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Abstract

An injective space is a topological space with a strong extension prop-
erty for continuous maps with values on it. A certain filter space con-
struction embeds every T0 topological space into an injective space. The
construction gives rise to a monad. We show that the monad is of the
Kock-Zöberlein type and apply this to obtain a simple proof of the fact
that the algebras are the continuous lattices (Alan Day, 1975). In previous
work we established an injectivity theorem for monads of this type, which
characterizes the injective objects over a certain class of embeddings as the
algebras. For the filter monad, the class turns out to consist precisely of
the subspace embeddings. We thus obtain as a corollary that the injective
spaces over subspace embeddings are the continuous lattices endowed with
the Scott topology (Dana Scott, 1972). Similar results are obtained for
continuous Scott domains, which are characterized as the injective spaces
over dense subspace embeddings.

Key-words: Extension of maps, injective space, continuous lattice, con-
tinuous Scott domain, domain theory, Kock-Zöberlein monad.
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1 Introduction

An injective space is a topological space D with a strong extension property
for continuous functions with values on D, to the extent that every continuous
map f : X → D extends to a continuous map f̄ : Y → D, for every space Y
containing X as a subspace. For example, the extended real line endowed with
the topology of lower semicontinuity is an injective space.

A certain filter space construction embeds every T0 topological space into an
injective space. In addition to contain the given space embedded as a subspace,
the filter space appears as a quotient of its own filter space. Technically and more
precisely, the filter space construction is a monad [7]. We show that the monad
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is of the Kock-Zöberlein type [6] and apply this to obtain a simple proof of Alan
Day’s result that its algebras are the continuous lattices [2].

In [3] we proved that, given a category with the structure of a Kock-Zöberlein
monad, the injective objects over a certain class of embeddings specified in term of
the monad structure coincide with the algebras of the monad. It turns out that for
the filter monad the embeddings are exactly the subspace embeddings. The fact
that the injective spaces over subspace embeddings are precisely the continuous
lattices endowed with the Scott topology, established by Dana Scott [8], thus
appears as a corollary of the characterization of the algebras.

The continuous Scott domains are the algebras of the proper filter monad [11].
For this monad, the associated embeddings are precisely the dense subspace em-
beddings, and hence the injective spaces over dense embeddings are characterized
as the continuous Scott domains. This characterization is folklore for the experts.
It was first formulated and proved by Scott, but only published as Exercise II.3.19
of the Compendium [5], whose emphasis is on continuous lattices (personal com-
munication).

More examples of the above situation, including the lower and upper space
monads, are investigated in the paper [3], which also includes a long introduction
explaining the fundamental role of injectivity in Scott’s mathematical theory of
computation and its connections with function spaces. Even more examples have
been recently discovered by Bob Flagg and the author [4].

For background on continuous lattices the reader is referred to [5]. For more
about domain theory and topology see [1, 9].

2 The filter space construction

The filter monad is defined on the category of T0 topological spaces and con-
tinuous maps. Recall that a space is T0 if no two distinct points share the same
system of neighborhoods. Given a space X, one denotes its lattice of opens sets
by ΩX and constructs the filter space FX as follows. The points are the filters
of ΩX. The open sets are generated by the sets

�U = {φ ∈ FX | U ∈ φ}, U ∈ ΩX,

which form a base as �U ∩�U ′ = �(U ∩ U ′).

2.1 FX is an algebraic lattice endowed with the Scott topology.

It is immediate that the specialization order of FX is inclusion of filters. Since
the lattice of filters is algebraic with the principal filters as the compact elements,
and since �U is the set of filters containing the principal filter ↑U , we see that
�U is a basic Scott open set, which establishes the claim.

Given a map f : X → Y , one defines a function Ff : FX → FY by

Ff(φ) = {V ∈ ΩY | f−1(V ) ∈ φ}.
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Then F is a functor and one has natural transformations ηX : X → FX and
µX : FFX → FX defined by

ηX(x) = {U ∈ ΩX|x ∈ U}, µX(Φ) =
⋃
{
⋂
U | U ∈ Φ}.

which make F into a monad F = (F , η, µ). Continuity of the functions defined
above follows from the fact that

(Ff)−1(�V ) = �f−1(V ), η−1
X (�U) = U, µ−1

X (�U) = �� U.

The first two equations are routinely verified and the last follows from §2.2 below.
The second equation together with the fact that ηX is one-to-one shows that ηX
embeds X as a subspace of FX. The unit laws µX ◦ ηFX = µX ◦ FηX = idFX
show that µX is a retraction map (in two ways) and hence FX is a quotient of
FFX, because retractions are quotient maps.

2.2 µX(Φ) = {U ∈ ΩX| � U ∈ Φ}.

