Dynamic ML without Dynamic Types

Stephen Gilmore, Dilsun Kirli and Christopher Walton
Laboratory for Foundations of Computer Science

Department of Computer Science
The University of Edinburgh

June 15, 1998

Abstract

We describe a variant of the Standard ML programming language
which incorporates a facility for the replacement of modular compon-
ents during program execution. This useful extension of the language
builds upon existing compiler technology which permits the separate
compilation of modular units of a Standard ML program. Defined
naively, this extension would incur performance overheads due to the
need to retain typing information at run-time. Here we explain how
this cost can be significantly lessened and in some cases eliminated en-
tirely. The essential technical device which we employ for implement-
ation of our extension to the language is a modification of two-space
copying garbage collection.

Keywords: modular programming; static type checking; dynamic
languages

1 Introduction

Standard ML is a reliable and useful programming language which provides
the expressivity of a functional programming language in a setting where
the full power of imperative programming constructs is also available. The
programmer can choose to work in one setting or the other, supported by a
clear distinction between mutable and immutable values. Standard ML has
a polymorphic type system and sophisticated modules (called structures)
which provide flexible encapsulation (due to interfaces called signatures) in
addition to flexible assembly (due to parametric modules called functors).

Standard ML is a strongly typed language. In order to enforce the ap-
plication of the type-checking phase the language makes a strict distinction
between elaboration and evaluation, insisting that programs which have not
successfully elaborated cannot be evaluated at all. The rigid ordering of these
two activities prohibits the execution of any programs which attempt to use
data values in ways which are not allowed by their type and thus eliminates
a large number of software errors which would manifest themselves at run-
time if working in an untyped programming language. However, this useful
enforcing of the distinction between the elaboration and evaluation phases
also prohibits the modification of programs during their execution. At first
sight, preventing the modification of an executing program might seem like
an eminently sensible thing to do but increasingly there are more situations
where that is not the case. For long-lived computations a programmer might
wish to make a minor modification in order to correct a programming error or
make an adjustment in order to improve the efficiency of a heavily-used func-
tion. Under Standard ML’s elaboration-evaluation model neither operation
is allowed. Here we show how to regulate the replacement process in order to
facilitate updating of program components without interrupting program ex-
ecution or compromising type safety. We give the Standard ML-like language
which allows component replacement the name ‘Dynamic ML’, reflecting its
ability to dynamically replace compiled program code at run-time.

2 A replacement model

In order to facilitate the replacement process, and to indicate a suitable size
of component for replacements, we fix on first-order module-level replace-
ment. That is, we allow the replacement of signatures by other signatures
and structures by other structures, under conditions which we will present
later. Functors are compile-time objects which are used to generate struc-
tures and so we do not present a replacement model for these. Semantically,
module-level replacement is an apt choice because it facilitates the improve-
ment of programs by revision and replacement of data structures in tandem
with the creation and access functions which are associated with them. In im-
plementation terms, module-level replacement is supported by the facility to
compile Standard ML modules in isolation. Thus an executing program may
be upgraded without the need to re-compile it in its entirety. In order that
module-level replacement is all that is needed to provide a reasonably com-
prehensive dynamic code replacement facility, we alter the allowable forms
of top-level declaration in Dynamic ML to remove all core-language declara-
tions at top level. We then include a distinguished main program function:

a function main in a structure Main. In addition we reserve a distinguished
structure name, Install.

Standard ML deploys inference of static program information in checking
the well-formedness of a program during compilation. The inference of types
for functions and values in the core language is complemented by the infer-
ence of signatures for structures (but not functors) in the modules language.
Analogously to the notion of most general type, called the principal type, in
the core language there is a notion of most general signature in the modules
language. The principal signature for a structure is the most permissive one,
allowing all of the definitions in the structure body to be seen outside. In
order to avoid the need to consider the case of structures which do not have
signatures we will assume here that all structures have an explicit signature
ascription, even if only the principal one.

