
Candidates for Substitution∗

Healfdene Goguen
hhg@dcs.ed.ac.uk

James McKinna
jhm@dcs.ed.ac.uk

Laboratory for Foundations of Computer Science
Department of Computer Science

The King’s Buildings, University of Edinburgh, EH9 3JZ, Scotland

1 Introduction

Context morphisms, that is to say parallel substitutions with additional
typing and well-formedness information, have emerged as an important
tool in the semantics and metatheory of type theories: they are the
basis for categorical semantics of type theory, they yield an appealing
syntax for explaining proofs under hypotheses in the informal meaning
theory for type theory, and most proofs of strong normalization use
context morphisms to strengthen the inductive hypothesis.

Kripke term models [CG90, Gog94] are closed under weakening or
context extension, and this is used to show the admissibility of paral-
lel substitution. In this paper we explore a uniform proof of thinning
and substitution which isolates several simple candidate-style condi-
tions on context morphisms arising from the Kripke construction. The
proof exploits the evident similarity of the properties of thinning and
substitution, when considered more generally as a property of context
morphisms.

We study this result in the context of Pure Type Systems (PTS),
introduced as a general syntactic characterisation of type theor-
ies [Bar92]. PTS gives a framework for showing syntactic results,
such as strengthening and subject reduction, for a broad class of sys-
tems [vBJ93, Geu93].

The second author gave an informal proof of closure under sub-
stitution and thinning for Geuvers’ systems (which extend the rules
∗Submitted to Journal of Functional Programming

1

for PTS with both η -conversion, and strengthening as a rule of in-
ference, complicating their meta-theory a good deal) using context
morphisms [Geu93, p. 104]. This observation was made in the course
of a long collaboration with Randy Pollack on machine-checking the
meta-theory of PTS [MP97]. Indeed, their first proof of thinning for
PTS [MP93] used a particular class of context morphisms, the renam-
ings (see Lemma 1.2 below), motivated by the use of context morphisms
in normalization proofs.

A distinctive feature of their approach to PTS, first introduced
by Pollack, and motivated by considerations of syntax-directed sys-
tems [vBJMP94], is the use of an atomic weakening rule. This tight-
ens the meta-theory, by making induction over derivations treat fewer
cases. One consequence of this presentation is that it then requires
some work to prove full weakening as an admissible rule (as a con-
sequence of thinning).

The proof mentioned in Geuvers’ thesis required full weakening as a
rule. The second author gave a strengthening of the hypotheses, given
by the candidate closure conditions described below, which allows the
proof to go through in the system with atomic weakening.

Postponing the substantive definitions until Section 2, we summar-
ise our results as follows, with proofs in Section 3:

Lemma 1.1 (Closure under a candidate) Suppose S∆
Γ is a can-

didate for substitution. Then

γ ∈ S∆
Γ ,Γ ` M : A ⇒ ∆ ` M [γ] : A[γ]

Lemma 1.2 The family of renamings,

P∆
Γ =def {ρ : Dom (Γ)−→fin V | ρ : ∆ −→ Γ}

is a candidate for substitution. Moreover, the least such containing the
thinnings,

T∆
Γ =def {τ : Dom (Γ)−→fin V | ∀x∈Dom (Γ).τ(x) = x}.

Lemma 1.3 If the typing judgement is closed under thinnings,

τ ∈ T∆
Γ ,Γ ` M : A ⇒ ∆ ` M [τ] : A[τ]

then the family of all substitutions (context morphisms),

S∆
Γ =def {γ : Dom (Γ)−→fin T | γ : ∆ −→ Γ}

is a candidate for substitution.

2

Corollary 1.4 The typing judgment is closed under parallel substitu-
tion.

Proof. Combine the above three lemmas, appealing twice to the can-
didate closure lemma.

2 Definitions

We now give the relevant definitions, which motivate the main results
of the paper.

2.1 Pure Type Systems

PTS is a class of theories defining a typing judgement for explicitly
labelled λ -terms, T , built in the usual way out of variables V and
sorts S . The typing judgement is given by a set of derivation rules,
presented in table 1, parameterized by two relations:

• axioms, A ⊆ S × S , written (s1:s2) ∈ A
• rules, R ⊆ S × S × S , written (s1, s2, s3) ∈ R .

We write Γ ` A for Γ ` A : s for some s , and ∆ ` if ∆ ` s1 : s2 for
some s1, s2 (equivalently, if ∆ ` M : A for some M,A).

