Safety Assurance in Interlocking Design

Matthew John Morley

Doctor of Philosophy
University of Edinburgh
1996

Abstract

This thesis takes a pedagogical stance in demonstrating how results from theoretical
computer science may be applied to yield significant insight into the behaviour of the
devices computer systems engineering practice seeks to put in place, and that this is
immediately attainable with the present state of the art. The focus for this detailed
study is provided by the type of solid state signalling systems currently being deployed
throughout mainline British railways. Safety and system reliability concerns dominate
in this domain. With such motivation, two issues are tackled: the special problem
of software quality assurance in these data-driven control systems, and the broader
problem of design dependability. In the former case, the analysis is directed towards
proving safety properties of the geographic data which encode the control logic for the
railway interlocking; the latter examines the fidelity of the communication protocols
upon which the distributed control system depends.

The starting point for both avenues of attack is a mathematical model of the in-
terlocking logic that is derived by interpreting the geographic data in process algebra.
Thus, the emphasis is on the semantics of the programming language in question, and
the kinds of safety properties which can be expressed as invariants of the system’s
ongoing behaviour. Although the model so derived turns out to be too concrete to
be effectual in program verification in general, a careful analysis of the safety proof
reveals a simple co-induction argument that leads to a highly efficient proof methodo-
logy. From this understanding it is straightforward to mechanise the safety arguments,
and a prototype verification system is realised in higher-order logic which uses the
proof tactics of the theorem prover to achieve full automation.

The other line of inquiry considers whether the integrity of the overall design that
coordinates the activities of many concurrent control elements can be compromised.
Therefore, the formal model is developed to specifically answer safety-related con-
cerns about the protocol employed to achieve distributed control in the management of
larger railway networks. The exercise reveals that moderately serious design flaws do
exist, but the real value of the mathematical model is twofold: it makes explicit one’s
assumptions about the conditions under which the faults can and cannot be activated,
and it provides a framework in which to prove a simple modification to the design
recovers complete security at negligible cost to performance.

Acknowledgements

A PhD thesis is seldom completed in isolation, but it is often a lonely activity. My
thanks, therefore, to George Cleland and Stuart Anderson in Edinburgh: George, for
his cheerful optimism throughout, and Stuart not least for teaching me lyengar’'s asanas
and the merit of standing on my head. | think this work has benefited from discussions
with them, but certainly many of my ideas have been enriched by their experience and
that of others in the department.

Outside Edinburgh, | am very grateful to Graham Birtwistle for his encouragement
as | struggled to write up this work and without which | should not have completed the
job. Thanks, too, to Chris Tofts and Faron Moller for their quiet, moral support (mostly
quiet, as we exasperate each other on occasion as friends do.)

lan Mitchell at British Rail Research contributed much to my knowledge of railway
signalling. | will always be a novice, but hopefully he does not feel misrepresented by
this text. Last, but by no means least, my thanks go to Axel Rdiginhiis tacit approval
since some of my time was also his.

Declaration

This thesis was composed by myself, and the work it contains is my own except where
| have indicated otherwise.

Some of the material in Chapter 5 appeared in the proceedings of the Sixth International
Workshop on Higher-order Logic Theorem Proving and its Applications, Vancouver,

1993 [75]; the results reported in Chapter 6 will appear in$o&ence of Computer
Programmingournal, late in 1996.

Table of Contents

List of Figures v
Notational Conventions vii
1. Introduction 1
1.1 Motivation 1
1.2 A Whistle-stop Tour of Railway Signalling
1.3 Solid State Interlocking, 11
1.3.1 Overall System Architecture 11
1.3.2 GenericSSISoftware., 13
1.3.3 Examples of GeographicData 15
1.4 Inter-SSICommunications 18
1.4.1 Setting Routes over Boundaries 19
1.4.2 Releasing Sub-routes over Boundaries 20
1.4.3 Implementing Remote Route Locking 21
1.5 Formal Approachesto Signalling Safety 22
151 RelatedWork 22
1.5.2 Contributions & Thesis Overview 26
2. The Geographic Data Language 29
2.1 Introduction 29
2.2 Static Dataand DynamicData 30
2.2.1 Geographic Data IdentityFiles 30
2.2.2 Source Files: PeriodicAccess 31
2.2.3 Source Files: RandomAccess 32
2.3 Geographic Data Source FileSyntax 34
2.3.1 Examples: Route Locking& Release 35
2.3.2 Concrete Syntax of the Geographic Data Language 36
2.4 Semantics: The Control Interpreter 39
2.4.1 Abstract Syntax of Simple Tests and Commands 39

2.4.2 Points Free to Move Conditions 40

Table of Contents ii
243 TheMapSearch 41
2.5 Indirect Semantics oftheMap Search 42
2.6 SummMary e e e e e e 45
3. Modelling Solid State Interlocking 47
3.1 Introduction a7
3.2 CCS Model of Solid State Interlocking 50
3.2.1 Modelling Assumptions 50
3.22 Model 52
3.2.3 Translating Geographic DataintoCCS 54
3.3 Defining Safety PropertiesFormally 56
3.3.1 Safety Properties of GeographicData 56
3.3.2 TagsandProbes 58
3.3.3 GeographicData Invariants. 59
3.3.4 Generalising the Translation Schema 61
3.4 The Problemwith StateSpaces 62
3.4.1 HidingAssumptions 62
3.4.2 AgentTransformations 63
343 ModelChecking 65
3.5 ProofbyProgram 67
3.5.1 GeneratingStatesofSSI 67
3.5.2 CheckingProperties 70
3.6 Summary e e e 71
4. Proving Safety Properties of Geographic Data 74
4.1 Introduction 74
4.2 Tableau Proofs in Local Model Checking 76
4.2.1 Unfolding Proof Tableaux 76
422 PartialTableaux., 79
4.3 Invariance & Co-induction Lo 82
4.4 Checking InterlockingData 85
44.1 Sub-routeReleaseData. 85
442 RouteRequestData. 87
4.4.3 Unprovable Assertions 89
45 FromRigorousto FormalProofs 91
45.1 The Temporal Logic of Actions 91
452 Unity 93
45.3 Floyd-HoarelLogic 95
4.6 SUMMANY e e e e e 96

Table of Contents iii

5. A Formal Theory of the Geographic Data Language 99
5.1 Introduction 99
5.2 Geographic Data in Higher-orderLogic 102
5.2.1 A Simple Imperative Language 102
5.2.2 Semanticsin Higher-orderLogic 104
5.2.3 Hoare Logic: Rulesand Tactics 107
5.3 A Theory of Geographic Datalnvariants 110
53.1 Track Circuits-MX, 111
532 PointsPT 112
533 RoutesRT 114
5.4 Mechanising the Invariance Proof 117
5.4.1 Sub-route Release Data Tactic 118
5.4.2 RouteRequestDataTactic 119
543 FailledTactics 121
5.5 Decomposing Global Invariance 123
5.5.1 Computational Complexity (Revisited) 123
5.5.2 Heuristics for Decompositionin the Proof 125
5.5.3 Static & Dynamic Decomposition 126
56 Summary e e 128
6. Distributed Control in Complex Interlockings 131
6.1 Introduction 131
6.2 The Remote Route Request Protocol 135
6.2.1 Preliminaries: Elapsed Timers and Telegrams 135
6.2.2 GeographicData 136
6.2.3 Safety Considerations 139
6.3 Modelling Remote Route Locking 142
6.3.1 Timinglssues 142
6.3.2 AFormalCCSModel 142
6.3.3 Matching up the Interfaces between East & West 145
6.3.4 Axiomatising Remote Route Requests 146
6.4 Safety PropertiesoftheModel 148
6.4.1 First Refinement: Eliminating Arbitrary Delays 149
6.4.2 Second Refinement: Adding Priorities 151
6.4.3 Lossy Communications and Duplicating Telegrams 152
6.5 Summary e e 155

Table of Contents iv

7. Safety in Interlocking Design 157
7.1 Implementing Remote Route Locking Safely 157
7.2 LeamingtonSpa e 162
7.2.1 Strengtheningthelnvariant 162
7.2.2 SwingingOverlaps 0. 163
7.3 Conclusions 167
7.3.1 TheoremProving 167
7.32 SemantiCsS 169
7.3.3 ModelChecking 171
7.3.4 RailwaySignalling 173
Bibliography 175
A. Glossaries 182
A.1 Glossary of Railway SignallingTerms 182
A.2 Glossary of SSITerminology 187
A.3 Glossary of Geographic Data Terminology 191
B. Theory 195
B.1 Calculus of CommunicatingSystems 195
B.2 Modalp-calculus 200
B.3 HOLProofs e e 207

C. Examples of Geographic Data 210

11
1.2
1.3
14

2.1
2.2
2.3

3.1
3.2
#1

3.3
3.4
#2

3.5
3.6
3.7

4.1
4.2

5.1
5.2
5.3
5.4
5.5
5.6

6.1
6.2
6.3

List of Figures

Part of a signal controlpanel 10
Schematic overview of the main featuresof SSI 13
Scheme plan with route and sub-route annotations 16
EAST-WEST—Setting routes divided by Interlocking boundaries . . . 19
Signalling scheme plan for&¢t 34
Geographic Data: conditional language constructs 36
Semantics of the conditional language 45
Trailing points may derailtrains 48
Simple grammar for a subset of the Geographic Data Language 51
A CCS model of Solid State Interlocking. 53
Translating Geographic DataintoCCS 54
Panel route reque02 translated intoCCS 55

An observable modelof SSI 59
Geographic Data invariantfor&t 60
Transition rules foPRRandFOPdata 68
Results of Proof by Program 71

A Partialtableau 80
Routesk?; and R5; from the scheme planfor®sTt 90
Denotational Semantics of Geographic Data Language Commands . . 104
HOL Derived Rules of Floyd-Hoare Logic 109
Routes that diverge afteracommonsegment 115
Routes Massaging th&®T invariant 117
Experiments using HOL on some simple GeographicData 123
A distinction between network structure and route structure 127
EAST-WEST—Setting routes across SSl boundaries 132
Train derailment due to partial route setting 134
Normal sequence of events in making remote route requests 140

List of Figures Vi

6.4
#3
6.5
#4
6.6
#5
#6

7.1
7.2
7.3
7.4

B.1

Cl
C.2
C.3
C4
C5

Abnormal sequence of events in making remote route requests 141
Simple model of SSI communications over Internal Data Link 146
Generic rules for remote route lockingandrelease 147
Refining Model #3 so as to discard tardy IDL inputs afiecycles . . 149
lllustrating how unsafe states arise in Model #4 whes 2 151
Introducing lossy link behaviour to Model #4 152
Refining Model #5 to filter duplicate IDL inputs 154
Modified rules for remote route lockingandrelease 159
Final version of the Internal Data Link modelinCCS 161
SampléPRRdata from Leamington Spa 163
Ooverlaps 164
Transitionrulesforpure CCS 196
Sampleinterlocking: \BST L. 210
The ASTWESTIinterlocking 213
The RESTLOOPInterlocking 215
The HORNTON JIN. interlocking 216

An artistic impression of LeamingtonSpa 217

Notational Conventions

L 3 Plain (bi-directional) track section
?—a{
I i by Points track section (points shown normal)
T;

Si

Three aspect main signal (red/green/yellow)
Si

Two aspect main signal (red/green)
T, Track circuit identifier (for track sectioh)
S; Signal identifier
P, Points identifier
T Sub-route ovef}, in the directionab
R,. Route from signain to signaln
R,, Route from signain into another interlocking
Zab Dummy sub-route ovef, in the directiorub
o Sub-overlap oveT} in the directionub
P Set of points identifiers (or its cardinality)
R Set of route identifiers (or its cardinality)
S Set of signal identifiers (or its cardinality)
T Set of track circuits (or its cardinality)
U Set of sub-routes (or its cardinality)
Q Set of panel (route) requests
FOP Flag operations data file
PRR Panel route request data file
PFM Points “free to move” data file
IPT Input telegram data file
OPT Output telegram data file
MAP Map search data file
*L,*Q,*PN,*PR Labels in Geographic Data source code
@, {L}L,"L Label references

Vii

Chapter 1

Introduction

This thesis presents a study into the application of theoretical computer science to
problems arising in the railway signalling industry. Although the focus is on the type
of computer controlled signalling systems that are currently replacing electromechan-
ical technology throughout mainline British railways, the analysis techniques used and
illustrated here are of a general nature and may be applied in a similar fashion to a
range of data-driven control systems. The technical material in this thesis is presented
in a style which, it is hoped, is sufficiently transparent to be intelligible to practising
engineers seeking to emulate the study. This introductory chapter covers much of the
background needed to establish an intuitive framework which later chapters will build
upon more formally.

1.1 Motivation

While results from this work have already enjoyed both direct and indirect influence in
the given industrial domain, this thesis is mtoutrailway signalling any more than it
is aboutcomputer science itself. Indeed, this work falls somewhere between the needs
of engineering practice on the one hand, and the advancing scientific basis of comput-
ing on the other. That it does so is not really an accident: it is precisely because of the
gulf that exists between the communities of industrial developers of computer based
systems whose work is strongly governed by market imperatives, and academic com-
puter scientists who have hitherto been motivated more by the mathematical elegance
and precision of their theories. Our endeavour is, in a small way, to shed some light
on what lies in between these positions with a particular regard to the application of
notions from theoretical computer science to relevant problems faced by industry.
Appliedtheoretical computer science has, for better or worse, become synonymous
with the term ‘formal methods’. Despite several decades of research in the area, formal
methods have yet to be wholeheartedly incorporated into the development of computer
systems on any scale of design. In the large scale applications that include the control

Chapter 1. Introduction 2

of industrial plant, power generation, aviation and mass transportation, this may be
because the move towards computer dominated solutions to the engineering problems
is a relatively recent development for communities and licensing authorities that have
strong, conservative safety cultures. On the smaller scale, in consumer electronics
say, the financial risks seem too great when formal mathematical techniques towards
software development and system design are difficult to apply in general, currently
impossible to use with only m& understanding of the theory and supporting tools,
and poorly promoted by real, or even realistic, case-studies from which to learn.

The emergence of two relevant industrial standards is thus particularly interest-
ing: MOD 00-55: The Procurement of Safety Critical Software in Defence Equip-
ment[69], andIEC 1131-3: Software for Computers in the Application of Industrial
Safety-Related Systen46]. One of the requirements appearing in the former (In-
terim) standard is the mandatory use of formal methods in projects intended to supply
equipment to the UK Ministry of Defence; the latter standard defines several languages
(e.g, Function Block Diagrams, or Structured Text) that provide software for Program-
mable Logic Controllers (PLC), mainly used in the process control industry. Neither
standard is solely for use within the given sector. However, it is fair to say that the
assemblagef PLC languages defined in IEC 1131-3 seems insufficiently well defined
mathematically for such software to be readily acceptable according to the coding re-
guirements of MOD 00-55. This is a shame since the relative simplicity of the PLC
languagesd.g, when compared to Ada) ostensibly offer excellent opportunities for the
kind of formal design and development anticipated in MOD 00-55.

Interestingly, Halang and lrmer [39] (unintentionally) illustrate one of the key
technical difficulties involved here. Their work addresses the reluctance of licensing
authorities to certify software embedded in process control with a proposal for a formal
software development methodology for PLC programs. The underlying theory is OBJ
through which the authors formalise requirements and functional aspects of the design
specification assembled as a Function Block Diagram. Properties of the specification
can be verified largely automatically with the mechanical support for OBJ, and design
validation is further supported through symbolic execution. A Structured Text program
(Structured Text is a small, procedural tasking language) is then developed and annot-
ated in the sense of Floyd-Hoare logic with assertions drawn from the requirements and
specification documents—the verification conditions derived from the structured text
can also be discharged using OBJ. Practical considerations aside, the main problem
with this development methodology is simply that the relationship between Function
Block Diagrams and Structured Text (and indeed the other PLC languages) is entirely
informal. This reflects the relationship between these languages in the defining IEC
standard.

Chapter 1. Introduction 3

Halang and Kamer seriously tackle the crisis in embedded software but there
may yet be some doubt, depending of course on how one interprets the standard,
whether their efforts satisfy the strictures of MOD 00-55. (Similar concerns have also
been voiced about the RAISE wide spectrum language and programming methodo-
logy [23].) While there is no intended cross-reference between the two cited standards,
the point is that neither really grasps the strength of applied theoretical computer sci-
ence. MOD 00-55 is very rigid in its definition of ‘formal methods’ and probably
overestimates the benefit currently to be accrued from, if not the difficulty attending
to, the use of mathematical formalismdevelopingsoftware all the way down from
high-level requirements to detailed code. Although MOD 00-55 addresses software is-
sues only, neither it nor MOD 00-56 [70] with which it is explicitly related, recognise
a potential ole for formal methods in supporting system design as a whole. The IEC
standard, however, underestimates the insight and assurance to be obtained by theor-
etical analysis of programming languages, by clarifying their mathematical definitions
and, in this case, by elaborating the semantics of their interactions. This is a partic-
ular concern for languages intended for use in the burgeoning area of safety critical
computer systems.

Mandating the use of formal methods is certainly one way of getting designers
to use them, but the paucity of guidance of timv-tovariety is evidently a major
stumbling block: the guidance [68] offered on the selection of formal techniques to
use to meet the requirements of MOD 00-55 suggests that case-studies published in the
open literature should already demonstrate their successful industrial application. In
1991 such evidence was thin on the ground even for ‘mainstream’ formal methods like
Z and VDM,; several years later the situation is not much improved, but the publication
of the NIST report by Craigen, Gerhart, and Ralston [22, 23], and the FAA report by
Rushby [83], indicate growing awareness in several key industrial sectors. The former
was commissioned by the (US) National Institute of Science and Technology (and other
bodies) to inform deliberations within industry and government on the potential impact
of formal methods on standards and regulations; the latter report was commissioned
by the (US) Federal Aviation Administration who face the increasingly challenging
task of certifying to very high levels of dependability the computer systems on board
commercial aircraft (in particular).

The NIST report summarises twelve industrial applications of formal methods used
with varying degrees of mathematical rigour on projects of substantial commercial im-
portance. The timescales involved ranged from about nine months (Hewlett-Packard,
Medical Instruments), to about nine years (GEC Alsthom, Railway Signalling). The
projects studied focused mainly on software specification. The GEC case-study was
thought particularly successful: 15,000 lines of formally specified and verified code

Chapter 1. Introduction 4

were produced for a signalling system that increased the capacity of one Paris Metro
line by 12,000 passengers per hour (25%), so saving the operators the enormous cost
of constructing a new line to meet the capacity. The success of the project is perhaps
better judged by the fact that GEC Alsthom are presently using the same tools and
software development techniques on similar railway contracts. The Hewlett-Packard
case-study is singled out here for another reason: this produced 4,500 lines of ‘zero
defect’ code (according to the certifier, another branch of the organisation) through
machine supported formal specification, but without proof because the software was
not safety critical. The project was also intended to achieve technology transfer by
promoting the specification language used, but was in this respect an abject failure.

Implicated in the additional costs that arose in the least successful case-study sum-
marised in the NIST report (Ontario Hydro, Tripwire Computer) is the lack of tools
support for the formal method used (the fidelity of the formalism is not otherwise in
guestion). Given such a small sample it would be premature to suppose that there is
in general a relationship between the level of tool support and the costs incurred (or
savings made) in applying formal methods. What several examples in the NIST report
do indicate is that the methodology into which more rigorous mathematical techniques
are introduced is at least as important to the project’s success as the strength of tools
applied. However, perhaps the strongest suggestion Cratganput forwardis that
the standard of tools supporting particularly the deeper applications (where, for ex-
ample, proofs demonstrating the conformance of code to specifications are required
to satisfy licensing authorities) urgently needs to be improved. This may be so, but
begs the question whether there are tangible benefits presently to be obtained through
formal verification at the level of program code: the report does not examine the is-
sue, but the evidence presented hardly convinces one that there are—indeed, it rather
illustrates that theale of formal methods (olormal proo) in the design of complex
systems is as yet poorly understood. Unfortunately the analysis in the NIST report is
guite shallow, and it therefore offers little guidance in these matters.

Rushby [83] on the other hand, offers considerable practical guidance on the uptake
of formal methods in a thorough, and far ranging, survey of current techniques in sup-
port of system (and software) quality control, and assurance. This report is intended
to inform licensing bodies, in particular the FAA, about the strengths and fallibilit-
ies of mathematical formalism in system desigs,well asto inform those seeking
to license critical software-based systems about where in the development lifecycle to
apply formal methods to best effect. The analysis begins with a classification of formal
methods that is given in terms of the degree of rigour attending the mathematical argu-

Chapter 1. Introduction 5
ments used in support of system development. In a simplified form:

Level 0 No applied mathematics at all, but perhaps appeal to tabular or diagrammatic
notations, pseudocode, and equations defining transfer funatiens,

Level 1 The use of concepts and notations from discrete mathematics, with proofs
conducted in the traditional, informal style of mathematical discourse.

Level 2 The use of formalised specification languages with mechanised support for
syntax analysis, pretty-printing, and simple type checking.

Level 3 The use of fully formal specification languages with comprehensive support
environments including mechanised theorem proving and proof checking.

Proofs at levels 1 and 2 are conducted in the manner of the rigorous arguments pre-
ferred by mathematicians, although specification formalisms at level 2 may provide
deduction rules that could in principle lead to formalising such arguments; the trans-
ition to level 3 is therefore marked by the provision of theorem provers and the ‘fully
formal’ specification languages alluded to which are firmly rooted in mathematical lo-
gic (making mechanical support a practical necessity), and which have demonstrably
sound axiomatisations.

This classification may not be universally applicable, but it serves Rushby’s pur-
pose which is to examine the likelplg of formal methods in the development life-
cycle and in the certification of critical systems. His conclusions address the aviation
industry specifically, but are quite unequivocal in assertingttieit current best prac-
tise, based as it is on design reviews, inspections and structured walkthroughs, and but-
tressed by various approaches to testing to support verification and validation, appear
to be adequate for the task of producing certifiable software from clearly stated require-
ments and unambiguous specifications. Formal methods should first be applied in the
earlier stages of the lifecycle, with whatever appropriate degrees of rigour, to produce
precise statements of requirements and assumptions, and thoroughly debugged design
specifications. Neither the evidence nor the analysis in the FAA report prioritises the
application of formal methods to the problem of producing code from specifications.

Rushby goes on to argue that the most rigoroes (evel 3) applications of formal
methods should be brought to bear precisely where traditional approaches are appar-
ently least adequate: in designing those aspects of digital (avionic) systems that deal
with the management of hardware redundancy, algorithms to achieve fault tolerance,
and the synchronisation of independent control channels (in particular). The anecdotal
evidence in the NIST report also indicates that the lower level applications of formal
methods €.g, RAISE andZ which are identified explicitly) are particularly weak in

Chapter 1. Introduction 6

the specification and analysis of the coordination between concurrent, synchronous, but
often asynchronous and distributed, activities. To apply formal methods with success
at any level to such challenging problems demands intense effort and deep abstractions
in order to gain intellectual control over the task at hand. But then formal methods can,
and indeed as we shall see in later chapdersead to discoveries and insights into the
nature of complex control systems that are quite unapproachable by other means.

Some care has to be exercised in transferring Rushby’s analysis to other industrial
domains however, since the non-existence of a safe state for airborne systems nat-
urally introduces a heightened appreciation of the need for rigour and robust design
throughout the development cycle which may be less marked in other industrial do-
mains. Yet many terrestrial control systems are acutely safety critical and have similar
architectural needs that involve replicated hardware for high availability, independent
data and control channels and voting mechanisms to mask random environmental per-
turbations, and so on. Moreover, there is an important class of control systems that
apparently challenge the notion that formal verification ‘close to the code’ does not
deserve a high priority: these adata-drivencontrol systems. The architecture of
such systems typically consists of a generic hardware platform that executes a generic
read/write loop (or polling cycle) which is parameterised by application specific con-
trol laws manifest in static data that are interpreted to yield appropriate responses to
polled inputs. Such data (though one might as well call them software) may be highly
safety critical in that they govern the behaviour of the control system as a whole; they
therefore demand the most rigorous techniques of analysis (and design).

Large scale examples of data-driven control systems that have been developed in
recent years can be found in the railway signalling industry. A specific example is Brit-
ish Rail's Solid State Interlockingvhich is described in more detail in later sections of
this chapter. Clearly, one of the main attractions of developing data-driven controllers
for highly complex systems such as this is that to a large extent they effect a clean
separation of concerns. On the one hand the computer systems engineering concerns,
such as those identified by Rushby, are focused in the design of the generic hardware
platform and control software. On the other hand the application specific concerns that
can be addressed by domain experts without the need for particular computing skills
are focused in the preparation of the data. In the world of railway signalling the ap-
plication data are instantiated for each network installation—that is, roughly speaking,
for each station—and express logical relationships between the various controlled ele-
ments in the network as well as dynamic relationships between trains and signals, and
the sequencing of signal aspects. Such data vary in the details according to the geo-
graphic layout of the network concerned; then, the generic control software applied to
thesegeographic datyields the desired control function.

Chapter 1. Introduction 7

Unfortunately a complete separation of concerns according to this division between
data and control is rather more ideal than it is commonplace. Complications arise in
the realm of railway signalling from the practical necessity of subdividing the railway
into separate control authorities. One has therefore to design the interfages; or
tocols between physically separated controllers, and this inevitably blurs the division
between what one considers to be application data, and that which is thought of as
generic control softwareSomeayer of the protocol will very likely be expressed in
the application data since it is required to set up communication to enable one control
system to perform specific (within the geography of the network concerned) signalling
functions on behalf of another. But if one wishes to avoid programming timers, queues,
and watchdogs (the stock in trade of protocol design) at the application layer then one
is left with little choice but to encode specific domain knowledge about the nature of
the data transferred, or the functions requested/acknowledged, in the underlying ar-
chitecture. Thus, in order to conceal the interface at the application layer (this might
be construed as a good thing to do) one has to complicate the generic software with
non-generic code.

While this example illustrates something of a paradox in the philosophy of (dis-
tributed) data-driven control, in practice some experimentation leads to a workable
compromise. But this thesis will demonstrate, echoing Rushby’s appeal for the utmost
rigour in precisely this area of system design, that enormous care has to be exercised
in building such interfaces. For when in Chapter 6 our formal analysis is focused on
one of the protocols by which Solid State Interlocking achieves distributed control of
the railway, we shall indeed find subtle (and not-so-subtle) flaws in the overall design.

A second advantage of data-driven controllers is the introduction of application
specific languages in which to express the control functions. A well-known example is
Ladder Logic (or Ladder Diagrams, now standardised in IEC 1131-3) which evolved
in the electrical engineering community as a specification notation for relay circuits
(with delayed feedback). Ladder Logic has found use in interlocking design too, but
with solid state logic gradually replacing the more costly relay logic, more appropri-
ate notations have begun to emerge. An example is British Ra#sgraphic Data
Languagewhich is studied in this thesis. Both these examplesapessively weak
application specific languages are not typically called upon to express more complex
programs than sequences of commands like

IF (conditions THEN (actions

for simple atomic actions like assigning a variable or setting a register, and condi-
tions that are expressed in terms of internal state variables. From the point of view
of software assurance such languages are interesting in several ways. Firstly, because

Chapter 1. Introduction 8

they support design abstraction in a notation that is closely integrated with the applic-
ation domain. Secondly, such unsophisticated languages admit precise mathematical
definitions from which compilers and interpreters can be rigorously derived. Finally,
efficient interpretations in formal logic are possible to realiséomaticverification

tools for checking behavioural properties of their programs.

With respect to Solid State Interlocking in particular, one of the problems with data
preparation is that the activity is very much like programming, even to the point that
the specifications are incomplete. For signalling, specifications are giveorixol
tableswhich, loosely, indicate all of the conditions that have to be satisfied before a
signal can be switched from red to green to admit a train into the track section beyond.
These tables have a well defined syntax, and a clear meaning for signalling engineers,
but remain exceedingly difficult to ‘get right'—so difficult, in fact, that some railway
authorities have abandoned control tables as specification documents. Nonetheless
these are used along with other documents by British Rail to guide the production of
their geographic data. In the absence of any means to demonstrate completeness (in
the informal sense, but also the formal) of these specifications there is inevitably a need
to verify that the derived code does enjoy certain fundamental safety properties—such
as logically prohibiting the possibility for two trains to simultaneously enter the same
section of the railway.

Traditional methods of verificationg., those which constitute current practice, are
based on inspections of control tables and the derived geographic data, on simple de-
compilers and syntax comparators, and massive testing both in the design offine and
situ. The enormous combinatorial complexity inherent to railway interlockings means
that exhaustive simulation is simply impossible. Yet the syntactic nature of the data
also make visual inspection an extremely arduous task—so that the discovery by this
means of deep errors (problems of specification), or even minor ‘typographic’ errors
(problems of coding), can be haphazard at best. Logical flaws in geographidadata
emerge through testing the designs, but there is a clearly recognised need (throughout
the industry, in fact) to reduce the costs of extensive testing and to boost productivity
in interlocking design. To achieve these ends, but particularly to introduce the rigour
needed to radically improve quality assurance, calls for a measured introduction of
formal methods into the design process. These are some of the reasons why we need
theorem proving for geographic data.

1.2 A Whistle-stop Tour of Railway Signalling

Railway signalling engineers face a difficult distributed control problem. Train drivers
can know little of the overall topology of the network through which they pass, or of the

Chapter 1. Introduction 9

whereabouts of other trains in the network and their requirements. Safety is therefore
invested in the control system, oterlocking (the glossary clarifies the meaning of
unfamiliar signalling terms emphasised thus), and drivers are required only to obey
signals and speed limits. The task of the train dispatcher (signalman, or signal operator)
is to adjust the setting of switches and signals to permit or inhibit traffic flow, but the
interlocking has to be designed to protect the operator from inadvertently sending trains
along conflicting routes.

The network can be operated with more security and efficiency if the operators have
a broad overview of the railway and the distribution of trains. Since the introduction
of mechanical interlockings in the late 1800’s, and as the technology has gradually
improved, the tendency has therefore been for control to become progressively cent-
ralised with fewer signal control centres individually responsible for larger portions
of the network. In the last deca@®lid State Interlockinghas introduced computer
controlled signalling, but the task of designing a safe interlocking remains essentially
unchanged.

Solid State Interlocking is a data-driven signal control system designed for use
throughout the British railway system. SSI is a replacement for electromechanical
interlockings—which are based on highly reliable relay technology—and has been de-
signed with a view to modularity, improved flexibility in serving the needs of a diversity
of rail traffic, and greater economy. The hugely complex relay circuitry found in many
modern signalling installations is expensive to install, difficult to modify, and requires
extensive housing—but the same functionality can be achieved with a relatively small
number of interconnected solid state elements as long as they are individually suffi-
ciently reliable. SSI has been designed to be compatible with current signalling prac-
tice and principles of interlocking design, and to maintain the operator’s perception of
the behaviour and appearance of the control system.

At the signal control centre eontrol panel displays the current distribution of
trains in the network, the current status of signals, and sometimes fanbswitches
(points) and other signalling equipment. The railway layout is depicted schematically
on the panel by a graphic similar to Figure 1.1. There are seven (three aspect) main
signals shown here, and three sets of points. It is British Rail’s practice to associate
routesonly with main signals. The operator can select a route by pressing the button
at the entrance signal (say,), then pressing the button at the exit signal—the consec-
utive main signal, being the entrance signal for the next ratife (This sequence of
events is interpreted agpanel route requestand is forwarded to the controlling com-
puter for evaluation. Other panel requests arise fronpthets keysvhich are used to
manually call (and hold) the points to the specified position, or from button pull events
(to cancel a route by pulling the entrance signal button).

Chapter 1. Introduction 10

0s2 [PomsRe] "

Figure 1.1: Signals §,) on the control panel appear on the left to the direction of travel, each
signal has a lamp indicator, and each main signal has a button. Switches (pO)jrgehpw
thenormalposition, and there is usually a points key on the panel so one can throw the points
‘manually’. Lamps illuminate those track sectiori§)(over which routes are locked (white),

and those in which there are trains (red).

When the controlling computer receives a panel route request it evaluates the avail-
ability conditions specified for the route. These conditions are given in a database by
Geographic Datawhich the control program evaluates in its on-going dialogue with
the network. If the availability conditions are met the system responds by highlight-
ing thetrack sectionsalong the selected route on the display (otherwise the request
is simply discarded). At this point the route is said toldseked no conflicting route
should be locked concurrently, and a property of the interlocking we should certainly
verify is that no conflicting routeanbe locked concurrently.

Once aroute is locked the interlocking will automaticatthe route. Firstly, this
involves calling the points along the route into correct alignment. Secondly, the route
must beproved—this includes checking that points are correctly aligned, that the fila-
ments in the signal lamps are drawing current, and that signals controlling conflicting
routes are onife., red). Finally, the entrance signal can be switched off when the route
is clear of other traffic—a driver approaching the signal will see it change from red to
some less restrictive aspect (green, yelletg,), and an indicator on the control panel
will be illuminated to notify the operators.

The operation of Solid State Interlocking is organised around the concept of a
polling cycle. During this period the controlling computer will exchange messages
with each piece of signalling equipment to which it is attached. An outgoing command
telegram will drive the track-side equipment to the desired state, and an incoming data
telegram will report the current state of the device. Signalling equipment is interfaced
with the SSI communications system throuack-side functional modulesA points
module will report whether the switchdetected normadr detected reversgepending

Chapter 1. Introduction 11

on which, if either, of the electrical contacts in the switch is closed. A signal module
will report the status of theamp proving circuitin the signal: if no current is flowing
through the lamp filaments the lamp proving input in the data telegram will warn the
signal operators about the faulty signal.

Other than conveying status information about points and signals, track-side func-
tional modules report the current positions of trains. These are inferredtfemi
circuit inputs to the modules. Track circuits are identified with track sections which
are electrically insulated from one another. If the low voltage applied across the rails
can be detected, this indicates there is no train in the section; a train entering the section
will short the circuit causing the voltage to drop and the track section will be recorded
asoccupiedat the control centre. Track circuits are simple, fail-safe devices, and one
of the primary safety features of the railway.

All actions performed by Solid State Interlocking—whether in response to periodic
inputs from the track-side equipment, aperiodic panel requests, or in preparing outgo-
ing command telegrams—are governed by rules given in the Geographic Data that
configure each Interlocking differently. Some examples of route locking and release
data are explained in Section 1.3.3 below. Beographic Data Languag€GDL) is
introduced in more depth in Chapter 2. In the following section an outline is given of
the architecture of the system, and the organisation of the software. These details are
needed for a proper appreciation of the models developed in succeeding chapters.

1.3 Solid State Interlocking

Cribbens [24] describes the overall organisation and operation of SSI, and discusses
many of the philosophical and technical problems that have had to be overcome in its
development. Here we only recall the salient details in order to give a broad overview
of the architecture and the manner in which the system maintains safety. The Glossary
in Appendix A.2 accompanies this section.

1.3.1 Overall System Architecture

SSlis a multicomputer system with two panel processors, a diagnostic processor, and
three central interlocking processors which operate in repairable triple modular redund-
ancy. Higher-order control devices such as route planning and automatic route setting
computers are not part of SSI, but they can be interfaced with the system.

The central interlocking processorsre responsible for executing all signalling
commands and producing correct system outputs, and operate in TMR to ensure high
availability and single fault tolerance in the presence of occasional hardware faults.
These are the safety critical elements of SSI. A TMR system has been implemented

Chapter 1. Introduction 12

for hardware reliability: each subsystem is identical, and runs identical software. All
outputs are voted upon, redundantly in each interlocking processor, and the system is
designed so that a module will be disconnected in the event of a majority vote against
it—SSI will continue to operate as long as the outputs of the remaining modules are
in agreement. A replacement module is updated by the two functioning modules be-
fore being allowed online. (In the sequel we usually refer to the central interlocking
processors collectively dse SS|orthe Interlocking)

The panel processorsre responsible for tasks which are not safety critical such
as interfacing with the signal control panel, the display, and other systems such as
automatic route setting computers. These processors are run in duplex ‘hot standby’
for reasons of availability. The diagnostic processor is accessible from a maintenance
terminal (thetechnician’s consolgthrough which the system’s performance and fault
status can be monitored, and whereby temporary restrictions on the Interlocking’s be-
haviour can be introduced. In the latter case this is a provision for temporarily barring
routes, locking points, or imposing other restrictions that are not directly under the
control of the signal operators (for example, at times when there is a need for track
maintenance).

A central feature of SSI is that the controlling computer is directly connected to
track-side equipment by means of a duptiata highwaycarrying discrete signalling
information f. Figure 1.2). Track-side functional modules (TFMs) interface with
signals and points to provide power switching under microprocessor control. Here,
duplication of the hardware has been designed to ensure safe response to failures, but
not fault masking: the TFM will set its outputs to the most restrictive statg gignals
at red) whenever a faultis detected or the duplicated control paths are found to diverge.
One points module may be connected to two to four point switches, and can report up
to four track circuit inputs. A signal module is usually connected to one signal and
several nearby track circuits, but is flexible enough for any other desired function.

The operation of Solid State Interlocking is organised around the concephaf a
jor cycle During this period the central interlocking will address each of the track-side
functional modules, and expect a reply from each in turn. A maximum of 63 TFMs can
be connected to one SSI, and the major cycle is consequently divided imin64
cycles In the zeroth cycle data are exchanged with the diagnostic processor. In each
minor cycle the central interlocking will decode one incoming messagéddatartele-
gram) from the data highway, and process one outgamgmand telegram

The cable conveying messages to and from the central interlocking is a screened
twisted pair carrying relatively high signal levels. Cribbens discusses in detail the
performance requirements for this vital component of the system: the minimum refresh
rate for the TFMs, the necessity of real-time encoding and decoding of transmitted

Chapter 1. Introduction 13

Interlocking Processor

—— Control -=— [—~—— Panel

— » Processor
Book- Geographic
Keeping
Data Internal
Data
L > Loop—! Link

Status of the Network
Commands to Signals/Points

| | Baseband Data Highway |
Points Signals Track Circuits

Figure 1.2: Schematic overview of the main features of SSI

data, the geographic extent of the interlocking area and the need for an acceptable
range without the need for repeaters (circa 15km), are all factors that contribute to
the design. A data rate of 20k bits per second has been adopted, and a cyclic polling
strategy implemented to ensure early detection of communications breakdown at either
end of the link. The data path is duplicated and TFMs and central interlocking are
designed to tolerate single faults on the line—detected through missed or corrupted
messages. In each addressing cycle 25 bits of message data are padded with five parity
bits to form a truncated (31,26) Hamming code which is transmitted in Manchester
encoded biphase form. TFMs are configured to reply immediately upon receipt of
a message from the central interlocking. Cribbens argues convincingly that the SSI
transmission system is highly secure.

1.3.2 Generic SSI Software

SSI has been designed to be data-driven with a generic program operating on rules
held in a ‘geographic’ database. These data configure each SSl installation differently,
and define the specific interlocking functions (although the more primitive functions
are directly supported by the software). The relationship between generic program and
the data is one in which the former acts asraerpreterfor the latter—for this reason

we usually refer to the generic software as tloatrol interpreterin the sequel. The
Motorola 6800 microprocessors used in SSI have a 16-bit address space: 60—80k bytes
are EPROM which hold the generic program (about 20k bytes), and the Geographic
Data; 2k bytes are RAM, and the rest is used for input and output devices. The modest
RAM is used, mainly, to hold the system'’s record of the state of the railway—generally

Chapter 1. Introduction 14

referred to as thanage of the railwayor theinternal statein the sequel.

All SSI software is organised on a cyclic basis with the major cycle determining
the rate at which track-side equipment receive fresh commands, and the rate at which
the image of the railway is updated. During one minor cycle the generic program:
performs all redundancy management, self-test and error recovery procedures; updates
system (software) timers and exchanges data with external devices such as panel pro-
cessors; decodes one incoming data telegram and processes an associated block of
Geographic Data; and processes the data associated with one outgoing command tele-
gram. The latter phase is the most computational intensive part of the standard minor
cycle because it is through these data that the Interlocking calculates the correct signal
aspects.

The SSI minor cycle has a minimum duration of 9.5ms, and a minimum major
cycle time of 608 ms. However, SSI can operate reliably with a major cycle of up to
1,000 ms, with an individual minor cycle extensible to 30 ms. This flexibility is needed
for handling panel requests. If the required minor cycle processes mentioned above
can be completed in under the minimum minor cycle time, the control interpreter will
process one of any pending panel requests (which are stored in a ring buffer). The
data associated with a panel request must not require more than a further 20 ms of pro-
cessing time—the data are structured such that accurate timing predictions can be made
at compile time. If the minor cycle is too long the track-side functional modules will
interpret the gaps between messages as data link faults, and will drive the equipment
to the safe state in error.

The initialisation software compares the internal state of each of the three inter-
locking processors to determine the required start up procedure. When power is first
applied amode 1’ startupis necessary: this sets the internal state to a (designated)
safe configuration, forces all output telegrams to drive the track-side equipment to the
safe state and disables processing of panel requests; after a suitable delay so that TFM
inputs can bring the internal state up to date, the Interlocking can be enabled under
supervision from the technician’s console. After a short power failure much of the
contents of RAM will have been preserved and a ‘mode 2’ or ‘mode 3’ start up is
appropriate. A ‘mode 2’ start up resets the internal state to the safe configuration but
preserves any restrictions that had been applied through the technician’s console—the
system is disabled for a period long enough for all trains to come to a halt, and allowed
to restart normal operation automatically. A ‘mode 3’ start up involves a similar reset
but the status of routes is also preserved, and the system restarts immediately.

Validation of the generic SSI program has been described by Short [85] who points
out the need for extensive testing to validate the final hardware and software com-
bination because the software performs safety checks (redundancy managea)ent,

Chapter 1. Introduction 15

on the hardware. Short also notes the difficuite.(the intractability) of perform-

ing correctness proofs at the level of the semantics of 6800 assembler—yet when one
considers that there are of the order of twenty megabytes of control and monitoring
software on board the A340 [5] airliners, for example, the 20 thousand bytes of ma-
chine code that constitute the safety critical software in SSI is quite modest.

The validation effort that Short describes is rigorous and very thorough. The ana-
lysis has been aided by the fact that the SSI software is highly modular, and because
the control flow is not complicated by the use of interrupts—polling mechanisms, as
opposed to preemption mechanisms, have been used throughout. The analytic frame-
work described includes functional, structural, information flow, and semantic ana-
lysis. These techniques have been applied in top down fashion through the modular
structure of the software. Functional analysis checks the design against the (informal)
requirements specification and identifies the requirements for each program module.
Structural analysis checks the design and code for conformance to certain structured
programming standards, and is intended to prove accessibility of every line of code.
Information flow analysis detects illegal or omitted reference to variables. Given the
control flow graph obtained by structural analysis, a semantic analysis assembles the
individually validated modules into a validated whole, with a check that derived in-
put/output relations correspond to the requirements. A detailed timing analysis is per-
formed in the final review stage, prior to extensive online testing.

It seems that a completely formal treatment of the design path from high level
system requirements to detailed timing analysis of the SSI generic program would
present a major engineering challenge if conducted in a formal manner. Interesting
though it would be to conduct a reappraisal of the correctness of the SSI software
given the current state of the art, it is not what this thesis sets out to achieve (although
see Chapter 6). Instead we consider an issue not mentioned by Short, nor even by Crib-
bens [24]—namely, the validation of the Geographic Data. Cribbens hints at the need
for a “knowledge based approach to scheme design”, but it was only later that proposals
for formally based tools for Geographic Data preparation and analysis emerged [25].
The work reported in this thesis started from early consultations with Mitchell [66],
but has progressed independently of British Rail's own research [48].

1.3.3 Examples of Geographic Data

A more thorough account of the Geographic Data Language is given in Chapter 2,
but it is easy to introduce the main concepts occupying later chapters through a few
examples. Figure 1.3 reproduces gwheme plarfor the layout in Figure 1.1 with
further annotations to show routes aub-routes RouteR,g proceeds fronb, to Sg
through the points?, and P, reverse and normal respectively. In this scheme plan,

Chapter 1. Introduction 16

Ryg
Sy
_ c
Ryg Ry
Sy Sg
_ Ib P aic T alb alb alc T al _
T, Py I; Ty Py
S5 Sq
Ue Rag
Sg
R

Figure 1.3: The scheme plan signalling layout in Figure 1.1 with route and sub-route annota-
tions. Routes are identified paths between main signals, and each track circuit is associated
with a collection of sub-routes so that a sub-route is defined for each path through a track cir-
cuit that lies on a route. A sub-route may be a component of more than one rot (&sr
instance).

there are four sub-routes associated Withwestwardl'?* and7¢, and eastward>
and7®. ThusR,, (say) can be identified with the sub-roues, 7*, and7” in that
order, by the point$>, and P, which are required normal (and anyerlapbeyond the

exit signalSg, but shall not consider overlaps at present). These entities are control
variables upon which the Geographic Data and control interpreter operate.

The Geographic Data are conceptually organised into a number of files each of
which holds data that serves a specific purpose. Some of these files are accessed at
random (as, for example, when a panel request is processed), whilst others are pro-
cessed in rotation, once a major cycle. Thus, data imiet data fileare responsible
for copying the incoming status information to memory, andabgut data filecon-
tains data that determine the command to be issued to each TFM as the system evolves.
These data are accessed periodically, and there is one block of code to execute corres-
ponding to each telegram. For example, the data listed for the command telegram for
signal .S, will specify the conditions under which the signal can be switchedi@f (
from red to a less restrictive aspect). These will typically include checksSthat,
andsS, are on, that the points on the route are detected (in some position), and that the
track circuits to the next signal are clear. These data are designed to ensure that signals
remain at red unless an onward route is locked,(by testing the appropriate route
variables)—though this is propertythat should be checked.

The conditions under which a route may be locked, and the locking conditions for
the route (.e., the conditions that must not change while the route is set), are specified

Chapter 1. Introduction 17

by route request dataFor the running example:

*Q28 if Pycrf |, Pyenf [Tt [Tebf
then R,gs,Pycr , Pyen [Tg0l TE4l [Tl \.

This guarded command is a statement in the Geographic Data Language that is ex-
ecuted in response to a route request issued at the signal control panel. Execution
begins at thdabel *Q28 (which is treated as a pointer into the static data table), and

continues without interruption up to the™which terminates the command. Several
variables are tested here: poirfts are tested to see if they are controlled reverse or
“free to move” reverseR, crf); similarly, P, cnf is a test to see if these points are nor-
mal or “free to move” normal (a more detailed discussion of the points test is deferred
until Chapter 2). In addition, several conflicting sub-routes are tegtgd (79°f) to
check that they arfree If all these conditions are satisfied the route is locked by up-
dating the variables as specified in the conclusion of the rule: the route variaele is
the points areontrolled reversendcontrolled normal and the sub-routes alecked

(The terminology of railway signalling is used here, but it is mildly confusing to speak
of the route being ‘locked’ by this action, rather than ‘set’, although the control vari-
able for the routés ‘set’. Note that the signalling actions in setting a route are firstly
that it is ‘locked’, then it is ‘proved’; the route is finally ‘set’ when the entrance signal
displays a proceed aspect, usually green.)

Another class of Geographic Data specifies conditions that govern route release. It
is (usually) necessary to lock routes in a single action, but they can be released gradu-
ally as the train proceed$reeing’ the network to the rear. Such bookkeeping is carried
out by commands listed in theub-route releaselata file which are executed sequen-
tially over the course of a major cycle. Continuing with the example in Figure 1.3,
these data may specify:

Tg*f if Rygxs ,T,c \.

Tt it TRef Teof Tyc \.

Tbef if TEMf TYf ,Toc \.
These rules introduce the following signalling principle: the first sub-route on a route
can be released (freed) as soon as the route has been unset as long as the track circuit is
clear; subsequent sub-routes are released in the sequence they are traversed. The sub-
route release data must specify the sequence correctly. The order in which the rules are
specified in the file, and hence the order in which they are executed, is immaterial—
more precisely, safety properties of the interlocking must not depend on the order.

To illustrate the importance of this, the t&st°f should be sufficient to guarantee
that neither of the conflicting routes that terminateSatis locked in whenR, is
locked; indeed, if a train oR,; (say) has passed the entrance signal but not yet cleared

Chapter 1. Introduction 18

Ty, this test in the availability conditions fdt,s, and similar tests in the rule fag,;,
will ensure that these two routes do not interfere however far the train has progressed
from S,. The command tainsetR,, is executed from the output data file (usually
when the data for signal modulg, are processed). A route is unset in response to a
cancellation request from the signal control panel (or automatically as the train enters
the route), but the conditions under which the entrance signal can be returned to red
will depend on whether an approaching train is within sighting distance of the signal.
The problem we have to face is to determine whether the locking conditions in
rules such as the above are adequate to ensure that trains do not run an undue risk
of a collision or derailment. This is clearly not a trivial matter. In order to approach
this subject the semantics of the Geographic Data Language are discussed further in
Chapter 2, and properties of the data are examined in succeeding chapters. The next
section introduces thremote route requegtrotocol which is investigated in Chapter 6,
and explains the mechanisms that enable several Interlockings at the control centre to
communicate to achieve their collective management of larger railway networks.

1.4 Inter-SSI Communications

In any signalling scheme there may be a requirement, depending on the physical extent
of the network, to divide the railway into a number of areas (or blocks), each controlled
by a separate interlocking. Where SSlis concerned this distribution of control is further
necessitated by the limited capacity of a single central interlocking processor. Limited
capacity means the signalling area under the control of one operator will be divided
between a number of Interlockings. On this scale the divisions may be rather small
so it is important that boundaries are not only transparent to traffic in the network, but
also transparent to the signal operator. The less fragmented the operator’s view of the
network is the better SSI can approach the broad aim in railway signalling of relieving
the signal operator of the greater part of the burden of the safety of railway traffic.

In order for the control of a train to pass safely between interlocking areas some
communication mechanism is needed to transfer information that needs to be shared
about the status of the network in the fringe area. A typical situation is illustrated by
the scheme plan in Figure 1.4 which focuses the discussion below. Here the cross-
boundary routes converge before the boundary and terminate at a common exit signal.
It is also possible that routes will diverge again after the boundary. In general there
will be numerous lines linking the two interlockings. Signal engineering practice seeks
to avoid placing boundaries through points since the complications introduced signi-
ficantly increase the communication overheads. For the same reason boundaries are
avoided if there would be points immediately beyond the signal at the boundary.

Chapter 1. Introduction 19

S4
_L b Py ac T a
] i i]
T4 TS P4
S7
b —
WEST ®9CD]59

Figure 1.4: EAST and WEST communicate to set routes from entry sigfalor S, in EAST,

to the exit signal §5) in WEST—since WEST controls the tail portion of both routes (just that
overT:, plus overlaps). There are noBAIT to EAST routes as those up 1§ are contained in
WEST, and routes onward from this signal are controlled & E, as is the signal itself.

Data are transmitted between Interlockings by means of a high speed communic-
ation bus called thénternal Data Link. Several Interlockings can be connected to a
single bus, but normally an individual need only exchange data with its nearest neigh-
bours. OutgoindDL telegramsare prepared by commands in the Geographic Data
and the generic control program is configured to copy their contents to the link at
least once a major cycle. Two main classes of data are required to be communicated:
continuously required data such as the aspects displayed by signals in advance of the
boundary, and intermittently required data such as requests from one SSI for another
to perform some signalling function such as moving a set of points or setting a route.
Exactly what data need to be communicated depends on the nature of the boundary—
our concern in Chapter 6 will only be with the complex situation of setting routes that
are divided by Interlocking boundaries. Typically, the inter-SSI communications these
induce occupy about twenty percent of the capacity of one Interlocking.

1.4.1 Setting Routes over Boundaries

Suppose that one wished to route a train fr8nto S;. On receiving the panel request
for this route ERAST first evaluates the availability conditions in its portion of the net-
work: if these are not met the request simply fails, otherwisseEmust wait until it is
certain the route is also available in the other Interlocking before locking it. To achieve
this EAST issues aemote route requesb WEST over the internal data link.

Onreceiving such an input 6T should handle the request just as it would handle
route requests coming directly from the control panel—this simplifies the design of

Chapter 1. Introduction 20

the control interpreter, and data preparation. Thus an incoming IDL request will be
translated into a panel request and queued in the usual manner. When a remote route
request is subsequently processed the difference is tlEsr\Whust communicate to

EAST if, or when, the route is locked: ¥5T sends its acknowledgement via a reply
telegram to BST over the IDL.

In EAST the acknowledgement is also treated as a remote route request: on this
occasion BST proceeds to lock the route it had originally requested. The two Inter-
lockings need to use a dedicated pair of IDL telegrams to communicate request codes
and their acknowledgements. Normally, many routes over numerous lines link the two
signalling areas, but a single pair of (eight bit) telegrams should suffice to carry all the
necessary request codes and their acknowledgements. To summarise:

1. EAST receives a panel route request for a cross-boundary route. If the route is
available in EAST, issue a remote route request tE8V.

2. WEST receives an IDL input conveying a remote route request. If the route is
available, lock the route and reply taET with an acknowledge telegram.

3. EAsST receives a reply telegram to the earlier remote route request: it can then
lock the route and control the entrance signal as usual.

Once the route has been locked indg the aspect of the entrance signal can be
changed if the prevailing conditions allow this. For example, only if the tracks down
to the exit signal are clear, and if opposing signals are on, eaT Elear the signal—
to green or yellow, depending on the aspect displayed by the exit signal. Thus, in
addition to the telegrams used to convey request codes, another IDL telegram is needed
to convey the status of tracks and signals in the fringe area. Such data are needed
continuously.

1.4.2 Releasing Sub-routes over Boundaries

Once a train has passed the entrance signal and progressed along the route (or if the
route is subsequently cancelled by the signal operator) the sub-routes along it should
be released in the usual manneres- by rules in the continuously executed sub-route
release data (as in Section 1.3.3). At least, the sub-routes can be freed in this way up
to the boundary7¢? is a control variable in EST of course, whilel'#? is in WEST, so

the usual rule for freeing the ‘inward’ sub-route does not apply.

In order for the whole of the route to become freesE must send a request to
WEST for it to release its part of the route once the correct circumstances obtain. If
the sub-route release mechanism is to be transparent (to the operators) the necessary
cancellation requesshould be issued automatically. To achieve this in SSI the correct

Chapter 1. Introduction 21

circumstances are recognised by rules in the sub-route release datasifré¢eives

a cancellation request it can release the inward portion of the cross-boundary route
unconditionally. Furthermore, W6T should acknowledge the cancellation request so
that EAST will be aware that the route has indeed been released. The usual sub-route
release mechanism in ¥¢T will ensure that the remainder of the route is released as
the train proceeds to the next signal. To summarise:

4. Whenever conditions indicate that a route has cleared up to the boundany, E
issues a remote cancellation request te3N.

5. When WEST receives a request to cancel an inward route it does so uncondition-
ally, and acknowledges the request with a reply telegrannre

6. Onreceipt of such an acknowledgememtsE should cease to issue cancellation
requests, the route having been cancelled in both Interlockings.

1.4.3 Implementing Remote Route Locking

With the current generation of Solid State Interlocking the number of IDL telegrams
that can be used is limited to a maximum of fifteen in total. Each IDL telegram conveys
eight data bits, and the Interlockings connected to the link take it in turns to transmit
all fifteen bytes of data in a round-robin protocol: the transport layer is configured so
that each SSI broadcasts its data at least once a major cycle (the frequency depends on
the number of Interlockings connected to the link). On receipt of an IDL data packet
the SSl is able to extract those bytes that are relevant to it (this address information
can be computed statically, and is ‘burned’ into EPROM when the system is installed).
Since the outgoing IDL telegram will be written at arbitrary times during a major cycle
it is necessary to buffer the telegrams. As a consequence the protocol as presented
is far from being robust as the various uses of the request telegram can interfere with
one another. If one SSI locks the inward portion of a route in response to a remote
route request, the (buffered) reply telegram should not be overwritten before it can be
sent. While not unsafe, in extreme circumstances this may lead to livelock, and other
problems. Another reason why the protocol sketched above is not correct is that the
remote route request may simply fail in the second InterlockinggVWy, but the first
(EAsT) has to be notified of this failure.

Such concerns introduce the need for telegram protection and timers. To implement
remote route locking the designer has access to a collectietap$ed timersvhich
may be stopped and started by commands from the Geographic Data, but which are
otherwise updated by the (real-time) generic program. Note that an elapsed timer can
serve both purposes if we can differentiate between a timer trstibjged and one

Chapter 1. Introduction 22

that isrunning One timer is needed for each IDL telegram used to convey request
codes to another SSI, but other control data are needed to implement the sub-route
release mechanism over the boundary. The details are drawn out in Chapter 6 where
safety properties of these inter-SSI communications will be examined. Until then our
concern will be with the safety properties of the Geographic Data within a single SSI.

1.5 Formal Approaches to Signalling Safety

In seeking to adopt rigorous techniques British Rail (now Railtrack), along with sev-
eral other railway authorities, advance the opinion that the more formal analysis will
improve the quality and safety of their products and services. While the reasons for
introducing computer controlled railway signalling may be largely economic, it seems
that with the advent of design notations such as the Geographic Data Language the
overall safety case can be strengthened because of the possibility to produce formal
proofs of the behaviour of the interlocking. Even without formal proofs the possibility

to test (simulate) the design long before tracks are laid down, and with full confidence
that the same software will control the live network, is a considerable boost to safety
and productivity. In principle at least, the introduction of more rigorous techniques
will improve productivity in the long run because a formal proof that the Geographic
Data are safe may remove much of the need for testing the design.

