the inductive hypothesis, (αβγ) must hold for τ2 and (ᾱβ̄γ)

must hold for τ1. For τ = Tτ1, (+++) and (+−−) hold because, by inductive hypothesis,

identical statements must hold for τ1, while the other cases hold trivially because their

hypotheses are not satisfied. �

Let Στ be a collection of constant type symbols. Let C and D be cartesian closed

categories and let both have a Στ -structure and an endofunctor, respectively T : C → C
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and S : D → D. Στ -polytypes are interpreted in C and D from the above data. Let

U : C → D be a functor preserving the universal and Στ structure. We make the

simplifying assumption that U does so on the nose, although this is not crucial for the

development of the theory. In particular, this means that U [[K]] = [[K]] for all K in

Στ (all type constants but T are nullary in MLT(Σ)). Given a natural transformation

σ : UT
.→ SU , we associate with every computationally positive (negative) polytype

τ (X1, . . .Xn) and type assignments A1, . . .An in C a morphism

σ+(τ ) : U [[τ ]]A1,...An → [[τ ]]UA1,...UAn

(σ−, with opposite direction, for negative τ ) as follows: writing Uτ for U [[τ ]]A1,...An ,

τU for [[τ ]]UA1,...UAn, στ for σ[[τ ]]A1,...An
and (=)( ) : Cop × C → C for the functor mapping

(A, B) to BA,

σ±1 = id 1

σ±Xi = id UAi

σ±K = id [[K]]

σ±(τ1 × τ2) = σ±(τ1) × σ±(τ2)

σ
+(τ1 → τ2) = σ+(τ2)

σ−(τ1) = λf : Uτ1 → Uτ2. σ
+(τ2) ◦f ◦σ−(τ1)

σ−(τ1 → τ2) = σ−(τ2)
σ+(τ1) = λf : τ1U → τ2U. σ−(τ2) ◦f ◦σ+(τ1)

σ+(Tτ ) = S(σ+(τ )) ◦στ

Proposition 6.1.2 Let U and σ be as above. If a polytype τ is both positive and negative,

U [[τ ]] = [[τ ]]U and σ+(τ ) = σ−(τ ) = id .

Proof. By induction on τ , For example: if τ1 → τ2 is both positive and negative, so must

be, by a simple argument, also τ1 and τ2; hence σ+(τ1 → τ2) = σ−(τ1 → τ2) = id id = id .

�

Σ-structures can be related in a simple diagrammatical way if they are restricted to

positive type schemes, that is, type schemes involving only positive polytypes. Since this
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is the case in most examples of operations associated with notions of computation, we

will henceforth restrict our signatures to include only operations with positive schemes.

At the end of this section we discuss some nonexamples.

Definition 6.1.3 A Σ-homomorphism (C, T, A) → (D, S, B) between Σ-models is a

strong monad morphism (U, σ) : (C, T ) → (D, S) such that U preserves the Στ struc-

ture on the nose and, for all op : ∀X1, . . . Xn. τ1, . . . τm −→ τ in Σε and type assignments

A1, . . . An, the following diagram commutes:

U [[τ1]]A1,...An × . . .U [[τm]]A1,...An

[[τ1]]UA1,...UAn × . . . [[τm]]UA1,...UAn

σ+(τ1) × . . . σ+(τm)

[[op]]UA1,...UAn

σ+(τ)

U [[op]]A1,...An
U [[τ ]]A1,...An

[[τ ]]UA1,...UAn

(6.1)

If op is an operation for which the above diagram commutes, we say that (U, σ) is

natural with respect to op .

Example. Let (U, σ) : (C, T ) → (D, S) be a morphism of strong endofunctors and

let operations val : ∀X. X −→ TX and let : ∀X, Y. (X → TY ), TX −→ TY , satis-

fying the equations of section 2.2, be defined in C and D. The above diagram applied

to such operations yields equations defining (U, σ) as a strong monad morphism. Con-

versely, let (U, σ) be a morphism between strong monads over C and D. The operations

st : ∀X, Y. (X → Y ), TX −→ TY derived as in section 2.2 in C and D make the above

diagram commute: σB(Ust A,B(f, w)) = st UA,UB(f, σAw), and this corresponds to saying

that (U, σ) is a morphism of strong endofunctors.

Proposition 6.1.4 Σ-models and Σ-homomorphisms form a category Mod (Σ).

Proof. (Strong) monad morphisms (U, σ) : (C, T ) → (D, S) and (V, ρ) : (D, S) → (E , R)

compose as follows: (V, ρ) ◦(U, σ) = (V ◦U, ρU ◦V σ). We show that (V, ρ) ◦ (U, σ) is a
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Σε-homomorphism by proving the following equations:

(ρU ◦V σ)+τ = ρ+(τ )U ◦V σ+(τ ) (6.2)

(ρU ◦V σ)−τ = V σ−(τ ) ◦ρ−(τ )U (6.3)

Then, the result follows from the commutativity of the diagram below:

V σ+(τ)

V U [[op]]A1,...An
V U [[τ ]]A1,...An

V [[op]]UA1,...UAn
V [[τ ]]UA1,...UAn

[[op]]V UA1,...V UAn [[τ ]]V UA1,...V UAn

V σ+(τ1) × . . .V σ+(τm)

V U [[τ1]]A1,...An × . . . V U [[τm]]A1,...An

V [[τ1]]UA1,...UAn × . . . V [[τm]]UA1,...UAn

[[τ1]]V UA1,...V UAn × . . . [[τm]]V UA1,...V UAn

ρ+(τ)Uρ+(τ1)U × . . .ρ+(τm)U

Equations 6.2 and 6.3 are proven by induction on τ , of which we show only a few cases

as the others are similar. For a positive Tτ :

(ρU ◦V σ)+(Tτ ) = (by definition of ( )+(Tτ ))

R(ρU ◦V σ)+(τ ) ◦(ρU ◦V σ)τ = (by inductive hypothesis)

R(ρ+(τ )U ◦V σ+(τ )) ◦ρUτ ◦V στ = (since R is a functor)

Rρ+(τ )U ◦RV σ+(τ ) ◦ρUτ ◦V στ = (since ρ is a natural transformation)

Rρ+(τ )U ◦ρτU ◦V Sσ+(τ ) ◦V στ = (since V is a functor)

(Rρ+(τ )U ◦ρτU) ◦V (Sσ+(τ ) ◦στ) = (by definition of ( )+(Tτ ))

ρ+(Tτ )U ◦V σ+(Tτ ).

Similarly, for positive τ1 → τ2:
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(ρU ◦V σ)+(τ1 → τ2) =

λf : V Uτ1 → V Uτ2. (ρU ◦V σ)+(τ2) ◦f ◦(ρU ◦V σ)−(τ1) =

λf : V Uτ1 → V Uτ2. ρ
+(τ2)U ◦V σ+(τ2) ◦f ◦V σ−(τ1) ◦ρ−(τ1)U =

(λg : V τ1U → V τ2U. ρ+(τ2)U ◦g ◦ρ−(τ1)U) ◦

(λf : V Uτ1 → V Uτ2. V σ+(τ2) ◦f ◦V σ−(τ1)) =

(λg : V τ1U → V τ2U. ρ+(τ2)U ◦g ◦ρ−(τ1)U) ◦V (λf : Uτ1 → Uτ2. σ
+(τ2) ◦f ◦σ−(τ1)) =

ρ+(τ1 → τ2)U ◦V σ+(τ1 → τ2)

�

As to 2-cells in Mod (Σ), no natural condition can be stated for an arbitrary ν : U
.→ V

to coherently relate U and V occurrences of operations in Σ. However, coherence is

guaranteed when 2-cells are restricted to isomorphisms. [Pow94] studies (2- and tri-)

categories with structure arising from modelling logical frameworks for computer science.

Remark. Some operations commonly associated with computational features of pro-

gramming languages do not have positive type scheme. One example is the operator

callccA,B : ((A → TB) → TA) → TA for computations with continuations; another

example, introduced in section 6.4, is CA,B : (A → TB) × (HTA → TB) × TA → TB,

which performs case analysis on generalized resumptions.

When a signature Σ contains such operators, the general notion of Σ-homomorphism

introduced above cannot be adopted. In that case, one can always reduce the amount of

structure upon which morphisms in Mod (Σ) are required to be natural. For example, if

naturality were only required on val and let , a morphism in Mod (Σ) would be just any

strong monad morphism. However, as we shall see in the next section (theorems 6.2.5

and 6.2.7), the less we require of morphisms in Mod (Σ), the less we can say of semantic

constructors in terms of preserving equations.
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6.2 Semantic constructors

A semantic constructor F is a family of functions FΣ mapping the objects of Mod (Σ)

to the objects of Mod (Σ + ΣF ). When clear from the context, we shall understand that

such maps act only on objects and write:

FΣ : Mod (Σ) → Mod (Σ + ΣF).

FΣ is indexed by signatures of the metalanguage; each F is defined over a restricted

range Sig F of signatures. For example, uniform redefinitions, to be introduced below,

can be defined only over operations with certain type schemes. Besides cutting off “un-

manageable” signatures, Sig F may also require a minimal supply of constant types and

operations. This minimal supply may be thought of as the parameters of the constructor.

An example of parameter is the type E of exceptions in the translation presented in

section 7.2.

Example. Consider a constructor F mapping a monoid M into the group obtained

by freely adjoining a unary operation “-” to M and quotienting by suitable equations:

a + (−a) = 0, −(a + b) = (−a) + (−b), etc. This constructor is defined on any category

of Σ-algebras, provided Σ includes +.

�

In Moggi’s definition [Mog91c], semantic constructors must satisfy a naturality condi-

tion that we shall discuss below. To state this condition a notion of signature morphism

is required, which we provide in definition 6.2.1 for the general form of lambda calculus

L(Σ) described in chapter 2.

Let ρi(Y1, . . . Yl), i = 1 . . . k, σj(Y1, . . . Yl), j = 1 . . . n, and τ (X1, . . . Xn) be

Σ-polytypes; a derived Σ-operation of arity ∀Y1, . . . Yl. ρ1, . . . ρk −→ τ (σ1, . . . σn) is either

an operation in Σ (of same arity) or a sequence of m+1 derived Σ-operations op i of arity
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∀Y1, . . . Yl. ρ1, . . . ρk −→ τi(σ1, . . . σn), i = 1 . . . m, and op : ∀X1, . . . Xn. τ1, . . . τm −→ τ ,

which we write op (op 1, . . .op m).

Definition 6.2.1 A signature morphism σ : Σ1 → Σ2 maps constant type symbols

K of arity n in Σ1 to Σ2-polytypes τ (X1, . . .Xn), and constant operation symbols op

of arity ∀X1, . . .Xn. τ1, . . . τm −→ τ in Σ1 to derived Σ2-operations σ(op ) of arity

∀X1, . . .Xn. σ(τ1), . . . σ(τm) −→ σ(τ ).

Remark. For computational metalanguages MLT (Σ) signature morphisms only deal

with constants in Σ, that is, they do not affect T , val or let . Other possibilities may

be considered, e.g. mapping symbols to terms. We do not further discuss such notions

since signature morphisms play a marginal role in the rest of this thesis. However, note

that, since the naturality condition on constructors in definition 6.2.2 quantifies over such

morphisms, the more general the notion, the harder it is for FΣ to qualify as natural.

�

A signature morphism σ : Σ1 → Σ2 induces Σ1 structure in the underlying category

of any Σ2-model M: the structure for interpreting a symbol ξ ∈ Σ1 is obtained by

interpreting σ(ξ) in M. If this Σ1-structure satisfies the axioms of MLT (Σ1), we write

Mod (σ) : Mod (Σ2) → Mod (Σ1).

Definition 6.2.2 (Moggi) A semantic constructor F is a Sig F -indexed family of func-

tions FΣ from the objects of Mod (Σ) to the objects of Mod (Σ + ΣF ) satisfying the fol-

lowing naturality condition: for all signature morphisms σ : Σ1 → Σ2 in Sig F such that

Mod (σ) : Mod (Σ2) → Mod (Σ1), the following diagram commutes:

Mod (Σ2)

Mod (Σ1)

Mod (σ)

FΣ2

FΣ1

Mod (Σ2 + ΣF)

Mod (σ + ΣF)

Mod (Σ1 + ΣF)
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Naturality ensures that all components of F agree on the definition of ΣF structure

by restricting to the same FΣ0 : Mod (Σ0) → Mod (Σ0 +ΣF ), where Σ0 is the signature of

parameters, and that reinterpretation of any Σ ∈ Sig F can be described by considering

each operation separately.

It is reasonable to expect that theories of (Σ + ΣF )-computation extend theories of

Σ-computation. Hence, in order to show that the construction of a categorical structure

FM out of a Σ-model M actually defines a map Mod (Σ) → Mod (Σ + ΣF ), it is useful

to know whether F preserves the truth of certain formulae. In chapter 5, for example, we

showed, in the context of Evaluation Logic, that the constructor (FT )X def= T (X + S)S

preserves the validity of � val ∗.

Example. Any F mapping Σ-algebras into (Σ + ΣF )-algebras endowed with a family

of Σ-homomorphisms fA : A → FA, preserves the truth of closed equations over Σ.

Similarly, let F : Mod (Σ) → Mod (Σ+ΣF ); a morphism (U, σ) : M → FMeΣ in Mod (Σ)

relates interpretations of (positively typed) operations op ∈ Σε in the two models. Let

Γ ` ω : τ , with positive Γ and τ , be a derived operation obtained by composing the

primitive operations in Σε, val and let ; it is easy to see that [[ω]] makes diagram 6.1

commute. Any equation ω1 = ω2 between closed terms of the above kind which holds in

M also holds in FM, since [[ω1]]FM = σ+U [[ω1]]M = σ+U [[ω2]]M = [[ω2]]FM.

�

In the rest of this section we investigate the properties of semantic constructors F ,

which we call “pointed,” endowed with a family of morphisms (U, σ) : M → FM,

where M and FM have the same underlying category and U is the identity. Note that

theorem 6.2.4 holds for any (U, σ) in Mod (Σ). We shall ask two questions about pointed

constructors: which equations do they preserve and which do they reflect? The first of

these questions was first addressed in [Mog90b], where a solution is sought for a special

class of pointed constructors (called parametric extensions) and for a fragment of the

metalanguage in which lambda abstraction is only allowed on constant types.
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We call “light” the terms of MLT (Σ) freely generated by rules B1, B2, B4, B5 and B6

of section 2.3, together with the following:

B3.bis. Let op : ∀X1, . . .Xn. τ1, . . . τm −→ τ be an operation in Σε, let σ1, . . . σn be

types such that σi is positive (negative) if Xi occurs positively (negatively) in τ ,

and let Mj : τi(σ1, . . . σn) for j = 1, . . . m, then op σ1,...σn
(M1, . . .Mm) is a term of

type τ (σ1, . . . σn);

B7.bis. if x ∈ χσ, T does not occur in σ and M : τ , then λx : σ. M is a term of

type σ → τ .

Lemma 6.2.3 Light terms in positive contexts have positive type.

Proof. By induction on the structure of terms. The term ∗ has positive type 1. For

pairs and projections the result follows immediately from the inductive hypotheses. A

light term op (M1, . . .Mm), where Mj : τj(σ1, . . . σn) and op has positive type scheme

∀X1, . . .Xn. τ1, . . . τm −→ τ , must satisfy the conditions of B3.bis, which yield a positive

τ (σ1, . . . σn) by lemma 6.1.1. Let Γ be a context in which all types are positive. Let

Γ ` MN : τ2; since M is light, by inductive hypothesis it must be Γ ` M : τ1 → τ2 with

positive τ1 → τ2. Hence τ2 must be positive. Let Γ ` λx : τ1. M : τ1 → τ2; since τ1 must

contain no occurrences of T , by inductive hypothesis, it must be Γ, x : τ1 ` M : τ2 with

positive τ2; hence τ1 → τ2 is positive. �

Theorem 6.2.4 Let (id , σ) : 〈C, T, A〉 → 〈C, S, B〉 be a morphism of Σ-models. Any light

term M and positive Γ such that Γ ` M : τ in MLT (Σ) satisfies the following diagram:

writing [[ ]]T for interpretation in 〈C, T, A〉 and [[ ]]S for interpretation in 〈C, S, B〉,
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[[Γ]]T

[[Γ]]S

[[τ ]]T

[[τ ]]S

[[M ]]TΓ

σ+(Γ) σ+(τ)

[[M ]]SΓ

Proof. The interesting cases are lambda abstraction and application, since for ∗ : 1 the

result follows from the universality of 1, while for variables, application of constants, pairs

and projections it follows from the universality of products. Let Γ ` MN : τ2. Assume

Γ ` M : τ1 → τ2 and Γ ` N : τ1 make the diagram commute. The soundness of such

assumptions depends on lemma 6.2.3, which ensures that both τ1 → τ2 and τ1 are positive.

So τ1 must contain no occurrences of T and, by lemma 6.1.2, σ+(τ1) = σ−(τ1) = id ; we

write τ1 for [[τ1]]T = [[τ1]]S. Since σ+(τ1 → τ2) = λf : τ1 → [[τ2]]T . (λx : τ1. σ
+(τ2)(fx))

and [[N ]]TΓ = [[N ]]Sσ+(Γ), we have:

σ+(τ2)[[MN ]]TΓ = (by lambda abstraction)

(λf : τ1 → [[τ2]]T . (λx : τ1. σ
+(τ2)(fx))) ([[M ]]TΓ, [[N ]]TΓ) =

(by definition of σ+(τ1 → τ2))

(σ+(τ1 → τ2) [[M ]]TΓ) [[N ]]TΓ = (by inductive hypothesis on M)

[[M ]]Sσ+(Γ)[[N ]]TΓ = (by inductive hypothesis on N)

[[M ]]Sσ+(Γ)[[N ]]Sσ+(Γ) =

[[MN ]]Sσ+(Γ)

Similarly, let Γ ` λx : τ1. M : τ1 → τ2 with no T in τ1. Then (Γ, x : τ1) is a positive

context and we can assume the property for Γ, x : τ1 ` M : τ2. Therefore:
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σ+(τ1 → τ2) [[λx : τ1. M ]]TΓ =

(λf : τ1 → [[τ2]]T . (λx : τ1. σ
+(τ2)(fx))) (λx : τ1. [[M ]]TΓ,x) =

λx : τ1. σ
+(τ2) [[M ]]TΓ,x = (by inductive hypothesis)

λx : τ1. [[M ]]Sσ+(Γ),x =

[[λx : τ1. M ]]Sσ+(Γ).

�

Theorem 6.2.5 Let (id , σ) : 〈C, T, A〉 → 〈C, S, B〉 be a morphism of Σ-models. If M

and N are light terms of MLT (Σ) with free variables in context Γ and T does not occur

in Γ, then [[M ]]TΓ = [[N ]]TΓ implies [[M ]]SΓ = [[N ]]SΓ.

Proof. Theorem 6.2.4 applies to M and N because Γ is positive. Moreover σ+(Γ) is

the identity and hence [[M ]]SΓ = σ+(τ ) [[M ]]TΓ = σ+(τ ) [[N ]]TΓ = [[N ]]SΓ. �

An immediate corollary to this theorem is that all equations between closed light

terms are preserved by pointed constructors. Note that, although the axiom schemes of

most theories of computation involve only light terms, the above theorem ensures only

the preservation of light instances of such schemes.

Remark. One may wonder whether, in case the category C is well pointed, preserving

closed equations is enough to preserve also the open ones (over positive contexts). A

category C with terminal object 1 is called well pointed when the homset functor C(1, )

is faithful, that is, when two morphisms f and g are equal whenever fx = gx for all

global elements x. In general, an axiom scheme ∅ ` F (M) = G(M) does not enforce

[[F ]] = [[G]] in all models M. However, assume M is well pointed. One can extend the

language with one constant x : τ , where τ is the type of the metavariable M , for each

global element x : 1 → [[τ ]] of M, and extend the interpretation with [[x]] = x. Then,

for all x : 1 → [[τ ]], [[F ]] ◦x = [[F (x)]] = [[G(x)]] = [[G]] ◦x and hence [[F ]] = [[G]]. In order

to make a similar argument work when two interpretations [[ ]]T and [[ ]]S are at stake, it

is necessary that each global element 1 → SX factorizes as 1 → TX
σX−→ SX for some
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global element of TX.

�

Our second question about pointed semantic constructors F is whether they are con-

servative on some class of equations, that is, for what M and N it is the case that

[[M ]]FM = [[N ]]FM implies [[M ]]M = [[N ]]M.

We shall call “light” the polytypes of MLT(Σ) freely generated by the rules A1-A5

of section 2.3, with the extra condition, in A5, that σ contains no occurrences of T in a

light σ → τ . Lightly typed terms need not be light, nor light terms lightly typed.

Lemma 6.2.6 Let (σ, U) : 〈C, T, A〉 → 〈D, S, B〉 be a morphism of Σ-models. If the

components of σ are monos and S is mono preserving, then σ+(τ ) is a mono for any

light polytype τ .

Proof. By induction on the structure of τ . For exponentials it uses the fact that

σ+(τ1 → τ2) = (σ+(τ2))τ1 and that the functor ( )τ1 preserves monos because it is a right

adjoint. For Tτ it uses the assumptions that the components of σ are monos and S is

mono preserving. �

Theorem 6.2.7 Let M and N be light terms of light type τ in a positive context Γ, and

let (id , σ) : 〈C, T, A〉 → 〈C, S, B〉 be a morphism of Σ-models. If the components of σ are

monos and S is mono preserving, then [[M ]]SΓ = [[N ]]SΓ implies [[M ]]TΓ = [[N ]]TΓ.

Proof. M and N satisfy the diagram of theorem 6.2.4. Hence,

σ+(τ ) ◦ [[M ]]TΓ = [[M ]]SΓ ◦σ
+(Γ) = [[N ]]SΓ ◦σ

+(Γ) = σ+(τ ) ◦ [[N ]]TΓ.

