
Categorical Term Rewriting:
Monads and Modularity

Christoph Lüth

Doctor of Philosophy
University of Edinburgh

1997

Abstract
Term rewriting systems are widely used throughout computer science as they
provide an abstract model of computation while retaining a comparatively simple
syntax and semantics. In order to reason within large term rewriting systems,
structuring operations are used to build large term rewriting systems from smaller
ones. Of particular interest is whether key properties are modular, that is, if the
components of a structured term rewriting system satisfy a property, then does the
term rewriting system as a whole? A body of literature addresses this problem,
but most of the results and proofs depend on strong syntactic conditions and do
not easily generalize. Although many specific modularity results are known, a
coherent framework which explains the underlying principles behind these results
is lacking.

This thesis posits that part of the problem is the usual, concrete and syntax-
oriented semantics of term rewriting systems, and that a semantics is needed
which on the one hand elides unnecessary syntactic details but on the other hand
still possesses enough expressive power to model the key concepts arising from
the term structure, such as substitutions, layers, redexes etc. Drawing on the
concepts of category theory, such a semantics is proposed, based on the concept
of a monad, generalising the very elegant treatment of equational presentations
in category theory. The theoretical basis of this work is the theory of enriched
monads.

It is shown how structuring operations are modelled on the level of monads,
and that the semantics is compositional (it preserves the structuring operations).
Modularity results can now be obtained directly at the level of combining monads
without recourse to the syntax at all. As an application and demonstration of
the usefulness of this approach, two modularity results for the disjoint union of
two term rewriting systems are proven, the modularity of confluence (Toyama’s
theorem) and the modularity of strong normalization for a particular class of
term rewriting systems (non-collapsing term rewriting systems). The proofs in
the categorical setting provide a mild generalisation of these results.

Acknowledgements
First of all, I would like to thank my supervisors, Don Sannella and Stefan Kahrs.
Together and between themselves, their support, patience and countless sugges-
tions, corrections and ideas kept my research and this thesis on an even keel.
For a while, they were ably supported by Andrzej Tarlecki during his stay at
Edinburgh.

A very special thanks is due to Neil Ghani, not only for keeping me company,
but also for his enthusiasm in this work, which sometimes surpassed my own,
which certainly was a great motivation.

Postgraduate study at the LFCS in Edinburgh has been very stimulating, due
to the Theory of Computation course, the various “clubs” and talks, and the
people present, and I thank everyone involved; I would like to single out Barry
Jay for introducing me to category theory in general, and to categorical term
rewriting in particular and John Power for his talks about monads and enriched
category theory.

Thank you to everybody who read this thesis and suggested improvements,
first of all Stefan and Don, but further Neil, Paul-André Melliès, and Burkhart
Wolff.

I benefited from a DAAD grant, and Paul Taylor’s macro package.
On a more personal note, I would like to thank everybody who made my stay

in Edinburgh more pleasant: Simon McPartlin (also for introducing me to the de-
lights of Easter Road), Roope Kaivola, Ally Hume, David Aspinall, all those who
played football with me (real or otherwise), my landlords Helmut and Cather-
ine Petzsch, and Martin Köhler (the London correspondent); and also everybody
at Bremen for their company, in particular Burkhart, Sabine, and Stefan. My
parents have always supported me, for which I am particularly grateful.

Declaration
I declare that this thesis was composed by myself and that the work contained
therein is my own, except where explicitly stated otherwise in the text. The main
results of chapter 4 have appeared in [50], and the main results of chapter 5 have
appeared in [51].

(Christoph Lüth)

Table of Contents

Chapter 1 Introduction and Preliminaries 5
1.1 Scope, Approach and Structure of This Thesis 6
1.2 How to read this Thesis . 10
1.3 Basic Notions of Category Theory 12

1.3.1 Foundations . 12
1.3.2 Categories, Functors and Natural Transformations 13
1.3.3 Representability, Limits and Colimits 14
1.3.4 Particular Limits and Categories 15
1.3.5 Colimits from Coproducts and Coequalizers 16
1.3.6 Monads . 17
1.3.7 Kan Extensions . 18
1.3.8 Locally Finitely Presentable Categories 19
1.3.9 Weakly Filtered Colimits 20

1.4 Basic Notions of Enriched Category Theory 27
1.4.1 Symmetric monoidal closed categories 28
1.4.2 V-categories . 29
1.4.3 2-categories . 30
1.4.4 V is a V-category . 32
1.4.5 Enriched Functor Categories 33
1.4.6 Limits and Colimits for V-categories 33
1.4.7 Tensors and Cotensors . 34
1.4.8 Change of base . 34

1.5 Particular Categories . 35
1.5.1 Graphs and the Category Grph 36
1.5.2 Binary Relations and the category Rel 40
1.5.3 Small Categories and the Category Cat 43

1.6 Basic Principles of Term Rewriting 45
1.6.1 Abstract Reduction Systems and Term Rewriting Systems 45
1.6.2 Commutativity, Confluence and Strong Normalization . . . 46

1

1.7 Words and Languages . 47

Chapter 2 Compositional Semantics for Term Rewriting Systems 49
2.1 Signatures and Equational Presentations 52