2.1 Structure replacement

As our running example in this paper we consider the replacement of one
implementation of a name table with another which is functionally equival-
ent but offers improved performance. For simplicity we choose the type of
names to be simply character strings. The table type is abstract and in mov-
ing from the inefficient implementation to the more efficient one we are in fact
replacing an unsorted list with a binary search tree. Both implementations
match the TABLE signature shown in Figure 1. That is, both implementa-
tions provide an abstract type for tables, a declaration of a type of names
to be implemented by strings, a constant value denoting the empty table
and functions to insert names and then test for membership in the table.
Standard ML structures provide dot notation for accessing the components
of structures and thus structures named Table matching the TABLE signature
would define types Table.name and Table.table, a constant Table.empty

signature TABLE =
sig
type table
type name = string
val empty: table
val insert: name * table -> table
val member: name * table -> bool
end;

Figure 1: An interface signature for name tables

and functions Table.insert and Table.member. The implementations are
shown in Figure 2 and Figure 3. Matching against the signature (using the :>
syntax) is opaque and thus outside the structure body we cannot make use
of the typing information which is known inside the structure body. For
example, we cannot make use of the fact that in the first version of the
structure tables are implemented as Standard ML lists. This prevents us
from applying functions defined on lists (such as List.rev) to values of type
Table.table. Inside the structure body we are free to use list constants such
as the empty list, denoted by two square brackets, and list constructors such
as cons, denoted by two colons.

After a careful comparison of the two implementations, we should be able
to agree that the second implementation could be used as a replacement for
the first. A specification-based analysis of the two implementations would
judge them to be behaviourally equivalent. Less prosaically, we could think
that we would not compute any different results if we had initially built our
system using the second implementation of the structure instead of the first.
Our notion of structure replacement certainly includes logically undetect-
able replacements such as this one but it is more lax, additionally allowing
replacements which change the observable behaviour of the program under
modification. Examples of the latter would include replacing a structure with
a version which logged function calls, perhaps in order to extract statistical
information about the program’s run-time performance or in order to aid
with the detection of logical errors in the implementation.

The formal requirement which structure replacements must satisfy can
be captured by static type-checking: a replacement S2 for a structure S must
match every signature constraint which S matched in the original program.
In practice, this means that the replacement structure must not omit any
functions, types or values which were exported by the structure which it
replaces. Functions, values and types which were defined and only used in-
ternally may be omitted in the implementation of the replacement structure.
For simplicity here, we do not provide a facility for combining replacement
with renaming. Structures and signatures replace structures and signatures
which have the same name.

2.2 Signature replacement

Signature replacement is a facilitating operation which allows more per-
missive signatures to replace more restrictive ones. An effect of this can
be to make visible functions, types and values which had been hidden by the
application of a signature constraint. Replacement such as this is subject
to type preservation conditions which constrain the relationship between the

4

structure Table :> TABLE =
struct
type name = string
type table = name list
val empty = []
fun insert (s, t) = s :: t
fun member (s, []) = false
| member (s, h::t) = s=h orelse member (s, t)

end;

Figure 2: An inefficient implementation of a name table

structure Table :> TABLE =
struct
type name = string
datatype table = empty
| node of table * name * table

fun insert (s, empty) = node (empty, s, empty)
| insert (s, node (1, v, r)) =
if s < v then node (insert (s, 1), v, 1)
else if s > v then node (1, v, insert (s, r))
else node (1, v,)

fun member (s, empty) = false
| member (s, node (1, v, r)) =
if s < v then member (s, 1)
else if s > v then member (s, r)
else true
end;

Figure 3: An improved implementation of a name table

signatures. Signature replacement must not cause changes of typing inform-
ation about visible values and functions. It might be more appropriate to
term this operation signature extension since it will be most often used to
allow the declarations in a structure to be supplemented by others which
increase the functionality of any matching structure.

Consider the situation where we replace our TABLE signature with one
which includes the following function specification:

val checkpoint: table * TextIO.outstream -> unit

That is, upon being applied to a pair of a table and an output stream such
as TextI0.stdOut the function will serialize the contents of the table to the
output stream and return a unit value (of type unit) to signal completion.

We could not replace our previous version of the TABLE signature with one
extended by the checkpointing function without first upgrading all structures
which match this signature to contain an implementation of the function.
This would not be visible under the old signature but would become visible
when we upgrade the signature to include it. We could then replace client
structures of the TABLE structure to allow them to make calls to the newly
added checkpointing function.