These arguments indicate that what is required is a framework within which to
conduct various forms of analysis on Geographic Data. Simulation and testing remain
central concerns in signalling engineering—if only because of the need to test the final
data/control configuration for each instantiation of the data. In the context of this thesis
the ‘formal correctness’ of the Solid State Interlocking is not in itself the issue. Rather,
the central problem is that of automatically checking SSI data through an appropriate
language of logical assertions and proof. There appear to be two distinct approaches
to providing the analytic framework required: either we attempt to formalise the prin-
ciples of railway signalling, or we reduce a given design to a formal specification (or
model) whose properties we verify. A brief survey of related work will help to illustrate
these choices.

1.5.1 Related Work

The treatise by O. S. Nock [76] sets out in considerable detail the recent signalling
engineering practice on British railways. Nock deals both withstlaticanddynamic

issues of scheme design: static issues include network topology, the placement of sig-
nals, and their relative separation; dynamic issues address the relationships between
train positions and signal aspects, and the separation between étainis the evol-

Chapter 1. Introduction 23

ution of the network topology (as points settings change), and as trains proceed. For
example, Nock can be interpreted to yield the following requirements for clearing the
entrance signal of an uncomplicated (mainline) route without overlaps:

i All track circuits on the route must bdear,

il Track circuits on all conflicting routes up to the point of conflict musthear,
iii All points on the route must beontrolledanddetectedin correct position);
iv The exit signal must balight (i.e., drawing current);

v The entry signal for all conflicting routes must te

The route’s entrance signal may off if and only if these conditions are satisfied,
and the route is locked. One persistent problem for signalling engineers is to decide
whether all conflicting routes have been identified.

Recent work by King [51] records the current signalling rules applied by Railtrack.
King’s layeredZ specification is intended to form part of requirements specification
documents used for the procurement of signalling systems. The first layer defines the
concept of network topology in terms of primitive track components (points, plain track
anddiamond crossingsand their allowable interconnections. Paths, and the concept
of interference between paths, are defined on this static component. The second layer
formalises the dynamic signalling rules irtanceptual foundaticr-since this is sup-
posed to be independent of any particular technology, trains themselves are modelled
(in terms of the paths they are on and in which they may come to a halt).

The third layer in King’s specification is an instantiation of the conceptual found-
ation (e.g, SSI, which introduces signals, routes and sub-routes as control elements).
However, since King does not address the question of whether the rules formalised in
the conceptual foundation are ‘safe’ (or at least consistent), itis inevitable, as the author
himself points out, that verification of the safety properties of foamgnal refinement
of the conceptual foundation will be needed. Thepecification cannot therefore be
used to define safety requirements—although safety can of course be defined in terms
of the conceptual foundation.

Wong [99] also attempts to codify the dynamic signalling rules in a formal theory.
He proposes a scheme design methodology that links a theorem prover for higher-order
logic with CAD tools for signalling scheme plans. The theorem prover automatically
checks that the network described is legal with respect to some simple rules for assem-
bling network components(g, that it forms a finite connected graph). Wong goes
on to generateontrol tablesfor each route inferred from the scheme plan—these are
specification documents used to guide the preparation of Geographic Data for an SSI

Chapter 1. Introduction 24

installation. This is practically interesting because of the difficulty of certifying that
the route setting conditions specified in the control table are sufficient (for safety).

However, Wong does not use his HOL theory directly to address the question of the
adequacy of control table route specifications. Instead he derives the behaviour of the
railway from the network structure, presenting the model as a finite state automaton.
In higher-order logic a ‘time’ varying function describes the state of the network at
any instant, and the behaviour is governed by the dynamic signalling rules. Wong
demonstrates how to prove that the automaton is safe with respect to the property that
no two conflicting routes can be simultaneously set. Unhappily Wong’s demonstration
is somewhat vacuous since the notioncohflict in defining the formal property is
identical to that used to encode Nock’s requirements. Cullyer and Wong [26] have
used a similar model to examine safety related properties of a level crossing.

Some related work on behalf of the Danish State Railways has been carried out
by Mark Hansen [56] under the aegis of the ProCos project. Her VDM specification
is also based on a description of the network topology, and the purpose of the model
is to clarify formal requirements (functional, as well as safety) for interlockings to be
developed on a per station basis. This work emphasises model validation (through
simulation), and requirements capture. The principal requirement is that trains do not
collide. Modulo the usual caveats about coupling trains, this is expressed in a predicate
that asserts that no track section contains more than one train. An attribute of track
sections in the model is, therefore, that they may be associated sétiottrains. The
hidden assumption here is that track-side equipment is capable of determining that a
second or subsequent train has entered an already occupied track section. Track circuits
are unable to decide this, for example, although more sophisticated train detection
systems can relay train identities to the control system (trains and tracks communicate).

The authors cited above record the (static and) dynamic signalling rules in a math-
ematical theory. The natural focus in these enterprises is on requirements capture, with
safety requirements dominating. But this begs the question of how to demonstrate
that a purported implementation conforms to the requirements—in particular, to verify
that the interlocking is safe. Another body of work addresses the verification problem
directly.

Atkinson and Cunningham [4] describe a signalling case-study that exercised a
tableaux proof system for Modal Action Logic (a variant of PDL). This took a simple
interlocking (the ®HRESTLoOP scheme [8, illustrated on page 215]) described by a
system of MAL axioms derived from the Geographic Data and the network topology,
and furtheractionrules to describe permitted train movements. The idea is to prove
that a modal property is a consequence of such a specificatipec: the MAL prover

Chapter 1. Introduction 25

attempts to refute the godbec = —p. The logic has a refutation complete decision
procedure to prove such goals—meaning that if a counter model exists it will always
be found. The procedure is semi-decidable however, so cannot alwaysyove:-

p when it is true. This case-study can fairly be said to demonstrate the capabilities
of the FOREST tools, but the model is too concrete to specification and too
impoverished (in its notion of time and computation step in calculating signal aspects,
for example) to be useful as a vehicle for proving safety of the interlocking.

In a similar, but much more successful vein, Stimarck aaflud model inter-
lockings for the Swedish railway authorities (Banverket, and SJ, the railway company)
using propositional logic [88]. They have developed dedicated tools for analysing
safety related properties offSRNOL programs which are used in interlocking design.

A STERNOL program is a system of equations, with one equation—really, a guarded
command—for each value a variable in the program can take. One group of equations
may refer, for example, to the aspect of a particular signal. The Circuit Verification
Tool [88] is used to verify that exactly one of the guards in the equations for a program
variable is true at any time. This guarantees determinism (in each execution cycle),
and such a 8ERNOL program can therefore be implemented by executing the equa-
tions inany order (cyclically). For SJ and their subcontractors this is an important
safety property of their interlockings.

By representing a8RNOL program in propositional logic it is possible to go on to
examine other safety properties by provifigg = p. Given the size of such formulas,
this would be a severe challenge but for Stimarck’s (patented) natural deduction style
proof technique for Boolean satisfiability. The time complexity of the algorithm is
polynomially related to the number of subterms in the formula, with the exponent
(hardness) being determined by the number of simultaneous free assumptions needed
in the natural deduction proof tree. The empirical evidence is that for many practical
problems the degree of hardness is low by this measure, so the proof technique is
effective for extremely large formulae (exceedirtj connectives). To obtain counter
models an ordering on the subterms in the formula is needed; this does not affect the
hardness of the proof, but makes space requiremeéetsthe length of the proof)
sensitive to the order chosen.

The Vital Processor Interlocking (VPI) analysed by Graettal.[37] for the Dutch
Railway Company has an execution model that is similar to theREOL programs
described above: a sequence of equations that are solved once a cycle, each of which
defines the value of an internal control variable or system output. Groote and his col-
leagues formulate safety requirements in a modal logic so as to express properties
relating to finite sequences of program steps (or statedytformulae refer to a finite
future, just formulae refer to finite immediate past, asigtic formulae refer only to

Chapter 1. Introduction 26

the current state. To prove that the program satisfies a modal property both are trans-
lated into propositional logic, anflrog = p is checked using Stimarck’s method. In
general, if the property refers totime steps then this many time-indexed copies of
the program are needed for the proof. Clearlgnd the size ofrog, in terms of the
number of subformulae, determine the range of application of this approach to VPI
program verification. Taken literally, may be ‘large’ (21 s in the example), but a time
abstraction alleviates the complexity problem so that the results are encouraging.
Returning, finally, to the problem of verifying safety properties of Geographic
Data, we should note British Rail’s own research which tackles the problem from an
automata-theoretic perspective. Ingleby and Mitchell [48] represent SSI behaviour in
a Mealy machine having next state and output functiommdw. Safety properties
are characterised as state predicagtatic properties in Groote’s terminology [37])
and output predicates (also static). The problem is to demonstrate that the automaton
modelling the interlocking isafety transitiveif safe(s) asserts that stateis safe, the
interlocking is safety transitive if for all statesand inputs, safe(s) = safe(v(s,1)).
This proof concept [74, illustrated more coherently in Chapter 4] is an instance of a
powerful proof technique for safety properties calkbedinduction
Ingleby’s data decompositions [47] (discussed further in Chapter 5) are what makes
this approach to automatic verification of safety properties of Geographic Data prac-
tical at all: these lead to state clustering in the automaton, dadahproof strategy,
but complicate the task of generating counter models and tracing the location in the
data where the safety properties are being violated. Related work has been reported by
Conroy and Pulley [21] whose models aredBi automata. These authors are plagued
by the enormous combinatorial complexity of the reachable state space in signal inter-
lockings. For the Hoorn-Kersenboogerd interlocking [37], Groote puts the reachable
state space somewhere betweaet and10°% states: the lower bound arises because
the VPI records circa 100 Boolean inputs—SSiI receives up to 512 such inputs in each
major cycle (ignoring the occasional panel request) and the internal state is a vector of
(at most) 1,216 bytes.

1.5.2 Contributions & Thesis Overview

When approaching the question of automated verification, the cited work illustrates
that great care should be exercised to avoid intractable state spaces on the one hand,
and combinatorial explosion in checking Boolean formulae on the other. Both can be
avoided by selecting an appropriate abstraction with which to work, and as long as
safety can be satisfactorily formalised through invariants of the internal state of the
SSI (which may still refer to system inputs and outputs of course). We concentrate
on the semantics of the Geographic Data Language which, in programming terms,

Chapter 1. Introduction 27

is a somewhat richer language thane&NoL or the Vital Logic Code in VPI. The
focus on semantics leads t@a@ampositionalerification strategy—»but the route to this
understanding of the problem is as important to record here as the final synopsis itself.

Chapter 2 The next chapter fills out the background, concentrating on the syntax and
semantics of the Geographic Data Language, and explains the overall organisation of
the data in the SSI. The Geographic Data Preparation Guide [9] defines the language
informally, in a manner that is intelligible to signalling engineers, but to prove proper-
ties of programs written in the language a more rigorous understanding is needed. In
this chapter therefore, a formal semantics is proposed that is faithful to the informal
description. This defines the execution model that is elsewhere assumed to be valid.

Chapter 3 The starting point was not a formal description of the Geographic Data
Language, but a model of a much simplified signalling scheme. The model is derived
by a systematic translation of the data into CCS. The execution model abstracts from
such details as minor and major cycles, concentrating only on the transitions allowed
by the rules held in the database. The focus then is oprtgertiesof the Geographic
Data, and their formulation in terms of a predic&tef the states of the abstract ma-
chine M. For the simple example we can verify these properties by model checking:
we proveF is invariant, that is\/ = vZ.F A [—]Z in the terminology of the modal-
calculus, using the Concurrency Workbench and tools developed for the task. However,
this verification method does not scale beyond the small examples tried—the problem
is one of abstraction in tharoof.

Chapter 4 This chapter examines the invariance proof in detail. Instead of trying to
establish that (all reachable) states of the model are safe we prove that the transitions
preserve safetyThis gives a much more direct demonstration that the Geographic Data
are safe because the data really define the state transitions of the SSI (with respect to
the semantics). The (co-)inductive nature of the proof is explained here in terms of the
proof tableau constructed by the model checker used in Chapter 3: the idea is to show
that if a stateS is safe (.e, S = F) then every staté’ that is immediately reachable

from S is safe: S’ = F. We do not worry about whethef is reachable. Since the
proof method is to be mechanised, time is taken here to identify the steps needed to
demonstrate that theserification conditionsre true.

Chapter 5 The arguments formulated in Chapter 4 are interpreted here in the frame-
work of Floyd-Hoare logic. In this chapter the syntax and semantics of the Geographic
Data Language are formalised as a theory of higher-order logic, and embedded in the
HOL proof system. From this theory the program logic is derived, and the proof oblig-
ation formulated in the godlF} ¢ {F}, for each command in the data. Through the

Chapter 1. Introduction 28

tactics of the HOL system, and a modest amount of ML programming, we recover a
fully automatic proof method which is linear in both in the length~aind the number

of commands: (and independent of the number of states of the SSI). We show that
the range of application of this prototype Geographic Data verifier can be considerably
extended through techniques for decomposing the invariance proofs. Decomposition
according to the structure efcomes for free with Floyd-Hoare logic, so we concen-
trate on decomposirig.

Chapter 6 Here the model presented in Chapter 3 is developed in a different way
to analyse properties of the inter-SSI communications—specifically, those by which
two Interlockings cooperate in locking routes over their common boundary. The logic
to achieve this route locking (and release) is also encoded in Geographic Data. It is
found that unfavourable message delays can lead to circumstances in which hazards
that compromise the safety of railway traffic can arsprinciple. Since such hazards

are not precludeth practice a strict interpretation of the term ‘safety’ leads to the
conclusion that this is a design flaw in the remote route request protocol. In fact the
risk implied by this fault in the generic program is difficult to quantify precisely—
which is sufficient reason to study the problem formally. Our analysis leads to several
recommendations to eliminate the flaw, and we prove that it is possible to implement
the protocol so that it cannot then, of itself, lead to unsafe states in the railway.

Finally, Chapter 7 concludes this work with a summary, and indicates the likely
impact of our findings on the industrial usage of formal methods and the practice of
interlocking design. The application of the theorem prover developed in Chapter 5
to ‘live’ data from the Leamington Spa signalling scheme is described in this final
chapter. Also considered are the concrete recommendations coming from the analysis
in Chapter 6: these indicate that only very minor changes to the SSI generic program
would be needed to address the concerns raised there.

Chapter 2
The Geographic Data Language

It is the main purpose of this thesis to devise an approach to the verification of safety
properties of Geographic Data. The Introduction described the relevant features of
Solid State Interlocking to provide the necessary context. The focus in this chapter
will be on the language in which the interlocking functions are encoded. Section 2.2

explains the overall organisation of the Geographic Data which are conceptually ar-

ranged in a number of files at the source level. In Section 2.3 the (concrete) syntax of
the Geographic Data Language is given, accompanied by an explanation of the intu-
itive meaning of the various constructs. Sections 2.4 and 2.5 introduce rigour to the
underlying execution model by providing the language with a mathematically precise

semantics.

2.1 Introduction

Due to the undesirability of developing and verifying the correct implementation of
a separate control program for each SSI installation, the system’s software has been
separated into itsontrolanddataparts. The control part is independent of the specific
signalling functions and is implemented in the generic software which is the same in
every installation. The Geographic Data Language expresses the specific signalling
functions which vary from Interlocking to Interlocking. This is an application spe-
cific language designed to be intelligible to railway signalling engineers without their
needing specialised knowledge of computer programming. The SSI generic program
interpretsthese data, and for this reason is usually referred to asotheol interpreter
in the sequel. In fact, the program interprets a (byte) compiled version of the Geo-
graphic Data, so the correct implementation of the compiler is also an issue that should
be addressed in checking (safety) properties of the data.

This separation of concerns means one can use very different techniques to val-
idate the generic software on the one hand, and the Geographic Data on the other.
Whereas the control interpreter requires to be validated with respect to its require-

29

Chapter 2. The Geographic Data Language 30

ments only once (see Section 1.3.2), the Geographic Data have to validated with re-
spect to the prevailing principles of signal engineering at each installation. We expect
the (safety) properties of the generic software to be independent of the data interpreted,
although precise timing properties inevitably depend on the final data/control config-
uration. There are also some (functional) properties of the combination that cannot be
verified by considering these aspects of the SSI software in isolation. The principal
culpritin this respect is the remote route request protocol examined in Chapter 6.
Properties of the Geographic Data, however, only depend on the execution model
supplied by the control interpreter. It will therefore be fruitful to formalise the se-
mantics of the Geographic Data Language. On the one hand this provides a reference
for the language against which we can judge whether the compiler and the interpreter
have been correctly implemented, and on the other it provides a precise mathematical
framework in which to condugtroofsabout the behaviour of the interlocking. These
semantics are discussed in Sections 2.4 and 2.5 below. This focus leads to the treat-
ment of the Geographic Data ap@gramwhich has static and dynamic components.
The static data are the rules listed in the database—these are code fragments stored
in EPROM, and are what is meant when referringhte Geographic Data in the se-
guel. The dynamic component is the memory on which the data and generic program
operate.

2.2 Static Data and Dynamic Data

At the source level the data are separated into a number of files that deal with distinct
interlocking functions. The static data can be broadly placed into two groups: those
data that are executed periodically over the course of a major cycle, and those that
are accessed randomly. Concrete examples are given in the next section—here we
are interested in the data’s overall organisation, and the general functions they are to
perform. The glossary in Appendix A.3 accompanies this section.

2.2.1 Geographic Data ldentity Files

The dynamic component of a ‘Geographic Data program’ is given by a collection of
state variables upon which the static data operate—these constitute the internal state
of the SSI, stored in RAM. One variable is defined for each physical control device—
i.e. for each signal, track circuit and point switch—as well as for each logical control.
Logical controls include routesub-routesand sub-overlapstimers and latches (as

well as the telegrams used to communicate with external devices). These variables are
globally declared and may be accessed throughout the Geographid ettty files

define sets of variables of appropriate types:

Chapter 2. The Geographic Data Language 31

TCS the status of a track circuit may hmdefined occupiedor clear. An eight-bit
timer in track circuit memoryrecords how long it has been in the current state
(up to 254 seconds).

PTS each point switch is represented by two four-bit records, one fontimmal
and one for theeverselie of the switch. The normal or reverse field must be
specified whenevayoints memoryis accessed in the data.

ROU each route through the network is represented by two control bits. Routes may
be setor unset Routes may also be barred by clearing the other control bit, but
this can only be modified from the technician’s console.

FLG flags are single bit control variables. In the sequel we are mainly concerned with
sub-routes: these, and sub-overlaps, may be ditckedor free

SIG signals have many attributes and require three bytes of data. One byte is a timer,
three bits indicate the aspect to display, and other fields are for control informa-
tion such as the status of the lamp proving circuit, recording cancellation requests
from the signal control panegtc.

In addition, each panel request is identified, and a collection of general p@ippsed

timers is provided (used to implement the remote route request protocol, and for
swinging overlaps In the sequel we shall let the script lettdPs R, S, 7, andU

stand for the sets of points, routes, signals, track circuits and sub-routes declared in the
Interlocking; Q is the set of panel requests.

2.2.2 Source Files: Periodic Access

One major cycle is divided into 64 minor cycles irrespective of the actual number (

63) of track-side modules with which the Interlocking communicates. One incoming
data telegram is processed, and one outgoing command telegram is processed in each
minor cycle. Command and data telegrams convey up to eight bits of information. A
block of data is associated with each telegram, drawn from the appropriate Geographic
Datasource file

IPT One block of data is associated with each input telegram received from the track-
side functional modules. These data are normally very simple since all that is
required is to copy the bit-fields in the incoming telegram to the internal state. In
preparing these data (a sequence of assignments) the signalling engineer has to
be careful to associate the input fields, which correspond to the physical output
pins in the TFM, with the correct data variable—for instance, bits 7 (and 5)
and 6 (and 4) conventionally refer to thetected normahnddetected reverse

Chapter 2. The Geographic Data Language 32

fields when the message is from a points module. Low-order bits are used for
track circuit inputs from the device, which are likewise copied to track circuit
memory.

OPT One block of data is needed for each TFM addressed by the Interlocking. When
the command is to a points module these data are again rather simple since all
that is required is to copy theontrolled normaland controlled reversdields
in points memory to the appropriate outputs. More complex instructions are
necessary when the command is to a signal module since it is these data that
must calculate the correct aspect to be displayed. This calculation depends on
the aspects of neighbouring signals, which if any of the onward routes is locked,
and on the proximity of trains to the signal. Several other attributes of the signal
(not transmitted in the command telegram) have also to be computed by the
output telegram data. These calculations are repeated every major cycle.

FOP Each command in the flag operations data file is executed in sequence, once
a major cycle. These data perform various bookkeeping functions, the most
important of which issub-route releasésee Section 1.3.3). The flag operations
data are essentially guarded commands, and the control interpreter will execute
1/64™ of these in each minor cycle.

During one major cycle therefore, all of the data in tRg, OPT, and FOPdata files

will be executed once, and the data will be executed in the same order (the polling
sequence, specified by the signalling engineer when the data are compiled) in every
major cycle. ThelPT and OPT data are listed in the same order, input telegram
corresponding to output telegram(and the TFM with that index), but being processed

in minor cyclem + 1 (modulo 64).

2.2.3 Source Files: Random Access

The other source files considered here contain geographic conditions and commands
that only need to be accessed on demand:

PRR Each input from the signal control panel corresponds to a command, or command
sequence. Theanel route requestiata file lists all route requests that arrive
from the panel processor (or, as described in Section 1.4, from another SSI), and
all route cancellation requests. The block of code associated with a route request
usually consists of a conditional statement that tests the internal state to ascertain
if the route availability conditions are met, and a command sequence to update
the internal state accordingly, locking the route. Subsequent processing of the
OPTdata will effect the necessary changes in the network to set the route.

Chapter 2. The Geographic Data Language 33

PFM Points “free to move” data specify the conditions under which points may be
switched, with one set of data required for each lie of the points (normal or
reverse). The conditions are shared by instructions elsewhere in the data, notably
in the PRRdata since route availability always depends on being able to move
the points on the route to the correct position. Several routes may pass through
the same collection of switches. TH&M data therefore help to reduce the
volume of instructions needed in the database; they simplify the data according
to the geographic principle that the conditions for moving the points are local
ones, and this, in turn, reduces the likelihood of introducing errors in the route
specifications. The interpretation of tR&Mdata is discussed in Section 2.4.

MAP Map data typically define a partial graph of the railway network. Searches are
performed on this graph whenever it is necessary to look for evidence of a train
in the approach to a signat.g, an occupied track section). Such searches are
often performed as part of the aspect calculation in@#eT data for a signal
module, and will be used to decide if a route can be cancelled. Unlikefé
data, theMIAP data do not specify stattestson the internal state: instead, when
the control interpreter encountersrap searcht executes an algorithm to dy-
namically compute the test to perform given a starting point in the graph, and a
set of termination points. Map search data are also discussed in Section 2.4.

Once the control interpreter begins to execute a block of data from one of the above
sources, it continues without interruption until the block has been completed. The con-
trol interpreter is a sequential program so this behaviour is expected for the periodically
accessed data processed as part of the standard minor cycle. However, this is also the
case for the data executed on demand, so it is vital to be able to predict timing bounds
for the execution of each code fragment. The Geographic Data Language admits only
assignment of constants to variables, branching and sequence (and a simple code shar-
ing mechanism), permitting one to accurately predict upper timing bounds.

Occasionally it is found, by a timing analysis of the Geographic Data, that the
code for a panel request cannot be computed inside the permitted 20 ms. In such cases
the data must be split over two or more minor cycles. This is achieved by a mech-
anism to add a panel request to the input buffer via a data command—the control
interpreter processes the first part of the data for such a panel request, and queues a
second panel request for the continuation to be processed in a subsequent minor cycle.
At most one panel request is processed each minor cycle. It seems, even from this
informal description of events, that the practice of splitting panel requests may intro-
duce unpredictable behaviour because of the possibility that conflicting requests may
intervene—although predictability may be recovered by placing the subsequent parts

Chapter 2. The Geographic Data Language 34

|b a.b
I I
T5

Figure 2.1: Signalling scheme plan for B&T

of the split panel request always at theadof the queue rather than at the tail, but

the author does not know if the generic program has this behaviour. In any case, it

is clear that validation of the Geographic Data is an issue that demands considerable
effort. Presently the data are prepared by hand and (visually) inspected for errors by
the engineers responsible for the design of the interlocking [25]. Software supports

various kinds of syntactic analysis only (but several authors have begun to address the
problem of providing semantics-based tools to support interlocking design and data

validation [48, 75, 99, 88]).

2.3 Geographic Data Source File Syntax

This section spells out the details of the concrete syntax of the Geographic Data Lan-
guage, although we shall restrict attention here, and in the rest of this thesis, to the
route locking data in th®RR FOR, andPFM (and MAP) data files. The semantics of

the language will be clarified in Section 2.4, but we begin with a few examples drawn
from the data for the signalling scheme in Figure 2.1e3¥ will serve as a concrete
example for this and subsequent chapters when such is needed. The entities declared
in this scheme are:

7 {T1,,T,,...,T:} Track Circuits
P {P, P, P} Points
S {S,,5,...,5} Signals

which represent physical entities in the network, and

R {R027R047R17R27R37R4, R5,R51,R53,R6} Routes
u {Tg°, 130,17, ..., T} Sub-routes

which represent logical control entities. The set of panel requgsssalso declared:
{Q02,Q04,...,Q6,...}.

Chapter 2. The Geographic Data Language 35

2.3.1 Examples: Route Locking & Release

The conditions under which a route can be locked (prior to being set), and the locking
conditions for the route.g., the conditions that must not change while the route is set),
are specified by data in tfreRRandPFMfiles. ForR, and R, in WEST we have:

*Q4 if Pycnf | Pyenf [T00f T9bf
then R,s,P,cn,Pyen, TPl [Tgrl [T\,

*Q51 if Pycrf |, Pyenf [Teef Teof
then Ry s, Pycr , Pyen [Tgel ,Tecl [T901\.

It is not necessary to test all opposing sub-routes in the availability conditions for a
route—thugQ4 does not check <, for example. lis necessary to tegt* in this rule
because itis the last sub-route on all routes terminatirtg ébut sub-routes further to
the east do not need testing since it is required to release sub-routes in sequence). In
the same rule, it is also necessary to tE&t because this sub-route opposes the first
sub-route on the route, and is the last conflicting sub-route on routes that also require
the pointsP, normal {.e, R.;). Similar principles apply t6Q51, and all other main
routes on British railways.
As a matter of principle, all points on the route should be checked in the availability

conditions. ForR;, the first set of points#,) are required in the normal position,
and the second set are required reverse. The control interpreter evdlyatesas a
disjunctive test; it first checks whether the points are already controlled reverse)(
and if they are not evaluates tR&Mdata:

2N Tgof | Tgof , Tyc \

*P2R T0f TPf [T,c \
The pointsP, can be moved to the normal position if the reverse sub-routes are free,
and the track circuit is clear. Conversely, the points are “free to move” reverse if the
normal sub-routes are free and the track circuit is clear.

The FOPdata specify route release conditions: it is (usually) necessary to lock

a route in a single action, but routes can be released gradually as the train proceeds,
and the tracks in the rear can be released and made available to other routes. Such
bookkeeping is carried out by commands in f@Pdata file which are executed se-
guentially over the course of a major cycle. These data may specify:

Tgef if Rgxs,Rszxs ,Tgc \.

Tocf it Taef | T,c \.
T if Tof | T,c \.

Chapter 2. The Geographic Data Language 36

(cy == fif [(gc>]*then [(oc>]*[else [(oc>]*}\

(go) == (tesph
| (map
- [ee] [or [eo] ')
| @
(o) = (cmd
| (c9
| (s9
| @
(s == ((a9 [or (ac>ror [(oc>r)
(a9 = if [(gc>]*then [(oc>]*\
(evseh = if [(gc>r\
(exsebh = [(oc>r\

Figure 2.2: Geographic Data: conditional language constructs

The first sub-route on a route is released (freed) as soon as the route has been unset
as long as the track circuit is clear; subsequent sub-routes are released in the sequence
traversed. Note that theFMand the sub-route release data (in particular) are specified

in accordance with the geographic principle: the interlocking of elements in the railway
depend orlocal components only.

2.3.2 Concrete Syntax of the Geographic Data Language

The syntax of the conditional language used throughout the Geographic Data is given
by the grammar displayed in Figure 2.2. A conditional statenijest contains a list

of geographic conditionggc) followed by an operational claus@c) . Essentially, a

test list is a conjunction of simple testsest on the internal state, but or-branching
and map searchegmap , introduce more complex conditions. The empty test list is
allowed (meaning ‘true’), which indicates that the alternative clajase is redundant.

The selective (switch) construesc) is also redundant, but is often more natural to use
than an extended conditional.

Tests and commands (which in this text will be separated by commas in lists to
aid readability) have similar syntax. The basic format is a pair, whereD is a
variable and selects a field in the record: when this istas} , v is the value being
tested for; when this is &md) , v is the value assigned. Usually the fields tested are
binary, in which case the modifiarcan be used to test or assign the opposite value.
Throughout, the mnemonidsandf denote the two states of a sub-routeckedor
freg the modifierx is not used)s andxs denote thesetor unsetstate of a routep

Chapter 2. The Geographic Data Language 37

andc denote track circuiteccupiedor clear (two separate fields in the track circuit
memory). Where points are accessed one must modify the field selected with either
r or n for the reverse or normal fields in points memory. Thenodifier in P, crf is
discussed later in Section 2.4.

To reduce the volume of data required the language provides a simple subroutine
mechanism. In the context of a test the direct®ecauses the interpreter to jump to
theevaluation setdentified by the labet L in the source; in the context of a command
the label should identify aexecution set Evaluation sets have no side-effects, and
return true or false at the point at which they occur; execution sets can be arbitrary
sequences of data. Heranarks the end of the subroutine code, but otherwise it closes
theif bracket. A further syntactic constraint is imposed on the use of the subroutine
mechanism: the referen@ and the labet L must both appear in the same data file.
(See Figure 7.3 for an example of the use of this subroutine machanism.)

The @directive is one of several so-callepecials These directives indicate to
the interpreter that it should execute a pre-programmed sequence of actions, being
typically given a variable name as a parameter upon which to operate. Use of the
specials in preparing Geographic Data is not mandatory, but it shortens the runtime
execution of the program. Further examples are given below.

Letting * Q, * P, and* L be metavariables over the class of labels, AR PFM,
andFOPdata files can be constructed thus:

PRR ::= [*Q [(oc>]*. ‘ *L (ev.sed ‘ *L (exsebr
PFM == |*P|[(gC
FOP := |(cmd)

<[z

r\ ‘ *L(ev_seb]*

—~

ev.seb . ‘ (€9 . r

Each panel request and flag operation is terminated by a period. In these files the period
terminates a block of data that will always be executed without interruption in the SSI
minor cycle. ThePFM data contain only tests and the labelis the entry point for

the interpreter when it is evaluating a points “free to move” test. The tabeés the

entry point for a panel request, as*Q4 above. Other labels are targets for jumps
(@) appearing in these data. There should be no jumps irF@Edata. (It will be
convenient in the sequel to use the notatRRR* Q) to refer to the data for the panel
reques € Q; similarly, whenP € P we will refer to the two data sets BJFM* PN)
andPFM* PR), and so on.)

Our final concern in this section is with the map search data. These data, like the
PFMdata, may be accessed throughout the other source files—but typically@®Pthe
data when a search is needed to determine the proximity of a train to a signepA
searchis a geographic condition having the syntax specification:

(map = {L[}L]Jr

Chapter 2. The Geographic Data Language 38

The entry point for the search is the label referenced by the first entry in thigllist,
while the search end-points are specified by the labels referenced by the remaining
elements} L. The map search must specify at least one end-point. Map data are
constructed thus:

MAP ::= [(segmer}t]*
(segment := *L (ref) [(entry}}* (exit)
(entry) == (ref) ‘ if [(gc>]*then (exit) \
(ref)y == #T ‘ #S
(exit)y ::= pass ‘ fail ‘ "L

S andT are variables representing signals and track circuits respectively, where the

specialstT and#.S abbreviate simple tests on track circuit and signal memory.
Informally, a map search begins at a feature reference, usually a signal, and pro-

ceeds back through the network untibass or afail is encountered, or a label

remembered from the beginning of the search. The conditional used MAlfRedata

is an expression, not a command as it is elsewhere. For a concrete example, the data

for the search back frorfi; might include the fragment:

*T3DN #T} , #1),
if P,cdr then pass\
if P,cdn then "T6DN \
fail

*T3UP ...

*T6DN #T} , #1,
if P;cdr then pass\
if P;cdn then fail \
fail

When points are encountered in the search there is a choice to be made which is gov-
erned by their current state. If these @maling points in the direction of the search

(e.g, B,), and if they arecontrolled and detected reversie search succeeds uncon-
ditionally because there can be no train approaching thew siggillf the points are
controlled and detected normé#ie search continues from the locatioréDN in the

map; otherwise the search fails (probably because the points were moving when the
search started since the controlled and detected fields in points memory will normally
be in correspondence). When points taeing the direction of the search a different
principle applies, deflecting the search along one or other of the paths to the signal.
The meaning of theL special is discussed below.

Chapter 2. The Geographic Data Language 39

2.4 Semantics: The Control Interpreter

The Geographic Data Language has not hitherto benefited from a formal semantics.
Therefore in analysing safety properties of the data one must offer formal semantics
that are faithful to the informal description of the language given in the Data Prepara-
tion Guide [9]. The informal description is inevitably vague and imprecise in places—
particularly in explaining the logic encoded in the interpreter itself. It is noted, for
example, that the logic encoded in the specials can be expressed in the conditional lan-
guage alone, but no translation table is given to clarify the point. That this translation
is not trivial is illustrated below where we discuss the relationship between the control
interpreter and the points “free to move” data and the map search data in Sections 2.4.2
and 2.4.3 respectively.

2.4.1 Abstract Syntax of Simple Tests and Commands

Earlier we characterised the state of the SSlin terms of dynamic and static components.
The dynamic component is what one usually means when referring tetatesof a
program, and we shall model states with the function space

State: Var — Val

i.e, mappings from a domain of variablesd, P, T'...) to a suitable domain of values
({0,1} say). Leto € State D € Var be representative elements from these domains.
It will also be necessary to have direct access to the static data. For this we are given
a domain of labels. Lat € Lab. Labels and references to them will be syntactically
distinguished as before.

The phrase structure of the Geographic Data inRR& PFM, and FOPfile (and
the MAP file, but this is postponed until Section 2.4.3) is succinctly specified by the
abstract syntax below. Letbe a test, and a command:

Tst := B ‘ t1, 1o ‘ (t1 or t3) ‘ Q
Cmd = A ‘ c1, Ca ‘ skip ‘ if ¢ then ¢, else c¢» Q
B is a basic variable tese(@, P, cr), A is the basic command to set the value of

(a field in) a variable. In order to be specific about the meaning of simple tests and
commands we define interpretation functidhandC:

C : Cmd — State— State
T : Tst — State — (State x State) — State

We expect a command to yield a new state given an initial stakor example, if the
command is to control the poinf3 reverse:

C[Pcr]o = o[Pcr :=1] 1)

Chapter 2. The Geographic Data Language 40

This (function updating) notation is chosen to emphasise that the command assigns
a value to a (binary) field in the points record. Tests, on the other hand, are best
understood in terms of ‘continuations’:

T[Pcn]o (s, f) = if o(Pcn)=1thens elsef (2
Tt1, t2]o (s, f) = T[t]o(Ttao (s, f), f) (3)
T[(ty or ta)]o(s,f) = T[ti]o (s, Tt2]o (s, f)) (4)

Heres is the successful continuation, arfids the failure continuation+e., the state
reached if the test fails. Notice that a test list (3) is treated as conjunction. Elaborating
on this theme we obtain for the one-armed conditional:

C[if tthen cJo = T[t]Jo(C[c]o,0) (5)

If the testt is passed in state the commands are executed in that state, otherwise the
state remains unchanged. Command continuations may be needed to elegantly model
jumps, but they do not enhance the clarity of the presentation of the language here.

2.4.2 Points Free to Move Conditions

Whenever a route is to be set over points they must first be called into the correct
alignment. In SSI this is achieved in two stages: firstly, the control field in points
memory must be properly set (as in the conclusior@f above); secondly, the output
telegram for the points module must be set up with the correct command (usually
achieved by copying the control bits to the output). There is a problem, however, with
the nave semantics of th@oints commanduggested aboves[P.cr := 1] is not
the correct interpretation. According to the informal presentation of the language the
control interpreter is programmed to clear the reverse control bit when the normal bit is
set, and vice versa. Thu€[Pcr Jo = o[P.cr := 1|[P.cn := 0], for example. Track
circuit clear and occupied fields also have this inversion property, but other commands
(assignments) in the language are treated uniformly as suggested by Equation (1).
The points test? crf also introduces behaviour that depends on the interpreter.
The test is disjunctive: it is passed if the points are already controlled reverse, and if
not, it is passed if the “free to move” conditions are met. Intuitively:

T[Pcrf Jo(s,f) = T[(Pcror PFM*PR))]o (s, f)
= T[Pecr]o(s, TIPFM*PR)]o (s, f))
However, it should be noted that the control interpreter performs two further tests when

the PFMdata are accessed: firstly the key switch field in points memory in the opposite
direction is examined; secondly, the program checks that the points have not been

Chapter 2. The Geographic Data Language 41

disabled in the opposite direction by an override from the technician’s console. The
former condition can be programmed in the Geographic Data, but the latter cannot
since the override flag in points memory is accessible only to the generic program.
Since the override flag alwaysstricts the behaviour of the SSI we shall generally
ignore its effect in the sequel.

Specialising for the moment, and bringing the key switch test into consideration,
we expect the following equivalence to hold:

Pyerf = (Pyeror Pyxkn ,T0°f TMf ,T,c)

Similarly for the other direction of the points. More generally we obtain agi@ning
of the points “free to move” geographic conditions:
T[Pcrf Jo(s,f) = T[Pcr]o(s, T[Pxkn ,PFM*PR)]o (s, f)) (6)
T[Penf Jo(s,f) = T[Pcn]o (s, T[Pxkr ,PFM*PN)]o (s, f)) (7

The substitutiorPFM(* PN) used above has been informally presented, but can be rig-
orously defended since tli&~Mdata file is just such a function:

PFM : Lab — Tst

We shall generalise this notion AP and PRRin the sequel.

2.4.3 The Map Search

Another point of contact between the Geographic Data Language and the interpreter
arises in theVIAP data. Given a (concrete) specification of the fgnm}L,,...}L,,

which we shall henceforth represent fiy, £), the interpreter begins the search at
location* L and terminates at one of the end-points given by thé&'set{L, ..., L,}.

More formally, letMap andEnt be new phrase classes:

Tst == ... ‘ (L, E)
Map == *L #D.,m
Ent .= #D,m ‘ if tthen e, m ‘ e

wherem is a map entryD € 7 U S, ande is one of the map exitgass , fail , or”L.
The interpretation functioll takes a set of labels in its first argument. However, since
for any map search the set of end-points is fixed, we shall Writd-] instead

Mg : (Map + Ent) — State — (State x State) — State

Chapter 2. The Geographic Data Language 42

and define this function inductively along these lines:

TIL, E)]o (s, f) = Mgp[*L MAP(*L)]o (s, f) (8)
. | T[Tc]o(s, f) ifLe E
Mal*L #T, mlo (s, f) = { ME[[;T, m]o (s, f) otherwise ©)
Mp[#T", mlo(s, f) = T[T'c]o(Mg[m]o(s, f), [) (10)
(s, f)

Mg[if tthen e, m]o (s, f T[t]loe Mgle]o (s, f),Mg[m]o (s, f)) (11)

From (9) note that the map search terminates if the label at the head of the list is
a designated end-point (successfully or not, depending on whether the track circuit
referenced is clear); otherwise the search continues along theurifalpe track circuit

is clear, or fails if it is not by (10). A signal referengé is treated in a similar manner,
being also an abbreviation for a simple test on the signal memory. Clause (11) is what
one would expect for aif-then-elseexpression. The end-point rules are simpler:

Mg[pass Jo (s, f) = s (12)
Mg[fail Jo(s,f) = f (13)
Mg[L]o(s,f) = Mg[*L MAP(*L)]o (s, f) (14)

Thus, when the specialL is encountered the interpreter jumps to the indicated label

in the map—of course, this means that there is no guarantee that a map search ever
terminates since one can easily define a cyclic map segment. In order to ensure that the
interpretation functions are total we suppose that the data are well formed in the sense
that cyclic references are syntactically prohibited (which is the case, in fact). Note that
only one branch in the map is explored for any search conducted: no backtracking is
necessary since there can be at most one open path to a signal at any time.

2.5 Indirect Semantics of the Map Search

The interpretation functioM defines the algorithm that the control interpreter should
perform when encountering a map seafchE) geographic condition—that isyi
specifies how to conduct the search dynamically. When we come, as in Chapter 5, to
formalisethe syntax and semantics of the language, this direct interpretation of the map
search will be inconvenient to manipulate because of the need to represent the map in
the formalism (as well as the algorithm). However, since thd’sstdefined statically,
we can convert the map into a decision tegeriori and reason with that instead. This
supplies anndirect semantics for the map search, which this section justifies.

To give a rigorous context we extend the phrase classvith pseudo tests for the
if-then-elseform, and the constantsss andfail . Then we extend the definition of

Chapter 2. The Geographic Data Language 43

the semantic valuation functioh by defining

T[if ¢ then tyelse ts3]o(s, f) = T[t]o (T[t2]o (s, f), T[ts]o (s, f)) (15)
T[pass Jo (s, f) = s (16)

T[fail Jo(s,f) = f a7)

and syntactically translatec Tst which may have a map search,{tg} € Tst which

has the map search converteditshen-elsenormal form. The functior{-} is the
identity everywhere, except:

(L, B}y = {*L MAP(*L)ig ()

e #D,mby = {sz,ml}E gt;eervﬁse (i)
{#D, mlt, = if# D then {ml, else fail (iii)

{pass }, = pass (iv)

{fail }, = fail (v)

Uy = L. MAPCL), (vi)

{it tthen e, ml}, = if {t}then {e}else {ml}, (vii)

In the last clause defining-|} , we apply the (unadorned) transformatifi} to the
guardt (cf. Equation (11)). Since thMAP data are required to be free of (syntactic)
cyclic referencegt}} is always defined (and finite).

Theorem 2.1 The direct and the indirect semantics of the map search agree:

THI, E)o (s, /) =TI, E)]o (s, f)
when{(L, E)}} is defined, for any, s, andf. O

Proof Theorem 2.1 is a corollary t©[t] = T[{¢t}], which is proved by induction of
the structure of tests and the depth of the decision tree. The interesting case is for the
map search where one has to show

TH(L E)bo (s, /) = TI(L, E)]o (s, f)
TI{*L MAP(U)glo (s, /) = Mg[*L MAP(*LU)]o (s, f)

(applying the rules given above and in Section 2.4.3) which proceeds by induction on
the structure of maps.

base casesThese are trivial, by the definitions (12,16,iv) and (13,17,v):

Mglpass o (s, f) = s = T[{pass }z]o (s, f)
Melfail Jo(s,f) = f = T[{fal }g]o(s,f)

Chapter 2. The Geographic Data Language 44

case*L #D, m. There are two subcases to consider. WhenE both sides reduce
toT[#D]o (s, f) by (9) and (ii). Otherwise ¢ F, and the induction hypothesis
will be T[{ml} ;o (s, f) = Mg[m]o (s, f). Then

Mg[*L #D, m]o(s,f) = T[#D]o (Mg[m]o (s, f), f)
by (9), whereas the expanded term yields by way of (15), (ii) and (iii):
T[[{|* L #D, m|}E]]U(S7 f) = T[[{|#D7 m|}E]]U(S7 f)

= T[if# Dthen {m}, elsefail Jo(s,f)

Applying the induction hypothesis proves the result in this case.
case#D , m. This is similar to the above whan¢ E.

case” L. The result follows by finiteness of the map and the assumption{itiais
defined for any (hence so igimi} ,, for any mapn). Consequently

Mp[*L MAP(U)]o (s, f) = TH*L MAP(L)glo (s, f)
by a shorter inference, 8d z["L]o (s, f) = T[{ L} z]o (s, f).
caseif t then e, m. Two induction hypotheses are need&d{ml} o (s, f) =

Mg[m]o (s, f), andT [{le} z[o (s, f) = Mg[e]o (s, f). Then

Mg[if tthen e, m]o (s, f)
= T[tloMgle]o (s, f),Mge[m]o (s, f))
by (11), while
T[{if tthen e, m}g]o (s, f)
= TH{tde (THekglo (s, £), Ti{mitglo (s, f))
using (15) and (vii). Applying the induction hypothesis, and generalising, leaves
the requirement to prove that

Tltlo (s, f) = THithlo (s, 1)
This follows by a shorter inference by finiteness|of.

HenceT[t] = T[{t}], and Theorem 2.1 follows. [

The assumption that-} is a total function seems quite strong, but this is really
a matter of pragmatics: the data compiler has to check for the possible existence of
cyclic references in th&/AP data (also in the other data source files) when the data
are loaded into the SSI. The syntactic check is the most practical means of doing this,

Chapter 2. The Geographic Data Language 45

C[Dv]o

C[Dxv]o

Cl[Pecr |o

C[Pcn]o

C[skip o

Cler, co]o

Cl@]o

C[if tthen ¢, else c]o

o[D.v:=1]
o[D.v:=0]

o[P.cr :=1|[Pcn := (]
o[P.cn :=1|[Pcr := 0]
Clea](Clea]o)
C[PRR*L)]o

= T[t]o (Clei]o, Clea]o)

T[Dv]o (s, f) = if o(D.v) = 1thenselsef

T[Dxv]o (s, f) = if o(D.v) = 0 thens elsef

T[Pcn]o (s, f) = if o(P.cn) = 1 thens elsef

T[Pkn]o (s, f) = if o(Pkn) = 1thenselsef

T[Pcrf Jo(s, f) = T[Pcr]o (s, T[Pxkn ,PFM*PR)]o (s, f))
T[Penf Jo (s, f) = T[Pcn]o (s, T[Pxkr ,PFM*PN)]o (s, f))
T[t1, t2]o (s, f) = T[tdo (T[t]o (s, f), f)

T[(t; or t2)]o(s,f) = T[t1]o (s, T[t2]o (s, f))

T[if tithen tyelse t3]o (s, f) = T[ti]o (Tta]o (s, f), Tts]o (s, f))
T[pass Jo (s, f) = s

T[fail Jo (s, f) = f

Figure 2.3: Semantics of the conditional language

although eliminating potentially interesting ‘maps’ that contain syntactic cycles, but
not semantic ones. The question of whether semantic cycles exist is a difficult issue
that is related to the problem of eliminatiogusal loopgshort-circuits) in sequential
hardware. Malik [55] has a polynomial algorithm to decide whether a sequential circuit
can be converted into a (much largegmbinationalcircuit: this algorithm may be
adapted to the present setting by representing the map (graph) as a system of Boolean
eqguations, but the syntactic test for circularity is presently acceptable in practice.

2.6 Summary

This brings to a close our examination of the syntax and semantics of the conditional
language in which Geographic Data are specified. Henceforth we shall assume that
map searches (arelaluation setsvhich can be treated similarly) have been elimin-
ated from the data analysed in the manner suggested in the preceding section. The
main semantic definitions are summarised in Figure 2.3. Notecthat, represents
sequential composition, and that thélag in (basic) tests and commands is interpreted

Chapter 2. The Geographic Data Language 46

as inverting the literal value: negation can only be applied at this level. Note, too, that
expressions are only of Boolean type. The Geographic Data has access to other data,
such as counterglapsed timens but no means of calculating with these other than by
comparison with integral constants (or enumerated type constants in the case of signal
aspects, say).

Not all features of the Geographic Data Language have been summarised above.
In particular, theOPT data have been omitted since they do not plagla M later
chapters. However, these data are also built from conditional and sequential constructs.
We note that there is no looping construct, since none is needed to specify the interlock-
ing logic. Implicit loops can be defined in terms of jumps (@especial) to execution
sets, but this practice is forbidden by the data compiler. Recall that the Geographic
Data are evaluated in real-time, subject to stringent timing constraints, and loops may
have unpredictable timing behaviour (or at least timing properties that are difficult to
verify).

Even so, interlocking behaviour may be very complex. In the next chapter a CCS
model of Solid State Interlocking is developed which provides a framework in which it
is intended to prove safety properties of the data. The model is derived by a translation
according to the above semantics. We focuspapertiesof the data, and on the
problem of proving these properties for simplified signalling systems suchesrW
These early attempts to (mechanically) verify properties of Geographic Data are refined
in later chapters to a stage where we can verify properties of real signalling data.

Chapter 3

Modelling Solid State Interlocking

This chapter builds on the informal description of Solid State Interlocking given in the
Introduction. The model developed in Section 3.2 serves as a reference for this and
subsequent chapters so some time is taken below to discuss its objectives and particu-
lar representation. The model is derived from a translation of the Geographic Data into
CCS. Ultimately this gives rise to labelled transition systepan automaton whose
safety properties are formally characterised in Section 3iBwagiantsexpressed in

the modalu-calculus. Then in Sections 3.4 and 3.5 we address the question of veri-
fying that these invariants hold for some simple examples. The problem of finding a
flexible and efficient framework within which to conduct the formal verification, which

is scalable and which will also form the foundation ahachanicalGeographic Data
checker, will occupy us through to Chapter 5.

3.1 Introduction

The purpose of railway signalling is to ensure the safe passage of trains through to-
pologically complex networks. Safety properties therefore dominate our analysis. In
designing and constructing signalling systems engineers seek to ensure, amongst other
things, the following safety properties of the systasma whole

e At no time does more than one train occupy a given track section (except when
atrain is being coupled to an engine of course).

¢ No train passes through a set of points which are not locked (locking the points
physically prevents their movement).

¢ No train passes in the normal (or reverse) direction through trailing points which
are locked reverse (or normal).

These have been drawn from discussions with signalling engineers. To understand the
last of these, consider the fragment frone®v in Figure 3.1. If a train is moving

47

Chapter 3. Modelling Solid State Interlocking 48

|b alc

Figure 3.1: Trailing points may derail trains if locked against the direction of travel

through pointsP, in the directiorba (normal) there is a real danger of its derailment if
the points are in fact (physically) clamped in the revergag ¢rientation; derailment is
also likely if the points are moved while a train is passing throtigh

The problem, of course, is that properties such as these plainly rely on the behaviour
of trains, or at least on their drivers, and are therefore very unlikely to be demonstrable
in practice because trains may fail to obey signals. But the engineering problem is
to ensure thain principle no two trains are allowed simultaneous access to the same
section of track, and so on. This immediately focuses attention on the interlocking
logic, and obviates the need to capture in a formal model vagaries in the behaviour of
trains, elements of the network, or the complex communications between the signal
control centre and the railway. We do not attempt to verify #tato time does more
than one train occupy a given track sectioecause any model in which it makes sense
to express such a property at all would be exceedingly difficult (if not impossible) to
validate with respect to the physical control system.

Nevertheless, the correct functioning of the underlying communication mechanism
is intrinsic to the safe operation of SSI as a whole. There is considerable scope for
formally verifying safety properties of the SSI generic software (see Cribbens [24],
and Chapter 6 for example), although a thorough analysis of the underlying commu-
nication mechanisms is an issue whose scope is too broad for a completely formal
understanding. Yet even if the communications between SSI and track-side equipment
are functioning perfectly, it is clear that the presence of errors in the Geographic Data
will negate the Interlocking’s overall integrity.

It is therefore argued here that the most fundamental safety properties of the signal
control system may be exposed in the Geographic Data alone. An example from Sec-
tion 3.3 is themutual exclusiorproperty: no more than one of the sub-routes over a
given track section is locked at any time. This says something about the logical rela-

Chapter 3. Modelling Solid State Interlocking 49

tionship between the control variables that constitute the Interlocking’s internal repres-
entation of the state of the railway: it expresseswariant of the program’s memory.
Admittedly this property does not hold while the SSl is in its initialisation phase, but

if it holds thereafter it lends considerable credence to the notionnhainciple no

two trains have simultaneous access to a given section of track. In the final analysis
however, it is difficult to argue (formally) that properties such as this are sufficient, in
the absence of faults elsewhere, to guarantee system properties such as those identified
above. So for the present we contend only that these properties of the Geographic Data
are interesting in themselves.

Properties of the data such as the mutual exclusion property above can be verified
only if a suitable semantics for the Geographic Data Language is given. In Section 3.2
these semantics are given indirectly by translating the Geographic Data into CCS, fol-
lowing the definitions in the preceding chapter. Consequently we obtain an operational
semantics, and require only to validate the operational model with respect to the phys-
ical system—in this case the control interpreter. In fact, the model derived in this way
is rather abstract so it is better thought of a®mmnal specificatiorof the admissible
behaviour (state transitions) of the SSI. details such as the order in which the data are
to be executed, and how and when communications are initiated, are omitted.

Clearly there are many ways in which one could present a formal model of SSI, its
Geographic Data, and properties of the system. Some of the approaches that have been
tried were mentioned in Section 1.5. Our choice of CCS seems strange at first since
this is a language for modelling parallel systems. While there is loose parallelism in
the interactions between Interlockings, there is no parallelism within a single SSI—
only a sequential control program. However, it turns out that the model obtained by
interpreting the Geographic Data in CCS has precisely the execution model needed
to verify that they are safe. As we shall see in Chapter 4, as far as the invariance
proof is concerned it makes little difference whether one represents the model, say,
in TLA, CCS, or in INITY. Moreover, the model developed in here turns out to be
easy to extend when, in Chapter 6, the problem of verifying properties of the inter-SSI
communications protocol is addressed. It is in this area, that of protocol verification,
that CCS and its derivatives have been shown to be most successful.

The mechanical support for CCS is rudimentary [20], but the advantage of the Con-
currency Workbench (CWB) is that the tool can be used: to simulate the model, single
stepping through the execution; to test the model in the sense of Hennessey’s [41]
equivalences and preorders; and to verify temporal properties of the system through
model checking. The versatility of the tool is due to a simple representation of the
model {.e., the transition system, as a graph). The techniques discussed in Section 3.4
for controlling the model’'s space complexity are highly effective, but the tool’s simple

Chapter 3. Modelling Solid State Interlocking 50

representation of the model is also a weakness and, it turns out, in general too concrete
for large scale applications.

Safety properties of the Geographic Data are captured by logical relationships
between the control variables. Technically, these will be expressed as state formu-
lae in the modal:-calculus: the formulae will be true of a state if and only if the state
is safe—thigdefinessafety. In Section 3.3 we formalise the safety properties and for-
mulate the proof obligation which is to show that all (reachable) states of the model are
safe. Since formulae of the modalcalculus are interpreted over transition systems
the logic is well suited to specification of CCS programs. The logic also subsumes
the familiar program verification logics like Floyd-Hoare logic and PDL [11, 95]. The
specification style of Floyd-Hoare logic is particularly suitable for proving safety prop-
erties of Geographic Data (see Chapter 5). We start out, therefore, with a quite general
framework in which to model SSI.

3.2 CCS Model of Solid State Interlocking

A natural starting point for a CCS model is to consider the system as a whole, decom-
posing its overall behaviour into that of two communicating systems:

(Interlocking | Network)\ L

Network is a parallel composition of many agents representing physical components
of the system such as signals and points. In this design we may choose to abstract
features of the communications mechanism, allowing synchronisations on the actions
L to represent the transfer of telegrams between SSI and track-side functional modules.
However theNetwork component in the above scheme is redundant when our primary
concern is with the properties of the Geographic Data rather than the overall behaviour
of the system. Such a model is needed to animate the behaviour allowed by the control
system—to test and simulate the design of the interlocking—nbut the focus here is on
thelnterlocking model and its underlying assumptions.

3.2.1 Modelling Assumptions

Conceptually, the SSI model consists of three partsirttegpreter, thedata, and the
programmemory The latter component represents the Interlocking’s internal state—
the image of the railway—and consists of the collection of all control variables defined
for the system. The former components, which are referred to collectively in the sequel
asthe contro] embody not only the Geographic Data but also the assumptions we make
about the behaviour of the interpreter: we would prefer these assumptions to be as weak
as possible.

Chapter 3. Modelling Solid State Interlocking 51

(pfm) == ()
(fop) == (cmdif (tl)
(prry == if (tl)then (cl)
)y == (tesh [()]
(tesb == (gc) |((t)or (tl))
(cl) == (cmd [(cl)]
(99 == P(en[f]ler [f])[R(s|xs)[T (ofc)|U(I|f)
{emd == P(cenjer)| R(s|xs)|T (olc)|U (I |f)

Figure 3.2: Simple grammar for a subset of the Geographic Data Language

In Section 2.4 the relationship between the SSI generic program and the Geo-
graphic Data was discussed in some detail, at least in resp&&Mfand MAP data.

In developing the model below we shall assume the validity of those semantics, par-
ticularly the points “free to move” test. Otherwise, the principal assumption in our
analysis is that the safety properties of the data do not depend on the generic program.