Since, by lemma 6.2.6, σ+(τ ) is a mono, [[M ]]TΓ = [[N ]]TΓ. �

In [Mog90b], Moggi investigates similar properties for a variety of constructions of

the modular approach, such as uniform redefinitions. Let T be a strong monad and let
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G(T ) be a map obj (C) → obj (C) on the objects of the underlying category C of T . A

constructor F such that (FT )X = T (GTX) can uniformly redefine operations of the

form op X : ζ(TX), where ζ( ) is a type scheme:

(Fop )X
def= op GTX : ζ(T (GTX)) ≡ ζ((FT )X)

Examples of constructors of the form (FT )X = T (GTX) are the one for complexity,

FTA = T (A × M) for M a monoid, and all instances of the constructor of generalized

resumptions described in section 6.4, among which the one for exceptions. An example

of uniformly redefinable operation is or X : TX × TX → TX of section 2.5, where ζ(X)

is X × X → X.

Equations involving instances of redefinable operations are not always preserved by

uniform redefinitions. For example, let op X : TX; the identity monad satisfies op 1 =T 1 x

but, for FTX = T (A+E), Fop 1 =FT 1 x does not hold, that is op 1+E
?!=1+E x. However,

equation schemes only involving uninstantiated occurrences of polymorphic operations are

preserved. For example, the commutativity law or X(x, y) =TX or X(y, x), is preserved

by uniform redefinitions of or .

Remark. Preserving equations can be also studied syntactically, by reasoning about

theories and translations rather than models and constructors. For example, a constructor

Mod (t) : Mod (Σ) → Mod (Σ + ΣF ) deriving from a translation t of MLT (Σ + ΣF ) into

MLT (Σ) would preserve the truth of equations M = N when t(M) = t(N) is a con-

sequence of M = N in MLT (Σ).
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6.3 HML

As mentioned earlier, interesting semantic constructors can be presented as translations

of metalanguages, provided a powerful enough syntax is adopted. In [CM93], a metalan-

guage HML is used to that effect. HML is not biased towards monads, but it is expressive

enough to easily axiomatize desirable metalanguage features, including monads, and to

describe concisely uniform redefinitions.

HML is defined in appendix A. There are rules for deriving well formed kinds, op-

erators, type schemes, terms and formulae. There are also rules for deriving compound

objects such as contexts, that is sequences of variable declarations, signatures, that is

sequences of constant declarations, and theories, that is sequences of formulae.

In a pure type system [Bar92], kind and scheme would be called “variable universes,”

because kinds and type schemes can be used in contexts as ranges of variables. An object

u of kind k is called an operator, while an object e of type scheme σ is called a term.

Besides judgements of well formedness, HML features equality judgements on operators

and schemes, and truth judgements involving formulae of first order logic with equality.

Polymorphic operations are expressed in HML as follows. There is a constant kind Ω

whose operators, called types, lift to type schemes. Variables of kind Ω can be “quantified”

upon to form type schemes. For example, the signature of a theory of monads is:

T : Ω ⇒ Ω,

val : Πv : Ω. v ⇒ Tv,

let : Πv1, v2 : Ω. (v1 ⇒ Tv2) × Tv1 ⇒ Tv2

while the axioms 2.3, 2.4, and 2.5 of section 2.2 provide the related theory.

The above type schemes are also types in the polymorphic lambda calculus, PLC

[Gir72,Rey74], of which we shall consider the version described in [See87]. However,

there are differences between HML and PLC in the treatment of polymorphism. For
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example, the orders of PLC, corresponding to kinds in HML, only admit exponentials

of the form ΩA. PLC has both product (Π) and sum (Σ) types, while HML only has

products. Particularly significant is also that, unlike PLC, HML distinguishes between

types and type schemes: there may be schemes, for example the ones involving Π, which

may correspond to no operator of kind Ω. Motivations for such an approach can be found

in [Mog91a], while the semantical implications of it are discussed in section 6.7.

Since types and type schemes are distinguished in HML, operators of the form k ⇒ Ω

would not suffice to express uniform redefinitions in full generality. For example, the

type scheme S(X) def= ΠY : Ω. X × Y cannot be expressed using an operator S : Ω ⇒ Ω.

Therefore HML features parametric schemes of the form S : k ⇒ scheme .

In HML, schemes have products and exponentials. These operations must be reflected

in the world of kinds if they are to be used together with operators to form types. For

example, the scheme X : Ω ` T (X × X) : scheme requires an operator × : Ω × Ω → Ω.

Below we present signatures and theories for reflecting products and sums. Exponentials

can be treated similarly.

The following signatures and theories can be combined to describe computational

models. Of course, the analysis of models must support this process as some theories

may be inconsistent with each other.

Notation. Sometimes we leave type arguments implicit in polymorphic terms. For

example, if F : (ΠX : Ω. X ⇒ X) and M : A : Ω, we may write FM for F [A]M .

We assume that × binds more tightly than ⇒ and that application is left associative,

reading (f g x) as (f g)x. If F : X × Y ⇒ Z and M : X, we may write FM for

(λy : Y. FMy) : Y ⇒ Z.
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Product reflection (signature).

unit : Ω,

In 1 : 1 ⇒ unit ,

Out 1 : unit ⇒ 1,

prod : Ω × Ω ⇒ Ω,

In × : Πv1, v2 : Ω. (v1 × v2) ⇒ prod 〈v1, v2〉,
Out × : Πv1, v2 : Ω. prod 〈v1, v2〉 ⇒ (v1 × v2)

Product reflection (theory).

∀x : 1. Out 1(In 1x) = x,

∀x : unit . In 1(Out 1x) = x,

∀v1, v2 : Ω, x : v1 × v2.Out ×(In ×x) = x,

∀v1, v2 : Ω, x : prod 〈v1, v2〉. In ×(Out ×x) = x

Sum reflection (signature).

0 : Ω,

+ : Ω × Ω ⇒ Ω,

Z : Πv : Ω. 0 ⇒ v,

inj 1 : Πv1, v2 : Ω.v1 ⇒ v1 + v2,

inj 2 : Πv1, v2 : Ω.v2 ⇒ v1 + v2,

case : Πv1, v2, v : Ω. (v1 ⇒ v) × (v2 ⇒ v) × (v1 + v2) ⇒ v

Sum reflection (theory).

∀v : Ω, f : 0 ⇒ v. f = Z(v),

∀v1, v2, v : Ω, f1 : v1 ⇒ v, f2 : v2 ⇒ v. (λx. case f1 f2 (inj 1x)) = f1,

∀v1, v2, v : Ω, f1 : v1 ⇒ v, f2 : v2 ⇒ v. (λy. case f1 f2 (inj 2y)) = f2,

∀v1, v2, v : Ω, f : (v1 + v2) ⇒ v. case (λx. f(inj 1x), λ y. f(inj 2y)) = f

As shown in chapter 3 in the case of a programming language with exceptions, pro-

grams of type B with a parameter of type A translate into terms of type A → TB in
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the computational metalanguage. Hence, interpretation of recursively defined programs

requires fixed point operators over types of the form A → TB. The following is an ax-

iomatization of such operators in HML. It requires a type constructor T which would

typically be provided by the signature of monads.

Fixed points (signature).

Y : Πv1, v2 : Ω. ((v1 ⇒ Tv2) ⇒ (v1 ⇒ Tv2)) × v1 ⇒ Tv2

Fixed points (theory).

∀v1, v2 : Ω, f : (v1 ⇒ Tv2) ⇒ (v1 ⇒ Tv2). Y (f) = f(Y f)

Algebraically complete categories [Fre91] provide interpretations for data types which

can be mathematically described as “minimal” solutions to recursive equations D ∼= FD,

for F a covariant functor. More precisely, a category is called algebraically complete if

every covariant endofunctor (in a suitable 2-categorical sense) has initial algebra. We

write αF : F (µF ) → µF the initial F -algebra and It F (β) : µF → B the unique F -

homomorphism from αF to β : FB → B. By a well known result due to Lambek

[Lam68], αF is an isomorphism with inverse γF
def= It F (FαF ). In computer science,

datatypes arising as initial algebras of covariant endofunctors are called inductive types.

Remark. Similarly, when C is algebraically complete and A is any category, a type

constructor F̃ can be defined from a bifunctor F : A × C → C:

F̃A
def= µX. F (A, X).

F̃ is in fact a functor A → C mapping arrows f : A → B to

F̃ f
def= It (Hf )
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where Hf = F (A, F̃B)
F (f,F̃B)−→ F (B, F̃B)

αF (B, )−→ F̃B. It is easy to verify that the usual map

function of LISP is the morphisms part of the list constructor List (A) def= µX. (1+(A×X)).

�

In [CM93], inductive types are axiomatized in HML as follows:

Inductive types (signature).

µ : (Ω ⇒ Ω) ⇒ Ω,

α : ΠF : Ω ⇒ Ω.F (µF ) ⇒ µF,

It : ΠF : Ω ⇒ Ω, v : Ω.(Πv1, v2 : Ω.(v1 ⇒ v2) × Fv1 ⇒ Fv2) × (Fv ⇒ v) × µF ⇒ v

Inductive types (theory).

∀F : Ω ⇒ Ω, v : Ω, f : (Πv1, v2 : Ω. (v1 ⇒ v2) × Fv1 ⇒ Fv2), β : Fv ⇒ v.

strength (f) ⊃ ∀x : F (µF ). It f β (αx) = β(f(It f β)x),

∀F : Ω ⇒ Ω, v : Ω, f : (Πv1, v2 : Ω. (v1 ⇒ v2) × Fv1 ⇒ Fv2), β : Fv ⇒ v, g : µF ⇒ v.

strength (f) ∧ (∀x : F (µF ). g(αx) = β(f g x)) ⊃ g = It f β,

where strength (f) is a formula asserting that f preserves identities and composition. This

is not completely satisfactory as the operations work on separate pieces of information,

viz. F : Ω ⇒ Ω and f : Πv1, v2 : Ω. (v1 ⇒ v2) × Fv1 ⇒ Fv2, rather than on some

representation of a functor. For example, α is asked to deliver an initial algebra for a

functor of which it is only given the map on objects. In chapter 7, we axiomatize inductive

types in the Extended Calculus of Constructions, where functors can be represented by

assembling in a Σ-type a map on objects, one on arrows and a proof that the latter is a

strength for the former.

Remark on inductive types and fixed points. The axiomatization of fixed points

given above is rather weak. However, it is enough to show the following. Let (F, f)

be a strong endofunctor. A fixed point operator Y on arrow types yields an algebra

morphism A → B for all F -algebras β : FB → B and isomrphisms α : FA → A. Writing

G
def= λh : A → B. λx : A. β (f h (α−1x)), we have:
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β ◦f(Y G) = λz : FA. β (f (Y G) z)

= λz : FA. (λx : A. β (f (Y G) (α−1x))) (αz)

= λz : FA. G(Y G) (αz)

= λz : FA. Y G (αz) = Y G◦α.

Since, in the theory of inductive types, αF is an isomorphism, in the combined theory of

inductive types and fixed points, (It F f β) = Y G for the uniqueness of (It f β).

Vice versa, let 〈T, val , let 〉 be a strong monad; a fixed point operator Y of the form

YA,B : (A → TB) → (A → TB) → A → TB satisfying F (Y F ) = Y F can be defined as

in [CP92] from an initial T -algebra and a fixed point element ω : 1 → T (µT ) equalizing

id µT and val ◦αT .

6.4 Relative interpretation of HML

In this section we introduce the notion of relative interpretation of HML and show an

application where a relative interpretation is used to present a semantic constructor

syntactically.

The sets of raw kinds (K), operators (U ), type schemes (S), terms (E) and formulae

(P), which are part of the raw syntax of HML, are defined in appendix A. We collectively

refer to the elements of these sets as raw expressions. Below we use the metavariables K,

C, S, c and P to range respectively over the sets Const K , Const O, Const S, Const E and

Const P of constants. The sets Var O and Var E of variables are ranged over by v and x.

Let Const = Const K ∪Const O∪Const S∪Const E∪Const P and let Const 1 be a subset

of Const ; we call HML(Const 1) the set of raw expressions over Const 1, that is the ones

generated by the grammar in appendix A from the constants in Const 1. Given subsets

Const 1 and Const 2 of Const , a raw translation of HML(Const 2) into HML(Const 1) is a

map ([ ]) from Const 2 to the raw expressions over Const 1 such that
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([K]) ∈ K,

([C]) ∈ U and it has no free variables,

([S]) ∈ S and it has at most one free variable v ∈ Var O,

([c]) ∈ E and it has no free variables,

([P ]) ∈ P and it has at most two free variables v ∈ Var O and x ∈ Var E .

This map has an obvious extension, which we also write ([ ]), to the raw expressions

over Const 2, where ([S(u)]) = [([u])/v]([S]) and ([P (u, e)]) = [([u])/v] [([e])/x]([P ]).

Let Σ be a well formed signature in HML; we call HML(Σ) the “pure” HML over

Σ, that is the set of judgements which are derivable from the axiom ` Σ sig and all

the inference rules except for the ones for signatures and (add-prop). Let Σ1 and Σ2 be

well formed signatures and let Const 1 and Const 2 be the sets of constants in Σ1 and Σ2

respectively; a translation θ : HML(Σ2) → HML(Σ1) is a raw translation of HML(Const 2)

into HML(Const 1) such that, for all kinds K : kind , C : k,S : k ⇒ scheme , c : σ and

P : (v : k)σ ⇒ prop in Σ2, the following judgements are derivable:

`Σ1 ([K]) kind ,

`Σ1 ([C]) : ([k]),

v : ([k]) `Σ1 ([S]) scheme ,

`Σ1 ([c]) : ([σ]),

v : ([k]), x : ([σ]) `Σ1 ([P ]) prop .

The map induced on the raw syntax by a translation preserves derivability, that is,

if Γ `Σ2 u1 = u2 : k is in HML(Σ2) then ([Γ]) `Σ1 ([u1]) = ([u2]) : ([k]) is in HML(Σ1),

if Γ `Σ2 σ1 = σ2 is in HML(Σ2) then ([Γ]) `Σ1 ([σ1]) = ([σ2]) is in HML(Σ1) and, if

Γ; ∆ `Σ2,∅ φ is in HML(Σ2) then ([Γ]), ([∆]) `Σ1,∅ ([φ]) is in HML(Σ1). This can be shown

by induction on the length of derivation, with the aid of a substitution lemma.

Let `Σ T theory be derivable in HML; we call HML(Σ, T) the set of judgements that

are derivable from the axioms ` Σ sig and `Σ T theory and all the rules but the ones
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for signatures and theories. We also write T for HML(Σ, T) and call it a theory over Σ.

When Σ and T are understood, we drop the indices in `Σ and `Σ,T .

Given theories T 1 and T 2 over Σ1 and Σ2 respectively, a relative interpretation

θ : HML(Σ2, T2) → HML(Σ1, T1) is a translation as above such that, if Γ; ∆ `Σ2 ,T2 φ

is derivable, then so is ([Γ]); ([∆]) `Σ1,T1 ([φ]).

A theory MLT(Σ) of the computational metalanguage can be expressed in HML by giv-

ing a signature Σ̃ and a theory T over Σ̃ such that HML(Σ̃, T) is a conservative extension

of MLT(Σ), provided a suitable translation of MLT (Σ) into HML(Σ̃). The advantage of

representing theories of the computational metalanguage in HML is that type construct-

ors become legal expressions of the language and so do polymorphic operations; we shall

benefit from this approach in section 6.8 where translations of HML theories are viewed

as functors, with no need of introducing naturality conditions on the operations.

In the rest of this section we show how a relative interpretation can be used to present

a semantic constructor for resumptions. In section 2.5, we described resumptions of

very primitive sorts of programs. Now we consider more realistic cases. For example,

interleaved executions of possibly nonterminating programs acting on a shared store can

be described by interpreting a program P of type A in a domain

D ∼= S → ((A + D) × S)⊥,

that is, as a partial function from stores into pairs (q, s), where the store s records the

effects of one atomic step of evaluation and q is either a value of type A, in which case P

has done, or what is left of P .

The computational structure described by the above equation can be split into three

separate modules, one for resumptions, F , one for states, S, and one for nontermination,

( )⊥:

(FT )A def= µX . T (A + X)

(ST )A def= S → T (A × S)

D
def= (F(S( )⊥))A.
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Below we describe a more general version of F , called the constructor of generalized

resumptions. This constructor is defined by a relative interpretation ([ ]) : HML(Σ0 +

ΣF , T0 + TF ) → HML(Σ0, T0) and uniform redefinitions. Σ0 and T0 contain respectively

the signatures and the theories of monads, sums and inductive types. Moreover, Σ0

contains the signature (and T0 the obvious axioms) of a strong endofunctor:

H : Ω ⇒ Ω

st : ΠX, Y : Ω.(X ⇒ Y ) × HX ⇒ HY.

ΣF and TF describe the mathematics of resumptions in terms of the operations:

τ : ΠX : Ω. TX → TX

C : ΠX, Y : Ω. (X ⇒ TY ) × (HTX ⇒ TY ) × TX ⇒ TY

the first of which performs one folding step with no T -computation involved, while the

second is essentially a case analysis. The translation ([ ]) is as follows: writing FA(X) for

T (A + HX) and γFA
: µX.FA(X) → FA(µX.FA(X)) for It FA

(FA(αFA
)),

([TA]) def= µX. T (([A]) + HX)

([val A(a)]) def= αFA
(val (inj 1([a])))

([τA(z)]) def= αFA
(val (inj 2([z])))

([let A,B f ]) def= It FA
(λw : T (A + H([TB])).

αFB
(let (λc : A + H([TB]). γFB

(case ([f ]) ([τB]) c))w)

([CA,B f g z]) def= αFB
(let (λc : A + H([TA]). γFB

(case ([f ]) ([g]) c)) (γFA
([z]))).

Remark. ([let ]) is sequential composition. �

By suitably instantiating H, one obtains the constructors T (A + E) of exceptions,

µX. T (A+X) of resumptions, µX. T (A+(O×X)) of interactive output and µX. T (A+XI)

of interactive input. All such constructors are pointed, in the sense that there is a

strong monad morphism (id , T (inj 1)) : (C, T ) → (C, FT ). All that is required to make

theorems 6.2.5 and 6.2.7 work is that such morphisms are natural with respect to the
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operations associated with T -computations. Note that, in view of definition 6.1.3 one

should exclude from ΣF operations with nonpositive type scheme such as CA,B in order

to make F pointed.

Let Σ0 be the following HML signature:

G : (Ω ⇒ Ω) × Ω ⇒ Ω,

S : Ω ⇒ scheme ,

T : Ω ⇒ Ω

Uniform redefinitions of operations op of type scheme ΠX : Ω. S(TX) can be de-

scribed in HML by the following translation ([ ]) : HML(Σ0 + {op }) → HML(Σ0 + {op }):

([TA]) def= T (GT ([A]))

([opA]) def= op GT ([A])

Suitable instantiations of G and S yield appropriate uniform redefinitions for spe-

cific constructors and operations. In the next chapter we apply a uniform redefinition

for the constructor of resumptions, where GTA = A + µX. T (A + X), to an operator

or : TX × TX ⇒ TX of nondeterministic choice, where SX = X × X ⇒ X. The

redefined or is then used in the context of computations with resumption to define an

operator of parallel composition.

Remark There are interesting constructors in denotational semantics that cannot be

described as HML translations. One is that for local variables, which involves a change

of category.
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6.5 Functorial semantics

In section 6.7, we introduce models of HML theories; moreover, we show that such theories

can be viewed as categories with structure and their models as structure-preserving func-

tors. This is often done in categorical logics and often referred to as functorial semantics

[KR77]. In this section, we present the main ideas of functorial semantics and introduce

locally finitely presentable categories, that are used in section 6.8 to characterize the

categories of functorial models of HML theories.

The idea of functorial semantics is that certain kinds of logical theories correspond

to certain choices of categorical properties P , sometimes called doctrines [KR77], so that

theories of kind P are identified with categories with P structure. Such an approach was

first adopted by Lawvere [Law75] to obtain a “presentation invariant” view of algebraic

theories, where two theories are identified if the primitive operations of each one are

derivable in the other. An historical overview of this subject can be found in [BW85,

4.5].

In the setting of functorial semantics, models of a theory T in a category E with P
structure correspond to P-preserving functors from T to E ; we write [T , E]P the category

of such functors. Translations φ : T 2 → T 1 of one theory into another also correspond to

P-preserving functors; the map of models φ∗ : [T 1, E]P → [T 2, E]P obtained by precom-

posing with φ is often called a relative interpretation.

Example: algebras as functors. In [KR77], a presentation invariant view of an

algebraic theory is given as a category T whose objects are the natural numbers 0, 1. . . ,

with n the n-fold categorical product of 1. Such categories are often called Lawvere

theories. A morphism of Lawvere theories is a finite product-preserving functor F such

that F 1 = 1. Of course, only finitary theories, that is theories on operations of finite

arity, are thus represented.
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A T -algebra is a functor T → Sets preserving finite products, and we write [T , Sets ]alg

the full subcategory of such objects in [T , Sets ]. Let φ : T 2 → T 1 preserve finite products;

the relative interpretation φ∗ : [T 1, Sets ]alg → [T 2, Sets ]alg has left adjoint [GU75]. Let

T 0 be the Lawvere theory whose only morphisms are the projections; this is the initial

object in the category of Lawvere theories and its category of algebras is Sets itself:

[T 0, Sets ]alg
∼= Sets . The relative interpretation induced by the unique T 0 → T is

the forgetful functor Uα = α(1), whose left adjoint is the free T -algebra construction

F : Sets → [T , Sets ]alg. We say that the monad induced on Sets by this adjunction

classifies the theory T . A consequence of the Yoneda lemma is that T is equivalent to

the dual of the full subcategory of [T , Sets ]alg whose objects are free algebras of the form

F (n), for n a natural number [KR77]. As Theorem 6.5.4 shows, the same phenomenon

arises in the doctrine of finite limit theories. We use this property in section 6.8 to give

a categorical characterization of HML relative interpretation.

Digression on algebras and monads. Any monad on Sets cassifies some algebraic

theory, provided operations of arbitrarily large arity are allowed, in which case the theory

is called infinitary. Vice versa, any (possibly infinitary) algebraic theory is classified by

some monad on Sets . This is Linton’s classical result [Lin66]. Kelly and Power [KP93]

extend this result to any locally finitely presentable category (see below), but only for

finitary monads, that is monads whose underlying functor preserves filtered colimits. In

[Rob95], E. Robinson points out that the correspondence between monads and algebraic

theories in categories enriched over symmetric monoidal closed categories is rather general

and does not depend on finiteness.