2.1.1 Signatures and Algebras 52
2.1.2 The Term Algebra . 53
2.1.3 The Internal Language of a Monad 57
2.1.4 Equational Presentations 60

2.2 Basic Principles of Enriched Monad Theory 62
2.3 Enriched Monads as a Semantics for Term Rewriting Systems . . 65

2.3.1 Sets with Structure . 66
2.3.2 Arities, Contexts and Rewrite Rules 68
2.3.3 The Term Reduction Algebra and the Monad TΘ 70
2.3.4 The Internal Language of a Monad 74
2.3.5 Comparison with the Literature Definition 1.6.1 76

2.4 Properties of the Monad TΘ . 77
2.4.1 Finitariness . 78
2.4.2 Regular Monads . 78
2.4.3 Expanding and Collapsing Monads 81
2.4.4 Quasi-Non-Expanding Term Rewriting Systems and Monads 85

2.5 Compositionality . 86
2.6 Conclusions and Discussion . 89

Chapter 3 Structuring operations 92
3.1 The Coproduct of Two Strongly Finitary Monads 95

3.1.1 The Coproduct Monad as a Pointwise Colimit 96
3.1.2 Unit, Multiplication and the Monad Laws 99
3.1.3 The Universal Property 101
3.1.4 Consequences of the Enrichment 108
3.1.5 An Alternative Construction 109

3.2 Deciding the Equality . 109
3.2.1 The Coequalizer . 110
3.2.2 Normal Forms for Objects 111
3.2.3 Normal Forms for Morphisms 114

3.3 The Coequalizer of Strongly Finitary Monads 119
3.4 Summary and Conclusion . 121

2

Chapter 4 Modularity of Confluence 123

4.1 A Semantic Definition of Confluence 124
4.1.1 Confluent Monads . 124
4.1.2 Confluent Term Rewriting Systems 126
4.1.3 Equivalence of the Two Notions 129

4.2 Preservation of Confluence for Coequalizers 131
4.2.1 The Diamond Property . 131
4.2.2 Witnesses . 134

4.3 Toyama’s Theorem . 135
4.4 Modularity of Confluence for Quasi-Non-Expanding Monads . . . 137

4.4.1 Completable and Co-Initial Subcategories 138
4.4.2 Finding a Completable Co-initial Subcategory 140

4.5 Summary and Conclusion . 142

Chapter 5 Modularity of Strong Normalization 146

5.1 A Semantic Definition of Strong Normalization 148
5.1.1 Termination for Categories and Monads 148
5.1.2 Equivalence of Notions . 149

5.2 Strong Normalization for the Coproduct Monad 151
5.3 Modularity of Strong Normalization for Non-Collapsing Monads . 155

5.3.1 Modularity of Termination for Non-Collapsing TRS’s . . . 156
5.3.2 The Monad Proof . 157

5.4 Summary and Conclusion . 161

Chapter 6 Conclusions and Further Work 163

6.1 Related Work . 164
6.1.1 Early Work . 164
6.1.2 Later and Contemporary Work 165
6.1.3 Other Work . 166
6.1.4 Discussion . 167

6.2 Future Work . 168
6.2.1 Generalizing the Term Rewriting 168
6.2.2 Improving the Theory . 170
6.2.3 Generalizing the Structuring Operations 171

6.3 Concluding Remarks . 171

Appendix A Using Monads to Model Named Reductions 172

A.1 A Term Construction for Named Reductions 173

3

A.1.1 Prereductions . 174
A.1.2 Named Reductions . 179
A.1.3 The Monad TΘ . 183
A.1.4 Named vs. Unnamed Reductions 186

A.2 Properties of the Monad TΘ . 186
A.3 Compositionality . 192
A.4 Summary and Conclusion . 195

Bibliography 196

4

Chapter 1

Introduction and Preliminaries

A term rewriting system is a set of directed equations like the following:

K.x.y → x

S.x.y.z → x.z.(y.z)

This system is in fact one of the first, and still one of the most prominent
term rewriting systems, called Combinatory Logic. Ever since its invention by
Schönfinkel and Curry in the 1920’s, followed by Church’s λ-calculus shortly af-
ter, term rewriting has been a useful tool in mathematics and (later) computer
science. Its use has spread to such diverse areas as

• foundational and meta-mathematical issues (which it was first invented for);

• automated theorem proving;

• implementation of programming languages.

Term rewriting is attractive because it provides an abstract model of compu-
tation while retaining a relatively simple syntax and semantics. In fact, this
very simplicity also limits the usefulness of term rewriting. Realistic programs
or specifications tend to be very large. In order to keep them manageable, they
are built from smaller ones using structuring operations; the simplest example of
a structuring operation being the disjoint union. The interaction between these
structuring operations and term rewriting is not at all clear, precisely because
the semantics is too simple to express how rewrites in the component systems
can be put together to rewrites in the combined system. In particular, we are
interested in whether properties of term rewriting systems such as confluence or
termination are preserved by these operations — whether they are modular.

The aim of this thesis is to investigate modularity problems in a coherent
framework. The means to this end will be a compositional semantics for term

5

Chapter 1 — Introduction and Preliminaries 6

rewriting systems. By this, we mean the translation of a term rewriting system
into a mathematical structure such that we can combine these mathematical
structures and obtain the same semantics as if we had combined the corresponding
term rewriting systems.