Let U ∈ µX(Φ). Then there is U ∈ Φ with U ∈ ⋂U , and hence with U ∈ φ for
all φ ∈ U . From this we see that U ⊆ �U . Hence �U ∈ Φ because filters are
upper closed. Therefore µX(Φ) ⊆ {U ∈ ΩX| � U ∈ Φ}. In order to establish
the inclusion in the other direction, let U ∈ ΩX with �U ∈ Φ. We have to show
that there is U ∈ Φ with U ∈ ⋂U . We can take U = �U , because

⋂�U = ↑U ,
the principal filter generated by U .

3 Kock-Zöberlein monads

A monad T = (T, η, µ) defined on a poset-enriched category X , with T : X → X
a locally monotone functor, is said to be of the Kock-Zöberlein type if the
condition

ηTX v TηX
holds for all X. Notice that our definition is dual (at the level of hom-posets) to
that of [6].

Since X is poset-enriched, one can consider adjunctions of arrows. Given
arrows l : X → Y and r : Y → X one defines

l a r iff l ◦ r v idY and idX v r ◦ l,

and one says that l is left adjoint to r and that r is right adjoint to l. In this
case each adjunct l and r is uniquely determined by the other. The adjunction
is said to be reflective if l ◦ r = idY , and coreflective if idX = r ◦ l. In these
cases one writes l ar r and l ac r respectively.

By specializing Anders Kock’s results [6] from 2-categories to poset-enriched
categories, we learn that
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3.1 If T = (T, η, µ) is a Kock-Zöberlein monad then

1. An arrow α : TX → X is the structure map of a T -algebra iff ηX ac α.

2. ηTX a µX .

3. µX a TηX.

(We showed in [3] that each of these properties is in fact equivalent to the Kock-
Zöberlein property.)

By §3.1(1), every object can be the underlying object of at most one algebra,
and every structure map of an algebra is uniquely determined by the underlying
object of the algebra (as the right adjoint of the unit of the object). Due to
this reason we can identify the algebras of a Kock-Zöberlein monad with their
underlying objects.

4 Injective objects which are the algebras of
Kock-Zöberlein monads

In what follows we work with a Kock-Zöberlein monad T = (T, η, µ) defined on a
poset-enriched category X . The arrows singled out in the following definition are
particular cases of the semiupper maps of [10], for which the reflectivity condition
is not required:

4.1 By a T -embedding we mean an arrow j : X → Y such that the map
Tj : TX → TY has a reflective left adjoint, denoted by T ∗j : TY → TX.

For example, ηX : X → TX is a T -embedding with T ∗ηX = µX , because the
adjunction 3.1(3) is reflective by virtue of the unit law µX ◦ TηX = idX .

Note The following conditions are equivalent:

1. T -embeddings are order-monic.

2. Each component of η is order-monic.

3. T is order-faithful.

(1) =⇒ (2): Immediate. (2) =⇒ (3): If Tf v Tg then we have that Tf ◦ ηX v
Tg ◦ ηX by composition with ηX , that ηY ◦ f v ηY ◦ g by naturality, and that
f v g by the assumption. (3) =⇒ (1): Let j : X → Y be a T -embedding and
f, g : Z → X be arrows with j ◦ f v j ◦ g. Then Tj ◦ Tf v Tj ◦ Tg by local
monotonicity of T . Hence Tf v Tg because Tj is split-mono. Therefore f v g
by the assumption, and the proof is concluded.
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An object D is said to be injective over a class of arrows J if every map
f : X → D has an extension f̄ : Y → D along any j : X → Y ∈ J , in the sense
that the following diagram commutes:

X
j - Y

@
@
@f R 	..

...
..

f̄
D

One normally assumes that J consists of monomorphisms, so that the word ex-
tension is applied in the usual sense, but this is unimportant here. Notice that
the extension f̄ need not be unique. But since X is poset-enriched, a definition
with canonical choice is possible. We first recall a concept.

A right Kan extension of a map f : X → D along an arrow j : X → Y is
a (necessarily unique) arrow f/j : Y → D such that

1. f/j ◦ j v f and

2. f̄ ◦ j v f implies f̄ v f/j.

In other words, f/j is the largest solution in f̄ to the inequality f̄ ◦ j v f . In the
case that we have equality in (1), so that f/j is not only a right Kan extension
but also an actual extension in the above liberal sense, we say that f/j is a right
extension of f along j.

4.2 We say that an object D is right injective over J if every f : X → D

has a right extension f/j : Y → D along any j : X → Y ∈ J .