Let T be a strong monad (we are now describing a special case of the above situation,

where C is enriched over itself and T is a C-monad). The correspondence between T -

algebras and algebras of the theory T̂ classified by T is as follows: for every T -algebra

α : TA → A there is a family of morphisms α̂B = α ◦eval ◦(st × id ) : AB × TB → A,

satisfying the axioms specified in [Rob95]. Using lambda notation, α̂B(f, z) = α(Tf(z)).

The morphisms α̂B represent all the operations of arity B of a T̂ -algebra on A; these
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operations are indexed by TB. Conversely, any family FB : AB ×TB → A satisfying the

axioms, yields a T -algebra FA(id A). The two constructions are mutually inverse. Note

that let B,A = (µ̂A)B provides the operations of arity B of the free algebra on TA.

�

A class of algebras closed under subalgebras, images and products is called a variety.

Varieties can be characterized as classes of models of equational theories; this is known

as Birkhoff’s variety theorem (see [Wec92]). Similarly, locally finitely presentable (lfp)

categories (see below) can be characterized as categories of models of finite limit theories.

Here, we state a classic result about such theories and lfp categories that we use in

section 6.8. Proofs can be found in [Pit82,AR94], together with the pointers to the

standard literature.

A finite limit theory, or lex (from left exact) theory is a category with all finite limits.

We call Lex the category of small lex categories and finite limits-preserving functors (lex

functors). The category [T , Sets ]lex of set valued models of a lex theory T is cocomplete.

In fact one can say more. The following definitions are from [Pit82, 4.19]:

Definition 6.5.1 Let A be a locally small category with small filtered colimits. We say

that an object A of A is finitely presentable when the representable functor A(A, ) pre-

serves small filtered colimits.

Definition 6.5.2 A class X of objects of a category A is called conservative when, given

f : B → C in A, if A(A, f) : A(A, B) → A(A, C) is a bijection for each A ∈ X, then f

is an isomorphism.

Definition 6.5.3 A is locally finitely presentable (lfp) if it is locally small, cocomplete

and it contains a conservative set X of objects, each of which is finitely presentable and

such that any finitely presentable object in A is isomorphic to some object in X.

Theorem 6.5.4 ([GU75]) If T is a small lex category, then [T , Sets ]lex is lfp and its

full subcategory of finitely presentable objects is equivalent to T op. Conversely, if C is lfp,
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the dual of its full subcategory of finitely presentable objects is equivalent to a small lex

category T and [T , Sets ]lex ∼= C.

In [GU75], Gabriel and Ulmer go further and establish a duality between the category

of finite limit theories and the one of lfp categories: the function mapping lex categories T

to functor categories [T, Sets ]lex extends to a functor [ , Sets ]lex : Lex op → LFP , where

LFP is the category of lfp categories and filtered colimit-preserving functors with a left

adjoint. Conversely, let C be an lfp category; we write Cfp the full subcategory of finitely

presentable objects of C. This category is essentially small, i.e. equivalent to a small

category and, in what follows, we shall leave the equivalence implicit. Let Ψ : C → D be

a morphism in LFP ; the functor Φ which is left adjoint to Ψ restricts to a cocartesian

functor Φfp : Dfp → Cfp and hence it yields a morphism Φop
fp : D op

fp → C op
fp in Lex . In this

way, the map C 7→ C op
fp extends to a functor ( ) op

fp : LFP → Lex op which forms an adjoint

equivalence with [ , Sets ]lex (see [Pit82] for details).

In the next section we give examples of categorical notions that can be described by

finite limit theories. Categories themselves are such an example. The existence of a finite

limit theory of categories implies that the category Cat of small categories, is lfp. Our

goal is to show that all the categorical structure of which models of HML are made is

described by a finite limit theory, and hence that the categoy of such models is lfp. This

allows us to give an intrinsic characterization of relative interpretation of HML theories

by using the Gabriel-Ulmer duality.

6.6 Finite limit presentation of category theory

The categorical structure required for interpreting HML is now described formally in

finite limit formulae, that is formulae of the form:

∀x. φ(x) ⊃ ∃!y. ψ(x, y)
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where x and y are tuples of variables, and φ and ψ conjunctions of atomic formulae.

Such formulae are equivalent to conjunctions of Horn clauses and are called universal

Horn sentences in [KR77]. We usually drop the universal quantifier but understand that

it is there to bind the free variables.

In [Kea75], Keane establishes a correspondence between finite limit formulae and lex

categories: models of a first order theory whose axioms are finite limit formulae can

be regarded as finite limit-preserving functors from a suitable lex category (an “abstract

theory”) into Sets and homomorhisms between models as natural transformations. In this

way, we obtain a representation of models of HML. The same result could be obtained by

working with finite limit sketches instead (see [BW85] for details), but these are harder to

read than the corresponding theories when complicated categorical structure is involved.

Categories. The finite limit theory of categories has signature consisting of two sorts

CA and CO representing respectively the collections of arrows and that of objects, function

symbols src and tgt of arity CA → CO representing source and target, a function symbol

e of arity CO → CA for the identities and a predicate symbol m of arity CA × CA × CA for

composition. The axioms of the theory are:

tgt (f) = src (g) ⊃ ∃!h. m(f, g, h)

m(f, g, h) ⊃ tgt (f) = src (g) ∧ src (f) = src (h) ∧ tgt (g) = tgt (h)

m(f, g, u) ∧ m(g, h, v) ∧ m(f, v, w) ⊃ m(u, h, w)

src (e(a)) = a ∧ tgt (e(a)) = a

m(e(a), f, g) ⊃ f = g

m(f, e(a), g) ⊃ f = g

The first two axioms state that composition is a partial function defined on com-

posable arrows. The third axiom, expressing the commutativity of m, and its dual

m(f, g, u) ∧ m(g, h, v) ∧ m(u, h, w) ⊃ m(f, v, w) are interderivable.

It is easy to verify that categories are set theoretic models of the finite limit theory

of categories and functors are homomorphisms between such models. Hence, applying
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Keane’s result, there exists a lex category TCat such that:

Cat ∼= [TCat , Sets ]lex. (6.4)

Remark. In order to describe categories one needs source and target functions of type

CA → CA and composition as above, where the part of objects is played by the identities.

This theory is essentially algebraic [Fre72], that is, an equational theory involving partial

operations, e.g. composition, ordered in a list such that the domain of each operation is

defined by equations in the previous.

Slices of Cat . Let C be a category. We extend the above finite limit theory of categories

as follows: there is a constant dAe : CO for each object A of C and a constant df e : CA for

each arrow f : A → B with axioms src df e = dAe and tgt df e = dBe. There are axioms

edAe = didA
e for the identities and similarly for composition. We call this extension the

finite limit theory of C.

A model m of such a theory consists of a small category D (the internal category

in Sets whose object of objects is m(CO), whose object of arrows is m(CA) and so on)

together with a map of objects A 7→ mdAe from C to D and a map of arrows f 7→ mdf e,

all satisfying suitable diagrams, making of m a functor C → D. It is routine to verify

that homomorphisms h : m1 → m2 amount to commuting triangles

C

hD1 D2.

m1 m2

Applying Keane’s result to the theory of C, there exists a lex category th (C) such that

C/Cat ∼= [th (C), Sets ]lex.

Note that, since the equivalence [T1, Sets ]lex ∼= [T2, Sets ]lex implies T1
∼= T2, we con-

clude that th (∅) ∼= TCat, where ∅ is the empty category.
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Functors. The finite limit theory of functors, which we write F : A → B, consists of

two copies A and B of the above theory of categories, a function symbol F : AA → BA

and the following axioms:

src (f) = src (g) ⊃ src (Ff) = src (Fg)

tgt (f) = tgt (g) ⊃ tgt (Ff) = tgt (Fg)

F (ex) = e(src (F (ex)))

m(g, f, h) ∧ m(Ff, Fg, k) ⊃ Fh = k

Note that the derived operation FO : AO → BO defined as FOx = src (F (ex)) satisfies:

src (Ff) = FO(src (f))

tgt (Ff) = FO(tgt (f))

F (ex) = e(FOx).

We shall drop the subscript in FO if no ambiguity arises. It is easy to verify that

functors are set theoretic models of F : A → B.

Natural transformations. They are similarly defined by a theory ν : F
.→ G : A → B

with a function symbol ν : AO → BA and axioms:

src (ν(x)) = Fx

tgt (ν(x)) = Gx

m(ν(src (f)), Gf, h) ∧ m(Ff, ν(tgt (f)), k) ⊃ h = k.

Adjunctions. We write F a G : A ⇀ B for the finite limit theory of adjunctions, which

consists of two natural transformations η : I
.→ GF : A → A and ε : FG

.→ I : B → B
satisfying the triangular laws εF ◦Fη = id and Gε ◦ηG = id , that is:

m(F (η(x)), ε(Fx), e(Fx))

m(η(Gy), G(ε(y)), e(Gy)).

Cloven and split fibrations. A cloven fibration is a functor p : E → B with a choice

of cartesian morphisms. The finite limit theory of such objects features a predicate cart
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on EA, to capture cartesian morphisms, and a predicate cleav (f, a, h) ⊆ BA × EO × EA

assigning to each morphism f of B and object a in the fibre over the target of f a cartesian

morphism h over f with target a:

cart (h) ∧ tgt (h) = tgt (k) ∧ m(v, p(h), p(k)) ⊃ ∃!w. p(w) = v ∧ m(w, h, k)

tgt (f) = p(a) ⊃ ∃!h. cleav (f, a, h)

cleav (f, a, h) ⊃ cart (h) ∧ p(h) = f ∧ tgt (h) = a.

If p : E → B is cloven and f : A → B is a morphism in B, f∗ : EB → EA mapping objects

b over B to the source of the cartesian h such that cleav (f, b, h) is called reindexing along

f . A cloven fibration is said to split when reindexing is consistent with composition, that

is: (g ◦f)∗ = f∗ ◦g∗. In finite limit clauses:

m(f, g, j) ∧ m(h, k, l) ∧ cleav (g, a, k) ∧ cleav (f, src (k), h) ⊃ cleav (j, a, l).

Fibred adjunctions. Let p : E → B and q : D → B be fibrations; a functor F : E → D

such that q ◦F = p is said to be over B, and written F : p → q, when it preserves cartesian

maps:

cart (h) ⊃ cart (F (h)).

When p and q are understood, we shall still write F : E → D to mean F over B.

In particular, if A is an object of B, we understand B/A as the source of the domain

fibration dom A : B/A → B.

A morphism in the total category of a fibration p is called vertical if it is mapped by

p to an identity. A fibred adjunction between functors F and G over B is an adjunction

F a G with vertical unit and counit. It is easy to see that the unit is vertical if and

only if so is the counit. Hence, to turn a pair of adjoint functors over B into a fibred

adjunction, it is enough to postulate:

p(η(a)) = e(p(a)).
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Fibred cartesian closed structure. Fibred terminal objects, fibred products, and

fibred exponentials are defined “globally” by the fibred adjunctions shown in the picture

and discussed below.

B

prod

E

p

B

E

p id
1

B E ×B E

p ×B p
ẽxp

B

p ∆ p̃rod
Cart (E) ×B ECart (E) ×B E

|p| ×B p |p| ×B p

A fibred terminal object for p is given by a fibred right adjoint to p : p → id B over

B. Let p : E → B be a fibration and F : C → B a functor; the pullback F ∗p of p along

F in Cat is a fibration, which is cloven or split when p is cloven or split [Jac91, 1.1.3].

Note that, given two copies F : A → C and G : B → C of the theory of functors, there

is a straightforward axiomatization in finite limit formulae of the pullback F ∗G. When

q : D → B is a fibration, we write q ×B p for the fibration (q∗p) ◦q : D ×B E → B. Fibred

products are given by a fibred right adjoint prod to the obvious diagonal functor over B.

Similarly, let |p| : Cart (E) → B be restriction of p to the category Cart (E) whose objects

are the same as E and whose morphisms are the cartesian, and let p̃rod : Cart (E)×B E →

Cart (E) ×B E map (A, B) to (A, prod (A, B)); fibred exponentials are given by a fibred

right adjoint ẽxp to p̃rod [Jac91].

Generic objects. A generic object for a fibration p : E → B is an object > of E
such that there exists a cartesian morphism X → > for each X in E . If p is split, a

generic object is given by an object Ω of B and an equivalence d e : dom Ω → |p|, where

|p| : Split (E) → B is the restriction of p to the category Split (E) whose objects are

the same as E and whose morphisms are the ones of the splitting [Jac91]. In this case,

> = did Ω
e is generic.

Fibrations with a generic object are used to interpret type theories with type vari-

ables. A minimal example is simply typed λ-calculus with judgements of the form

A : type ` A → A : type .
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D-products. The following construction endows a fibration p : E → B with right ad-

joints to reindexing functors along cartesian projections satisfying the Beck-Chevalley

condition. In 4.3.4, we called such adjoints “D-products,” where D is the comprehension

category of cartesian projections. In [See87], Seely calls weak completeness the corres-

ponding notion in the world of indexed categories.

Let B have binary products. Let D be the category whose objects are projections

a × b → b and whose arrows are pullbacks:

f
b

a × b a × c

c

id × f

that we write as pairs (a, f). Hence, DO = BO ×BO and DA = BO ×BA. Let D : D → B
be the domain functor (a, f) 7→ id a ×f and C : D → B the codomain functor (a, f) 7→ f .

Let D0 and D1 be the vertices of the pullbacks of p respectively along D and C. The

functor P : D1 → D0 mapping (f, x), with f : a×px → px, to (f, f∗x) is a fibred functor

C∗p → D∗p over B. Then, p has D-products if and only if P has fibred right adjoint

[Jac91].

6.7 Models of HML

To simplify the treatment of semantics, we consider only the equational fragment of

HML, as the full type theory can be handled similarly. Therefore, we do not include

predicates in the signatures, we allow only equations as formulae and we consider only

truth judgements Γ; ∆ `Σ,T φ with empty ∆. Moreover, since universal quantification

is not available anymore, we allow theories to contain open equations φ as axioms and

require that the free variables of φ are in dom (Γ) as side condition to the rule (axiom).
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Below, when talking about an HML theory, we shall always understand an equational

one.

This fragment of HML is similar to the polymorphic lambda calculus PLC, mentioned

in section 6.3. There is a correspondence between theories of PLC and categorical struc-

tures called PL-categories [See87]. A PL category (F, B) consists of a category B with

finite products and a distinguished object Ω such that ( × Ω) a ( )Ω, and an indexed

category F : Bop → Cat satisfying certain conditions [See87, Def. 2.1]. A type τ of PLC

has a double interpretation in (F, B): it is interpreted as a morphism A → Ω of B in a

judgement τ : Ω and as an object of FA in a judgement M : τ . To make this consistent,

PL categories require an isomorphism:

hom (A, Ω)
d e
−→ obj (FA) (6.5)

such that Ff dge = dg ◦f e. This condition forces F to be a functor (rather than a

pseudofunctor) and therefore it corresponds to d e being natural in A.

Remark. PL-categories can otherwise be described as split fibrations p : E → B with

extra structure. In particular, the natural isomorphism (6.5) corresponds to p having

a generic object. Note that, if p : E → B is obtained by applying the Grothendieck

construction [Jac91] to the indexed category of a PL-category, > is the object (dide, Ω) in

the fibre over Ω. In fact, for any object (X, A) of the total category E , there is a cartesian

morphism (f, id ) : (X, A) → (dide, Ω), where X = df e.

�

In the previous section, we saw that a generic object for a split fibration amounts

to an equivalence B/Ω ∼= Split (E) over B. To model the lifting of HML types to type

schemes, where no such equivalence is required, we only ask for a functor F : B/Ω → E

over B. Proposition 6.7.1 below, ensures that such a functor behaves well with respect to

reindexing, so that interpretation may commute with substitution.
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Let p be a fibration and let A be an object of B. A fibred version of the Yoneda lemma

[Jac91, 1.1.9] asserts that there is an equivalence of categories EA
∼= Fib (B)(domA, p),

natural in a suitable sense, where Fib (B) is the category of fibrations with base B and

functors over B. In particular, the equivalence maps an object X over A to the functor

( )∗X : B/A → E and, conversely, a functor F : B/A → E to F (IdA).

Proposition 6.7.1 Let p : E → B be a fibration and let f−→ g−→ A be morphisms in B;

if F : B/A → E is a functor over B, then f∗F (g) ∼= F (g ◦f).

Proof. f∗F (g) ∼= f∗g∗F (IdA) ∼= (g ◦f)∗F (IdA) ∼= F (g ◦f). �

In the case of split fibrations, fibred Yoneda yields an isomorphisms between EA and

Fibsplit(B)(domA, p), and the equivalence of proposition 6.7.1 turns into an equality. This

isomorphism says that types can be coherently lifted to type schemes by just distinguish-

ing an object in the total category.

Definition 6.7.2 A λω-category is a split fibration with fibred cartesian closed structure

over a cartesian closed base, a distinguished object in the total category and right adjoints

to reindexing along cartesian projections satisfying the Beck-Chevalley condition.

We use λω-categories to model HML theories. Note that, besides the decay of the

generic object to a mere “distinguished,” λω-categories differ from PL-categories in that

they support no Σ-types. On the other hand, they have all exponentials in the base to

model polymorphism of higher order with full generality.

An interpretation of an HML theory T over a signature Σ in a λω-category p : E → B

is a map defined on the derivable judgements of T as follows (we write only the relevant

part of a judgement inside the semantic brackets when the rest is understood):

Kinds. A ΣK-structure in p is an assignment of an object [[K]] of B to each constant

K : kind in Σ. Given such a structure, the kinds of T are interpreted as objects of B,
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where 1, × and ⇒ have the obvious meaning. Moreover, the kind interpretation [[Γ]]K of

a context Γ in B is: [[∅]]K = 1, [[Γ, v : k]]K = [[Γ]]K × [[k]] and [[Γ, x : σ]]K = [[Γ]]K.

If (v1 : k1, . . . vn : kn) is the context containing all the variables over kinds in Γ, we

write Γ ↓ for the kind k1 × . . . × kn; then, [[Γ]]K = [[Γ ↓]].

Operators. A ΣKO-structure is a ΣK-structure together with an assignment of a global

elemet [[C]] : 1 → [[k]] in B to each C : k in Σ. Given a ΣKO-structure, operators Γ ` u : k

are interpreted as morphisms [[u]] : [[Γ]]K → [[k]] in B. Ignoring variables ranging over

schemes, interpretation of operators in B is just as usual for simply typed lambda calculi

in cartesian closed categories.

All the rules for deriving operator equality are sound with respect to this interpreta-

tion; that is: if Γ ` u1 = u2 : k is derivable, then [[Γ ` u1 : k]] = [[Γ ` u2 : k]].

Type schemes. A ΣKOS-structure is a ΣKO-structure together with an assignment of

an object [[S]] in the fibre over [[k]] to each S : k ⇒ scheme in Σ. We use the same name

for the functor

E

dom p

B

B/[[k]]
[[S]]

over B which corresponds to the object [[S]] by the isomorphism introduced after propos-

ition 6.7.1.

Given a ΣKOS-structure, a type scheme Γ ` σ scheme is interpreted as an object [[σ]]

in the fibre over [[Γ]]K. If Γ ` u : k and S : k ⇒ scheme , [[S(u)]] = [[S]][[u]]. If Γ ` u : Ω,

then [[Γ ` u scheme ]] = [[u]]∗>, where > is the distinguished object of p. Schemes of the

form 1, σ1 ×σ2 and σ1 ⇒ σ2 are interpreted in the obvious way using the fibred cartesian

closed structure of p. If Γ, v : k ` σ scheme , [[Πv : k. σ]] = ΠΓ,k[[σ]], where ΠΓ,k is right
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adjoint to the reindexing functor along the projection πΓ,k : [[Γ]]K × [[k]] → [[Γ]]K. As for

operators, if Γ ` σ1 = σ2 is derivable, then [[σ1]] = [[σ2]].

The type scheme interpretation of a context Γ is an object [[Γ]]S of E over [[Γ]]K defined

as follows: [[∅]]S = 1, [[Γ, v : k]]S = π∗
Γ,k[[Γ]]S, [[Γ, x : σ]]S = [[Γ]]S × [[σ]]. We write Γ ↑ for

the product σ1 × . . . × σn of all schemes σi such that xi : σi is in Γ. Since the reindexing

functors preserve products, we have that [[Γ]]S = [[Γ ↑]].

Terms. A Σ-structure is a ΣKOS-structure together with an assignment of a morphism

[[c]] : 1 → [[σ]] to each c : σ in Σ. Given a Σ-structure, a term Γ ` e : σ is interpreted as

a morphism [[e]] : [[Γ]]S → [[σ]] in the fibre over [[Γ]]K. Variables, constants, ∗ : 1, pairing,

projection, λ-abstraction and λ-application are interpreted as usual using the cartesian

closed structure in the fibres. If Γ, v : k ` e : σ, then [[Λv : k. e]] = [[e]]†, where f† is the

transpose of f for the adjunction π∗
Γ,k a ΠΓ,k. If Γ ` e : (Πv : k. σ) and Γ ` u : k, then

[[e[u]]] = 〈id , [[u]]〉∗[[e]]††, where ( )†† is inverse to ( )†.

Equations. An equation Γ `Σ,T e1 =σ e2 holds in (or is satisfied by) a λω-category

with a Σ-structure if [[e1]] = [[e2]].

�

Since the interpretation of a theory T over Σ in a λω-category p is completely determ-

ined by a Σ-structure S in p, we can view interpretations as pairs (p, S). A model of T
is an interpretation satisfying the axioms. If Γ `Σ,T e1 =σ e2 holds in all models of T, we

write:

Γ |=Σ,T e1 =σ e2.

Theorem 6.7.3 (Soundness) Γ `Σ,T e1 =σ e2 implies Γ |=Σ,T e1 =σ e2.