3 An implementation model

Having outlined the types of code replacement which we would like to per-
form, we now go on to describe a simple implementation strategy for them.
One could first consider attaching the compiled image of the replacement code
to the program image, reassigning function pointers and invoking garbage
collection to remove the old, now unused, code. A moment’s thought will be
enough to convince us that this cannot work. We would realise that values
calculated by the old version of the code would still be live in memory and
upon the first application of a replacement function to one of these we would
be able to use a data value in a way not allowed by its type. In this way, by
fracturing the elaboration-evaluation model, we would allow the program-
mer to circumvent the helpful static type-checking of Standard ML. This
was never our intention.

Instead we must do slightly more work to bring about structure replace-
ment in a type-safe way. We present a new structure together with a replace-
ment mapping which shows how to upgrade from the old representations of
data values to the new ones.

3.1 Expressing the replacement operation

Our method of code replacement is intended to be suitable for updating
programs where the application programmer has followed good software en-
gineering practice by encapsulating information such as the concrete rep-
resentation of data structures. This disciplined approach to programming
facilitates our replacement of a list by a tree, ensuring that the change is in-
visible to the users of the Table structure. However, this disciplined approach
to programming proves to be a disadvantage when we come to consider the
problem of describing the replacement of values of the old datatype with
values of the new datatype. Specifically, the constructors of the old concrete
representation are not visible, due to the encapsulation which is provided by
the application of the TABLE signature constraint to the Table structure in
our example.

In order to circumvent this difficulty we could abstract over a Table
structure which is specialised to implement a name table as a list of charac-
ter strings. Structure abstractions such as these are Standard ML functors.
Given a structure matching the specialised TABLE signature the functor body
could describe a structure which implements name tables as binary search
trees. In addition the structure could contain functions to convert from the
types of the given structure to the types of the new. We place the conversion
functions inside an Install structure and we follow a convention of mapping
values from their old representation to their new one using functions which
have the same identifier as the type which they update. Such duplicate use
of identifiers is possible in Standard ML because the language maintains dif-
ferent name spaces for different categories of identifiers (value constructors,
type constructors and record labels in the core language and signature, struc-
ture and functor identifiers in the modules language). Figure 4 shows this
method of structure replacement encoded as a Standard ML functor. The
functions to update values of type name and table to use the new types are
respectively the identity function (mapping x to x) and an application of the
Standard ML Basis library function implementing folding a function across
a list with right associativity. When the List.foldr function is applied to
the insert function for trees and the empty tree it has been specialised to
provide a function which maps lists to binary search trees.

The expressive power which Standard ML functors provide is sufficient to
allow us to state our wish to replace lists by binary search trees but it would
not be sufficient to allow us to subsequently replace these trees with, say,
balanced trees. The reason is this: in Standard ML the type expression which
appears in a qualification of a signature expression may only refer to type
constructors which are in the scope of the signature expression. The nullary

functor InstallTable (structure Table: TABLE where
type table = string list) :> TABLE =
struct
type name = string
datatype table = empty
| node of table * name * table

fun insert (s, empty) = node (empty, s, empty)
| insert (s, node (1, v, 1)) =
if s < v then node (insert (s, 1), v, r)
else if s > v then node (1, v, insert (s, r))
else node (1, v, r)

fun member (s, empty) = false
| member (s, node (1, v, r)) =
if s < v then member (s, 1)
else if s > v then member (s, r)
else true

structure Install =
struct
val name: Table.name -> name = fn x => X
val table: Table.table -> table = List.foldr insert empty
end
end;

Figure 4: A functor which defines the method of replacement for tables

type constructor string and the unary type constructor 1list are in scope
by virtue of being pre-defined in the language. However, the binary search
tree datatype which we defined in the body of the InstallTable functor
is not pre-defined. Further, it is not exported from the structure which is
formed by applying the functor to the old version of the Table structure
due to the opaque signature matching against the TABLE signature. For this
reason, we require for Dynamic ML an extended version of Standard ML’s
where type qualification. The extension of this language feature must permit
qualifications of the following form in functor headings.

functor InstallTable (structure Table: TABLE where
datatype table = empty
| node of table * name * table) :> TABLE

Datatype declarations in Standard ML are generative with declarations which
are not replications of existing datatypes producing a new type, distinct from
all others introduced up to this point. Datatype specifications in signatures
are not generative and we need the where datatype qualification to similarly
not generate a new type name. Its purpose here is to allow us to describe an
existing type defined in a structure named Table matching the TABLE signa-
ture. In a language with this degree of expressivity we are able to describe
replacement of programmer-defined local datatypes with other types. We
now describe how the replacement is effected.