4.3 The following statements are equivalent for any object D:

1. D is injective over T -embeddings.
2. D is right injective over T -embeddings.
3. D is a T -algebra.

In this case, if f : X → D is any arrow and j : X → Y is a T -
embedding then f/j = mD ◦ Tf ◦ T ∗j ◦ ηY .

Here mD : TD→ D is the unique structure map of the algebra D. The construc-
tion of f/j is illustrated in the following diagrams:

X
j - Y TX �

T ∗j
TY �

ηY
Y

@
@
@f R 	..

...
..

f/j
@
@
@Tf R

	..
...

...
...

...
...

...

f/j
D TD

@
@
@mD R

D
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This was established in [3].

Note It is a basic property of monads that TX endowed with the structure map
µX : TTX → TX is a free T -algebra with insertion of generators ηX : X → TX.
More precisely, the following universal property holds. Given any T -algebra A
with structure map α : TA→ A, every arrow f : X → A extends uniquely to a
T -algebra homomorphism f̄ : TX → A, which is constructed as f̄ = α ◦ Tf :

X
ηX - TX

@
@
@f R 	..

...
..

f̄
A

See [7, Theorem VI.2.1]. In general, there can be many arrows f̄ extending f
along ηX . By 4.3, there is a greatest one, which coincides with the unique T -
algebra homomorphism extending f . In fact, one has that

f/ηX = α ◦ Tf ◦ T ∗ηX ◦ ηTX = α ◦ Tf ◦ µX ◦ ηTX = α ◦ Tf = f̄

because α = mA. By taking A = TY and f = ηY ◦ g for g : X → Y arbitrary,
recalling that Tg : TX → TY is always an algebra homomorphism, one sees that
the functor part of a Kock-Zöberlein monad is uniquely determined by the unit
of the monad and by the extension property as Tg = (ηY ◦ g)/ηX . In particular,
by taking g = idX we conclude that ηX/ηX = idTX.

4.4 An object is a T -algebra iff it is a retract of a free T -algebra.

This was first proved by Anders Kock [6]. It is also a corollary of 4.3, using the
facts that ηA is a T -embedding and that an injective object over T -embeddings
is a retract of every object into which it is T -embedded [3].

5 The filter monad is of the Kock-Zöberlein type

T0 topological spaces and continuous maps form a poset-enriched category under
the pointwise specialization order. By a simple unfolding of definitions, one sees
that the pointwise specialization order is characterized by, for all f, g : X → Y ,

f v g iff f−1(V ) ⊆ g−1(V ) for every V ∈ ΩY .

5.1 F is locally monotone.

Let f, g : X → Y with f v g. In order to prove that Ff v Fg, let φ ∈ FX
and V ∈ Ff(φ). This means that f−1(V ) ∈ φ. Since f−1(V ) ⊆ g−1(V ) and
φ is upper closed, we have that g−1(V ) ∈ φ. But this means that V ∈ Fg(φ).
Therefore Ff(φ) ⊆ Fg(φ).
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5.2 F is a Kock-Zöberlein monad.

By specializing the definitions to the appropriate types, we obtain

ηFX (φ) = {U ∈ ΩFX|φ ∈ U}, FηX(φ) = {U ∈ ΩFX |η−1
X (U) ∈ φ}.

Let U ∈ ηFX(φ). Then φ ∈ U . By algebraicity of FX, there is U ∈ φ such that
already ↑U ∈ U . Since U = η−1

X (�U) ∈ φ, we see that �U ∈ FηX(φ). And since
�U ⊆ U and filters are upper closed, we conclude that U ∈ FηX(φ). Therefore
ηFX(φ) ⊆ FηX(φ).

5.3 The F-embeddings are precisely the subspace embeddings.

Given a continuous map f : X → Y , its frame map f−1 : ΩY → ΩX preserves
all joins and hence has a right adjoint f∗ : ΩX → ΩY , which sends an open set
U ∈ ΩX to the largest open set V ∈ ΩY such that f−1(V ) ⊆ U . We can thus
define a map F∗f : FY → FX by

F∗f(γ) = {U ∈ ΩX | f∗(U) ∈ γ}.

The set F∗f(γ) is a filter because f∗ preserves meets. The function F∗f is con-
tinuous because one easily computes (F∗f)−1(�U) = �f∗(U). That this produces
a left adjoint to Ff is verified as follows:

Ff(F∗f(γ)) = {V ∈ ΩY | f−1(V ) ∈ F∗f(γ)}
= {V ∈ ΩY | f∗(f−1(V )) ∈ γ)} ⊇ γ,

because if V ∈ γ then f∗(f−1(V )) ∈ γ as V ⊆ f∗(f−1(V )). Similarly,

F∗f(Ff(φ)) = {U ∈ ΩX | f∗(U) ∈ Ff(φ)}
= {U ∈ ΩX | f−1(f∗(U)) ∈ φ)} ⊆ φ.