It is important to note that the signal engineer has complete authority in specifying
the execution order imposed on the Geographic Dat;+n defining the polling cycle
which is not itself expressible in the Geographic Data Language. We contend therefore
that the safety properties of the data are, or at least ought to be, independent of the
order imposed. As a corollary, properties that can be proved under the assumption of
an arbitrary execution order will be enjoyed by any system implementing those data—
because to assume an arbitrary execution order is to assotihi@gabout the order.
Under these conditions one has only to perform the safety analysis once: otherwise
one would be obliged to redo the proof whenever the execution order is changed, or a
rule in the database is modified.

Other assumptions require less comment. Firstly, we abstract the system’s out-
puts to, and inputs from, the railway, and indeed follow the informal specification [66]
closely in ignoring thdPT and OPTdata and concentrating on the route locking data
in the PRR PFMand FOPdata files. Secondly, the image of the railway is described
by a collection oBooleanvariables representing points, track circuits, routes and sub-
routes. For the model this simplification is inessential, but is mandated to some extent
by the desire to control the computational complexity in automating the formal ana-
lysis. Finally, and in accordance with the above, it is appropriate for the time being
to suppose the somewhat restricted syntax for Geographic Data given in Figure 3.2.
While this guarded command fragment is inexpressive as a programming language, it
is sufficient to encode many examples in ffl@Pand PRRdata files.

Chapter 3. Modelling Solid State Interlocking 52

3.2.2 Model

In his book [62] Milner defines the semantics of a simple (concurrent) imperative pro-
gramming language by translating it into CCS. In this way a program is represented
(concretely) by a labelled transition system. Milner’'s objective here is to interpret
one calculus, that of Hoare logic and its proof system for the language in question, in
his more primitive calculus [63]. The semantic embedding so derived demonstrates the
universality of CCS, and is used by Milner to investigate properties of the programming
language and its program logic. Here, we shall simply use this form of embedding in
order to fix the (operational) semantics of the Geographic Data Language.

Although its designers may not think of the Geographic Data Language as a pro-
gramming language as such, the presence of the interpreter provides a convenient exe-
cution model—so it might as well be assumed that we ‘run’ the data. More precisely,
each rule in the database defines a state transformation, where a state is the Inter-
locking’s current image of the railway. The execution model can be described in a
single command loop—an endleds loop in Dijkstra’s language of guarded com-
mands, say. In CCS this becomes a single recursive agent which nondeterministically
chooses among the guarded commands to execute at each iteration.

The typical scheme for representing a program variable as a readable and writable
location in memory is given by the following pair of agents:

def

Locp = puty(z).Regp(x)

def

Regp(y) = putp(r).Regp(z)+gety(y).Regp(y)

The values the program variablemay take are drawn from some (usually finite) data
domain. For convenience it will be assumed in the model that these registers are always
suitably initialised before being read. In what follows the CCS value passing syntax
would quickly become cumbersome to use in its full formality—because of a profusion
of sub- and super-scripts. We shall therefore abuse the notation slightly, and represent
the binary track circuit variabl€', for example, by the pair agents:

def

Regy(c) = puty(c).Regp(c) + puty(0).Regr(0) +gety(c).Regyp(c)
Regy(0) = puty(0).Regy(0) + puty(c).Regy(c) + gety(0).Regy(0)

Thenameput,(c) denotes the pure CCS action obtained by the usual interpretation of
the value passing calculus in the basic calculus (see AppendpuB)ic) denotes the
inverse action. We shall freely uget,(v), etc, when the value communicated need
not be specified like this, or when the value passing syntax offers greater clarity.
Using the registers defined above the image of the railway is represented by

mage £] Regy(f) | [] Regs(xs) | [] Reg(c) | [T Regp(en)
veld ReR TeT PeP

Chapter 3. Modelling Solid State Interlocking 53

Regp(y) = putp(z).Regp(z) +getp(y).Regp(y)
Image <] Regy(f) |] Regp(xs) |] Regr(c) | J] Regp(cn)

Ueu RER TeT Pep
Control & Request + Unlock + Cancel + Input
Request = Y sety.(C[PRR*Q)]Control)
QeQ
Unlock = Y (C[FORU)]Control)
Ueu
Cancel £ Y cang.puty(xs).Control
RER
Input = > inp(0).put;(0).Control + iny(c).put,(c).Control
TeT

West = (Control | Image)\L

Model #1: A CCS model of Solid State Interlocking

This is a parallel combination of agents, though none of the components communicate.
The image of the railway has been initialised to some suitable statd) an® ¥ R &
7T WU represents the set of ¥$T1's points, routes, track circuits and sub-routes.

The execution model proposed is simple: during each iteration of the Interlock-
ing’s minor cycle one of the rules in the database is selected at random and evaluated.
Only if the guards are currently true will the state be updated by the commands in the
conclusion of the rule. This behaviour is encoded in the recursive

Control & Request + Unlock + Cancel + Input

Each of the sequential components embodies one aspect of the behaviour of the system;
each returns evaluation to ti@®ntrol state which we may think of as the ‘top’ of the
minor cycle loop in the system’s ongoing evaluation of the data. The elements of this
model are gathered together in the agesmist displayed in Model #1 (which may
sometimes be referred to explicitly @gest.; in the sequel). Th&equest andUnlock
components are derived by translating the Geographic Data into CCS as described
below. Other components allow one to cancel routes that have been set, and to follow
the movements of trains in the network. The restriction/set £(Image) binds the
components of the model together. The visible actions are:

o {sety | Q@ € Q}, representing panel route requests. Each of these invokes the
appropriate rule in thé?RRdata file, one per route. In SSI these are always
processed in a single minor cycle.

e {cang | R € R}, representing route cancellation requests. These are also panel
requests: there are normally several preconditions to be satisfied before the route
can be unset, but this is not captured in the model.

Chapter 3. Modelling Solid State Interlocking 54

C[if (tlythen (cl)]Jc = T[{h](C[(cl)]ec,c) (1)
Cl{emdif (t)Jc = T[(t)](C[{cmd]c,c) (2)
Clle = ¢ (3)

C[Dwv(cl)]Je = putp(v).C[(cl)]c DeD (4)

T[I(s.f) = s (5)
TIDv](s,f) = gety(u).if (u=v) thens elsef DeD (6)

T[Pecrf |(s,f) = T[(Pcror PFM*PR))](s, f) (7)
T[Pecenf |(s,f) = T[(Pcnor PFM*PN))][(s, f) (8)
T[(tesh (t)1(s, /) = T[{tesh [(TL<t)1(s, f),) (9)
TIC(thyor (th2) (s, /) = TLH (s, TICt)2](s, /) (10)

Figure 3.3: Translating Geographic Data into CCS

e {inp(v) | T € T,v € {c,o0}}, representing minor cycle inputs from the track-
side hardware. No assumption is made about the order in which these arrive,
incoming values being simply copied to memory.

Note thatControl is a serial recursive agent, and that the fanout fronCivérol state
is exactlyQ +U + R + 27.

3.2.3 Translating Geographic Data into CCS

To complete the definition of the model a translation to CCS is provided for the gram-
mar cited earlier. This translation is specified by the ten rules of the inductive defini-
tion displayed in Figure 3.3. The two syntactic forms of the one-armed conditional are
given the same interpretation in rules (1) and (2). Note that in correspondence to Sec-
tion 2.4, T[] takes a pair of continuations as arguments—the first represents success
of the rule, the second represents failu2¢:] carries only the successful continuation.

These rules need little comment, except in the treatment of the points test discussed
in Section 2.4.2. When the “free to move” flag is present the test is disjunctive in rules
(7) and (8), and if the points are in the wrong state f#éV data for the points are
evaluated. In this case, since the other fields in the points memory are omitted in the
model, we simply rewrite the test as shown.

An illustration of how the translation proceeds is worthwhile. For an example
consider the panel request rule for the rokfg:

*Q02 if Pyorf ,Tocf , T9f
then Ry,s,Pycr Tl T2l \.

If this code fragment is identified with the agepn2, then

Q02 = C[PRR*Q02)]Control

Chapter 3. Modelling Solid State Interlocking 55

Q02 = C[PRR*Q02)]Control
= getp (u).if (u=cr) thenQ02, elseQ02,

Q02, = T[T¢ef , T¢b§](C02, Control) = T[7T7¢f](Q02,, Control)
= getyuc(u).if (u=") thenQ02, else Control

Q02, = T[T{ef ,T"f](Q02;, Control) = T[T}?¢f [(Q023, Control)
= getpe(u).if (u=1) thenQ02; else Control

Q02; = T[Tt f](Q02;,Control)
= getya(u).if (u=1) thenQ02; else Control

Q02, = T[T¢f](C02, Control)
= getya(u).if (u=") thenC02 else Control

C02 = C[Ry,s, P cr Tl , TP [Control

= putg_(s).putp (Cr).putrea(l).putzga(l).Control

Figure 3.4: Panel route reque$@Q02 translated into CCS

= T[Pyorf ,Tf TgPf[(C[Ryys, P cr , T¢I , T2*1 |Control, Control)
= T[P, crf](Q02;,Control)

by rules (1) and (9) respectivelyp02; is a place holder—the control will reach this
point if the points test succeeds, otherwise execution returns todfiteol state. Con-
tinuing via rules (7) and (10):

T[P,crf](Q02;,Control) = T[(P,cror Trf Tf)](Q02;, Control)
= T[P cr [(Q02;,Q02,)

Q02, is a second place holder—execution continues from here (the “free to move” test)
if the points are controlled normal instead of reverse. Finally

T[P cr [(Q02,,Q02;) = getp (u).if (u=cr) thenQ02; else Q02,
= getp (cr).Q02; + getp, (cn).Q022

by rule (6). Shown here is the result of the translation from value passing CCS syntax
to the underlying calculus.

The rest of the clauses required in translating this panel request are given in Fig-
ure 3.4. This illustration completes the basic definition of the formal model of SSI, but
it is not the last word we shall have to say about it. After discussing safety properties
in the next section, it will be convenient to instrument Model #1 so that these can be
formalised, and checked, appropriately. In Chapter 6 the model described above is ex-
tended with more of the apparatus of the SSI—in particular, input and output buffers,
and watchdog timers.

Chapter 3. Modelling Solid State Interlocking 56

3.3 Defining Safety Properties Formally

Technically, safety properties are associated wittariants In sequential programs
loop invariants are used to assert the correctness of while- and for-loops, for example;
variant properties-e.g, assertions that some program measure always diminishes—
are used to make termination arguments. Termination need not be a concern here as
there are no loop constructs in the language which could introduce infinite behaviour.
The safety property will be a formulka expressing logical relationships between
the control variables of the SSI—a property which should hold after the execution of
any of the rules in the database. That is to say it should be invariant under the state
transformations induced by the Geographic Data. Formalig defined as anodal
formula in the modal:-calculus. We may prove the invarianceFoby establishing the
satisfaction relation:

(Control | Image)\L = vZ.F A [—]Z

A state or proces# satisfies theemporalformulavZ.F A [—]Z if E satisfiesk and
every derivativel” of E satisfiesvZ.F A [—]Z. This inductive definition of the notion
of safety plays a cruciabté in the development of the proof strategy in Chapter 4.

3.3.1 Safety Properties of Geographic Data

In Section 3.1 it was noted that it would not be possible to give formal procfgstém
properties such as those listed drawn from the principles of railway signalling. Our
thesis is that it is instead better to identify properties ofdhéa since these can be
formally verified with respect to a suitable model. If the model is valid the formal
verification will give considerable weight to the necessarily informal argument that the
safety principles have been adhered to in the interlocking’s design. With this in mind
the following properties are taken to be central to the correct design of the route request
and sub-route release data:

MX It is never the case that two or more of the sub-routes over a given track section
are simultaneously locked;

RT Whenever a route is set, all its component sub-routes are locked;

PT Whenever a sub-route over a track section containing points is locked, the points
are controlled in alignment with that sub-route.

Throughout the sequel these three properties are referred to by the Natné®r
mutual exclusion)RT (for routes), andPT (for points). Another property associated
with points is also of interest:

Chapter 3. Modelling Solid State Interlocking 57

PT The reverse (respectively, normal) sub-routes over points are free whenever the
points are controlled normal (respectively, reverse).

If points are represented internally by binary variables the two formulatioR3 @fre
equivalent—in SSI, however, points do not have a binary representation so these are
distinct properties.

Refining the above, one might wish to add the requirement that if a route is set the
points along it are properly aligned—nbut this is unnecessary §tiic@ndRT together
ensure that the points along a route become correctly aligned when it is set. Drawing
the example from the scheme plan on page 48;jfis set we require sub-routd§°
and Ty to be locked and the point8, and P, to be controlled normal and reverse
respectively. If this is so, when the route is set the points will be correctly aligned;
subsequently, if the route is unsBfl ensures that the points remain correctly aligned
until the sub-route is freed.

TogetherMX andRT are designed to ensure that no routes over the same section
of track in opposing or otherwise conflicting directions are simultaneously set. Since
signals that have routes associated with them are supposed to remain at red unless
an onward route has been set, these properties ensure, in the absence of other faults,
that no more than one train has access to any given track section at any one time.
Naturally, that signals do have this property must also be verified—nbut this will arise
from safety properties elsewhere in the da@P({[data, in particular). We shall see
later in Section 4.4.3 that a slightly stronger fornR¥f is needed in general.

The foregoing discussion raises the questiomvbérethe invariant comes from.

MX is easy enough to define given the naming conventions adopted for identifying
track circuits and sub-routes. The other properties are more problematic. Using an
informal notation for the present, and reading from the scheme plan on page 48, it is
clear that the routes property f&, should be:

Ry (s) = Tg(1) AT() AT5(1)

However, that this is the correct relationship has to be taken ‘on trust—plainly it can-
not be inferred from the data we wish to certify. In the absence of a generic charac-
terisation ofRT andPT it is therefore necessary to resort to specifying these by direct
transcription from the scheme plan.

This raises the prospect that the invariant may be incorrect since transcription errors
will likely arise if this is to be done by hand. Fortunately it is very much easier to define
the invariant correctly than it is to compile the Geographic Data without error. Even so,
in the worst case we should verify that the specified invariant is not inconsisient—
that it does not speciffalse But it is easy to see that at least one model exists foFthe
if it expresses the above properties. SikdeandRT are implicative they will always

Chapter 3. Modelling Solid State Interlocking 58

be true when the antecedenfasse or the consequent teue. Thus any assignment to
the variables in which every route is unset and every sub-route is free will sEfisfy
andRT: obviously it will also satisfyMX, and checking this is trivial.

3.3.2 Tags and Probes

Before discussing the precise definition of the fornmfulais first necessary to repair a
purely technical difficulty with Model #1. The problem is that one cannot observe the
internal state of the model: the restriction qirecludes direct observation of the state

of the variables in thémage of the railway. Nor is there any apparent mechanism by
which the state of the system can be inferred from the actions that remain visible. Thus,
although the model correctly expresses our intentisra-vis formal specification, it

is of little worth from the verification standpoint. We remedy this situation with some
technical machinery which, although having no functional purpose in itself, enables
observation of the hidden states of the model.

Probes Walker used these in his work on mutual exclusion algorithms [97]. A probe
may be used to observe agction hidden by the restriction operator; it is an action
‘attached’ to the hidden one, but which itself remains visible. In the model is is possible
to probeput,,(v), with an action likeobsp(v), so that wheneve€ontrol and Image
synchronise this will be followed by an observation recording the event. By this means
one may in principle keep track of the dynamic evolution of the image of the railway.
There is a major drawback with theima’'use of probes however, for they introduce
states to &£CSmodel that are entirely artificial. F&West,,, since there are so many
probes needed, this presents a very serious overhead indeed. (It is worth noting that
probes are much more natural in the analysis of synchronous modekCQG$ the
richer structure of actions means one may probe an action without introducing artificial
states to the model.)

Tags Whereas probes are inserted in the execution sequence, tags are not intended
for execution—they merely label some intergédte A tag is ‘attached’ to a state of
interest by using sum, but it is easiest to explain the principle by an example. The
registers given earlier are redefined thus:

Regp(y) £ putp(z).Regp(x) + gety(y)-Regp(y) + obsp(y).Regp (y)
In this way one may always observe the state of the variBhlend hence the state of
the image of the railway. In principle an external agent may interact with the model to
ascertain the state of the system: moreover, such observation is quite transparent since
the obs(y) actions neither introduce new states, nor change the current state of the

Chapter 3. Modelling Solid State Interlocking 59

Regp(y) = putp(z).Regp(z)+getp(y).Regp(y) +obsp(y).Regp(y)
Image = [Regy(f) | J] Regp(xs) | J] Regr(c) |] Regp(cn)
veu RER TeT PeP
Control = Fix(X.ctrl.O

+ > seto.(C[PRR*Q)]X)
QeQ

+ > (C[FORU)]X)

Ueu

+) cang.puiz(xs).X
RER
+ Y inp(0).put;(0).X + inp(c).puty(c).X)
TeT
West = (Control | Image)\L

Model #2: An observable model of SSI

system. However, this is not the intention: we never expeate to execute these new
actions, we merely wish to exploit their presence in defining the modal formuia
contrast, the tag in

RegD(y) = pUtD(x)’RegD(x) + ﬁD(y)-RegD(y) + obsp(y).0

introduces a new state, and a deadlock if the action is ever performed.

Observing SSI One reason for choosing tees,(y).Reg,(y) tag over the alternat-

ive is that it does not introduce new states to the model. This is important when one
wishes to formally verify its properties (see Section 4.2). It turns out that it is also
convenient to tag a particular state in the control. The state of interest is that between
the end of one minor cycle and the beginning of the next. We therefore introduce the
tag ctrl.0 to Control, as displayed in Model #2 (the slightly baroggé& notation is
needed in the sequel). The reason for this minor intrusion is that the invariant need
only hold at certain (safety critical) states@ontrol. This is made clear in the next
section. Note that this tagpesintroduce a new state: in fact, it doubles the state space
of the model (this can be avoided using the tag X as described in Section 3.3.4
below.) In Model #2 note that = {put,(v), get,(v) | D € D}.

3.3.3 Geographic Data Invariants

The properties discussed in Section 3.1 are easily expressed as state properties in the
modalp-calculus. FoiMX, for example, and for the track secti@hin particular, any
state in which both sub-routes are locked will satisfy the formula:

(obs s (1))t A (Obsza(l))tt

Chapter 3. Modelling Solid State Interlocking 60

RT = A MX = A PT £ A

RT(Ryy, [T, TY)) MX T8, T PTen(Py, [T1e, TE))
RT (R4, [T7°, T37]) MX [T5°, T3] PTer (P, [T, T7])
RT(R17 [Tlac7 Tab]) MX [T§b7 Tba] PTCH(P27 [be7 Tfa])
RT(R37 [T1bc7 Tab]) MX [Tab Tba] PTCF(P27 [ch7 Tfa])
RT (R57 [Télb7 Tab]) [T7ab7 T7ba] PTC” (P37 [Télc7 Tﬁca])
RT(R67 [Té)a7 T7ba]) MX [T1ac7 T1bc7 Tlca7 TCb] PTCF(P37 [Télb7 Té)a])
RT(R,, [T5, Ts", T77]) MX[T§®, T, Ty, T;]

RT(R47 [Tzfav TﬁcavT7ba]) MX [Tgbv Télcv Té)avTca]

RT(R517 [Télc7 Téfc7 T2ab])

RT(R537 [Télc7 Téfb7 Télb])

Figure 3.5: Geographic Data invariant for BT

The invariant required is therefore the logical negation of this:
MX[T5?, T3] £ [obsye (1)]ff V [obsype (1)]ff

A similar term will express the same condition for each of the other track sections in
the interlocking. In sections containing a points switch the sub-routes have to be taken
pair-wise, giving rise to (up to) six conjuncts of disjuncts such as this.

PropertieRT andPT may be similarly characterised. For routg, and the points
along it the following are required to hold invariantly:

RT(Ryy [T{, TS)) = (obsp, (s))tt=- (Obsyea(l))tt A (Obsypa(l))tt
PTcr (P, [T00,T]) = (Obsac(l)tV (Obsyea (1)) tt = (obsp, (cr))tt
PTen(P,, [TV, T)) = (Obspe(l)tV (0bsye (1))tt = (obsp (cn))tt

For the record, Figure 3.5 defines the required safety property #81WW To avoid
burdensome notation in the sequel we shall usually use abbreviMXn&T, PT.,
andPT., as above.

The safety property for \WSsT is therefore taken to be the conjunctive teffnd
MX A RT A PT in Figure 3.5. Although a large formula, this in itself is not problem-
atic for model checking algorithms which automate the invariance proof—the space
complexity of the model is by far the greatest obstacle. Still, the proof obligation
we require to discharge is now fully defined with the propdttygiven above, and
Model #2:

(Control | Image)\L = vZ.F A [—]Z

It turns out, however, that this analysis is too fikedoes not hold in every state of the
model as required to satisfy this formula. This becomes apparent when considering the

Chapter 3. Modelling Solid State Interlocking 61

route request rule foR,, (see Figure 3.4). During the computation several states are
encountered in which the route is only partly locked@ioe), soPT andRT will not
generally hold until all of the variables have been updated in setting the route.

However, the control is a sequential machine and SSI never takes decisions based
on the values of the variables in these intermediate (or transient) states—they are never
evaluated by the guard in a command. This leads to the observation that the safety
critical states of the system are those in which the SSI is about to evaluate such a
guard. We therefore conclude that the invariant can be weakened, usittg the, to:

& = vZ((ctrl)tt = F) A [—ctr]Z

That is,F need only hold at the tagged control states. [Fherl] modality ensures that
only those runs through the state space that do not followtthaction, which leads
to the deadlocked control, are considered in the proof.

3.3.4 Generalising the Translation Schema

In Model #2 the labelled states of tli®ntrol represent the beginning (or end) of each
minor cycle. However, the observation that it is these that are the safety critical states
is only strictly valid for the guarded command language assumed here: when guarded
commands are placed in sequence it is necessary to be more careful about identifying
the critical states of the model.

In sketching how these ideas can be generalised, we first extend the grammar given
in Figure 3.2 with a new phrase form:

(gd) == (prr) | (fop) | (gd); (gd)
(prry == if (tl)then (cl)else (cl)

(this syntax is not correct Geographic Data, but it serves to illustrate the principle).
Then the appropriate rule in the translation to CCS is supplied which identifies the
safety critical states in the process:

C[(gdh; (gdr]c = C[(gdh](ctrl.0+ C[{gd)]c)
Clif (t)then (clyelse (clp]e = T[{)](C](clh]e, C[(cly]e)

There are alternatives to this scheme of course, but they will not be explored far here.
In the sequel we suppose that the safety property expresdedhiould hold at the
intermediate control points, so the invariant is defined just as it was above, and we use
thectrl.0 tag throughout.

In order to avoid introducing artificial states to the model, with O, one could
instead translate sequence thus

Cl{gd); (gdy Jc = C[{gd) J(Fix (Y. ctrl.Y + C[(gd),]<))

Chapter 3. Modelling Solid State Interlocking 62

as long ag” is not free inC[(gd), Jc. On the other hand one may be satisfied with a
weaker property holding at the intermediate control points—in which case a different
tag could be used and the invariant modified appropriately. For exankptayn be
generalised along these lines:

VZ(<C1>tt:> F1 N <C2>tt:> F2 N <C3>tt:> F3) N [—Cl,CQ,Cg]Z

wherec;, ¢, andcs are distinct control tags.

3.4 The Problem with State Spaces

The space complexity of the model presented is (potentially) enormous although much
of the behaviour has been abstracted and the example is itself rather small. Yet of
the 2/P! possible configurations dfmage, |D| being typically in the hundreds, only

a tiny percentage are expected to be reachable from any given initial state. Given an
efficient representation we therefore expect model checking techniques could prove
the invariant. Efficiency is needed both in constructing the model, and in its storage.

Firstly, however, the model’'s space complexity can be substantially reduced through
the application of somagent transformationg/2, 73].

3.4.1 Hiding Assumptions

The first transformation in simplifying the model is Ide some of the observable
actions. Hiding does not preserve the observable behaviour in an agent of course, but
focuses the analysis instead on particular aspects of the model. A simple example of
hiding irrelevant behaviour would be to hide the tags introduced in Model #2. Suppose
O = {obsp(v) | D € D} U {ctrl}. If Model #2 is defined using only the non-
deadlocking tags thewesty, /O = T.Westy,. This follows by a straightforward
application of ther-laws, and the Recursion Laws (in particulx (X. 7.X + E) =
Fix (X. 7.E)) for observation congruence [62].

Hiding can be used to prove tlasenceof deadlock in a model by appealing to
the intuition that deadlocks do not arise from the observable actions of a system [73].
Hiding is used here for a different purpose: to abstract the behaviour associated with
track circuits. This is justified by appealing to the following premises:

e jumping trains axiomwe assume track circuits may change state uncondition-
ally at any time;

e unconditional route cancellatiorwe assume that routes may be cancelled un-
conditionally at any time.

Chapter 3. Modelling Solid State Interlocking 63

The jumping trains axiom (for want of a better name!) has some interesting con-
sequences: firstly it is clear that space complexity of the model is proportiopdl to
secondly, as explained below, if the initial actions of thigut component are hidden

the state space can be reduced by this factor; thirdly, adopting this premise negates any
possibility of examining safety properties of signal data. (Signal aspects are tightly
interlocked with the state of the tracks in advance and in the rear.) It is for this reason
that the jumping trains axiom is not an assumption which is intrinsic to the model.

Although there may be some doubt as to the validity of the jumping trains axiom,
it is clear that in the unlikely presence of faulty track circuiting in the railway, track
circuits may indeed appear to the SSI as if they change state at random. This is, in
fact, the weakest assumption that can be made about the behaviour of the environment
in which the SSI operates—that is, we make no assumption at all. Consequently, any
safety properties of the Geographic Data that can be established under these conditions
will be robust indeed, being certainly enjoyed by the SSI when placed in a more orderly
environment.

We shall therefore temporarily adopt the two premises above in verifying safety
properties of the route request and sub-route release data. In doing so, we might as
well hide the behaviour associated with these aspects of the model—in particular the
visible actions inC' = {cang | R € R} and! = {inp(v) | T € T,v € {c,0}}.

3.4.2 Agent Transformations

Using theFix notation introduced earlier we proceed with the untagged Model #1 and
let Control = Fix (X. Surm+ Input), wherelnput abbreviates thénput behaviour, and
Sumabbreviates the rest. The agent

Westy, /I = (Control /I | Image)\L
= (Fix(X.Sum/I +Input/I) | Image)\L
= (Fix(X. Sum4t > 7.puty(v).X) | Image)\L

TeT
by the static laws since the actions/imccur only ininput

In itself, hiding these visible actions achieves no compression in the state space. To
do that we first have to use the idedadal expansionConsider:

A = (Control /I | Regy(0))\ Lz

where Ly = {get;(0), get,(c), puty(0),putr(c)}. This, for any particula” € 7,

is a local component olVest /I because.; C L(Image) and only these two agents
communicate over the actionsin-. The idea is to apply the Expansion Law to arrive

at a serial recursive agent that is equal to the pair. Taking observation equivalence as

Chapter 3. Modelling Solid State Interlocking 64

the notion of equality it is possible to further abstract the silent actions appearing in
the expansion; then partitioning the state space with respectite derive a minimal
serial agent equivalent té.

The question then is how ‘minimal’ this transformed agent is comparedAvith
this case the heuristics work favourably.déntrol has K states therControl /I also
has K states and clearlyl has2K states as the register is binary. However, it is not
difficult to see thatA is observation equivalent t&8 = (Control /I | Reg,(c))\Lr.
Indeed, the agents are congruent. In detail, for the congruence the initial transitions of
each agent must be matched with at least one transition of the other:

A - (puty(v).Control /I | Regp(0))\Lr | _ i
B T, (puty(v).Control /T | Regy(c))\ Lz } -~ 0
A % (C"/I|Regp(0)\Lr } _ (ii)
B = (C'/I|Regr(0)\Lr [~
B = (C'/I'|Regp(c))\Lr } _ (i)
A = (C'"/I|Regr(c)\Lr | —

A suitable (congruence) relation therefore consists of the above pairs together with the
identity relation. In (i) the pairs are bisimilar since the only derivative in each case is
(Control /I | Reg(v))\Lr; in (i) and (iii) C" may be any (other) intermediate state

of Control reachable in one step (or several steps by first resetting the register in the
simulating agent). This relation is not minimal, but note that

(C"/I'| Regp(0))\Lr and (C"/I'| Regy(c))\Lr

are observation equivalent whenevéris such that however it returns to tentrol
state it does so without interacting, via, with the register. This is a sufficient condi-
tion, and the graph partitioning algorithm implemented in the Edinburgh Concurrency
Workbench [20] will identify such pairs in finding a suitable bisimulation. It follows
that the minimal serial agent that is observation equivalent tdso has (approxim-
ately)|Control| = K states.

Note that to arrive at this result it is necessary to hideltlagtions for otherwise
A % B. As a corollary to the above

(Control |] Regy(v))\L7
TeT

whereLs = {put,(v),get,(v) | T € T,v € {c,0}} clearly ha®/?| K states—so the
model has space complexity exponential in the number of track circuits. Hiding the
input actions therefore factors out thié!.

The actiong” = {cani | R € R} can also be hidden, now in the ag&vdst., /1,
but on this occasion the heuristics achieve little further compression in the model. The
same transformation works for Model #2, but the congruence proof needs a minor
change since the right-hand agents at (i) are not then bisimilar.

Chapter 3. Modelling Solid State Interlocking 65

3.4.3 Model Checking

Following the simplifications above, the question is whether it is possible now to use
the Concurrency Workbench to establislest /7 = ®? Model checking algorithms

to decide this question come in two varieties, global and local (the tool provides both),
so a brief comparison is useful.

Global Model Checking Here, a property is shown to hold at a statein a model

M Dby first enumerating\1’s states, finding the set of these for which the property
holds, and checking thatis in the set. This, at least, is the approach advanced by
Clarke, Emerson and Sistla [18]. Their models are Kripke structurdaljelledtrans-

ition systems) and the property language is Computation Tree Logic (CTL). In this
language the invariar® can be expressed by the temporal form&a (C = F),
where(C' is an atomic proposition true at the control states, Briths been suitably
recoded (along all paths globally,impliesF). States of the model are just vectors of
variables likemage. Note that to identify (tag) the control states an additional variable
is needed in the representation. Clarke’s model checker has been adapted for use with
process algebraic models directly [31]—but, as with the Concurrency Workbench, in-
efficiency in the algorithm used to construct the model is the first obstacle to overcome
in applying these toolsf. Section 3.5).

Burch, McMillan and others [13, 57] claim good results for an approach to model
checking CTL formulae that adapts Clarke’s global algorithm in another way. Their
methods use a compact representation for Boolean formulae, known as binary decision
diagrams [12], to represent the state space symbolically—as opposed to explicitly, by
the graph. McMillan’s system uses a richer logic, the propositippradlculus, to
encode the transition relation of the model: the transition system is then represented
by the transitive closure of this relation. It is the computation of the transitive closure
that presents the most serious limitation of this technology because, when measured in
terms of the number of nodes needed in the binary decision diagram, the intermediate
computations can far exceed the space required to represent the model. Heuristics to
alleviate these difficulties have been found to help for particular circuits [14], but they
are not generally reliable.

Symbolic model checking is certainly useful in hardware verification, but the ap-
plicability to the world of CCS models is uncertain. Taubeeal. [30] show that the
representation of the product &f transition relations requires a binary decision dia-
gram of size @214l . SN |S;|*), where|S;| is the size of each parallel component.
This is a good bound when the signature is fixed and it is the degree of parallelism that
varies. But for Model #2 this bound is(@4“ . (4N + K?2)). Doubling the size of
the problem—:e., the interlocking, which doubles the number of registers and rules—

Chapter 3. Modelling Solid State Interlocking 66

doubles all of the parameters:t, N and K, so giving at least an eightfold increase in
the size of the representation of the model. These are asymptotic bounds, but precise
estimates are notoriously difficult where binary decision diagrams are concerned.

Local Model Checking On the other hand one can demonstrate fihdiolds at a
states in a modelM by a purely local argument since one need only explotén the
neighbourhood of the (initial) state of interest: often this is enough to demonstrate that
® holds ats, and avoids construction of the entire model. So from a practical point of
view the key idea behind local model checking is that it is a lazy proof method. The
tableau proof technique due to Stirling and Walker [90] is lazy in this sense, the proof
rules used to construct the tableau being governed by the actions in the modalities:
these specify the minimal set of next states to consider in traversing the transition
system. This model checker is described in more detail in Appendix B.
A major difficulty arises with the tableau proof method described by Stirling and
Walker since the algorithm has very pobe(exponential) worst case complexity [91].
The algorithm implemented by Cleaveland [19] in the Concurrency Workbench is more
efficient, running in time polynomial in the size of the model for a formula as simple as
®, but this also has poor worst case performance. Andersen [2, 3] descghssah
algorithm for the modal:-calculus that, for a class of formulae includidgand all
CTL formulae, runs in time linear in the size of the structure and the formula. (This
is the same complexity as Clarke’s CTL model checker.) Anderseced version, for
the same class of formulae, runs in time that is no more than a log factor worse than
the global version. The worst case performance of these local algorithms becomes
important if, due to the structure of the particular model, or formula, the algorithm has
to do what the global model checkers do: examine the global state space of the model.
Local model checking is most useful when one is interested in checking a property
that involves only a fraction of the actions an agent can perform. Liveness and fairness
properties are often good candidates here, but global invariants su®haas not.
Local model checking is also of practical interest when the models are infinite (where
global methods are obviously inadequate). Bradfield and Stirling [10] have extended
the tableau proof technique for the modatalculus to a semi-automatic method for
infinite models—but a formula such d@swould be dealt with by the automatic part of
the algorithm, which is also global in character.

Model Checking Geographic Data Returning, then, to the question of whether
West /I |= ®, it appears that local model checking offers no practical advantage since
the structure of the invariant necessarily entails exploring the entire state space—this
arises from the box modality,—ctrl], which only excludes transitions labelled by the

Chapter 3. Modelling Solid State Interlocking 67

ctrl action in building the model. Even so, for®8T, the global model checker in the
Concurrency Workbench answers the question affirmatively, although one has to be
content to follow the unorthodox path of reprogramming the tool to handle this class
of CCS models more efficiently than the generic algorithms are capable of. Moreover,
the local model checker is effectual when the propdrtgoes not hold of the model
because the algorithm terminates with a negative result while the transition system is
only partially built, but a mechanism to generate counterexamples would make the tool
more useful as a debugging aid than in its present incarnation.

In general however, even with the jumping trains abstraction, the number of reach-
able safe states quickly becomes astronomical. Space complexity in the problem of
checking safety properties of Geographic Data is endemic, presenting a severe chal-
lenge for verification methods based on model construction. Even so, in the next
chapter we shall see that Stirling and Walker’s tableau method for the maddtulus
reveals a simple inductive proof method which is linear in the number of rules in the
data, and independent of the number of states of the system. Chronologically however,
the next stage in the analysis focused on the problem of efficiently generating the state
space of the model described in here. This is the subject of the brief digression from
the formal analysis described next.

3.5 Proof by Program

One difficulty encountered in trying to analyse the present model of SSI in an auto-
mated tool arises in the method by which the model is constructed from the textual
description. As long as the goal remains the direct exploration of the states space, we
should supply the intelligence that tid®ntrol is the dynamic component, while the
Image is passive. This leads to an efficient means of generating the transition system.

3.5.1 Generating States of SSI

One way of constructing the model is to compute the product automaton from the
component parts whose specifications are given. For the present model this would im-
mediately run into trouble because timage component really hag”! states—the
restriction is only applied at the outermost level. Since there is no communication
between any of thémage components we can improve theive'method consider-

ably by applying a smaller restriction (smaller thah) at each step in constructing
(((Control | I})\ Ly | I5)\ Lo | ---)\L,. But this will not help in general either as it
gives rise to intermediate representations which may be far too large to handle because
the smaller restrictions (sefs, L, etc) permit more behaviour than is intrinsic to the
model.

Chapter 3. Modelling Solid State Interlocking 68

P, eN {Tpe, Ty C F
(N,S,F) ~ (N, SU{Ry}, F — {11, 73°})
P eN {Tpe, T, T, Tgb}y C F
(N,S,F) ~ (N —={P},SU{Rp}, F — {T{*, Ty"})
Ry €S T e F
(N,S,F) ~ (N,S,Fu{T¢s}) (N,S,F) ~ (N,S,Fu{Tb})

*Q02 .,

*Q02 .,

(N,S,F) ~ (N,S—{R}F)

Figure 3.6: Transition rules foPRRand FOPdata

Instead, a program is developed to generate the safety critical states which is based
directly on a simple transitional semantics (formally justified later in Section 4.3). We
discard the transition information since our interest is not currently in the structure of
the automaton induced by the rules in the Geographic Data, but in its states. These are
then checked against the invariant, suitably encoded.

Semantics The states of the machine are represented by thre¢/Sefs, F'), where
N C P is the collection of points that are controlladrmal S C R is the collection
of routes that areet andF' C U/ is the collection of sub-routes that dree. Each rule
in the route request and sub-route release data defines a transition between the set of
states satisfying the test in the rule, to a new set of states resulting from the assignments
in the rule’s command. This unlabelled transition relation is representeg-byand
is defined by interpreting theRRand FOPdata as per the examples in Figure 3.6.

There will generally be several rules for each panel route request due to the dis-
junctive test on points. The last of the rules in Figure 3.6 specifies that routes may be
cancelled unconditionally at any time. Track circuits have been removed from consid-
eration from the system, as in Section 3.4, so they do not appear in the state or in the
sub-route release rules. Also, if a rule does not apply in some state then no action is
taken—because if a rule fails in SSI, the image of the railway goes unmodified.

Compilation The PRRand FOPfiles have to be read and the data compiled into
some suitable internal representation. During parsing there is an opportunity to carry
out some syntactic analysis on the data. For example, by exploiting the naming con-
ventions employed in the identity files it is possible to check that:

¢ the points command in the conclusion of a route request rule corresponds to the
points tested in the condition;

Chapter 3. Modelling Solid State Interlocking 69

e the track circuit tested in a sub-route release rule corresponds to the sub-route
being freed;

¢ that the sub-routes appearing in tREMdata occur in opposing pairs (there are
exceptions where tracks are unidirectional) over the same track circuit;

and so on. One can also find sub-route ‘chains’ infladata: each rule should test

the immediately preceding sub-route(s), unless it is the rule for the first sub-route in
which case it should test the route variable(s). Wteximalchains—roughly speaking,

the closure of the ‘chain’ relation—in tHéOPdata should correspond to the sub-routes
locked in thePRRdata (in some order). While these syntactic checks can remove many
typographic errors, they do not help the behavioural analysis except in so far as we can
assume data submitted for behavioural analysis pass such tests. (It is worth noting that
deliberate errorsin thedRESTLOOPdata [8, see page 215] received from British Rall

did not even pass this syntactic analysis.)

Data Structures Boolean vectors are a natural, compact representation for the states
of the SSI. Given the right programming language, functions such as complement and
bit-wise “and” and “or” may be implemented highly efficiently. Each state is therefore
represented by a Boolean vectoof fixed lengthd = |D — 7|. Given a fixed ordering

onP W R WU one can represeiid; by the vectord;, also of lengthi, having all but

the ;™ bit clear. The interpretation is that if th&" bit is set in statev the variable
represented by, is in the statanormal setor free, depending on the partitiorP(R

or /) to which it belongs.

The finite set operations appearing in the transition rules, like member, union, and
subset, are implemented in logical operations lifted to Boolean vectors, taking equality
on Boolean vectors to be primitivee-g.the equality on the underlying (implementa-
tion) type. Set differencé; — X, is encoded a= - v, andD; € V asd; - v = d;, for
example. (Dot product represents bit-wise “arxl’tepresents ones complement, and
we use juxtaposition to represent “or”.) Then a fast data structure is needed to hold
sets of states. Threaded binary trees, for the minimal overhead of two additional bits
for the threads (as well as the pointers to subtrees), offer a representation for which, in
the average case, insertion and deletion operations have logarithmic time complexity.
We use the natural ordering on the data (the order on the intggeéfs— 1]) and may
approached the average case complexity by randomly ordrin@ © U{.

Algorithm Since the task is not that of building the transition graph, only that of
enumerating the states of SSI, the algorithm to generate the state space is brutally
simple. The transition rules define a function which takes a state to a set of states;

Chapter 3. Modelling Solid State Interlocking 70

the application of this function is therefore iterated over all (reachable) states of the
SSiI. Starting from some set of (presumably safe) initial statésuch ag0}) the first
iteration generates its immediate descendantdet I, <— I; — I, be the generating

set on the next iteration, and update < I, U I, with the new states generated.
The process terminates when the generating set is empty, and in this way all states
reachable from the initial state(s) are generated. The time complexity depends on the
number of transition rules and on the number of reachable states of course; but the
space complexity of the algorithm, and indeed of railway interlockings in general, is
difficult to analyse formally as the precise relationship betwé&ehe number of rules,

and the number of reachable states is highly obscure (no useful measure has emerged
from the parameters and figures in Figure 3.7 at least).

The above method can be easily adapted to generate the transition graph, but then
memory requirements become seriously limiting because of the need to represent a
large number of transitions. The algorithm can also be extended to account for track
circuits, but then the state space, as already indicated, is exponential in their number.
But when track circuitare added to the state (and one is not interested in constructing
the state space of the SSI) the programs discussed here may be readily integrated into
a simulation environment for the purpose of testing the interlocking design.

3.5.2 Checking Properties

Once the states of the model have been enumerated, the global safety analysis can
proceed since it is required only to verify that each state satisfies the given safety
property. For instance, for routeover sub-routes, b andc, RT(r, [a, b, c]) is satisfied
byastaté N, S, F)if r € S, orif {a,b,c} C F. This may be expressed as a disjunctive

test on the Boolean vecter representing the state:- v = 0 or (abc) - v = (abc),

for example. Generally, sindeis a predicate on states it is necessary to cli€eX is

true for each reachable state

Results WESTIs a very small SSI and can be constructed and analysed by the meth-
ods indicated above in a matter of secondsORNTON JN. (see page 216) is obviously
more complex, having six sets of points and twice as many rules. The table in Fig-
ure 3.7 summarises the results of the experiment, though timings are only approximate
(for a Sun4 workstation). In conducting these experiments numerous typographic er-
rors in the data were exposed by the syntactic analysis; only one (unseeded) semantic
error passed through to the verification stage before being revealed.

The strategy of constructing the model before trying the verification step is not
optimal (just easier to describe). Instead, the two programs are combined so that at
each iteration of the generation algorithm the generating set is immediately checked

Chapter 3. Modelling Solid State Interlocking 71

INTERLOCKING (P, R,U) (7) Size Genesis Analysis
WEST (3,10,22) (8) 5,072 8s 1s
EAST-WEST (4,14,32) (12) 165,856 17m 56s
FORESTLOOP (4,16,32) (12) 695,552 2h50m 6m
THORNTONJN. (6,16,40) (24) 1,373532) 7h40m 22m

Figure 3.7: Results of Proof by Program

for errors. MX can be checked as each new state is added to the graph. Seeding
the data with errors it was found that they were always revealed within the first few
iterations of the program. Nevertheless, to verify that therenarerrors one has to
examine the entire state space, and this quickly becomes infeasible.

3.6 Summary

In this chapter a CCS model of Solid State Interlocking has been developed to focus on
properties of Geographic Data, particularly the route locking data iPRE PFM,

and FOPdata files. The basic model in Section 3.2 was defined by translating the
Geographic Data into CCS—this approach fixes the semantics of the language (or,
equivalently, the behaviour attributed to the SSI generic software) by the translation
mechanism. The execution model taken selects a single rule for evaluation in each
minor cycle. This differs from the Interlocking’s usual mode of operatima-vis
sub-route release in that there are normally many more sub-route release rules than
minor cycles—thus several must be executed consecutively as a block within a single
cycle. Although the sub-route release data are processed in strict rotation over each
SSI major cycle, it is in general difficult to predict which sub-route release rules will
be executed in a particular minor cycle. We are therefore obliged to show that safety is
preserved by the execution of each sub-route release rule, and not each block.

This feature of the model can also be justified by observing that when compiling
the Geographic Data, the signalling engineer has considerable freedom in specifying
the order in which these data are listed (and hence executed). Safety, thestedoid,
be independent of the execution order. Not only is this the case far@edata, but
also thelPT and OPT data which have not been explained in detail. Since railway
signalling engineering is as well a matter of maximising the capacity of the network,
there will inevitably be many constraints that select a preferred order in addressing the
track-side functional modules. Our thesis, however, is that such considerations should
never compromise safety.

In any event, the SSI model is at least as general as the foregoing discussion sug-
gests it needs to be since the execution order has been disregarded entirely: this is not

Chapter 3. Modelling Solid State Interlocking 72

to say that the order is unimportant, merely that nothing has been assumed about it.
Clearly one can conceive of a more elaborate model of SSI, and capture much more
of the system’s behaviour described in Chapter 1, but one has to ask what is to be the
purpose served by the model? For this thesis the answer is that it serves the purpose
of checking safety propertiesf the data and only that. The success of the model
therefore has to be judged by the validity of the supposition that properties of the data
are independent of SSI. Naturally, one must supply an operational interpretation (se-
mantics) for the Geographic Data Language before questions can be formulated about
the properties of ‘programs’ written in it, but this is precisely what the translation to
CCS achieves. Later, in Chapter 5, the Geographic Data will be interpreted in a differ-
ent way, by means of an embedding in higher-order logic, so the question of validity
arises again there.

In this chapter, however, the main assumption about safety properties of the data
is that they may be expressed as invariants of the internal state of the Interlocking.
The safety properties are expressed in the ‘state forntulaf Section 3.3;® =
vZ.([ctrl|ff V F) A [—ctrl] Z specifies that it should be invariant. Other ways of ex-
pressing this same property will emerge in subsequent chapters, but it is worth noting
that the change in Model #1 which introduced ties, tags inlmage is not strictly
necessary if one’s purpose is (only) to check properties sudh aRecall that this
embellishment was mandated by the restriction in defining Control | Image)\ L,
whereL = L(Image). This is the natural way to present the model since the intention,
clearly, is that only these two agents communicate vialtlaetions. But we can eas-
ily do without the restriction: the difference is th@ontrol | Image) can in principle
communicate with external agents throug,, andput;, (or their inverses), but this
introduces many bogus states to the model. However, we can instead ask the question

(Control | Image) | vZ.({ctr)tt=F)A[-K|Z

whereK = {ctrl} U {get,), get,, putp, put, | D € D}. The[— K] modality instructs
the local model checker to ignore precisely the (bogus) transitions that arise from the
autonomous movements of these two agents. The above is thus equivalent to

(Control | Image)\L | vZ.({ctrh)tt= F) A [—ctrl]Z

with the choice of presentation being governed mainly by the efficiency of the model
checker’s representation of the model. Notice that in the reformulation (without the
\ L) theobs, tags are no longer needed sirfeean then be expressed in terms of the
get,, actions ofimage, and these do not causeontrol | Image) to change state.

While safety properties may generally be expressed as state predicatbbXlike
PT andRT, it is clear that not all properties of the Geographic Data are independent

Chapter 3. Modelling Solid State Interlocking 73

of the execution order imposed. Temporal properties expressing eventualities may be
a case in point: if a route is cancelled the sub-routes will eventually be free. Well
this may in fact be independent of the execution order, but in the current model a
fairness assumption (to ensure thatPrules are executed, and that trains progress)

is needed for the proof. Moreover, if a time limit were to be specified then not only
does order matter, but a notion of major or minor cycle would be needed in the model
to provide a time reference. Presently the model lacks any notion of time—principally
because the data cannot express anything about clocks or cycles. Later, in Chapter 6,
we shall need to introduce a weak notion of time when looking at safety properties of
the inter-SSI communications protocol.

For the moment though we have enough difficulties dealing with the invariance
proof we have assigned ourselves. Using the model checking facilities of the Concur-
rency Workbench we were able to prove that¥V satisfiesF invariantly, and may
therefore conclude that the Geographic Data for this scheme are safe (with respect to
the properties encoded K). This result was made possible by appealing to the jump-
ing trains axiom and the agent transformations described in Section 3.4 which were
highly effective in controlling the state space of the model. However, it is clear by the
evidence of the programming experiments described in Section 3.5 that this particu-
lar approach to mechanical verification will not scale beyond the simple example: the
number of reachable safe states is too great for direct analysis. For this reason global
model checking is not explored further as a means to formally verify safety properties
of Geographic Data. However, in the next chapter we shall briefly exercise the modal
u~-calculus local model checker on the present model: the inductive nature of the al-
gorithm reveals a simple proof method which relieves us of the need to represent the
state space of the model at all.

Chapter 4

Proving Safety Properties of
Geographic Data

With the basic model of SSI having been explained in the previous chapter, the focus
here will be the invariancproof. Section 4.2 begins with a sketch of the proof tableau
constructed by the local model checking algorithm for the medehiculus because

this reveals a simple inductive proof strategy. This leads, in Section 4.3, to a dis-
cussion of the fundamental concept underlying our technical definition of safety: the
mathematical principle of co-induction. Reinterpreting the model in this light in Sec-
tion 4.4, we then demonstrate some of the individual proof steps needed to verify that
the data are safe. In Section 4.5 we shall look at a number of methods by which these
mathematical arguments can be presented within the constraints of a formal logic—in
anticipation of Chapter 5 where a proof tool is devised to automate the safety analysis.

4.1 Introduction

Model #2 and the invarian® have been designed with the intention of providing a
fully automatic proof. In principle, all that is required to achieve full automation in a
proposed ‘data checker’ is to translate the Geographic Data into a formal language such
as CCS, express the safety properties in an expressive logic like the modilulus,

and pass the problem on to a sufficiently powerful model checker. In this enterprise the
difficulties that emerge are due to the huge size of the state spaces involved.

Yet the problem is not with the modeker se while the representation can be
changed the model cannot readily be made ‘more abstract’ since a bit is a bit, and
every bit in the image of the railway is significant—at least, all those considered in the
PRRand FOPdata are significant. Nor does the problem lie with the safety property:
that a state satisfies the formudas easy to establish, and all the safety critical states
of the machine must satisfy this property however it is expressed. In fact, the problem
lies with theproof, and here there is much scope for better abstraction.

74

Chapter 4. Proving Safety Properties of Geographic Data 75

The starting point in Section 4.2 is to consider the tableau proof method for the
modal u-calculus due to Stirling and Walker [91]. This is not mere diversion because
the structure of the proof tree that the algorithm constructs reveals a remarkable regu-
larity which derives from the structure of the logical formula as much as it does from
the structure of the model. It turns out that the enormous complexity of the full proof
tree can be folded into a rather sm@dirtial tableau then a simple induction argument
leads to a highly efficient proof strategy which is linear in the number of rules in the
Geographic Data, and independent of the number of states of the model. The proof
that the Geographic Data are correct with respect to the formigi@gherefore reduced
to the problem of showing that the individual inductive steps are sound. That is to say,
we transfer the problem from that of showing that the model’s states are safe, to that of
showing that the transitiormeserve safetyThis gives a much more direct proof that
the Geographic Data are safe.

The mathematical principle which underlies the invariance proof is that of co-
induction. In Section 4.3 we review some of the theory involved, and show how our
SSI model and the proof of safety are related to this notion. The model does not sur-
vive this analysis completely unscathed however: in setting up the proof as a proof by
co-induction it is much more convenient to discard lthage component entirely, rep-
resenting it instead by a variable (a state vestoon which theControl operates. This
does not change the model’s semantics, only its presentation. However, this change
does have an impact on the particular formula chosen to express the safety properties
identified in the previous chapter.

Section 4.4 draws out some of the details of the proofs needed to show tk&2khe
and PRRdata are safe. It must be said that these details do not make very interesting
reading, but they are important to consider if we are to recover a fully mechanised proof
procedure. The proof schemas worked out here are the basis tacties developed
in Section 5.4, and expose a technical difficulty which suggests that the safety property
defined in Section 3.3 is too weak. Even if it were not too wealk, it turns out we should
have difficulty proving thePRRdata correct with respect to that particular formula-
tion of the property since the tests in these rules do not instantiate enough of the key
variables. The difficulty is in proving the mutual exclusion property for track circuits
on the route where no sub-route over them is tested in the precondition of the rule: we
need to somehownfer the status of the intermediate sub-routes from the status of those
that are tested in the rule. This problem arises because of the abstraction introduced
here in representing the image of the railway, a problem that does not appear when
model checking since then all states and state variables are properly instantiated.

Precisely how to strengthen the invariant will not be discussed until Chapter 5
where these proof ideas are formalised and implemented in the HOL theorem prover.

Chapter 4. Proving Safety Properties of Geographic Data 76

Chronologically, the details of Section 4.4 and the difficulty of proving the invariant

in the absence of complete information about the configuration of the internal state
predate the other material in this chapter [74]. The ‘correct’ formulatioRDf the
component of which needs to be strengthened, only became apparent when the at-
tempt was made to formalise the proof steps in the theorem prover. Moreover, it was
only with later analysis that the precisele"co-induction plays in these arguments
became clear. Thus in presenting here a coherent logical progression of these ideas
concerning the safety analysis of Geographic Data, it has been necessary to conceal
their chronological progression. Such deception is sometimes essential in the interests
of making a clear presentation!

In Section 4.5 we round off the discussion of the invariance proof by demonstrating
that one can express the same model and invariant in a variety of formalisms, arriving
at a similar proof obligation in each case. In TLA the problem is tackled from a purely
logical standpoint, reducing the invariance proof to (what amounts to) Boolean sat-
isfiability. In UNITY one can capture the SSI model in a nondeterministic program
reminiscent of that of Model #1, and the proof turns out to be the same as that illus-
trated in Section 4.4. Thirdly, we set up the proof in the style of Floyd-Hoare logic,
and show that the sameerification conditionsarise here too. This convergence of
methods suggests that the choice of an appropriate environment in which to mechanise
the invariance will be largely governed by efficiency considerations.

4.2 Tableau Proofs in Local Model Checking

When modelled at the abstract level of the previous chapter, the Leamington Spa sig-
nalling scheme mentioned by Cribbens [24] has betv@&and22° states T = 48,
U+R+P =96+ 71 + 15). With the jumping trains abstraction of Section 3.4.1

one can guesstimate the reachable state space of the model by placing three to four
copies of THORNTON JN. in parallel (circal0?! states). Dealing with such inherent
computational complexity is the principal difficulty in formally verifying properties of
Geographic Data through model checking. It is nevertheless instructive to unfold a
small portion of the tableau that the local model checking algorithm constructs since
this illustrates how the verification conditions that need to be established are obtained.
This leads to a simple inductive method for proving the invariant.

4.2.1 Unfolding Proof Tableaux

We proceed here with the tagged Model #2 and adhere to the notation used by Stirl-
ing and Walker throughout in unfolding the proof tree [90, and Appendix B.2 for de-
tails of the algorithm]. The numbered paragraphs below correspond to the numbered

Chapter 4. Proving Safety Properties of Geographic Data 77

nodes in the displayed proof tree. L&t stand for the initial state ofmage, and

let ® = vZ.([ctrl|ff VF) A [—ctr]Z. Since the algorithm is sound and complete,
(Control | Ip)\L = @ if and only if there exists a successful tableau with root sequent
(Control | Ip)\ L = ®. The computation begins:

1 (Control | Io)\L - vZ.([ctrl]ff V F) A [—ctrl] Z
(Control | [p)\L U
(Control | 1p)\L F ([ctrl}ff VV F) A [—ctr|U
2 (Control | Io)\L I [ctrl]ff VF 3 (Control | Iy)\L F [—ctrl|U
(Control | Io)\L - F S

1 The first proof rule introduces a constdit= v Z.([ctrl|ff V F) A [—ctrl] Z. This
constant is immediately unrolled, the rule replacing all (free) occurrenc&simthe
formula byU, and the tree splits due to a conjunction. Both branches must be success-
ful if a successful tableau is to be found for the root sequent. The side condition to the
rule for unrolling the constant is that no node in the tree above should be labelled with
the same sequent; if there is such a node the constant is not unrolled, and the node is
declared a terminal.

2 In general, disjunctive goals introduce an element of choice in the proof tree; but
here, sinceControl | 1y)\ L ctrl , the left-hand disjunct inevitably leads to an unsuc-
cessful leaf. Essentially, the obligation at this point is to show fhat F. That I,

does or does not satisfy is easy to ascertain since it is only necessary to examine
the immediate capabilities of this agent]if /= F we might as well halt the algorithm

immediately since no successful tableau can exist.

3 There is considerable fanout here since the proof rule for the box modality insists
that every derivative ofControl | 1)\ L must be considered, other than the ‘deadlock’
reached viaﬂ . Next actions due to tags in th@age component lead immediately

to a node labelled with the same sequentLassuch nodes are successful terminals
and need not be considered further. However, the algorithm must also consider the
next actions of th&ontrol, and there is one branch corresponding to each panel route
request and sub-route release rule in the data (as well as those frdnpthend

Cancel components). Just one derivative is considered here, corresponding to the sub-

route release rulgy*f if 7Tyc, Ry,xs \.