3.2 Executing replacement

Our implementation strategy for effecting code-replacement is based on a
modification of two-space copying garbage collection. Before describing the
code-replacement operation, it is necessary to understand the basic copying
collection algorithm.

In a uniprocessor implementation, the address space of the heap is divided
into two contiguous semi-spaces. During normal program execution, only one
of these semi-spaces is actually used. Memory is allocated in a linear fashion
through this semi-space until an allocation fails. At this point, the copying
collector is called to reclaim space. The current semi-space (from space) is
recursively scanned from the root objects, and all live objects are copied into
the other semi-space (to space). When all of the objects that are reachable
from the roots have been copied, the collection is finished, and the old semi-
space (from space) can be discarded (see Figure 5). Subsequent memory
allocations are performed in the new space (to space). The role of the two
semi-spaces is then reversed for the next garbage collection.

ola] | |

-+ garbage

free space
roots
from space to space
(before collection) (after collection)

Figure 5: Two-space copying garbage collection

We propose to perform the code replacement operation during garbage
collection. A functor, such as the one shown in Figure 4, is compiled sep-
arately. We then invoke the garbage collection operation extended with the
application of the replacement functions from the Install structure to any
values of the type under replacement. After completion of the copying with
replacement, it is possible to dispose of the outdated version of the structure
under modification (in the from semi-space), and switch to use the new ver-
sion (in the to semi-space) which now contains the data values of the newly
introduced replacement types. Replacement is illustrated in Figure 6.

3.3 Failure of installation
3.3.1 No modification due to no match

We must consider two cases where the operation of replacing program com-
ponents would be judged to have failed. The first case is where there are
no components which fit the description of the component which is to be
replaced. In our example this would mean that the executing program image
contained no compiled representation of a structure name Table matching
the TABLE signature and implementing the type Table.table as a list of
character strings. A failure of this kind where the compiled program image
is not modified at all is classified as a passive failure. The response from the
language implementation in this case would be to report a warning to the
application programmer stating that the replacement was not installed.

10

from semi-space to semi-space

1 1| » true
2 2 node(4,"A",3)
3 —© yes: bool | 3| node(4,"B",4)
4 O A: Table.table O] 4 empty
5| cons("B",6)«) pi: real © 5 3.1415926. ..
G| cons("A",7) symbol table 6
7 nil 7
8 8
9 9 free space
10 10
11 3.1415926.% 11
12 12
before replacement after replacement

and collection

Figure 6: Code replacement with type update

3.3.2 Rollback due to programmer error

The second failure case is a more complex one. We are presenting a modified
form of garbage collection operation which executes application programmer
code. The functions which are executed during code replacement are unres-
tricted Standard ML functions which may diverge upon application or raise
an exception to signal an inability to continue processing. We can do nothing
but weep over non-terminating computations but in the case where an ex-
ception is raised we can do more. We would not like the exception-producing
function application to halt the execution of our program: we have gone to
some trouble here to be allowed to modify our program without interrupting
its execution. However, there is no possibility that an exception handler in
the program could deal with these errors and recover from them. (We may
be introducing new datatypes to which the program had no access.) Our
method of recovery is to rollback the garbage collection operation when any
exception is raised. We revert to using the from semi-space of data values,
the old types and we continue with the execution of the old program code.
An error report is returned to the application programmer giving as much
diagnostic information as possible about the location, nature and cause of
the exception.

11

4 Implementation considerations

4.1 Code distribution

Our eventual intention is to extend the dynamic module-replacement model,
described in the previous sections, into a multi-user distributed computing
environment. This would considerably enhance the usefulness of the system.
For example, it would enable a team of software developers to concurrently
introduce updates to a project without requiring a lengthy code-freeze and re-
compilation stage. Consequently, the choice of garbage collection algorithm
was heavily influenced by a desire to avoid unnecessarily complicating this
extension.