We will demonstrate the viability of our approach by proving some rather
strong modularity results known from the literature within our framework.

1.1 Scope, Approach and Structure

Why Semantics?

By giving a semantics to a term rewriting system, we want to reason about its
“meaning” independent of its particular syntactic presentation. For example,
consider the way we give a semantics to equational presentations in universal
algebra. A set of equations like

x.(y.z) = (x.y).z

I(x).x = 1

1.x = x

is on first sight just a collection of syntax, but we can interpret it in the language of
sets and functions (by picking a particular set X to interpret all terms, an element
a ∈ X to interpret the constant 1, a unary function b : X → X to interpret I

and a binary function c : X × X → X to interpret .). When doing so, the above
equations entail the equation x.1 = x (i.e. whatever set and functions we chose,
this equation will hold); we say that the equation x.1 = x is in the equational
theory of the three equations above. When reasoning about structures described
by the three equations (in other words, groups) we want to refer to whole class
of equations derivable from those given. This is meant by independence from
syntactic presentations. In the same vein, when reasoning about a term rewriting
system, we want to refer to all rewrites derivable in it — its so-called theory.

Semantics for Term Rewriting Systems

Traditionally, the theory of a term rewriting system is defined rather syntactically,
by using concepts such as substitution and contexts (the latter can be thought of
as terms with a “hole” given by a special unary symbol �): given a rule l → r,
a substitution σ of the variables in l and r, and a context C[], the left hand side
of the rule with the variables substituted by σ and put into context rewrites to

Chapter 1 — Introduction and Preliminaries 7

the right hand side of the rule with the variables substituted by σ and put into
context: C[σ(l)] → C[σ(r)]. We say C[σ(l)] reduces to C[σ(r)] in one step.

Hence the domain of discourse of the semantics are relations– we talk about
sets of objects, here terms, with a binary relation, the reduction relation generated
by the rewrite rules, on them. These binary relations are called abstract reduction
systems (ARS’s). While some results can be proven directly at the level of ab-
stract reduction systems, more sophisticated ones and especially those concerning
modularity, cannot, since abstract reduction systems lack the expressivity to deal
with key concepts such as substitutions, layers, redexes, orthogonality etc. so re-
sults relying on these concepts have to be proven directly at the level of the syntax.
This approach does not offer any compositionality: we cannot combine rewrites
from different systems, just the syntax. This way of defining the semantics of
combined systems is referred to as flattening: for a structured term rewriting
system, we take the component systems and calculate one large term rewriting
system equivalent to the structured system (the flattened system). Hence, when
considering whether a certain property is preserved under the disjoint union of
two term rewriting systems, we consider rewrites built over the disjoint union of
the two signatures and rewrite rules, rather than the combination of rewrites from
both systems, and a rather complicated syntactic machinery is set up to extract
the rewrites in the component systems (one needs to introduce the notions of
layers, special subterms, different colours etc.), for which the assumptions can be
applied.

The example of universal algebra above has actually not been chosen acci-
dentally. As universal algebra deals with terms and equations on them, a careful
analysis and generalization of the methods of universal algebra will allow us to
develop a similar treatment for term rewriting systems; after all, rewrite rules are
just directed equations.

Universal Algebra

In universal algebra, there are two ways of giving a semantics to a set of equations
(an equational presentation):

• One can define an equational calculus on the terms. Essentially, close the
equations under substitution, application of operations, transitivity, reflex-
ivity and symmetry; so e.g. if s = t has been derived as valid, t = s is
valid as well. Then the semantics of the equational presentation (called the
equational theory) is the set of all derivable equations.

Chapter 1 — Introduction and Preliminaries 8

• One can interpret the operations in the language of sets and functions as
above. In particular, one defines an algebra as a set together with a function
for each operation symbol. This way we can evaluate a term in the algebra
once we fix the values of the variables in the term; and we say an algebra
admits an equation s = t if the evaluation of both s and t is the same
for all possible values of the variables in s and t. Then the semantics of
the equational presentation is the set of those equations admitted by all
algebras that admit the equations in the presentation.

In universal algebra, both these semantics coincide. For term rewriting, only
the first kind of semantics has been developed at all.

Generalizing Universal Algebra

Where above equations are interpreted in the structure of sets and operations
on them, we will interpret term rewriting systems in the language of “sets with
structure”. Our first task will be to define what exactly we mean by “sets with
structure”, and it turns out that there is more than one possibility, all of which
make perfect sense.

The semantic framework we choose is category theory, because as opposed
to set theory (or formal logic, type theory etc.), category theory concentrates
on the abstract properties of structures as exhibited by the maps between them
rather than their concrete representation. In particular, there is a construction
modelling the “closure”, for example of a set of operations under composition
— and this is precisely the term algebra, the process of building terms from a
given set of operations and deriving a theory from a given set of rewrite rules.
Moreover, for this construct there is an abstract notion of an “algebra”, and hence
this construct subsumes both approaches mentioned above.