ULCA = gety, (c).ULCA; + gety, (0).Control
ULCA; = gety (xs).UICA; +getg (s).Control
UL1CA; = puty(f).Control

Chapter 4. Proving Safety Properties of Geographic Data 78

Without loss of generality we may suppo&gf= (obsy, (c))tt; otherwise this branch
in the proof tree leads immediately to a node labelled with the sequent

3 (Control | Ip)\L F [—ctr|U
(UICA; | [))\LFU
(U1CA; | Ip)\L F ([ctrl}ff V F) A [—ctrl]U
4 (UICA, | Ip)\L F [etrl)ff VF 5 (ULCA; | [p)\L F [—ctrl|U
(U1CA; | Ip)\L F [ctrI]ff :

4,6 The situation here is similar to that liexcept that both the possible subtrees

are successful (assumirg = F). One can choose the branch in the proof that in-
volves the least computation—in this case the left-hand subtree since the agent cannot
immediately perform atrl action. This terminal is successful.

5 As with 3, any next action due to an autonomous movariage leads directly to
a successful terminal (labelled with the same seque8}. atherwise there are fewer
subtrees to examine &4 CA; unfolds:

5 (getp (xs).ULICA; + gety (s).Control | Io)\L - [—ctrl]U
(UICA; | [))\LFU
(U1CA; | Ip)\L F ([ctrl}ff V F) A [—ctrl]U
6 (ULCAy | Ip)\L F [etrl)ff VF 7 (UL1CAs | [p)\L F [—ctrl|U
(ULCA, | Ip)\L + [ctrI]ff (Control | [)\L U

This derivationassumes = (obs (xs))ttsince, for the other case, the node labelled
(Control | 1p)\L F U is a successful terminal as it is appears alsh at

7 Here the situation is analogous toexcept now theémage has (or at least may
have) changed in respect of the variabfé. If I, and/; are identical this is a success-

ful terminal, and this branch of the proof tree (fr@nhterminates with all its leaves
successful according to the algorithm’s termination criteria. On the other hand, if these
two agents are different, the tableau continues to unfold:

7 putye(f).Control i [—ctrl[U
(Control | I[;)\L U
(Control | 1)\ L F ([ctrl}ff VV F) A [—ctr|]U
8 (Control | I1)\L - [ctrl]ff V F (Control | I;)\L F [—ctrl|U
(Control | I)\L - F S

In order to make the model checking slightly more efficient we can exptoifluence
in the tableau: that is, identifying nodes under the right-hand subtreefrand nodes
labelled with the same sequents under the other branches3rorhis optimisation
does not affect the soundness of the algorithm [19].

Chapter 4. Proving Safety Properties of Geographic Data 79

8 The situation here is similar to thatitthis is a control state, so the safety property
F must be verified. Again, this is an easy check whefhés F, wherel, corresponds
to 1,, except in respect of the variabilg”.

%

There is no need to proceed further with the tableau. It is clear, intuitively at least,
that the algorithm sketched above explores all states of the model. This arises from the
box modality,[—ctrl], which specifies that all states, other than those reached via the
ctrl action, must satisfy the invariant—the model checker duly examines them all. As
indicated in Section 3.4.3, this is not a weakness patrticular to the local model checking
algorithm: it is a general problem where such a simple invariant entails what amounts
to an exhaustive search of all the system’s states. Neither Cleaveland’s more efficient
algorithm [19], nor the iterative method of Clagkal.[18], would fare any better here.

Nevertheless, the structure of the proof tree sketched above reveals a simple in-
duction principle: ifl, is an arbitrary initial state and, = F impliesI; = F, then
wheneverl is instantiated to a particular (initial) state we can deduce that the suc-
cessotl; = F when/, does so. The proposition asserts that the sub-route release rule
for Tt (say) preserves the invariancefgfand this can be used to prune the proof tree.
We now make this idea more precise.

4.2.2 Partial Tableaux

Definition 4.1 Let ® = v Z.([ctrl|ff vV F) A [—ctrl] Z, and defingControl | Image)\ L
as in Model #2. Lef represent an arbitrary configurationiofage. A partial tableau
is a proof tree fofControl | 1)\ L - ® whose terminals are labelled by one of

o (Control | I)\L+ F
o (Control | I;)\L - U, for somel; and wherd/ = &
o (Control' | I)\ L [ctrl]ff, for someControl’ # Control

and where there is exactly one no@»ntrol | ')\ L + U, for somel’, on the branch
from the root sequent to any terminal labellgbntrol | I,)\L - U. O

Call I; # I aone-step successaf the initial statel if (Control | I;)\L U is
such a teminal in the partial tabledau Due to the shape of the invaria®t the partial
tableau for(Control | I)\L + & has the overall structure shown in Figure 4.1. A
partial tableau is constructed by the proof rules for the local model checking algorithm
of Stirling and Walker, but since the initial stafeis uninstantiated we observe that
whenever the box rule is applied to nodes l{iontrol’ | I")\L + [—ctrl]U this will
cause maximal fanout in the tableau since, in particular, all next transitiabsnabl’

Chapter 4. Proving Safety Properties of Geographic Data 80

(Control | I)\L - vZ.([ctr|ff V F) A [—ctrl]Z

(Control | I)\LFU

(Control | I)\L FF

r--r—-———-—=-=-=-=-=-=-=-- 1 r--r—-———-—=-=-=-=-=-=-=-- 1
| |
| |

Figure 4.1: A Partial tableau

must be recorded. Clearly this gives risentbranches froniControl | 7)\L = U that
terminate with nodes of the fortfControl | 7;)\L + U, for I; # I, wheren is the
fanout of theControl component of the model as defined in Section 3.2.2.

Now given a partial tableali we can associate laranch predicate53; with each
branch that leads to a terminal of the fot@ontrol | I;)\L - U. WhenI; = I we let
B; = tt, otherwiseB; is deduced by observing the actions performed (byittege
component) in arriving at the termin@tontrol | 1;)\L - U.

Definition 4.2 Given a partial tableal, a branch predicate B; has the following
syntax, wherget, (v;), putp, (v;) € L(Image):

B, £ (FAG;) = Pi(F)
G; = N(gety (w)tt, i>0

%

Pi(®) = [putp, (v1)][-putp, (va)]®, 7 >1

Note thatG;; = ttwheni = 0. Let By be the set of branch predicates associated with
T. A partial tableau igxhaustiveiff I = B; for all B; € Br. 0

Lemma 4.1 Giver a partial tableall, andB; € Br:
1. (Control |)\L F Fiff I =F
2. 1 = B;iff =FAG;implies]; =F

for (Control | [;)\L - U aterminal inT. O

Chapter 4. Proving Safety Properties of Geographic Data 81

Proof The first part follows directly from the definition &f, and from the proof rules
for the local model checking algorithm. For the second part we use Definition 4.2 and
the definition of satisfaction for Hennessey-Milner logic. Eyre Br:

I = B,

iff k= (FAG,;) = PF)
iff k= (FAG;)implies] = P;(F)

putp (v)
_—

SinceReg) (u) Regp(v) in any state holding, it follows that! = P;(F) if
andonly if/; = F. n

Proposition 4.2 If there exists an exhaustive partial tableau (fontrol | 1)\ L - ®,
and if I, = F for some initial configuration dinage, then(Control | [))\L = ®. O

Proof (Control | 1)\ L = @ if and only if we can construct a successful tableau for
(Control | 1)\ L + @ using the proof rules for the local model checking algorithm.
We show that this is always possible if there exists an exhaustive partial tableau for
(Control | I)\L - ®, as long a9, |~ F.

Consider(Control | Ip)\ L + @, and unfold the proof tree for this goal in a breadth
first manner until all one-step successorggphave been encountered. Terminals of
this (partially constructed) proof tree will have one of the forms:

(1) (Control" | Ip)\ L F [ctrl}ff for Control’ # Control, or
(2) (Control | In)\L + F, or
(3) (Control | IH\L U

wherel} is a one-step successor kf The only other possibility, namely nodes like
(Control’ | I')\ L + F for somel” andControl’ # Control, can be discounted since we
need only show that there exists a successful tableau for the root sequent.

Nodes such as (1) are successful terminals by the local model checking criteria
since the agent cannot immediately performggl action. Nodes such as (2) are
the roots of successful subtrees by Lemma 4.1.1, sip¢e F by hypothesis. For
nodes such as (3) there are two cases to considét. #f I, then this is a successful
terminal since then nodeontrol | y)\L - U already appears at a higher level on the
same branch in the proof tree under construction. Otheriyisé I, and so we must
continue to unfold the proof tree from all such nodes since theseadterminals by
the local model checking criteria.

Take some suchControl | I})\L + U, and unfold the proof tree in a breadth first
manner until all one-step successors/pthave been encountered. Terminals in this
subtree will have one of the forms:

Chapter 4. Proving Safety Properties of Geographic Data 82

(4) (Control' | I})\L I [ctrl}ff for Control’ # Control, or
(5) (Control | IH\L F F, or
(6) (Control | IZP)\L+U

wherel? is a one-step successor Bf Nodes such as (5) are successful terminals for
the same reason as (1) above. To see that (4) is the root of a successful subtree it is
enough, by Lemma 4.1.1, to show that= F. Given that/} is a one-step successor

of I, we can findBy, such thatB,, = (F A G) = Px(F), andl, = Gx. Now suppose

—(Io = F A Gy implies Iy = Pi(F)) (1)

(that is to sayl, [~ By, using Lemma 4.1.2). Well, since there exists an exhaustive
partial tableau for(Control | I)\L F & then, in particular/ = By with B, € Br,

and this contradictsif above. Thud, = F A Gy implies I = P, (F); sincely = F

it follows that I, = F A G and,modus ponend, |= P.(F). The conclusion} = F
therefore follows by the definition ofnage.

Before concluding thatControl | 1)\ L I~ U is the root of a successful subtree we
have to show that nodes such as (6) also have only successful terminals according to
the local model checking criteria. But given that the modedntrol | 7)\ L is finite
state we can repeat the forgoing argument (jtiplaying the ole of [,, etc) along
every branch of the tree, and so conclude that all succesgafs/,, for some finiten,
satisfy the safety properfy. Thus(Control | /y)\L - ®, and soundness of the local
model checking algorithm guarante@ontrol | 1)\ L = ® as required. |

Proposition 4.2 is useful since it indicates that we do not have to enumerate states
of the SSI in order to prove the invariant. It is enough, though perhaps still not easy,
to establish that if an arbitrary initial state satisfies the invariant, so do its immediate
successors. Then, given any initial state (or more generally, any set of initial states), if
the initial state satisfies the safety property this will be maintained through all future
evolution of the system because thentrol permits only safe transitions. This is not to
insist that the initial state of the SSI satisfies our safety property, only that the ‘initial
state’ represent some reasonable state for the machine to be in.

The drawback, in using this result, is that in order to find the required lemmas we
have to go outside the proof system of the modalalculus—though this does not
invalidate the mathematical argument of course.

4.3 Invariance & Co-induction

Safety properties are associated with greatest fixed points in the mexdtulus.
This was demonstrated in Larsen’s work on modal equations with recursion [54, 89].

Chapter 4. Proving Safety Properties of Geographic Data 83

An example, perhaps the simplest, is the equafio ® A [K]Z whereZ does not
appear inb. Larsen defines satisfactiof, = W, indirectly in terms of the (inductively
defined) semantics of—given as|| V||, the set of states in the model that have the
property. Larsen shows that the || operator is monotonic, so maximal and minimal
solutions exist for such recursive modal equations. In particular, the greatest fixed point
of a functionF : P — P is the union of all pre-fixed points

ofpF=J{€CP|ECF(E)} (+)

whereP, here, is the universal set of (CCS) processes, or states. (THasatpre-

fixed pointof F iff £ C F(&).) Stirling [89] has extended these ideas to define the
semantics of the modakcalculus in which least and greatest fixed points may become
arbitrarily entangled (the pertinent details are sketched in Appendix B.2). But in our
simple example wherg& does not appear i, F is the function

FE&) = [enlK]Z]|
= el nli&]lE
= ||®|n{EeP|if E- E'anda € K, thenE’ € £}

which is easily seen to be monotonic because of the intersection||@ithwhich is
a fixed set (of states)|®|| is interpreted as the set of states that satisfyhe other
component is a set of statéssuch that if£' performs an action € K, the derivative
FE'is contained irt.

Now the greatest fixed point of is writtenvZ.® A [K]Z in the modalu-calculus,
and the right-hand side o) gives the meaning of this temporal formula:

U{ECPleEC|®n{EeP]|if E— E anda € K, thenE’ € £}}

That is to say, it is the union of the setsC P such tha€ C ||®||, and& is a subset of
{E e P|if E— E'anda € K, thenE’ € £}. To establish that some set of states
@ is a pre-fixed point ofF we show) C F(Q). This is the case if one can prove that
E € @ impliesE € F(Q)—in other words we prové& €) implies

e F =, and
e WheneverllE - E'witha € K, E' € Q).

This is an instance afo-induction

In a motivating article [65] Milner and Tofte exemplify the use of co-induction
as a device for reasoning about non-well-founded sets. They prove the consistency
between the static and the dynamic semantics of a simple functional language with
recursion, co-induction being used to show that recursive functions are well typed.
Paraphrasing [65], the principle may be stated thus:

Chapter 4. Proving Safety Properties of Geographic Data 84

If U is any set,F : 2V — 2 is a monotonic function, an is the greatest
fixed point ofF, then@ C F(Q) impliesQ C R forany@ C U.

Taking U to be the set of SSI images of the railway, we wish to show {liat U |
I = F} is contained in the greatest fixed point of a certain monotonic opetatsay)
which is induced by our encoding of the Geographic Data. This igrteaningof
the safety property expressed in the temporal forrmdld [ctrl]ff V F) A [—ctrl] Z. In
pursuing this idea we discard th@age component of the CCS model, replacing it
instead by am-tuple,S, of appropriate variables to represent the image of the railway.
States of the model are henceforth writ@mtrol(.S). We could refer the components
of S asS.T), etc, but generally prefer their usual names in the sequel.

Now, let C, C’, C; range over states @fontrol, S, S/, S; over2”, and define a
new transition system M, £(Control), T'), where M = {C(S) | S € 2"} and the
transition relatiorf” is defined by the clauses:

getp(v) C/ I getp(v) I

i. C(5) =2 ¢1(S) & S.D = vifand only if I~
(5) (5) (C T\ = (C'|T\L

putp (v) oI putp (v) I
(C[D\L— (C"| I"\L

i. 0(s) 22", o(S[v/D)) if and only if

c -
(C|D\L == (C" | D\L

iii. C(S)— C'(S)if and only if

where, in the last case, € L£(Control) is any action other than get,, or aput,
action. M is much too large, representing as it does the space of all possible SSI
configuration rather than just the reachable ofiesm some initial set), but our in-
terest here is in the coarser transition relation,C M x M (implicitly defined in
Section 3.5). This is defined as follow€ontrol(S) ~» Control(S’) iff there exist

aop, ai, - . .,a, € L(Control) and stateg’; (S1), . .., Cn(S,) € M such that

Control(S) =% C1(S;) -5 -+ C,(S,) == Control(S")

with {C4,...,C,} = [ctr]ff (i.e, none are control points). The operatballuded to
earlier is therefore defined by

C(S) £ {S’|3S e S.Control(S) ~+ Control(S)}

whereS C 27,

Finally recall that, as a modal formulk,was defined in terms of thebs, tags
in Image. In order for the assertio§' = F to be meaningful in the new settirfg
must be redefined accordingly. But this is easy fof ifepresentsmage, in some
configuration, theimage |= (obsp(v))ttif and only if S.D = v. Returning, therefore,

Chapter 4. Proving Safety Properties of Geographic Data 85

to the induction principle given earlier, we defige= {S € 2" | S =F}. Then

to show(is contained in the greatest fixed point @fwe may prove) C C(Q).

It suffices to show instead th&t = F = C(S) |= F (since then the sets are equal).
Notice that we do not insist all @ is reachable from any given initial statedn the
proof demonstrates only that if the machine is in a state), it will not leave (.

4.4 Checking Interlocking Data

There are many ways in which to cheSk= F impliesC(S) = F mechanically ¢f.
Section 4.5). The strategies developed below are tailored to the different classes of
Geographic Data, and inform the search for proofs in Chapter 5. These sketches il-
lustrate clearly howMX, PT, andRT combine to guarantee safety. We shall find

it convenient to use some elementary properties of these invariants—principally that
unlockingsub-routes does not affect the truth\dX or PT:

Lemma 4.3 For all sub-routes, and routes
1. S = MX APT = S[f /u] = MX APT
2. SEF=S[xs/r|EF
whenF = MX A PT A RT. O

Proof This is straightforward given the definitions in Section 3.3.3, and the interpret-
ation thatimage |= (obsp(v))tt iff S.D = wv. It is worth noting thatS = MXa, b]

iff S.a =f v S.b=f—thatis, if and only if=(S.a =1 A S.b = 1); the second
equivalence here is valid because sub-roategpropositional variables. []

4.4.1 Sub-route Release Data

To see how to establish that the invariant holds for the sub-route release rules we shall
consider two typical examples, taking the datafit and 72* in WEST. These are

the components of the rouf,, in Figure 2.1. The demonstration only sketches the
essential details of the proof as it might proceed by hand: even these steps are laborious,
so mechanised support is essential to improve confidence in the results. The uniformity
in the sub-route release rules means they can all be verified in much the same way.

Proposition 4.4 The sub-route release rules f6f* and 72

Tt if Tic,Rypxs \.
Tt if Tyc,Tff \.

preserve the invariance 6f= MX A PT A RT. O

Chapter 4. Proving Safety Properties of Geographic Data 86

Proof Given stateS we exhibit the derivation of successor stéatdrom the definition
of theControl. Itis required to show thaf = F impliesS’ = F. Lemma 4.3 is used to
reduce this to showing = F impliesS’ = RT. The values of the variables deduced
in the derivation ofS” from S are needed to complete the crucial steps.

From the definition of th€ontrol we arrive at the following sequence of transitions
leading from a staté to successor stateés and.S;:

Control(S) = gety, (c).(getg (xs).putre(f).Control(S) +

0)-
get, (s).Control(5)

)
xs).Control(S) + getg (s).Control(S)) (i)
Control(S) = gety, (c).(getyea(f
getr. (I).Control())

(
(
+ getTl(O)‘(getROQ(
(
(
+ gety, (0).(getye(f).Control(S) + getye (I).Control(S)) (i)

S
)-
S
)-putzea(f).Control(Sz) +
)-
)-

HereS; = S[f /T¢%] and S, = S[f /T¢%], and the obligation is to show th&§ and

Sy both satisfyF as long asS = F. It follows from Lemma 4.3 that the successor
states satisfiX andPT as long as the initial state satisfiesFor theRT component,
inspection of the definition (on page 60) reveals that the updated variables appear in
only one conjunct; the others are proven sitsice- F; = S’ | F; is always true if

none of the variables on whickiand S’ differ appear inF;. The only term to consider

is that defining the invariant faR,,:

SE Ry.s =T =1 ANTP = {sinceS = RT}
S1E Ry, =xs NT{ =f {from (i) and.S; = S[f /1] }
The conclusion that; = RT follows immediately since the implication is always true

when the antecedent is false.

The same conjunct is involved in updatifgo S,, but now there are two cases to
consider which depend on whether or i, is set inS. Firstly:

SE Ryp=-s {by hypothesi¥
SE Ry_s=T¢=1 NT) =] {sinceS = RT}
SETE =1 AT = {modus ponerjs

but from (ii) it is clear that if the system evolves & then S |= T7* = f, which
contradictsS = R,, = s. Proceeding to the second case:

S = Ryy = Xs {by hypothesi$
SoE Ryy =xs AT = AT =1 {from (ii) and Sy = SI[f /T%"]}
but in that caseS; = Ry,_s = 17" =1 AT =1 now follows immediately since

Sy = Ry, = xs whenS = R,, = xs. Hence,S; = RT if S = RT. [

Chapter 4. Proving Safety Properties of Geographic Data 87

To see how errors might be identified suppose that in (ii), for example, the variable
77 was examined instead @f. Case analysis would fail to find the contradiction
whenR, = s, so:

SERy=sAT=1 NT =] {as beforé
but clearlyS; [£ Ryy_s = Tt =1 AT =1, sinceS, = T¢* = f. In this case we
therefore arrive at an assignment to the variables which, by (ii), leads to a successor

state where the safety property does not hold. Errors in the conclusions of the rules
may be similarly identified.

4.4.2 Route Request Data

It slightly more difficult to verify properties of the route request data since here several
variables become instantiated by the assignments in the rules. The fodgg
maintained although this route does not bring to light all the issues (see Section 4.4.3,
and Section 7.2 where overlaps are discussed).

Proposition 4.5 The route request rule fdg,,

*Q02 if Pyorf ,Tocf , T9f
then Ry,s,Pcr Tl [T20\.

preserves the invariance Bf= MX A PT A RT. O

Proof The structure of the proof is much as that for Proposition 4.4. We show that if
S = F thenS’ = F. SinceF is conjunctive, the proof breaks down into a number of
componentss = F = S’ |= F;, each of which can be discharged independently.

From the definition of theControl (see Figure 3.4) it is clear that the following
sequence of transitions leads from a state the successor stafg:

Control(S) = setqoz.(getp (cr).Q021(S) + getp, (cn).Q022(5)) (iii)
Q02;(S) = getyue(f).Q025(S5) + getyue(l).Control(sS) (iv)
Q023(S) = getya(f).Q021(S) + getye (1).Control(sS) (v)
Q02;(S) = getyuc(f).Q024(S) + getyu.(l).Control(S) (vi)
Q024(S) = getya(f).CO2(S) + getra (I).Control(S) (vii)

C02(S) = putg (s).putp (cr).putze(l).putze (I).Control(S”) (viii)

whereS" = S[s/Ry,,cr /Pl /T{,1 /T?]. The main difficulty here is in demon-
strating thatViX is invariant. Two terms in the conjunct require detailed assessment,
corresponding to the mutual exclusion propertyfpandT;, respectively. Proceeding
with the latter case:

Chapter 4. Proving Safety Properties of Geographic Data 88

S = MX[Tgb, T {sinceS = MX}
S = MX[T$b, TP N TSP = f {from (vii) }
S'ETN =1 NTS =1 {asS’ = S[s/Ry,,cr /Py, 1 /T /T }

The conclusions’” = MX [T, T2?] follows immediately from the definition df1X.
More difficult is the case where the sub-route traverses a points track section:

S = MX[Tee, The, Tee, T {sinceS E MX}
but now there are two cases to consider for from (iii) eithiér P, =cr orS = P, =
cn. Proceeding with the latter:

SkEP =cn {by hypothesi¥

SET® =1t ATk = {from (v) and (iv)}
while on the other hand:

SEP =cr {by hypothesi¥

SETr=1VTf=1 =P =cn {sinceS = PT}

SETS=f NT)=f {modus tollenk
Thus, in either case:

SETF=f NTP =f NTP* =f {from (vi)}

S' = MX[Tge, The, Te, T {asS’ = S[s/Ry,,cr /Py, 1 /T JTE]}

It follows therefore thatS’ = MX if S = MX. It also follows, independently of
S = RT, that the route property faR,, is invariant since plainly:

S[s/Ryy,cr /Py, 1 /T [T |= Ryps = T =1 AT = |
Finally the two safety properties for the poin® have to be checked since they are
commanded to the reverse position by the rule. For the reverse direction:

S'"EP =c N = {by definition of S’}

S'ET*=1 vVI{*=1 =P =cr {for any assignment t@}“}
and for the normal direction of these points:

SETr=f NTF =1 {case analysis as abgdve

SETr=1VT®=1 =P =cn {sinceS = PT}

The antecedent remains falsedhso the conclusiors’ = PT follows. Bringing the
conjunctive parts together we can conclude thereforefhatF = S’ = F. [|

In the above we usetiodus tollenso deduce’ = T = f ATP = f assuming, in
effect, that?, = cn = P, # cr . This, inturn, assumes that these SSI control variables
are binary (which they are not). However, nothing in the model depends upon this
assumption. Using the alternative characterisatioRbimentioned in Section 3.3.1
obviates the need to assume in the proof that= cn < P, # cr . Reformulating

Chapter 4. Proving Safety Properties of Geographic Data 89

the safety property appropriately we can instead use the hypothiési®, = cr =
T =f AT = f to arrive at the same conclusion. With the changeTa slightly
longer sequence of deductions is needed to skol PT. In detail:

SEP =ca =>TP=f NT} =1 {sinceS = PT}
SEP =cr {by hypothesi¥
SETE=f ATk =1 {modus ponerjs
S'EP =c AT =1 AT =f {by definition ofS’}
S'EP =c =TP=f NT)= {algebrg
On the other hand, the points may initially have been normal:
SE P =cn {by hypothesi¥
SETS=f NT)=f {by (iv) and (v)}
S'EP =c ANTE=f ANTY=f {by definition ofS"}
S'EP =c =TP=f NT) = {algebrg
Finally for the points normal property:
SEP =cn=Tr=f NT{*=f {sinceS |= PT}
S"EP =cn=T=f NTY* =1 {sinceS" =Tf*=1 AP, =cr}

This illustrates that the alternative characterisation of the safety property introduces
no additional difficulty to the proof. Indeed, the proof simplified by the assumption
SEP =c =To=1f AT =f, soitis useful to provéothcharacterisations of

PT. However, some properties are unprovable with the current infrastructure.

4.4.3 Unprovable Assertions

The uniformity exhibited by the sub-route release rules means that essentially the same
proof method can be employed to verify safety properties for all sub-route release data.
This degree of uniformity is not exhibited by the route request rules. For example, the
rule for R, is in some sense fully specified since the opposing sub-routes to all those
along its length are tested in the precondition. This makes it easy to WaKfyfor

each track section along the route. However, the ruléfas not completely specified

in this sense:

*Q2 if Pyorf ,Pyonf | Tocf Tebf
then R,s,Pycr ,Pyen Tf0 TgHl T\ .

The signalling principle here is that in checking for a route’s availability it is only
necessary to test the last conflicting sub-route on any opposing routes, together with
the opposing sub-route over the berth track section ofdargctly opposing routes.

To clarify, consider the routes depicted in Figure 4.2. For the routes fiothe last

Chapter 4. Proving Safety Properties of Geographic Data 90

|b alc

Figure 4.2: RoutesR, and R;; from the scheme plan for B6T

conflicting sub-route on opposing routBs and R, is 75*; for R-,, the opposing sub-
route in the berth track section of the directly opposing routgis Given that sub-
routes are released sequentially along a route, the intermediate sub-routes do not need
to be tested7 ¢ should always be free when its succesggf°) is free.

To see where the paucity of information provided by the testQnleads to diffi-
culty in the proof, consider the steps involved in showing thatMixe property is pre-
served by this rule. There are three track sections to look at in detail, hence three terms
in the invariant: MX [T:#°, Tta], MX [T8, Tac, Te, T2 and MX [Tg0, Tge, Tee, TE.
The first two of these may be established just as in the proof sketched in the previ-
ous section; the latter is more problematic:

S = MX[Tgb, Tae, TEe, TE {sinceS E MX}
By a case analysis as in the proof of Proposition 4.5, sthee P, =cn or S |= P; =
cr , we find that in either case

ST =1t ATy =f

S E MX[T§e, TE% {simplifying}
Now the next states” |=T¢* = |, so to establishS” = MX we must first show
S E T§< = f. Butitis difficult to be unequivocal about this since possibly

SEMX AT =f ANTge =1 (t)

leading to an unsafe state in which both these sub-routes are locked. One cannot pre-
clude this possibility from within the framework so far established. It is important to
note that this is not simply an artefact of the formalism: gl SSI would enter the
unsafe state if it were initially in this configuration. Seemingly, the system enters an
unsafe state from a safe one. There is a clear objection, however, for while any state
satisfying ¢) may be “safe” with respect to the formufat is not really safe in a wider
sense. The sub-rout& should never be in the locked state when its succesgor

Chapter 4. Proving Safety Properties of Geographic Data 91

(or for that matter/?) is free: the free status of a sub-route depends on that of its
predecessors. With regard & there are two options:

e If the sub-route release data are correct then by the rulé&;fowe can deduce
Tic=f = T¢c =f, which is enough to complete the arrested proof;

e Otherwise we can strengthen the invariant appropriately.

The former option was adopted when these ideas were first explored [74]. However,
when we turn to formalising the mathematical arguments given in the preceding sec-
tions it is less problematic to adopt the second option. Discussion of precisely how we
strengthen the invariant is deferred until Section 5.3.

4.5 From Rigorous to Formal Proofs

For the purposes of mechanically checking properties of the Geographic Data, the
rigorous mathematical arguments of the kind presented above must be turned into fully
formal proofs. Such proofs should never be performed by hand—rather, the objective
here is to find an appropriate logic within which to formulate the proof steps. In this
section we therefore survey some of the likely formalisms suggested by the literature
on formal specification and verification. Specifically, we briefly reexamine the problem
of proving safety properties of Geographic Data in the Temporal Logic of Actions, in
the UNITY notation, and in the framework of Floyd-Hoare Logic. The invariance proof
turns out to be very similar in each of these cases.

4.5.1 The Temporal Logic of Actions

Lamport’s Temporal Logic of Actions [53] is described by its inventor simply as “math-
ematics plus box”, the mathematics involved being the predicate calculus] €he
bellishment meanalways TLA formulae are expressed in the syntax:

O,V =P \ — \ UAD \ OA \ oW

Other common logical connectives are derived from these. Hempresents are-
dicateinvolving variables and numeric constantrepresents aaction these being
formulae involving variables, primed variables and constants. The semantics of TLA
are given in terms of infinite sequences of states (mappings from variables to values).
A primed variablev’ represents the value of the variahien the ‘next state’. The
meaning of2W with respect to a sequeneds that¥ holds of all states im. In con-

trast, the meaning dfi A is thatA relates every pair of consecutive states irFurther
constructs are introduced by Lamport to represent fair executions and stuttering states,
but these need not concern us here.

Chapter 4. Proving Safety Properties of Geographic Data 92

A program is always represented in TLA by a formula of the fdrm 0.4 where
I is a predicate representing the initial statiees-specifying the initial values of the
program variables4 represents the possible steps that the program may take over time
in modifying the initial state. To show that a program has prop@rggne exhibits a
proof of I A OA = ®. In particular,® may be a temporal formula: # = OP and P
is a predicate, theft is a safety (or invariance) property.

Geographic Datain TLA ThePRRandFOPrules in the Geographic Data Language
can be interpreted as actions in TLA. For example, the now familiar ruleBfpand
its sub-routes may become:

(Py=cr V(TP =f AT =f))ATF=Ff AT =f =

Ry, =s AP =cr AT =1 AT = |

Ryy=xs AT, =c = T =f

Te=f ATy =c =T =
and so on. The formuld,, representing a single transition of the SSI, is expressed as
the disjunction of terms such as these. This disjunction does not preclude the possibility
that more than one of the rules may fire in a single step—in contrast to the CCS model
which does. However, in accordance with the CCS madgl, makes absolutely no
commitment about the implementation of these rules.

Proving Safety The safety property is also expressed as a TLA formula—indeed, the
predicateF in the previous section is already in the required form. To show that this
is invariant, we must exhibit a proof that\ 0.A,; = OF. Characterising the initial
state of the system as ‘any safe state’ this obligation becomestA,; = OF. By

the proof rules of TLA this is further transformed into the gbal A.; = F’, where

F’ is the result of priming all the variables i SinceA; is a disjunctive formula, this
proof naturally decomposes into a separate proof for each disjurect-ene proof for
each rule in th&OPand PRRdata:

However, a difficulty emerges with this formulation since this formula is falsifiable.
This is because thactiononly specifies thal 7 changes between states: we forgot to
specify that all other control variables remain unchanged when this rule is executed. It
is therefore necessary to strengthen each disjundtof For example:

FA(Ry=xs AT, =c =Tt = A Unchanged(D — {T¢*})) = F'

Unchanged (D — V') is a formula specifying that all variables 1 other than those
in V remain unchanged (as a result of the action). A similar term is needed in each
disjunct, and with these additions the proof of the invariande cdn proceed.

Chapter 4. Proving Safety Properties of Geographic Data 93

Discussion The need to introduce thenchangectlauses is regrettable since these
may add to the computational complexity of the formal (mechanical) proof. Addi-
tional complexity will be introduced when one considers modelling control flow. Lam-
port [53] gives examples where TLA formulae model the sequencing of actions in a
program by introducing special ‘control’ variables (program counters). These model
the control points in a (possibly parallel) program. The upshot of this is that for each
action in the program one must additionally test for the control point. Although only
one control variable will be introduced, this nevertheless introduces an artificial test to
each rule in the data—the TLA representation of a program is therefore surprisingly
concrete when one is obliged to specify which variables do and do not change in the
execution of an action, and to explicitly keep track of the program counter. Lamport
argues that TLA programs are in this sense completely specified, and sees this as a vir-
tue paid for at the small price of added complexity in the specification. Unfortunately,
the formulae arising from encoding Geographic Data in TLA are already very large, so
any extraneous complexity introduced is certainly unwelcome.

4.5.2 Unity

Chandy and Misra’s NITY notation (this being an acronym for Unbounded Non-
deterministic Iterative Transformation) has much in common with both TLA and Dijk-
stra’s guarded command language. ATy program consists of a declaration of
variables, their initial values, and a collection of guarded multi-assignments.Yl$
program execution model is that of an infinite sequencestat¢,commandairs: the

next command to operate is chosen randomly, subject to the fairness constraint that
every command is selected infinitely often. This fairness constraint aside, the pro-
gram execution model (or operational semantics) is really no different from that of the
CCS model presented in Section 3.2: there, upon hiding the visible actions, the recurs-
ive Control implements the unbounded nondeterministic iterative transformation of the
state encoded image.

In their book [16] Chandy and Misra discuss a great many case-studies to introduce
the notation and explain the development methodology, but they present 9 se-
mantics only informally. This is regrettable since the logic they develop for reasoning
about safety and liveness properties of programs evidently needs a precise foundation.
Sanders [84] has shown that inconsistent deductions arise due to ambiguities in the
definition of substitution; she avoids the problem by eliminating the Substitution Ax-
iom and (in so doing) reducing the logic to linear temporal logic. More practically,
Andersenet al. [1] have demonstrated that it is possible to formaligety by in-
terpreting the notation in higher-order logic in a way that avoids making inconsistent
deductions.

Chapter 4. Proving Safety Properties of Geographic Data 94

The UNITY logic is a species of temporal logic which has assertions of the form
{P}s{Q} as its basis. These are reminiscent of Hoare trippésSections 4.5.3
and 5.2) whereP is a predicate characterising the state in which the commanad
executed, resulting in a state satisfying the predi¢atéf the initial condition that a
program satisfies i, a propertyP is invariant iff:

I = PAVsA{P}s{P}

where quantification is over all program statements. N1y parlance the second
conjunct asserts thdt is stable As has been seen, our main concern with the stability
properties of Geographic Data.

Geographic Data in Unity It is straightforward to represent the Interlocking’s con-
trol (i.e, the data) as described in Chapter 3 in thet¥ notation:

program SSI
declare P, 7, R, ...
initially || (U =f) |
always F
assign Ry, P, T{*, Ty* :=s,cr | |
if (PL=cr V(TP =f AT =f))AT=f AT =1 |
Ty :=f if Ryy=xs AT} =c |
Ty =f if T¢"=f ATy=c] -

(R=xs) ...

ReR

end

The initial condition! is extracted from thénitially section by interpreting as con-
junction; thealwayssection specifies the invariant the program should maintain over
all execution sequences—in this case the safety property

Proving Safety Stability of F amounts to showing, for each guarded command of the
formz := ¢ if b, thatF A b = F[é/z]. In particular, to show that the sub-route release
rule for 7t* ensures the stability ¢f one would prove

FARy=xs NT, =c = F[f /T"]

which should be compared with the corresponding goal in Section 4.4.1. In that proof
we started out with the goal of showitgl= F = S[¢/z] = F and deduced thét |= b

from the transitions that must have occurred to allow the transformation in the state
S. However, we might just as well have started out with the go&F A b =
S[e/z] = F, as per the partial tableau of Section 4.2.2.

Chapter 4. Proving Safety Properties of Geographic Data 95

Discussion Seldom does one encounter a programming notation which has been
designed with such a flagrant disregard for control flow! Fonty this is both a
strength, in its targeted area of application, that of parallel program development, and
a weakness in a setting where the sequential flow of control is an occasional concern.
Nonetheless, it is possible to simulate sequential composition, by the same device as
suggested for TLA programs, and there is a convincing parity betweenntier Uor-
mulation of the data correctness problem, and our earlier co-induction formulation:
indeed, it is this same principle that underwrites thaty invariance proof.

4.5.3 Floyd-Hoare Logic

In the late 1960’s Floyd [33], and Hoare [44], developed a logical notation for reas-
oning about simple imperative programs. At the heart of Hoaneismatictheory of
partial correctness are assertions about program fragments of thé form{Q}. As
before, P characterises the state in which the prograim executed, and) charac-
terises the state of the memory of the machine when, andéfminates. The basic
premise of Floyd-Hoare logic is the assignment axiom:

ASS

{Ple/z]}x:= e{P}

This is motivated by observing that /# holds in a state modified only by the assign-

ment of the value of (the functior)to the variabler, then the predicate obtained by
substitutinge for all free occurrences af in P holds before the assignment is made.

It is easy to generalise this idea to parallel multi-assignment, like that seemiiry U
Multi-assignments provide a convenient abstraction when it does not matter in which
order a sequence of assignments is made.

Geographic Data in Floyd-Hoare Logic The Geographic Data Language is an in-
terpreted language—the SSI control program providing the interpretation. From this
perspective we may naturally consider the rules in the data to be commands in a simple
language involving sequence, assignment and conditional jumping. As such

*Q02 if Pyorf [Tfcf ,TgPf then Ry,s,Pyer Tl TP\,

clearly needs no further interpretation. Expanding the subroutine code inénéhe
PFMtest here, and th@specials elsewhere) obviates the need to define a program
logic with subroutine handling facilities:

*Q02 if (Py=cror Tpe=f T¢=f) | Toe=f Tgb=f then ... \.

Chapter 4. Proving Safety Properties of Geographic Data 96

Proving Safety The safety analysis of the Geographic Data can proceed by exhibit-
ing a proof of a theorem such as

{F}if bthen Z:= e{F}

for each data fragment in theRRand FOPfiles. The multi-assignment axiom and
the rules for one-armed conditional and strengthening in the precondition are used to
derive the appropriate verification condition(s) from this assertion:

ASS
FAb= Fl¢/i] {Fle/z]} 2 := e{F}

(FADYZ = é{F} FA-b=F
{F}if bthen Z:= e{F}

PRE

IF

This gives rise to two verification conditions—one is a trivial theorem of first-order
logic, while the other is already too familiar.

Discussion It is not difficult to define an appropriate program logic for the general
purpose conditional statements of the Geographic Data Language, nor for the ‘spe-
cials’ if they can be interpreted in these terms as in Sections 2.4 and 2.5. Floyd-Hoare
logic—that is, the logic of partial correctness—is thus adequate for analysing invari-
ant properties of Geographic Data. However, the logic is not well suited to analysing
liveness or progress properties such as: “after initialisation, eventually a safe state will
be reached.” Using the logic ¢dtal correctness one may make such termination ar-
guments, but generally one needs a dynamic or temporal logic in which to concisely
express properties that speak about eventualities, and not just invariants.

4.6 Summary

The primary concern of this chapter has been to explore the nature of the invariance
proof with a view to finding a simple and efficient means of mechanising the necessary
reasoning. We began by looking at (local) model checking since it offers full automa-
tion and guarantees success one way or the other because the method is complete. The
property either holds invariantly, or it does not. But given the astronomical sizes of the
state spaces involved, model checking on its own is simply too expensive. Neverthe-
less, in exploring the structure of the proof tree for the given satisfaction problem, we
found that it was possible tfmld the structure into a partial tableau and transfer the
proof to a simple induction argument.

That argument turns out to be an instance of the method of co-induction, and the
invariance proof therefore reduces to the problem of demonstrating a closure property
of a certain monotonic operatori-e., the Control. This dramatically improves the

Chapter 4. Proving Safety Properties of Geographic Data 97

tractability of the proof because it replaces the problem of showing that every state of
the model is safe, with that of showing every fragment of the Geographic Data that is
executed as a unitreserves safety

Although the semantics of TLA (also those ofl3Y) are given in terms of infinite
sequences of states, whereas the semantics of the CCS model are given as a (finite)
transition system, it turns out that co-induction is the unifying principle in the safety
analysis. Recall thatin the TLA setting invariance amounts to showing that all (finite or
infinite) extensions of a sequence of safe states are safe. The proof step demonstrates
that from a safe state the model can only reach one of a set of safe successors. Hence,
by co-induction, all sequences extending from a safe state are safe.

Section 4.4 described some of the details of how to establish the appropriate verific-
ation conditions for théeRRandFOPdata. Such detail is necessary for several reasons,
not the least of which is that before proving something with a theorem prover’s support
we must firstunderstandthe proof. Moreover, as demonstrated by the ‘failed’ proof
in Section 4.4.3, it is important to know whether there is in fact enough information to
complete the proof envisaged. Careful analysis indicated that this was not the case for
the given formulation of the problem, and revealed that the safety property defined in
Chapter 3 was too weak in general. This weakness will be repaired in the next chapter.

Mathematical sophistication is not required to prove safety in interlocking data. In
a sense, this is entirely as it should be since the reason why a system is safe ought to
be sufficiently simple to be convincing. However, mathematical insight and a detailed
knowledge of the problem at hand are needed to select the right representation within
which to conduct the formal analysis. The discussion in Section 4.5 reveals that there
is no obviously best choice in this matter. TLA is an expressive logic within which
one can capture not only safety properties of systems, but also properties such as live-
ness and fairness which express eventualities. But TLA imposes penalties too, since
it becomes inconvenient to reason about simple sequencing of events. The CCS and
u-calculus framework with which the analysis began does not carry this penalty—in
process algebra, we may model functional aspects of the SSI’'s control with arbitrary
precision. However, model checking is enormously computationally expensive.

It is straightforward to define a program logic for the general purpose conditional
statements of the Geographic Data Language, slightly less so for the ‘specials’. The
data preparation guide [9] observes (but without justification) that the specials never
in fact need to be used because one can express all the required signalling functions in
the language of sequential and guarded commands. The specials are only designed to
speed the real-time functioning of the SSI. As this is irrelevant from the (functional)
verification standpoint we may assume that they are always expanded into equivalent
conditional code. However, is of course relevant that the SSI control interpreter

Chapter 4. Proving Safety Properties of Geographic Data 98

and the translation mechanism agree on the semantics of the specials. Justification for
this position was given in Chapter 2, but however we set about verifying properties of
Geographic Data, a proper treatment of the specials has to be taken into consideration.

By insisting that the safety property holds both before the block of code is executed
as well as after it has terminated, other data, includd® data, may be treated in
a manner similar to the guarded command illustrated earlier. However, where com-
mands are in sequence it is necessary to specifssert[35] the weakest condition
that should hold at the intermediate states. Since the safety critical states in the evolu-
tion of the system are those at which the command interpreter is evaluating the guard
of a command (to make the next signalling decision), it is appropriate that the weak-
est condition here be the safety propefty These were identified in Chapter 3 as
the control points in the model. At other intermediate states (and these will only be
between updates to the image of the railway) the weakest condition wilieeThis
justifies treating sequences of assignments as multi-assignments: it is reasonable since
only constant expressions are allowed at the level of Geographic Data (the interpreter
updates countersic).

Not without some misgivings we settle, therefore, for conducting the invariance
proof in Floyd-Hoare logic. Firstly, this notation has an intuitive appeal likely to be
more attractive to non-specialists in formal methods, but who may nevertheless have
to certify that the results of our analysis present a convincing argument that the data
are safe. Secondly, we retain greater control over the structure of the proof because
the model naturally permits sequencing of commands. Thirdly, the proof system of
Floyd-Hoare logic is compositional. On the one hand, compositionality means that
we do not have to treat every rule in the Geographic Data as a unit, but can rather
examine its structure (intermediate states). On the other hand, compositionality can
lead to shortcuts in proofs if the same formal argument is needed in several places—
for instance, if some code is used in several contexts, or on the disjunctive branches of
a complex proof.

Later, in Chapter 6 where issues raised by the interactions between Interlockings
are considered, there will be some cause to review this decision to use a simple pro-
gram logic since the properties of interest there are not readily expressible in the Floyd-
Hoare logic of partial correctness. In that chapter we shall return to the richer modal
u-calculus. Meanwhile we have not only to formalise Floyd-Hoare logic in an appro-
priate environment, but also have to construct a program that will implement the proof
strategies worked out in Section 4.4. That is the subject of the following chapter.

Chapter 5

A Formal Theory of the Geographic
Data Language

In this chapter a fully automatic means of checking safety properties of Geographic
Data is recovered. This is achieved by implementing the proof ideas discussed in
the preceding chapter within the formal constraints of a deductive reasoning system.
After a brief introduction, we begin in Section 5.2 by formalising the semantics of
the Geographic Data Language in higher-order logic, and obtain a program logic as a
collection of derived inference rules. In Section 5.3 a simple theory of Geographic Data
invariants is described, which is used in Section 5.4 to formalise the invariance proofs
sketched earlier for theRRandFOPdata. In Section 5.5 we assess the computational
complexity of the approach, and describe some heuristics to decompose the (quadratic
time) global proof into more readily tractable local constituents.

5.1 Introduction

The typical proofs sketched in Section 4.4 are too laborious to be done reliably by
hand. Yet it is essential to conduct some proofs in this way if one is to devise special
purpose proof schemas to handle various classes of Geographic Data. The challenge is
then to devise a method of mechanically verifying safety properties of GDL programs.
Ideally a fully automated tool should be provided since, while railway signalling is in
some sense a logical discipline, we should not require railway signalling engineers to
be also adept at formal proof.

Rigorous mathematical proofs are not necessarily easy to transcribe into the purely
formal, symbolic manipulations mandated by automated proof checkers afiodrttee
systemshat underly them. Some experimentation is necessary, for whiattenact-
ive theorem prover is needed, equipped witmatalanguagén which to express the
derived proof procedures for subsequent reuse. Milner called theses[60] in the
context of automated formal proof.

99

Chapter 5. A Formal Theory of the Geographic Data Language 100

The HOL system [34] meets this requirement, although not uniquely. HOL sup-
ports a variety of higher-order logic, a type theory derived from Church'’s typed lambda
calculus [17], and the Logic of Computable Functions [36] from which it inherits a
polymorphic type discipline. Some features of the HOL system which make it a suit-
able vehicle with which to implement a Geographic Data theorem prover include:

e Mechanisms to support both forward proof by means of primitive and derived
inference rules of higher-order logic, and backward, goal orientated proof by
means of tactics under user or program control.

e A ready collection of rules and tactics and a languag&cticalswith which to
combine them for specialised applications. Rules, tactics and tacticals are just
programs written in ML, the theorem prover’s metalanguage.

e ML's own type discipline means values representing theorems of higher-order
logic can only be obtained by applying the primitive inference rules of the logic.
One may write arbitrarily proof procedures as ML programs, and the system’s
type security ensures that only valid theorems result.

e HOL is an open programming system so one can provide parsers, unparsers, and
GDL syntax checkers, entirely within the ML system. Otherwise one can run
the theorem prover as a client in a larger environment and communicate with the
command loop through a variety of mechanisms [94, 92].

e The HOL system and its logic are stable, and widely used in academic and in-
dustrial institutions. A strong user base can be taken to mean that the system has
progressed from an experimental platform to a proven technology.

A growing number of freely and commercially available proof systems offer similar
functionality to HOL. Of these, Isabelle (Paulson [79]) and PVS (Shaekal. [77])
warrant mention—the former because it is a generic theorem prover in which one can
readily encode a specialised theory of Geographic Data like that described in here;
the latter because it offers very powerful decision procedures for first-order logic and
arithmetic (which HOL currently lacks). With PVS however, adapting the tool to ap-
plication specific tasks is difficult since it is not provided with an open programming
environment. Commercial variants on the theme in which one could directly imple-
ment the method discussed below include ProofPower (International Computers Ltd.)
and LAMBDA (Abstract Hardware Ltd.).

The approach taken to providing a Geographic Data theorem prover is based on
Gordon’s experimental embedding of program logics in HOL [35]. We begin in Sec-
tion 5.2 below by formalising a denotational semantics for the Geographic Data Lan-
guage, and exploit the expressive power of higher-order logic to represent the semantics

Chapter 5. A Formal Theory of the Geographic Data Language 101

directly in the theorem prover. Such an approach would not be possible in a first-order
logic, for example. The rules and axioms of Floyd-Hoare logic are then mechanically
derived from the formal theory of the semantics of GDL. This guarantees the validity

of the program logic.

The theory of the embedded programming language developed differs from Gor-
don’swhile language, notably because there is no need fowttike construct in Geo-
graphic Data. However, Gordon defines a language having only the natural numbers as
data, and this should be generalised in order to reason about the concrete datatypes for
points, signals, and so on. The theory described in Section 5.2 is ipdehorphic
states are modelled by functions from a concrete domain of program identifiers to an
unspecified data domain represented lypee variable The image of the SSl is rep-
resented by a collection of such functions.

The effort of constructing a polymorphic theory pays in a prototype verification
tool since we may readily experiment with different representations of the data. The
theory is instantiated in Section 5.3 when particular representations for the datatypes
are chosen: routes, sub-routes and track circuits are modelled as Boolean variables,
but points are treated more elaborately. In accordance with this representation we next
develop a theory of the invariants discussed earlier, taking care to repair the weakness
in RT identified in Section 4.4.3. The precise formulation of this property turns out to
be delicate.

A tactic in the HOL system is a function that given a goal to prove will return
a collection of (simpler) subgoals together witlvaidation A validation is an ML
program that given a proof for each subgoal will yield a proof of the original goal.
The composition of these functions is a proof of the initial conjecture given to the
system, the result of which is a theorem. Now given a partial correctness specification
{F}c{F}, the program uses a combination of tactics to decompas® a number of
verification conditions according to the syntactic structure. The validations of these
tactics are the derived rules of Floyd-Hoare logic. Thus the problem addressed in
Section 5.4 is how to prove the verification conditions which arise from the sub-route
release and panel route request rules. Two tactics are offered that correspond to the
demonstrations in Sections 4.4.1 and 4.4.2.

In Section 5.5 the computational complexity of the proof method is examined. It
turns out that the size of the invaridnt(i.e., the number of conjuncts) is proportional
to the size—in terms of the number of rules—of the verification task. This gives rise to
quadratic time complexity in provingF}c{F} for all c. Space requirements are linear.

The quadratic time complexity arises because we insist on establishingdhlsafety
properties of the Geographic Data hglldbally. In Section 5.5 this issue is addressed
by considering heuristics to decompose the verification task. In fact we decompose

Chapter 5. A Formal Theory of the Geographic Data Language 102

the proofs. These heuristics are intended to be implemented in ML programs which,
together with cosmetic but desirable utilities such as parsers and pretty-printers to hide
the HOL syntax, would provide the foundation of a mature tool for analysing safety
properties of Geographic Data.

5.2 Geographic Data in Higher-order Logic

The Geographic Data Language is an interpreted programming language. It is also
a weak language whose syntactic constructs include only simple assignment (of con-
stants to variables), sequence, one- and two-armed conditionals and a switch construct.
The datatypes over which the control structures operate are of a fixed format as de-
scribed in Section 2.2. There is, however, a primitive subroutine mechanism which
is mainly used in the®PRRand PFM data. The@directive diverts the interpreter to a
block of code that may be common to several routes: in the context of a test this will
be anevaluation sethaving no side-effect; in the context of a command this will be an
execution set

In checking properties of Geographic Data one must always expand evaluation sets
inline since their adequacy is context dependent. For execution sets one may option-
ally seek to verify that the common blocks of data are independently safe. This offers
a potential shortcut in proofs where a common block is referenced—because one can
appeal to a pre-proved theorem, liii€} ¢ {F}, instead of reproving the same theorem
several times. But this will be left for future optimisation: instead of formalising the
semantics of jumps explicitly the subroutine code will be assumed to have been ex-
panded inline before the formal verification proceeds. For GDL this never alters the
meaning of the program.

The absence of a looping construct or any form of nondeterminism means that the
semantics of the Geographic Data Language are easy to define formally—although
the SSI's designers have only provided a formal statement of the language’s syntax.
In putting forward a formal semantics below it must be remembered therefore that it
is the control interpreter itself whictlefinesthe language. Consequently, the formal
semantics can only be faithful to the informal description given in [9].

5.2.1 A Simple Imperative Language

The simple imperative language while programs forms the introductory basis of

a number of text books on the subject of programming language semantics, such as
Tennent’s [93], but the language formalised here is simpler even than this since it omits

the looping constructs. For the moment suppose that valakif the language will

be of several primitive types, including at least truth values and natural numbers. The

Chapter 5. A Formal Theory of the Geographic Data Language 103

appropriate domains of interpretation are

B = {true,false} and
N = {0,1,2,...}

as expected. Expressions will be of these types, but no particular expression language
here is assumed here. Let, c andg, be metavariables ranging over the syntactic cat-
egories of expressions, Boolean expressions and commands respectivety,with
representing variable identifiergdr). The abstract syntax of commands is (see Sec-
tion 2.4.1) can be summarised thus:

¢c = x:=¢el|ec; co|if bthen c|if bthen ¢ else ¢ | skip

Formally we needkip , the command that does nothing, because the concrete syn-
tax admits an empty command list. The case construction of Section 2.3.2 can also
be introduced (indeed, it is necessary to do so if the verification tool is to produce
meaningful error messages) with the clauses:

¢ == ---|(if bthen cor g)
g == c|if bthen cor g

but its semantics is just that of the conditional. Only the two-armed conditional is
needed (giverskip) for the theory development, but the one-armed conditional is
more prevalent in Geographic Data, so it is retained as a primitive.

The semantics described here are functional (and presented in slightly different
style to Section 2.4): theneaningof a command in this language will be a function
between program states, a state being a mapping from variables to an appropriate do-
main of values. The meaning of an expression will be a function from states to values
(of appropriate type):

State = Var — Val
E[-]e : State— Valy
C[-] : State— State

The semantics of commands is summarised in Figure 5.1. Note in particular that the
assignment := e, when evaluated in a stateyields a new state that differs from the

old only in thatz now maps to the value efin s. In fact there will be several versions

of assignment, corresponding to the differing expression types in the language. In the
displayed semantics a type subscript is used to distinguish phrases (expressions) of
differing types:£[e]y evaluates to yield a value of typé, which is then bound in

to an identifier of the same type.

Chapter 5. A Formal Theory of the Geographic Data Language 104

Clskip [s=s

Clz = e] s=s[E]e]os /o]

Cler s 2] s =Cle2] (Cled])

C[if bthen c]s=if E[b]ss = true thenC[c] s elses

C[if bthen c;else ¢ s =if E[b]ss = true thenC[c,] s elseC[c,] s
C[(if bthen cor g)]s=GJ[if bthen cor g]s

Glc] s=Cl[] s

Glif bthen cor g]s=if E[b]ss = true thenC[c] s elseG[g] s

Figure 5.1: Denotational Semantics of Geographic Data Language Commands

In implementing this language in HOL it will be more appropriate to adopt a re-
lational style of presentation. Generally, semantic equations such as those displayed
above give rise tgartial functions, which are difficult to represent or reason about in
the logic of the HOL system. It turns out, however, that the semantics of GDL define a
total function: every well formed phrase of the language denotes a value—essentially
because all commands are finite, and the expression evaluation function is total (ex-
pressions are constant functions, in fact). But it is still less problematic in HOL to
adopt the relational style of presentation. Note that[fis the denotation of in the
relational presentatiorts, s') € [c] justin cas&[c] s = 5.

5.2.2 Semantics in Higher-order Logic

We follow Gordon [35] closely in formalising the semantics of the Geographic Data
Language in HOL. However, the language Gordon described had only a single data-
type, the natural numbers, and while this is adequate the restriction is inconvenient
since it will (ultimately) be desirable to represent the concrete datatypes arising in
Geographic Data. This immediately raises the problem of modelling a state in the
domain

State: Var — B+ N +---

since itis difficult, in a straightforward implementation, to represent a function defined
over disjoint domain or codomain. The logic of the HOL system is a modest variant
of Church’s simple type theory and does not provsden types One way forward is

to use the clever embedding described by Melham [58] to define variant records in
the logic, and thereby simulate the above function domain. Fi¢ype operator is

part of the HOL basis, but the disadvantage of using Melham’s sum types is that they
would requireprogramvariables to have type8 + N + - - -, etc, which is somewhat
unnatural.

Chapter 5. A Formal Theory of the Geographic Data Language 105

The simpler approach is taken here of splitting the state into the product of several
functions. To fix ideas we introduce the type abbreviation

state= (string— «) x (string— f3)

wherestringis the predefined type of (ASCII) strings andand 5 are type variables
in higher-order logic. In this theory, program variables (identifiers) will be represented
simply by strings. Clearly one could add further state components in a similar way,
e.g.

State= (string— «) x (string— 3) x (string—) - - -
but just the two will suffice for our current purposes. The theory of the semantics of
the Geographic Data Language will be instantiated later, in Section 5.3, by supplying
concrete types—such amim bool or four-bit-word—in place of the type variables
appearing here. The advantage gained by constructing a polymorphic theory in the
prototype verification tool is that one may easily experiment with different representa-
tions of the data.