Proof. As usual, we have to show that the inference rules preserve truth. All this is

quite standard in categorical models of type theory, where each pair of β and η-rules

correspond to suitable adjunctions. We only show Π.β as example:
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[[Γ ` [u/v]e : [u/v]σ]] =

〈id , [[u]]〉∗[[Γ, v : k ` e : σ]] =

〈id , [[u]]〉∗([[Γ, v : k ` e : σ]]†)†† =

〈id , [[u]]〉∗[[Γ ` Λv : k. e : (Πv : k. σ)]]†† =

[[Γ ` (Λv : k. e)[u] : [u/v]σ]].

�

Any HML theory T has a syntactic model (pT : ET → BT, ST). Objects of BT are

kinds. Morphisms k1 → k2 of BT are sequents v : k1 ` u : k2 modulo the equations of

T. Since the operators used to construct BT have at most one free variable v, we can

identify them up to renaming of v. Identities are v : k ` v : k and composition is given by

substitution. BT has cartesian closed structure given by the obvious operations on kinds

and operators.

Objects of ET are sequents v : k ` σ scheme modulo the equations of T. Morphisms

(v1 : k1 ` σ scheme ) → (v2 : k2 ` τ scheme ) are pairs of sequents

((v1 : k1 ` u : k2), (v1 : k1, x : σ ` e : [u/v2]τ ))

modulo the equations of T. As for operators, schemes and terms are identified up to

renaming of free variables. When the rest is understood, we write (k, σ) for the objects

of ET and (u, e) for the arrows. Identities and composition in ET are obvious.

It is easy to see that pT mapping (k, σ) to k and (u, e) to u is a fibration whose

cartesian morphisms are the ones where e is an iso. Moreover, let v1 : k1 ` u : k2 and

let v2 : k2 ` σ scheme ; the cleavage obtained by taking (u, id [u/v2]σ) as chosen cartesian

morphism over u with target (k2, σ) makes pT split.

This fibration has a distinguished object v : Ω ` v : scheme and fibred cartesian closed

structure given by the obvious operations on schemes and terms. As for D-products,

Πk1,k2(w : k1 × k2, σ) def= (v1 : k1, Πv2 : k2. [〈v1, v2〉/w]σ) is right adjoint to reindexing

π∗
k1,k2

(v1 : k1, τ ) = (w : k1 × k2, [π1(w)/v1]τ ). In fact, the derivable rule scheme
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(ΠI T)
w : k1 × k2, x : [π1(w)/v1]τ ` e : σ

v1 : k1, x : τ ` Λv2 : k2. [〈v1, v2〉/w]e : (Πv2 : k2. [〈v1, v2〉/w]σ)

yields a bijection (ET)k1×k2(π
∗
k1,k2

τ, σ) → (ET)k1(τ, Πk1,k2σ), natural in σ and τ , with

inverse:

(ΠE T)
v1 : k1, x : τ ` e : (Πv2 : k2. [〈v1, v2〉/w]σ)

w : k1 × k2, x : [π1(w)/v1]τ ` [π1(w)/v1]e[π2(w)] : σ
.

A canonical Σ-structure ST can be found in pT by interpreting each constant as itself.

In particular, a constant S : k ⇒ scheme is interpreted as v : k ` S(v) scheme .

Proposition 6.7.4 Interpretation in (pT , ST) is such that:

[[k]] = k

[[Γ]]K = Γ ↓

[[Γ ` u : k]] = w : Γ ↓` [πi(w)/vi]u : k

[[Γ ` σ scheme ]] = w : Γ ↓` [πi(w)/vi]σ scheme

[[Γ]]S = w : Γ ↓` [πi(w)/vi]Γ ↑

[[Γ ` e : σ]] = w : Γ ↓, x : [πi(w)/vi]Γ ↑` [πi(x)/xi] [πi(w)/vi]e : [πi(w)/vi]σ.

Proof. It is a long induction on the derivation of judgements. We show one example

for kinds (v) and one for terms (ΠI). Let Γ ↓= k1 × . . . × kn.

(v) [[Γ ` vj : kj ]] =

(w : Γ ↓` πj(w) : kj) =

(w : Γ ↓` [πi(w)/vi]vj : kj).

Let w : Γ ↓ and u : k be operatos; we write πi〈w, u〉 = πi(w) and π〈w, u〉 = u

the projections of Γ ↓ ×k. By inductive hypothesis, [[Γ, v : k ` e : σ]] is equal to

z : Γ ↓ ×k, x : [πi(z)/vi]Γ ↑` [πi(x)/xi] [πi(z)/vi] [π(z)/v]e : [πi(z)/vi] [π(z)/v]σ; then, by

(ΠI T) we have:
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(ΠI) [[Γ ` Λ v : k. e : (Π v : k. σ)]] =

w : Γ ↓, x : [πi(w)/vi]Γ ↑ ` Λ v : k. [〈w, v〉/z] [πi(x)/xi] [πi(z)/vi] [π(z)/v]e :

Π v : k. [〈w, v〉/z] [πi(z)/vi] [π(z)/v]σ =

w : Γ ↓, x : [πi(w)/vi]Γ ↑ ` Λ v : k. [πi(x)/xi] [πi(w)/vi]e : (Π v : k. [πi(w)/vi]σ) =

w : Γ ↓, x : [πi(w)/vi]Γ ↑ ` [πi(x)/xi] [πi(w)/vi]Λ v : k. e : [πi(w)/vi]Π v : k. σ.

�

Using the above proposition, it is trivial to verify that the axioms of T are satisfied

by (pT , ST) because of their immediate derivability; hence (pT , ST) is a model.

Theorem 6.7.5 (Completeness) Γ |=Σ,T e1 =σ e2 implies Γ `Σ,T e1 =σ e2.

Proof. If Γ |=Σ,T e1 =σ e2, then Γ `Σ,T e1 =σ e2 must hold in (pT , ST). Since se-

mantic identity in the λω-category pT corresponds to provable equality, the judgement

w : Γ ↓, x : [πi(w)/vi]Γ ↑` [πi(x)/xi] [πi(w)/vi]e1 =[πi(w)/vi]σ [πi(x)/xi] [πi(w)/vi]e2 must

be derivable. Then, the result is obtained by substituting Γ ` 〈v1, . . . vn〉 : Γ ↓ for w and

Γ ` 〈x1, . . . xm〉 : Γ ↑ for x. �

Remark. In [See87], a relative interpretation of PLC theories is defined semantically to

be an interpretation of one theory in the term model of another. Similarly, the syntactic

and semantic notions of relative interpretation of HML coincide: any interpretation of

an HML theory T1 in a syntactic λω-category pT2 factorizes through the canonical inter-

pretation of T2 in pT2 via a unique relative interpretation T1 → T2.

6.8 Syntactic presentation of constructors

In this section we give a characterization of the semantic constructors which can be

presented as relative interpretations of HML theories, as in the example of section 6.4.
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Outline of the section. Our first step is to get rid of the syntax by adopting an

abstract, presentation invariant view of HML theories as λω-categories. To justify this

step, we establish an equivalence between the category of HML theories and that of

λω-categories (theorem 6.8.4), like is done in [See87] for PLC. Then, the models of a

theory T are defined functorially as morphisms of λω-categories; this is justified by pro-

position 6.8.5. The category Mod (T ) of such models is shown to be equivalent to the

category [T, Sets ]lex of set valued models of a finite limit theory T , which is locally fi-

nitely presentable. Moreover, we show that the functors Mod (φ) : Mod (T1) → Mod (T2)

induced by a relative interpretation φ : T2 → T1 have left adjoints and that they preserve

filtered colimits (theorem 6.8.10). This allows us to use the Gabriel-Ulmer duality to give

an intrinsic characterization of functors of the form Mod (φ) (theorem 6.8.12).

Definition 6.8.1 A λω-functor p1 → p2 between λω-categories p1 : E1 → B1 and

p2 : E2 → B2 is a morphism (J, H) of fibrations such that J : B1 → B2 preserves

the cartesian closed structure, H : E1 → E2 preserves the distinguished object, the

fibred cartesian closed structure and D-products. We call λω-Cat the category of small

λω-categories and λω-functors.

We make the simplifying assumption that all the structure is preserved “on the nose,”

although this is not crucial for the development of the theory. In particular, preserving

D-products means that, for all πA : B × A → B in B, HBΠA = ΠBHB×A.

Proposition 6.8.2 Any model of an HML theory T in a λω-category p factorizes

through the canonical interpretation in pT via a unique λω-functor pT → p.

We omit the proof of this proposition, which only involves routine calculations.

In order to establish an equivalence between λω-Cat and the category of HML theories,

we must make our notion of theory more general. To represent in HML the information

contained in a λω-category, we must allow signatures to contain infinitely many constants

(of finite arity) and theories to contain infinitely many axioms. Moreover, in order to
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capture the structure of the base category syntactically, we must allow the axioms of a

theory to include equations between kinds and operators. We call HMLC the category of

such theories and relative interpretations.

Now we can give a construction (dual to that of syntactic models) to produce an HML

theory from a λω-category p : E → B. Let Σp be the following signature: the objects of

B are constant kinds; the arrows C : K1 → K2 of B are constant operators C : K1 ⇒ K2;

objects S in EK are constant schemes S : K ⇒ scheme ; morphisms c : S1 → S2 of E
above C : K1 → K2 are constant terms c : (Π v : K1. S1(v) ⇒ S2(C(v))). We call Tp the

theory over Σp whose axioms are equations C2(C1(v)) = C3(v), for all C2 ◦C1 = C3 in B,

c2[C1(v)](c1[v](x)) = c3[v](x), for all c2 ◦c1 = c3 in E and C1 = p(c1), and all the equations

describing the categorical structure of p, e.g. K1 ⇒ K2 = K3 for all KK1
2 in B, etc. The

canonical interpretation mapping each constant into itself makes of p a model of Tp.

Proposition 6.8.3 Any model of an HML theory T in a λω-category p factorizes

through the canonical interpretation of Tp in p via a unique relative interpretation T → Tp.

Let p be a model of T and let [[ ]] be the interpretation; the relative interpretation

given by the above proposition maps constant kinds K to [[K]], constant operators C to

[[C]](∗), constant type scheme S to [[S]](v) and constant terms c to [[c]](∗).

Theorem 6.8.4 HMLC ∼= λω-Cat.

Proof. The function mapping λω-categories p to HML theories Tp can be extended

to a functor T( ) : λω-Cat → HMLC mapping a λω-functor F : p1 → p2 to the relative

interpretation Tp1 → Tp2 obtained by applying the above proposition to Tp1

[[ ]]−→ p1
F−→ p2.

Similarly, the function mapping HML theories T to their syntactic models pT extends to

a functor p( ) : HMLC → λω-Cat mapping a relative interpretation φ : T1 → T2 to

the λω-functor pT1 → pT2 obtained by applying proposition 6.8.2 to T1
φ−→ T2

[[ ]]−→ pT2 .

Moreover, from propositions 6.8.2 and 6.8.3, we obtain a bijection between the homsets

HMLC (T, Tp) and λω-Cat (pT , p), natural in T and p. Hence p( ) a T( ). It is easy to
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see that η : p → pTp is a natural isomorphism whose inverse is the λω-functor associated

with the canonical interpretation of Tp in p by proposition 6.8.2. Similarly, ε : TpT → T

is a natural isomorphism whose inverse is the relative interpretation associated with the

canonical interpretation of T in pT by proposition 6.8.3. This shows that p( ) a T( ) is an

adjoint equivalence between HMLC and λω-Cat. �

Before the syntax can abandon the scene, a suitable functorial notion of category

of models of a HML theory must be established. Let Σ be an HML signature; a

Σ-homomorphism (p, S) → (q, R) between interpretations of a theory T over Σ is a

λω-functor (J, K) : p → q such that, for all constant kinds K, operators C, paramet-

ric schemes S and terms c in Σ, J [[K]]S = [[K]]R, J [[C]]S = [[C]]R, H[[S]]S = [[S]]R and

H[[c]]S = [[c]]R. The category of models of a theory T over Σ and Σ-homomorphisms form

a category Mod (T ).

Remark. Using the notion of Σ-homomorphism, proposition 6.8.2 can be rephrased as

follows: let (p, S) be a model of a theory T over Σ; there exists a unique Σ-homomorphism

(pT , ST) → (p, S); that is, the syntactic model (pT , ST) is initial in the category Mod (T ).

Proposition 6.8.5 Mod (T ) ∼= pT/λω-Cat.

The object map of this equivalence is given by proposition 6.8.2. Let Σ be the sig-

nature of T, it is easy to verify that there is a one-to-one correspondence between Σ-

homomorphisms (p, S) → (q, R) and commuting triangles

p

S R
pT

q.

In view of proposition 6.8.4 and 6.8.5, we write Mod (p) for the category p/λω-Cat

of models of the “λω-theory” p. From now on, the syntax of HML will not concern us

anymore.
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In section 6.6, we wrote a finite limit theory of categories and invoked Keane’s result

to conclude that there exists a lex category TCat such that Cat ∼= [TCat, Sets ]lex. The

same argument applies to λω-categories, whose structure was also described in finite limit

sentences: there exists a lex category Tλω such that λω-Cat ∼= [Tλω, Sets ]lex. Hence, from

theorem 6.5.4, it follows that the category λω-Cat is locally finitely presentable. Since

any slice of a locally λ-presentable category is locally λ-presentable [AR94, 1.57], and

hence any slice of an lfp category is lfp, the following proposition holds:

Proposition 6.8.6 The category Mod (p) is locally finitely presentable.

Digression on accessible categories. Closure under slicing does not hold for λ-

accessible categories [AR94], that is if the condition of co-completeness is removed: a

slice of a λ-accessible category may not be λ-accessible, although it would be accessible

for some λ′> λ.

�

Next step towards our characterization theorem is to extend the map Mod to a functor

λω-Catop → LFP .

Proposition 6.8.7 Let h : A → B be a morphism in a category C with pushouts; the

functor h/C : B/C → A/C has left adjoint.

Proof. Let F : A/C → B/C be the functor mapping f : A → C to the pushout of
f← · h→ as in the figure.

·

B
h

D

F (f)

A

C

f g



6. Semantic constructors 194

Given g : B → D, the bijection (B/C)(Ff, g) ∼= (A/C)(f, g ◦h) = (A/C)(f, (h/C)g),

natural in f and g, yields an adjunction F a h/C. �

Remember that a functor F : A → B creates filtered colimits when, for every filtered

category J and functor G : J → A such that F ◦G has a colimit ν : F ◦G
.→ C, there

exists a unique cone σ : G
.→ A such that Fσ = ν and moreover σ is a colimit.

Let X be an object in a category C; we write codX : X/C → C the functor mapping

arrows X → Y to their codomain Y . We drop the subscript when no confusion arises.

Lemma 6.8.8 Let X be an object in a category C; the functor cod X creates filtered

colimits.

Proof. Let J be a filtered category, let F : J → X/C be a diagram in X/C and let

ν : codX ◦F
.→ C be a colimit in C. Since J is filtered, the composites νj ◦F (j), for all

objects j of J , are equal to the same arrow g : X → C. As an object of X/C, g is the

vertex of cone on F with components νj : F (j) → g; moreover, there can be no other

cone µ such that cod X ◦µ = ν. Using the universality of ν, this cone is shown to be a

colimit in X/C. �

Proposition 6.8.9 Let f : X → Y be an arrow in a category C with filtered colimits;

the functor f/C : Y/C → X/C of precomposition with f preserves filtered colimits.

Proof. Let ν be a colimiting cone over a diagram F in Y/C. Since C has all filtered

colimits and, by the above lemma, cod Y : Y/C → C creates them, the cone cod Y ◦ν must

be colimiting in C. Since cod Y ◦ν = codX ◦ (f/C) ◦ν and cod X : X/C → C creates filtered

colimits, it follows that (f/C) ◦ν is a colimit in X/C as required. �

Theorem 6.8.10 Let φ : p → q be a λω-functor; the functor Mod (φ) def= φ/λω-Cat :

q/λω-Cat → p/λω-Cat of precomposition with p is a morphism in LFP and hence the

relative interpretation map Mod extends to a functor λω-Cat op → LFP .
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Proof. Since λω-Cat is lfp, hence complete, proposition 6.8.7 ensures that the functor

φ/λω-Cat = Mod (φ) has left adjoint, while proposition 6.8.9 ensures that it preserves

filtered colimits. �

In view of the above theorem, we call Mod the relative interpretation functor.

In [BW85, 4.4], the finite limit theory generated by a finite limit sketch is obtained

as the full subcategory of the category of models of the sketch whose objects are repres-

entable. Similarly, we obtain a functor th : λω-Cat → Lex by composing Mod with the

functor ( )op
fp of section 6.5, which returns the subcategory of finitely presentable objects

of an lfp category: th (p) = (p/λω-Cat)op
fp.

Let α be the natural transformation Mod .→ ([ , Sets ]lex ◦ th op) whose components

are the equivalences of categories Mod (p) ∼= [(Mod (p))op
fp , Sets ]lex; the pair (th , α) forms

a morphism of indexed lfp categories:

α
th op

λω-Cat op

Lex op
[ , Sets ]lex

Mod

LFP

Let Mod lex be the category whose objects are lex functors into Sets and whose morph-

isms F → G, for F : T1 → Sets and G : T2 → Sets , are pairs (H, ν), where the functor

H : T1 → T2 preserves finite limits and ν is a natural transformation F
.→ G◦H; let

α̂ : λω-Cat→ → Mod lex be the functor α̂(m) = αdom(m)(m); noticing that models are

fibred over theories by the domain fibration dom : λω-Cat→→ λω-Cat, the functor th

can alternatively be viewed as part of a morphism of fibrations:

λω-Cat
th

Lex

dom lex

Mod lexλω-Cat→
α̂

dom
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The functor Mod is not full, that is, not all filtered colimit-preserving right adjoint

functors Mod (q) → Mod (p) are syntactically induced by a relative interpretation p → q

in λω-Cat. In fact, we need an extra condition and the following lemma to justify it:

Lemma 6.8.11 Let θ : th (p) → th (q) be a lex functor; if θ ◦th (?p) = th (?q), where ?x is

the unique morphism ∅ → x from the initial object in λω-Cat, then θ is of the form th (φ)

for some λω-functor φ : p → q.

We adopt the following informal argument as proof of this lemma. The idea is to

use sketches to give a more concrete picture of categories of the form th (p). In fact, we

consider a simplified scenario, where categories take the place of λω-categories.

Consider the finite limit sketch of categories C described in [BW90, 9.1.4]; models in

Sets of this sketch correspond to small categories and arrows between models to functors.

The graph of C is:

arrows
various

CR CQ CA CO

m
e

src
tgt

The nodes CA and CO represent the set of arrows and of objects; src and tgt represent

the source and target maps while e yields the identities. The sketch C includes a cone

over the diagram CA
src−→ CO

tgt←− CA, whose vertex CQ represents composable pairs of

arrows. The edge m represents composition. Similarly, CR represents composable triples,

with obvious arrows into CQ.

For any finite limit sketch S, there exists a lex theory T such that the category of

models of S in Sets is equivalent to [T, Sets ]lex (see [BW90, 9.3.1]). Since the equivalence

[T1, Sets ]lex ∼= [T2, Sets ]lex implies T1
∼= T2, from (6.4) we conclude that the lex category

TCat introduced in section 6.6 is (equivalent to) the category associated with the above

sketch C.
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Similarly, given a specific category C, we call sk (C) the finite limit sketch obtained

as follows: a node 1 is added to the graph of C together with a cone over the empty

diagram with vertex 1. Moreover, for each object A of C, sk (C) has an edge dAe : 1 → CO

and, for each arrow f : A → B, an edge df e : 1 → CA with diagrams src ◦ df e = dAe and

tgt ◦ df e = dBe. Identities and composition of C are represented in sk (C) straightforwardly.

Applying to sk (C) the same argument that we applied above to C, we conclude that the

finite limit theory associated with sk (C) is the lex category th (C) introduced in section 6.6.

There is an obvious inclusion th (?C) : TCat
∼= th (∅) ↪→ th (C).

It is easy to verify that there is a one-to-one correspondence between lex functors

θ : th (C) → th (D) such that θ ◦ th (?C) = th (?D) and functors C → D. In fact, this

equation ensures that θ is a C-homomorphism, that is, that it preserves the objects CA,

CO and so on. Therefore, θ maps objects 1 → CO of C to objects 1 → CO of D and

arrows to arrows in such a way that identities and composition are preserved. A similar

correspondence can be established if categories are replaced by λω-categories and functors

by λω-functors. This concludes our informal proof of lemma 6.8.11.

Theorem 6.8.12 (Characterization theorem) Let p and q be λω-categories, let ?p

and ?q be as in lemma 6.8.11 and let Ψ : Mod (q) → Mod (p) be a filtered colimit-preserving

functor with a left adjoint; Ψ is of the form Mod (φ), for some λω-functor φ : p → q, if

and only if Mod (?p) ◦Ψ = Mod (?q).

Proof. (Only if) Noticing that the functors Mod (?x) : Mod (x) → Mod (∅) ∼= λω-Cat

are the codomain projections (x → y) 7→ y, the result follows immediately from the

definition of Mod .

(If) For simplicity we treat the equivalences Mod (p) ∼= [th (p), Sets ]lex as identit-

ies. Let Φ, Φp and Φq be left adjoints respectively to Ψ, Mod (?p) and Mod (?q). From

Mod (?p) ◦Ψ = Mod (?q), it follows that Φ◦Φp = Φq and hence, since (Φp)
op
fp = th (?p)

(and similarly for q), we have Φop
fp
◦ th (?p) = th (?q). By lemma 6.8.11, it follows that
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Φop
fp = th (φ), for some φ : p → q. Then, Ψ = [Φop

fp, Sets ]lex = [th (φ), Sets ]lex = Mod (φ).

�

The intuition behind this theorem is that th (∅) = Tλω provides a “signature” for all

cartesian theories in Lex which describe λω-categories. Functors Ψ : Mod (q) → Mod (p)

induced by relative interpretations of λω-theories correspond, in the Gabriel-Ulmer sense,

to th (∅)-homomorphisms between finite limit theories: this is expressed by the condition

in lemma 6.8.11 which is equivalent to Mod (?p) ◦Ψ = Mod (?q).