This construct is called a monad, and a particular class of instances of it (mo-
nads on the base category of all sets) is well-known to model universal algebra.
Our semantics will generalize this treatment of universal algebra along the lines
laid down by a particular branch of category theory called enriched category the-
ory. The key for the development of an appropriate semantics will be the proper
generalization of the underlying concepts from sets to “sets with structure”. This
will form the core of chapter 2.

Structuring Operations

The above is not eo ipso an example of a compositional semantics, because it
is not clear how to semantically represent the structuring operations. In fact,

Chapter 1 — Introduction and Preliminaries 9

structuring operations have mostly been considered in the context of algebraic
specifications, where the techniques of universal algebra are used to specify pro-
grams. Whereas in term rewriting and universal algebra, attention was mostly
restricted to the (disjoint and non-disjoint) union, the theory of algebraic speci-
fications has arrived at the characterisation of structuring operations by another
concept from category theory, called a colimit (which contains unions as a spe-
cial case), and this allows a very precise characterisation of compositionality: a
mapping from syntactic presentations to semantic presentations preserving these
colimits. Structuring operations, and how they operate on the semantic presen-
tations (i.e. the monads) will be the scope of chapter 3.

Properties of Term Rewriting Systems

Not every term rewriting system is useful. A system like

F (x) → F (x)

that reduces a term just to itself is clearly useless and uninteresting. The system
of Combinatory Logic given above is interesting, because it can represent every
computable function.

A taxonomy of term rewriting systems is based on the properties they enjoy.
Two of the most important properties are

• confluence, and

• strong normalization.

Confluence means that whenever there are two reductions from the same term
to two different terms, we can find another two reductions from these terms
both yielding the same term. This means that whichever of the two branching
reductions we choose, we arrive at the same result in the end as long as we keep
going. Strong normalization means that there is no infinite sequence of one-step
reductions— every reduction eventually terminates.

A system which is confluent as well as terminating is complete. A complete
term rewriting system gives a decision procedure for the equational theory the
term rewriting system describes: given two terms s, t, we reduce them until we
cannot reduce any further; the resulting terms s′, t′ are called the normal form
of s and t. By confluence, a term only has one normal form, and two terms are
equivalent in the equational theory iff their normal forms are equal.

In the context of structured systems, the question which structuring operation
preserves which property, summed up under the headline of modularity, has been

Chapter 1 — Introduction and Preliminaries 10

attracting a lot of attention — not at least from this thesis, where we will discuss
the modularity of confluence in chapter 4 and the modularity of strong normal-
ization in chapter 5. In these two chapters, we will prove known results from
term rewriting within our new semantic framework, demonstrating the viability
of our approach by simplifying the existing proofs and making them amenable to
generalization, as indicated by the slight generalizations of the original results we
obtain by re-proving them in our framework.

Category Theory in This Thesis

One of the aims of this thesis is to demonstrate that enriched category theory is
a useful basis for the theory of computation, and that the results from enriched
category theory can be put to good use in computer science.1 Hence, this thesis
has been written such that the results (if not every detail of the proofs) should
be understandable to a reader with a passing acquaintance with category theory
(like the first six chapters of [52]), and no knowledge of enriched category theory
at all, if the reader is willing to suspend belief at some points and accept some
of the categorical results as they are presented, or on the basis of some informal
reasoning. I would be delighted if this thesis would entice readers to learn more
about category theory, or indeed enriched category theory.

The reader with a good categorical background, however, may find that at
some points the simplification of categorical matters borders on the imprecise
and erroneous; so where I felt an explanation of the finer points of the category
theory was needed, this has been put into separate, dedicated sections. These

few sections are marked with a symbol
!

Categories in order to warn the unaware; their
content is not essential to an understanding of what follows (under the caveats
mentioned above).

1.2 How to read this Thesis

Thesis Outline

In summary, this thesis is structured as follows:

• Chapter 1: The rest of this chapter introduces the notions and concepts
of category theory as used in this thesis. Besides the standard concepts

1There is a deep reason for this: “ordinary” category theory deals essentially with the
equational theory of structures (and maps between them); but computer science is more about
computation than equality, and the additional structure offered by the enrichment exactly fits
this need.

Chapter 1 — Introduction and Preliminaries 11

found in any textbook on the matter, we will draw upon a less commonly
known area called enriched category theory. While only briefly recalling the
basic notions of category theory, more in order to define the notation than
as a self-contained introduction, the subsequent introduction to enriched
category theory and 2-categories is slightly more detailed, although the
reader is unlikely to obtain an in-depth understanding without consulting
the literature. We will further present an extensive review of the categories
we will use to model reductions — namely, graphs, relations, preorders and
categories. The chapter closes with a few lemmas about the algebra of words
over an alphabet L, which will be needed in chapter 3.

• Chapter 2: The theory construction.

We review how monads on the category of sets model signatures and equa-
tional presentations, followed by a review of the theory of enriched monads.
We then show how a specialization of the general theory of enriched monads
to a particular category of sets-with-structure yields a semantics for term
rewriting systems. We close the chapter by showing compositionality of the
semantics.

• Chapter 3: Structuring Operations.

Structuring operations are colimits, constructed from coproducts and co-
equalizers. We consider the coproduct of two monads, and its construction,
and briefly touch on the coequalizer of two monads.