Now the semantic evaluation functions (for expressions) will be represented in the
HOL theory by functions of typstate— « andstate— (3 respectively. Predicates are
functionsstate— bool Then, in order to bind a sequence of values into the appropriate
state component we define constaBitgl andBindSeq:

FVYxv(g:state— v).Bindzvg=XAz2.(z =z — v | gx)
- (V (s: staté X (g: state— ~).BindSeq s X nilg = g) A
(VsXeFEy.
BindSeq s X (conse E) g = Bind (hd X) (e s) (BindSeq s (11 X) E' g))
The first of these defines tiBind operator which binds a valueof type~ to identifier
x in state (component). The result is a new state, a function in higher-order logic
from identifiers to values. The type variableand((and~, which must match one of
these) appearing in the definitions are universally quantified—so the operators are well
defined when any concrete types are instantiated in their place. Notathab | ¢)
is HOL syntax for ‘ifa thenb elsec’ which is well typed only ifa is a proposition and
b andc are of the same logical type. Also note that function application associates to
the left.
The first argument t®indSeq is the state) in which the expressiong’ are to
be evaluated: the last argument} (s the state component into which the variables are
to be bound. The constant$ andcons are constructors of the type of polymorphic
lists; hd andtl being the obvious list operationBindSeq is defined by unwinding the

recursion along the second list, of expressions, but it would seem to be more natural
instead to write:

Chapter 5. A Formal Theory of the Geographic Data Language 106

BindSeq snilnilg = g A
BindSeq s (consz X) (cons e E) g = Bind x (e s) (BindSeq s X E g)

However, this formulation introduces domain equations that the HOL system cannot
solve when it attempts to prove that the definition is logically sound.

The definitions above illustrate that the theory of the Geographic Data Language
has parent theories of lists, string$;. In the sequel the syntax of lists will be simpli-
fied in order to make the formal definitions more readable, u§jrfgr the empty
list, and [k |t] for consht. The syntax|a,b] will occasionally be used in lieu of
cons a (cons bnil), and when they appear, strings will be delimited by quotes)(

We may then prove some simple theorems about binding:

- BindSeqs|[|[|gz =g
- BindSeq s [z | X][e| E]gz =es
F—=(x =y) = (BindSeq s[z| X][e| E] gy = BindSeq s X E gy)

The free variables in these theorems are implicitly universally quantified. In partic-
ular, the free type variables are universally quantified—so the theorems remain true
under any type instantiation. In the sequel, universal quantification and explicit type
annotation will often be elided.

The constanBindSeq simultaneously binds a sequence of values—in order to
define parallel multi-assignment which generalises the single assignment seen earlier:

FYXEY Fss' Ass(X,E,Y,F)(s,s) =

(s' = (BindSeq s X F (fsts), BindSeqsY F (snds)))

Operatorgst andsnd project the components of the pairFortunately the user of the
system never need be aware of the HOL presentation of the object language syntax.
Although the aim is for full automation, where command loop interaction with the tool
is necessary one can modify the parser to admit GDL syntax directly (as in [35]).

In these semantics a command has logical tsia¢ex state— bool This means
that the semantics of the embedded language is represented by a relation—as promised
at the end of the preceding section. The definition above asserts' isahe result
of binding the values of the expressioAgo identifiersX in the first component, and
F to Y in the second. Where assignments are all of the form £k, for constant
k, x1,22 == ki, ko IS equivalenttar; ;= k; ; x5 := ky as long asr; andz, are
distinct. This treatment means that only one version of assignment needs to be defined,
rather than one for each datatype in the language. Consequently only one version of
the assignment axiom needs to be derived. (However, this is only a matter of style:
the advantage gained from the multi-assignment primitive is only tenuous, and none

Chapter 5. A Formal Theory of the Geographic Data Language 107

of the subsequent developments depend critically on this particular formulation of as-
signment.)

The other command forms of the Geographic Data Language are represented more
naturally in higher-order logic:

FVss'.Skip(s,s')=(s=5)

FYedss' . Seq(c,d)(s,s') =3s".c(s,s") N (5",)
FYbess' Mf(b,c)(s,s)=(bs—c(s,s) | s=¢)
FVYbed ss. lte(b,c,d)(s,s) = (bs—c(s,s) | d(s,5))

This conceals the fact that s’ are pairs of functions. These definitions, and the theor-
ems concerning binding, complete the formal (HOL) theory of the semantics.

5.2.3 Hoare Logic: Rules and Tactics

Again, the details here follow Gordon [35] so only the delicate parts of the embedding
are indicated, and where the more general theory introduces subtleties. The approach
is to derive the rules and axioms of partial correctness specifications from the theory of
the denotational semantics. The program logic, or axiomatic semantics of the program-
ming language [93], was described in Section 4.5.3. The assditipn {@)} may be
represented in higher-order logic by introducing a new conSpext

-V (c: statex state— bool) pq. Spec(p,c,q) =Vss' . psAc(s,s) = qs

where the pre- and post-conditions here are state predicates. Under this scheme an
assertion about an SSI control variable, $&y = v}, is denoted by a HOL term like
\s:statesnds’ T2' = v. In the following let[P] be the denotation in HOL of the
predicateP (so that|T, = v] abbreviates\s.snds’ T2' = v, say).

5.2.3.1 Derived Rules of Floyd-Hoare Logic

From the definitions outlined above one can routinely prove some theorems about
Spec:

F(Vs.p's= ps) A Spec(p,c,q) = Spec(p,c,q)

F(Vs.qs= ¢ s)ASpec(p,c,q) = Spec(p,c,q)

- Spec((As. p (BindSeq s z e (fsts), BindSeq sy f (snd s))), Ass(z, e, y, f), p)
- Spec(p, ¢, r) A Spec(r, ', q) = Spec(p, Seq(c,), q)

F Spec((As.ps Abs),c,q) AN (Vs.ps AN—=(bs) = qs) = Spec(p, If(b, c), q)

In this way the rules of Floyd-Hoare logic become derived rules of higher-order logic.

Chapter 5. A Formal Theory of the Geographic Data Language 108

The other constructs of the embedded language are treated similarly. The last of the
above theorems is the foundation from which ttherule is derived:
IF F{P Ab}c{Q} FPA-b=Q
H{P}if bthen c{Q}

Note, however, that the second antecedent is a theorem of higher-order logic, while the
former is a theorem of Hoare logic. The distinction is delicate: the program variables
appearing in{ P A b} are quoted, while they appear as (unquoted) logic variables in
P A =b = Q. As the free variables in the theorems above are universally quantified
we can specialise

F Spec((As.ps Abs),c,q) AN (Vs.ps AN—(bs) = qs) = Spec(p, If(b, c), q)
to:
= Spec((As. [PIs A [bs), [c], [QD) A (Vs [Pls A =([b]s) = [€]s)
= Spec([P], 1f([6], [<]), [Q])
Since(As. [P]s A [b]s) =s [P A b], this is beta-convertible to
= Spec([P A], [e], [RD) A (Vs [Pls A=([b]s) = [Q]s)

= Spec([P], I([0], [c]), [QT)
and thelF rule follows from this as long as Vs. [P]s A =([b]s) = [Q]s can be
derived from (the verification conditiof) P A —=b = (). To see that this is the case
suppose, without loss of generality, that the free (program) variablBshiand () of
type a are contained i, ... A,,, and those of typg are contained i3y, ... B,,.
Then denote these explicitly iR by writing P[Aq, ... A, By, ... By, etc. The vari-
ablesA, ... B, are freein

F P[Al,Bn] /_lb[Al,Bn] :>Q[A1,Bn]

and so the4; and B; can be instantiated witfsts’ Ai * andsnd s’ Bj ' respectively,
and the free variable: stategeneralised to obtain

- Vs.Plfsts’ AL |...snds Bn'] A —b[fsts’ Al ,...snds” Bn']
= Q[fsts’ Al ,...snds” Bn']
which is beta-convertible to:
FVs.(As.Plfsts’ Al ,...snds” Bn'])s A—((As.b[fsts’ Al |...snds’ Bn'])s)

= (As.Q[fsts’ Al",...snds Bn'])s
This is precisely as required:V s. [P] s A =([0] s) = [Q] s.
Underlying the use of théF rule there is therefore a mechanism to translate
between theorems of higher-order logic and theorems of the embedded program logic.

Chapter 5. A Formal Theory of the Geographic Data Language 109

ASS SEQ H{P}a {R} F{R} 2 {Q}
F{Ple/z]}z = e{P} F{P}c1; c2{Q}
e FP =P F{PYe{Q) poer FIPIe{Q) FQ=(Q
= {P'} e{Q} F{r}e{Q}

r FAPAB{Q} FPA-b=Q
H{P}if bthen c{Q}

e FAPAba{Q} F{PA-b}e{Q)
- {P}if Dthen ¢ else ¢ {Q}

Figure 5.2: HOL Derived Rules of Floyd-Hoare Logic

This translation is routine, implemented using higher-order matching, but complicated
by the possible appearancelogjical variables in addition to program variables in the
specifications—one is obliged to distinguish between logical variables and program
variables by observing some suitable syntactic convention. We notéthatan ML
function taking two theorems as arguments, and yielding a theorem as result. ML
values of typeheoremcan only be derived in the HOL system by application of the
primitive inference rules of higher-order logic—though they can also be introduced as
formal axioms. In avoiding axioms, the definitional style of interaction with the the-
orem prover that we have been following, where constants suBinésSpec, etc, are
defined in terms of existing constants and logical connectives, ensures that the logic
of the HOL system remains consistent. Thus theorems sueh{d@3} c{Q} can be
trusted, but whether or not they are meaningful is of course a matter of interpretation.
The other rules of the program logic (see Figure 5.2) are derived in much the same
way aslF , and uniformly so, from the theorems listed above—all, that is, except for
the assignment axiom. In the simple case this must be a function taking terms repres-
enting{ P} andzx := e, and which yields atheorem{Ple/x]} z := e{P}. Gordon’s
derivation of the assignment axiom must be generalised in two important respects be-
cause of the parallel multi-assignment, and the polymorphism in thestigte Thus
care has to be taken not only to correctly instantiate the terms in forpitfig z] }, but
also their types. Otherwise, the derivation is much as in [35].

5.2.3.2 Tactics for Floyd-Hoare Logic

The inference rules derived above support forward proof in HOL. It is more natural
however, when devising proof strategies from scratch, to work backwards in a goal
directed manner from the desired theorem. For this tactics are needed which render
a goal into a number of (hopefully) simpler goals. Tactics to support reasoning about

Chapter 5. A Formal Theory of the Geographic Data Language 110

partial correctness specifications can be obtained by inverting the corresponding rules
of Hoare logic. For example, a combination of the assignment axiom and the rule for
strengthening the precondition will yield:

ASS
- P = Q[é/7] F{Qle/z]} 7 = e{Q}

{Pri= e{Q}
Given the goal’ = {P}Zz := é{Q}, the appropriate tacti®aSSTAC, will produce
as its only subgoal the verification condition- P = (Q[é/z]. The tacticlF _-TAC
also yields a verification condition as one of its subgoals. These verification conditions

PRE

may be proven using the full power of higher-order logic, since they are pure logic

formulae, though they will be unprovable if the initial goal is not a theorem.
Appropriate combinations of tactics, usitagticalsfor repetition REPEAT and

trial and error ORELSE will generate the verification conditions for a partial correct-

ness specificatiog P} ¢ {@Q} for any command: in the embedded language. This

tactic, which Gordon calledC.TAC, may be implemented thus

val VC_TAC = REPEAT
(SEQ_TAC ORELSE ITE_TAC ORELSE IF_TAC ORELSE ASS_TAC);

The tacticSEQTACbehaves as follows:

7F {P}er; e {Q} 7F {P}e; 7= e{Q}
PP} {Q} 7+ {Q)} e {Q} 7 {P}c{Qle/T]}

SEQTACfirst tries to apply the second form, matching the last of a sequence of com-
mands againsass; if this fails (the match can only be a conditional if sequences of
assignments are merged askip commands have been dropped) the heuristic inserts
a{Q} before the conditional.

These tactics are an essential component in our approach to automating the analysis

of Geographic Data invariants. Now we need a theory of those invariants.

5.3 A Theory of Geographic Data Invariants

In the preceding section a state was modelled by a pair of polymorphic functions of
type string— « andstring— (. It is straightforward, though tedious, to extend this
theory to several more state components. Here we shall just model sub-routes, routes
and track circuits in the second component as entities of bgmé and points in the
first component (these having more complex type).

Sub-routes have two states, locked and free, and are thus properly modelled as
Boolean variables. Routes have three states: unavailable, available and set, and avail-
able and unset. In representing routes by Boolean variables it will only be possible to

Chapter 5. A Formal Theory of the Geographic Data Language 111

verify properties of the set/unset bit and not the ‘availability’ bit which the data can
examine but never modify. The availability bit is an override used exceptionally to
temporarily bar a route-e-g, for maintenance purposes. Treating routes as Boolean
variables is to assume that a test on the availability (bit) of a route is always passed.

Track circuits also have three states: occupied, clear and undefined. The occupied
and clear states are represented in different bits in the track circuit memory: if neither
is set the track circuit state is undefined. According to the informal description of the
semantics in [9], whenever the occupied bit is set by a data command, the clear bit will
be cleared, and vice versa. (Points too have this inversion property—see Section 2.4.2,
and Section 5.3.2 below.) In modelling track circuits in a single Boolean variable we
therefore assume that their state is never undefined.

The sections that follow develop the HOL theory needed to represent the properties
of Geographic Data introduced in Section 3.3.1 and 3.3.3. These are:

MX the mutual exclusion property for sub-routes over a track section, and discussed
in Section 5.3.1 below;

PT the points property relating the orientation of the points with the sub-routes
through them (Section 5.3.2); and

RT the property relating routes and their component sub-routes (Section 5.3.3).

We shall therefore define the corresponding functions in higher-order logic.

5.3.1 Track Circuits — MX

In higher-order logic the fred | state of a sub-route will be represented by the constant
T, and the lockedl() state byF, these being the distinct elements of the tppel We
shall freely writef andl instead, whenever this clarifies the the explanation. A plain
bidirectional track section will be associated with a pair of sub-routemn(l b, say),
thus the mutual exclusion property can be expressed in the HOLd&rh) or, more
verbosely iro = T vV b = T. In Section 3.3.3 thenacroMX operated on a list of sub-
routes—this can be expressed in HOL by the congtaqtdefined using the auxiliary
functionM:

F(Vs.Ms[]=T) A (Vsth.Ms[h|t]=(sVh)A(Mst))
F(MX[]=T) A (Vst.MX[h]|t] = (Mst) A (MXt))

In the sequel two common special cases will arise from which other varieties can be
assembled as desired:

- VYabMX2(a,b) = (aVb)
FYabced.MX4(a,b,c,d) = MX]a, b, c,d

Chapter 5. A Formal Theory of the Geographic Data Language 112

The latter involves(;*) = 6 terms likeMX2, viz.
(aVO)A(aVe)A(aVd)ANDVe)AbVd) A(cVd)

This combinatorial explosion of terms is problematic only if the definition is ex-
panded in proofs, but this is never necessary in practice. Apndpds for example,
we can prove some simple but essential theorems

F MX4(CL,T, T, T) =T
= MX4(a, b, c,d) = MX4(T, b, c,d)

and so on. The first of these will be useful in simplifying (rewriting) terms in the in-
variance proof, while the second is a resolution theorem by which fresh hypotheses
can be generated from those already given. A collection of such theorems is needed
to cover the possible cases since the HOL proof system is not readily able to exploit
even first-order unification (although Slind [86] has illustrated that AC unification can
be added to the HOL system’s proof infrastructure).

To illustrate the use of the above definitions, consider the track cifGuithich
has two sub-routess® and72¢. The property MX [T°, T¢4] will be expressed in the
higher-order logic ternMx2(7¢%, 7). In the embedded logic this will be expressed
in the predicate\s.MX2(snd s’ T2AB' ,snd s’ T2BA). If this is the only term in the
invariant, and we wish to prove that the sub-route release rul&“fois correct with
respect to this, then the goal

7 {MX TS, T} if Ty =c AT =fthen Tl :=f {MX[Tg, Tt}

(which is in any case true by Lemma 4.3 on page 85) is reduc&CiyAC and some
other machinery to:

[MX2(TgP, T2%)] = MX2(T$8, T)

This can be solved immediately using the pre-proved theorems &baut

5.3.2 Points-PT

Points are represented by an eight-bit record which is subdivided into two four-bit
fields, one holding data for the points normal, and the other reverse. In a data test or
command on points it is always necessary to select the normal or reverseefggld (
P, cn, or P, cr f). Thus points may be modelled using two four-bit words having the
format:

[c,d,k,], [c,d,k,]

normal reverse

The fourth bit in each field has been masked out here as these are override flags which

the Geographic Data can neither write to nor, in this case, read. These flags may be

Chapter 5. A Formal Theory of the Geographic Data Language 113

cleared to temporarily disable the points in one position or the other directly from
the technician’s console: the control interpreter examines these in evaluating a points
“free to move” condition, and only if they are set is the condition passed. Moreover,
whenever data are processed which set the normal command,lih SSI automat-
ically clears the reverse command bit, and vise versa. The same is true of the detection
bits (d), updated in processing the incoming status telegrams from the points modules
in the railway.

One way to model this behaviour is to suppose, as in the earlier chapters, that
points have but a single control variable which can be in one of the two states
cr . Nevertheless, the SSl is still in a well defined state when both control bits are unset
(though these circumstances only prevail at startup), and so both should be modelled.
This also entails modelling the inversion of the reverse control bit (say) whenever the
normal control bit is set/cleared. But in the semantic framework sketched in Section 5.2
this aspect of the ‘behaviour’ of points was not considered. It is possible to express
this inversion of the controlc(and detectionl) bits directly in the semantics of the
embedded language, but this entails introducing to the theory of the object language,
object level datatypes—product types in particular—and much semantic complexity
which it has hitherto been sought to avoid. As far as is possible we prefer to separate
the theory of the semantics of GDL from the theory needed to represent the datatypes
for points, track circuitsetc.

Let us therefore introduce the abbreviation

points= bool list x bool list

This is a product type in higher-order logic, and the first of the pair is a list of Boolean
variables to represent the normal bits in points memory, the second represents the
reverse bits. ldeally one would use a package such asvtrd or recordlibrar-
ies [100, 98] for HOL which automate the derivation of the representation theorem
and access functions for manipulating user declared types symhirds—but neither
was available for the version of the HOL system being used at the time. In any case,
we spell out a few of the details that use of tieeordlibrary conceals in defining con-
stantsCN andCR to select the appropriate fields from a points record, and the mutator
functions for these fields:

-V p: pointsCN p = hd (fst p)

-V p: pointssetCNp = ([T |tl (fstp)], [F | tl (snd p)])

F V p: pointsCR p = hd (snd p)
- V p: pointssetCR p = ([F | tl (fstp)], [T |tl (snd p)])

Thed andk fields are treated similarly. Some easy theorems follow from these defini-

Chapter 5. A Formal Theory of the Geographic Data Language 114

tions which are useful in simplifying goals:
F CN(setCNp) =T
- —(CN(setCRp)) =T

Thus, in order to make matters concrete, the points commRand will be represented
in higher-order logic by the term:

Ass([' P1'], [Ms.setCN(fsts' P1)], [],[])

This harsh HOL syntax may be rendered invisible by a parser and unparser—albeit one
of some sophistication—but we aim of course for batch automation.

Finally, as in Section 3.3.3, the macne$., andPT,, can be defined, but here in
the contrapositive:

= (PC([]:boollisty =T) A (Vht.PClh|t] = (h APCt))
- Vps.PNT (p,s) = (CNp) = PCs
FVps.PRT (p,s) = (CRp) = PCs

The first parameter is a points variabked, P,) and the second is intended to be a

list of sub-routes through those poiritsthe other orientatior(i.e., [T, T7¢], in this

case). Recalling Section 3.3, this captures the property that if the points are controlled
normal (say) then the reverse sub-routes should be free. From these definitions it easily
follows, for example, that p s. PNT ((setCR p) , s).

5.3.3 Routes—-RT

In Section 4.4.3 it was shown that the original, rather simple formulatidrilofvas
inadequate. The intuition though is clear: when the routeset, its sub-routes, b
andc should be locked:

(r=s)=(a=1 Ab=1Ac=1) (i)

Given that the route is defined by the sub-routies and ¢ in that order, we may
consider an alternative that captures the same intuition

r=aNa=bANb=c (i)

(now dropping the equational format, and givigghigher precedence thar). This

is a stronger property expressing “if the first sub-route is locked then the rest of the
route remains locked”, and so on. The drawback is that we require to specify the sub-
routes along the route in order, (i) being insensitive to order. Nevertheless, using (ii),
in contrapositive formg = b = f can be inferred given = f. It was the unknown

Chapter 5. A Formal Theory of the Geographic Data Language 115

by &1

| A | B | Chg2) |

Figure 5.3: Routes that diverge after a common segment

state ofb, the intermediate sub-route, that posed the problem in Section 4.4.3. Now if
r=a A a=b A b= cisinvariant, then so is

r=(r=aANa=bAb=c (iif)

which is equivalentte = a A b A ¢, the equivalence being due to the following:

Proposition5.1 Foralln > 1,r = (r=a; A a1 = as N -+ A a,_1 = a,) ifand
onlyif r = (a; Aag A -+ Aay). O

Proof By a simple induction on the ‘length of the route’ for example. []

Upon reflection however (ii) is not correct under all circumstances. To see why
consider the two routes in Figure 5.3 whidlvergeat B after following a common
route segment oved. Without loss of generality suppose andr, start at the same
signal, and: is the first sub-route on each. Generalising (ii) gives

(iv)

rn =a N a:>b1 N b1:>01
AN ra=a N a=by A by=c

but clearly, in any assignment to the variables satisfygigin which « is locked,b;

andb, must also be locked—yet this contradittX [b,, by] which must hold simul-
taneously withRT. The result is that no invariant designed along these lines can be
satisfied by any data which set either of these routes. Naturally this is undesirable
(technically, we have eliminated an intended modeHprHowever, the intuition con-
cerning the linkaged <« B is that whenever is locked, eithe; or b, is locked.
Instead, (iv) gives = b; A by, SO this is weakened 0= b; V by:

(v)

r =a N a:>(b1\/b2) N b1:>01
AN ro=a N by = cy

Although this will be satisfied whenever b, andb, happen to be locked simultan-
eously, the mutual exclusion property f8rviz.MX [by, b,], ensures that these circum-
stances are invalidated.

Chapter 5. A Formal Theory of the Geographic Data Language 116

It turns out that (v) can still be improved for it is easy to see that the formula will
be satisfied by an assignment to the variables in which s whilea = b, = ¢; = 1.
This could have undesirable consequences if one remembers thay be temporarily
barred by the technician’s control: if the technician bafr@he branch line route), but
r1 andry are confused in the Geographic Data for these routes, this would have the
effect of barring the mainline route instead. So (v) alone is not enough to guarantee
“whenever a route is set, all its sub-routes are locked.” There are several ways to
strengthen the invariant so as to trap this not unlikely error in the data. The safest is to
retain the original formulation given by (i):

AN ra=a N by= ¢
N T1:>(a/\b1/\01) N T2:>(a/\b2/\02)

r=a A a:>(b1\/b2) N b1:>01
(Vi)
This formula is undeniably complex, increasing the likelihood of introducing spe-
cification errors if it has to be defined manually. Fortunately this is unnecessary be-
cause the specification

RT(’/‘l, [a,bl,cl]) A\ RT(’/‘Q, [a,bQ,CQ]) (V“)

can be algorithmically massaged to the correct form. In the HOL formulation it is
preferable to have (ii) in contrapositive form because this simplifies the mechanisation
of the invariance proof in the next section. DefRiethus:

F(Vr.RTr[]=T) A (VrasRTrlals]=a=1rA(RTas))

Then, given a specification in higher-order logic such as (vii), or that on page 60, the
definition of RT is expanded everywhere to obtain an equivalent conjunctive formula
which is then broken up into the list of its conjunatsg, (iv)). This list (unsafgis then
passed to thRoutesalgorithm displayed in Figure 5.4 which generalises the preceding
argument. In quadratic time this produces a new ksef) which is then turned back

into a conjunctive formula.

Note that the result can be optimised in the inner loop of the program by deleting
any duplicated terms innsafe The formula obtained frorkeepis then strengthened
with clauses such as those introduced at (vi), one for each diverging route (requiring an
R? algorithm, if R is the number of routes). Once more appealing to the contrapositive
define:

F(RC[]=F) A (Vht.RC[h|t]=hV (RCt))
FVrsRTlrs=RCs=r

The result fromRoutescan be further optimised to minimise the number of terms in
the invariant by rewriting = a; A b = a, asb = (a; A as), etc.

Chapter 5. A Formal Theory of the Geographic Data Language 117

initialise: keep— []
while unsafe# [] do
let conjbe head andestbe tail of safe= [conj| rest
let abe consequent artilbe antecedent afonj= b= a
for conj = b = din restdo
if & = athen
deleteconj’ from restand
updatebsob «— bA b
done
updatekeepso keep— [b=- a| keep
updateunsafeso unsafe— rest
done

Figure 5.4: Routes Massaging th&T invariant

Note, finally, that the elaboration in the formal definitiorRF introduced above is
only needed where routes diverge after following a common segment of track. Where
routes only converge (lik&, and R,) or diverge due to points in tHest track section
(cf. Ry, andR,,), (ii) suffices by Proposition 5.1. In these circumstanRestegeturns
a formula logically equivalent to its input.

5.4 Mechanising the Invariance Proof

Turning now to the Geographic Data forB&T (see Appendix C), there are ten panel
route requests and nineteen sub-route release rules, there being no data for the inward
sub-routes at the fringes of the Interlocking area. The invariant for this system was
defined in Figure 3.5, on page 60. Note that there are diverging routes here, namely
R., and R;;, hence two additional terms will be appended to the formula when the
inconsistencies these routes introduce are remdvedtegeturns the term:

T7* = Ry A T3 =T N TP = Ry, A
Ty = 17 A T = R, A T = (TP ANTY) A
TP = R, N T¢" = Ry N Teb = Te A
T$* = Ry AN T = (T NTE") N T = R, A
1§ = (T A Tfa) A Tfa = R, N Tg¢= (Rs; A Rs3) A
(T NT{Y) = Tge N Tgb = Ty A T§b =Ty

Following the discussion in Section 4.4, two proof schemas are proposed which will
be referred to aSRRTAC (for sub-route release tactic) ar&RTAC (for panel route
request tactic) in the sequel. Since the data fasWare very regular a single tactic
could deal with both classes of data—but in general several tactics will be needed. The

Chapter 5. A Formal Theory of the Geographic Data Language 118

verification conditionSRRTACandPRRTACmust solve will have the general form
T (FAIANFaN- - ANE)ANb= (FYANFy A+ ANFY)[0/7] (%)

where thef; are components of the safety propéftyin the following two subsections

we look in detail at how to solve these verification conditions as they arise in the route
request and sub-route release data. Section 5.4.3 considers the situations where the
tactics developed below do not succeed.

5.4.1 Sub-route Release Data Tactic

Lemma 4.3 on page 85 is given as a metatheorem, stating that the invariant is preserved
when clearing a sub-route for appropriate formulationsl¥f andPT. Pragmatically,

this offers a potential shortcut in implementiBBRTAC since much of the extraneous
computational complexity encountered stems from manipulating long lists of assump-
tions in the sequents. Unhappily, we cannot prove Lemma 4.3 in the present frame-
work as the semantic embedding is too shallow: there is no metatheory concerning the
representation of GDL nor the invariants in higher-order logic on which to draw. In
principle, this deficiency can be redressed by providing a deeper semantic embedding,
but that would require a radically different framework to that sketched above. For the
present the inefficiencies the weaker theory entails can be tolerated.

Proceeding front = {F}if bthen Z := o{F} we begin by deriving the veri-
fication conditions usinyC. TAC. This produces two subgoals from the guarded com-
mand; the first of these is briefly postponed uskhgy_TAC, and the latter can be solved
immediately as it is an instance of the tautolagy vy = x:

fun POP_ONE th =
ASSUME_TAC th THEN UNDISCH_TAC(conc! th) THEN PIMP th;

fun RECURSE () = POP_ASSUM (fn th => STRIP_TAC THENL
[POP_ONE th,
RECURSE () ORELSE POP_ASSUM (fn th => POP_ONE th)]);

val SRR_TAC =
VC_TAC THENL [ALL_TAC, MATCH_ACCEPT TAC FB_IMP_F]
THEN RSTRIP_TAC THEN RECURSE ();

The remaining goal is of the forrfx) and is solved by stripping the antecedent and
forming one goal for each conjunct in what remains. VWBTRIP_TACwe are careful
to leave this in the form:

[F1, Foy oo B O B (LA FR Ao N[0/

The recursive tactiRECURSHEMplements the finer details of the proof. Inside the loop
POPASSUMemoves (or pops, since the structure holding the assumptions is a stack)

Chapter 5. A Formal Theory of the Geographic Data Language 119

the first assumption from the goal; this is followed $yRIP _TACwhich reducesA-
Elimination) the result to two subgoals

(F,..., Fy, b - Fi[0/d]
(Foy... F B F (Fy A - A F)[5/7]

the first of which is solved by the proceduP©PONE while the second is solved in
the next iteration of the loop. The recursion ‘bottoms out’ Wh&nRIP _TACfails and)
the only remaining goal i§F),, b = F,[0/Z].

The tacticPOPONEreintroduces the popped assumption to the first goal

[FQ, .. .,Fn,b] F F1 = Fl[@/j]

and invokes a procedur®)MP, that will prove such theorems efficiently given the
known structure of Geographic Data invariants. This structure is inferreeiNg
from the parametah which is a theorem of the fort F; = F;. In particular:

e if F}'s leading combinator i#1X2, MX4 or PT the goal may be easily solved
by rewriting, using basic facts from propositional logic and/or the pre-proved
theorems concerning these constructors;

e otherwise the term is derived from encodiR@ and is therefore of the general
form (f = ¢g) = f' = ¢’. These can usually be solved by a combination of
rewriting and resolution.

In the latter case only the assumptianderived from the guard in the command, is
needed to complete the proof. To illustrate, recall the sub-route release ralg*for
that served as an example in Section 4143¢f if T, =c, T =f\. . Atsome
point during its traversal df, RECURSK)enerates the subgoal

H|F (T=T) =T = To
and foremost amongst the hypothesgss the assumptiofi®(= T) derived from the
rule itself. With this fact we can simplify the goal and, sirice- T for anyt, eventually
conclude that the sub-route release ruleff satisfies the invariant. However, when
the only useful fact at our disposali$“(= T), as is the case with the erroneous version

of this rule also considered in Section 4.4, this step in the proof fails so the tactic as a
whole fails.

5.4.2 Route Request Data Tactic

The finesse with whiclSRRTACwas approached is not to be repeated in defining the
route request data tactiPRRTACessentially solves its goal by a brute force rewriting
strategy:

Chapter 5. A Formal Theory of the Geographic Data Language 120

val BTHEN_TAC =
REWRITE_TAC[PT,PC,RT1,RC]
THEN STRIP_TAC
THEN TWICE RES_TAC
THEN ASM_REWRITE_TAC (PT_THM:MX_THMS);

val PRR_TAC =
VC_TAC
THENL [BTHEN_TAC THEN NO_TAC, MATCH_ACCEPT_TAC FB_IMP_FI;

Since the data for \W/ST are one-armed conditional&C TACalways reduces the initial

goal to two subgoals: as before, the second of these is an instance of a trivial pre-
proved theorem, while the former is like). BTHENTAC solves such goals by first
expanding the definitions &T (andRT1 if needed) and stripping£-Elimination) the
antecedent of this implicative goal:

b, Foy. .., Al F (Y NFy N -+ N FL)[0/7]

At the next step in the proof there is much scope for refining the tagi¢lCEis a
tactical that applies its tactic argument to the goate In this caseRESTACIs used

to search (exhaustively) among the hypotheses for assumptamsa = b, by which

b may added. Assumptions likeanda A b = ¢ work equally well to add: = ¢ to

the hypotheses. This resolution step is applied twice (here) because a further pass is
needed to deducegivena.

For a concrete example take the proof required@a. Due to the diverging routes
Rs, andRy,, the termI° AT = Tg< appears amongst the hypotheses in the goal after
applyingSTRIP_TAC By the guard in the commarid* = T, furthermore P, crf is
also a guard, so fromRT(P,, [T, T*]) one can deduce that thesermalsub-routes
overT, are free. However, two applicationsRES TACare needed to dedu@é® from
the hypotheseggc and7#. Following the discussion in Section 4.4.3 this intermediate
result is needed to prowdX invariant.

The final step iIrPRRTACIs to rewrite the goal using all appropriate assumptions,
some primitive (built-in) facts about propositional logic and the pre-proved theorems
aboutPRT, MX2 and MX4, etc. ASMREWRITETAC will replace any terms in the
goal which also appear amongst the hypotheses,bgnd similarly any terms that
are instances of the supplied and built-in theorems. HOL's rewrite engine applies the
rewrite theorems repeatedly until either the goal reducds ito which casePRRTAC
succeeds, or until no further change occurs in the goal (in whichRRBREAC fails
since there remain unproved subgoals BIACis a tactic that always fails).

The success of this procedure therefore depends upon the resolution step yield-
ing all the necessary intermediate results. Generalising the tatWdalg the tactic
BTHENTAC can be implemented thus:

fun BTHEN_TAC n = ...
THEN (repeat n) RES TAC THEN ...

Chapter 5. A Formal Theory of the Geographic Data Language 121

The integem is supplied by the program calling this tactic. It turns out that (in most
cases) need be no more than the length of the route—which can be ascertained by
a purely syntactic check on the panel route request rule to which the tactic is being
applied. Exceptional cases may arise if opposing routes bifurcate more than once.
However, it is perhaps ultimately more satisfactory to implenRE& TAC, one of the
theorem prover’s primitive tactics, in such a way as to reapply itself as long as fresh hy-
potheses are being discovered (this can be simulated using the tattsdGETAC,

but is it not very efficient). Note that we should not attempt to use

val BTHEN_TAC = ...
THEN REPEAT RES_TAC THEN ASM_REWRITE_TAC ...

since this would diverge whenever the combination of resolution and rewriting fails to
solve the goal completely (since neither tactic fails).

Computationally, while resolution is itself rather expensive, most of the complexity
inherent in this tactic (or to the proof it performs) is introduced by the innocent-looking
STRIP_TAC. The reason for this is that when there is a disjunctive term in the ante-
cedent of the gogl«), STRIP_TACYields several subgoals:

7FH aVb=rc
lal|F ¢ [b]F ¢

This will be the case whenever a ‘points controlled or free to move’ test is included in
the availability conditions for a route(g, P, cnf in *Q51). Thus, if there are such

tests (say), there a® very similar subgoals in the proof. Controlling the rewriting
procedure and the efficiency of the resolution step therefore offer the main opportunit-
ies for improving the computational complexity BRRTAC (but see Section 7.2).

5.4.3 Failed Tactics

The failure of a tactic on the goal- {F} ¢ {F} does not imply the data are incorrect—

the tactics discussed above are not complete proof procedures. From the logical stand-
point there are three situations that should be borne in mind when the tactic intended
to prove the goal fails:

1. The purported theorem is simply not true because the data violate the safety
propertyF. In the case of the erroneous rule fg* mentioned above

Thf it T,—c,T%=f\.

a visual inspection of the scheme plan is enough to identify the error. Likewise,
the error in the route request rule

*Q51 if Pyenf , Pyenf [T¢of [T0f
then Ry s,Pyen, Pyen [Tgel Tl [T901\.

Chapter 5. A Formal Theory of the Geographic Data Language 122

will be so revealed, but with perhaps a little more difficulty. Our verification
strategy is designed to isolate exactly these sorts of common data errors.

2. The data are correct but the heuristic implemented by the tactic is not sufficiently
powerful. This is very likely when one is devising the tactics in the first place,
and it is inevitable that some experimentation is needed before one’s tactics are
sufficiently robust (this was one of the reasons for using HOL after all). Thus, as
it stands SRRTACwiIll likely need to be reengineered if the invariant is radically
changed—instantiating a new dataset will not be a problem, but covering safety
properties other thaMX, PT, andRT may be. Likewise, since re&lRRdata
are often more complex than the guarded commands used to exercise the GDL
theorem prover, this tactic too will have to be reengineered to accommodate a
wider class of panel request data. An example to illustrate both issues will be
given in Section 7.2 where we examine a live set of Geographic Data, and the
problem ofoverlapsin particular.

3. Due to @del's Incompleteness Theorem there are theorems that are expressible
in higher-order logic but which are not provable within its proof system. Thus
= {F}c{F} may be true but unprovable. Nevertheless, tkéfication con-
dition is expressed as a conjecture in the propositional, first-order fragment of
higher-order logic, and this is decidable. Completeness of the underlying as-
sertion language is a necessary condition, though in general not sufficient, for
the completeness of Floyd-Hoare logic. By restricting to a decidable assertion
language we should be able to prove the verification conditions when they are
true.

Another source of ‘failure’ warrants mention. The theorer{F} ¢ {F} attests
only thatc leaved- invariant. According to the definitio is insensitive to the error in:
Tt if T, =c,Tf =1 \. . As pointed outin Chapter 3, many such errors may
be identified by a purely syntactic analysis: this is therefore an important precursor to
the behavioural analysis undertaken with the theorem prover.

To summarise this section therefore, two simple proof methods have been imple-
mented in HOL tactics to discharge the verification conditions arising in the safety
analysis of sub-route release, and route request data. In the ceRRDOACthe tactic
is as efficient as possible since it is clearly linear in the siZe ahd there is seldom (if
ever) a need to resolve amongst the hypothesis to veriff@®@data. The same is not
true of PRRTACwhere resolution is the key to discharging these proofs automatically
and, moreover, where the proofs are complicated by disjunctive terms in the antecedent
due to points tests in theRRdata. Complexity issues are discussed further in the next
section.

Chapter 5. A Formal Theory of the Geographic Data Language 123

5.5 Decomposing Global Invariance

In Section 3.5 we were able by dint of an exhaustive proof strategy to verify some
safety properties of a few small collections of Geographic Data. The same data (and
Sun workstation) were used to exercise the HOL proof method, the results being dis-
played in Figure 5.5. The first observation is that for an Interlocking as trivialestwW

the direct enumeration approach is by far the quicker! Nevertheless, the algorithmic
complexity of the HOL approach is a considerable improvement. In the table below
u is the number of sub-route release rules ansla measure of the number of route
request rules taking into account the doubling caused by points tests.

INTERLOCKING (P, R,U) (7) u r Time FOP| Time PRR
WEST (3,10,22) (8) 19 28 175s 210s
EAST-WEST (4,14,32) (12)) 28 34 415s 515s
FORESTLOOP (4,16,32) (12)) 30 32 435s 515s
THORNTONJN. (6,16,40) (14) 36 56 720s 850s

Figure 5.5: Experiments using HOL on some simple Geographic Data

5.5.1 Computational Complexity (Revisited)

It is difficult to give a precise measure of the computational complexity of the proof
procedures outlined in the previous section. Clearly there is one proof to conduct
for each rule in the data, so as long as the invariant remains unchanged the method has
linear time complexity. However, as the data and the physical extent of the interlocking
grows, so too will the (global) invariant.

For SRRTAC at least, the time complexity is directly proportional to the number
of terms inF. This, in turn, depends oR, R, U and7. Assuming that no track
section contains more than one set of pojMX APT| =7 +2P <2(7 +P) =U.

Less certainty concernRT |, but evidently|RT| < U/ + R once the invariant has been
rewritten according to th&®outesalgorithm—one conjunct for each sub-route, plus at
most one extra for each route. Sirldex u, the number of sub-route release rules,
time complexity for analysing thEOPdata is quadratic itx.

The empirical evidence indicates that the quadratic measure is overly optimistic.
This is because it represents the (theoretically) best attainable time complexity. Coding
inefficiencies inherent to the theorem prover account for the discrepancy (for example,
in manipulating lists of assumptions and, especially, in handling very large terms).
However, forPRRTACIt is more difficult to obtain a useful measure of the complexity.
Partly this is because the complexity of the resolution step is difficult to quantify. A

Chapter 5. A Formal Theory of the Geographic Data Language 124

more serious reason is that the number of intermediate proofs that the theorem prover
has to perform on each invocation of the tactic grows exponentially with the number
of points on the route, but the meas\gd/ + R)r provides little intuition because

r is not a function of the other parameters. (It turns out that the exponential ‘in’
can be eliminated, leaving the measy?é/ + R)R, by suitably strengthening the
invariant—t.e., adding another safety property. This will be described in Section 7.2.)

Abandoning the search for a global complexity measure, it is nevertheless instruct-
ive to consider how the complexity of discharging each verification condition grows
with the size of the interlocking under investigation. With the assumption that no track
section contains more than one set of points, the number of terms in the invariant
was noted abovelF| ~ 2U/ + R (which is a good approximation even without the
assumption). The number wériablesin the term is of course equal 8 + R + U,
andP andi/ are linear functions of —i.e.,, adding one track section (circuit) adals
mostone point switch and four sub-routes. (The number of roRtees not depend
on7, butitis unlikely to exceed the number of sub-routésin practice.)

A natural question is whether one might not redesign the algorithm for discharging
the proofs more efficiently. In the next subsection a simple approach to decomposing
these global proof steps is proposed, but an alternative is to encode the verification con-
ditions in propositional logic, and call an external decision procedure to check whether
F A b= F is falsifiable. Two candidates emerge:

e Binary Decision Diagrams: These were considered in the context of symbolic
model checking in Section 3.4.3. The advantage now is that it is not necessary to
represent the transition system of the model, which was the problem with model
checking. The BDD representation BfA b = F' may be efficient in spite of
disjunctive components ibbecause the graph structure represenfimgay be
shared by all branches. The tautology check is then linear in the size of the
BDD, but the size of the graph depends critically on the ordering imposed on the
propositional variables involved in the computation.

e NP-TooLs. The theorem prover marketed by Logikkonsult [88, see Section 1.5]
implements remarkably efficient heuristics for natural deduction style proofs in
propositional logic. The evidence, supported by Grattal.in a recent applic-
ation to railway signalling [37], is that this theorem prover is very much more
effective at proving ‘simple theorems’ than are BDD based approaches. Compu-
tationally, the efficiency of NP-®oLs depends on the number of simultaneous
(free) assumptions that must be recorded in the natural deduction proof [87]—
in practical applications this is usually close to zero. The method is relatively
insensitive to the number of propositional variables involved.

Chapter 5. A Formal Theory of the Geographic Data Language 125

In either case, a serious disadvantage of using external decision procedures is that it
undermines the logical coherence of the proofs conducted with the HOL system. Argu-
ably this is of little significance since it is plainly the verification conditions themselves
that demonstrate ‘safety’, not the Hoare trippes se but this argument fails to take
into account the advantage that can be gained from the compositional nature of Floyd-
Hoare logic, or the additional confidence obtained by submitting the proof generated to
an independemroof checker This latter option is impossible when external decision
procedures are used to complete parts of HOL proofs.

On the other hand, the integration of BBD based verification and deductive the-
orem proving is an area of active research, although still in its infancy. Harrison [40]
describes an interesting experiment along these lines, where he implemented a BDD
based tautology checker aglarivedrule of higher-order logic (thus maintaining the
logical coherence of the system, and the security of the proofs). If such tools become
part of the mainstream apparatus of the HOL system, the derived decision procedures
may well avoid some of the inefficiencies of tactics IKRRTAC

5.5.2 Heuristics for Decomposition in the Proof

A polynomial time global safety analysis of the data is of significant interest, but prac-
tically the implemented proof method is still rather slow. Improving the efficiency of
the infrastructure underlying the theorem prover would speed up the process, but this
only addresses one cause of the problem. Skisea conjunction of a large number
of local safety properties it is very likely that an effective decomposition strategy will
emerge. To this end, Ingleby [47] has described some of the underlying principles
which he derives from Galois theory. It is instructive to relate the main idea here since
it explains how to partition the network into non-overlapping segments.

The signalling scheme plan and Geographic Data identity files define an incidence
relation—a binary relatiod C A x C' between physical trackttributessuch as points
and track circuits, and logicabntrolelements such as routes and sub-routes over those
attributes. This induces a Galois connection: essentially, given a set of tracks and points
F C A, the Galois connection givesadét = {c € C'| =Ja € F'. (a,c) € I} which
is the set of routes and sub-routes tllatnotpass over any of the elementsin For
G C C, G* is dually defined. Ingleby searches for séfsC C' that are closed in
the sense thak = X-*1. The intuition is that a closed set of control elemekitss
maximal with respect to sharing of attributes4n

Given closedX C C, if the setA — X+ is also closed the pair define what Ingleby
calls alocality. For example, the pairs:

({T(h T17 T27 T37 P1}7 {R027 R047 R17 Rd} U {SUb-rOUteS Ove{Tm T17 T27 TS}})
({T,,1s, T, T, Py, Py}, { Ry, Ry, Rs, Rg} U {sub-routes ovefT,, T, T, 12} })

Chapter 5. A Formal Theory of the Geographic Data Language 126

are (in terms ofttributeg mutually disjoint localities in VEST. Note, in passing, that

the long routes?;, and R, are in neither of these partitions. Such relationships are
easy to derive automatically from the Geographic Data. These are used by Ingleby
and Mitchell [48] to guide heuristics that limit the search space in proving safety by
enumeration of the states of the automaton.

The same Galois theory may be adapted to our HOL setting to guide the overall
analysis, but this has not been investigated thoroughly. Instead, some rather obvious
heuristics are described below for decomposing proofslik& A Q} c{P A Q}. We
alsopartition the network structure, as above, keeping routes whole. The observation
is that the truth of @} ¢ {@} (say) ought to be computationally trivial when execution
of the command has no bearing on the truth 6f.

More formally, given a set of assumptioos and conjunctive godf, it is con-
venient to break up the proof oA 7 into smaller proofs:A - Z; ... A + Z,.

Then a derived rule of higher-order logic can assemble these into the desired theorem.
SRRTACworks in essentially this manner:

ag N+ Napb Nb=ad\ N---Nal,
& (N NagANb=ad)N---Na N Na, Nb=al)
< (mANb=d)N---A(a, Nb=d))

Herea; A b is (usually) sufficient for, when the data are correct. In general, more
powerful heuristics for the proof’s decomposition are needed. An heutistiaill
select subsets of the assumptioft&{A,Z;) = A; C A. Monotonicity of the logic
guarantees soundness in thigt- Z; implies A - T;.

5.5.3 Static & Dynamic Decomposition

Firstly, givern the theorems { P} ¢{P} andF- {Q} ¢{Q} we can derive the theorem
F{PAQ}c{P AQ} in our HOL theory. Thengivena decomposition likd&= =

F1 A Fs, and a rule: which we suppose to be of the foiifn b then := o, the proof
proceeds with two separate goatst- {F;}c¢{F,} and? + {F.} c¢{Fs}. For good
choices ofF; andF, the sets of program variables mentioned in each term will have
a small intersection. We can then expect to find that for a significant number of the
rulesc in the database the program variables andF; (say) will be disjoint. When

this is the case the second of these subgoals is trivial since the verification condition
F2 A b = F2 matches a simple theorem of propositional logic. This test is a syntactic
condition which is sufficient to prove the initial goal. Also, whenever this hgtdIAC
generates the above verification condition so the tactic implementing the proof steps
need only match the appropriate theorem. However, when the syntactic condition does
not hold the tactic must resort to solviiig- {F; A Fo} ¢ {F; A Fo} directly.

Chapter 5. A Formal Theory of the Geographic Data Language 127

- IR
cen oo

(a) (b)

Figure 5.6: A distinction between the network and route structure. In (b) the routes termin-
ating at the signals overlap, in (a) they do not. In (a) the route structure coincides with the
network structure, but not the latter case.

The question then is to decide how to sepafaiato its two (or more) compon-
ents. The Galois theory would help here but we only envisage partitioning the invariant,
never the Geographic Data, because the logical route structure and the network struc-
ture seldom coincide in practice. This can be seen in the difference between the two
parts of Figure 5.6. Given the form of the invariant it is clear thi¢ encourages
a decomposition based on the physical (or geographic) structure of the interlocking,
while RT encourages adherence to the logical structure in ‘keeping routes whole’.

In the THORNTON JN. example (see page 216) the notional boundary corresponds
to a natural interlocking boundary. Thus, intuitions from signalling engineering are
used to decompose the invariant according to the geographic separation. We have
sought to minimise the number of routes that straddle the boundary while keeping the
partitions evenly proportioned. For tfRRdata for THORNTON JN. this achieved a
20% improvement in the processing time; on extendinggRNTON JN. by adjoining
an interlocking similar to VEsT, this simple decomposition strategy resulted in a 40%
improvement over the corresponding global proof.

In the forgoing analysis it was assumed that the decompositiofrindmdF, was
givena priori. The other heuristic considered here is similar, but dynamic in character.
From the initial goal we can proceed as follows:

7 {F}if bthen z:= 0{F}
& 7 FiAF A= (FLAR)[0/2] & ?THFA-bD=F
& 7 FAF A= F[0/7] & TE FiAFAD=Fy
& 7 FiAFoAb= F[0/7]

This again supposes that the program variable,irfsay) and the commandare
disjoint. However, the separation inkg andF; is not predetermined—the tactic im-
plementing these steps should perform the task differently for each command.

It follows from the tautology(z = 2) = (x Ay = z) thatif F; A b = Fy[0/Z]
can be proved, the initial goal can be proved as well. There may be some doubt over
whetherF; A b is sufficient in general—but when it is not the goal in the last line

Chapter 5. A Formal Theory of the Geographic Data Language 128

above can be tried instead. Note that in order to implement this heuristic we require
to rearrange the terms iR in a manner governed by the syntactic form of, and the
program variables appearing in, the GDL command in the initial goal. For optimal
performance modifications to the interface to the theorem prover (the subgoal package
which manages the proof) would be needed to provide efficient data structures for
holding and manipulating Geographic Data invariants, to improve the performance of
rewriting and resolution strategiestc. The HOL theorem prover being an open ML
programming system facilitates such application specific refinements in a natural and
logically secure manner.

5.6 Summary

In this chapter an unsophisticated use of the HOL theorem prover has been made to
realise a fully automated tool for checking safety properties of Geographic Data. This
has been achieved by representing the syntax and semantics of the Geographic Data
Language in higher-order logic, and through a semantic embedding of the associated
program logic in the HOL system. The theorem prover’s tactic language (together
with some routine ML programming) have been used to automate proofs of Floyd-
Hoare assertions of the forfir} ¢ {F}, for commands taken from thePRRand FOP

data. There are essentially two circumstances in which the theorem prover fails to
prove such conjectures: either the tactic implementing the proof is inadequate, for
instance because the formahtroduces subgoals the tactic was not designed to handle
(refinement of the tactic is required); or, which is more likely, because the comiand
does not satisfy the safety criteria encoded in the invaRdirdicating a coding error

in ¢ or, exceptionally, a specification error ¥). Being able to pinpoint errors in the

data with such precision is a considerable advantage of our proof methodology.

While the prototype GDL verifier described might not be very fast, the potential of
the approach has been shown, and its utility demonstrated for interlockings as ‘com-
plex’ as THORNTON JN.—which is about one third of the scale of a real Interlocking.

In Chapter 7 we shall use the theorem prover to tackle the route locking data for the
Leamington Spa signalling scheme which represents a typical SSI installation. Suc-
cess in this venture rests on the compositional nature of Floyd-Hoare logic, the major
strength of the approach, and on being able to decompose the global safety proof as
per the illustration in Section 5.5 above. Not unnaturally the Leamington Spa case-
study raises issues that have not hitherto been ventilated, particularly in generalising
the approach discussed above to safety properties of other classes of Geographic Data.

If one wishes to prove properties of GDL programs a precise mathematical state-

ment of the semantics of the language is essential. To formakseto mechanisg

Chapter 5. A Formal Theory of the Geographic Data Language 129

such proofs a formal statement of the language’s semantics is mandatory. This focus
on semantics represents a considerable departure from the work of other authors on
the subject, particularly Ingleby and Mitchell [48], and Pulley and Conroy [21], where
both sets of authotsicitly assume that the code used to generate their automata is equi-
valent, in some sense, to that running in the SSI. In raising the issue of the semantics of
the Geographic Data Language at the outset we address the soraeMioatharacter

of the language’s definition; the novelty of this approach to checking safety properties
of the data is to use the semantics of the languagetioethe GDL verifier which we

have realised using HOL.

Onthe face of it, therefore, there is apparently a weakness in the proof methodology
put forward in this chapter in that it is not known whether the semantics formalised in
HOL are entirely faithful to the semantics of the language as implemented by the SSI
control interpreter. However, in Section 5.2 we sought only to demonstrate that the
language can be formalised so as to offer the highest degree of automation in checking
safety properties of Geographic Data—it is not claimed that every detail is correct. The
semanticare thought to be valid but there are several questions to address, for instance
with respect to points:

e Whether it is admissible to split the datatype into two components?
e Whether the inversion of the control bits is faithfully modelled?

e WhetherPFMconditions are properly dealt with in the translation?

These are answered in the affirmative in Section 2.4 where the semantics of GDL were
first discussed. For the second point, note that two (machine) operations are neces-
sary to set the reverse control bit (say) and clear the normal—no single bit-mask can
achieve this in one step and leave the other fields undisturbed. In refining the repres-
entation of points, track circuitgtc, in the theorem prover it would be better style to
introduce record types and define appropriate selector and mutator operations on the
type. HOL libraries are available to automatically derive the abstract characterisation
of such datatypes, so we have not dwelt on the details.

The style of semantic embedding given in Section 5.2 is shallow in the sense that
one cannot prove ‘deep’ theoremsoutthe semantics of the embedded language. An-
other approach is suggested in the work Camilleri and Melham [15] who describe HOL
utilities to support deeper reasoning about languages such as GDL. Their scheme auto-
mates the derivation of the abstract characterisation of inductively defined relations
in higher-order logic—a natural candidate here would bedgperationalsemantics
of a simple programming language like GDL. There is a distinction to note between
Gordon’s method and that of Camilleri and Melham: in the former case, as in Sec-
tion 5.2, the axiomatic semantics (Floyd-Hoare logic) are manually derived from the

Chapter 5. A Formal Theory of the Geographic Data Language 130

denotational semantics; in the latter, one must first prove that the proposed rules of the
program logic are sound with respect to the operational semantics.

Adopting this alternative style of presentation would place the safety analysis of
Geographic Data on quite a different, and perhaps slightly richer, mathematical found-
ation where one could in principle approach the metatheory required to prove simple
properties such as Lemma 4.3 which states that clearing a sub-route MAvas
variant. On the other hand it is questionable whether such elaboration is practically
necessary: itis only in so far as{F} ¢ {F} is a desirable thing in itself. For if, where
c is a sub-route release rule, one can be satisfied watmtacticcheck that these data
are properly formed-e.g, that they indeed clear the sub-route to which they refer—
one may be perfectly content to prove only the weaker theordiRT } ¢ {RT }.

These considerations are not merely stylistic: the efficiency of the proof method is
still at issue, and a decomposition of the invariant such as this, enhanced by a deeper
semantic framework within which to formulate the invariants we wish to prove, would
considerably further the utility of the tool. As demonstrated in Section 5.5, even relat-
ively simple decompositions, based on the rule

F{P}c{P} FH{Q}c{@}
F{PAQ}c{PAQ}
were effective in speeding the overall safety analysis. It will be necessary to use further
decompositions of this kind to analyse the Leamington Spa data in Chapter 7.

%

The issue of decomposition in the proof leads to the question of composition in in-
terlocking design. The decompositions favoured earlier followed from the engineering

discipline employed to distribute the control of large or complex signalling schemes
between a number of cooperating interlockings. The general idea is to ‘draw the line
through the signal post’ since this entails fewer communication overheads: the routes
up to the signal are controlled by one interlocking, those forward from the signal by the
other. However, where trains can run in both directions over the same track this inevit-
ably leads, as in Figure 5.6(b), to severed routes in one direction or the other. Matters
are complicated if there are points in the fringe track section beyond the signal, or if
the boundary unavoidably passes through a set of points.

Clearly then, in order to set a route traversing a boundary the adjacent Interlockings
need to communicate in some secure manner. Certain data such as the availability of
the tail (or remote) portion of a route are required to be communicated only sporadic-
ally, but to control signal aspects up to the boundary data such as the status of signals
and track circuits in the fringe area are required to be communicated in a continuous
basis. These inter-SSI communications, and the safety concerns raised by the remote
route locking protocol in particular, are the topic for discussion in the next chapter.

Chapter 6

Distributed Control in Complex
Interlockings

In the analysis of the static safety properties of Geographic Data it has not been neces-
sary to attribute any particular behaviour to trains—thus they might appear and disap-
pear at the periphery of the controlled area at will. But clearly this traffic comes from,
and goes to, somewhere. In fact the control of large signalling areas will be divided
between a number of Interlockings which must act in concert to ensure the overall
safety of trains in the network. In particular, two or more Interlockings will need to
cooperate to set routes that cross the boundaries between them. The first two sections
below recall the main ideas from Section 1.4, and explain howrd¢i®te route lock-

ing is implemented partly in the data, and partly in the generic program. Then, in
Sections 6.3 and 6.4, a CCS model is developed and its properties examined. Although
the given protocol is found to have certain unsafe features, the formal analysis shows
that these can easily be eliminated.