Remark 2.1 In this paper we shall treat free and bound variables and
associated questions of α -conversion informally. As we shall observe
in the proof of Lemma 1.1 below, context morphisms provide a useful
mechanism for negotiating the switch between bound and free variables
when dealing with binders under substitution.

Two elementary results about atomic subjects M in the typing
judgement Γ ` M : A are required:

start lemma Every axiom is derivable in every valid context

(s1:s2) ∈ A,∆ ` ⇒ ∆ ` s1 : s2

which follows by an easy induction on ∆ ` .
occurrence lemma Every free variable in a judgement is bound

in the context

Γ ` M : A ⇒ FV (M), FV (A) ⊆ Dom (Γ)

which follows by an easy induction on Γ ` M : A .

3

Ax • ` s1 : s2 (s1:s2) ∈ A

Start

Γ ` A
Γ[x:A] ` x : A

x 6∈ Γ

Weak

Γ ` α : C Γ ` A
Γ[x:A] ` α : C

α ∈ P ∪ S , x 6∈ Γ

Pi

Γ ` A : s1 Γ[x:A] ` B : s2

Γ ` Πx:A.B : s3
(s1, s2, s3) ∈ R

Lda

Γ[x:A] ` M : B Γ ` Πx:A.B

Γ ` λx:A.M : Πx:A.B

App

Γ ` M : Πx:A.B Γ ` N : A

Γ ` M N : [N/x]B

Conv

Γ ` M : A Γ ` B
Γ ` M : B

A 'β B

Table 1: The Typing Rules of PTS

2.2 Context morphisms and parallel substitutions

The admissible rule of closure under substitution is usually stated for
PTS via the notion of substitution for a single free variable. The proof
of this, aside from the delicacies of α -conversion to which we have al-
luded above, requires an induction loading to go through. It is more
convenient for our treatment to distinguish a parallel notion of substi-
tution, based on finite mappings. The empty mapping, like the empty
context, is denoted by • , and mapping extension by γ[x = M] .

Definition 2.2 Suppose γ : W−→fin T is a finite mapping with do-
main W⊆finV . Then for M ∈ T such that FV (M) ⊆ W , we define
the action of the substitution γ on M , written M [γ] , by recursion on
M :

• s[γ] =def s ;
• x[γ] =def γ(x) ;

4

• (M N)[γ] =def M [γ]N [γ] ;
• (〈x:M〉N)[γ] =def 〈y:M [γ]〉N [γ[x= y]] 1, where y is chosen

fresh with respect to FV (N [γ])\{x} in the usual way;

Remark 2.3 In the last of the above clauses we have adopted a Curry-
style definition of the action on binders, in accordance with our decision
to treat variable names informally. Such matters may be treated form-
ally in a more elaborate fashion, following the lines of previous work of
Pollack and the second author [MP93, Pol94, MP97]. The definition
of the action changes, while the candidate closure conditions do not.

We may now encapsulate the above-mentioned induction loading
once and for all, and moreover unify this notion of substitution with
the notion of thinning, by introducing the following definition of context
morphism, which both enforces validity of the domain context, and
inductively ensures well-typedness of the substitution.

Definition 2.4 (Context morphism) A context morphism, usually
written γ : ∆ −→ Γ , is a finite mapping γ : Dom (Γ)−→fin T such
that:

• • : ∆ −→ • iff ∆ ` , and
• γ[x = M] : ∆ −→ Γ[x:A] iff

– γ : ∆ −→ Γ , and ∆ ` M : A[γ] .

Example 2.5 Suppose Γ ` N : A and Γ[x:A]∆ ` M : B . Then

idΓ[x = N]id∆ : Γ, ∆[N] −→ Γ[x:A]∆

is a context morphism. Closure under this morphism yields the substi-
tution lemma in its usual form.

Example 2.6 Suppose that Γ,∆ are valid contexts, with Γ ⊆ ∆ ,
where inclusion is defined näıvely by set-theoretic inclusion of finite
maps (so that we embrace permutation of binders, as well as exten-
sions). Then the thinnings,

T∆
Γ =def {τ : Dom (Γ)−→fin V | ∀x∈Dom (Γ).τ(x) = x}

define a family of context morphisms.
1We employ the notation 〈v:A〉a of [MP97] to allow us to combine the cases of

the two binders.

5

2.3 Candidates for substitution

We now turn to the definition of the crucial abstraction which underlies
our proof of closure under substitution.