• Chapter 4: Modularity of Confluence.

We show the modularity of confluence for the coproduct of two monads
(Toyama’s theorem).

• Chapter 5: Modularity of Strong Normalization.

We define a subclass of strongly normalizing monads called strongly normal-
izing under non-deterministic collapses, and show the modularity of strong
normalization for this subclass.

• Chapter 6: Conclusion and Further Work.

We review the literature on categorical term rewriting, relate our work to
the literature, and indicate possible directions of further research.

Chapter 1 — Introduction and Preliminaries 12

Chapter Dependencies

4

1.3 to 1.7- 2 - 3

-

5
-

where sections 1.3 to 1.7 are intended as a stock of references to be consulted
when the results are used, rather than as a straight read.

1.3 Basic Notions of Category Theory

This section recalls some of the basic notions of category theory. It is neither
self-contained nor intended to be, and the reader is advised that a knowledge
of the basic concepts of category theory (as mentioned in this section) will be
necessary to understand what follows (and is unlikely to be gained from this
section alone). The standard introductory text is of course [52], but there are a
plethora of introductory texts of varying quality.

Readers with a working knowledge of category theory, and a passing knowl-
edge of enriched category theory will be able to skip this section completely, and
refer back to it later on whenever they encounter references to those results in
this section which are unknown to them. Readers with a working knowledge of
category theory, but no knowledge of enriched category theory are invited to con-
sult §1.4; but as mentioned above, this thesis should be readable even with no
knowledge of enriched category theory.

We will use the notation of [52] (so readers familiar with the material of the
first six chapters of this book will be able to skip this section), except for the
following:

• the hom-sets of a category C are written C(x, y) rather than hom(x, y);

• the category of functors from C to D is written [C, D] rather than DC .

1.3.1 Foundations

Following the approach of [52, Chapter I.6, pg. 21ff.], we shall in the following
assume the existence of a universe U within which all sets defined in the following
live. The universe is a set with certain properties (e.g. it contains the set ω of
all finite ordinals and is closed under powersets), the elements of which are called
small sets. We are not at all concerned with foundational issues here, and shall

Chapter 1 — Introduction and Preliminaries 13

just note that if a set or category gets “too large” for a particular universe, there is
always a larger one which it lives in, and we shall mention these “size conditions”
in passing whenever we encounter them.

1.3.2 Categories, Functors and Natural Transformations

A category C is given by

• a set of objects |C|,

• and a set of morphisms MorC , with two functions δs, δt : MorC → |C|
assigning a source and target to every morphism; or alternatively, a family
{C(x, y)}x,y∈|C| of hom-sets (we will use both notions interchangeably);

• for every object x ∈ |C|, an identity 1x : x → x on x;

• and a composition function, mapping two morphisms f : x → y, g : y → z,
to their composition g.f : x → z.2

such that the composition is associative and the identity its left and right unit.
A category C is called discrete if all its morphisms are identities. The dual Cop of
the category C has the same objects, but reversed arrows: Cop(y, x) def= C(x, y).

We will use calligraphic letters such as C, X as variables for categories and
bold letters (as in Set) for specific categories. We will further write x ∈ C
as an abbreviation for x ∈ |C|, and f : x → y in C as an abbreviation for
x, y ∈ |C|, f ∈ C(x, y).

A morphism m : X → Y in C is monic (or a monomorphism) iff for all Z ∈ C
and f1, f2 : Y → Z m.f1 = m.f2 implies f1 = f2. A morphism e : X → Y in C is
epi (or an epimorphism) iff for all U ∈ C and g1, g2 : U → X, g1.e = g2.e implies
g1 = g2. In Set, the category of small sets and functions between them (see
below), a function is epi iff it is surjective, and monic iff it is injective. Finally,
a morphism f : X → Y is an isomorphism iff it is invertible, i.e. if there is a
morphism f−1 : Y → X such that f−1.f = 1X and f .f−1 = 1Y . In this case, we
also say that the objects X and Y are isomorphic.

A functor F : X → Y is given by an object function F Obj : |X | → |Y|
and a morphism function F : MorX → MorY , which preserves the source and
target of the morphisms, and identities and composition (i.e. 1FObj(X) = F1X

and Fg.Ff = F (g.f)). By slight abuse of notation, we usually write F for the
object function as well. A functor F : X → Y can also be given as a family of

2Note that although the author is a computer scientist, composition is written in applicative
(not diagrammatic) order.

Chapter 1 — Introduction and Preliminaries 14

functions Fx,y : X (x, y) → Y(Fx, Fy) for all x, y ∈ X . Then F is full if all Fx,y

are surjective, and faithful if all Fx,y are injective.
A natural transformation α : F ⇒ G : X → Y between two functors F and G

is given by a family {αx : FX → GX}x∈X of arrows in Y, indexed by the objects
in X , such that for all f : X → Y (this is called the naturality of α in X):

αY
.Ff = Gf .αX (1.1)

Given two categories X , Y the functor category [X , Y] between them has func-
tors as objects and natural transformations as morphisms, with the obvious com-
position and the identity transformation idF , given by the identity 1FX for every
object X ∈ X .3 The constant functor ∆Y : X → Y for Y ∈ Y maps every object
to Y , and every morphism to the identity on Y . For a morphism f : Y → Z, the
natural transformation ∆f : ∆Y ⇒ ∆Z is f for every object X ∈ X . This gives
the diagonal functor ∆(−) : Y → [X , Y].