6.1 Introduction

The inter-SSI communications utilise a high speed communications bus called the in-
ternal data link (IDL). Several Interlockings can be connected the link, but normally
an individual need only exchange data with its nearest neighbours. Although each SSI
broadcasts its data, communication is one-to-one rather than one-to-many: each Inter-
locking connected to the link reads the broadcast data, but extracts only those telegrams
that have been addressed to it. Given a cyclic communications strategy, there are two
broad classes of data that need to be communicated: continuously required data such
as signal aspects used to calculate the aspects of remote signals, and intermittently
required data such as are needed to set routes or control points near the boundary.

In the simplest case where a pair of unidirectional lines connect two interlocking
areas the boundary can be drawn “through the signal post”. In these circumstances,

131

Chapter 6. Distributed Control in Complex Interlockings 132

A75 Q75
A95 Q95

[@@@ Az;Qz

S4 SS
_ 1 b P2 q b q b aqc T9 q _
]] 1]]]
T, T, | Tg P,
1
Sy ! S,
1
:
1
i b
| @@CD])
1
WEST | g
! 9

Figure 6.1: EAST-WEST—Setting routes across SSI boundaries

on the outgoing line, the aspects of signals and the status of track circuits beyond the
boundary are needed to control signals up to the boundary, and the condition of track
circuits up to the boundary will be needed by the other SSI to calculate the aspects
of signals beyond the boundargf(Figure 6.1, where the notional boundary passes
throughSg). The IDL simulates the delivery of these data, which would normally
arrive over the track-side data highway, typically compressing all of the data required
into a single telegram. No route locking over the boundary is necessary in such (ideal)
circumstances.

More complicated circumstances arise where route locking across the boundary is
necessary, or where the boundary must pass through a set of points. The Interlocking
controlling the entrance signal on a cross-boundary route must request the adjacent
Interlocking to set that part of the route (tteal portion of the route) that is under its
jurisdiction. This arises as a consequence of the simple design of the SSI where the
TFM inputs are not multiplexed, and there is no shared state (memory) in the distrib-
uted control system. Moreover, to control the aspects of signals up to the boundary the
first Interlocking needs to be regularly informed about the status of signals and track
circuits in the fringe area of the other Interlocking. Distinct IDL telegrams are used to
convey the intermittently and continuously needed data.

Outgoing IDL telegrams are prepared by commands in the Geographic Data and
the generic control program is configured to copy their contents to the link at least
once a major cycle. There are two parts to the remote route request protocol since it
deals on the one hand with the problem of locking routes over Interlocking boundaries,
and on the other, with releasing them again. The principles involved in achieving these

Chapter 6. Distributed Control in Complex Interlockings 133

functions in SSI were introduced in Section 1.4, from where we recall the six main
steps for the participantsAST and WEST in Figure 6.1. Both Interlockings use an
elapsed timer to protect outgoing telegrams:

1. EAST receives a panel route request for a cross-boundary route. If the route
is available in AsST, start the elapsed timer and issue a remote route request
telegram to VEST.

2. WEST receives an IDL input conveying a remote route request. If the route is
available, set the route, reply toaBT with an acknowledge telegram, and start
the timer in order to guarantee transmission of the reply.

3. EAsT receives a reply telegram to the earlier remote route request: if the timeout
has not expired, EST can then lock the route, stop the timer, and control the
entrance signal as usual.

4. Whenever conditions indicate that a route has cleared up to the boundany, E
issues a remote cancellation request teaWas long as the elapsed timer is not
running.

5. When WEST receives a request to cancel an inward route it does so uncondition-
ally (but as long as its timer is not running), and acknowledges the request with
areply telegram to EST.

6. Onreceipt of such an acknowledgememtsE should cease to issue cancellation
requests, the route having been cancelled in both Interlockings.

Because the precise conditions vary from route to route, the details of the protocol
are implemented by standardised rules in the Geographic Data. Also, because of the
desire to render invisible the subdivisions of the interlocking area under the control of
one signal operator, the route release part of the protocol is implemented in the con-
tinuously executeé#OPdata, and not through panel requests. Itis the signal engineer’s
responsibility to ensure that the elements of the protocol are correctly used, but who is
to ensure that the protocol is “safe”?

In addressing this issue it is pertinent to ask what safety means in the context of this
now distributed control system. At a human level of interpretation one could consider
the control system safe if it is not prone to failure, there being an (essential) tem-
poral component to the inquiry. However, since we deal here with a highly technical
artefact—the control program, and the remote route locking algorithm it implements—
the question can be sharpened. From [9]:

Chapter 6. Distributed Control in Complex Interlockings 134

260

So

Figure 6.2: Derailment is likely if the tail part of?-, is not set

The overall requirement is to ensure that the [cross-boundary] route is set
only if it is available in both Interlockings, and that it is never possible to
arrive at a situation where half of the route only is set.

For a precise discussion of safety the second clause should be refined. In practice the
safety requirement is that it is never possible to arrive at a situation where only the first
half of the route is set. In the sequel we shall insist that:

e The remote route request protocol ensures the cross-boundary route is locked
only if it is available in both Interlockingsand

e itis never possible to arrive at a situation where the first half only is locked.

This more rigorous formulation of the safety requirement reflects two things: firstly,
routelockingis what the protocol is supposed to achieve, not route setting; secondly,
it is assumed here as earlier that for a route tdookedis a necessary condition for
the route to beset—that is, for the entrance signal to be switched off (in practice this
means we should verify that the output to each signal drives the signal to red unless
some onward route is locked). The conditions under which the entrance signal will be
switched off depend on continually transmitted data from the other Interlocking, but
those data are not transmitted as part of the remote route request protocol.

In order to appreciate the gravity of the situation in which only the first half of a
cross-boundary is locked, consider the scheme in Figure 6.2. Suppose locked
in EAST, but free in WEST, all signals are on, and tracks clear. If the route is Set,
can now go off to admit a train into the track section dowrso In the meantime,
however, WEST canlock the route fromS, which involves moving the pointsH,)
normal—»but the train approaching fronaET requires these points reverse and will
(likely) be derailed if they are normal. Other hazards may also arise, but a head on
collision is unlikely if the signals are properly interlocked according to the dynamic
signalling rules (see Nock [76], and page 23).

Chapter 6. Distributed Control in Complex Interlockings 135

It turns out, in fact, that under somewhat adverse conditions the protocol will fall
to meet the second of the stated objectives. This is illustrated in Section 6.2.3, after
a detailed description of how the Geographic Data implement remote route locking.
In order to properly assess whether the technical violation of safety presents a real
hazard, a more rigorous understanding of remote route locking is necessary. Therefore
in Section 6.3 a formal model of the inter-SSI communications is developed that is
based on the model in Chapter 3 which began our analysis. In fact, we shall simply
extend Model #2 with the apparatus needed for two Interlockings to communicate—
input and output buffers, telegrams, and timers.

The formal model serves a second, more important purpose, since it provides a
framework within which it can b@rovedthat the remote route request protocol can
be safely implemented. In Section 6.4 we therefore develop the CCS model through
a succession of refinements, the properties of each of which are verified using the
model checker provided by the Concurrency Workbench. It turns out that safiety
be assured as long as an additional timer is introduced to the protocol implemented
by both parties in the negotiation. Unfortunately, however, this is not sufficient for
safety—because of a second failure mode in the protocol. This problem is described,
with its solution, in Section 6.4.3. The likely impact of our findings on the SSI are
deferred until the concluding Section 7.1.

6.2 The Remote Route Request Protocol

In Section 1.4 the essential actions that are needed to lock cross-boundary routes were
described, along with the elements that are required for their implementation. We
briefly review how the SSI generic software acts so as to transport IDL telegrams,
before spelling out the details of the Geographic Data that implement the protocol.
Further details emerge as they become relevant in Section 6.3.

6.2.1 Preliminaries: Elapsed Timers and Telegrams

With the current generation of SSI the number of IDL telegrams that can be used is
limited to a maximum of fifteen in total (so an SSI can exchange data with at most this
many neighbours). The Interlockings connected to the link take it in turns to transmit
all fifteen bytes of data (in a round-robin protocol), and the transport layer is configured
so that each SSI can broadcast its data at least once a major cycle. These data are
typically a mixture of messages containing signal and track circuit data, and request
codes. The former are messages that are prepared fro@Rfelata file; the latter

are prepared by commands from other data files (see Section 6.2.2 belowjulThe
request code will often be transmitted (since usually there is no remote route request in

Chapter 6. Distributed Control in Complex Interlockings 136

progress)—but null requests are ignored by the receiver. The SSI generic program is
configured to copy non-null request codes to the IDL on two successive occasions: this
provides fault tolerance in case the link is lossy, and ensures that like all other panel
requests, IDL requests are processed twice.

An elapsed timer is associated with each IDL telegram that conveys request codes
to another Interlocking (by convention). Timers maydbeppedwhen not in use, or
running—in which case they indicate an integral value in the range [0—-254]. Timers
are initialised by commands in the Geographic Data, usually by setting them to zero:
thereafter they count upwards to a maximum value at which they stick (254), but may
be stoppedat any time by setting them to 255. The SSI generic program (not through
the data) updates all such software timers in rotation, approximately once a second,
but cannot update a timer more than once a major cycle. Software timers are only
accurate tot2 s, so cannot be used for very precise timing. Given the strict polling
cycle maintained by the SSI generic program it is evident that much more accurate
system timers exist, but these are not meaningful to, or accessible from, the data.

Just as eacWPTtelegram is paired with alP T telegram in the ongoing exchange
of messages between SSI and track-side functional modules, soG#Emternal
data link telegram is paired with dR®T telegram. When the telegram pair is used to
convey request codes and their acknowledgements there will in fact GPiaata
(the code to transmit is calculated elsewhere, as we shall see), ai@Tdata will
simply specify the relationship between incoming request code and the desired panel
request (in thé?RRdata file). On processing an incoming IDL telegram the interpreter
will place the indicated panel request in the input buffer behind any outstanding panel
requests.

The decisions taken at each step are programmed in the Geographic Data, and not
in the SSI generic program which manages the low-level concerns of transferring re-
guests to the internal data link, reading from the link, and queuing the appropriate panel
requests for later processing. That is, the generic program provides the lower layers
of the inter-SSI communications protocol on top of which the route request protocol is
implemented. It is the responsibility of the signal engineer to prepare the Geographic
Data in accordance with the guidelines described in [9]. The principles involved are
now illustrated by considering the data necessary for the example in Figure 6.1.

6.2.2 Geographic Data

The Geographic Data needed to set up and cancel cross-boundary routes will be es-
sentially similar to the example considered here, but the precise details will vary for
every such route as the availability conditions will differ. In the sequel the identifiers
Gy, andG are used to represent the IDL telegram insE and WEST respectively

Chapter 6. Distributed Control in Complex Interlockings 137

(the subscript identifies the recipient’s address). The corresponding timdrg,aard

E . To highlight where the telegram is written by a data command we shall use the
form Gy, =, whereQ75 is the request code transmitted—pronounced ‘sensl

to WEST. Suppose BST wishes to set the route from signal:

1. When ERAST receives a panel request for the route from the signal operator (via
the control panel), all the route availability conditions specified inRR&Rdata
are evaluated. Among these conditions is a test on the elapsed timer for the
telegram used to convey request codes tesW Instead of locking the route,
the command in the rule causes the timer to be started and the outgoing telegram
to be written with the request code for the tail portion of the route:

*Q75 if Pyorf [T§f | By, =stop
then Ey,=0,Gy, =Q75] \.

Here the timer is started by setting its value to zero. If no acknowledgement is
received from VEST the timer will be stopped by a rule in tlfg®OPdata when it
shows five (or more) seconds have elapsed:

By, =stop if Ey>5 \.

2. When WEST receives a remote input fromasT, the code will be interpreted
and the appropriate panel request queued. This is later evaluated to determine
the availability of the tail portion of the route in B¢ T's interlocking area. Not
only must the usual conditions prevail in the network, but the elapsed timer for
the reply telegram should be stopped:

*Q75 if TXf , Ep=stop
then T¢I [Z9°| Ep=3,Gz=|A75] \.

7% is a dummy sub-route used in the sub-route release mechanism for cross-
boundary routes. All EST to WEST routes over this line will share this control
variable. Here the elapsed timer is started (with an initial value of 3) in order to
protect the acknowledgement ta &r, guaranteeing its transmission. The timer
will be stopped by a rule appearing in tk®Pdata similar to that in EST:

Ep=stop if Ep>5\.

3. When RST receives a remote input from ¥%T, the code will be interpreted
and the appropriate panel request queued. When this is the acknowledgement to
Q75the rule invoked reevaluates the availability of the route and checks that the
request has not expired:

Chapter 6. Distributed Control in Complex Interlockings 138

*A75 if Pyerf [JT5f | Ey <5
then R, s,Pycr ,Tgcl T\
Z3\ | Ey, =stop .

The test Ey;, <5’ fails if the timer has stopped. Whether or not the route can
still be set the dummy outward sub-rout{) should be locked and the elapsed
timer stopped.

4. Locking the dummy sub-route is necessary so the SSI will invoke the sub-route
release request for the tail portion of the route (otherwise it remains locked in
WEST). This rule resides in thEOPdata and is therefore evaluated once every
major cycle:

if Z¢"l ,Tg*f , By =stop then Gy, =[QZ] \.

Whenever these conditions prevail the cancellation request will be issued—but
note that this request is not protected by starting the timer. A subsequent request
to WEST in the same major cycle may overwrite the cancellation request before
it is posted.

5. Whenever VST receives a request to cancel the inward portion of one of the
cross-boundary routes it does so unconditionally, except for a timer test, by a
panel request rule of the form:

*QZ if FEp=stop then Z$f Gg=[AZ]\.

Again note that the timer is not started to protect the reply telegram. The other
sub-routes along the route in 88T will clear in the usual manner, but the first
inward sub-route should always test the dummy inward sub-route:

Tebf it T.c,Zef \.

6. Whenever BST receives the acknowledgement to its request to cancel the tail
portion of the outward route, theRRrule frees the dummy outward sub-route
only if the last sub-route up to the boundary is (still) free:

*AZ if TOf then Z2f \.

There will normally be several cross-boundary routes, but there is only one
dummy inward and one dummy outward sub-route needed in the protocol to
cancel these routes (unless the boundary passes through points).

A number of observations follow from the foregoing description. Firstly, there
is a simple priority mechanism that gives precedence to telegrams originating in the

Chapter 6. Distributed Control in Complex Interlockings 139

PRRdata over those arising in tieOPdata. This is achieved by ensuring that only

the PRRdata may start the elapsed timer, while for all classes of data a test that it is
stopped should be passed before writing an outgoing telegram. Secondly, the practice
of not prioritisingFOPdata uses of the telegram means that the acknowledgement to a
sub-route release request may be overwritten by a subsequent panel route request—or
indeed by a request generated from E@Pdata (if a route in the opposite direction

is about to be released, say). This will leave the Interlocking initiating the cancellation
request with the dummy outward sub-route locked even though the tail portion of the
route is now cancelled. The first SSI will reissue the cancellation request until such
time as it receives a reply from the second (or an outward route over the same line is
again locked).

6.2.3 Safety Considerations

As a consequence of the lower priority givenR@Puses of the IDL telegram it is
possible, where route locking in both directions across the boundary is required, for
the inward and outward dummy sub-routes in one SSI to be locked simultaneously.
No safety critical functions of the SSI should depend on the mutual exclusion property
(MX) for these dummy variables; of course, the real sub-routes over the fringe track
section should satisfy this condition. The routes propeRiy)(for both parts of the
route, should also hold. In the case of the SSI controlling the tail portion of the route
the property will state thaf the first inward sub-route is locked then the rest of the
route is lockedroute variables for the tail parts of these cross-boundary routes are in
fact defined, but they do not serve a route lockintprand they are not elements of
the remote route request protocol). For the coupled system the required invariant states
that if the first part of the route is locked then the tail portion is also locked.

Consider the normal sequence of events depicted graphically in Figure 6.3. The
initiating panel request is processed ind (top rail), the timer started and shortly
thereafter the telegram is placed on the IDLESY reads this message and places the
request in its input buffer. When this is processed (successfully) the timer is started and
the reply telegram written. ST later reads the reply telegram froma&/r and queues
the appropriate second part of the panel request. When this is subsequently processed
the route is locked in EST, and the timer stopped. The timer inBAT expires because
of the timeout implemented in tHeOPdata. If the remote route request fails ire@r
the second timer is not started, and the first expires in due course.

The scenario sketched presupposes that IDL telegrams will be transmitted at most
one major cycle after they were written (and the timer started). The ticks on the
timelines indicate secondse., moments at which the timers are updated by the real-
time software. The major cycle can be no longer than the space between the ticks. In

Chapter 6. Distributed Control in Complex Interlockings 140

*Q75 *AT5 EAST
POST[Q75] READ[AT75]

_____ O R

w
IS
[_—

T '
o
POST RRR A E STOP
READ[Q75] POSTI[A75] WEST

S 0 P

B

POST ACK E STOP

Figure 6.3: Normal sequence of events in making remote route requests

normal operation the whole process can easily be completed before the tinresin E
reaches the second tick.

Attention is drawn to the unusual sequence of events depicted in Figure 6.4. Matters
are as before except for the insertion of some lengthy delays. The illustration suggests
that the acknowledgement rule in tRikRdata in EAST (i.e, *A75) can be executed
after the timeout has occurred. Of course, if this happens the timer test in the second
rule fails, and so the route will not be locked im&r—the usual (sub-route) release
mechanism will free the tail portion locked in 88T. Indeed, the tail portion of the
route may already have been released since the appropriate rule resides@Pteta
(the right circumstances for this can arise if, for instance, a route is being overset while
a train isen routs.

Unfortunately this is not the only action that can intervene between the timeout
and processing the reply from 88T. In the lower part of Figure 6.4 this segment of
EAST’s timeline has been magnified, revealing a second panel request. This gives rise
to concern only if the panel request restarts the elapsed timer: under these circum-
stances the delayed reply will then succeed, other things being equal, even though it
should have expired. This leaves the route lockedAsEbut free in WEST.

The question is whether these extremely long delays in processing panel route re-
guests, delays that are of the order of several major cycles, are credible? Such delays
are unlikely, but there are circumstances in which they could arise:

¢ If for some reason a data packet on the IDL becomes corrupted the receiving SSI
will treat the telegram as if it were zero—the second transmission of the same
request code will therefore afford a degree of fault tolerance. However, if the
Interlockings exchange data only once a major cycle, and if the major cycle is
long (closer to 1,000 ms than to 608 ms), delays will accumulate.

Chapter 6. Distributed Control in Complex Interlockings 141

*Q75 *A75 EAST
L POST[Q75] READ[AT75]
Ex0 l 1 2 3 4 l 5 l
————— ' = = = = —
POST RRR L ESTOP .
v L $.
.- *Q75 h WEST
READ[Q75] o POSTIA75] :
l o . EJ:S 4 l 5
-4 : — ' : : SEEPEES
' e Ik |
POST ACK E STOP
[STOP] [CANCEL] *Q95 *A75

TTTI]

| fa) Y L - -
T T

Figure 6.4: Abnormal sequence of events in making remote route requests

e If a route traverses complex point work in either Interlocking the route request
may have to be split over several minor cycles. This can be achieved by dividing
the route availability checks between several panel requests that follow one an-
other: if the first succeeds, a second is queued; if the second succeeds a third is
gueued, and so on. This procedure will delay a panel request over several minor
cycles.

e More seriously, a long route may straddle more than one Interlocking boundary,
and more than one SSI may have to cooperate in locking a route, selecting and
locking an overlap, and guaranteeing flank protection. If an intermediate SSI
should need to make a further remote route request to set the tail, then even under
favourable conditions several major cycles can elapse before the originating SSI
receives the final acknowledgement.

Recall that queued panel requests will remain in the buffer for an indeterminate
period of time because the interpreter will only process a panel request if all the re-
quired processes have been completed in under the minimum minor cycle time of 9.5
microseconds (see Section 1.3.2). Queued requests, whether from the control panel
or received from another Interlocking, may therefore remain in the input buffer for
arbitrary periods of time—nbut usually not more than a few minor cycles.

In order to assess whether the weakness in the protocol identified above presents
a real hazard to railway traffic we shall need a more thorough analysis, and a formal
model. On the one hand the purpose of such a model is to show precisely under what

Chapter 6. Distributed Control in Complex Interlockings 142

circumstances this fault will be manifest (for example, by making explicit all our as-
sumptions about the SSI's behaviour). On the other hand it is to place our under-
standing on a more rigorous foundation so as to formulate strategies to overcome the
problem and prove, within the framework of the model, that safety can be assured.

6.3 Modelling Remote Route Locking

Evidently a model of these aspects of the inter-SSI communications needs some notion
of time. The CCS model of Chapter 3 was devised to examine static properties of the
Geographic Data where timing issues were not considered—thus Model #2 admits
no notion of a major cycle, nor even a minor cycle, by which to clock the system. In

developing that model further here, we therefore introduce such a clocking mechanism.

6.3.1 Timing Issues

Precise arguments about critical timing properties of systems cannot be made within
the framework of an asynchronous calculus such as CCS whose semantics say noth-
ing about the duration of actions, nor the duration of the intervals between them.
Such properties can be explored using languages such as Timed CCS [71] and Timed
CSP [82] which introduce discrete or continuous domains of ‘time transitions’. Gen-
erally, either time progresses or computation does, but not both together.

Where the events that clock a system are discrete, for example in synchronous hard-
ware where a global clock signal defines the frequency with which all system compon-
ents change state, the weaker time model of SCCS [59]\mu#&[27] may offer the
right kind of temporal abstraction. In such models all system components proceed in
lockstep whether or not they communicate, computation always coinciding with the
clock’s tick. From the synchronous model of process interaction one may, as Milner
showed, recover the asynchronous behaviour associated with distributed systems.

The natural clock of the SSI is thmajor cycle. Not only does this define the
frequency with which the Interlocking and the track-side modules exchange fresh data,
but it also defines the maximum frequency at which the system’s elapsed timers can
be updated. This latter point is crucial since the behaviour associated with the remote
route request protocol does not depend on the number of seconds that have passed since
the outgoing IDL telegram was written, but on the number of times the elapsed timer
has been updated. We need not, therefore, introduce real time to the aryaritsi.

6.3.2 A Formal CCS Model

The Interlockings connected to the internal data link are not tightly synchronised with
one another. The lower layers of the inter-SSI communications protocol ensure that

Chapter 6. Distributed Control in Complex Interlockings 143

each SSI communicates its outgoing telegram data to the bus at least once a major
cycle. For the formal model we shall tighten this assumption and suppose that each
SSI communicates exactly once (twiadc,) a major cycle. These communication
events are used to clock the system. We shall further assume, grossly erring on the
side of pessimism, that one major cycle consumes one second of elapsed time. Since
608 ms< 1 major cycle< 1 elapsed ‘second’, the second inequality will be taken to

be a strict equality, and the model’s elapsed timers will therefore count major cycles.

To simplify the presentation of the model let us suppose that only two Interlockings
are connected to the link.¢., the effects of the other Interlockings connected to the
link will be ignored). Extending Model #2, the elements needed include an elapsed
timer, an input queue, and an output buffer to hold the current output telegram. We do
not model the internal data linker se merely wishing to count the synchronisations
between the two Interlockings. Any lossy behaviour of the link can be emulated in the
input or output buffers.

Elapsed Timers In SSI, elapsed times that protect IDL telegrams used to convey
request codes should always be stopped by a timeout commandi@fPaata (in case

they are not stopped by rules in tR&Rdata). This timeout behaviour is modelled here
with a watchdog timer which may be started or reset by the data, but which is otherwise
stopped by an external event. This simple version increments the counter ayeach
action (provided by th€ontrol, below):

getg(m).E(m) + putg(n).E(n) 4 stop.E(stop) m =M
E(m) £ < gety(m).E(m) + puty(n).E(n) + sync.E(m+1) 0<m< M
getg(m).E(m) + putg(n).E(n) + sync.E(m) m = stop

The timer cannot synchronise again once it has counted i ibmust stop explicitly

by the stop action, or be reset from the data \pat;(stop). A stopped timer will
continue to synchronise as required. Ldt < stop be the maximum timeout the
timer can observeeg(g, five ‘seconds’). This formulation reflects the notion that while

the timeout is programmed in tlOPdata, it is undesirable to specify in which minor
cycle the relevant rule is to be executed—because, although the execution order is
fixed, it is arbitrary and so we should therefore assume nothing about it. The timeout
is thus represented by teop action whichmustoccur in the(M —n)" cycle after the

timer was started with the value The above definition is simple to generalise so that
the timer can be incremented instead on every second, #tacgdsync action.

Queue Process The specification of the input ring-buffer is data orientated. [Llet
represent the empty queue, dndlq] represent the queue whose first elementasd

Chapter 6. Distributed Control in Complex Interlockings 144

whose tail isq. This agent will synchronise witontrol in recording IDL inputs,
throughqin, and again in removing panel requests, throsgth Other input requests,
e.g, from the control panel, will enter the queue directly (wia).

o) & { qin(e).Q(app;(e, q)) B if g =]
gin(e).Q(app,(e, q)) + set(e').Q(¢") if ¢g=1[¢'|{]

Heree, ¢/ € Q, whereQ is the set of all panel requests, there being one rule in the
PRRdata for each element @. In the sequel we let O represent the null telegram, and
for convenience let € Q.

The append functionypp,, places the new arrival at the end of the queue as expec-
ted. The specification should be made more precise since the buffer will be of bounded
capacity, say:

app(e.q) = q if e =0o0rlength(q) =1
n app(e, q) otherwise
e if g =
apple.q) = [e 4] q=]

[¢' [app(e,q)] i q=]¢'|{]
An input arriving at a full queue will be silently discarded.

Telegram In the Geographic Data, outgoing telegrams are treated just as any other
variable. SSI normally resets a telegram’s contents to zero when it is posted. Here, we
model a telegram as a process which can hold one of & s#tvalues (also letting

0 € O) which can occasionally be placed on the link:

def

G(u) = getg(u).G(0) +puty(v).G(v) uweO

The telegram is reset to zero whenever its contents are read. The (only) process to read
this variable is the output buffer which is a simple cycler (for the moment, it is refined
later) that executes the sequence: output to the IDL, await the next enabling action
(turn) in accordance with the round-robin protocol, and fetch the next output telegram:

O(u) ¥ idlout(u).turn.get,(v).0(v) u € O

In general, if there are+1 Interlockings connected to the IDL the output buffer should
awaitn enabling actions before being permitted to communicate the next output. Here,
any lossy behaviour associated with the link, and the compensating duplication of tele-
grams, has been ignored.

Control The Control is constructed just as in Chapter 3, but with an explicit syn-
chronisation (with the elapsed timer) to mark the start of the major cycle loop:
Control £ set(Q).(C[PRR*Q)]Control) + - - - + idl_in(v).gin(v).Sync
Y

def ——

Sync = sync.turn.Control

Chapter 6. Distributed Control in Complex Interlockings 145

Now, in addition, theControl reads an IDL input, queues the appropriate panel re-
guest and updates the major cycle counter. Having read an IDL inpu@potitel also
enables the output buffer for writing to the link. The translat@®[] is extended ca-
nonically. TheControl can how be composed with the output buffer and the timgr,
asin

((Control | O(u))\{turn} | E(m))\{sync}

so that the model is ‘clocked on input'—that is, we increment the timer on each input
from the other Interlocking, then enable the output telegram. Since both Interlockings
implement the same protocol, this ensures a (logical) one cycle delay between outputs,
or inputs, and gives the model a simple clocking mechanism. Note tha&tdfteol

reads the IDL and queues the input for later processing. Other inpaifdifose re-
ceived from the control panel) enter the queue directly.

6.3.3 Matching up the Interfaces between East & West

The model is then specified by the parallel composition of agents
(Control | Image | Q([]) | E(0) | G(0) | O(0))\L

whose components are gathered together in Model #3. Each component captures a
separate function of the generic program as discussed above. The restrictionset,
chosen so that the visible actions include

{idlLin(m) | m € Z} inputs from the other Interlocking(s),
{idl_out(m) | m € O} outputs to the other Interlocking(s),
{gin(m) |me Q—-T1} panel requests from the signal control panel,

along with{obsp(v) | D € D}, the observers (tags) image, stop, the timeout for the
elapsed timer, and the other visible inputintrol discussed in Section 3.Z. C O

(with 0 € 7) is the set of IDL inputs the SSI can receive. We then compose two such
systems, safast andWest, in such a way as to ensure that they synchronise on the
IDL transmissions:

def

EastWest = (East[idlin(m)/idl_out(m) | m € Og][stopg/stop]
| West[idlLin(m)/idl_out(m) | m € Ow]|[stopy /stop])
\ {idl_in(m) | m € OW U OE}

The setOy, (‘out WEST, which is the same a%g) is the union of two disjoint sets
of messages: the requests sent framest to East, and the set ofWest’s replies to

Chapter 6. Distributed Control in Complex Interlockings 146

gety(m).E(m) + putg(n).E(n) + stop.E(stop) if m=M
E(m) £ < gety(m).E(m)+puty(n).E(n) +syncE(m+1) f0<m<M
getg(m).E(m) + putg(n).E(n) 4+ sync.E(m) if m = stop
w | din(e).Q(app,(e,q)) if ¢ =]
Qle) = ¢ _ .
{ ain(e)-Q(appi(e, q)) + set(e’).Q(q") if g =[] ¢]

G(u) = getg(u).G(0) + puty(v).G(v)
O(u) ¥ idl_out(u).turn.get,(v).O(v)
Control = set(Q).(C[PRR* Q)]Control) + - - - + idl_in(v).qgin(v).Sync
Sync = sync.turn.Control
SSI = (Control | Image | Q([]) | E(0) | G(0) | O(0))\L

e q) = q if e =0o0rlength(q) =1
n app(e, q) otherwise
wple.q) = le]q] if g =]
’ ¢ app(e,q)] it q=1[e']q]

Model #3: Simple model of SSI communications over Internal Data Link

the requests received froBast. O is similarly defined. We arrange that the sets of
observations (tags iimage) in the two systems are disjoint. In particular

{gin(m) |m € (Qg —Zr) W (Qw — Zw)} panel inputs foEast or West,
{eobsp(v) | D € Dg} observations (tags) iBast,
{wobsp(v) | D € Dy} observations (tags) Wwest,

are visible actions of the coupled system, along Witop;, stopy }, the timeout ac-
tions for the elapsed timers. The s&g and Dy, are the control variables (points,
routes, sub-routes and track circuits) defined in each Interlocking.

Having set up the model as above it should be remarked, before proceeding with the
analysis, that the semantics of CCS do not at all compel the exchange of data between
East andWest to take place. Indeed, both systems can proceed independently without
ever synchronising—but then in neither frame of reference will time advance.

6.3.4 Axiomatising Remote Route Requests

Although describing only the binary case, the formal CCS model described above is
couched in rather general terms. In fact, the protocol itself will have to be instanti-
ated (in the Geographic Data) for each Interlocking boundary—that is, in preparing
the Data for each SSI, a telegrai)(and an elapsed timef]) have to be allocated

Chapter 6. Distributed Control in Complex Interlockings 147

*QN if @CN, E=stop then E=0,G QN \.

*AN if @CN, E<5 then @SN, 771\ Z?| E=stop .

*QM if @CM, E =stop then @SM ,T;"| ,Z"l ,E=3,G =AM \.
*AZ if TPU'f then Z9“'f \.

*QZ if E=stop then Z"f G=[AZ]\.

E=stop if E>5\.

it Zg“l ,Tpu'f E=stop then G'=[QZ| \.

Tttt Z9f T e \.

e B B

Figure 6.5: Generic rules for remote route locking and release

for each boundary over which routes must be set, and the data for the individual routes
should adhere to the guidelines sketched in Section 6.2islfust one of the lines over

the SSI boundary where routes must be set, there are potentially eight generic rules in
the PRRand FOPdata that will be instantiated (see Figure 6.5). Of these, rules (1) and
(2) will be instantiated for each outward routg rule (3) will be instantiated for each
inward routeM; the other rules need instantiating only once for lineexcept rule

(6) which needs instantiating only once for each timer/telegram. No other Geographic
Data should update the telegram, the timer, or the dummy sub-routes needed to imple-
ment remote route locking. The availability conditions for a route, and the commands
for locking a route, are inserted at the place-hold@@EN@SNetc. Note that theeal

inward and outward sub-routes are mentioned in rules (2) and (3). Here we assume that
the boundary is on plain track, and that no route straddles more than one SSI boundary.

Ideally one would like to establish the safety of the remote route request protocol
independently of the safety analysis required for the rest of the Geographic Data. Un-
fortunately this is not possible since errors in the route specific ga@GNand @S\
may introduce unsafe states irrespective of the correct functioning of the protocol. So
we assume the data are correct—this is valid because the safety properties of the Geo-
graphic Data can be established independently of the ‘correctness’ of the protocol.
For example, the safety propeffyof the earlier chapters makes no reference to the
additional control data needed to implement remote route locking, so theorems like
{F}ci {F}, fori =1...8 above, are rather easy to prove.

In analysing properties of the protocol it is therefore reasonable to assume that
the specific route data satisfy the appropriate invaria®$— particular, with the
characterisation given in Section 5.3.3: if the route is locked, all the sub-routes on
the route are locked; if the first sub-route on the route is locked, the remaining sub-
routes are locked, and so on. This considerably simplifies of the model, leaving only
the generic parts listed above, and omitting the specific route locking data entirely.

Chapter 6. Distributed Control in Complex Interlockings 148

Intuitively, the route locking conditions will always be passed, and the only action
taken in locking a cross-boundary route (other than executing the protocol actions of
course) is to lock the inward or outward sub-route as appropriate. Where routes are set
in the direction BAsST to WEST only, we require rules (1), (2), (4), and (7)H#ast, and

(3), (5), and (8) inWest. The timeout rule (6) is omitted since the watchdog mechanism

is used instead.

This, then, is the formal model submitted to the Concurrency Workbench for se-
mantic analysis. The interface between the two components is specified by the sets
Ir = {ANAZ} andZy = {QNQZ while Qy = Zy andQr = Zp W {QN QNX.

Apart from the timeout actions associated with the elapsed tiras, andstopy,,
the only inputs of interest are East: gin(QN), and this route’s (unconditional) cancel-
lation gin(QNX. Outputs are just the observations made of the control varigttés
Zeut Tivand Zin,

6.4 Safety Properties of the Model

Informally, the safety property associated with the remote route request protocol can
be expressed thus:

whenever the initial portion of a cross-boundary route is locked in the first
Interlocking, the tail portion of the route is locked in the second

In light of the discussion in Section 5.3.3 we strengthen this to:

whenever the last sub-route of the first portion of the route is locked, the
first sub-route of the tail portion is locked

If this property holds it also ensures that the route is not prematurely released in the
second Interlocking. The modal formu®, where
© = (eobspu(l))tt A (wobsyn(f)it
therefore characterises the unsafe stat&mwest. This is sufficient since, by hy-
pothesis, each Interlocking independently satigR€sand in particular VEST has the
property that if the first sub-route on the cross-boundary route is locked, then the rest
of the (tail of the) route is locked. Now® <« (eobsyou (1))t = (wobsyi (I))tt, SO
the invariant all states of the model should satisfy is EsSE vZ.-© A [~]Z. When
started from a sensible initial state, no reachable state of the model should ®atisfy
Given an initial state in which all the sub-routes &ee the local model checker
confirms that:
EastWestys = vZ.(—)ttA[-]Z : Freedom from deadlock,
EastWestys = ((qin(QN)) (eobspou (1)) tt : Can set the outward route,
EastWesty; [~ E . Safety.

Chapter 6. Distributed Control in Complex Interlockings 149

w | din(e).-Q(app(e, q)) if g =[]
Qlg) = .
{ qin(e).A(e, q) +set(€').Q(¢") if ¢ =[e;, |]
Ale,q) £ if (e € T) thenQ(app,(e, age(q))) elseQ(app,(e,q))
B [idla (e if g =]
e = { nlappeq if g =Tes,|q]
if g =[]
age(q) = age(q if g =len|¢]andn =1
en1|age if ¢ =[en]|q¢]andn #1
idla(e) — feeZ
€o otherwise

Model #4: Refining Model #3 so as to discard tardy IDL inputs affecycles

The double diamond modalitya)), abstracts from the silent or unobservable activity
of the model (accompanying the initial input, in this case)Edétwest,,; is a state in
which Z¢“ islockedbut 77" is free (both timers being stopped), then

EastWesty; = (din(QN)){(ain(QN)) {(stopy))(stop))©

The reasorastWest; ~ Eis just as discussed earlier in Section 6.2.3: the possibility
that IDL inputs can remain in the queue indefinitely.

6.4.1 First Refinement: Eliminating Arbitrary Delays

If the problem arises from the possibility that panel requests can remain in the queue
for an indeterminate period of time, perhaps the situation can be repaired by elimin-
ating such arbitrary delays? This introduces the idea that IDL inputs should expire if
they have been queuing “too long” (a parameter one might wish to adjust). This is
achieved in Model #4 by modifying the queue process so that panel requests are given
timestamps. In the data part of the specification of the queyeadds input with
its timestamp to the queue—the function is defined much as before, but now elements
will be (time) indexed. No attempt has been made here to make these specifications
efficient, only precise.

Given thatQ is the set of all panel requests the SSI can receiveZand Q are
just the IDL requests, the functiaidl, computes the initial timestamp for the given
inpute: this is non-zero if and only i € Z. The delay parametek is chosen to be
the maximum length of time (the number of major cycles) a message can have been
pending before expiring. The functiamye is arranged so that tardy IDL requests are

Chapter 6. Distributed Control in Complex Interlockings 150

discarded. A zero timestamp ensures that the queued request is not discarded however
long it has been waiting. A non-zero timestamp should be interpreted as the number of
cycles a request can remain in the queue.

A small change in the queue process is necessary since we only propose IDL inputs
should expire. The clause

Ale,q) £ if (e € I) thenQ(app,(e, age(q))) elseQ(app,(e,q))
ensures that the timestamps are only decremented when an IDL input is received. In
generalising this schemé, should be some constant multiple of the total number of
IDL inputs the SSl receives.€., those addressed to it) in one major cycle.

SettingA = 1 the result from the model checker is that in addition to satisfying
the deadlock freedom and liveness properties cited earlier, the model now satisfies the
safety propertyEastWesty, = 2. One can investigate further and get= 2, which
is a more generous delay, but the result is somewhat surprising: since elapsed timers
count up to five ‘seconds’ a combined delag.(in EAST and WEST) of four ‘seconds’
is long enough for states satisfyitg to reappear. To understand this fully it is best
to explore the behaviour of Model #4 more thoroughly—for which purposes we need
a simulation environment to animate the formal model. The Concurrency Workbench
can also be used for this purpose, but however the model is simulated one can derive a
transition sequence such as that depicted in Figure 6.6.

At line (1) the initiating panel request is made. This is processed at line (2) and
there follows a series of (ten) message exchanges. The remote route request must be
processed in WST before line (9), otherwise it expires. In the figuBerepresents the
null telegram e the stopped state of the elapsed timer, and blank spaces in col@mns
E, andG indicate ‘no change’ (with respect to the line above). At line (17) we see the
acknowledgement waiting to be processed A E, the timer is running, but the route
is unset in WEST. The main point to observe here is that if the fault is to occur the
second panel request, which need not of course be for the same route, nor even refer to
the same line, must be queued before the reply telegram is receivesiday E

Moreover, also from the trace in Figure 6.6, we can infer that when 1 the reply
telegram will always arrive at &ST (if it arrives at all) before the elapsed timer has
advanced to four. If this were not the case the elapsed timer could stop before the reply
was processed, leading to a state satisfyrg-but this cannot be the case sine®
is invariant. This suggests that as long as the SSI can guarantee to process all panel
requests within a single major cycle, the remote route request protocol is safe. This
conclusion is in fact premature, as we shall see below when modelling IDL faults.

Chapter 6. Distributed Control in Complex Interlockings 151

EAST | QE| G| | Q|E|G |west
(1) {PrRR}” [QN] | e | O]| |0 (1)
(2) 110 QN|l (2)
(3) 1 N (3)
(4) 0| . ||[QN] (4)
(5) 2 . (5)
(6) | [QN] (6)
(7) 3 (7)
(8) N []] 3 |AN (8)
(9) 4 (9)
(10) {PrR} ™ [QN] - (10)
(11) QN |AN] | 4 . 0 (11)
(12) o 5 (12)
(13) QN |AN] | 5 . “{stor} (13)
(14) {sToPR, ° (14)
(15) {rFop}~ Qz| . (15)
(16) 0 [QZ)] (16)
(17) [ANi] | 0 | QN [] AZ (17)

Figure 6.6: lllustrating how unsafe states arise in Model #4 wheg- 2

6.4.2 Second Refinement: Adding Priorities

In refining the model above we might observe that there seems to be no need to assign
any special consideration to cancellation requests, nor to the acknowledgements to
remote route or cancellation requests. That is, acknowledgements need not expire if
the system is busy. Indeed, since the proposed solution to this flaw in the protocol sets
the delayA = 1, a busy Interlocking may sometimes find it difficult to lock cross-
boundary routes. Let us therefore

e arrange to timeout only remote routgjuestsand not their acknowledgements,
nor cancellation requests, nor their acknowledgements, and

e assign higher priority to the messages acknowledging remote route requests in
the queue processke., implement a priority queue.

It turns out that these modifications have to be implemented together for otherwise the
model remains unsafe with respeci®oceven whem\ = 1.

GivenZ, two disjoint subsets can be identifie@; (‘queries in’), the remote route
requests served by this SSI, and), the acknowledgements to the remote route re-
guests sent by this SSI. All other IDL inputs.g, cancellation requests) are contained
inZ — (QrW.Ap). The queue process is defined as in Model #4, but in the data part of

Chapter 6. Distributed Control in Complex Interlockings 152

(idl_out(v W
t
ouo) idl_out(0) O idl_out(0 o

-0
idl out
O) %

idl out

Model #5: Introducing lossy link behaviour to Model #4

the specification the definitions app andidi» are replaced by those displayed below:

g — | lida@ld ig=[loreedo
app(e,q) = e/ |apple,q)] if ¢ =[¢,|¢] ande & Ao
o) — e ifee Q;
€o otherwise

When setting\ = 1, 2, or 3 cycle€astWest, = E, but higher values lead to unsafe
states as before. Note that the priority mechanism ensures the acknowledgement is
always processed before any other panel requests which could restart the elapsed timer
(i.e. the order of the elements in the queue KsE at line (11) in Figure 6.6

6.4.3 Lossy Communications and Duplicating Telegrams

Model #3 and its refinements above are built upon the assumption that the communic-
ation medium, the internal data link, functions perfectly at all times. It has been shown
therefore that even when this is the case a reasonable (though slightly pessimistic)
model of the inter-SSI communications fails to satisfy the overall safety requirement.
By eliminating arbitrary delays in the input buffer we have seen that safety can be as-
sured (in the model). However, this is not the only, nor even the likely, source of delays
which the SSI has to tolerate. Recall that IDL telegrams may occasionally be lost due
to imperfections in the communications medium, and so the telegrams used to convey
requests to other Interlockings are duplicated (once) to tolerate such faults.

If the two Interlockings exchange messages only once a major cycle the loss (or
failure) of a remote route request, followed by the loss of the first reply, can lead to
several seconds’ delay. This weakness will be exacerbated if a third SSI has to enter
the negotiations to set a route that straddles more than one Interlocking boundary. In
order to model the lossy behaviour of the IDL the modifications shown in Model #5 are
implemented (the transition diagram representation of the agentis preferred here
as it is easier to interpret). In this specification the buffer procéss now duplicates

Chapter 6. Distributed Control in Complex Interlockings 153

the value read from the telegram, throu@lfv), but may nondeterministically transmit

the null telegram instead @of This models possible faults on the IDL. Note that in the

left-hand loop null telegrams are not duplicated. In the model, neither Interlocking

engaged in these communications will detect the faults occurring on the link.
Implementing these changes in Model #4 we can consHagttWest5, and setting

A = 1 once more interrogate the model checker:

EastWesty; = vZ.(—)ttA[-]Z : Freedom from deadlock
EastWestys = ((@in(QN)){(eobsrou (I)t : Can set the outward route
EastWesty; [~ Z . Safety.

This result is no surprise when Figure 6.6 shows that a two cycle delay in the input
buffer leads to unsafe states: a three cycle delay is also “too long”.

That said, there is one parameter in the remote route request protocol that can
be adjusted with ease: the hitherto arbitrary timeout observed by the elapsed timers,
currently set to five major cycles. It is now possible to suggest much more precisely
what value this should take if the protocol is to ensure both safe and live usage of
the IDL. Suppose that arbitrary delays are to be eliminated by sefting 1 as in
Model #4. From Section 6.4.1 we know the reply telegram must arrive at least one
cycle before the timer is stopped by tR®Pdata. There are at most six delay cycles
to accommodate through the lossy link because the output buffesisnmay be in
the stateD’(Q2) when protocol rule (1) (see Figure 6.5) is executed. The elapsed timer
should therefore not timeout the remote route request beémetycles have elapsed.

Adjusting Model #5 accordingly to lengthen the timeout, we can confidently ad-
dress the model checker with the question

EastWest; = & 7

Intriguingly, this is false! There is a second failure mode revealed here which has
been introduced by the duplication of telegrams—this turns out to be a reincarnation
of the failure depicted in Figure 6.4. Observe that the SSI will normally send two reply
telegrams (although it may receive two requests, at most one of these will succeed
whenA = 1 because of the timer test in rule (3)). When the first acknowledgement
is processed the elapsed timer will be stopped whether or not the route is actually
locked (by rule (2)). However, before the second acknowledgement is returned the
timer may well be restarted by another request for a cross-boundary route. As before,
if the cancellation request precedes this the subsequent but spurious reply to the earlier
remote route request may lock the route anyway. EEgetWestLS B

This problem may be somewhat artificial since it depends on the route first being
set, and then quickly cancelled again:

EastWestl,; = [[din(QN](vZ.=© A [—qin(QNX]Z)

Chapter 6. Distributed Control in Complex Interlockings 154

).H(u) + puty (v).H(v)
(C[PRR* Q)] Control) + - - - +idLin(v).Filter(v)
Filter(v) = gety(u).if (v=wu) thenqin(0).Sync elseputy(v).qgin(v).Sync

H(u) = gety(u
Control = set(Q).

Sync = Sync.turn.Control
ssI = (Control | Image | Q([]) | E(0) | G(0) | O(0) | H(0))\L

Model #6: Refining Model #5 to filter duplicate IDL inputs

whereqin(QNX is the (panel request) input &ast that cancels the route. This prop-

erty asserts that whenever the cross-boundary route is requested (from the initial state)
—® remains invariant at least until such time as the route is subsequently cancelled.
Apropos the possibility that the route is no longer available in the first Interlocking
when the acknowledgement is received, the main reference [9] comments

this can only be due to failure, overrun, or signalman error

The first two possibilities (failure of the computer or signalling hardware, or a train
overrunning a signal at red) can be reasonably ignored as these conditions will prevalil
long enough foall the reply telegrams to arrive, but we should ask whether operator
error could lead to the failure the model suggests is inherent? It does not seem a very
unlikely action on the part of the signal operator to set a route on the control panel and
cancel it again, realising immediately that it was the wrong route to set, but the issue
is difficult to resolve with certainty through informal argument—which is, in any case,
hardly adequate when dealing with a system as complex as SSI.

It is not necessary to resort to informal argument however. Observe that once the
first IDL message in a particular phase of the protocol has besgived any sub-
sequent copies are redundant. This suggests that one need only record the identity of
thelast IDL input, and may discard the copies. This analysis leads to the final modi-
fication depicted in Model #6, where ndwut, (v), get,(v)} C L. Here the queue is
defined as before but a filter has been introdudéds a new variable (a ‘dummy tele-
gram’) that is not accessed from the Geographic Data but which the generic program
uses to record the identity of the last IDL input from the other Interlocking (in general
an array of these filter variables is needed). With this last change the model checker
finally discharges the proof:

EastWest,, = &

To summarise we have: instigated a one cycle timeout for queued IDL inputs, filtered
the multiple copies of these inputs, passing only the first to the input buffer, and im-
plemented a seven major cycle timeout for the elapsed timers used to protect IDL

Chapter 6. Distributed Control in Complex Interlockings 155

communications on each side of the protocol. This completes the formal analysis of
the model of the remote route request protocol.

6.5 Summary

In this chapter we have discussed the question of whether the remote route request pro-
tocol is intrinsically safe with respect to what it is designed to achieve, namely route
locking Informal analysis in Section 6.2 suggested that under unfavourable timing
conditions failures may be observed that lead to states of the coupled system in which
only the first half of a cross-boundary route is locked. These can arise because there is
no means to guarantee the timely arrival of reply telegrams and, in particular, of dis-
carding tardy replies from the other Interlocking. If the elapsed timer used to timeout
remote route requests is subsequently restarted, the delayed reply telegram will be
accepted as a bona fide acknowledgement to the earlier request, and the route locked
accordingly. This is a cause for concern because it is not possible to predict what (safe)
changes in the state of either Interlocking may have occurred in the interim.

At first sight there does not appear to be much of a ‘protocol’ here, at the level of
Geographic Data, about which to reason formally. The control decisiors-about
the messages that should be exchanged to invoke functions in the other SSl—are im-
plemented in the Data, while the communications are handled by the subsystem over
which they have no control. Yet thei®a protocol that is revealed in the generic rules
given on page 147 from which the route specific control data have been abstracted.

The generic rules in the Geographic Data form the basis of the formal model ana-
lysed through a succession of refinements in Section 6.4. Other components of the
model represent features of the underlying communication mechanism—the input and
output buffer processes, and the elapsed timers which are modelled using watchdogs.
The weakest aspect of the model is its notion of time. The simple idea of counting ma-
jor cycles can be justified on the one hand because the SSI updates the elapsed timers
no more frequently than this, and on the other because the worst case is assumed where
the major cycle is extended to its operational upper limit of one second. Of course, a
less pessimistic, average case model should admit the worst case behaviour we have
assumed (because the SSI does).

The first formulation, Model #3, confirms that there is a logical flaw in the remote
route request protocol since this model assumes the IDL is a perfect communication
medium. Model #4 demonstrates that as long as we can guarantee to deliver IDL
telegrams within one major cycle, and service them within another, the protocol will
function safely. This model illustrates that if buffered IDL inputs timeout after one
major cycle, safety is guaranteed as the reply telegram always arrives, if it arrives at all,

Chapter 6. Distributed Control in Complex Interlockings 156

at least one cycle before the elapsed timer reaches the timeout. The second refinement,
in Section 6.4.2, shows that at the cost of implementing a priority queue (which may
be a severe cost, in a real-time setting), longer servicing delays could be tolerated.

In Model #5 the assumption that the IDL functions perfectly was relaxed, and du-
plication of IDL telegrams was introduced to compensate for occasional losses. If the
Interlockings only exchange messages once a major cycle we found that even with a
one cycle timeout for buffered IDL inputs, the protocol cannot guarantee safety. The
failure mode observed in Model #5 can be eliminated, however, by modifying the
protocol slightly so the elapsed timers do not expire before seven major cycles have
elapsed. This assertion is supported by the observation that

EastWestl; = [[din(QN](vZ.=© A [—qin(QNX]Z)

holds in the initial state (in which all sub-routes are free, and routes unset). The prop-
erty © is not invariant, however, sindeastWestl,; [~ vZ.—~© A [—]|Z. This, in turn,
is because the duplication of IDL telegrams introduces a second failure mode.

It is interesting to note that it is the defensive measure employed to provide fault
tolerance, the duplication of IDL telegrams, that leads here to a weaker safety ar-
gument. The interplay between safety requirements and fault tolerance is obviously
delicate and this can lead, in the design of robust safety critical systems, to difficult
compromises between the two. In this case, however, there seems no need to com-
promise safety in order to tolerate occasional lost IDL telegrams: Model #6 indic-
ates that the simple strategy of filtering the redundant copies received eliminates the
newly identified failure mode, whether or not it is ever likely to appear in practice.
EastWestZééﬁ = vZ.—O A [—]Z as long as queued IDL requests expire after a one ma-
jor cycle delay.

While these results are reliable for the model described in here, it is important to
realise that it is not fully general since only route locking in one direction over the
boundary is examined, and since it also only captures the case where there are just two
Interlockings connected via the internal data link (rather, two Interlockings that engage
in locking any particular cross-boundary route). The model is in fact easy to general-
ise if one can achieve multi-way synchronisation on the IDL transmissigs \With
SCCS, CSP, or perhaps more naturally withTbs [7] where one can model broad-
cast). In the next, concluding chapter we shall pick a number of concrete recommend-
ations for the implementation of the remote route request protocol which the formal
analysis in this chapter has brought forward. These, and the model described here and
the proofs of its properties have already played an importdatinthe internal review
which British Rail initiated in response to these discoveries in order to try and qual-
ify the risk which may arise from the flaws discussed. The results of this assessment
process are unfortunately not available at the present time.

Chapter 7

Safety in Interlocking Design

This final chapter summarises the main ideas discussed in the earlier chapters, and
puts forward some conclusions and observations that are pertinent to the industrial
usage of formal methods. Section 7.1 below considers the impact that implementing
the changes to the remote route protocol suggested in the previous chapter may have on
the system’s overall performance. The discussion in Section 7.2 returns attention to the
Geographic Data theorem prover described in Chapter 5: the data for the Leamington
Spa pilot scheme [24] were tackled using the prototype with some success, but also
some frustration since the sample data supplied to launch the project [66, 8] were far
from representative. Even so, the results here are promising. Finally, Section 7.3
concludes this thesis.

7.1 Implementing Remote Route Locking Safely

The model and its formal analysis in the preceding chapter bring forward several con-
crete recommendations for the implementation of the remote route locking protocol.
It is therefore important to consider the overall impact these might have when imple-
mented in SSI. The elements we found to be missing were a second timer mechanism
to ensure that messages cannot be delayed arbitrarily, and a filter mechanism to re-
move redundant copies of the reply telegrams. The reasons why these are important
were discussed in depth in Section 6.4. The modifications to the SSI generic program
their implementation entails are straightforward, but it is not our place here to argue
that theseshouldbe implemented—that is for the appropriate signalling authority to
decide after the results of their independent risk assessment procedures are finalised.
The preceding analysis and the observations that follow were put forward as input to
that process only:

Filter variables Introducing these involves a change to the SSI generic program, but
not in the Geographic Data. In general, an array of these is needed, one for each
(incoming) IDL telegram used to convey request codes. The required algorithm

157

Chapter 7. Safety in Interlocking Design 158

need make at most two memory accesses: when a null input telegram is received
the filter variable can be set to zero unconditionally; otherwise the filter variable
needs comparing with the current input, and resetting accordingly (note that the
test is data independent). It is important that receipt of a null telegram neverthe-
less causes the timestamps of all queued IDL messages to be adjustes, (

in the definition ofA(e, ¢) in Model #4). In the long run fewer requests will be
gueued and, hence, serviced.

Ring buffer The expiration of delayed IDL inputs requires a more complex algorithm
and data structure. If ring buffer slots are two bytes wide one byte can hold
the panel request code, the other an integral timestamp. On queuing an IDL
input the timestamp in each non-empty buffer position requires adjusting. If
an element in the queue expires the code can be set to null, and the algorithm
to remove elements from the queue should discard null values. This slows the
generic program, but only in minor cycles when 1RJ data for IDL telegrams
conveying request codes are processed. The main reference [9] indicates that
these minor cycles are otherwise very lightweight, and the overhead will be very
modest since the ring buffer has rather limited capacity. Note that changes to
the generic program are localised in the modules that manage the queue of panel
requests.

Deadlocks If the acknowledgement to a remote route request expires, the system may
enter a state in which the tail half only of the route is set. In particular, the
dummy outward sub-route will be free, so the (sub-route) release mechanism
in the protocol cannot clear the tail portion of the route as it should. We may
overcome this with a simple change in to the protocol to be implemented at the
level of the Geographic Data:

QN if @CN, E=stop then Z'| ,E=0,G'=QN \.
*AZ if E=stop ,T¢"'f then Z9“f\.

These should be compared with the rules (1) and (4) on page 147 (locking the
dummy sub-route in rule (2) is now no longer necessary). With this change we
find that:

EastWestl, |- vZ.((e0bs zout (f))tt = (Wobs 2o (f) tt) A [=]Z

The dummy inward sub-route is free in B&T whenever the dummy outward
sub-route is free in EST—a desirable property that the original specification
does not enjoy. This change can never lead to an unwanted cancelling of a route
in the other Interlocking.

Chapter 7. Safety in Interlocking Design 159

1. *QN if @CN, E=stop then Z7“*| |E=0,G=QN \.

2. *AN if @CN,FE <5 then @SN,T¢“| \ FE=stop.

3. *QM if @CM, E =stop then @SM ,T/*| ,Z"l ,E=3,G=AM \.
4. *AZ if E-=stop ,T7"'f then Z9“f \.

5. *Qz if FE=stop then Z"f G=AZ \.