Reflectiveness means that F∗f◦Ff(φ) = φ. So we have to check that the equation
f−1(f∗(U)) = U holds iff f is an embedding. But this equation is equivalent to
saying that f−1 is surjective, which is in turn equivalent to saying that f is a
subspace embedding.

Note The components of the unit are order-monic.

Assume that ηX(x) v ηX(y) and let U be an open neighborhood of x. Then
U ∈ ηX(x) and hence U ∈ ηX(y) by the assumption, which means that y ∈ U .
Therefore x v y.

Corollary F is order-faithful and subspace embeddings are order-monic.

By virtue of Note 4.1.

7



6 New proofs of old theorems

6.1 Continuous lattices

We take the characterization [8, Proposition 2.4] as our definition: A complete
lattice D is continuous if every d ∈ D is the “lim inf” of its filter of Scott open
neighborhoods, in the sense that d =

⊔{dU | d ∈ U}, where U ranges over Scott
open sets.

6.1.1 The algebras of the filter monad are the continuous lattices endowed with
the Scott topology.

Moreover, the structure map mD : FD→ D of an algebra with underly-
ing space D is given by

mD(φ) =
⊔{l

U | U ∈ φ
}
.

We know by 2.1 that the free algebra FX is an algebraic lattice endowed with
the Scott topology, and by 4.4 that every algebra is a retract of a free algebra.
Therefore the algebras are continuous lattices. Conversely, let D be a continuous
lattice endowed with the Scott topology. It is clear that mD : FD → D is
monotone. We know that FD is an algebraic lattice with a basis consisting of
principal filters and that every filter is the directed join of the principal filters
generated by its members. Thus, in order to establish continuity of mD, it is
enough to show that mD(φ) =

⊔{mD(↑U)|U ∈ φ}. But this is immediate because
mD(↑U) =

d
U . By §3.1, one has that mD is a structure map iff ηD ◦mD v idFD

and mD ◦ ηD = idD. The equation holds precisely because D is continuous. In
order to establish the inequality, first notice that ηD ◦ mD(φ) = {U ∈ ΩD |⊔{dU ′ | U ′ ∈ φ} ∈ U}. Let U ∈ ηD ◦mD(φ). Then

d
U ′ ∈ U for some U ′ ∈ φ

because {
d
U ′ | U ′ ∈ φ} is directed and U is Scott open. Hence U ∈ φ because

U ′ ⊆ U . Therefore ηD ◦mD(φ) ⊆ φ.

Note Alan Day also proved that if D and E are algebras then a continuous
function f : D→ E is an algebra homomorphism iff it preserves all meets.

6.1.2 The injective spaces over subspace embeddings are the continuous lattices
endowed with the Scott topology.

Moreover, if f : X → D is a continuous map into a continuous lattice
and j : X → Y is a subspace embedding, then f has a greatest extension
along j, given by

f/j(y) =
⊔{l

U | y ∈ j∗(f−1(U))
}
.

8



The F -embeddings are the subspace embeddings by 5.3. Therefore the result
follows from 4.3, which says that the injective objects over the T -embeddings of
a Kock-Zöberlein monad T are the T -algebras. The above formula is a special
case of the general formula f/j = mA ◦ Tf ◦ T ∗j ◦ ηY of 4.3.

Note Scott’s extension formula produces the map

y 7→
⊔{l

f(j−1(V )) | y ∈ V
}
,

which is equivalent to f/j as defined above, simply because Scott proved that it
is the greatest extension along j.

6.2 Continuous Scott domains

The definition of the filter monad still makes sense if the improper filter (the
principal filter generated by the empty set—a top element) is ruled out. The
resulting monad is referred to as the proper filter monad and is denoted by F+.
The previous results remain true with the following amendments.

By a continuous Scott domain we mean a poset with directed joins and
non-empty meets (or, equivalently, bounded joins), subject to the approximation
axiom of the definition of a continuous lattice. In the algebraic case one uses the
terminology Scott domain.

6.2.1 F+X is a Scott domain endowed with the Scott topology.

6.2.2 The F+-embeddings are precisely the dense subspace embeddings.

Because a map f : X → Y is dense iff f∗(∅) = ∅, and this is the condition for
F∗f(φ) as defined in 5.3 being different from ↑∅ for all φ and hence F∗f being
well-defined.

6.2.3 The algebras of the proper filter monad are the continuous Scott do-
mains endowed with the Scott topology. The homomorphisms are the
meet-preserving continuous maps.

6.2.4 The injective spaces over dense subspace embeddings are the continuous
Scott domains endowed with the Scott topology.
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