One promising alternative to garbage collection appears to be region-
based memory management [1]. In this scheme the memory consists of mul-
tiple stacks each containing values of a particular type. A sophisticated
region inference algorithm is used to determine the memory requirements of
the program at compile-time, thereby avoiding the need for run-time garbage
collection. At first sight, this scheme appears ideal for our purposes as the
separation of types into different regions would avoid the need to retain
run-time typing information, and would simplify the replacement operation.
However, code replacement may have serious implications on the region-
inference algorithm, as it will no longer be possible to infer the absolute
memory usage at compile time as the program will change over time. Also,
the inference algorithm is primarily designed for a uniprocessor system and
contains no obvious method of integration into a distributed environment.
Furthermore, the source code requires careful profiling to obtain any real per-
formance benefit over traditional garbage collection techniques. Nonetheless,
it is possible to combine the allocation of different types into different areas
of memory with traditional garbage collection, and this will be investigated
thoroughly.

A generational variant of the two-space copying garbage collection al-
gorithm has been successfully integrated into a distributed computing envir-
onment in the LEMMA interface [2]. The semi-spaces are divided into two
generations: local and global. The local generation contains data that is only
present on the local machine, while the global generation contains data that
is shared between machines. Data may migrate from the local generation
to the global generation, but not the reverse. Collection of the local gener-
ation is exactly as before. Collection of the global generation requires the
co-operation of all the machines that have a copy of the shared data. Ex-
tending the replacement operation to this generational scheme appears to be
relatively straightforward.

12

We also need to consider how data objects are shared between machines.
In the LEMMA interface, a compile-time distinction is made between immut-
able and mutable objects. Immutable objects can be freely copied between
machines without the need for coherency checking as they will never need
to be updated. On the other hand, mutable objects require a coherency
checking scheme as an update to an object must propagate atomically to all
copies of the object on all machines. Fortunately, only reference types in
Standard ML give rise to mutable objects, so relatively little (expensive) co-
herency checking is required for a typical program constructed in a functional
programming style.

Unfortunately, our replacement operation no longer permits us to ig-
nore the coherency checking of immutable objects as they may now be up-
dated during replacement. Consequently, we make the additional distinction
between replaceable and irreplaceable objects for both mutable and immut-
able types. For example, the signature shown in Figure 1 contains a concrete
representation of the type name (as string) and therefore cannot be replaced.
However, the type table is abstract and is therefore replaceable. Replaceable
objects will require additional coherency checking, though this will not be
as expensive as mutable coherency checking as updates are only performed
during the replacement (i.e. during garbage collections).

4.2 Performance

Our extension of the Standard ML language would seem to impose some
penalties on the run-time performance of our programs. The first penalty
which we consider is the overhead which would be incurred by the need to
retain typing information at run time. This information is not checked during
program execution but it is used when programs are modified by structure
replacement. One reason why typing information is shown to be needed in
our example is that we must distinguish between lists of character strings
which are values of type Table.table and those which are of other (perhaps
non-abstract) types. As noted in the previous section, tagging of values of
replaceable types could be avoided by storing them together in a scheme
based on regions. We also observe that only values of datatypes which can
be replaced need incur the overhead of retaining typing information at run-
time. Values of irreplaceable types can be stored without type information
using the well-known techniques for this [3].

A slight run-time penalty is imposed by our dependence on the encapsula-
tion provided by opaque signature matching. Compiler optimisations which
could have been performed by exploiting knowledge of the concrete repres-
entation of the data structure now may be inadmissible. We believe that it

13

is reasonable to suffer some slight performance penalty for the benefit of ease
of software maintenance due to security of representation independence.

A storage penalty is incurred to facilitate signature replacement. The
compiler cannot now eliminate so-called ‘dead code’ (typically functions in
structure bodies which are never used or exported). This comes about be-
cause of the consideration that a more generous signature might later be
applied to the structure, making the invisible functions visible and allowing
them to be invoked. In some cases this can be lessened. The Install struc-
ture which is used in structure replacement can be removed upon successful
completion of the code replacement activity.

4.3 Security

A significant concern related to any dynamic language is that the facility to
replace code at run-time might leave the system more vulnerable to active
attack (perhaps by the introduction of a virus) or passive attack (perhaps
by data snooping). The implementation technology should include consider-
ation of this, allowing the prevention of undesired modification perhaps by
requiring the user to authenticate any replacement code using well-known
public key encryption techniques.