6. E=stop if E>7\.

7.0 Z9w [T¢u'f E=stop then G=QZ \.

8. Tirfif Znf T,c\.

Figure 7.1: Modified rules for remote route locking and release

Elapsed timer Lengthening the timeout observed by the elapsed timers involves a
change in the Geographic Data (in th®Pdata file):

E=stop if E>7\.

Consequently when remote route requests fail there will be a (two second) longer
pause before the telegram can be reused. (There will also be a longer pause when
remote route requests succeed since the timerms WWill take longer to stop.)

Recall that the model counts major cycles, not seconds, and that the requirement
is for a minimum of seven major cycles between starting the timernsitEand
stopping it again through the above rule.

In Section 6.3.4 the protocol was axiomatised in terms of the eight generic rules in Fig-
ure 6.5. These, with the modifications suggested above, are reassembled in Figure 7.1.
However, the urge to implement any changes to the SSI generic program should be
suppressed unless a clear case can be made that the weaknesses identified in the pro-
tocol induce unacceptable risk. This requires signalling engineering judgement, not
formal methods. However, while the delays needed to activate the fault (in its first in-
carnation) are hardly credible, an unfortunate combination of circumstances may lead
to the tail part of a route being released prematurely: a long route straddling several SSI
boundaries, a glitch on the IDL, a busy interlocking with a naturally long major cycle.
Moreover, the second incarnation of the fault need not depend on poor timing proper-
ties at all—so it may in fact present the more serious hazard. That said, the signalling
consequences of the tail portion of the route being free while the first part is locked
need to be analysed in depth. At first sight, the scenario sketched in the discussion
accompanying Figure 6.2 in Section 6.1 is pessimistic since if the dynamic signalling
rules are implemented correctly the signal controlling the entrance to the route will be
green for only a few seconds before being returned to red [67].

Chapter 7. Safety in Interlocking Design 160

Guaranteeing safety is one thing, but we should also consider whether the perform-
ance of the SSI might be degraded in other ways if these changes are made. In fact, the
practice of filteringall IDL inputs could lead to circumstances where the tail portion
(in WEST) of a route remains locked even though it should have been releasgdi#
the first cancellation request fails legitimately because the timer is running but all sub-
sequent copies of the request are then filtered. Livelock in the protocol is undesirable
as it would require the signal operator’s intervention in order to ‘unstick’ the part of the
route still locked in VST (e.g, by reselecting the route, and then cancelling it again).
However, the formal model allows us to prove that the following filtesufficientfor
safety:

def

Filter(v) = gety(u).if (v =u) thenSync(0) elseSync(v)

Sync(v) = puty(v).qin(v).Sync.turn.Control

The subtlety here is to filter only the second of any pair of successive, non-null tele-
grams, as long as the second is identical to the first of the pair. This is simpler than
the version of the filter displayed in Model #6, and eliminates the possibility that the
two Interlockings deadlock due to filtering all low priority IDL messages. Informally,
this is because the protocol ru@z (in WEST) is guarded only by the timer test, and
WEST cannot restart the timer except in response to a route request fasm-En
general though, \&/ST can restart its timer autonomously due to a remote route request
in the opposite direction.

Finally, the elements of the model are assembled in the figure on page 161. In
principle thelmage component is given by a parallel composition of all the control
variables defined in the SSI as specified in Section 3.2, but in practice the set is lim-
ited to just those that are needed to model the protocol (those explicitly mentioned in
Figure 7.1). The set$, O, and Q are as specified in Section 6.3.3, and define the
interface to the IDL (througldl_in andidl_out) as well as the signal control panel:
{qin(v) | v € @ —Z}. The model analysed set$ = 7 andA = 1 to achieve the final
result, specialising the model toaAET and WEST which set routes in one direction
only. It is thus not possible to claim thaf = 7 achieves safe usage of the protocol
whenA = 1 in general, although this is thought to be sufficient when only two Inter-
lockings negotiate the locking of any single route. To answer the question formally,
a more powerful model checker than that in the Concurrency Workbench is needed
(although a more powerful machine may suffice in the binary case—the analysis used
a 75MHz Sun SparcStation 20 with 128M bytes of RAM, and it should perhaps be
recorded tha none of the proofs involved took more than a few hours to complete).

Chapter 7. Safety in Interlocking Design 161

getg(m).E(m) + putg(n).E(n) + stop.E(stop) if m=M

E(m) £ < gety(m).E(m) + putp(n).E(n) +syncE(m+1) #f0<m<M
getg(m).E(m) + putg(n).E(n) 4+ sync.E(m) if m = stop
G(u) = get,(u).G(0) + puty(v).G(v) ue O
Empty = get,(v).if (v=0) thenidi_out(0).Empty elseO'(v)
O'(u) £ idl_out(u).turn.O(u) -+ idl_out(0).turn.O(u) ueO—{0}
O(u) £ idl_out(u).turn.Empty -+ idl_out(0).turn.Empty ue O —{0}
w | din(e).Q(app;(e, q)) if ¢ =[]

Qlg) = ¢ _ .

{ ain(e).A(e, q) + set(e’).Q(q") if ¢ =1[e,|{]

Ale,q) = if (e € I) thenQ(app,(e, age(q))) elseQ(app,(e,q))

H(u) £ get,(u).H(u) 4 puty(v).H(v) uel
Filter(u) = gety(v).if (v =u) thenSync(0) elseSync(v) u€el
Sync(u) £ put, (u).qin(u).sync.turn.Control uweZ

Control £ set(Q).(C[PRR* Q)]Control) + - - - + idl_in(v).Filter(v)

ssI = (Control | Image | Q([]) | E(0) | G(0) | O(0) [H(0))\L

(e.q) q if e =0o0rlength(q) =1
appi\e,q) =
: app(e, q) otherwise
wpleq) = [idla(e) | 4] if g =]
’ e[app(e,q)] i g =1e}|q]
q if g =]
age(q) = age(q") if g =le,|¢]andn =1
len-1age(q)] if g=l[en|q]andn # 1
] () EA ifeel
3 e =
8 €o otherwise

Figure 7.2: Final version of the Internal Data Link model in CCS

Chapter 7. Safety in Interlocking Design 162
7.2 Leamington Spa

The Leamington Spa signalling scheme was the first in Britain to use Solid State Inter-
locking. The layout is moderately complex, covering about 15 track kilometers, with
48 track circuits, 15 sets of points, and 35 signals. The SSI needs 96 sub-routes (a
further 14 sub-overlaps), but there are 71 routes (including main routes, warner routes,
and call-on routes). Unfortunately no scheme plan for this interlocking was made
available so the invariant had to be deduced from the data. Several track circuits had
sub-routes defined through them only in one direction, and were therefore ignored, but
several others had six or eight sub-routes and sewexalterms were used to specify

all mutually exclusive combinations. TheklX | = 44, |PT| = 30, and|RT| = 137

after simplifying and eliminating all inconsistent paths according to the algorithm dis-
cussed in Section 5.3.3. However, without reference to the scheme plan it is difficult to
simplify the proof by the method implemented in Section 5.5.3 (which requires a given
decomposition oF), so we proceed below without the aid of decompaosition.

7.2.1 Strengthening the Invariant

The sub-route release rules are syntactically uniform, and easy enough to convert into
HOL syntax. Taking the quadratic complexity measure claimed in Section 5.5 seri-
ously, with the parameters defined above, we should expect the theorem prover to batch
process the data in about two hours: in fact it took three and a half hours, which sug-
gests coding inefficiencies in manipulating very large terms in HOL cannot be ignored.
There were two rules rejected: one of these turned out to be due to a specification error
(a spurious route variable was introduced in hand coding the invariant), but the other
appears to be due to a genuine omission in the conditions for the rule. Without access
to the scheme plan or control tables for the route(s) in question it is not possible to
determine whether or not this is deliberate.

Only a handful of rules from the route request data were analysed. The first tried,
*QR41(3M) in Figure 7.3, was selected due to its complexity. There are seven points
along the route, and hence seven points tested in the condition. In Section 5.5 it was
noted that eacl®, crf (or cnf) test doubles the proof due to the implicit disjunction,
making the efficiency odPRRTACrather poor. In fact the theorem prover could handle
this rule without decomposing—with modest space requirements (circa 30M bytes),
but ‘overnight’ (circa 9 hours).

There is, however, a simple observation that allows us to sidestep the extraneous
exponential complexity incurred through points “free to move” conditidribe points
are controlled normal (respectively, reverse), they should be free to move normal (re-

Chapter 7. Safety in Interlocking Design 163

*QR41(3M) if R41(3M) a , P221 cfn , P222 cfr , P223 cfn ,
P224 cfr , P225 cfr , P228 cfr , P231 cfn , U7DA f
then R41(3M) s , S41 clear bpull , P221 cn , P222 cr , P223 cn,
P224 cr , P225 cr , P228 cr , P231 cn , U7A DI, uscD I,
U9AC | , U22BD | , U13AB |, U14A B |, U28AB | \

*QR35(2M) if R35(2M) a , R35(2W) xs , P211 cfn , P213 cfn ,
P224 cfn , USBA f , U9BA f , @OL225A
then R35(2M) s , S35 clear bpull , P211 cn , P213 cn , P224 cn,
U2AB | , U3BC | , U4AC | , USA B |, O8BAD | , @OL225Q \.

/ OVERLAP AVAILABLE (OUTER ROUTE SETTING)
*OL225A if (P225 cfn or P225 cfr) \

/ CHOOSE & LOCK OVERLAP (OUTER ROUTE SETTING)
*0L225Q (if P225 cr then O9A C |, 022BD |\

or if P225 cfn then P225 cn , O9AB | \

or P225 cr , O9AC | , 022BD 1) \

Figure 7.3: SamplePRRdata from Leamington Spa

verse) This propertyof the data may be expressed in generic terms thus:
P £ (Pcn = PFM*PN)) A (Pcr = PFM*PR))

The informal notation to refer to the “free to move” data for the points in question was
motivated in Section 2.4.2. Now, i can be proved invariantg., {P} ¢ {P}, this fact
can be used in the proof thateavesF invariant. This is because

(Pcn = PEM*PN)) = (Pcn vV PEM*PN) = PFM* PN))

and similarly in the other points setting—since, in particulas> ¢) = (pV ¢ < q).

To pursue this, we strengthen the invariant and p{&veF } ¢ {PAF} since the desired
rewrite rules (the antecedent in the above implication) can be deduced on-the-fly from
the verification conditions which will now have the fortht- PAFAb = (PAF)[0/Z].

As before,b is the guard in the commang if any. Although this introduces still
greater complexity to the invariant, the proof becomes easier because the disjunctive
term b can be simplified prior to the case analysisb. For the rule cited earlier
from the Leamington Spa scheme this strategy improves the performance twentyfold
(28 minutes). Of course, failure to pro¥eA F invariant does not imply is variant

(the problem may be witP). However, we can check whethéP} ¢ {P} when the

proof fails: fortunately this proof does not incur the same penalty in time complexity
because the formula is much simpler tlafthe same set of rewrite rules can be used

to simplify b).

7.2.2 Swinging Overlaps

Dealing with extraneous complexity due to points tests in the panel route request data
is one thing, but there also arise disjunctive tests in these data that cannot be avoided.

Chapter 7. Safety in Interlocking Design 164

SB S?
b 1 b a| _ b _
1 1
@9@J ’ @9@J
SG SQ

Figure 7.4: The overlap beyond; for main routes up to this signal extends over the points
P; normal (for a longer overlap the poin$ can be either normal or reverse). Likewise for
routes up taSg, the overlap require®, reverse.Sub-overlap®¢c, 0¥, etc, lock the overlap
when the route up to the signal is locked.

The example to illustrate this point, which is the last we shall address here, concerns
overlaps There is often an overlap, or a choice of overlap, associated with the route(s)
up to a signal that should be locked when the route is set. For routes terminating at
for example (see Figure 7.4), there may be an overlap which extends some distance into
the track section immediately beyond the signal—no overlap is needed if the signal is
placed at a sufficient distance from the end of the track section. For routes terminating
at.S; there will be a choice of overlap if the poink are close to the signal, since they
arefacingthe direction of traffic up to the signal. Although not part of the rqaeese
the overlap is locked with it in order to protect other traffic against a train overrunning
the signal at red.

The scheme in Figure 7.4, modelled oaE-WEST with the pointsP; having
been rotated, supplies the necessary intuition to understand the second Leamington
Spa example. The route request data/foy (say), and the point&; will be extended
with tests on the sub-overlaps. Suppose that there are no overlaps required for routes
up to the opposing signals{ and.sS,), then

*Q75 if Pycrf |, Pyenf [Tgof [Thof

then R..s,P,cr , Pyen , Tgel Tl Tl 081 \ .
*P3N Tyc,Tgef T O f \
*P3R Tyc,Tgf JT5f ,08°f \

The (sub-)overlap release conditions will not be described here, but from these rules
we may observe that while the overlap is lockégqI) it will not be possible to lock

Chapter 7. Safety in Interlocking Design 165

a route fromS,. Expressed as invariants, the overlap locking conditions are thus:
MX[Og¢, O] A PTen(Py, [Og]) A PTer(Ps, [05°])

(recalling the macros in Section 3.3). Moreover, one shouldfadd = Og°l , that
is RT(R;5, [0§°]), since this will be specified in the control tables for the scheme.

Now PRRTAC can deal with such simple circumstances where the route and its
overlap are locked in a single action, but the second example cited earlier (the rule
*QR35(2M)) extends over points that are facing the route’s exit signal. With respect to
the scheme in Figure 7.4 the corresponding interlocking logic is expressed thus:

*Q75 if Pycrf |, Pyenf [T¢f Tf @OLAP-A
then R..s,P,cr ,Pyen [Tgel [T T2 01 ,@OLAP-L \.

*OLAP-A if (P,enfor Pycrf) \
*OLAP-L if P,cr then Of°l
else if Pycnf then Pyen 091 else Pycr ;0491 \\\

Here anevaluation sehas been used to specify the conditions for the longer overlap
which will be shared by several routes; similarly, #seecution setocks one of the
overlaps (with a preference for that ovBy reverse). However, the “free to move”
conditions forP, do not test the sub-overlap@{® or O5¢) in this example because the
overlap selected may have to be changgdr the route is locked:

*P2N Tyc,Teef [Tof \
*P2R T c,Tff TPef \

This can happen, say, because the normal overlap through these points was locked with
the route, but at a later time an onward route fréfrover these points in the reverse
direction requires to be locked. The signalling action to achieve this is called)jing
the overlap

The MX andPT properties for these longer overlaps may be defined in analogy
with the simpler example above and, modulo the discussion in Section 5.3.3 about
diverging routes, we have in particular:

MX [0207 Ozb] ANRERIA RT(R757 [Ogc) Oib]) A RT(R757 [Ogc) OZC])

If F is extended in this way tB’, there are two problems which emerge in attempting

to prove{F'} PRR*Q75) {F'}. Before discussing these, first note tt@OLAP-Lis

in sequence with the assignments made in this command, and that the overlap is con-
sequently locked in two actions. The overall form of the term in the goal is that of a
sequence nested in a conditioniél:(b, ai;ife (be, as,ife (b3, as,a4))), which gives

Chapter 7. Safety in Interlocking Design 166

rise to four nontrivial verification conditions (and one trivial one). Now this proof goal
degenerates into the two subgoals

T {F}if Pyerf ... then ... O {F}

7+ {F'} PRR*OLAP-L) {F'}
because the heuristic implemented/@TAC(by SEQTAC, in Section 5.2.3) movels
before the seconifl statement.

e However, it is not hard to see that the first of these subgoals cannot be proved

since, in particularRT (R, (04, 05]) (part of F') does not necessarily hold
at the intermediate point. With some reprogramming we can circumvent this as
follows:

T {F}if Pyerf ... then ... O¢I{F A B}

7+ {FA B} PRR*OLAP-L) {F'}
where B carries through to the second step of the proof all of the information
in the guard (and the command) in the first parb+A a,’ in this instance. But
it turns out that- A B alone is, in general, too weak for the second part of the
proof; the syntax-driven heuristic to counter this is fragile, but in this case drops
RT(R.s, [08,0%)) andRT (R, [0, 0%]) from F'.

e The reasoning above would be adequate for the Leamington Spa data but for
the second problem which is thff'} PRR*OLAP-L) {F'} cannot be proved.
Ultimately, this is becaus®X [04¢, 0%°] cannot be proved invariant (similarly
PTen(Py, [05]) andPTer (P, [03%])). We can falsifyMX [03¢, O] whenO5¢ 1
and the preconditions fdt,, are satisfied, iIPFM*P2N) is satisfied, buP, are
neither controlled normal, nor controlled reverse. The proof is possible if one
assumes’, cn or P, cr , butin the absence of this constraint there is insufficient
information in the “free to move” conditions for these points when the test is to
select an appropriate overlap. Thus, the problem isbatO3¢, O$°] cannot be
proved invariant in principle, rather than just in practice, because these points are
part of a swinging overlap.

However, althoughMX [Og¢, O] is a safety critical property, it is apparent that
MX [O%¢, 0%] is not since these sub-overlaps do not have a (points) lockileg—+"
neither sub-overlap through, is tested in any geographic condition for the scheme in
guestion.One can reasonably ask, therefore, what is the purpose of the sub-overlap(s)
through7,? The answer is that they serve no purpose—and this is also t@228D
(see Figure 7.3) in the Leamington Spa data. (However, these variables would have
an interlocking function if, for instance, routes up $9 also required an overlap—
the conditions for selecting such an overlap would need to chgek , 05 f before
proceeding locking)}?, say.)

Chapter 7. Safety in Interlocking Design 167

In summary, therefore, the invariant for the Leamington Spa data is the conjunction
P A F, whereF extendsF with the MX, PT, andRT terms for the fixed overlaps,
but only theRT terms for the swinging overlaps (there is only the one mentioned, in
fact). ImprovingyC TACso that it pushes information forwards, the analysis proceeds
slowly since no decomposition has been used. The rules cited in Figure 7.3 represent
the most complex proofs conducted. The latter is the more computationally demanding
because there are effectively four verification conditions to prove (these examples took
approximately 28 minutes and 94 minutes respectively).

7.3 Conclusions

In summing up, there are several broad categories of observations that can be made
here, or recalled from earlier summaries at the end of individual chapters. These con-
cerntheorem provin@nd theorem provers in general; the pivotal issusephanticas

a means to realising formal proofs of Geographic Data invariamstel checkingand

the models we must build and validate when designing complex systems. There are
naturally some ramifications for the railway signalling industry (in particular) which
cannot be ignored. These are set out in the sections to follow.

7.3.1 Theorem Proving

Developing a theorem prover for Geographic Data from scratch is a major undertak-
ing, and not one to be readily embarked upon by engineers in the railway signalling
industry themselves. This is a task for mathematicians and computer scientists with
a flair for formal logic, but such people are unlikely to produce tools useful to rail-
way signalling engineers if, as one would expect, their work is conducted without due
awareness of the practical problems faced in interlocking design. But the specialisa-
tion of an existing tool to a particular class of problems to solve is much less daunting;
while still not easy perhaps, it gives one a real opportunity to carry out the technical
development of the theorem prover in an environment that is informed by the engineer-
ing issues at hand. This approach to checking safety properties of geographic data has
the merit that one quickly obtains a prototype with which to explore certain pertinent
considerations—such as which properties can be proved, what representations of the
data are appropriate, and which theorem proving strategies are likely to be fruitful.

Now the proof sketches in Chapter 4 notwithstanding, the discovery of the tactics
needed to guide the theorem prover is very much an experimental process—not least
because one needs to get a feeling for how the underlying algorithms massage the goal.
Such feedback is of course invaluable, when the proof fails, because of the incomplete-
ness of higher-order logic. But those same sketches (Propositions 4.4 and 4.5) are, it

Chapter 7. Safety in Interlocking Design 168

goes almost without saying, very much more valuable to anyone who wishes to under-
stand why+ {F} ¢ {F} is true: the sketch renders the proof intelligible (to the reader)
in a way that the tactic can never do—since the reader, as opposed to the programmer,
has not benefited from experimenting with the theorem prover to discover the tactic in
the first place.

Yet is it not the theorem itself which is important? Indeed, but in fact there are
three essential elements in our proof methodology for Geographic Data:

1. Aproof sketch such as that for Proposition 4.5 which explainskilsyinvariant.
This will be convincing evidence for the certifier, or other responsible party, who
must ultimately pronounce the SSI installation ‘safe’. Note, in passing, that
this is a mathematical argument at the first level of Rushby’s characterisation of
formal methods (page 5, and [83, pages 15-21]).

2. Atactic—a proof script that is really no more than a sophisticated program—that
guides the mechanical edition of the the invariance proof. There is no require-
ment that the tactic correspond exactly, or even approximately, to the informal
sketch. (For the recordt§RRTAC was greatly influenced by the proof of Pro-
position 4.4, buPRRTACwas hardly influenced at all by the proof of Proposi-
tion 4.5.)

3. The theorem {F} ¢ {F}, for eache, and the formal proof (which shall remain
inscrutable). This represents thard evidence that is safe with respect t6;
the certifier need only verify that the formal proof exists.

Lest the reader be confused, it is worth pointing out that it is not necessary to provide
a rigorous (level 1) argument to support every formal praef, (for eachc); it is only
important to select a representativeas in Chapter 4, and to convincingly show why
each property, likMX, is invariant.

The problem with this vision of adapting general purpose theorem provers like
HOL to specific application domains, is that the tools do not tend to be optimised for
non-interactive use. In particular, HOL suffers a well-known quadratic time penalty
when translating between different representations of the terms of the logic; this pen-
alty becomes debilitating when formulae become too large—it is difficult to be specific
here, but terms the size of those needed in the safety proofsHfiorRNTON IN. are
probably ‘too large’. However, such term translations are not strictly required for non-
interactive theorem proving. So, could we not then abandon the need to interact with
the theorem prover, or abandon our adherence to HOL? As we saw in Chapter 5, the
ultimate aimis to achieve full automation; however, as already emphasised, there are
tangible gains to be had in active experimentation, particularly in the proof of concept
phase of the development.

Chapter 7. Safety in Interlocking Design 169

Switching to a more efficient platform is obviously appealing. PVS [77] is an at-
tractive alternative because its designers have carefully integrated many decision pro-
cedures for arithmetic and first-order logic. These make swift work of what in HOL
would be several minor proof steps, so the granularity of the (interactive) proof is
somewhat coarser in PVS than it would be in HOL. Whether this has a dramatic effect
on non-interactive efficiency remains to be established. However, a problem with PVS
is that it is not an open programming system, and it is considerably more difficult to
specialise the theorem prover to application specific task. Also, as a programmer, one
has to be very cautious not to undermine the logical integrity of the proofs because,
amongst other reasons, Lisp does not enjoy the type security of ML. This is not to say
that PVS is poorly structured: on the contrary, it is extremely well designed, but being
highly optimised for the convenience of the interactive user it is simply more difficult
to modify as a result.

In the end, while theorists and their acolytes can argue the relative merits of fully
expansive theorem provers like HOL, against agglomerations of decision procedures
like PVS, such systems (or more realistically their commercial successors) will never
be used in anger by industry if they are cumbersome, or inefficient. Let us therefore
summarise the main point which is that

o flexibility and openness in interactive use, and

¢ efficiency in non-interactive symbol manipulation

are essential features of a theorem prover for higher-order logic that is to support ap-
plication specific refinements in a convenient and practical way. If general purpose
theorem provers like HOL succeed to a next generation, designers might like to reflect
beforehand that their customenrdl tend to have specific applications in mind!

7.3.2 Semantics

The foundation of any formal approach to verifying properties of Geographic Data—
even ifformalis only taken to meamachine checkedis the semantics of GDL. One
could argue, perhaps, that this language of sequential and conditional statements is too
weak to make a big issue out of its formal definition, but this attitude is complacent at
best. There are many reasons why formal semantics are important:

¢ they constitute a succinct and unambiguous reference for the language;

e being mathematically precise they redress the otheradskeoccharacter of its
definition and natural language description;

¢ they provide a stable basis from which to extend (or even simplify) the language
when the need arises, with consequences that are predictable;

Chapter 7. Safety in Interlocking Design 170

e One can use the operational semantics to judge the correctness of the interpreter’s
implementationi(e., as a specification of its functionality);

e one can precisely identify the functionality to encode in the byte compaler (
whether it should only perform a one-to-one mapping at the level of syntax);

e and it becomes possible in principle, which would not otherwise be the case, to
state and prove properties of GDL programs.

In Chapter 5 we used the formal (denotational) semantics to define our Geographic
Data checker. But even if this particular verification approach is rejected, one could
still use the operational semantics to define the finite state machine whose properties
can be checked, with the additional reassurance that the control interpreter implements
the very same machine—witness the construction in Chapter 3.

The focus on semantics raises the central question of their validity. Neither the
denotational semantics in Chapter 5, nor the operational semantics in Chapter 2, claim
to be definitive—the objective has been primarily to demonstrate how the semantics
issue can be approached, and why it is important. However, while both accounts of
the language are thought to be reasonable, their validity will still have to be estab-
lished through experimentation—that is, essentially, through simulation—since they
have been defined long after the language’s original conception.

The question of validity can be approached in part formally by demonstratiog a
respondence theoreta relate the operational and denotational semantics of GDL; one
often wants to prove the semantics are in equivalence, but weaker relations like con-
tainment are also interesting. The absence of such a theorem from this thesis is perhaps
an error of omission, although that was never one of its goals. In any case, much of the
work needed has been done in the theorem (Theorem 2.1) at the end of Chapter 2. The
missing step is to show that the operational interpretation of the Geographic Data with
the map search convertedifethen-elsenormal form, coincides with the denotational
interpretation of Section 5.2. Unfortunately, to prove equivalence, it will be necessary
to give a more precise denotational account of the ‘inversion’ of the control bits when
they are assigned in points memory—compare Section 5.3.2 with 2.4.2. The equival-
ence proof would provide indirect evidence that the semantics are valid, but at the very
least it would demonstrate that they are mutually consistent.

Whether or not one proves that the operational and denotational semantics coincide,
the gquestion of validity remains. It is pertinent to ask, therefore, whether our HOL im-
plementation of the Geographic Data theorem prover would be seriously compromised
if the formal semantics did need to be revised? Well, if it turns out that one of the rules
in Figure 5.1 is incorrect this may effect the derivation of a few of the underlying the-
orems, but only as far a&C TAC. On the other hand, if it turns out to be unsatisfactory

Chapter 7. Safety in Interlocking Design 171

to maintain the separation between the theory of the semantics of the language, from
the (HOL) theory needed to represent datatypespidts then the changes may be
more far reaching (there again, perhaps not since specialising the assignment axiom
to concrete datatypes at the outset is a rather trivial change). The HOL theory of the
semantics of GDL is in fact quite robust and has already been through several painless
iterations. Of course, establishing a completely different basis for the embedding, say
via the operational semantics in the style of Camilleri and Melham [15], would be a
more significant undertaking.

In summary then, raising the issue of the semantics of the Geographic Data Lan-
guage at the outset helps to achieve the goal of providing a dedicated theorem prover
for the language. It also establishes a proof methodology that is largely independent of
SSI. This may be of considerable practical interest in the future since the next genera-
tion of solid state interlockings are already under development. The code (that is, the
data) in the current SSl installations do not need to be discarded if their semantics can
be preserved—and our proofs will of course remain valid. The corpus of Geographic
Data should be reused if possible since it is an asset (rather than a legacy, or something
to be ashamed of) if it has demonstrated that it is trustworthy through being used.

7.3.3 Model Checking

The question of validity arises again in the model developed through Chapters 3 and 4
(to examine safety properties of Geographic Data), and through Chapters 3 and 6 (to
investigate the remote route request protocol). In the first case this is ameliorated to
considerable extent by the fact that the construction in Section 3.2 is derived directly
from the operational semantics set out in the preceding chapter. (In the interests of
historical accuracy it is perhaps fair to note that the CCS construction in fact came
first.) But the CCS model admits much more behaviour than does the SSI (with its
data), so one still has to defend the choice of model. Well, the arguments put forward in
Chapter 3 will not be rehashed here: it suffices to note thaiginvariant in the chaotic
model, we can conclude that it will also be invariant in the more orderly environment of
the railway—giventhat we accept the semantics, or translation, by which the model is
derived. That is to say, the abstraction is conservative with respect to safety properties
such ag~. This ‘trick’ of abstraction, where one relaxes the environmental constraints
that are present in the system one is modelling, is perhaps the most common modelling
device to be found in the systems verification literature.

Our further development of the CCS model in Chapter 6 to investigate the remote
route request protocol was a more conventional exercise in modelling and analysis. Itis
pertinent to ask, though, how the error in the design was found in the first place? From a
methodological standpoint it might perhaps have been more satisfying to report that the

Chapter 7. Safety in Interlocking Design 172

(first) flaw was discovered only after a suitable model of the inter-SSI communications
had been built and probed for conformance to the stated requirements. However, the
formal methods approach to system verification seldom works in quite this way. In
fact, this design error was revealed during grecess of modelling the protocas

an indirect result of the deep introspection needed to write down the eight axioms in
Figure 6.5. One can think of this loosely as ‘during the specification stage’ of the
design of the process—since the analysis was condpcistchoc

On the other hand, the second logical flaw in the protocol was indeed found dur-
ing verification, and actually remained hidden—and unsuspected—until the supposed
repaired model failed the safety proof. This experience very clearly illustrates how
design dependability is at once improved by the attention to detail needed to produce
a formal specification, and how one’s confidence in the design is both deepened and
justified by submitting the formal specification (the model) to the exacting analysis
needed to prove that it meets its requirements. These activities encourage one to ‘look
in all the corners’ in order to explicitly state one’s assumptions about the environment
in which the device is to operate, and to explore all of its possible behaviours within the
confines of the model. There are both tangible and intangible results, or rewards, from
pursuing these technical developments (which in our case of the remote route request
protocol really did unfold in the manner described in Chapter 6). The tangible result is
a greatly ruggedised description of the system design; the intangible results are present
in our deeper understanding of the device to be built—its aims, how it works and, most
importantly, why it functions as it does (safely, in the end).

As long as one has the patience to experiment a little in order to find the right level
of abstraction, process calculus is an excellent mathematical formalism with which to
model systems in general, but especially communication protocols. Being essentially
algebraic in character, process calculi are much more than finite state machines with
syntax. The subtle interplay between syntax and semantics (for CCS in particular) is
perhaps the key which allows one peesentwhat would otherwise be a monolithic
state machine as a collection of cooperating agents. Such object-oriented decomposi-
tions, tightly bound to one’s design intuitions, are a great boon for systems enginnering.
Yet while building such a formal description of a complex system and formulating its
mathematical properties is a highly skilled activity, checking that these properties hold
of the model is best left to a machine. But a substantial amount of the skill (and energy)
of the modeller is invested in expressing the model in such a way that the machine—in
this case a model checker—can complete the task at all. This is not as it should be:
tools such as the Concurrency Workbench should support, more than they dictate, the
level of abstraction at which one operates.

It is not wholly fair to ridicule the CWB for its inefficiency in the face of chal-

Chapter 7. Safety in Interlocking Design 173

lenging industrial problems. Explicit (graph) representations of finite state machines
give one a rich choice of analysis methods, but one soon runs into the ‘state space
explosion’ problem. With hisecondmodel checker [13], Clark handled this problem
with seeming dexterity by representing the model symbolically instead: this innov-
ation works well enough for hardware verification where states are bit vectors, but
BDDs have yet to establish their utility in modelling software and systems in general.
Nevertheless, Taubnet al. [32] at Siemens have, acknowledging the power of CCS
as a modelling paradigm, developed successful (in-house) industrial prototypes having
CWB functionality by exploiting symbolic representations of the transition relations.
Commercially supported variations on the theme can be had in FDR (Formal Systems
(Europe) Ltd.) for CSP, and (recently) in thetostoolset.

There again, the CWB itself was never built as an industrial prototype for CCS,
and it should not be mistaken for one even though there are now many case studies
in the open literature where industrially relevant problems have been solved using the
tool. What these studies show, and the analysis here of British Rail's remote route
request protocol is hopefully a pedagogic example, is that for a successful application
of CCS—and through incautious extrapolation, formal methods in general—calls for a
careful balance between intellectual input and push-button verification. At present the
balance may be weighted too heavily in the direction of intellectual effort. Yet despite
industry’s impatience, push-button verification may not be the panacea it at first seems.
For no matter how efficient model or equivalence checkers become we shall always be
able to conceive of designs that are too large to handle, and any tool’s success, if meas-
ured in terms of state counts as is the current trend, will only encourage us to tackle
more concrete design descriptions. However, when one is seeking safety assurance in
interlocking design it cannot be ignored that it is through abstracting complex beha-
viour into simple models that one achieves the necessary understanding. This cannot
be had simply by pushing buttons. Thus, there may be much that is positive in tools
that are limited if they encourage abstraction in system design and analysis—though it
is mildly embarrassing to hold up the CWB as an example of this!

7.3.4 Railway Signalling

Overall, the integrity of the interlocking depends on many distributed elements, and on
the coordination of their activities through the protocols that connect them. Firstly, the
integrity of each SSl is paramount: the Geographic Data that configure each installation
have to demonstrate conformance to the prevailing principles of railway signalling, and
that demonstration has to become an integral part of the design process. The approach
to the problem sketched in this thesis is perhaps more sophisticated than that of other
researchers in the field, but then the Geographic Data Language is markedly more

Chapter 7. Safety in Interlocking Design 174

complex than the competitors we have encountered likerSOL [88] or Vital Logic

Code [37]. Secondly, the integrity of the generic architecture is also fundamental to the
success of SSI: this has to be verified only once of course, but one has to take great care,
and expend considerable effort, to identify the requiremargsori. For the remote

route request protocol in particular, that processing all panel requests within one major
cycle is in fact asafety requiremens certainly not obvious; that it also turns out not

to be sufficient for safety illustrates the power of the modelling process, and the need
to attempt formal proofs.

When viewed from the systems engineering perspective one would expect such
analyses to be performed early in the software (and system) lifecycle, rather than after
several years in service. This begs the question, therefore, of whether the analysis
could be carried out by engineers in the railway signalling industry themselves? In
principle, of course; but in practice the successful uptake of formal methods calls for
a broadening of the skills base in the signalling community. However, as we have
seen, the problems addressed by formal methods are not first and foremost those of
signalling engineering (that is, of interlocking design), but rather those of computer
systems engineering. Clearly, with the growing interest in computer based signalling
systems the skills base in the railway signalling community is already broadening in
this direction. And it is not unreasonable, though it may yet seemwven& expect
the computer systems engineers who deign such safety critical systems to be fluent in
formal methods. In the medium term the prospect for formal methods exploitation in
interlocking design is therefore quite promising—particularly if one observes the close
correlation between interlocking logic and mathematical logic (be it first-order logic or
predicate calculus [88, 37], automata theory [48], or higher-order logic [99, 75]).

In the end, safety in interlocking design cannot be guaranteed by mathematical
analysis alone—it would be unsafe to suppose that it could be. But since the railway
is operated in the belief that adherence to the proper procedures introduces no undue
risk, we have to assemble what evidence we can to justify that belief. This naturally
calls for rigour throughout the design process. Since the control logic is now imple-
mented in computer-based technology, particularly software, formal methods can bring
unprecedented levels of confidence in the integrity of the design since formal proofs of
critical properties provide the hardest possible evidence in support of safety assurance.

Bibliography

[1] F. Andersen, K. D. Pertersen, and J. S. Pettersson. Program verification using
HOL-UNITY. In Joyce and Seger [50], pages 1-17.

[2] H. R. Andersen. Model checking and boolean graphs. In B. KriagzRrér, ed-
itor, Proceedings of the 4th European Symposium on Programming (ESQP’92)
volume 582 ofLecture Notes in Computer Scien&pringer-Verlag, 1992.

[3] H. R. Andersen. Verification of Temporal Properties of Concurrent Systems
PhD thesis, rhus Universitet, 1993.

[4] W. Atkinson and J. Cunningham. Proving properties of a safety critical system.
Software Engineering Journgb(2):41-50, 1991.

[5] A. Beveniste. Synchronous languages provide safety in reactive system design.
Control Engineering Sept. 1994.

[6] G. M. Birtwistle and P. A. Subrahmanyam, edito@urrent Trends in Hardware
Verification and Automated Theorem Provi@pringer-Verlag, 1989. Proceed-
ings of the 1988 Banff Workshop on Hardware Verification.

[7] T. Bolognesi and E. Brinksma. Introduction to the ISO specification language
LOTOS. Computer Networks and ISDN Systems, North-Hollalti25-59,
1987.

[8] A railway signalling case study for FOREST. Internal publication by British
Rail Research, London Rd., Derby, England, 1988. Issue B, ELS-DOC-4314.

[9] SSI Data Preparation Guide. Published by British Railways Board, Feb. 1990.
ELS-DOC-3080, Issue K of SSI8003-INT and supplements; British Rail Re-
search, London Road, Derby, England.

[10] J. Bradfield and C. Stirling. Local model checking for infinite state spaces.
Theoretical Computer Science6:157-174, 1992.

[11] J. C. Bradfield.\erifying Temporal Properties of Systems with Applications to
Petri Nets PhD thesis, University of Edinburgh, 1991. Available as CST-83-91.

[12] R. E. Bryant. Graph-based algorithms for boolean function manipuldéitE
Transactions on Computer€-35(8):677-91, 1986.

[13] J. R. Burch, E. M. Clark, et al. Symbolic model checkintp?® states and
beyond. InProceedings of Fifth Annual IEEE Symposium on Logic in Computer
Sciencepages 428-39. Computer Society Press, 1990.

175

Bibliography. 176

[14] J. R. Burch, E. M. Clark, et al. Symbolic model checking for sequential cir-
cuit verification. IEEE Transactions on Computer-Aided Design of Integrated
Circuits, 13(4):401-24, 1994.

[15] J. Camilleri and T. Melham. Reasoning with inductively defined relations in the
HOL theorem prover. Technical Report 265, University of Cambridge Computer
Laboratory, 1993.

[16] K. M. Chandy and J. MisraParallel Program Design: A FoundatiorAddison-
Wesley, 1988.

[17] A. Church. A formulation of the simple theory of typedournal of Symbolic
Logic, 5(1):56—-68, 1940.

[18] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-
state concurrent systems using temporal logic specificati@M Transactions
on Programming Languages and Syste&{2):244—63, 1986.

[19] R. Cleaveland. Tableau-based model checking in the modal mu-cal@dtss.
Informaticg 27:725-47, 1990.

[20] R. Cleaveland, J. Parrow, and B. Steffen. The concurrency workbench: A
semantics-based verification tool for finite-state system®rdeeedings of the
9th IFIP Symposium on Protocol Specification, Testing and Verificaiages
287-302. North-Holland, 1989.

[21] G. V. Conroy and C. Pulley. Logical methods in the formal verification of safety-
critical software. Presented at the IMA Conference on Dependable Computing,
Sept. 1993.

[22] D. Craigen, S. Gerhart, and T. Ralstdm International Survey of Industrial Ap-
plications of Formal Methods—Purpose, Approach, Analysis and Conclysions
volume 1. NIST (National Institute of Standards and Technology), 1993.

[23] D. Craigen, S. Gerhart, and T. RalstoAn International Survey of Industrial
Applications of Formal Methods—Case Studiedume 2. NIST (National In-
stitute of Standards and Technology), 1993.

[24] A. H. Cribbens. Solid State Interlocking (SSI): an integrated electronic sig-
nalling system for mainline railway®roc. IEE, 134(3):148-58, 1987.

[25] A. H. Cribbens and I. H. Mitchell. The application of advanced computer tech-
niques to the generation and checking of SSI dRraceedings of the Institute
of Railway Signalling Engineerd 992.

[26] W. J. Cullyer and W. Wong. Application of formal methods to railway
signalling—a case studylEE Computing and Control Engineering Journal
4(1):15-22,1993.

[27] R. de Simone. Higher-level synchronising devices in Meije-SCl&oretical
Computer Scien¢87:245-67, 1985.

[28] E. A. Emerson. Temporal and modal logic. Hlandbook ot Theoretical Com-
puter Scienc§96], chapter 16.

Bibliography. 177

[29] E. A. Emerson and C.-L. Lei. Efficient model checking in fragments of the
modal mu-calculus. IRroceedings of the 1st Annual IEEE Symposium on Logic
in Computer Scien¢gages 267—78. Computer Sociecty Press, 1986.

[30] R. Enders, T. Filkorn, and D. Tauber. Generating BDDs for symbolic model
checking in CCS. InProceedings of the 3rd Workshop on Computer Aided
Verification 1991.

[31] A. Fantechi, S. Gnesi, and G. Ristori. Model checking for action-based logics.
Formal Methods in System Desigh187-203, 1994.

[32] S. Fisched, A. Scholz, and D. Taubner. Verification in process algebra of the
distributed control of track vehicles—a case stufigrmal Methods in System
Design 4(2):99-122, 1994.

[33] R. Floyd. Assigning meanings to programs.Miathematical Aspects of Com-
puter ScienceAmerican Mathematical Society, 1967.

[34] M. J. C. Gordon. HOL: A proof generating system for higher-order logic. In
G. M. Birtwistle and P. A. Subrahmanyam, editov4,S| Specification, Verific-
ation and SynthesiKluwer International Series in Engineering and Computer
Science, pages 73-128. Kluwer, Boston, 1988.

[35] M. J. C. Gordon. Mechanizing programming logics in higher-order logic. In
Birtwistle and Subrahmanyam [6], pages 387—439.

[36] M. J. C. Gordon, R. Milner, and C. P. Wadswortdinburgh LCF: A Mechan-
ised Logic of Computatignvolume 78 ofLecture Notes in Computer Science
Springer-Verlag, 1979.

[37] J. Groote, J. Koorn, and S. van Vlijmen. The safety guaranteeing system at sta-
tion Hoorn-Kersenboogerd (extended abstract)Proceedings of the 10th An-
nual Conference on Computer Assurance (COMPASSi#s)es 57—-68, Gaith-
ersburg, Maryland, 1995.

[38] A. Gupta. Formal hardware verification methods: A sunkeymal Methods in
System Desigri:151-238, 1992.

[39] W. A. Halang and B. J. Karner. Safety assurance in process contt&EE
Software pages 61-7, Jan. 1994.

[40] J. Harrison. Binary decision diagrams as a HOL derived rilee Computer
Journal 38(5), 1995.

[41] M. HennesseyAlgebraic Theory of ProcesseSoundations of Computing. MIT
Press, London, 1988.

[42] M. Hennessy and R. Milner. On observing nondeterminism and concurrency. In
Proceedings of the 7th Colloquium on Automata, Languages and Programming
volume 85 ofLecture Notes in Computer Sciengeges 299-309. Springer-
Verlag, 1980.

[43] M. Hennessy and R. Milner. Algebraic laws for nondeterminism and concur-
rency. Journal of the ACM32(1):137-161, 1985.

Bibliography. 178

[44] C. A. R. Hoare. An axiomatic basis for computer programmi@gmmunica-
tions of the ACM12(10), 1969.

[45] C. A. R. Hoare.Communicating Sequential Processdsternational Series in
Computer Science. Prentice Hall, 1985.

[46] Software for computers in the application of industrial safety-related systems.
International Electrotechnical Commission, 1994. IEC Standard 1131, Part 3.

[47] M. Ingleby. A Galois theory of local reasoning in control systems with compos-
itionality. Presented at the IMA Conference on Dependable Computing, Sept.
1993.

[48] M. Ingleby and I. Mitchell. Proving safety of a railway signalling system incor-
porating geographic data. Proceedings of SAFECOMP’9pages 129-134.
IFAC, Pergamon Press, 1992.

[49] A.Jowett.Jowett’s Railway Atlas of Great Britain and IrelanBatrick Stephens
Ltd. (Haynes), 1989. ISBN: 1-85260-086-1.

[50] J. Joyce and C. Seger, editorigher Order Logic Theorem Proving and its Ap-
plications volume 780 olLecture Notes in Computer Scien&pringer-Verlag,
1994,

[51] T. King. Formalising British Rail’s signalling rules. lIRroceedings FME’94:
Industrial Benefit of Formal Methodgolume 873 otf_ecture Notes in Computer
ScienceSpringer-Verlag, 1994.

[52] D. Kozen. Results on the propositionakalculus. Theoretical Computer Sci-
ence 27:333-54, 1983.

[53] L. Lamport. The temporal logic of actions. Technical Report 79, Digital Systems
Research Center, 1991.

[54] K. G. Larsen. Proof systems for satisfiability in Hennessy-Milner logic with
recursion.Theoretical Computer Sciencg2:265-88, 1990.

[55] S. Malik. Analysis of cyclic combinational circuitsIEEE Transactions on
Computer-Aided Design of Integrated Circyi1s3(7), 1994.

[56] K. Mark Hansen. Formalising railway interlocking systems. Technical report,
Department of Computer Science, Technical University of Denmark, July 1994.
Presented at the Nordic Seminar on Dependable Computing Systems.

[57] K. L. McMillan. Symbolic Model Checking: An Approach to the State Explosion
Problem PhD thesis, Carnegie Mellon, 1992.

[58] T. F. Melham. Automating recursive type definitions in higher order logic. In
Birtwistle and Subrahmanyam [6], pages 341-86. Proceedings of the 1988 Banff
Workshop on Hardware Verification.

[59] R. Milner. Calculi for synchrony and asynchronyheoretical Computer Sci-
ence 25:267-310, 1983.

Bibliography. 179

[60] R. Milner. The use of machines to assist in rigorous pr&dfil. Trans. R. Soc.
Lond, 312:411-22,1984.

[61] R. Milner. A Calculus of Communicating Systen$pringer-Verlag, 1990.

[62] R. Milner. Communication and Concurrencinternational Series in Computer
Science. Prentice Hall, 1990.

[63] R. Milner. Interpreting one concurrent calculus in anothBneoretical Com-
puter Sciencer5:3-13, 1990.

[64] R. Milner. Operational and algebraic semantics of concurrent processes. In
Handbook ot Theoretical Computer Sciei@6], chapter 19.

[65] R. Milner and M. Tofte. Co-induction in relational semanti¢fieoretical Com-
puter Science87:209-22, 1990.

[66] I. H. Mitchell. Proposal for an SSI data checking tool. Internal publication by
British Rail Research, London Rd., Derby. DE2 8YB, June 1990.

[67] 1. H. Mitchell, Nov. 1995. Personal communication.

[68] The procurement of safety critical software in defence equipment (Guidance).
UK Ministry of Defence, Apr. 1991. (Interim) Defence Standard 00-55, Part 1.

[69] The procurement of safety critical software in defence equipment (Require-
ments). UK Ministry of Defence, Apr. 1991. (Interim) Defence Standard 00-55,
Part 2.

[70] Hazard analysis and safety classification of the computer and programmable
electronic system elements of defence equipment. UK Ministry of Defence,
Apr. 1991. (Interim) Defence Standard 00-56.

[71] F. Moller and C. Tofts. A temporal calculus of communicating systemBrdn
ceedings of CONCUR’9®/0lume 458 ofLecture Notes in Computer Science
pages 401-15, 1990.

[72] M. J. Morley. An heuristic approach to state space reduction of communicating
parallel systems. Master’s thesis, University of Edinburgh, 1989. Summarised
in[73].

[73] M. J. Morley. Tactics for state space reduction on the CWB. Technical Re-
port ECS-LFCS-90-109, Laboratory for Foundations of Computer Science, Uni-
versity of Edinburgh, 1990.

[74] M. J. Morley. Modelling British Rail’s interlocking logic: Geographic data
correctness. Technical Report ECS-LFCS-91-186, Laboratory for Foundations
of Computer Science, University of Edinburgh, 1991.

[75] M. J. Morley. Safety in railway signalling data: A behavioural analysis. In Joyce
and Seger [50], pages 465—-74.

Bibliography. 180

[76] O. S. Nock. Railway Signalling—a treatise on the recent practice of British
Railways Adam and Charles Black, London, 1980. Prepared under the direction
of a committee of the Institution of Railway Signalling Engineers under the
general direction of O. S. Nock.

[77] S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype verification system.
In D. Kapur, editorProceedings of the 11th International Conference on Auto-
mated Deductioyvolume 607 ofLecture Notes in Artificial Intelligen¢cg@ages
748-52. Springer-Verlag, 1992.

[78] D. Park. Concurrency and automata on infinite sequencekhdoretical Com-
puter Sciencevolume 104 ofLecture Notes in Computer Sciend@pringer-
Verlag, 1981.

[79] L. C. Paulson. The Isabelle Reference ManuaComputer Laboratory, Uni-
versity of Cambridge, 1993.

[80] A. Pnueli. Applications of temporal logic to the specification and verification of
reactive systems: a survey of current trendsCimrent trends in Concurrengy
volume 224 ofLecture Notes in Computer Sciengeges 510-84. Springer-
Verlag, 1986.

[81] V. Pratt. A decidables-calculus. InProceedings of the 22nd Annual IEEE
Symposium on Foundations of Computer Sciepages 421-427, 1981.

[82] G. M. Reed and A. Roscoe. A timed model of communication sequential pro-
cesses. IProceedings of ICALP’86volume 226 ol_ecture Notes in Computer
Sciencepages 314-23. Springer-Verlag, 1986.

[83] J. Rushby. Formal methods in the certification of critical systems. Technical Re-
port CSL-93-7, SRI International, 1993. Also: NASA CR 49%itmal Methods
and Digital Systems Validation for Airborne Systems

[84] B. Sanders. Eliminating the Substitution Axiom from UNITY logi€ormal
Aspects of Computin@(2):189-285, 1991.

[85] R. C. Short. Software validation for a railway signalling systenPioceedings
of SAFECOMP’83pages 183-193. IFAC, Pergamon Press, 1983.

[86] K. Slind. AC unification in hol90. In Joyce and Seger [50], pages 437-49.

[87] G. Stimarck. A proof theoretic concept of tautological hardness. Incomplete
manuscript circulated to interested parties for review., May 1994.

[88] G. Stimarck and M. &flund. Modelling and verifying systems and software
in propositional logic. InProceedings of SAFECOMP’'9@ages 31-6. IFAC,
Pergamon Press, 1990.

[89] C. Stirling. Modal and temporal logics for processes. Technical Report ECS-
LFCS-92-221, Laboratory for Foundations of Computer Science, University of
Edinburgh, 1992. Lecture notes for thth European Summer School in Logic,
Language and Informatigrniversity of Essex.

Bibliography. 181

[90] C. Stirling and D. Walker. Local model checking in the modal mu-calculus. In
Proceedings of the International Joint Conference on Theory and Practice of
Software Development (TAPSOFT'89blume 351 ofLecture Notes in Com-
puter Sciencegpages 368—82. Springer-Verlag, 1989.

[91] C. Stirling and D. Walker. A general tableau technique for verifying tem-
poral properties of concurrent programs. Rroceedings of the International
BCS-FACS Workshop on Semantics for ConcurreWayrkshops in Computing,
pages 1-15, Berlin, 1990. Springer-Verlag.

[92] D. Syme. A new interface for HOL - ideas, issues and implementation. In T. E.
Schubert and P. J. Windley, editokigher Order Logic Theorem Proving and
its Applications volume 971 ofLecture Notes in Computer Scien&pringer-
Verlag, 1995.

[93] R. D. Tennent.Semantics of Programming Languagésternational Series in
Computer Science. Prentice Hall International, 1991.

[94] L. Thery, Y. Bertot, and G. Kahn. Real theorem provers deserve real user in-
terfaces. InProceedings of the fifth ACM SIGSOFT Symposium on Software
Development Environmentgwlume 17 ofSoftware Engineering Note$992.

[95] C. Tofts. Proof Systems and Pragmatics for Parallel ProgrammiRgD thesis,
University of Edinburgh, 1990.

[96] J. van Leeuwen Handbook ot Theoretical Computer Sciengelume B. EI-
sevier, 1990.

[97] D. Walker. Automated analysis of mutual exclusion algorithms using CCS.
Formal Aspects of Computing:273—-92, 1989.

[98] P. J. Windley. Therecords library. Unpublished, although avail-
able on-line., 1993.http://lal.cs.byu.edu/lal/holdoc/library/-
records/records.html

[99] W. Wong. A Formal Theory of Railway Track Networks in Higher-order Logic
and its Applications in Interlocking DesigiPhD thesis, University of Warwick,
1991.

[100] W. Wong. Modelling bit vectors in HOL: thevord library. In Joyce and Seger
[50], pages 371-84.

Appendix A

Glossaries

The three glossaries in the pages that follow are intended to aid the reader by filling
out some of the details omitted from the general discussion in the Introduction, and in
Chapter 2. The entries are grouped according to the following conventions:

A.1 Glossary of railway signalling terminology, describing the main components of
the railway and the control system;

A.2 Glossary of Solid State Interlocking terminology, describing the central notions
that are mainly specific to this kind of signal control system;

A.3 Glossary of Geographic Data terms, describing the organisation and purpose of
the entities in the geographic database.

The reader may benefit simply from reading these pages through in a linear fashion on
the first occasion.

A.1 Glossary of Railway Signalling Terms

APPROACH LOCKING The aspect displayed by a signal depends on the tracks in
advance (they should be clear of traffic, and all points should be locked, before a
green aspect is displayedhdin the rear. For example, a signal at green should
not be reset to red if there is a train within sighting distance of the signal—
otherwise the driver may be unable to halt the train before reaching the signal.
Approach locking is the interlocking function that maintains the displayed aspect
while a train is approaching a signal. @UTE RELEASE(A.1).

ASPECT Traffic indication displayed by a signal. For semaphore signals this is indic-
ated by the position of the arm—vertical (and thus not visible) meaning proceed,
horizontal (and often accompanied by a red warning lamp) meaning halt. An
intermediate diagonal position was introduced to permit traffic to proceed with
caution (and expect to halt at the next signal). Modern power lamp signals often

182

Appendix A. Glossaries 183

have four aspects: red, yellow, double yellow, and green. Intermediate flashing
yellow aspects introduce further speed indications. SeeSiSOIAL (A.1).

BERTH TRACK SECTION This is the track section in which a train will be stand-
ing when facing a signal at red. By analogy with a ship’s berth in harbour, it is
the ‘berth’ for all routes onward from the signal.

CONTROL PANEL A visual display at the signal control centre indicating the cur-
rent status of railway network. A schematic plan of the railway will be illumin-
ated to indicate which routes are set and to show the current position of trains.
Other indications display the on/off state of signals, and sometimes the position
in which points switches are detected. Modern technology has introduced video
display units to replace ‘mosaic’ control panels, but the principles of operation
are the same. Operators issue commands at the panel to reconfigure the network
and route trains to their destinations. Points can be moved independently by
moving a pointkey switclon the panel; routes are set by pressingonsat the
entrance and exit signals (in that order), and released by pulling the entry signal
button. Sed?’ANEL REQUESTS(A.3) andROUTE SETTING (A.1).

CONTROL TABLE Control tables list the locking conditions for each route in the
interlocking. Each route has an entry that specifies which track circuits must be
clear before the entry signal can be turned off (including overlaps, and overlaps
associated with conflicting routes). The control table also specifies the required
orientation of the points along the route, and specifies which signals control ac-
cess to conflicting routes (which should be on before the route is set). Some
railway authorities and providers of signalling equipment have abandoned the
control table as the means of specifying routes—due to the difficulty of verify-
ing that the route locking conditions are adequate.

CROSSOVER A configuration of points that permit trains to cross between parallel
tracks. The points at either end of the crossover are usually coupled together so
that they may only move in unison. SE®©INT SWITCH (A.1).

DIAMOND CROSSING A section of track where two lines cross without the pos-
sibility of allowing traffic to switch between lines. The area marked out between
the four rails is trapezoidal, hence the name!

INTERLOCKING As a noun, a generic name for the signal control system as a
whole. Interlockings may be of several types: ground-frame interlockings op-
erated mechanically, relay-based systems with electromechanical controls, and

Appendix A. Glossaries 184

computer controlled or ‘solid state’ interlockings. When capitalised, Interlock-
ing always abbreviateSolid State Interlockingn the main text.

INTERLOCKING LOGIC A term used for the logical relationships between phys-
ical entities in the railway such as points, signals, track circuits, and so on. In
SSi, this is programmed in the Geographic Data; in relay-based interlockings
this is hardwired into the relay circuitry, and in ground-frame interlockings it is
manifest in the mechanical linkages between physical components.

LAMP PROVING (CIRCUIT) A separateproving circuitis built into power lamp
signals to check that the selected aspect is in fact drawing current—this will
be the case unless both the main and auxiliary filaments in the lamp are broken.
Lamp proving therefore offers a positive indication that the selected signal aspect
is being displayed.

OVERLAP Main signals (as opposed to repeatats.) act as the exit signal for
routes up to the signal, and the entrance signal for all onward routes. The overlap
track section (and circuit) lies immediately beyond the signal. The overlap is not
strictly part of the route up to the signal, but while the signal is on it should
be kept clear of other traffic to afford protection against a train inadvertently
overrunning the signal. The overlap track circuit is distinct from the (full) track
circuit in advance of the signal. See aB@/INGING OVERLAPS(A.1).

POINTS KEY This is a switch on the signal control panel that allows the signal op-
erator to lock the points semi-permanently in normal or reverse position. The
centre setting for the points key releases control of the points to the interlocking.
See als®®OINTS MEMORY (A.3), POINTS DATA (A.3).