This characterization of relative interpretation can be adapted to any formal lan-

guage whose models are described by a finite limit theory. For example, theories of

the simply typed lambda calculus with unit type and products correspond to catresian

closed categories [LS86], which are set-valued models of a finite limit theory, as shown

in section 6.6. Therefore, functors Ψ : Mod (T1) → Mod (T2) arising from relative inter-

pretations T2 → T1 of simply typed lambda calculi, can be characterized as above. The

same argument also applies to theories of the higher order polymorphic lambda calculus,

exploiting the correspondence between such theories and PL-categories [See87].



7 Application: constructing with LEGO

In the previous chapter we presented semantic constructors. Here we use a type the-

ory, the Extended Calculus of Constructions (XCC) [Luo82], as a formal framework for

developing specific examples. We take advantage of an implementation of XCC, LEGO

[LP92], to check the correctness of our implementation. Below we explain how we use

LEGO to develop denotational semantics and list the features of XCC that are crucial to

the applications that we present.

At the beginning of the ’80s, Dana Scott suggested that an intuitionistic universe of

sets should be the natural setting in which to develop a theory of domains. Since then,

but most notably in recent years, synthetic domain theory ([Ros86,Pho90,Hyl90,Tay91,

RS]) has sought a good full subcategory of an elementary topos in which to carry out the

mathematics of computation.

Our development of denotational semantics is consistent with synthetic domain the-

ory: a category Dom to interpret computation is fully embedded in the category U of

XCC types, which provides an intuitionistic universe of sets. We refer to Dom as the

category “of domains.” This is done rather informally, since we do not actually axiomat-

ize domain theoretic structure in Dom (for an axiomatic approach to domain theory see

[Fio94b,Fio94a,Mog95a]).

The category of domains is implemented in LEGO by assuming a type Dom:Type

(of names of domains) and a Dom-indexed family E:Dom->Type of domain-like types. The

operation E, the likes of which are sometimes called “large eliminations,” embeds domains

in the universe of types. In this way, the presentation of relevant categorical constructions,

such as fixed-point operators or initial algebras of endofunctors, becomes very natural

199
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and requires none of the syntactic overhead that a full encoding of category theory in the

type theory would call for.

In order to prove that a semantic structure is adequately represented by a term S of

the type theory, one can show that S is interpreted as a structure of the appropriate form

in models of the type theory. For example, in section 7.1 we notice that terms of type

Monad in the implementation define internal monads in the category of types. Part of the

effort in establishing a precise correspondence between intended mathematical objects

and their description in type theory goes into understanding how the notion of equality

adopted in the description relates to semantic identy in the models. We use Leibniz

equality.

The applications that we present use the following features of the type theory. A

universe (viz. Type(0)) is used for the synthetic domain theory set-up (Dom and E), as

well as for defining uniform redefinitions (section 7.2). Dependent types are exploited for

representing polymorphic operations, such as the natural transformations val and let of

the computational metalanguage or the operations to raise and handle exceptions. Sigma

types (dependent sums) provide a useful abstraction mechanism for structuring theories

in proof development. We also use inductive sigma types in the definition of the internal

category of domains (section 7.1). Moreover, type inference and coercion, specific to the

LEGO system, allow agile notation.

Synopsis. In 7.1 we give a formal account of structures and interpretation of the com-

putational metalanguage in LEGO. In 7.2 we implement a semantic constructor for ex-

ceptions and one for resumptions. The latter is used in section 7.3, where we present an

application in which a model of a computational metalanguage featuring an operator of

parallel composition is constructed from models of simpler forms of computation. Some

of the material in this section comes from [CM93] and is due to Moggi. Ours is the

implementation in LEGO including all the formal proofs. In the last section we discuss

a concrete model of the type theory based on ω-sets and show that the structure we

assumed in the application can be found in this model.
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7.1 Structures and interpretation

In section 2.4 we defined a suitable notion of Σ-structure to interpret lambda calculi of the

form L(Σ). Here we represent such structures in the XCC and write a small application in

LEGO where they are used in a formal interpretation of the computational metalanguage

MLT . For simplicity, we consider a minimal version of the metalanguage with no unit or

product types.

We represent categorical structure in XCC by defining types such as Functor, Monad

etc, which we think of as signatures and whose terms represent structures, such as func-

tors, monads and so forth, on a fixed category Dom . Order theoretic structure can be

axiomatized in Dom as shown in [Fio94a]. Let Dom be a type, whose inhabitants we view

as names of domains, and let E be an externalization map embedding domains in the

universe of types:

[Dom : Type]

[E : Dom->Type];

The category Dom arises from these data as a full internal subcategory of the universe

of types (see appendix B for the full definition):

defn Dom1 = Sigma [X:Dom](Sigma [Y:Dom](E X)->E Y)] : Type (* arrows *)

defn Dom2 = ... : Type (* composable arrows *)

defn d0 = ... : Dom1->Dom (* domain *)

defn d1 = ... : Dom1->Dom (* codomain *)

defn i = ... : Dom->Dom1 (* identity *)

defn o = ... : Dom2->Dom1 (* composition *)

As shown by the definition of Dom1, the arrows of Dom are borrowed from the function

spaces of the type theory. Inductive sigma types (Sigma) are used in the definition of

Dom1 and Dom2; they provide the η rule for dependent pairs, which is used for making the
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diagrams involving the composition map commute. It is immediate to verify that this

definition satisfies the appropriate equations. For example, here is the proof in LEGO

that the domain of the identity arrow on X is X:

Goal {X:Dom}Eq X (d0 (i X));

Intros;

Immed;

In developing the modular approach in LEGO, we use a variety of structures, whose

signatures are represented by types such as Sum, Prod, Exponential and Ind, all defined

in appendix C. The signature Ind for inductive types includes the higher order operators

mu and It described in section 6.3, taking functors as arguments. Here is the signature

of strong monads (in the following, when mentioning a monad, we shall understand a

strong one, unless otherwise stated):

[Monad =

<T:Dom->Dom>

<val:{X|Dom}(E X)->E(T X)>

<let:{X,Y|Dom}((E X)->E(T Y))->(E(T X))->E(T Y)> Unit ];

The axioms of a monad should really be part of the type Monad, and constructors

F :Monad -> Monad should include a proof that F M satisfies the appropriate equations.

However, to keep the implementation simple, we deal with the axioms separately. Below,

we list the axioms of the theory of monads. The functions T, val and let are used to

extract from a monad M the corresponding data, so that (T M):Dom->Dom, and so on.

[AX_LUNIT= [M:Monad]{X|Dom}{x:E(T M X)} Eq x (let M (val M|X) x)];

[AX_RUNIT= [M:Monad]{X,Y|Dom}{f:(E X) -> E(T M Y)}

Eq f ([x:E X]let M f (val M x))];

[AX_ASSOC= [M:Monad]{X,Y,Z|Dom}{c:E(T M X)}{f:(E X) -> E(T M Y)}

{g:(E Y) -> E(T M Z)}

Eq (let M ([x:E X]let M g (f x)) c) (let M g (let M f c))];
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Remark. Interpreting terms of type Monad in an extensional model of the type theory,

one obtains an internal monad in Dom , and therefore a monad fibred over the universe

of types. The use of a fibred monad is consistent with the semantics for Evaluation Logic

proposed in [Moga].

�

The formal interpretation of the computational metalanguage MLT requires the struc-

ture of products, exponentials and a monad. To write it in LEGO we must first encode

MLT . Assuming the type Grd of ground type symbols, the syntax of MLT is defined

by the types Ty, Con, Var and Exp representing types, contexts, variables and terms.

Contexts are lists of types. De Bruijn’s method of variable binding is implemented by

including context information inside variables. In particular, the variable x in the context

(C, (x : A), D) has the form (Weak. . .(Weak (Vo C T). . .), where D is represented by

the successive applications of Weak. The type (Exp C A) represents well-formed MLT

terms of type A in context C. In appendix D, the types Ty, Var and Exp are induct-

ive (the inductive types of LEGO, not to be confused with the inductive types in Dom

provided by the signature Ind). This allows interpretation to be defined by induction on

the structure of terms.

Remark We do not identify the variables of the object language with the ones of

the type theory, as in the LF style, because this would make an inductive definition of

interpretation unfeasible. In fact, let terms of type τ of the object language be interpreted

by maps [[ ]]τ : Exp (τ ) → [[τ ]] and suppose λ-abstractions are encoded in the type theory

as terms ΛF , where F : Exp (σ) → Exp (τ ) represents a term of type τ with a free variable

of type σ in the object language. An interpretation [[ΛF ]]σ⇒τ : [[σ ⇒ τ ]] ≡ [[σ]] → [[τ ]]

cannot be obtained from F , [[ ]]σ and [[ ]]τ unless we know how to map [[σ]] back into

Exp (σ).

�

The encoding ε of MLT in LEGO is defined as follows: Types and contexts are mapped

respectively into terms of type Ty and Con. Terms Γ ` M : σ are mapped into closed
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terms εΓ,σ(M) : Exp ε(Γ) ε(σ). We write Γ|∆ for the concatenation of two contexts. The

symbols GR, TT and AR are the constructors of MLT types, while VAR, LMB, APP, LET and

VAL are the ones of MLT terms (see appendix D).

ε(A) = GR A (for A:Grd)

ε(Tσ) = TT ε(σ)

ε(σ → τ ) = AR ε(σ) ε(τ )

εΓ|x:σ|∆,σ(x) = VAR (Weak . . . (Vo ε(Γ) ε(σ)) . . .)

εΓ,σ→τ(λx : σ. M) = LMB εΓ|x:σ,τ(M)

εΓ,τ(M N) = APP εΓ,σ→τ (M) εΓ,σ(N)

εΓ,T τ(let x ⇐ M in N) = LET εΓ|x:σ,T τ(N) εΓ,T σ(M)

εΓ,T σ(val(M)) = VAL εΓ,σ(M).

Proposition 1 The map ε is a bijection between types (contexts) of MLT and canonical

terms of type Ty (Con) in XCC. For every type σ and context Γ of MLT , εΓ,σ is a bijection

between terms Γ ` M : σ and canonical terms of type Exp ε(Γ) ε(σ) of XCC.

A formal interpretation of MLT in Dom is defined in appendix E by recursion on the

structure of the syntactic domains. The parameters of the interpretation are structures

of type Prod, Exponential and Monad. Terms of type Grd, Ty and Con are interpreted

respectively by I_Grd, I_Ty and I_Con as elements of Dom, while terms of type Var and

Exp are interpreted by I_Var and I_Exp in the externalization of the appropriate domain;

for example, given terms P:Prod, X:Exponential and M:Monad, a term e:(Exp c t) of

type t in context c is interpreted as a map

I_Exp P X M (e): (E (I_Con P X M c))->E (I_Ty X M t).

One of the benefits of making interpretation parametric in a notion of computaiton is

that models can be augmented with new semantic structure with no need of rewriting the
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interpretation function. Using the above interpretation of the computational metalan-

guage, let F:Monad->Monad implement a monad constructor and let M be a structure of

type Monad, interpretation in F(M) is simply:

I_Exp P X (F M) (e): (E (I_Con P X (F M) c))->E (I_Ty X (F M) t).

7.2 Examples of constructors

In this section we inplement in LEGO two semantic constructors described in [CM93],

one for exceptions and one for resumptions. We give a formal proof of the correctness of

the first, that is, we show that it maps monads to monads. The second is used in the next

section to define and reason about models of parallel computation based on interleaving.

Exceptions. In order to make the LEGO code less cryptical, we first introduce the

constructor for exceptions as a translation, as we did for resumptions in section 6.4,

using a simpler syntax: the computational metalanguage.

Let B be a collection of base type symbols, including the symbol E for the base

type of exceptions, and let raise and handle be operations of arities ∀X.E −→ TX

and ∀X.TX, (E → TX) −→ TX respectively. Let Σ1 = (B, +, inj 1, inj 2, case ) be a

signature for sums and let Σ2 = (B, raise , handle ) be one for exceptions. A constructor

Mod (Σ1) → Mod (Σ2) is defined by the following translation ([ ]) : MLT (Σ2) → MLT (Σ1):

([B]) def= B (B ∈ B)

([σ → τ ]) def= ([σ]) → ([τ ])

([Tτ ]) def= T (([τ ])+ E)

([val (M)]) def= val (inj 1([M ]))

([let (M)]) def= let (case ([M ]) (λx : E. val (inj 2 x)))
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([raise (M)]) def= val (inj 2([M ]))

([handle (M, N)]) def= let (case (λx. val (inj 1 x)) ([N ]))([M ]).

Let (C, T, A) be a model of MLT (Σ1); the translation ([ ]) defines a strong monad

([T ])X def= T (X+E) and a Σ2-structure (similarly) in C. There is a strong monad morphism

(id , σ) : (C, T ) → (C, ([T ])), where σ = T (inj 1). Such a morphism extends to one in

Mod (Σ2), which makes this constructor pointed (in the sense of section 6.2).

Let Sum be the signature of the theory of sums described in appendix C, provid-

ing an operation + on domains, injections and an operation of case analysis; the above

constructor is implemented in LEGO by a function Exceptions which, given S:Sum, a

domain Exn:Dom of exceptions and a monad M:Monad, returns a 5-tuple of operations

(E T, E val, E let, raise, handle):

[Exceptions [S:Sum] [Exn:Dom] [M:Monad] =

[E_T [X:Dom] : Dom = T M (sum S X Exn)]

[E_val [X|Dom] [x:E X] : E (E_T X) = val M (in1 S|X|Exn x)]

[E_let [X,Y|Dom] [f:(E X)->E(E_T Y)] : (E (E_T X)) -> E(E_T Y) =

let M(case S f ([x:E Exn] val M (in2 S x)))]

[raise [X|Dom][n:E Exn] : E (T M (sum S X Exn)) =

(val M (in2 S|X|Exn n))]

[handle [X|Dom][c:E(T M (sum S X Exn))]

[h: (E Exn) -> E (T M (sum S X Exn))] : E(T M (sum S X Exn))=

let M (case S ([x:E X] val M (in1 S x)) h) c]

(E_T, E_val, E_let, raise, handle)];

The first three components of this tuple are extracted and wrapped up as a monad by

the function Exception Constructor:Sum->Dom->Monad->Monad. As mentioned earlier,

it must be separately verified that, if M satisfies the axioms AX LUNIT, AX RUNIT and

AX ASSOC, so does the structure (Exception Constructor S Exc M). Below we formally

verify the first axiom, while the others are proven in appendix F. Given a monad M,
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the function ax lunit returns a witness of (AX LUNIT M) (similarly for ax runit and

ax assoc in the appendix).

Goal {S:Sum}{Exn:Dom}{M:Monad}AX_LUNIT (Exception_Constructor S Exn M);

Normal;

Intros;

Qrepl ax_case S|X|Exn|(T M(sum S X Exn)) (val M|(sum S X Exn));

Qrepl Eq_sym (ax_lunit M|(sum S X Exn)|x);

Immed;

Resumptions. Below we present Resumptions, which is an implementation in LEGO

of the constructor F described in section 6.4 (for simplicity, H : Ω ⇒ Ω is the identity).

As with monads, we extract from a structure F of type Functor an object map

(FT F):Dom->Dom and a strength (str F)|X|Y: ((E X)->E Y)->(E(T X))->E(T Y).

Any structure M of type Monad has an obvious substructure (Monad to Functor M) of

type Functor. Given S:Sum, F:Functor and A:Dom, (RF S F A) is the functor mapping

X to T(A+X), which was written FA in section 6.4. Similarly, (Res S Z M)A represents

the domain µ(FA) = µX.T(A+X), where T is the underlying endofunctor of the monad M

and µ comes from the structure Z:Ind of inductive types.

[RF [S:Sum] [F:Functor] [X:Dom] : Functor =

([W:Dom] FT F (sum S X W),

([X1,X2|Dom][f:(E X1)->E X2] str F

(case S (in1 S|X|X2) ([z: E X1] in2 S (f z)))), star:Functor)];

[Res [S:Sum] [Z:Ind] [M:Monad] =

[X:Dom] mu Z (RF S (Monad_to_Functor M) X)];

Given sums, inductive types and a monad, Resumptions returns the following operations

(see section 6.4 for an informal description):

Res:Dom->Dom,
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Rval:{X|Dom}(E X)->E (Res X),

Rlet:{X1,X2|Dom}((E X1)->E (Res X2))->(E (Res X1))->E (Res X2),

tau:{X|Dom}(E (Res X))->E (Res X) and

CH:{X1,X2|Dom}((E X1)->E (Res X2))->((E (Res X1))->E (Res X2))->

(E (Res X1))->E (Res X2)

[Resumptions [S:Sum] [Z:Ind] [M:Monad] =

[F [X:Dom] = RF S (Monad_to_Functor M) X]

[Res = Res S Z M]

[Rval [X|Dom] [x:E X] : E (Res X) =

alg Z|(F X) (val M (in1 S x))]

[tau [X|Dom][z:E (Res X)] : E (Res X) =

alg Z|(F X) (val M (in2 S z))]

[CH [X1,X2|Dom][f:(E X1)->E (Res X2)]

[g:(E (Res X1))->E (Res X2)]

[c:(E (Res X1))] : E (Res X2) =

alg Z|(F X2) (let M

([d:E(sum S X1 (Res X1))] coalg Z|(F X2) (case S f g d))

(coalg Z|(F X1) c))]

[Rlet [X1,X2|Dom] [f:(E X1)->E (Res X2)] : (E (Res X1))->E (Res X2) =

it Z|(F X1) ([c:E (T M (sum S X1 (Res X2)))] alg Z|(F X2)

(let M ([z: E (sum S X1 (Res X2))] coalg Z|(F X2)

(case S f (tau|X2) z)) c))]

(Res, Rval, Rlet, tau, CH, star)];

We end this section with the implementation of uniform redefinitions (see section 6.2),

which are used in the next section by a constructor FΣ to convert the operations in Σ to

a new computational setting. Here, we consider the case of unary operations; arbitrary

arities are dealt similarly. Uniform redefinitions allow constructors of the form (7.1) below

to redefine operations of the form (7.2):

(F T) X def= T(G T X) (7.1)
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opX : S(T X) (7.2)

where G:Monad->Dom->Dom and S:Dom->Type. For example, let Exn be the domain of

exceptions; in the exceptions constructor (F T) X def= T(X+Exn), we have (G T X) = X+Exn,

where G does not depend on T. Similarly, orX : (E (T X))->(E (T X))->E (T X),

the operator of nondeterministic choice introduced in the next section, is of the form

(7.2), where (S X) is (E X)->(E X)->E X. A constructor F can uniformly redefine such

operations as follows:

(Fop )X
def= op (GTX) : S(T(G T X)) ≡ S((F T) X).

In LEGO:

[Uniform_Redefinition1 [G:Monad->Dom->Dom][S:Dom->Type(0)][M:Monad] =

[c:{X|Dom} S (T M X)] [X|Dom] c|(G M X)];

7.3 Parallel composition

In this section we give examples of formal proofs involving the modular constructions

introduced earlier. We add a mechanism of resumptions to nondeterministic computa-

tions and, from the semantic structures thus obtained, we define an operator of parallel

composition and prove in LEGO that this operator is commutative.

Let T:Dom->Dom be the object map of a monad M. Structures of type (Fix T) and

(Nondetm M) provide operations respectively of fixed point and nondeterministic choice

for M-computations:

[Fix [T:Dom->Dom] =

<Yop:{X1,X2|Dom}(((E X1)->E(T X2))->(E X1)->E(T X2))->(E X1)->E(T X2)>

Unit ];
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[Nondetm [M:Monad] =

<or : {X|Dom} (E (T M X)) -> (E (T M X)) -> E (T M X)> Unit];

The theory of nondeterminism states that or is commutative, i.e. or w z = or z w,

and that it is natural, i.e. or (Tf w) (Tf z) = Tf(or w z), while the theory of fixed points

includes the fixed point property of Yop and the axiom AX UNIFORMITY below.

A fixed point operator Y in the category of cpos is said to be uniform (see [Gun92,

4.2]) when, for any pair of continuous functions f : D → D and G : E → E and strict

continuous function h : D → E such that h ◦f = g ◦h, we have Y g = h(Y f). Least

elements and strictness can be axiomatized in Dom as shown in [Mog95a]. We shall not

implement these axioms in LEGO: when required in a formal proof, we verify that a term

denotes a strict morphism separately on our blackboard and allow ourself a free supply

of witnesses of this condition, which we represent in LEGO with a constant predicate

STRICT. The uniformity axiom is:

[AX_UNIFORMITY = [T|Dom->Dom][F:Fix T]{X1,X2,X3,X4|Dom}

{h:((E X1)->E(T X2))->(E X3)->E(T X4)}

(STRICT h)->

({f:((E X1)->E(T X2))->(E X1)->E(T X2)}

{g:((E X3)->E(T X4))->(E X3)->E(T X4)}

({k:(E X1)->E(T X2)} Eq (h(f k)) (g(h k)))->

{x:E X3} Eq (Yop F g x) (h (Yop F f) x))];

Starting from a monad M and structures F:(Fix (T M)) and N:(Nondetm M), we

add resumptions to M-computation; the constructor Resumptions, F for short, is applied

to M to obtain a monad F(M)=(Res,Rval,Rlet) and a ΣFstructure consisting of the

operations tau and CH. Moreover, applying uniform redefinitions (not expanded here)

to Yop and or, we produce new structures F F:Fix(T F M) and F N:(Nondetm F M),

whose operations we call yrr and orr respectively.

The operation pandA,B : Res(A) × Res(B) → Res(A × B) of parallel composition

is defined formally in LEGO in appendix G. Here we give a more digestible version in
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lambda notation: using infix notation for orr and mix-fix notation for Rlet (as in the

computational metalanguage),

pandA,B = yrr (λh : Res (A) × Res (B) → Res (A × B). λw : Res (A), z : Res (B).

CH (λx : A. Rlet y ⇐ z in Rval 〈x, y〉, λ u : Res (A). h(u, z))w

orr CH (λy : B. Rlet x ⇐ w in Rval〈x, y〉, λ v : Res (B). h(w, v))z).

Intuitively, pandA,B(w, z) performs one step w  u of M-computation on w and then

invokes pandA,B(u, z), or it performs one step z  v of M-computation on z and then

invokes pandA,B(w, v). We look at the first of these branches, CHA,A×B(f, g)w, of which

the second is just the dual. CHA,A×B performs case analysis on w : Res(A); if it is the

M-computation of a value x, it returns the pair 〈x, y〉, where y is the value produced by

z; this is done in f . Otherwise, if w is the M-computation of a resumption u, it runs

pandA,B(u, z), which is done by g.