1.3.3 Representability, Limits and Colimits

A particularly important category is the category Set which has all small sets as
objects, and the functions between them as morphisms. Then for a small category
C there are the two hom-functors for every object X ∈ C: C(X, −) : C → Set,
which on the objects maps Y to C(X, Y), and maps a morphism f : Y → Z

to the postcomposition f .(−) : C(X, Y) → C(X, Z), mapping g : X → Y to
g.f : X → Z; and C(−, X) : Cop → Set, which maps Y to C(Y, X) and f to
(−).f , the precomposition with f .

A functor F : C → Set is representable if there is an object X ∈ C such that
for all Y ∈ C, there is an isomorphism C(X, Y) ∼= FY which is natural in Y , also
written as C(X, −) ∼= F .

Given a functor F : J → C, a cone to the base F from vertex X is given by an
object X ∈ C, and a natural transformation ν : ∆X ⇒ F ; and a cone over F to
the vertex X is given by an object X ∈ C, and a natural transformation ν : F ⇒
∆X. F has a limit if the functor [J , C](∆−, F) : Cop → Set is representable; the
representing object X is called the limit of F , and c : ∆X ⇒ F is the limiting
cone. Dually, if the functor [J , C](F, ∆−) : C → Set is representable, F has
a colimit given by a colimiting object X and a colimiting cone c : F ⇒ ∆X

3The functor category is the first instance of the “size conditions” mentioned above: the
functor category [X ,Y] may be larger than X and Y; see [52, pg. 41]. To be more precise: a
category C is small if both the set of its objects and of its morphisms are small sets, then [X ,Y]
is only small if X is small.

Chapter 1 — Introduction and Preliminaries 15

(sometimes written as a tuple (c, X)). The limiting object for a functor F is
sometimes denoted as lim F , and the colimiting object as colim F .

We say a functor H : C → D preserves limits if the image Hc : HlimF ⇒ HF

for the limit (c, lim F) of a functor F : J → C is a limiting cone for HF .
Given a functor F : X → Y, if the functor Y(F (−), Y) : X op → Set is

representable for every object Y ∈ Y, F has a right adjoint, which is a functor G :
Y → X , mapping Y to the representing object GY ; and we have an isomorphism
φ : Y(F−, Y) ∼= X op(GY, −) ∼= X (−, GY) which maps a function f : Y → Z to
the function φ(f) : X (GZ, GY). We say F and G form an adjunction F −−| G :
X → Y (or are adjoint). The existence of an adjunction can be characterised in
at least three other ways: given two functors F : X → Y, G : Y → X , they are
adjoint if

• there is a bijection Y(FX, Y) ∼= X (X, GY) which is natural in X ∈ X and
Y ∈ Y;

• there are two natural transformations η : 1X → GF (the unit of the ad-
junction) and ε : FG ⇒ 1Y (the counit of the adjunction), satisfying the
triangle laws: GεY

.ηGY = 1GY and εFX
.FηX = 1FX (for X ∈ X , Y ∈ Y).

• there is, for every object X ∈ X , a morphism ηX : X → GFX which is
universal from X to G: for every other object Y ∈ Y, and every other
morphism f : X → GY , there is a unique morphism !f : FX → Y in X
such that f = G(!f).ηX.

All of these formulations are equivalent [52, pg. 81]. An important fact about
adjoints is that left adjoints preserve colimits and right adjoint preserve limits
[52, pg. 114].

Limits can also be considered as adjoints: a category C has a limit for all
functors F : J → C (it is complete) iff the diagonal functor ∆ : C → [J , C] has a
right adjoint (and dually, it has colimits (is cocomplete) iff the diagonal functor
has a left adjoint).

1.3.4 Particular Limits and Categories

The empty category ∅ has no objects and no morphisms. For any category C,
there is exactly one functor ! : ∅ → C. The limit (colimit) of this functor (if it
exists) is called the terminal (initial) object in C.

The one-object category 1 is has one object |1| = {∗} and a single morphism,
the identity on it. A functor F : 1 → C specifies exactly one object of C.

Chapter 1 — Introduction and Preliminaries 16

More generally, for any natural number n ∈ N there is the discrete category n

which has the ordinal n as objects; then a functor F : n → C specifies n objects in
C, and its limit (colimit) is the n-ary (cartesian) product (coproduct). If these exist
for any n, we say C has all finite products (coproducts). This can be extended
to any set v, and if v is infinite, we say C has infinite products (coproducts).
Coproducts are often written in the form X1 + X2 + · · · + Xn or even

∐n
i=1 Xi

(with the similar notation X1 × X2 × . . . Xn =
∏n

i=1 Xi) for products).
The one-arrow category→ has two objects with two identity morphisms and

one non-identity morphism between them; the two-arrow category ⇒ has two
objects with two identities and two non-identity morphisms between them. Then
a functor F :⇒→ C specifies two morphisms f, g : X → Y in C with the same
source and target (called a fork) and the limit (colimit) of F is called the equalizer
(coequalizer) of f and g.