5 A semantic model

Unusually for a practical programming language, Standard ML has a formal
definition [4]. The language definition acts as a solid scientific platform upon
which may be conducted experiments in programming language design. An
alteration to the Standard ML language such as adding first-order module
replacement should be investigated in the terms of the Definition. However,
as readers of the Definition will know, it is silent on the topic of memory man-
agement except to say that “there are no (semantic) rules concerning disposal
of inaccessible addresses” [4, page 42]. Other authors have considered this
and argued for the usefulness of a semantic model of memory management
in making precise implementation notions such as memory leaks and tail
recursion optimisation. A suitable abstract machine model of memory man-
agement has been developed [5] and this would form a more suitable setting
in which to discuss the Dynamic ML extensions to Standard ML. We intend
to provide such a semantics for our extension in a follow-on paper.

14

6 Related work

Untyped or weakly-typed interpreted languages give the programmer great
flexibility in allowing code to be revised while it is executing. For this reason
they are sometimes used for the implementation of systems software for dis-
tributed computer systems, allowing minor errors to be corrected without
disrupting computations which are in progress. However, such languages
have inherent problems of inefficiency and insecurity and our interest here
has been in bringing the flexibility of code replacement to an efficient and
secure language.

This model of first-order module-level replacement for Standard ML pro-
grams which has been presented here forms a first step towards the creation of
a dynamic variant of Standard ML. Many concurrent or distributed versions
of the language already exist [6, 7, 8, 9] but none of these view a replacement
model as being crentral to their definition, as we do. Dominic Duggan has
recently defined a dynamic variant of Standard ML which has some aims
in common with ours [10]. His language differs from ours in that it retains
type information at run-time but adds dynamic types without suffering the
familiar run-time penalties for these [11]. We hope to explore further the
relationship between these two languages.

Acknowledgements

Stephen Gilmore thanks Samantha Osmer for giving the lectures on his course
when the early part of this paper was being written. Dilsun Kirli is supported
by a University of Edinburgh scholarship from the Department of Computer
Science. Christopher Walton is supported by an EPSRC postgraduate stu-
dentship.

References

[1] Mads Tofte and Jean-Pierre Talpin. Region-based memory management.
Information and Computation, 132(2):109-176, February 1997.

[2] David C.J. Matthews and Thierry Le Sergent. LEMMA: A Distributed
Shared Memory with Global and Local Garbage Collection. Technical
Report ECS-LFCS-95-325, Laboratory for Foundations of Computer
Science, Department of Computer Science, The University of Edinburgh,
April 1995.

15

3]

[10]

[11]

Andrew W. Appel. Runtime tags aren’t necessary. Lisp and Symbolic
Computation, 2:153-162, 1989.

Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The
Definition of Standard ML: Revised 1997. The MIT Press, 1997.

Greg Morrisett and Robert Harper. Semantics of Memory Management
for Polymorphic Languages. Technical report, School of Computer Sci-
ence, Carnegie Mellon University, September 1996. Also published as
Fox Memorandum CMU-CS-FOX-96-04.

David C. J. Matthews. A distributed concurrent implementation of
Standard ML. In FurOpen Autumn 1991 Conference, 1991.

J. H. Reppy. CML: A higher-order concurrent language. In ACM SIG-
PLAN 91 Conference on Programming Language Design and Imple-
mentation, SIGPLAN Notices 26(6), pages 294-305, 1991.

C.D. Krumvieda. Distributed ML: Abstractions for Efficient and Fault-
Tolerant Programming. PhD thesis, Department of Computer Science,
Cornell University, 1993.

Bernard Berthomieu and Thierry Le Sergent. Programming with beha-
viours in an ML framework: the syntax and semantics of LCS. In Pro-
gramming Languages and Systems: ESoP 1994, number 788 in LNCS,
pages 89-104. Springer, April 1994.

Dominic Duggan. A Type-Based Implementation of a Language with
Distributed Scope. In Jan Vitek and Christian Tschudin, editors, Mobile
Object Systems: Towards the Programmable Internet, number 1222 in
LNCS, pages 277-293. Springer, 1996.

Xavier Leroy and Michel Mauny. Dynamics in ML. Journal of Functional
Programming, 3(4):431-463, October 1993.

16