Now we focus on an algebraic property of this operation: commutativity. Note that

this cannot be expressed as pandA,B(w, z) = pandB,A(z, w), because the types are not

quite right. Let (pswap|P|A|B) be the isomorphism (A × B) → (B × A), where the

structure P:Prod provides the ×, and let Rstr be the morphism map of the functor Res;

the precise statement of commutativity is:

THM COMMUTATIVITY = {X1,X2|Dom} {w:E(Res X1)} {z:E(Res X2)}
Eq (pand z w) (Rstr (pswap P|X1|X2) (pand w z)).

Below is a sketch of the proof of THM COMMUTATIVITY, the gory LEGO details of which

are given in appendix H.

Let HA,B be the function of which pandA,B is the fixed point, i.e. , pandA,B =

yrr(HA,B), and let K : (Res(B) × Res(A) → Res(B × A)) → (Res(A) × Res(B) →

Res(A × B)) be the function K(f, w, z) = (Rstr pswap) (f(z, w)). THM COMMUTATIVITY

is an immediate consequence of:
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yrr(HA,B) = K(yrr(HB,A)).

To prove this equation we show that K ◦HB,A = HA,B ◦K and that yrr is uniform

(having proven the strictness of K on the blackboard). The equality K ◦HB,A = HA,B ◦K

follows from the commutativity of or and from the naturality of or and CH. The uni-

formity of yrr, is proven in appendix I. In particular, let the function Rfix of type

{S:Sum}{Z:Ind}{M:Monad}(Fix(T M))->Fix(Res S Z M) apply a uniform redefinition

to Fix-structures for the resumption constructor; we show:

Goal {S:Sum}{Z:Ind}{M:Monad}{F:Fix (T M)}

(AX_UNIFORMITY F) -> AX_UNIFORMITY (Rfix S Z M F);

The proof of this statement uses the naturality of the fixed point operator of the

structure Fix(T M) and the properties of inductive types, incliding Lambek’s lemma on

initial algebras, the proof of which is shown in appendix C.

7.4 A concrete model

The interpretation of pand requires a certain amount of categorical structure in Dom .

For example, Dom is assumed to support inductive types, whose universal properties are

used for proving that pand is commutative. We show that all this structure can be found

in a nontrivial model of XCC.

It is well known that, if k is an inaccessible cardinal number, all axioms of Zermelo-

Frankel set theory are true in Vk (see [End77, theorem 9L]), so that Vk is a miniature (so

to speak) version of the class of all sets. Luo’s ω-sets semantics for XCC (see [Luo82]) is

based on a hierarchy of set universes Vk indexed by inaccessible cardinals. More precisely,

as proposed by Tarski in 1938, ZF is augmented with a large cardinal axiom postulating

for each cardinal number the existence of a larger inaccessible cardinal. In particular,
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this axiom yields ω inaccessible cardinals k0 < k1 < k2 . . . for indexing universes Vki

with the required properties for interpreting the type hierarchy of XCC. Such universes

satisfy the membership relation Vki ∈ Vki+1 , the inclusion relation Vki ⊆ Vki+1 and support

predicative Π and Σ. An inaccessible k, with ki < k for all i, is also provided to form

the set of objects Vk of the all-containing category of sets, Vk = obj (Sets ), into which all

universes embed with no foundational trouble.

As shown by a well known result of Reynolds concerning System F, there are features

of XCC (viz. polymorphism) that cannot be given a simple set theoretic semantics. This

led to the development of realizability models based on ω-sets. In [Luo82], Luo interprets

types as ω-sets: Type(j) is interpreted as the full subcategory ω-Sets (j) of ω-Sets whose

objects have carrier in the universe Vkj . Then ω-Sets must be sufficiently large as to

contain all the ω-Sets (j) and Vk comes to the rescue.

Prop is interpreted as the category PER of partial equivalence relations on N , whose

good closure properties allow impredicative quantification over propositions. Such quan-

tification is modelled in the fibration of PERs over ω-Sets, where the ω-set P0 of all

PERs is a generic object. Note that PER is a small category and P0 is in ω-Sets (0), thus

validating the axiom Prop:Type(0).

Notation. We write ω-Sets for the category of ω-sets whose carrier is a set in the

universe Vk. The categories ω-Sets (j), for j = 0, 1 . . ., are similarly defined from uni-

verses Vkj and they are full subcategories of ω-Sets. We write ω-Sets 0(j) for the ω-

set (obj (ω-Sets (j)), ω × obj (ω-Sets (j))) of objects at level j and similarly ω-Sets 1(j)

for the object of arrows. Together, they form an internal subcategory of any of the

ω-Sets (j + 1). . . ω-Sets. We may refer to ω-Sets (j) as the intended external interpreta-

tion of Type(j) and to ω-Sets 0(j) as the internal one.

�

Let Dom 0 be an ω-set providing the objects of the internal category Dom of predo-

mains; the externalization map E:Dom->Type(0) is interpreted as a morphism of the form

Dom 0 → ω-Sets 0(0). The arrows of Dom are elements of the (Dom 0 × Dom 0)-indexed
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family {a : ω-Sets 1(0) | Dom (a) = E(X) ∧ cod (a) = E(Y )} obtained by pulling back

〈Dom , cod 〉 : ω-Sets 1(0) → ω-Sets 0(0)×ω-Sets 0(0) along [[E]]× [[E]]. The category ω-Sets

has all finite limits because it is a full reflective subcategory of a complete category and

hence such a pullback exists and it provides suitable domain and codomain maps for

Dom .

To get inductive types it is enough to choose PER as Dom . PER is cartesian closed

and the inclusion into ω-Sets factorizing through the equivalence Ψ : PER → Mod

between PER and the category of modest sets is a full and faithful functor; [[E]] is the

object map of such inclusion. Since PER is a small complete category, one gets initial

T-algebras from the limit to the forgetful functor PERT → PER (see [Lam93]).

To get fixed points we must give some domain structure to our objects. A suitable

condition to ask for is extensionality which induces a canonical partial order in the do-

mains of PERs (where antisymmetry holds modulo the relation). Moreover, any map

between extensional PERs is continuous with respect to a suitable notion of ω-chain.

So we further restrict PER and consider, as category of predomains, the algebraically

complete subcategory ExP of extensional PERs studied in [FMRS90].

ExP is a small-complete cartesian closed category. This is because any full reflective

subcategory of a small-complete category is also small-complete. Then, ExP gets all small

limits from PER and hence it is suitable for modelling inductive types. As for cartesian

closedness, we must make sure that, for A and B in ExP, the extensional PER A ⇒ B,

as defined in [FMRS90], is complete. A way of doing this is by brute force, that is by

showing that sup (µ) : A ⇒ B for any ascending sequence µ in A ⇒ B.

There is a more abstract proof based on the internal version of the above result on

limits. Firstly, ExP is an internal category in ω-Sets, just like PER. If D is internally

complete in ω-Sets, then the fibration [D] : Σ(D) → ω-Sets (see [Jac91, 1.4.4]) is complete

(see [Pho92, 2.3.5]), so that we get exponentials BA in D as ΠAB. Then, the fact that

PER is complete relative to ω-Sets ([Pho92, 4.3.20]) fires the above implications and gives

us exponentials in ExP.
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Finally, we axiomatize fixed points only for endomorphisms on types of programs

A ⇒ TB which we assume to have a least element. Such fixed points always exist since

any map between extensional PERs is continuous.



8 Directions for further research

We have presented three applications of calculi based on monads and considered a variety

of theoretical matters concerning the use of monads for modelling computation. Here,

we list some issues that we believe deserve further attention.

Evaluation relations. In chapter 4, we obtained evaluation relations from an endo-

functor and first order quantification; we argued that such relations are useful both

semantically and proof-theoretically. In order to use evaluation relations in a program

logic based on the computational metalanguage, we need general axioms relating them

with the operations val and let . For example, while M ⇐ val (M) can be expected to

hold of most notions of computation under the interpretation (4.8) of ⇐, not so for the

rule

M ⇐ E N ⇐ F (M)

N ⇐ let (F, E)

proposed in [CP92] to weaken the notion of evaluation in Fix-Logic, whose soundness

depends on strong assumptions on let . In a weaker version of the above rule, the hypo-

thesis N ⇐ F (M) can be replaced by val (N) = F (M). We have not yet investigated the

strength of this or other axiomatizations.

Another question to be considered is how ⇐, as in (4.8), depends on lifting. From

theorem 4.8.2, we reckon that (4.8) can be weaker (in the sense of producing a larger

relation) than (4.5) when the lifting monad ( )⊥ does not classify all predicates of the

logic. For example, if ( )⊥ is obtained from the trivial class of admissible monos including

216
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only isomorphisms, so that X⊥ ∼= X, we have that x ⇐1 w always holds. Then, in the

case of the powerset monad, we obtain ∗ ⇐1 ∅, even though ∗ 6∈ ∅. This raises the

question of how can ⇐ be strengthened or weakened depending on the choice of ( )⊥ and

whether this dependency can be exploited to capture different notions of evaluation.

A third question to investigate concerning the use of evaluation relations is whether, by

exploiting the idea of propositions-as-types, they can be used to combine computational

and dependent types. Computational types do not mix well with dependent types. To

see this, consider the formation rule for let :

Γ ` M : Tτ Γ, x : τ ` N : Tσ

Γ ` let x ⇐ M in N : Tσ

If the type σ depends on the variable x : τ , the type Tσ in the conclusion of this rule

would incorrectly still depend on x. Instead, such an x should be bound to a possible

value produced by M , as it is in let x ⇐ M in N . A relation ⇐A, viewed as the type

of all pairs of x : A and w : TA such that x ⇐A w, can be used in combination with

dependent products and sums to bind variables of type A to the result of A-computations.

In view of the formulae (4.6) and (4.7), two natural candidates are:

Π x ⇐ M. σ(x) def= Π x : A. (x ⇐A M) → σ(x)

Σx ⇐ M. σ(x) def= Σx : A. (x ⇐A M) × σ(x).

Logical relations and computation. Logical relations are widely used in the study

of lambda calculi [Tai67,Plo73,Sta85,MM85,Mit90,Her93] and programming language se-

mantics [Rey83,Abr90a,AJ91,MR91,MS92,OT93].

In [Her93], a categorical view of logical predicates for the simply typed lambda calculus

is given in terms of fibrations with logical structure. Let p : E → B be a fibred cartesian

closed category with indexed products over a cartesian closed category B; in this case,

E is also cartesian closed and p strictly preserves the cartesian closed structure [Her93,
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3.3.11]. The idea is that B is a category of semantic objects, E is a category of predicates

and the internal language of p provides a fragment of first order logic, with implication,

conjunction and universal quantification, to talk about the semantic objects. Given a

cartesian closed category L, viewed as a theory of the simply typed lambda calculus,

and a structure-preserving functor [[ ]] : L → B, viewed as an interpretation of L in B,

a family P = {Pσ}σ∈|L| of logical predicates, indexed by the types of L, is defined by a

structure preserving functor P : L → E such that p◦P = [[ ]].

To convince oneself that such a P is “logical,” consider the predicate Pσ→τ over

[[σ → τ ]] = [[σ]] → [[τ ]]; since P preserves the cartesian closed structure, we have that

Pσ→τ is equivalent to Pσ → Pτ , which, in the internal language of p is written:

f : σ → τ ` ∀x : σ. Pσ(x) ⊃ Pτ (f(x)).

However, when computation is involved, Kleisli exponentials are used to interpret

arrow types and hence the above picture must change. In chapter 3, programs of type

σ → τ were interpreted as elements of [[σ]] → T [[τ ]] and hence, in order to define the

formal approximation relation ≤σ→τ logically (section 3.6), we used a relation �τ ex-

tending ≤τ to computations. We believe that a general categorical picture of logical

relations involving computational types should emerge from an abstract understanding

of the relation between the two families ≤ and �.

Once such a picture is available, one can tackle the more ambitious goal of extending

monad constructors to logical relations in the attempt to modularize the study of proof-

theoretic and semantic properties of computation. For example, if ≤ and � are related

by an action T̃ of the underlying functor of the monad T on a relational structure,

corresponding families of relations could be obtained for the notion of computation F(T )

by applying an “action constructor” F̃ to T̃ .

Recursive predicates and computation. In section 5.4, while-programs were ex-

tended to include top-level assertions and, in section 5.5, this simple form of annotated
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programs were used in a proof of partial correctness. General annotated while-programs

are obtained by including annotated programs (p, θ) in the syntax of while-programs.

However, in order to express the weakest precondition of a while-loop whose body in-

cludes assertions, a fixed point operator on predicates is needed:

wp (while B do C od) def= µP. B ⊃ (wp (C) ∧ [C] P ).

In [BG87], A. Blass and Y. Gurevich deal with annotated while-programs by aug-

menting a universal quantification-free fragment of first order logic with inductive defin-

itions of predicates. The Existential Fixed-Point Logic thus obtained allows them to re-

move the expressivity hypothesis in Cook’s completeness theorem for Hoare logic [Coo78].

According to the authors, the need for such an hypothesis in Cook’s proof indicates that

first order logic is not the best one for dealing with programs. An interesting issue that we

would like to explore in further research is the interaction between evaluation modalities

and recursive predicates. This would also call for a comparison between a version of EL

extended with a µ operator and existing modal µ-calculi (see [Sti92]).

Duality. Relative interpretations of HML theories are characterized by theorem 6.8.12

as morphisms in the slice category LFP/λω-Cat. We argued that this characterization

can be adapted to any formal language whose models are described by a finite limit

theory:

Theorem 8.0.1 Any lfp category M fully embeds in the opposite of LFP/M via the

inclusion I : Mop → LFP /M mapping X to ?X/M : X/M → ∅/M ∼= M.

In order to turn the above theorem into a duality result, one should single out, by the

intrinsic properties of its objects, a full subcategory H of LFP/M such that the above

inclusion I restricts to H and is part of an adjoint equivalence Mop ∼= H. What we know

of the objects G : A → M of such an H is that they are monadic functors (because so

are the codomain functors codX : X/M → M) such that A ∼= G(∅)/M.



8. Directions for further research 220

Semantic constructors and logics. The theory of semantic constructors, which was

developed in chapter 6 for equational theories of computation, should be extended to

richer logics, such as EL. Theorem 5.1.10 is an example where we ask whether a property

expressed in EL is preserved by a semantic constructor. The closure of such constructors

with respect to satisfaction of formulae should be investigated in further research. Related

questions are whether the setting of synthetic domain theory that we adopted in chapter 4

is the most appropriate for studying the behaviour of semantic constructors with respect

to logics and whether the standard interpretation of logic is beneficial in this context.



A The metalanguage HML

In the simply typed lambda calculus, types can be described separately from the terms.

However, in some type theories where terms and types are mutually dependent, the

formation rules of the ones cannot be given independently from the formation rules of

the others. In HML, the integration of entities of different syntactic nature in a unique

formal system is pushed further by including, besides types, objects such as signatures

and theories that traditionally belong to the metatheory of the formal system.

Let s be a symbol in the set {sig , theory , kind , context , scheme , prop}; the prase “α s”

in the conclusion of an HML sequent states the well formedness of an object α of the

syntactic category corresponding to s, that is: signatures, theories, kinds, contexts, type

schemes and formulae. Among these symbols, kind and scheme are “variable universes,”

in the sense that a kind or a type scheme, that is an α such that (α s) is derivable, for

s ∈ {kind , scheme }, can be used in a context as the range of a variable. An object u of

kind k is called an operator, while an object e of type scheme σ is called a term. The

well formedness of operators and terms is stated by sequents whose conclusion is u : k

and e : σ respectively. Besides judgements of well formedness, HML features equality

judgements on operators and schemes, and truth judgements involving formulae of first

order logic with equality.

Note that prop could also be viewed as a variable universe: although there are no

explicit expressions whose “type” is a formula, a truth judgement Γ; ∆ `Σ,T φ (see below)

asserting the truth of φ under the assumptions in ∆, can be viewed as introducing an

invisible witness of φ. In this framework, the assumptions in ∆ can be viewed as extending

the context Γ and the axioms in the theory T as extending the signature Σ.

221
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Type schemes depend on kinds, in the sense that, in a judgement Γ, v : k ` σ scheme ,

σ may contain a free occurrence of v of kind k. Note that a scheme Γ ` σ scheme cannot

contain any variable x : σ ranging over a scheme that may be in Γ, that is: schemes do not

depend on schemes. Formulae can contain both operator and term variables. Dependency

relations between sorts [Jac91, 2.1.1] are often used to present type theories in view of a

study of abstract models based on fibrations.

HML is inspired by the type theory described in [Mog91a]; the following definition

comes, with minor changes, from [CM93], to which we added the raw syntax and the

rules (add-P ), (eqn) and (P ).

Let Var O and Var E be disjoint countable sets of variables and let Const K , Const O,

Const S, Const E and Const P be disjoint sets of constants. The sets of raw kinds (K),

operators (U), type schemes (S), terms (E), formulae (P), contexts (C), signatures (S)

and theories (T) of HML are given by the following grammar:

k ::= K | 1 | k1 × k2 | k1 ⇒ k2

u ::= v | C | ∗ | 〈u1, u2〉 | πi(u) | λv : k. u | u1(u2)

σ ::= u | S(u) | 1 | σ1 × σ2 | σ1 ⇒ σ2 | Π v : k. σ

e ::= x | c | ∗ | 〈e1, e2〉 | πi(e) | λx : σ. e | e1(e2) | Λ v : k. e | e[u]

φ ::= e1 =σ e2 | P (u, e) | false | φ1 ∧ φ2 | φ1 ∨ φ2 | φ1 ⊃ φ2 | ∀ v : k. φ | ∃ v : k. φ |

∀x : σ. φ | ∃x : σ. φ

Γ ::= ∅ | Γ, v : k | Γ, x : σ

Σ ::= ∅ | Σ, K : kind | Σ, C : k | Σ, S : k ⇒ scheme | Σ, c : σ |

Σ, P : (v : k)σ ⇒ prop

T ::= ∅ | T , φ

where v ∈ Var O, x ∈ Var E , K ∈ Const K , C ∈ Const O, S ∈ Const S, c ∈ Const E and

P ∈ Const P . The above grammar defines the raw syntax of HML.

The usual notions of free variable, substitution and α-conversion applies to raw oper-

ators, schemes, terms and formulae. The only nonstandard notation occurs in signatures
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in the arity of predicates P : (v : k)σ ⇒ prop ; this indicates that σ has at most one free

variable v of kind k.

The sequents of HML come in different shapes, depending on the kind of judgement

they make. In the following table, the expressions in the first column define the set of

judgements whose elements are classified in the second column and written as in the

third.

S × K kind formation `Σ k kind

S × C × U × K operator formation Γ `Σ u : k

S × C × S scheme formation Γ `Σ σ scheme

S × C × E × S term formation Γ `Σ e : σ

S × C × P formula formation Γ `Σ φ prop

S × C context formation `Σ Γ context

S × C × U × U × K operator equality Γ `Σ u1 = u2 : k

S × C × S × S scheme equality Γ `Σ σ1 = σ2

S × T × C × P∗ × P truth Γ, ∆ `Σ,T φ

where ∆ ∈ P∗ is a possibly empty sequence of raw formulae. The type theory HML is

defined by the following inference rules over the above sets of judgements:

Signatures

start
` ∅ sig

add-K
` Σ sig

` Σ, K : kind sig
K 6∈ dom (Σ)

add-C
`Σ k kind

` Σ, C : k sig
C 6∈ dom (Σ)

add-S
`Σ k kind

` Σ, S : k ⇒ scheme sig
S 6∈ dom (Σ)
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add-c
∅ `Σ σ scheme

` Σ, c : σ sig
c 6∈ dom (Σ)

add-P
v : k `Σ σ scheme

` Σ, P : (v : k)σ ⇒ prop sig
P 6∈ dom (Σ)

Theories

∅
` Σ sig

`Σ ∅ theory
add-prop

`Σ T theory `Σ φ prop

`Σ T, φ theory

Kinds

K
` Σ sig

`Σ K kind
Σ(K) = kind 1

` Σ sig

`Σ 1 kind
Ω

` Σ sig

`Σ Ω kind

×
`Σ k1 kind `Σ k2 kind

`Σ k1 × k2 kind
⇒

`Σ k1 kind `Σ k2 kind

`Σ k1 ⇒ k2 kind

Contexts

∅
` Σ sig

`Σ ∅ context

add-v
`Σ Γ context `Σ k kind

`Σ Γ, v : k context
v 6∈ dom (Γ)

add-x
`Σ Γ context Γ `Σ σ scheme

`Σ Γ, x : σ context
x 6∈ dom (Γ)
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Operators

v
`Σ Γ context

Γ `Σ v : k
Γ(v) = k C

`Σ Γ context

Γ `Σ C : k
Σ(C) = k 1I

`Σ Γ context

Γ `Σ ∗ : 1

×I
Γ `Σ u1 : k1 Γ `Σ u2 : k2

Γ `Σ 〈u1, u2〉 : k1 × k2

×E
Γ `Σ u : k1 × k2

Γ `Σ πi(u) : ki

⇒I
Γ, v : k1 `Σ u : k2

Γ `Σ (λv : k1. u) : k1 ⇒ k2

⇒E
Γ `Σ u : k1 ⇒ k2 Γ `Σ u1 : k1

Γ `Σ u(u1) : k2

Operator equality

Operator equality is the congruence generated by the following rules:

1.η
Γ `Σ u : 1

Γ `Σ ∗ = u : 1

×.β
Γ `Σ u1 : k1 Γ `Σ u2 : k2

Γ `Σ πi〈u1, u2〉 = ui : ki

×.η
Γ `Σ u : k1 × k2

Γ `Σ 〈π1(u), π2(u)〉 = u : k1 × k2

⇒ .β
Γ, v : k1 `Σ u2 : k2 Γ `Σ u1 : k1

Γ `Σ (λv : k1. u2)(u1) = [u1/v]u2 : k2

⇒ .η
Γ `Σ u : k1 ⇒ k2

Γ `Σ (λv : k1. u(v)) = u : k1 ⇒ k2

Type schemes

1
`Σ Γ context

Γ `Σ 1 scheme
S

Γ `Σ u : k

Γ `Σ S(u) scheme
Σ(S) = k ⇒ scheme
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type
Γ `Σ u : Ω

Γ `Σ u scheme
×

Γ `Σ σ1 scheme Γ `Σ σ2 scheme

Γ `Σ σ1 × σ2 scheme

⇒
Γ `Σ σ1 scheme Γ `Σ σ2 scheme

Γ `Σ σ1 ⇒ σ2 scheme
Π

Γ, v : k `Σ σ scheme

Γ `Σ (Π v : k. σ) scheme

Type scheme equality

Type scheme equality is the congruence induced by operator equality.