(Co-)Products and (co-)equalizers are important because if they exist all other
(co-) limits exists, as will be shown in the following section.

1.3.5 Colimits from Coproducts and Coequalizers

One of the most useful theorems about limits says that any limit can actually
be constructed from products and equalizers. Since we will need the dual of
this construction later on, it is worth spelling out in some detail in the following
proposition, which is the dual of Theorem 1 in [52, pg. 109].

Proposition 1.3.1 Given two categories J and C, if C has all coproducts indexed
by the set of objects and morphisms of J , and coequalizers for all pairs of arrows,
then C has a colimit for every functor F : J → C.

Proof. Form the coproduct
∐

u:j→k Fj, indexed by all arrows u : j → k in J .

Fj

∐
u:j→k

Fj
f -

g
-

ιu

� ∐
i

F i
q- Q

ιj

-

Fj

ιu
6

Fu - Fk

ιk
6

(1.2)

Now for every arrow u : j → k, we define two maps from Fj into the coproduct

Chapter 1 — Introduction and Preliminaries 17

∐
i∈J F i: fu is the injection ιj of Fj into the coproduct, and gu is Fu followed by

the injection ιk. This gives two unique arrows f, g, such that in diagram 1.2, f

makes the upper triangle and g the lower square commute for all arrows u : j → k.
Then the coequalizer Q is the colimit of F . The colimiting cone µ : F ⇒ ∆Q

is given by µj
def= ιj.q; which is a cone since q coequalizes f and g, and it is the

universal cone, since any other cone ν : F → ∆P necessarily coequalizes f and
g, and hence there is a unique morphism ! : Q → P . �

1.3.6 Monads

A monad T = 〈T, η, µ〉 on a category C is given by a functor T : C → C (the action
of the monad), and two natural transformations η : 1C ⇒ T and µ : TT ⇒ T

(the unit and the multiplication), such that the monad laws hold: µ.ηT = 1C,
µ.Tη = 1C and µ.Tµ = µ.µT (these state that η and µ form a monoid, with η a
unit to µ on the left and right, and µ associative).

An algebra for a monad T is given by an object X ∈ C and a morphism
α : TX → X (called the structure map of the algebra), such that α.µX = α.Tα,
and α.ηX = 1X. A map between two algebras α : TX → X and β : TY → Y is
a morphism f : X → Y s.t. f .α = β.Tf .

Every adjunction F −−| G : X → Y with unit η and counit υ gives rise to
a monad T def= 〈GF, η, GυF 〉; on the other hand, every monad T gives rise to a
variety of adjunctions, in particular between C and the Kleisli-category CT (see [52,
Section VI.5]), and C and the Eilenberg-Moore-category CT, given by the algebras
and morphisms between them. The left adjoint is F T : C → CT , mapping X to
the free algebra µX : TTX → TX, whereas the right adjoint UT : CT → C maps
α : TX → X to the object X.

If a functor G : D → C has a left adjoint F : C → D, and D is isomorphic to
the Eilenberg-Moore category of the resulting monad, we say that G is monadic,
or even that D is monadic over C if G is understood. This means that D can be
generated from C by a set of operations plus equations on them; examples are
the category of groups, Grp which is monadic over Set, or the category of small
categories Cat which is monadic over Grph. A non-example is Cat, which is
not monadic over Set.

The Category of Monads on C

Given two monads T1 = 〈T1, η1, µ1〉, T2 = 〈T2, η2, µ2〉, a monad morphism α :
T1 → T2 is given by a natural transformation α : T1 ⇒ T2 such that α commutes

Chapter 1 — Introduction and Preliminaries 18

with the unit and multiplication of the two monads as in 1.3 and 1.4, where (∗)
commutes by naturality of α.

T1X

X

η1,X -

T2X

αX

?η2,X
-

T 2
1 X

µ1,X - T1X

T1T2X

T1αX

�
(∗) T2T1X

α1,T1X

-

T 2
2 X

µ2,X -

T2αX

�

αT2X

-

T2X

αX

?

(1.3) (1.4)

The category Mon(C) of monads on C has monads on C as objects and monad
morphisms between them as morphisms.4

A particular monad is the identity monad on C , IdC
def= 〈1C, id1C , id1C〉 which

has the identity on C as its action, and the identity transformations as both unit
and multiplication. By equation 1.3, it is the initial object in Mon(C).

1.3.7 Kan Extensions

Kan extensions can be thought of as a canonical way of extending the domain of
a functor. Given a functor K : M → C and a category A, the precomposition
with K defines a functor (−).K : [C, A] → [M, A], which takes every functor
F : C → A to FK : M → A. The adjoints of (−).K, if they exist, are the
Kan extensions. Thus Kan extensions come in two variants, left and right. More
explicitly, given functors K : M → C and T : M → A, the left Kan extension of
T along K is given by a functor LanKT : C → A and a natural transformation
ε : T ⇒ LanKT .K which is universal, i.e. for any other functor S : C → A and
natural transformation α : T ⇒ SK, there is a unique natural transformation
σ : LanKT ⇒ S such that α = σK.ε. The right Kan extension is given similarly
by the right adjoint (see [52, Chapter X] for details).