Definition 2.7 (Candidate for substitution) We say a family S∆
Γ

of context morphisms γ : ∆ −→ Γ is a candidate for substitution if
and only if the following axioms S0 – S2 hold:

S0 if γ[x = M] ∈ S∆
Γ[x:A] , then γ ∈ S∆

Γ ;

S1 if γ ∈ S∆
Γ , y 6∈ Dom (∆) and ∆ ` B , then γ ∈ S∆[y:B]

Γ ;
S2 if γ ∈ S∆

Γ , x 6∈ Dom (Γ) and ∆ ` y : A[γ] , then
γ[x = y] ∈ S∆

Γ[x:A] .

The motivation for candidate axiom S0 is as a hygiene condition, whose
proof in any given example will usually be immediate from the second
clause in the definition of context morphism.

The motivation for candidate axioms S1 and S2 is a simple form
of closure condition, namely that the candidate is closed under particu-
larly simple extensions of the domain and range of a context morphism.
The candidate axiom S1 arises as the familiar monotonicity condition
in Kripke models. It would be trivial to validate if the typing judge-
ment were to admit full weakening, by induction on the proof that γ
is a context morphism.

Example 2.8 The thinnings fail to satisfy candidate axiom S2 , and
so do not form a candidate for substitution. The thinning lemma would
follow if we could show closure under the thinnings, but this will follow
from Lemmas 1.1 and 1.2.

Remark 2.9 We may capture the combined effect of S1 and S2 in
the following axiom:

Sext if γ ∈ S∆
Γ , x 6∈ Dom (Γ) , y 6∈ Dom (∆) and ∆ ` A[γ](†) , then

γ[x = y] ∈ S∆[y:A[γ]]
Γ[x:A]

We may show that S0 + Sext ⇒ S1 + S2 (with two uses of the well-
typedness premise (†)), and that S1 + S2 ⇒ Sext , by appealing to
atomic weakening. We shall see in the proof of Lemma 1.1 that it is
perhaps more convenient to take the S0 + Sext axiomatisation.

6

Remark 2.10 We have chosen a presentation which uses a named
syntax for λ -terms, so the reader more familiar with a deBruijn rep-
resentation may well wonder what all the fuss is about. After all, al-
though the use of deBruijn terms would force us to incorporate explicit
uses of the lift operator in all our definitions, this ostensibly achieves
a harmony between the definition of the action γ[M] and the Lda rule.
But we pay the price that the representation imposes an ordering on
the bindings. This is essentially the temporal order on binding creation
(instances of the Start rule) time. This not only makes the correspond-
ing definition of the family T∆

Γ much more complicated (it cannot be
given simply in terms of iterated composition of liftings, and makes
testing the condition Γ ⊆ ∆ a non-trivial computation), but it also
obscures the rôle of candidate axiom S2 . This is where permutation
may take place, since the premise ∆ ` y : A[γ] does not specify the
creation time of y (nor even that it is well-typed by a sequence of in-
stances of the Start and Wk rules: the Conv rule allows us to exploit
possibly non-trivial computation in arriving at the type A[γ] for y).

3 Proofs of the main results

Proof of Lemma 1.1. The proof is by induction on Γ ` M : A . The
interesting cases are those of the Start and Lda (Pi is similar) rules.
The App and Conv cases require elementary commutation of our paral-
lel substitution notion with simple substitution and conversion respect-
ively, and are not treated here.

Case Start: by assumption, we have γ ∈ S∆
Γ[x:A] , that is to say

γ = δ[x = M] where ∆ ` M : A[δ] and δ ∈ S∆
Γ , by candidate

axiom S0 . We are required to show that ∆ ` x[γ] : A[γ] , and this
follows immediately, since x[γ] = M and A[γ] = A[δ] , because
FV (A) ⊆ Dom (Γ) = Dom (δ) , by the occurrence lemma.

Case Lda: by assumption, we have γ ∈ S∆
Γ , and by induction

hypothesis, we have ∀γ,∆.γ ∈ S∆
Γ ⇒ ∆ ` (Πx:A.B)[γ] : s[γ] and

∀δ,Ξ. δ ∈ SΞ
Γ[x:A] ⇒ Ξ ` M [δ] : B[δ] . We are required to show that

∆ ` (λx:A.M)[γ] : (Πx:A.B)[γ] . By the Lda rule, it suffices to show,
for y 6∈ Dom (∆) , that ∆[y:A[γ]] ` M [γ[x = y]] : B[γ[x = y]] . Ac-
cordingly, we take δ =def γ[x = y] , and Ξ =def ∆[y:A[γ]] , and appeal
to the second induction hypothesis. It is at this point alone (and at the
corresponding point in the Pi case), that we make appeal to candidate
axiom Sext , in order to ensure that δ ∈ SΞ

Γ[x:A] . It remains to show the
well-typedness premise (†) of candidate axiom Sext , namely ∆ ` A[γ] .