Terms

x
`Σ Γ context

Γ `Σ x : σ
Γ(x) = σ c

`Σ Γ context

Γ `Σ c : σ
Σ(c) = σ 1I

`Σ Γ context

Γ `Σ ∗ : 1

×I
Γ `Σ e1 : σ1 Γ `Σ e2 : σ2

Γ `Σ 〈e1, e2〉 : σ1 × σ2

×E
Γ `Σ e : σ1 × σ2

Γ `Σ πi(e) : σi

⇒I
Γ, x : σ1 `Σ e : σ2

Γ `Σ (λx : σ1. e) : σ1 ⇒ σ2

⇒E
Γ `Σ e : σ1 ⇒ σ2 Γ `Σ e1 : σ1

Γ `Σ e(e1) : σ2

ΠI
Γ, v : k `Σ e : σ

Γ `Σ (Λ v : k. e) : (Π v : k. σ)
ΠE

Γ `Σ e : (Π v : k. σ) Γ `Σ u : k

Γ `Σ e[u] : [u/v]σ

conv
Γ `Σ e : σ1 Γ `Σ σ1 = σ2

Γ `Σ e : σ2



A. The metalanguage HML 227

Formulae

Formulae are obtained by applying the usual logical operators of first order predicate

calculus to the atomic formulae generated by the following rules:

eqn
Γ `Σ e1 : σ Γ `Σ e2 : σ

Γ `Σ e1 =σ e2 prop

P
Γ, v : k `Σ σ scheme Γ `Σ u : k Γ `Σ e : [u/v]σ

Γ `Σ P (u, e) prop
Σ(P ) = (v : k)σ ⇒ prop

Truth inference

The inference rules for truth judgements include the standard rules of intuitionistic pre-

dicate calculus with equality. Axioms are introduced by the rule:

axiom
`Σ T theory

Γ `Σ,T φ
φ ∈ T

The equational fragment of HML is the congruence generated by operator equality

and the following rules:

1.η
`Σ T theory Γ `Σ e : 1

Γ `Σ,T ∗ =1 e

×.β
`Σ T theory Γ `Σ e1 : σ1 Γ `Σ e2 : σ2

Γ `Σ,T πi〈e1, e2〉 =σi ei

×.η
`Σ T theory Γ `Σ e : σ1 × σ2

Γ `Σ,T 〈π1(e), π2(e)〉 =σ1×σ2 e
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⇒ .β
`Σ T theory Γ, x : σ1 `Σ e2 : σ2 Γ `Σ e1 : σ1

Γ `Σ,T (λx : σ1. e2)e1 =σ2 [e1/x]e2

⇒ .η
`Σ T theory Γ `Σ e : σ1 ⇒ σ2

Γ `Σ,T λx : σ1. e(x) =σ1⇒σ2 e

Π.β
`Σ T theory Γ, v : k `Σ e : σ Γ `Σ u : k

Γ `Σ,T (Λ v : k. e)[u] = [u/v]σ [u/v]e

Π.η
`Σ T theory Γ `Σ e : (∀v : k.σ)

Γ `Σ,T Λ v : k. e[v] =Πv:k.σ e

conv-eq
Γ `Σ,T e1 =σ1 e2 Γ `Σ σ1 = σ2

Γ `Σ,T e1 =σ2 e2



B Dom, the category of discourse

[Dom1:Type = Sigma [X:Dom](Sigma [Y:Dom](E X)->E Y)];

[Dom2:Type = Sigma [X:Dom](Sigma [Y:Dom](Sigma [Z:Dom]

indprod ((E X)->E Y) (E Y)->E Z))];

(* defn mkarr = ... : {X,Y|Dom}((E X)->E Y)->Dom1 (internalization) *)

[d0 = sig_pi1|Dom|[X:Dom](sigma|Dom|[Y:Dom](E X)->E Y):Dom1->Dom];

[d1 = [Z: Dom1]sig_pi1 (sig_pi2 Z):Dom1->Dom];

[i = [X:Dom] mkarr ([x:E X] x):Dom->Dom1];

[o = [fg:Dom2] mkarr ([x:E (sig_pi1 fg)]

Snd (sig_pi2 (sig_pi2 (sig_pi2 fg)))

(Fst (sig_pi2 (sig_pi2 (sig_pi2 fg))) x)):Dom2->Dom1];
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C Signatures and theories

[Sum = <sum:Dom->Dom->Dom>

<in1:{X1,X2|Dom}(E X1)->E(sum X1 X2)>

<in2:{X1,X2|Dom}(E X2)->E(sum X1 X2)>

<case:{X1,X2,X|Dom}

((E X1)->E X)->

((E X2)->E X)->

(E(sum X1 X2))->E X> Unit ];

[AX_INL = {S:Sum}{X1,X2,X|Dom}{f:(E X1)->E X}{g:(E X2)->E X}

Eq ([x1:E X1] (case S f g (in1 S x1))) f];

[AX_INR = {S:Sum}{X1,X2,X|Dom}{f:(E X1)->E X}{g:(E X2)->E X}

Eq ([x2:E X2] (case S f g (in2 S x2))) g];

[AX_CASE = {S:Sum}{X1,X2,X|Dom}{h: (E(sum S X1 X2)) -> (E X)}

Eq (case S ([x:(E X1)]h(in1 S x)) ([x:(E X2)]h(in2 S x))) h];

[Prod = <prod:Dom->Dom->Dom>

<pin:{X1,X2|Dom}(E X1)->(E X2)->E(prod X1 X2)>

<pout1:{X1,X2|Dom}(E (prod X1 X2))->E X1>

<pout2:{X1,X2|Dom}(E (prod X1 X2))->E X2> Unit ];

[Exponential = <arr: Dom->Dom->Dom>

<lmb: {X,Y|Dom}((E X)->E Y)->E(arr X Y)>

<app: {X,Y|Dom}(E (arr X Y))->(E X)->E Y> Unit];

The usual axioms for products and exponentials can be defined as for sums.
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[Ind = <mu:Functor->Dom>

<alg:{F|Functor}(E (FT F(mu F)))->E(mu F)>

<it:{F|Functor}{X|Dom}

((E(FT F X))->E X) -> (E (mu F)) -> E X> Unit ];

[AX_WEAK_INITIAL = {Z:Ind}{F|Functor}{X|Dom}

{a:(E (FT F X)) -> E X}

Eq ([z: E (FT F (mu Z F))] it Z a (alg Z z))

([z: E (FT F (mu Z F))] a (str F (it Z a) z))];

[AX_UNIVERSAL = {Z:Ind}{F|Functor}{X|Dom}

{a:(E (FT F X)) -> E X}

{g:(E (mu Z F)) -> E X}

({z: E(FT F (mu Z F))} Eq (g(alg Z z)) (a (str F g z)))

-> Eq ([x: E (mu Z F)] it Z a x) g];
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The operations in Ind are shown to satisfy Lambek’s lemma, that is: the initial

F-algebra alg is an isomorphism with inverse coalg = it(F(alg)):

[coalg [Z:Ind][F|Functor] = [x:E (mu Z F)] it Z (str F(alg Z|F)) x];

(* Lemma LM_LAMBEK1: it(alg)=id

Lemma LM_LAMBEK2: coalg;alg=id

Lemma LM_LAMBEK3: alg;coalg=id *)

[LM_LAMBEK1 = {Z:Ind}{F|Functor}

Eq ([x:E (mu Z F)]x) ([x:E (mu Z F)] it Z (alg Z|F) x)];

Goal LM_LAMBEK1;

Intros;

Claim {z:E (FT F (mu Z F))} Eq (alg Z z)(alg Z|F (str F ([y:E (mu Z F)]y) z));

Qrepl ax_universal Z (alg Z|F) ([y:E (mu Z F)]y) ?+1;

Immed;

Intros;

(* Due to a LEGO bug, "Qrepl ax_str_id..." would not work here *)

Refine (Eq_sym(ax_str_id F|(mu Z F)))

([k:(E (FT F (mu Z F)))->E (FT F (mu Z F))] P1 (alg Z (k z))) H1;

Save lm_Lambek1;

[LM_LAMBEK2 = {Z:Ind}{F|Functor}

Eq ([x:E (mu Z F)]x) ([x:E (mu Z F)] alg Z (coalg Z x))];

[LM_LAMBEK3 = {Z:Ind}{F|Functor}

Eq ([z:E (FT F(mu Z F))] z)

([z:E (FT F(mu Z F))] coalg Z (alg Z z))];

The proofs of LM LAMBEK2 and LM LAMBEK3 are similar to the one above.



D Encoding MLT

[Grd: Type];

Inductive [Ty: Type] Constructors

[GR: Grd->Ty]

[AR: Ty->Ty->Ty]

[TT: Ty->Ty];

[Con = list Ty]

[Con_elim = list_elim Ty];

Inductive [Var:Con->Ty->Type] Constructors

[Vo: {c:Con}{t:Ty}Var (cons t c) t]

[Weak: {c|Con}{s:Ty}{t|Ty}(Var c t)->Var (cons s c) t];

Inductive [Exp:Con->Ty->Type] Constructors

[VAR: {c|Con}{t|Ty}(Var c t)->Exp c t]

[LMB: {c|Con}{s,t|Ty}(Exp (cons s c) t)->Exp c (AR s t)]

[APP: {c|Con}{s,t|Ty}(Exp c (AR s t))->(Exp c s)->Exp c t]

[LET: {c|Con}{s,t|Ty}(Exp (cons s c) (TT t))->(Exp c (TT s))->Exp c (TT t)]

[VAL: {c|Con}{t|Ty}(Exp c t)->Exp c (TT t)];
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E Interpretation of MLT

[I_Grd: Grd->Dom];

[I_Ty [Ex:Exponential] [M:Monad]: Ty->Dom = Ty_elim

([_|Ty]Dom)

I_Grd

([_,_|Ty][X,Y:Dom]arr Ex X Y)

([_|Ty][X:Dom]T M X)];

[I_Con [P:Prod] [Ex:Exponential] [M:Monad]: Con->Dom = Con_elim

([_|Con]Dom)

(one:Dom)

([t:Ty][_:Con][X:Dom] prod P X (I_Ty Ex M t))];

[I_Var [P:Prod] [Ex:Exponential] [M:Monad] = Var_elim

([c|Con][t|Ty][_:Var c t](E (I_Con P Ex M c))->E (I_Ty Ex M t))

([c:Con][t:Ty]pout2 P|(I_Con P Ex M c)|(I_Ty Ex M t))

([c|Con][s:Ty][t|Ty][_:Var c t][F:(E (I_Con P Ex M c))->E (I_Ty Ex M t)]

[x: E (prod P (I_Con P Ex M c) (I_Ty Ex M s))] F (pout1 P x))];
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[I_Exp [P:Prod] [Ex:Exponential] [M:Monad] =

[I_Ty=I_Ty Ex M] [I_Con=I_Con P Ex M] [I_Var=I_Var P Ex M] Exp_elim

([c|Con][t|Ty][_:Exp c t](E (I_Con c))->E (I_Ty t))

(* variables *)

([c|Con][t|Ty][v:Var c t] I_Var v)

(* lambda abstraction *)

([c|Con][s,t|Ty][_:Exp (cons s c) t]

[F:(E (I_Con (cons s c)))->E (I_Ty t)]

[x: E (I_Con c)] lmb Ex ([y: E (I_Ty s)] F (pin P x y)))

(* application *)

([c|Con][s,t|Ty][_:Exp c (AR s t)][_:Exp c s]

[F:(E (I_Con c))->E (I_Ty (AR s t))]

[G:(E (I_Con c))->E (I_Ty s)]

[x:E (I_Con c)] app Ex (F x) (G x))

(* composition (let) *)

([c|Con][s,t|Ty][_:Exp (cons s c) (TT t)][_:Exp c (TT s)]

[F:(E (I_Con (cons s c)))->E (I_Ty (TT t))]

[G:(E (I_Con c))->E (I_Ty (TT s))]

[x:E (I_Con c)] let M ([y:E (I_Ty s)] F(pin P x y)) (G x))

(* lifting (val) *)

([c|Con][t|Ty][_:Exp c t][F:(E (I_Con c))->E (I_Ty t)]

[x:E (I_Con c)]val M (F x))];



F Correctness of the exception constructor

Goal {S:Sum}{Exn:Dom}{M:Monad}AX_RUNIT (Exception_Constructor S Exn M);

Normal;

Intros;

Equiv P ([x:E X]([z:E(sum S X Exn)]

(let M (case S f ([x’2:E Exn] val M (in2 S x’2)))

(val M z)))(in1 S x));

Qrepl Eq_sym (ax_runit M|(sum S X Exn)|(sum S Y Exn)|

(case S f ([x’2:E Exn] val M (in2 S x’2))));

Qrepl ax_inl

S|X|Exn|(T M (sum S Y Exn))|f|([x’2:E Exn] val M (in2 S x’2));

Immed;
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Goal {S:Sum}{Exn:Dom}{M:Monad}AX_ASSOC (Exception_Constructor S Exn M);

Normal;

Intros;

Qrepl Eq_sym (ax_assoc M|(sum S X Exn)|(sum S Y Exn)|(sum S Z Exn)|

c|(case S f ([x:E Exn] val M (in2 S x)))|

(case S g ([x:E Exn] val M (in2 S x))));

Claim {S|Sum}{M|Monad}{X,Y,A,B|Dom}{k:(E A)->(E (T M B))}

{f:(E X)->(E (T M A))}{g: (E Y)->(E (T M A))}

Eq ([w: E (sum S X Y)] let M k (case S f g w))

(case S ([x: E X] let M k (f x))

([y: E Y] let M k (g y)));

Qrepl ?+1|S|M|X|Exn|(sum S Y Exn)|(sum S Z Exn)|

(case S g ([x’2:E Exn] val M (in2 S x’2)))|

f|([x’2:E Exn] val M (in2 S x’2));

Equiv P (let M (case S

([x:E X]let M (case S g ([x’2:E Exn] val M (in2 S x’2)))

(f x))

([y:E Exn]

([z: E (sum S Y Exn)]

let M (case S g ([x’2:E Exn] val M (in2 S x’2)))

(val M z))(in2 S y)))

c);

Qrepl Eq_sym (ax_runit M|(sum S Y Exn)|(sum S Z Exn)|

(case S g ([x’2:E Exn] val M (in2 S x’2))));

Qrepl ax_inr S|Y|Exn|(T M (sum S Z Exn))|g|([x’2:E Exn] val M (in2 S x’2));

Immed;

Normal;

Intros;

Equiv P1 (case S1 ([x:E X1]([z:E (T M1 A)] let M1 k z)(f1 x))

([y:E Y1]([z:E (T M1 A)] let M1 k z)(g1 y)));

Qrepl Sum_comp|S1|X1|Y1|(T M1 A)|(T M1 B)|

f1|g1|([z:E (T M1 A)] let M1 k z);

Immed;



G The operator pand of parallel composition

Let F be the constructor of resumptions. Given M:Monad, let functions ROR and RY apply

uniform redefinitions to the operations of structures N:(Nondetm M) and F:Fix(T M) to

produce operations of structures (F N):(Nondetm F M) and (F F):Fix(T F M). The

operator pand of parallel composition for computations with resumptions is defined as

follows:

[pand [S:Sum] [P:Prod] [Z:Ind] [M:Monad] [N:Nondetm M] [F:Fix (T M)] =

[resumptions = Resumptions S Z M]

[Res: Dom->Dom = resumptions.1]

[Rval: {X|Dom}(E X)->E (Res X) = resumptions.2.1]

[Rlet: {X1,X2|Dom}((E X1)->E (Res X2))->(E (Res X1))->E (Res X2) =

resumptions.2.2.1]

[CH: {X1,X2|Dom}((E X1)->E (Res X2))->((E (Res X1))->E (Res X2))->

(E (Res X1))->E (Res X2) = resumptions.2.2.2.2.1]

[orr = ROR S Z M N]

[yrr =RY S Z M F]

[X,Y|Dom] [w:E(Res X)] [z:E(Res Y)]

(((yrr [h:(E (prod P (Res X)(Res Y)))->E (Res (prod P X Y))]

[v:E (prod P (Res X)(Res Y))]

[v1:E (Res X)=pout1 P v] [v2:E (Res Y)=pout2 P v]

orr (CH ([x:E X] Rlet ([y:E Y] Rval (pin P x y)) v2)

([w:E (Res X)] h (pin P w v2)) v1)

(CH ([y:E Y] Rlet ([x:E X] Rval (pin P x y)) v1)

([z:E (Res Y)] h (pin P v1 z)) v2)) (pin P w z)):

E (Res (prod P X Y)))];
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Goal THM_COMMUTATIVITY;

Expand THM_COMMUTATIVITY pand pand;

intros;

[CH=resumptions.2.2.2.2.1][orr=ROR S Z M N][yrr=RY S Z M F];

Intros 1;

Equiv P1

(([X,Y|Dom][f:(E X)->E Y]Rlet

([x:E X]Rval (f x))) (pswap P|X1|X2)

((yrr ([h:(E (prod P (Res1 X1) (Res1 X2)))->E (Res1 (prod P X1 X2))]

[v:E (prod P (Res1 X1) (Res1 X2))][v1=pout1 P v][v2=pout2 P v]

orr (CH ([x:E X1]Rlet ([y:E X2]Rval (pin P x y)) v2)

([w’16:E (Res1 X1)]h (pin P w’16 v2)) v1)

(CH ([y:E X2]Rlet ([x:E X1]Rval (pin P x y)) v1)

([z’16:E (Res1 X2)]h (pin P v1 z’16)) v2))

(pin P w z))));

Qrepl Eq_sym (lm_pswap1 P z w);
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Equiv P1

(([K:(E (prod P (Res1 X1) (Res1 X2)))->E (Res1 (prod P X1 X2))]

[v:E (prod P (Res1 X2) (Res1 X1))]

([X,Y|Dom][f:(E X)->E Y]Rlet ([x:E X]Rval (f x))) (pswap P|X1|X2)

(K (pswap P v)))

(yrr ([h:(E (prod P (Res1 X1) (Res1 X2)))->E (Res1 (prod P X1 X2))]

[v:E (prod P (Res1 X1) (Res1 X2))][v1=pout1 P v][v2=pout2 P v]

orr (CH ([x:E X1]Rlet ([y:E X2]Rval (pin P x y)) v2)

([w’16:E (Res1 X1)]h (pin P w’16 v2)) v1)

(CH ([y:E X2]Rlet ([x:E X1]Rval (pin P x y)) v1)

([z’16:E (Res1 X2)]h (pin P v1 z’16)) v2)))

(pin P z w));

Claim STRICT

([K:(E (prod P (Res1 X1) (Res1 X2)))->E (Res1 (prod P X1 X2))]

[v:E (prod P (Res1 X2) (Res1 X1))]

([X,Y|Dom][f:(E X)->E Y]Rlet ([x:E X]Rval (f x))) (pswap P|X1|X2)

(K (pswap P v)));

Claim

[h = ([K:(E (prod P (Res1 X1) (Res1 X2)))->E (Res1 (prod P X1 X2))]

[v:E (prod P (Res1 X2) (Res1 X1))]

([X,Y|Dom][f:(E X)->E Y]Rlet ([x:E X]Rval (f x))) (pswap P|X1|X2)

(K (pswap P v)))]

[f = ([h:(E (prod P (Res1 X1) (Res1 X2)))->E (Res1 (prod P X1 X2))]

[v:E (prod P (Res1 X1) (Res1 X2))][v1=pout1 P v][v2=pout2 P v]

orr (CH ([x:E X1]Rlet ([y:E X2]Rval (pin P x y)) v2)

([w’16:E (Res1 X1)]h (pin P w’16 v2)) v1)

(CH ([y:E X2]Rlet ([x:E X1]Rval (pin P x y)) v1)
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([z’16:E (Res1 X2)]h (pin P v1 z’16)) v2))]

[g = ([h:(E (prod P (Res1 X2) (Res1 X1)))->E (Res1 (prod P X2 X1))]

[v:E (prod P (Res1 X2) (Res1 X1))][v1=pout1 P v][v2=pout2 P v]

orr (CH ([x:E X2]Rlet ([y:E X1]Rval (pin P x y)) v2)

([w’16:E (Res1 X2)]h (pin P w’16 v2)) v1)

(CH ([y:E X1]Rlet ([x:E X2]Rval (pin P x y)) v1)

([z’16:E (Res1 X1)]h (pin P v1 z’16)) v2))]

{k:(E (prod P (Res1 X1) (Res1 X2)))->E (Res1 (prod P X1 X2))}

Eq (h (f k)) (g (h k));

Qrepl Eq_sym (lm_Res_uniformity S Z M F (ax_uniformity F)

([K:(E (prod P (Res1 X1) (Res1 X2)))->E (Res1 (prod P X1 X2))]

[v:E (prod P (Res1 X2) (Res1 X1))]

([X,Y|Dom][f:(E X)->E Y]Rlet ([x:E X]Rval (f x))) (pswap P|X1|X2)

(K (pswap P v)))

?+1

([h:(E (prod P (Res1 X1) (Res1 X2)))->E (Res1 (prod P X1 X2))]

[v:E (prod P (Res1 X1) (Res1 X2))][v1=pout1 P v][v2=pout2 P v]

orr (CH ([x:E X1]Rlet ([y:E X2]Rval (pin P x y)) v2)

([w’16:E (Res1 X1)]h (pin P w’16 v2)) v1)

(CH ([y:E X2]Rlet ([x:E X1]Rval (pin P x y)) v1)