POINT (SWITCH) Points are mechanical devices in the railway to change the path
that trains may take through a junction. The switch positions are catied
mal and reverserespectively, the former usually referring to the mainline, the
latter to the branch. An electrical contact is used to detéet—+to give a posit-
ive indication—that the points are lying in the position to which they have been
called by the interlocking. When a route is set the points along it will be locked
(logically, but also physically clamped) to prevent their being moved again be-
fore the train has passed.

ROUTE Routes are definite paths between pairs of signals—at least on British rail-
ways, other railway authorities often define routes in different wighgn routes
are defined between consecutive pairs of main sigmedsner routes coincide

Appendix A. Glossaries 185

with main routes, but permit traffic to proceed only under cautian the en-
trance signal will typically not display a green aspec#lj-onroutes have a very
specific function: to allow an engine to be coupled to a train—since to achieve
this one must violate the safety principle that only one train may occupy a track
section at once.

ROUTE LOCKING/SETTING Before a signal can be turned off, an onward route
must be set. In the first instance, this involves checking that the availability
conditions for the route in question are med-g; to check that no conflicting
route is currently set; then the route mustlbekedso that subsequent actions
taken by the interlocking do not change these conditions. Secondly, the route
must beproved—the control system expects a positive indication that the points
along the route are detected in the required positions, for example. Finally, the
entrance signal can be turned off, but the aspect displayed will depend on the
class of route, the aspect displayed by the next signal, and other factors. See
PANEL REQUEST (A.2), ROUTE RELEASE (A.1) andROUTE MEMORY
(A.3).

ROUTE RELEASE Under normal conditions a route, having been set, will be re-
leased automatically once a train passes the entrance signal. This switches the
signal back on. As it proceeds the route is released behind the teaipn-ence
it is clear of a set of points they can be unlocked and subsequently moved in set-
ting another, previously conflicting route. Otherwise, a route may be cancelled
by the signal operator (usually in order to set an alternative route) but then the
approach locking conditions must be met. 2¢PROACH LOCKING(A.1),
SUB-ROUTE RELEASE(A.3).

SCHEME PLAN A scheme plan is a detailed drawing of the railway layout, in a
diagrammatic form, that identifies all of the physical components of the inter-
locking. In particular all signals, points, track sections and track circuits will
appear on the plan. Train control tables and Geographic Data are derived from
the scheme plan. See alE®NTROL TABLE (A.1).

SEMAPHORE Early type of signalling device, beloved of enthusiasts. The arm on
the signal post is operated against a heavy counterweight so that effort is required
to lift the arm to the vertical position. Should the mechanical linkage between
signalbox and signal break, the weight will drop the arm to the horizontal po-
sition. By convention the horizontal position means stop! The semaphore is a
simple, gravity operated, fail-safe device.

Appendix A. Glossaries 186

SIGNAL Signals control the linear movements of trains, and can give a speed indic-
ation to drivers by displaying one of a variety of aspects. A signahighen it
displays the red aspect, meaning halt; ibfs otherwise, giving drivers permis-
sion to enter the track section ahead. Signals themselves may serve a variety of
purposes: main signals for normal traffic control; route (or junction) indicators
may warn drivers to slow down due to a diversion ahead; shunt and subsidi-
ary signals have specialised functions in closely monitored situations. Signals
are capable of displaying multiple aspects: two-aspect main signals will display
either red or green aspects; two-aspect repeaters (intermediate signals between
the entrance and exit signals) will normally display yellow or green aspects, but
not red. Most modern signal installations on mainline railways use three or four
aspect colour signals, with flashing yellow aspects for finer speed control.

SWINGING OVERLAPS If there are facing points in the overlap track section there
may be a choice of overlap. For route(s) up to the signal it may not matter which
overlap is selected in setting the route, but routes in the network beyond the
signal may be unavailable because they conflict with the chosen overlap. Under
careful controlitis possible to swing the overlap—that is, to select another one—
some timeafter the route has been set. Swinging overlaps is not an inherently
safe activity (some railway authorities have outlawed the practice!) because this
involves releasing the first overlap before setting the second. In particular, the
points in the overlap will be ‘undetected’ whilst they are moved from one pos-
ition to the other, and consequently the signal should come on (display the red
aspect), but this would be unsafe if a train where within sighting distance.

TRACK CIRCUIT The track circuit is the primary safety device in the railway. Track
circuits are always identified with a track sections, though there may be several
electrically isolated track circuits in a single track section in a complex network.
A track circuit is used to detect the presence of a train in the section. A voltage
is applied across the rails, which may be detected to indicate that the section
is clear. When a train is present the voltage between the rails drops due to the
short circuit, and this registers the sectmetupiedat the control centre. Track
circuits fail on the safe side since a faulty circuit will indicate the presence of a
train.

TRACK SECTION An identified section of the railway line that is controlled by a
signal. The primitive components (segments, or parts) from which track sections
are assembled are points, diamond crossings, and plain track. Track sections are
electrically isolated from one another.

Appendix A. Glossaries 187

A.2 Glossary of SSI Terminology

(BASEBAND) DATA HIGHWAY The data highway is a bidirectional communica-
tions link between the central interlocking processor and the track-side func-
tional modules. The data highway is operated at the rate of 20 k bits per second
and uses a screened twisted-pair, duplicated for reasons of fault tolerance.

CENTRAL INTERLOCKING PROCESSOR The interlocking processor is mainly
responsible for the safe operation of the railway network. This is usually referred
to asthe SSI in the main text (occasionally Interlocking, but then always capit-
alised, in the interests of avoiding terminological monotony). The central inter-
locking processors operate in (repairable) triple modular redundancy to achieve
high levels of hardware reliability, and to afford fault tolerance. Each submodule
is identical, running identical software and having identical copies of the Geo-
graphic Data, but independent RAM devices. See GIEOGRAPHIC DATA
(A.2).

COMMAND TELEGRAM Command telegrams convey signalling controls to the
equipment at the track-side. Eight control bits are bundled together with sender
and receiver address and diagnostic data with five parity bits to form a trun-
cated (31,26) Hamming code which is transmitted in Manchester encoded bi-
polar form, adding a second layer of error protection. The eight command bits
are set up by commands in the Geographic Data. 3d¢€PUT TELEGRAM
DATA (A.3).

CONTROL INTERPRETER The SSlis a data-driven control system. In this thesis,
the control interpreter (often, just ‘the control’) is the name given to the generic
software running in the SSI, sometimes referred to as the ‘interlocking functional
program’ by other authors. This software interprets the Geographic Data, and it
is this behaviour of the program that is of most interest in this thesis. The control
interpreter has other functions, but all interlocking functions are encoded in the
data except for a few very simple operations ‘hardwired’ into the interpreter for
the sake of efficiency. See alfdTERLOCKING FUNCTIONAL PROGRAM
(A.2), GEOGRAPHIC DATA(A.3) and the discussion in Sections 1.3.2 and 1.4.

DATA TELEGRAM The Reply telegrams from track-side equipment to the SSI are
encoded according to the same format as command telegrams. Data telegrams
relay the inputs from detection devices in the track-side equipment to the cent-
ral interlocking (lamp proving, points detection and track circuit inputs, for ex-
ample). These inputs are typically copied directly to the internal state. See
INPUT TELEGRAM DATA (A.3).

Appendix A. Glossaries 188

GEOGRAPHIC DATA These data specify the logical relationships between the com-
ponents of the railway, encoding the signal control functions of the Interlocking.
Stored in EPROM (60k bytes of which are allocated, 20 k bytes of these re-
quired to hold the generic SSI software) the Geographic Data configure each
SSI installation. Data and program together achieve the required signalling
function—setting a route, releasing an overlap, and so on—but the data them-
selves can be considered a program that operates on a state that is composed of
the collection of all control variables defined for the interlocking (one for each
point switch, track circuitetc). SeelNTERNAL STATE (A.2) andCONTROL
INTERPRETER (A.2), and Appendix A.3 where different classes of data are
described.

GEOGRAPHIC DATA LANGUAGE (GDL) is a specialised design notation used
by signal engineers to encode the interlocking logic. This simple language of
assignment, sequence and conditional statements is general enough to code all
signalling functions, butit is enriched by ‘specials’ designed to shorten the minor
cycle execution time. Specials are directives to the interpreter to carry out simple
functions efficiently—such as copying an input telegram bit to memory, for ex-
ample. Se&SPECIALS (A.3), and Section 2.3.

INTERLOCKING FUNCTIONAL PROGRAM While its main function is that of
interpreting Geographic Data, the generic SSI software also: initiates all com-
munications with track-side functional modules; encodes and decodes all out-
going and incoming telegram data; performs single fault recovery; implements
the TMR voting mechanism and shutdown procedure; implements the inter-SSI
communications protocol; interfaces with the panel and diagnostic processors,
and implements all startup routines. The interlocking functional program oc-
cupies about 20k bytes of EPROM. The program is referred to asahiol
interpreterthroughout the main text.

INTERNAL DATA LINK (IDL) The internal data link is a separate communications
channel to provide inter-SSI communications. There will usually be more than
one SSI at a single control centre, 30 of which may be connected to one IDL, but
the current technology is limited so that an SSI can send (and receive) only up
to 15 eight-bit messages. The IDL is primarily used for setting routes across SSI
boundaries, and for controlling signals or points in the fringe area.

IDL TELEGRAM Telegrams sent over the internal data link convey two kinds of in-
formation. When used to carry status information between the two interlockings,
each bit in the telegram is interpreted individually—Ilike data telegrams received

Appendix A. Glossaries 189

over the baseband data highway. In these circumstances the individual bits are
used to set up dummy signal or track circuit memories in the receiving inter-
locking. The other use for IDL telegrams is to careguest codesas part of

the remote route request protocol. The eight-bit telegram is interpreted as an
integral request code which causes the receiving SSI to execute a specific in-
terlocking function from théPRRdata file. IDL telegrams can serve one, and
only one, of these two purposes. SNEL REQUEST (A.2), andREMOTE
ROUTE REQUEST(A.2).

INTERNAL STATE The internal state of the SSI represents the current status of the
railway—in the main text this is usually referred to as imageof the railway.
A collection of control variables are defined and held in RAM: up to 256 track
circuit memories are allocated, with 64 points and 128 signals, together with
logical control variables for routes, timers, sub-routes, and other binary flags.
These data represent 1,216 bytes of ‘live’ memory upon which the Geographic
Data and control interpreter operate.

MAJOR CYCLE One major cycle is 64 minor cycles. A maximum of 63 TFMs
may be attached to each SSI, the zeroth minor cycle being used for diagnostic
purposes and updating the SSI with commands from the technician’s console.
A major cycle is 64 minor cycles in duration irrespective of the actual number
of TFMs attached, with a lower limit of 608 ms, and an upper limit that should
not exceed 1,000 ms. During a major cycle all flag operations data will have
been processed once, as will all input and output telegram data, and all timers
will have been adjusted once. Timers are only accurate2e, and cannot be
updated more than once a major cycle.

MINOR CYCLE The minor cycle is the basic execution cycle during which the SSI
will process and issue one command telegram, and receive and process one reply
telegram (from the TFM addressed in the previous minor cycle). Other required
activities during the minor cycle include the processing (84" of the com-
mands in thecOPdata file, and updating/64™" of the approach locking, track
circuit and elapsed timers in the interlocking. If these actions can be completed
in under 9.5 ms the SSI will process one panel request, if any are pending. The
minor cycle has a minimum duration of 9.5ms, and should be no longer than
30 ms otherwise track-side modules may interpret the gaps in the communic-
ations as failures of the baseband data highway and enter the failure mode of
operation.

Appendix A. Glossaries 190

MODE 1/2/3 STARTUP A ‘mode 1’ (2 or 3) startup is chosen by heuristics in the
initialisation software. A ‘mode 1’ startup is the most severe, necessitating a
reset of the entire contents of RAM: all bits are cleared to zero except the techni-
cian’s controls and the elapsed timers whose contents are set to one. This initial
state means that all routes aneset all sub-routes and sub-overlaps &reked
and all timers arestopped also, all technician’s controls are applied, points are
neither controlled normal nor reverse, and track circuits are undefined. Moreover
the processing of panel requests is suspended while the system is brought up-to-
date by incoming data telegrams, and while technician’s controls are released
manually from the technician’s console. A ‘mode 2’ startup involves a similar
reset, but preserves the technician’s controls, and the system restarts automat-
ically after a four minute suspension in processing panel requests. A ‘mode 3’
startup also preserves the status of route memory, and allows an immediate re-
start. See alsSECHNICIAN'S CONSOLE (A.2), INTERNAL STATE (A.2),
and Appendix A.3.

PANEL PROCESSOR The panel processor handles non-critical duties such as hand-
ling commands issued at the control panel (or automatic route setting computer)
and passing them over to the interlocking processor, and updating the display.
Panel processors are operated in duplex ‘hot standby’.

PANEL REQUEST Signalling commands issued at the signal control panel are either
route requests, route cancellation requests, or panel key requests (to move points
‘manually’). The panel processor converts these into a stream of inputs to the
SSI—but because both panel processors are normally operational, the SSI re-
ceives and executes two copies of each request. These are stored by the central
interlocking in a ring buffer of bounded size, and processed during minor cycles
which are otherwise completed in under the minimum minor cycle time. At most
one panel request will be served in any minor cycle. SeeMISOR CYCLE
(A.2) andROUTE REQUEST DATA(A.3).

REMOTE ROUTE REQUEST Routes that straddle interlocking boundaries require
special treatment since two (or more) Interlockings must cooperate to set them
up safely. When the Interlocking controlling the entrance signal receives a panel
request for such a route, it issues a remote route request via the internal data link
to the Interlocking controlling the tail portion of the route. Only if an acknow-
ledgement to this remote request is received from the other Interlocking (within
a prescribed period of delay) will the first Interlocking go ahead and lock the
route. See Section 1.4.

Appendix A. Glossaries 191

TECHNICIAN’S CONSOLE The technician’s console allows close monitoring of
the internal state of several Interlockings at a signal control centre, and the on-
line diagnosis of faults in the signalling equipmeeti;. The technician’s con-
sole also allows one to impose (temporary) restrictions on the behaviour of the
interlocking, by applying so-callegchnician’s controls These can be applied
to routes (so that they are unavailable, and requests for them always fail), to
track circuits (so they always appear occupied, irrespective of the actual state),
to points (so they can be disabled in either the normal or reverse position), and
to signals (to override the lamp-proving input from the TFM). Of these, only the
‘availability bit’ in route memory is accessible from the Geographic Data—so
that an alternative route can be selected perhaps.

TRACK-SIDE FUNCTIONAL MODULE (TFM) These devices interface with the
track-side signalling equipment. Two types of module are provided: one to drive
signal aspects and detect lamp proving inpets; the other to drive points and
detect their position contacts. Either type of module can report track circuit in-
puts. Both signal and points modules have identical interfaces to the baseband
data highway, and are configured to respond to a command telegram with an
immediate reply (data) telegram. Track-side functional modules provide power
switching under duplicated microprocessor control—duplication here, as else-
where in SSI, being designed to mask single faults and to drive the outputs to a
safe state when unrecoverable faults are detected.

A.3 Glossary of Geographic Data Terminology

(ELAPSED) TIMER 64 bytes of RAM are reserved for 64 timers which may be used
for any purpose in the Geographic Data—but they are usually associated with
communications with other interlockings and swinging overlaps. Timers count
seconds, to an accuracy &2 s, upwards from zero to the ‘sticking’ value of
254. Timers are ‘stopped’ by setting their contents to 255: elapsed timers are
stopped and started from the Geographic Data, but incremented by the control
interpreter at most once a major cycle.

EVALUATION SET An evaluation set is a labelled block of tests on data variables
which may be referenced in any context where a test is valid (but reference and
label must be in the same data file). See &B&CIALS (A.3).

EXECUTION SET An execution set is a labelled block of arbitrary conditional code
which may be referenced in any context where a command is valid (but reference
and label must be in the same data file). See GRBCIALS (A.3).

Appendix A. Glossaries 192

FLAG MEMORY 128 bytes of RAM are allocated to flags (single bit variables).
Flags include sub-routes and sub-overlaps whose states niagkieelandfree
and general purpose latches.

FLAG OPERATIONS DATA Each command in the flag operations data fROP
data) is executed once a major cycle. One release rule is needed for each sub-
route and sub-overlap, but any other data that require to be executed once a major
cycle can be placed here.

INPUT TELEGRAM DATA One block of data is associated with each input tele-
gram received from the track-side functional modules (in/fhEdata file). The
SSl is configured so that the input telegram processed in minor eydethe
reply from the module addressed with a command telegram in eyelé (mod-
ulo 64). Input telegram data update the detection bits in the image of the railway.
IPT data are also specified for each telegram received over the IDL, and in the
special case that these convey request codes the interpreter is configured to queue
the appropriate ‘panel’ request.

MAP SEARCH Map searches (in th®AP data file) are frequently used to decide
if route release conditions are met. A map search involves a look back from a
feature reference (a signal or track circuit) for evidence of an approaching train
(i.e., an occupied track circuit).

OUTPUT TELEGRAM DATA The most complex interlocking logic is located in
the OPTdata file. One block of data is needed for each TFM addressed by the
interlocking: data for points modules are simple (one just needs to drive the
points to the position of the bit in points memory) but signal aspects are inter-
locked with those of other nearby signals and track circuits, so setting the correct
command bits in the output telegram requires a longer sequence of commands.
OPTdata are also needed for telegrams used to convey signal control data over
the IDL.

PANEL REQUEST Each input from the signal control panel corresponds to a com-
mand to be executed from the panel (route) request d&fata file). These
data list all route requests that arrive via the IDL or from the panel processor,
and all route release requests. Points ‘key’ requests allow the operator to move
points independently of setting a route over thétANEL PROCESSORA.2)
andROUTE REQUEST DATA(A.3).

POINTS DATA Points “free to move” dataRFM data file) specify the conditions
under which points may be switched, with one set of data required for each lie of

Appendix A. Glossaries 193

the points.PFM data may be called from other data files, particularly FfeR
data in deciding route availability.

POINTS MEMORY 64 bytes of RAM are allocated to points memories, each of
which contains two four-bit records (for tiermalandreversdie of the points).
The ‘controlled’, ‘detected’, and ‘key switch’ fields of each record are under
Geographic Data control, the fourth is used to disable the points and is only
accessed by the program (technician’s control).

ROUTE MEMORY 64 bytes of RAM are allocated to 256 route memories. Routes
may besetor unset this field being under the control of the Geographic Data:
the ‘available’ flag is used to disable a route and is only testable.

ROUTE REQUEST DATA The PRRdata file contains commands that are executed
only on demand, when the SSI serves a panel request. Route request data specify
the availability conditions, and locking conditions for each route defined in the
Interlocking. Availability conditions need to check that points along the route
can be moved to the required positions, and whether an opposing route is already
locked—normally, it suffices to test the opposite sub-route to the first sub-route
on the route in question, and the last sub-route on any directly opposing routes.
The points “free to move” datd@FMdata file) for each set of points on the route
should cause the route request to fail if any route is locked over the points in the
wrong direction. See ald8OINTS DATA (A.3).

SIGNAL MEMORY 128 signal memories are allocated, each requiring 3 bytes. Each
signal memory includes an ‘approach locking timer’ (one byte), an aspect code
(three bit), and a several other control flags for deciding which aspect to display,
for sequencing the distant signals, and for deciding when the signal can be turned
on, and the forward route(s) released.

SUB-ROUTE One sub-route is allocated to each path through a track circuit that lies
on a route (so one sub-route may be part of several routes). Similastih-a
overlapis allocated for each path through an overlap track circuit that is part of
an overlap. Sub-routes and sub-overlaps are boolean flags that Huskéaor
free

SUB-ROUTE RELEASE DATA These data are located in tR®Pdata file, and spe-
cify the conditions under which sub-routes (and sub-overlaps) can be released.
Usually, the first sub-route on a route requires the rouatet and the first track
circuit clear, subsequent sub-routes are ‘chained’, requiring the previous sub-
route(s)freeand the track circuitlear.

Appendix A. Glossaries 194

SPECIALS Specials are directives in the Geographic Data Language that instruct the
control interpreter to take short cuts in processing frequently occurring con-
structs. The volume of data, especially®RRand OPT data files, can be re-
duced by putting common code in an evaluation set: @special causes the
interpreter to jump to the reference. Other specials are associated with input
telegrams—typically to abbreviate the actions of testing a telegram bit, and set-
ting the corresponding memory bit appropriately. The logic that the specials
abbreviate can always be expressed in the conditional language.

TRACK CIRCUIT MEMORY 512 bytes of RAM are allocated for 256 track circuit
memories. Each track circuit may bkear or occupied Two single bit fields are
used to give this indication, and three successive ‘track circuit clear’ inputs must
be received before thdearfield is set. Each record includes an eight bit timer to
record how long the track circuit has been in the current state. The Geographic
Data can test the timer along with the status flags — often used for automatic
signals which revert to green after a suitable interval since the last train went
through (automatic signals do not have routes associated with them in the same
way as the fixed block main signals described in the main text).

Appendix B
Theory

In this technical appendix we summarise, rather briefly, the syntax and semantics of the
mathematical formalisms used throughout the main text. There is no need to be com-
prehensive here since the theories used are by now well established and understood.
This appendix is provided as a convenience, key references being cited below. Here
we discuss the main notions underlying CCS, which formed the basis of the models
developed in Chapters 3 and 6, and the madehlculus and an associated proof sys-

tem which we used in Chapters 4 and 6. Lastly, the proof tactics described in Chapter 5
are assembled in Appendix B.3.

B.1 Calculus of Communicating Systems

The Calculus of Communicating Systems is an an algebraic theory intended to de-
scribe communication between, and computations of, abgiracesses The theory
developed in [61] tookbservation equivalenaess the basis of deciding when two pro-
cesses are to all visible intents, equivalent. The theory of observation equivalence was
refined by Park [78] who introduced thmsimulationproof technique which is now
fundamental to the theory. The equational theory of CCS is formulated on a refined
notion of observation equivalence, that of observation congruence [64]. In [62] Mil-
ner has brought the theory up to date, the exposition being based around a wealth of
examples.

CCS is not unique in what it sets out to achieve: it has spawned numanamess
algebrasthat develop the theory in different directions. Of special note is Hoare’s CSP
which was developed independently of CCS [45]. CSP also takes as primitive the idea
of indivisible action representing communication, but differs slightly in the semantics
of the interaction between processes, as well as in its notion of equivalence.

195

Appendix B. Theory 196

PP Q>qQ
a.P % p P+Q %P PrQ S q
P p Q-5 Q' PSP Q-%(qQ
PlQ—=P|Q PlQ—=P|Q PlQ=P|Q
P-4 P PP aadl PP AZP
P[f] fl@) P'[f] P\L -+ P'\L A% P

Figure B.1: Transition rules for pure CCS

PURE CCS

In CCS, computation and communication are both abstractly representettibgs
Let A = Aw {7} be a set of actions; being a distinguished so-called ‘silent’ action.
A is a set oflabelshaving two disjoint subsets\™ is a set ofnamesandA~ is a set

of co-namesWe leta, b, c. .. range over namesg, b, ¢, . .. range over co-names, and
a, 3 range ovetA. If [€ Ais alabel, then its inverse Isc A, and for any label = 1.
From this alphabet terms, agent expressiorare constructed according to the syntax:

P:=0 | aP | P+P | P|P | P\L | P[f]

Informally, O represents a stopped or deadlocked computatioR;can perform
actiona and will then behave a®; P + () represents choice—the agent can evolve
either asP or as@); P |) represents the parallel interleaving of the action® @nd
@Q; P\L is restricted in its visible behaviourf2cannot communicate via actions in
the setl; finally, P[f] behaves just aB, but the actions are renamed according to the
bijection f : A — A. Relabelling functions have the property thfat)) = f(a); we
can extend the domain td, but insistf(7) = 7 for all f.

More formally, the semantics of CCS terms are given with respectlabelled
transition system(P, A, { — | a € A}). Ais a set of actionsP is a universal set
of processes (or states), and for eack A, - C P x P is a labelled transition
relation. The transitional semantics are then specified by the rules in Figure B.1. The
last of these rules introduces the principle of definitior4 ils defined to be” then A
behaves exactly aB does. Definitions liked £ P are a means to introduce non-finite
behaviour to CCS terms (because tiomstantA may appear in the bod). Another
way is to explicitly introduce recursive termBix (X. P) whereX may appear free in

P. The rule forFix is
P{Fix(X. P)/X} = P

Fix(X.P) = P
The two recursive forms are equivalent: the latter is more satisfactory in proofs, the
former much more convenient in specifying models.

Appendix B. Theory 197

VALUE PASSING

Pure CCS describes only synchronisations between abstract agents. Whether one
thinks ofa. P as output and. P as input, or the other way around, is immaterial. The
value passing calculus has a richer syntax since we think of values being communic-
ated over channels, but it turns out to be no more expressive than the pure calculus.

If we let V' be some domain of values, the parameterised actienrepresents the
communication of the value € V' of the expression over the channel. On the other
hand,a(x) will bind the value received oa to the (value) variable.

The syntax and semantics of the value passing calculus are given in the following

translation table:

[a(z).P] = ¥,ev av.[P{v/z}]
[a(e).P] a..[P]
[SCier Pl = ZieslPl
[P Q] [P]][]
[P\L] [P]{l, |l € AveV}
[PLf] [PIIf] wheref(L,) = f(1).
[if (b) then P] — { [P] 116 =te
0 otherwise
[A(@] = Aa

In translatinga(z) therefore, a distinct actiom, is created for each value € V' the
parameter: may take. The outpui(e) also becomes an indexed action—this time
the complement ta. will be a member of{a, | v € V}. Note that the indexed
sum>_,c; P, generalises the binary sum given earlier. The index set may be finite or
infinite. We may also admit the notatidf,., /; as long agd/ is a finite set, but note
that synchronisations between parallel agents are always pair-wise, by the third rule
for composition.

A(é) denotes a parameterised agefity) = P being the appropriate definition.
Only the value variableg may appear free ii?. The two-armed conditional is defined
in terms of the simpler guarded command:

(if (b) then P)+ (if (—b) thenQ)
Some examples should help to clarify the translation mechanism.

Example B.1 Recall the definition of a register, from Chapter 3:

def

Reg(z) = get(r).Reg(r) + put(y).Reg(y)

Appendix B. Theory 198

If we suppose that the values are bindsy= {0, 1}, this definition will be translated
into an indexed set of pure CCS definitions:

{Reg, = get,.Reg, + X5 put,.Reg, | v € B}

Hence:
Reg, « get,.Reg, + put,.Reg, + put,.Reg,

def

Reg, = get,.Reg, + put,.Reg, + put;.Reg,
&

Example B.2 For a second example, recall that in translating Geographic Data into
CCS in Chapter 3 we obtained a term like:

getp(v).if (v =cn) then P else@

for suitable (unparameterise®)and(). See Figure 3.4 on page 55, for instance. The
data domain for points we considered there was{ust cr }. Then:

lgetp(v).if (v=-cn) thenP elseQ] = getp,,.[if (cn =cn) then P elseQ)]
+ getp, .[if (cr =cn) then P else Q]
= getp, . [P] + getp, .[Q]
which is justgety,, .P + getp, .QQ since P and@ are simple constants. In the main

body of the thesis this term is writteget,(cn). P + getp(cr).() simply to avoid an
unreadable profusion of subscripts. &

BISIMULATION

Of central importance to the development of the theory of CCS is the notibisiof-
ulation. Intuitively, two agents or states in a transition system, are bisimilar if each
can simulate the other—that is, every action of one agent is matched by some action
of the other in such a way that the resulting states are also bisimilar. This is succinctly
captured by the following:

Definition B.1 A binary relationS C P x P is astrong bisimulation if PS(Q implies
forall o € A:

1. if P % P'thenQ -% Q' with P'SQ’ for some(’, and
2. if Q = Q' thenP = P’ with P'SQ’ for someP".

We say that two agent8 and @ arestrongly bisimilar, written P ~ @, if PS(Q for
some strong bisimulatiof. O

Appendix B. Theory 199

P ~ (is considered a strong equivalence relation (a congruence with respect
to the operators of the language), as it gives no special status to the silentzaction
A coarser equivalence, more useful in practice, is obtained by considering only the
visible behaviour of an agent. We may define @rservationusing the transitive
closure of ther relation: P(—)*P’, which is normally written? = P’. Then
fora € A, P == P'is defined by composing—= on the left and on the right by
—: P = % = P’. Finally we define the visible content of the observation by
P2 P’, which denotes® =— P’ whena = 7, andP == P’ otherwise. This leads
to:

Definition B.2 A binary relationV C P x P is aweak bisimulationif PWQ implies
forall o € A:

1. if P = P’ then@ N Q' with P'WQ' for someQ’, and
2. if Q = Q' thenP % P’ with P'WQ' for someP”.

Two agentsP and() areobservation equivalent written P ~ @, if PW(Q for some
weak bisimulationV. O

From the definition it follows, therefore, that in order to prove two agéhésd(
are equivalent it is enough to find a bisimulation containing the pair.

Example B.3 By way of an example the relatiof{«.0, 7.¢.0)} U Id, whereld is the
identity relation, is a weak bisimulation containing the agen@sandr.a.0. However,
this example also serves to show that observation equivalence is not a congruence
relation:6.0 + .0 % 5.0 + 7.a.0. &

Although observation equivalence is not fully substitutive, it almost is. In fact,
only the preemptive power of the action in the context of sum, as above, breaks
the congruence. This leads to the following formulation of the definitioagufality
between agents:

Definition B.3 P and(areobservation congruent written P = Q, if forall o € A:
1. if P % P then@ == Q' for someQ’ with P’ ~ (', and
2. if Q = Q' thenP == P’ for someP’ with P’ ~ ()'.
O

If P and(are to be equal, each initial action Bfmust be matched bgt least one
action ofQ, and vice versa. Subsequently, the agents need only be observation equi-
valent. Note that” ~ @ implies P =), which in turn impliesP ~ (). Observation
congruence establishes the equational theory of CCS [64], but we shall not expound
that theory here.

Appendix B. Theory 200

B.2 Modal u-calculus

The modal:-calculus is a rich logic for expressing dynamic properties of systems. The
logic was formulated by Pratt [81] and Kozen [52] as a generalisation of propositional
dynamic logics (which themselves extend Hoare logics to recursive programs). Start-
ing from a simple modal logic, put forward by Hennessy and Milner in [43] where
O and & modalities are indexed (or relativised) by actions, Stirling shows how the
modalp-calculus naturally arises when one wishes to more abstractly express durable
properties of communicating systems. Stirling, in [89], extends HML, and Kozen’s
u~calculus in a minor, but very convenient manner: modalities are indexsdtbpf
actions. The resulting logic is very suitable for exploring temporal properties of par-
allel systems in general, including at least concurvamte programs, CSP and CCS
programs, and Petri nets [91, 11].

Temporal logics have often been advanced as specification formalisms for con-
current programs—though they are suitable for purely sequential, non-interfering pro-
grams too. (See Pnueli [80], for example, for good motivation, and [28, 38] for recent
surveys.) The problem then remains of verifying that models of programs satisfy their
temporal logic specifications. Emerson and Lei [29] discovered a decidable method for
a restricted version of the-calculus; Stirling and Walker [90] were first to describe a
local model checker for the full logic. Local model checking is appealing since one
may never need to construct the entire model to verify interesting properties of systems.

HENNESS¥MILNER LOGIC

Hennessy-Milner logic (HML) is a modal logic for specifying local capabilities of sys-
tems usually modelled in CCS. Typically, modal logics are interpreted over Kripke
structures (unlabelled transition systems) but the modal connectives of HML are la-
belled by actions, so we interpret them over labelled transition systems. Since CCS
terms define these structures, the relationship between logic and algebra is a natural
one. Formulae of HML are constructed by the following syntax:

¢ ou=tt | -0 | eA® | [K]D

where K C A. Other logical connectives are defined as required using negation.
In particular (K)® £ —[K]-® is the dual to the ‘box’ modality (‘diamond’). This
description somewhat generalises the original formulation of the logic [42, 43] since
there only single actions are permitted in decorating modal connectives.

Now if (P, A,{ = | a € A}) is a labelled transition system we can precisely
determine when some proceBs= P enjoys a property expressed in HML by the fol-
lowing inductive definition ofatisfaction First, let/K (P) be the set of states reachable

Appendix B. Theory 201

from P via an action ink: K(P) £ {P' € P | P - P’ forsomea € K}. Then:

P |=tt
P =9 iff PP
PEOAVY iff PEdandP =V
PE[K]® iff VQe K(P).QE®
PE(K)® iff 3Q e K(P).QREF ®
Intuitively, any process satisfies the propettt{true); in contrast, no process satisfies

ff. For the modal connectives? satisfies(K)® if and only if someK-derivative
satisfies the propert¥; P satisfied K| if and only if all K-derivatives satisfyb.

Example B.4 The box modalities express necessities, the diamond modalities express
capabilities. Consider the property)tt for the simple action:

P (att iff 3Qe{P eP|P-PLQEtt

Since(@ = tt for all a-derivatives ofP (in particular, since it is true for alP € P)
this property therefore expresses the capacityféo perform am: action. In contrast
—(a)tt = [a]ff, and:

PE[dff iff VP e{P eP|P - P}.P | ff

But @ [~ ff for any Q). This property therefore expresses the fact thatannot (im-
mediately) perform an action. In a similar vein, note th&t<’, 0 = [K]ff. &

There are a number of interesting results concerning HML, the most important of
which is the Modal Characterisation Theorem. If the agénhtnd(are finite state,
they are strongly bisimilar if and only if they have the same modal properites:
Q& {P|PkEo}={V|Q [V}. While HML is rich enough to express properties
aboutfinite behaviour, it is not expressive enough to capture enduring properties. The
u~calculus introduces a temporal operator to the modal logic for this purpose.

MODAL TEMPORAL LOGIC

An alternative way of assigning meaning to modal logic formulae is threagisfac-
tion sets We use the notatiofi®||” to denote the set of processes fth having the
property®. This set is defined inductively on the structure of formulae:

lee)” = P
=" = P —|o|”
lene|” = (2" e

K" = {PeP|K(P) |2}
KE)e|” = {PeP|3P eK(P)n]e|"}

Appendix B. Theory 202

As long asP is transition closed-e, if P € P then every derivative of is in the
set—then the two semantics of HML coincide:= @ if and only if P € ||®|”.

It is by extending these semantics that we assign meaning to formulae of the modal
u~calculus which introduces propositional variables and a fixed point operator to the
modal logic:

o = Z | @ | or® | [K® | vZo

A fixed point formularZ.® represents the maximal solution to the (possibly) recurs-

def

ive modal equatior¥ = ®. This solution always exists, as does the minimal solution
denoted by.Z.® £ —vZ.-®{~7/Z}, under the syntactic restriction thatdfappears

free in the bodyd, it does so within the scope of an even number of negations. Models
for this temporal logic are given as before by labelled transition systems—but now we
have to supply an interpretation for the propositional variables appearing in subformu-
lae. Let) be avaluationthat assigns a subset Bfto each variabl& (i.e., the set of

states having the property expressedd)yNow:

15 = v(2)
lzoll; = (UETE S 25z}
Inz2lls = (e 2l € £}

with the meanings of the other logical connectives being given as above (but with
respect td)). The notationV € /Z] signifies the valuatio’ that agrees with’ on all
variables excep¥, for whichV'(Z) = £.

Example B.5 Notice that we do not need to takieor ff as primitive in the temporal
logic: they can be&lefined From the semantics:

lwz.z|l; = HETE CIIZINe 2}

- Utelece
= P

while, in contrast||Y.Z||” = (. But if a property—of the labelled transition system
(P, A, { % | a € A})—is identified with a subset dP, the only propertyP can
express is the propertyue. Converselyf) expresse$alse no process can have this

property. &

Notice that||vZ.Z||] = P independently of any particulai. The same is true of
all HML formulae but, properly speaking, a temporal property is only expressed in a
closed formula (no fre€) of the logic. We can thus continue to use the notalidh”
to represent the set of processes that have the propeftypw satisfaction is defined:

Appendix B. Theory 203

P = ® wheneverP € ||®||”. The notion may be generalised to sets of processes:
EE difandonlyifall P € £ satisfy®.

The modaly-calculus is a very powerful logic, but suffers from cumbersome-
looking syntax. A good reading gf-calculus formulae only comes through tackling
some examples! First, a difficult one:

Example B.6 The property.Z.® v (K)Z, whenZ does not appear free ib, asserts
that ® mayeventually hold. Now, dropping the (fixed) superscriptthe semantics
supply the interpretation:

lpz.eV(K)Zllv = [(HEI NPV K)Z|vig/z € E}
= (HE | I®llvie/z Y IKEK)Z|lvie/z) € E}
= [(WE|®llvig/z U{P | 3P € K(P)NE} C €}
= (WE || ®]vieyq U {P| 3P € £3a € K.P 2 P} C &}

So a proces®’ satisfies the defining condition eitherff = ® or someK-successor
P'isin& impliesP € £. SOP = uzZ.® Vv (K)Z if P |= ® or, if it does not, some

K-successoP”’ |= @ or, if it does not, somé{-successoP” of P’ satisfiesd...: in
short, some state reachable frdfrvia zero or some finite number &f actions must
satisfy . &

The above is an example ofli@enessproperty, asserting that something (good),
characterised by the properdy may happen. Liveness properties are associated with
least fixed points in the fixed point logic. On the other hasadetyproperties reverse
the scenario, asserting that something (bad) must never happen. These correspond to
greatest fixed points.

Example B.7 The property-uZ.—® Vv (K)Z = vZ.® A [K]Z is a strong invariance
property:® holds along all computations involving only actions drawn from theget

wzZoN[KZly = (HE|E CI®lvig/z N KV Z|viesz1}
= HEI1EC|®llvie/zn{P | K(P) C &}}
= (HEI1E C|®llvie/z N {P | P' € K(P)impliesP' € £}}

This therefore specifies a set of states that is closed ukidations, but each of which
satisfies the property expressedbin &

Example B.8 Let [a;...a,]® £ [{a;...a,}]®, [-K]® € [A— K]|® and[-]® &
[A]®. We can specialise the examples above in interesting ways. Firstly, the fixed
point formulavZ.® A [—]Z expresses invariance ®fover all computations-e., the

Appendix B. Theory 204

branching time temporal logic formulaG ®. SecondlyZ.® Vv (r)Z specifies that
after some silent activity the property may become true. This is usually written
(). Similarly [[|® = vZ.® A [7]Z. &

Notice the distinction betweenZ.® A [—]Z which is global invariance, and the
case when the modality selects a subsetleflocal invariance. The latter property is
also expressible in CTL, but only in a rather complicated and unintuitive formula.

The double bracket modalities expregsakmodal properties—they treat the silent
7 action of CCS in much the same way as it is treated in the theory of observational
equivalence. Generalising, we get:

and similarly((K)® = [K]|-®:
(E)e = pZ(K)(uy.@ V(T)Y)V(1)Z

Just as Hennessy-Milner logic characterises (strong) bisimulation, Stirling has shown
that the modal:-calculus does likewise: iP and(are (image finite) processes then
they are strongly bisimilar if and only if they have the same temporal properties. In-
deed, theaveak-calculus, using only the double bracket modalities together with the
fixed point and boolean connectives, characterises observation equivalence.

The examples considered above serve to illustrate the utility of macros! Yet al-
though some of these formulae look complicated they barely scratched the surface of
the expressive power of the logic [11]. Thecalculus is a very powerful logic and
in general the truth of assertions expressed in it is undecidable. However, there are
polynomial time algorithms for deciding if an assertion is valid on a partidulée
model.

LocAL MODEL CHECKING

The simple property checker described here is due to Stirling and Walker [90]. It
is not very efficient as it stands, but Cleavland discovered significant improvements
(see [19]) when he implemented local model checking in the Edinburgh Concurrency
Workbench [20]. Local model checking contrasts wgtbbal model checking in that

one need na priori construct the model before checking that a particular state satisfies
a formula of the logic. Of course, if one wants to prove a global invariant, then local

model checking brings nothing new to the problem.

Appendix B. Theory 205

The temporal property checker igableauproof system, each rule used to con-
struct the tree having the general form

EFHD

{&F ;)
where there may be side-conditions. The premise sequent, above the line, is the goal
to be proved—e, that the state§ C P satisfyd—and the subsequents are derived
from this according to the form ob and the structure of the model in the vicinity of
£. The rules for the modal fragment of the logic, which we assume now is in positive
form (that is, negation is omitted, and we take the derived operato{&’), etc, as
primitive) are as follows:

EFOAT £+ [K]®

A (K] — =
EFd EFT KE)F @
EFOVT £+ (K)®

% (K) ———=
SFO & FEF

with side conditions on the-rule and the(K)-rule which introduce choices. Note
first that K (€) generalises the earlier notatioki(£) = {P' € P | 3P € £.3a €

K.P - P'}. The side condition in the-rule is just that = & U &,. In the case
that& is a single state the choice here is over which branch of the disjunct to take: this
more general formulation is more powerful, but not readily automated. The choice in
the (K')-rule is similar: f : £ — K (&) allows one to discard as many successors from
£ as desired.

The essential ingredient in the rules for the fixed point formulae is the usmof
positional constantsthese being introduced as fixed point operators are encountered
in traversing the structure of the formula. LLétrange over such constants, anddet
stand or either fixed point operator. The final rules are:

EroZ. O) . wof))
—_— introducinglU = ¢ Z.® andU is a fresh variable;
EFU
5 |_ U def
U aslongad/ = 0 7.9.
EF o{U/Z) g 7

When a fixed point formula is encountered it is replaced by a (new) constant, and when
a constant is subsequently encountered it is replaced by the body of its definition with
U replacing all free occurrences gfin the body.

To see if each of a set of processehas the propertyp, the model checker is
invoked with the root sequeét- ®. This process would not terminate because of the
constant rule, but there are several conditions to check whether amedé& should
be considered a terminal (a leaf, in the tree constructed):

Appendix B. Theory 206

1. the set of states is trividf = 0

2. ¥ = (K)® and for someP ¢ F, K(P) = {;

def

3. ¥V =U = vZ.d and some sequedt - U, with F C &, appears higher in the
proof tree;

4.V = U £ ;1Z.® and some sequest - U, with & C F, appears higher in the
proof tree.

No rule applies to a terminal. A node fulfilling the first and third of these conditions is
deemed to beuccessfulerminal, not otherwise. A successful tableau is a finite proof
tree that has only successful terminals. The crucial results (see [90] for the details) are
as follows:

Proposition B.1 If £ - ® has a successful tableau them= o. O

Proposition B.2 If £ is a finite set of finite state processes &g @, thenf + ¢ has
a successful tableau. O

The first of these demonstrates that the proof system is sound, the latter that is
complete if the models are finite (when it is also decidable). Stirling and Bradfield [10,
11] extend the proof system described above to arbitrary labelled transition systems:
their method remains sound and complete, but not decidable in general (of course).

Example B.9 To illustrate the working of the model checker, consider the very trivial
CCS modelFix (X. a.X + b.0) which has just the two statgsX,0}. The property
vZ.(b)tt A [—b]Z obviously holds afX. The tableau:

(X} FvZ.(B)ttA [—b]Z
(X FU
(XYF (0VttA 00
(X F Ot {X)F[-HU
(XVFtt (X FU

demonstrates this. Note th@k'} - (b)ttis not terminal, and we disregard this trans-
ition in moving to the sequent below. On the other bradch} - [—b]U has only one
(—b)-successor to be considered.

Strictly speaking the left-hand leaf is not terminal, but this subtree does terminate
successfully. Recall thdt < »Z.Z, so by the fixed point and constant rules we arrive
at a sequent similar to that terminating the right-hand branch.

The right-hand terminal is successful beca{i¥& + U appears higher up in the

proof tree.{ X'} = vZ.(b)tt A [—b] Z follows from Proposition B.1. &

Appendix B. Theory 207

In the example it was not necessary to construct all states of the model in order to
prove the result. The same would not be true of the global invasidnt-)tt A [—|Z
which expresses freedom form deadlock. In that case, all proof trees contain the un-
successful termingl.X, 0} - (—)tt.

B.3 HOL Proofs

HOL TACTICS FORGEOGRAPHICDATA

fun HANDY_TAC thl =
ASM_REWRITE_TAC thl
THEN POP_ASSUM_LIST (fn _ => ALL_TAC)
THEN REPEAT STRIP_TAC
THEN RES_TAC
THEN ASM_REWRITE_TAC][]
THEN NO_TAC;

Commentary on HANDYTAC Given a list of rewrite theorems, the goal expected is

|H] = F; = F/, whereF; is a simple term derived fro. First rewrite with the given
assumptions and rewrite theorems, then discard the assumptions to render something
like? - (f = g) = f' = ¢. Strip allleading quantifiers.é., by applying Elimination

rules) from the goal, and resolve among these new assumptions. Finally, refrite (
using these to solve the goal completely—otherwise this tactic fails (to be handy).

fun PIMP th = REWRITE_TAC[MX2_THO,MX2_TH1] THEN (*1%)
(let val tm = concl th
in if is_comb tm (*2%)
then
let val n =

(#Name o dest const o #Rator o dest comb) tm
in case n of
"PT" => MATCH_ACCEPT_TAC PT_L1 ORELSE (*2a*)

MATCH_ACCEPT_TAC PT_L2 ORELSE
HANDY_TAC[PT,PC] (*2b*)

| "MX4" => MATCH_ACCEPT_TAC MX4_L1 ORELSE (*2c¥*)
MATCH_ACCEPT_TAC MX4_L2 ORELSE
MATCH_ACCEPT_TAC MX4_L3 ORELSE
MATCH_ACCEPT_TAC MX4_L4

| => HANDY_TAC[RT1,RC] (*2d*)
end
else ALL_TAC (*3%)
end) handle _ => HANDY_TAC]]; (*4%)

Commentary on PIMP The goalPIMP expects iSH] + F;, = F/, whereF; is a
simple term derived frork, so:

1. If F; is derived fromMX2, factsk- MX2(a, T) and- MX2(T, b) should solve it.

2. Otherwise, giveiH| - F(a) = F(a') find out whatF" is:

Appendix B. Theory 208

(a) aPT so match the goal with PT(p, [a; b]) = PT(p, [T;b]) etc;

(b) stillaPT, but letHANDYTACTtry to solve this more general case.

(c) Fis anMX4 so match- MX4|a, b, ¢, d] = MXA[T, b, ¢, d, etc.

(d) Otherwise it is an addition®T term (.e., RT1) which HANDYTAC can

solve.

3. ALL_TACis likeskip (the program never reaches this wites: MX APTART).

4. Trap exceptions from attempts to decomp@se= a) = V' = o which are
from a regulaRT terms. Another job foHANDYTAC.

val RSTRIP_TAC = STRIP_TAC THEN
POP_ASSUM_LIST

(fn thl => MAP_EVERY (fn th => ASSUME_TAC th) thl):

Commentary on RSTRIP_TAC This strips the goal, an implication where used, and

reverses the order of the assumptions (conjunctions in the antecedent of the goal) so
obtained.

local
fun POP_ONE th =

ASSUME_TAC th THEN UNDISCH_TAC(concl th) THEN PIMP th

fun RECURSE () = POP_ASSUM (fn th => STRIP_TAC
THENL

[POP_ONE th,
RECURSE () ORELSE POP_ASSUM (fn th => POP_ONE th)])
N
val SRR_TAC =
VC_TAC THENL[ALL_TAC,MATCH_ACCEPT TAC FB_IMP_F]
THEN RSTRIP_TAC
THEN RECURSE ()

end;

Commentary on SRRTAC See Section 5.4.

fun repeat 0 tac
| repeat n tac

ALL_TAC
tac THEN (repeat (n-1) tac);

fun PRR_TAC F pfm_list n = VC_TAC F
THEN TRY (MATCH_ACCEPT_TAC FB_IMP_F)
THEN REWRITE_TAC (PT_DEFS @ RT_DEFS @ pfm_list)
THEN STRIP_GOAL_THEN (fn th =>
REWRITE_TAC(CONJUNCTS th)
THEN ASSUME_TAC th

THEN UNDISCH_TAC(concl th))
THEN STRIP_TAC

THEN (repeat n) RES_TAC

THEN ASM_REWRITE_TAC (PT_THMS @ MX THMS)
end;

Appendix B. Theory 209

Commentary on PRRTAC See Section 5.4. This version is more general, passing a
copy (theF parameter) of the invariant on BEQTACwhich implements heuristics to
guess the strongest predicate to assert between sequenced commapfis_[Ehe is

an (optional) list of rewrite rules used to simplify the disjunctive points “free to move”
conditions (to be used with great care since these are free axioms). The idea is to first
prove that ifthe pointsP, are controlled normal (respectively, reverdéenthey are

free to move normal (revers&)invariant, and then to use the fact- ¢ = (pVq = q)

to obtain the simplifying rewrite rule(s) for the proof thats invariant. This is quicker

than provingP A F and constructingfm _list on-the-fly, but less secure since the
rewrite rules have to be entered as free axiomses—they cannot be deduced from

- {P}c{P}.

Appendix C

Examples of Geographic Data

This final appendix lists Geographic Data for some of the interlockings studied in the
main text of the thesis. Pages 211-212 list &V, PRR and sub-route release data
for WEST (Figure C.1). Pages 214-215 list the same data files for fer-BVEST
interlocking in Figure C.2. These data extend that faed¥in the obvious way for
asingleSSl—the data for the protocol studied in Chapter 6 have not been listed here.
Figures C.3 and C.4 display two further interlockings studied: the former was the
subject of the Alvey Forest project [4, 8]; the latter is a fanciful scheme based loosely
on Thornton Junction, in Fife, Scotland, and the author acknowledges the inspiration
of [49] as the source for this scheme.

Finally, Figure C.5 is an artistic impression of the Leamington Spa scheme, as
gleaned from the Geographic Data. The data in Figure 7.3 refer to marked routes
R35(2M) which is the main route from sign&35 to signal S37 with a choice of
overlaps througiP224 andP225. The other routeR41(3M) is the main route from
signalS41 to signalSs7.

Sy
a,b ac
I I
@9@J "
S5
So Sy
b ac Py b;b arb B ac g arb a
I I 1
T T Ty T, Py T;
S S;
Sg

Figure C.1: Sample interlocking: ST

210

Appendix C. Examples of Geographic Data

211

/ Points Free to Move Data for Sample Interlocking: West
P1R Tlcb f, Tlbc f, T1 c \
P1N Tlca f, Tlac f, T1 c \
P2R Tdba f , T4ab f , T2 c \
P2N T4ca f , Tdac f, T2 c \
P3R Téac f , Téca f , T3 c \

P3N T6ab f , Téba f , T3 c \

/ Panel Route Requests Data for Sample Interlocking: West

*Q02 if Pl crf , Tlac f , T2ab f
then P1 cr , R0O2 s , Tlcal, T2ba I \ .

*Q04 if P1 cnf , Tlbc f , T3ab f
then P1 cn , R0O4 s , Ticb |, T3ba | \ .

*Q1 if P1 crf , TOba f , Tlca f
then P1 cr , R1 s , Tlac | , TOab | \ .

*Q2 if P2 crf , P3 enf , T7ab f , T4ac f
then P2 cr , P3 cn
R2 s , T4ca | , Téca | , T7ba | \ .

*Q3 if P1 cnf , TOba f , Tlcb f
then P1 cn , R3 s , Tlbc | , TOab | \ .

*Q4 if P2 cnf , P3 cnf , T7ab f , T4ab f
then P2 cn , P3 cn
R4 s , Tdba | , Teca | , T7ba | \ .

*Q51 if P2 crf , P3 ¢cnf , T6éca f , T2ba f
then P2 cr , P3 cn
R51 s , Teac | , T4ac | , T2ab | \ .

*Q53 if P2 cnf , P3 cnf , Téca f , T3ba f
then P2 cn , P3 cn
R53 s , Teac | , Tdab | , T3ab | \ .

*Q5 if P2 crf , P3 crf , T6ba f , Thba f
then P2 cr , P3 cr , R5 s , T6ab | , Tha

*Q6 if P3 crf , T6ab f , T7ab f
then P3 cr , R6 s , Téba | , T7ba | \ .

bI\.

Appendix C. Examples of Geographic Data

212

/ Subroute Release Data for Sample Interlocking: West
TOab f if TO ¢, Tlac f, Tlbc f \ .
Ts5ab f if T5 ¢, Teab f \ .

T3ab f if T3 ¢, T4ab
T3ba f if T3 ¢, Tlcb

—h —h
—_

T2ab f if T2 ¢, Td4ac f \ .
T2ba f if T2 ¢, Tlca f \ .

Tlac f if TLc, R1 xs\.
Tlca f if TL ¢, RO2 xs \ .

Tlcb f if TL ¢, RO4 xs \ .
Tlbc f if TLc, R3 xs\.

T4ab f if T4 ¢, Téac f \ .
T4ba f if T4 ¢, R4 xs\.

T4ac f if T4 ¢, Téac f \ .
T4ca f if T4 ¢, R2 xs \.

T6ab f if T6 ¢, R5 xs \.
T6ba f if T6 ¢, R6 xs \ .

T6ac f if T6 ¢, R51 xs , R63 xs \ .
T6ca f if T6 ¢, T4ba f , T4ca f \ .

T7ba f if T7 ¢, Teba f , Téca f \ .

Appendix C. Examples of Geographic Data 213

ac
I

T, ab
Figure C.2: The EASTWEST interlocking

b

Appendix C. Examples of Geographic Data

214

/ Points Free to Move Data for Sample Interlocking: EastWest
[As for West, but including:
P4R T9cb f , T9bc f , T4 c \

P4AN T9ca f , T9ac f , T4 c \

/ Panel Route Requests Data for Sample Interlocking: EastWest

*Q02 if Pl crf , Tlac f , T2ab f
then P1 cr , R0O2 s , Tlcal, T2ba I \ .

*Q04 if P1 cnf , Tlbc f , T3ab f
then P1 cn , R0O4 s , Ticb |, T3ba | \ .

*Q1 if P1 crf , TOba f , Tlca f
then P1 cr , R1 s , Tlac | , TOab | \ .

*Q28 if P2 crf , P3 cnf , T7ab f , T4ac f
then P2 cr , P3 cn
R28 s , T4ca | , Téca | , T7ba | \ .

*Q3 if P1 cnf , TOba f , Tlcb f
then P1 cn , R3 s , Tlbc | , TOab | \ .

*Q48 if P2 cnf , P3 cnf , T7ab f , T4ab f
then P2 cn , P3 cn
R48 s , Tdba | , Téca | , T7ba | \ .

*Q51 if P2 crf , P3 ¢cnf , T6éca f , T2ba f
then P2 cr , P3 cn
R51 s , Teac | , T4ac | , T2ab | \ .

*Q53 if P2 cnf , P3 cnf , Téca f , T3ba f
then P2 cn , P3 cn
R53 s , Teac | , Tdab | , T3ab | \ .

*Q5 if P2 crf , P3 crf , T6ba f , Thba f
then P2 cr , P3 cr , R5 s , Téab | , Tha

*Q68 if P3 crf , T6ab f , T7ab f
then P3 cr , R68 s , Teéba | , T7ba | \ .

*Q75 if P4 crf , T9ca f , T7ba f
then P4 ¢cr , R75 s, T9ac | , T8ab | , T7a

*Q8a if P4 crf , T8ab f , T10ab f
then P4 cr , R8a s , T8ba | , T9ca | , T10ba | \

*Q8b if P4 cnf , T8ab f , Tllab f

*Q95 if P4 cnf , T9cb f , T7ba f
then P4 cn , R95 s , T9c |, T8ab | , T7a

bI\.

bI\.

then P4 cn , R8b s , T8ha |, T9cb | , Tllba I \ .

bI\.

Appendix C. Examples of Geographic Data

215

T4ba
T4ca
T6ba
T7ba

T8ab
T8ba

T9ac
T9ca

T9cb
T9bc

f

f

f
f

T10ba f
Tllba f

if
if
if
if
if
if
if
if

T4

T4

T6

T7

T8
T8

T9
T9

T9
T9

c

c

(¢}

(@]

c
c

/ Subroute Release

Data for Sample Interlocking: EastWest

R48 xs \ .
R28 xs \ .

R68 xs \ .

/ As for West, with the following changes and additions:

T6ba f , Téca f \ .

T9ac f , T9c f \ .

R8a xs , R8b xs \ .

R75 xs \ .
T8ba f \ .

T8bha f \ .
R95 xs \ .

T10 ¢, T9ca f \ .
T11 ¢, T9cb f \ .

S12
20s

TAB N TBA m TAD
U 8]
S10 S jl S14 :H: S
S13 TAC
M M i M
by U P ! g Pz U | TAE I
E ﬂ S15 S11
S21 S23
TAK il P204 il TAH il P203 il
5] 5] 3] 5] TAF
S25
S24 ﬂ E S20
il TCA [l
TAJ d d TAG

D
S22

Figure C.3: The FORESTLOOP interlocking

Appendix C. Examples of Geographic Data

8

K

_J

P
|
P1 P2 C

216

B % \\]

510%

U
. o«
I: % D SSﬂa@
@®Js4
H 3
P3
G

Figure C.4: The THORNTON JN. interlocking

217

Appendix C. Examples of Geographic Data

eds uoibuiwea Jo uoissaldwi onsie uy gD ainbiH

3

ws
mw Técd

L1 €cad m

3 3

i i

R, § g X

.mﬁ .e.m \\m 8

/ m

ey B
g / 3

v 8ZIWTLHTL \ mw

oo T
oo

oo-T
= O

oo~