7

But this follows by inversion, since by the first induction hypothesis,
we may show that ∆ ` (Πx:A.B)[γ] : s[γ] .

Proof of Lemma 1.2. The verification of candidate axioms S0 and
S2 is immediate from the definitions of context morphism and the
family P∆

Γ , while candidate axiom S1 requires a little work, namely
induction on the proof that ρ ∈ P∆

Γ , together with an appeal to atomic
weakening in both the base and step cases. The inclusion, and the fact
that it is strict, and minimal, is again immediate.

Proof of Lemma 1.3. Immediate from previous considerations: the
thinnings yield the instances of full weakening required to validate can-
didate axiom S1 .

4 Conclusions

We have given a simple and uniform proof of two meta-theoretic prop-
erties of PTS , thinning and substitution. We began by noticing that
the notion of context morphism can be used to express the two proper-
ties. We identified several candidate-style conditions on sets of context
morphisms, and showed that the judgements of PTS are closed under
sets which satisfy these conditions. Finally, we showed that these con-
ditions are satisfied by the class of renamings, and that the class of all
context morphisms also satisfies them, knowing that the judgements of
PTS are closed under renamings.

We analysed an originally blocked proof, that the judgements are
closed under thinnings, and can now observe the rôle of renamings in
proofs of this kind: the renamings are exactly the least set of context
morphisms containing the thinnings, and closed under the candidate
conditions.

Acknowledgements Our work has throughout been influenced by
the ideas of Thierry Coquand. We are also grateful to our other col-
leagues in the EU Esprit Working Group “TYPES”, especially Randy
Pollack, Zhaohui Luo, and Herman Geuvers.

References

[Bar92] Henk Barendregt. Lambda calculi with types. In Abramsky,
Gabbai, and Maibaum, editors, Handbook of Logic in Computer
Science, volume II. Oxford University Press, 1992.

8

[CG90] Thierry Coquand and Jean Gallier. A proof of strong normal-
ization for the theory of constructions using a Kripke-like in-
terpretation. In Workshop on Logical Frameworks–Preliminary
Proceedings, 1990.

[Geu93] Herman Geuvers. Logics and Type Systems. PhD thesis, De-
partment of Mathematics and Computer Science, University of
Nijmegen, 1993.

[Gog94] Healfdene Goguen. A Typed Operational Semantics for Type The-
ory. PhD thesis, University of Edinburgh, August 1994.

[MP93] James McKinna and Robert Pollack. Pure Type Systems form-
alized. In M.Bezem and J.F.Groote, editors, Proceedings of the
International Conference on Typed Lambda Calculi and Applica-
tions, TLCA’93, Utrecht, number 664 in LNCS, pages 289–305.
Springer-Verlag, March 1993.

[MP97] James McKinna and Robert Pollack. Some λ -calculus
and type theory formalized. Journal of Automated Reas-
oning, 1997. Submitted for publication in the special
issue on formal proof. Available by anonymous ftp from
ftp://ftp.dcs.ed.ac.uk/pub/lego/McKinnaPollack97.ps.gz.

[Pol94] Robert Pollack. The Theory of LEGO: A Proof
Checker for the Extended Calculus of Construc-
tions. PhD thesis, University of Edinburgh, 1994.
ftp://ftp.dcs.ed.ac.uk/pub/lego/thesis-pollack.ps.Z.

[vBJ93] L.S. van Benthem Jutting. Typing in Pure Type Systems. In-
formation and Computation, 105(1):30–41, July 1993.

[vBJMP94] L.S. van Benthem Jutting, James McKinna, and Robert Pollack.
Checking algorithms for Pure Type Systems. In Henk Barendregt
and Tobias Nipkow, editors, Types for Proofs and Programs: In-
ternational Workshop TYPES’93, Nijmegen, May 1993, Selected
Papers, volume 806 of LNCS, pages 19–61. Springer-Verlag, 1994.

9