([z’16:E (Res1 X2)]h (pin P v1 z’16)) v2))

([h:(E (prod P (Res1 X2) (Res1 X1)))->E (Res1 (prod P X2 X1))]

[v:E (prod P (Res1 X2) (Res1 X1))][v1=pout1 P v][v2=pout2 P v]

orr (CH ([x:E X2]Rlet ([y:E X1]Rval (pin P x y)) v2)

([w’16:E (Res1 X2)]h (pin P w’16 v2)) v1)

(CH ([y:E X1]Rlet ([x:E X2]Rval (pin P x y)) v1)

([z’16:E (Res1 X1)]h (pin P v1 z’16)) v2))

?+2
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(pin P z w));

Immed;

Refine ax_strict

([resumptions=Resumptions S Z M][Res’3=resumptions.1]

[Rval=resumptions.2.1][Rlet=resumptions.2.2.1]

[K:(E (prod P (Res’3 X1) (Res’3 X2)))->E (Res’3 (prod P X1 X2))]

[v:E (prod P (Res’3 X2) (Res’3 X1))]Rlet ([x:E (prod P X1 X2)]Rval

(pswap P|X1|X2 x)) (K (pswap P v)));

intros;

Refine Eq_sym;

Expand f g h;

Refine (ax_extensionality

([v:E (prod P (Res1 X2) (Res1 X1))][v1=pout1 P v][v2=pout2 P v]

orr (CH ([x:E X2]Rlet ([y:E X1]Rval (pin P x y)) v2)

([w’16:E (Res1 X2)]Rlet

([x:E (prod P X1 X2)]Rval (pswap P|X1|X2 x))

(k (pswap P (pin P w’16 v2)))) v1)

(CH ([y:E X1]Rlet ([x:E X2]Rval (pin P x y)) v1)

([z’16:E (Res1 X1)]Rlet

([x:E (prod P X1 X2)]Rval (pswap P|X1|X2 x))

(k (pswap P (pin P v1 z’16)))) v2))

([v:E (prod P (Res1 X2) (Res1 X1))]

Rlet ([x:E (prod P X1 X2)]Rval (pswap P|X1|X2 x))
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([v1=pout1 P (pswap P v)][v2=pout2 P (pswap P v)]

orr (CH ([x:E X1]Rlet ([y:E X2]Rval (pin P x y)) v2)

([w’16:E (Res1 X1)]k (pin P w’16 v2)) v1)

(CH ([y:E X2]Rlet ([x:E X1]Rval (pin P x y)) v1)

([z’16:E (Res1 X2)]k (pin P v1 z’16)) v2))));

Intros v P2 H1;

Qrepl Eq_sym(lm_pswap2 P v);

Qrepl Eq_sym(lm_pswap3 P v);

Qrepl Eq_sym (ax_or_naturality

(Rnd S Z M N)(pswap P|X1|X2)

(CH ([x:E X1]Rlet ([y:E X2]Rval (pin P x y)) (pout1 P v))

([w’16:E (Res1 X1)]k (pin P w’16 (pout1 P v)))(pout2 P v))

(CH ([y:E X2]Rlet ([x:E X1]Rval (pin P x y)) (pout2 P v))

([z’16:E (Res1 X2)]k (pin P (pout2 P v) z’16))(pout1 P v)));

Qrepl ax_ch_naturality S Z M (pswap P|X1|X2)

([x:E X1]Rlet ([y:E X2]Rval (pin P x y)) (pout1 P v))

([w’16:E (Res1 X1)]k (pin P w’16 (pout1 P v)))

(pout2 P v);

Qrepl ax_ch_naturality S Z M (pswap P|X1|X2)

([y:E X2]Rlet ([x:E X1]Rval (pin P x y)) (pout2 P v))

([z’16:E (Res1 X2)]k (pin P (pout2 P v) z’16))

(pout1 P v);
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Qrepl (ax_extensionality

([y:E X2] Rlet ([x:E (prod P X1 X2)]Rval (pswap P|X1|X2 x))

(Rlet ([x:E X1]Rval (pin P x y)) (pout2 P v)))

([y:E X2] (Rlet ([x:E X1]Rlet ([u:E (prod P X1 X2)] Rval (pswap P|X1|X2 u))

(Rval (pin P x y)))

(pout2 P v)))

([y:E X2](Eq_sym

(ax_assoc (Resumptions_Constructor S Z M)

(pout2 P v)

([x:E X1]Rval (pin P x y))

([x:E (prod P X1 X2)]Rval (pswap P|X1|X2 x))))));

Equiv P2

(orr (CH ([x:E X1] Rlet ([x:E (prod P X1 X2)]Rval (pswap P|X1|X2 x))

(Rlet ([y:E X2]Rval (pin P x y)) (pout1 P v)))

([w’16:E (Res1 X1)]Rlet([x:E (prod P X1 X2)]Rval(pswap P|X1|X2 x))

(k (pin P w’16 (pout1 P v)))) (pout2 P v))

(CH ([y:E X2]

(Rlet ([x:E X1](([p: E (prod P X1 X2)]Rlet

([u:E (prod P X1 X2)] Rval (pswap P|X1|X2 u))

(Rval p)) (pin P x y)))

(pout2 P v)))

([z’16:E (Res1 X2)]Rlet([x:E (prod P X1 X2)]Rval(pswap P|X1|X2 x))

(k (pin P (pout2 P v) z’16))) (pout1 P v)));

Qrepl Eq_sym (ax_runit (Resumptions_Constructor S Z M)

([u:E (prod P X1 X2)] Rval (pswap P|X1|X2 u)));

Claim {P:Prod}{X1,X2|Dom}
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Eq ([x:E X1][y:E X2]pswap P|X1|X2 (pin P x y))

([x:E X1][y:E X2] pin P y x);

Equiv P2

(orr (CH ([x:E X1] Rlet ([x:E (prod P X1 X2)]Rval (pswap P|X1|X2 x))

(Rlet ([y:E X2]Rval (pin P x y)) (pout1 P v)))

([w’16:E (Res1 X1)]Rlet([x:E (prod P X1 X2)]Rval(pswap P|X1|X2 x))

(k (pin P w’16 (pout1 P v)))) (pout2 P v))

(CH (([K:(E X1)->(E X2)->E (prod P X2 X1)]

([y:E X2]Rlet ([x:E X1]Rval (K x y))(pout2 P v)))

([a:E X1][b:E X2]pswap P|X1|X2 (pin P a b)))

([z’16:E (Res1 X2)]Rlet([x:E (prod P X1 X2)]Rval(pswap P|X1|X2 x))

(k (pin P (pout2 P v) z’16))) (pout1 P v)));

Qrepl ?+1 P|X1|X2;

Qrepl (ax_extensionality

([x:E X1] Rlet ([x:E (prod P X1 X2)]Rval (pswap P|X1|X2 x))

(Rlet ([y:E X2]Rval (pin P x y)) (pout1 P v)))

([x:E X1] (Rlet ([y:E X2]Rlet ([u:E (prod P X1 X2)] Rval (pswap P|X1|X2 u))

(Rval (pin P x y)))

(pout1 P v)))

([x:E X1](Eq_sym

(ax_assoc (Resumptions_Constructor S Z M)

(pout1 P v)

([y:E X2]Rval (pin P x y))

([x:E (prod P X1 X2)]Rval (pswap P|X1|X2 x))))));

Equiv P2
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(orr (CH ([x:E X1]

(Rlet ([y:E X2](([p: E (prod P X1 X2)]Rlet

([u:E (prod P X1 X2)]Rval (pswap P|X1|X2 u))

(Rval p)) (pin P x y)))

(pout1 P v)))

([w’16:E (Res1 X1)]Rlet

([x:E (prod P X1 X2)]Rval (pswap P|X1|X2 x))

(k (pin P w’16 (pout1 P v)))) (pout2 P v))

(CH ([y:E X2]Rlet ([x:E X1]Rval (pin P y x))(pout2 P v))

([z’16:E (Res1 X2)]Rlet([x:E (prod P X1 X2)]Rval(pswap P|X1|X2 x))

(k (pin P (pout2 P v) z’16))) (pout1 P v)));

Qrepl Eq_sym (ax_runit (Resumptions_Constructor S Z M)

([u:E (prod P X1 X2)] Rval (pswap P|X1|X2 u)));

Equiv P2

(orr (CH (([K:(E X1)->(E X2)->E (prod P X2 X1)]

([x:E X1]Rlet ([y:E X2]Rval (K x y))(pout1 P v)))

([a:E X1][b:E X2]pswap P|X1|X2 (pin P a b)))

([w’16:E (Res1 X1)]Rlet

([x:E (prod P X1 X2)]Rval (pswap P|X1|X2 x))

(k (pin P w’16 (pout1 P v)))) (pout2 P v))

(CH ([y:E X2]Rlet ([x:E X1]Rval (pin P y x))(pout2 P v))

([z’16:E (Res1 X2)]Rlet([x:E (prod P X1 X2)]Rval(pswap P|X1|X2 x))

(k (pin P (pout2 P v) z’16))) (pout1 P v)));

Qrepl ?+1 P|X1|X2;

Qrepl (ax_or_commutativity (Rnd S Z M N)
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(CH ([x:E X1]Rlet ([y:E X2]Rval (pin P y x)) (pout1 P v))

([w’16:E (Res1 X1)]Rlet

([x:E (prod P X1 X2)]Rval (pswap P|X1|X2 x))

(k (pin P w’16 (pout1 P v)))) (pout2 P v))

(CH ([y:E X2]Rlet ([x:E X1]Rval (pin P y x)) (pout2 P v))

([z’16:E (Res1 X2)]Rlet

([x:E (prod P X1 X2)]Rval (pswap P|X1|X2 x))

(k (pin P (pout2 P v) z’16))) (pout1 P v)));

Equiv P2

(orr (CH ([y:E X2]Rlet ([x:E X1]Rval (pin P y x)) (pout2 P v))

(([K:(E (Res1 X2))->E (prod P (Res1 X1) (Res1 X2))]

[z’16:E (Res1 X2)]Rlet

([x:E (prod P X1 X2)]Rval (pswap P|X1|X2 x))

(k (K z’16)))([z:E (Res1 X2)]pin P (pout2 P v) z))

(pout1 P v))

(CH ([x:E X1]Rlet ([y:E X2]Rval (pin P y x)) (pout1 P v))

([w’16:E (Res1 X1)]Rlet

([x:E (prod P X1 X2)]Rval (pswap P|X1|X2 x))

(k (pin P w’16 (pout1 P v)))) (pout2 P v)));

Qrepl ax_extensionality

([z:E (Res1 X2)]pin P (pout2 P v) z)

([z:E (Res1 X2)]pswap P (pin P z (pout2 P v)))

([z:E (Res1 X2)] Eq_sym(lm_pswap1 P z (pout2 P v)));

Equiv P2

(orr (CH ([y:E X2]Rlet ([x:E X1]Rval (pin P y x)) (pout2 P v))

([z’16:E (Res1 X2)]Rlet
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([x:E (prod P X1 X2)]Rval (pswap P|X1|X2 x))

(k (pswap P (pin P z’16 (pout2 P v))))) (pout1 P v))

(CH ([x:E X1]Rlet ([y:E X2]Rval (pin P y x)) (pout1 P v))

(([K:(E (Res1 X1))->E (prod P (Res1 X1) (Res1 X2))]

[w’16:E (Res1 X1)]Rlet

([x:E (prod P X1 X2)]Rval (pswap P|X1|X2 x))

(k (K w’16)))([w:E (Res1 X1)]pin P w (pout1 P v)))

(pout2 P v)));

Qrepl ax_extensionality

([w:E (Res1 X1)]pin P w (pout1 P v))

([w:E (Res1 X1)]pswap P (pin P (pout1 P v) w))

([w:E (Res1 X1)] Eq_sym(lm_pswap1 P (pout1 P v) w));

Immed;

Intros PP A B;

Refine ax_extensionality

([x:E A][y:E B]pswap PP|A|B (pin PP x y))

([x:E A][y:E B]pin PP y x);

Intros x;

Refine ax_extensionality

([y:E B]pswap PP (pin PP x y))

([y:E B]pin PP y x);

Intros y;

Qrepl Eq_sym (lm_pswap1 PP x y);

Refine Eq_refl;



I Preservation of uniformity

Goal {S:Sum}{Z:Ind}{M:Monad}{F:Fix (T M)}

(AX_UNIFORMITY F) -> AX_UNIFORMITY (Rfix S Z M F);

Expand AX_UNIFORMITY Rfix Yop RY Uniform_Redefinition2;

Intros;

Equiv P

(h ([w:E X1]alg Z|(RF S (Monad_to_Functor M) X2)

(Yop F|X1|(sum S X2 (Res S Z M X2))

([h:(E X1)->E (Unwind S Z M X2)][x1:E X1] coalg Z

(f ([x:E X1]alg Z|(RF S (Monad_to_Functor M) X2) (h x)) x1))

w)) x);

Qrepl Eq_push (lm_Lambek2 Z|(RF S (Monad_to_Functor M) X4))

(h ([w:E X1]alg Z|(RF S (Monad_to_Functor M) X2)

(Yop F ([h:(E X1)->E (Unwind S Z M X2)][x1:E X1] coalg Z

(f ([x:E X1]alg Z|(RF S (Monad_to_Functor M) X2) (h x)) x1))

w)) x);

Equiv P (alg Z

(([K:(E X1)->E (Unwind S Z M X2)][x3: E X3]

(coalg Z (h ([w:E X1]alg Z|(RF S (Monad_to_Functor M) X2) (K w)) x3)))

249
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(Yop F ([h:(E X1)->E (Unwind S Z M X2)][x1:E X1] coalg Z

(f ([x:E X1]alg Z|(RF S (Monad_to_Functor M) X2) (h x))

x1))) x));

Claim STRICT ([K:(E X1)->E (Unwind S Z M X2)][x3: E X3]

(coalg Z (h ([w:E X1]alg Z|(RF S (Monad_to_Functor M) X2) (K w)) x3)));

Claim {j:(E X1)->E (Unwind S Z M X2)}

[h1 = [K:(E X1)->E (Unwind S Z M X2)][x3: E X3]

(coalg Z (h ([w:E X1]alg Z|(RF S (Monad_to_Functor M) X2) (K w)) x3))]

[f1 = [h:(E X1)->E (Unwind S Z M X2)][x1:E X1]

coalg Z (f ([x:E X1]alg Z|(RF S (Monad_to_Functor M) X2) (h x)) x1)]

[g1 = [k:(E X3)->E (Unwind S Z M X4)][x3:E X3]

coalg Z (g ([x:E X3]alg Z|(RF S (Monad_to_Functor M) X4) (k x)) x3)]

(Eq (h1 (f1 j)) (g1 (h1 j)));

Qrepl Eq_sym

(H ([K:(E X1)->E (Unwind S Z M X2)][x3: E X3]

(coalg Z (h ([w:E X1]alg Z|(RF S (Monad_to_Functor M) X2) (K w)) x3)))

?+1

([h:(E X1)->E (Unwind S Z M X2)][x1:E X1]

coalg Z (f ([x:E X1]alg Z|(RF S (Monad_to_Functor M) X2) (h x)) x1))

([k:(E X3)->E (Unwind S Z M X4)][x3:E X3]

coalg Z (g ([x:E X3]alg Z|(RF S (Monad_to_Functor M) X4) (k x)) x3))

?+2 x);

Immed;

Refine ax_strict



I. Preservation of uniformity 251

([K:(E X1)->E (Unwind S Z M X2)][x3:E X3]

coalg Z (h ([w:E X1]alg Z|(RF S (Monad_to_Functor M) X2) (K w)) x3));

Intros;

Equiv P1 [x3:E X3]coalg Z (g ([x:E X3]

([z:E (Res S Z M X4)] alg Z|(RF S (Monad_to_Functor M) X4) (coalg Z z))

(h ([w:E X1]alg Z|(RF S (Monad_to_Functor M) X2) (j w)) x)) x3);

Qrepl (Eq_sym (lm_Lambek2 Z|(RF S (Monad_to_Functor M) X4)));

Qrepl Eq_sym (ax_eta (h ([w:E X1]alg Z|(RF S (Monad_to_Functor M) X2) (j w))));

Equiv P1 (([K:(E X3)->E (Res S Z M X4)][x3:E X3]coalg Z (K x3))

(g (h ([w:E X1]alg Z|(RF S (Monad_to_Functor M) X2) (j w)))));

Qrepl Eq_sym (H2 ([w:E X1]alg Z|(RF S (Monad_to_Functor M) X2) (j w)));

Qrepl ax_eta (f ([w:E X1]alg Z|(RF S (Monad_to_Functor M) X2) (j w)));

Equiv P1 ([x3:E X3]coalg Z

(h (([K:(E (Res S Z M X2))-> E (Res S Z M X2)]

[x:E X1] K (f ([w:E X1]alg Z|(RF S (Monad_to_Functor M) X2) (j w)) x))

([y:E (Res S Z M X2)]y)) x3));

Qrepl (lm_Lambek2 Z|(RF S (Monad_to_Functor M) X2));

Immed;
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conceptual, 3
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of exceptions, 205, 206

of resumptions, 170, 207
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Scott-open sub∼, 63, 69, 92

Cpo , 39, 63, 97
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display maps

class of, 92

doctrine, 173
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recursive ∼ equation, 48, 64

for exceptions, 64

domain theory

axiomatic, 11

synthetic, 11, 81, 126, 199

dominance, 97, 128

dynamic allocation, 47, 115

dynamic logic, 10

effective topos, 11, 81, 110

EL, see Evaluation Logic

ELse, 19, 130

endofunctor

strong, 24–28

category of ∼s, 27

composition of ∼s, 28

general axioms for, 84

special axioms for, 85

underlying functor of, 25

Evaluation Logic, 9, 82–87

standard version of, 17

evaluation relation, 10, 57, 74, 114–118
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Extended Calculus of Constructions, 199

factorization system, 112

pre∼, 112

stable, 112

fibration

cloven and split, 179

finite limit, 95, 111, 113
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fixed point, 167

combinator using exceptions, 54

in HML, 166

induction, 10, 20, 138

admissibility for, 143

uniformity of ∼ operators, 22, 39, 210

formal approximation relation, 67

FPC, 5
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generic

object, 181

predicate, 98

geometric logic, 92

handle, 51

Haskell, 8

HML, 20, 147, 163–168

raw syntax of, 168

Hoare logic, 10, 119, 129

Hoare triples, 12, 137

homomorphism

Σ, 20, 152, 154

Horn

clause, 177

universal ∼ sentence, 146, 177

hyperdoctrine, 87

first order, 87

with equalities, 88
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inverse ∼ of a relation, 69

institution, 12

interactive

input, 46

output, 47

internal language
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interpretation
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of EL
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standard, 80

of HML, 184

of the computational lambda calcu-

lus, 38–42

of the metalanguage for exceptions,

60–65

of TMLE, 58–59

relative, 14, 21, 146, 173
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invariant

F , 69

minimal ∼ object, 64

kind

of HML, 163

Kleisli triples, 29

L(Σ), see lambda calculus, L(Σ)
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lambda calculus

L(Σ), 34, 46

computational, 7, 33–37

higher order polymorphic, 14, 148
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LCF, 4



Index 272

Cambridge, 11
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Linton, 174
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logos, 18

map, 167

membership, 74
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computational, see lambda calculus,

computational

MLT (Σ), 8, 13

model of, see model, of L(Σ)

Mod (Σ), 148, 152

modality

T , 10, 90

T -modal operator, 11

evaluation, 9, 82

left and right rules for, 18, 101, 115

model

of L(Σ), 41, 147

of HML, 182–189

Σ, see model, of L(Σ)

standard ∼ of EL, 91, 99

syntactic ∼ of L(Σ), 41, 147

modularity, 1

in denotational semantics, 146–148

in proofs, 19

monad, 7

algebras of, 43, 174

constructor, 61

lifting, 42, 122, 126, 128

in Cpo , 63

powerset, 44

strong, 1, 28–33

∼ morphism, 32, 149

category of ∼s, 32

composition of ∼s, 33

general axioms for, 85

special axioms for, 86

underlying strong endofunctor of,
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mono

class of admissible ∼s, 43, 96, 114

regular, 112, 113

requirement, 37, 86, 116

name of a morphism, 25

natural numbers object, 60, 63

natural transformation
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naturality, 39

necessity, 83

standard interpretation of, 99

nondeterminism, 44, 74, 115

noninterference, 119

object

class of conservative ∼s, 175

finitely presentable, 175
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operator
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parametric extension, 20, 157

partial correctness, 18, 134–137

partial equivalence relation (PER), 11, 81

partial functions, 42

partial map

category of ∼s, 49

classifier, see classifier,

of partial maps

PCF, 4

pCpo , 63

PLC, see lambda calculus, higher order

polymorphic

polytype, 33
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149

light ∼ of MLT (Σ), 161

possibility, 83

standard interpretation of, 99

possible worlds, 65, 120

preservation of equations, 13, 160

products
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indexed, 94

absoluteness of, 122

raise, 51

reindexing

in a fibration, 180
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relation, 38

admissible, 68

evaluation, see evaluation relation
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relational parametricity, 38
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Scott
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of TMLE, 52

standard, 10

side effects, 47, 115

Sierpiński space, 97
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morphism, 156

of L(Σ), 34
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sketch
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Standard ML
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state reader, 121

strength, 28
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tensorial, 26, 109
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of TMLE, 59

structure
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of HML, 186

additional, 42, 148

for exceptions, 62

relational, 68

substitution
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sums

D, 94
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term

canonical
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algebraic, 173

essentially algebraic, 178

finite limit, 21, 175

models of, 21

in the computational lambda calcu-

lus, 8, 14

Lawvere, 173

lex, see theory, finite limit

of L(Σ), 35

of HML, 163

TMLE, 50–54

tripos, 98

type

computational, 7

constructor, 33

dependent, 93, 111, 200

inductive ∼ in HML, 167

product, 164

scheme

closed ∼ of L(Σ), 34

of HML, 163

parametric ∼ of HML, 164

sum, 164

uniform redefinition, 155, 161, 172, 208

universality, 3

variety, 175
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while-programs, 136

annotated, 19

XCC, see Extended Calculus of

Constructions