If C is cocomplete, the left Kan extension can be constructed as a pointwise
colimit [52, Chapter X.5]. For K : M → C and T : M → A, the value of the left

4Of course, this is not a category unless some size restrictions are placed on C, i.e. C being
small. If C is not small, Mon(C) will be a large category. We have to be careful not to treat
Mon(C) in turn as a category of the same size as C (in particular, Mon(Cat) is not an object
of Cat), but apart from that we can treat Mon(C) as a normal category.

Chapter 1 — Introduction and Preliminaries 19

Kan extension at c ∈ C is given by

LanKT (c) = colim ((K ↓ c)
P - M

T - A) (1.5)

where (K ↓ c) is the so-called comma category [52, Chapter II.6] which has as
objects morphisms f : Kx → c in C, and as morphisms commuting triangles

Kx
f - c

Ky

Ku

?

g

-

and P is the projection functor, taking f : Kx → c to x and Ku as above to u.
A useful fact about Kan extensions is that extension to the left preserves

colimits, and to the right limits respectively. Limits and colimits are given by
the left and right adjoint of the diagonal functor ∆ (see page 15 above). The
composition of the diagonal functor ∆ : A → [C, A] with the postcomposition
(−).K : [C, A] → [M, A] yields a functor which for any a ∈ A gives the constant
functor ∆a : M → A, hence is equal to ∆ : A → [M, A].

Then by diagram 1.6, colim .LanK(−) : [M, A] → A is a left adjoint to

A

� colim
⊥
∆ -
⊥

� lim

[C, A]

� LanK(−)
⊥

(−).K -
⊥

� RanK(−)

[M, A] (1.6)

∆ : A → [M, A] and thus maps any functor to its colimit: for any F : M → A,

colim LanKF ∼= colim F (1.7)

1.3.8 Locally Finitely Presentable Categories

In the category Set, there are the finite sets and the finite ordinals; the general-
isation of this concept leads to finitely presentable objects (see [1, Chapter 1] or
[4] for a motivation of the following definitions).

A partially ordered set (I, ≤) is called directed if for any two objects j, k ∈ I

there is an object l ∈ I such that j ≤ l, k ≤ l. A directed colimit is the
colimit of a functor D : (I, ≤) → C where (I, ≤) is a directed poset considered
as a category. An object k ∈ C is finitely presentable (or fp) if its hom-functor
C(k, −) : C → Set preserves directed colimits. A category C is locally finitely

Chapter 1 — Introduction and Preliminaries 20

presentable (also written as lfp) if its cocomplete, and there is a set A of finitely
presentable objects such that every object is a directed colimit of objects from
A. The subcategory of C given by the fp objects is written as Cfp. Intuitively, fp
objects are “finite objects”, and a category is lfp if it can be generated from its
finite objects.

Examples of finitely presentable objects are finite sets in Set, finite graphs
in Grph, finite preorders in Pre, and categories with a finite set of objects and
morphisms which are generated from a finite set of morphisms by closing under
composition and quotienting with a finite number of equations on them in Cat.
All of these categories (Set, Grph, Pre, Cat) are locally finitely presentable. A
category which is not lfp is CPO, the category of complete partial orders and
continuous functions. For more examples see [1, Chapter 1].

An equivalent characterization of lfp is via generators: a strong generator G
of a category C is a small full subcategory J : G ↪→ C such that f : X → Y is an
isomorphism iff for all G ∈ G, C(G, f) : C(G, X) → C(G, Y) is an isomorphism.
Then C is lfp iff C is cocomplete and has a strong generator [1, Theorem 1.11].
An example of this is the functor category [C,Set] for any small category C: by
the Yoneda lemma the representable functors form a small set of generators in
[C,Set], hence [C,Set] is lfp.

An equivalent concept to directed colimits are filtered colimits, which are often
more convenient to use. A category J is filtered if

(i) for any two objects two objects i, j ∈ J , there is an object k ∈ J and
morphisms f : i → k, g : j → k, and

(ii) for any two parallel arrows r, s : i → j, there is an arrow q : j → k

such that q.r = q.s.

A filtered colimit is the colimit of a functor F : J → C with J filtered. A category
C has all filtered colimits iff it it has all directed colimits [1, Theorem 1.5] (and
hence a functor preserves filtered colimits iff it preserves directed colimits).

If we liken coequalizers to quotients and coproducts to the disjoint union,
filtered or directed colimits can be thought of as a completeness property; this
is reflected by the fact that a category has directed colimits iff it has colimits of
chains [1, Corollary 1.7].

1.3.9 Weakly Filtered Colimits

Weakly filtered categories are a non-standard concept which is introduced here,
because the canonical diagrams we will encounter will not be filtered, merely

Chapter 1 — Introduction and Preliminaries 21

weakly filtered. A weakly filtered category lacks the second property of a filtered
category:

Definition 1.3.2 (Weakly Filtered Categories and Colimits) A category
J is weakly filtered if for every two objects i, j ∈ J , there is an object k ∈ J and
morphisms f : i → k, g : j → k.

The colimit of a functor F : J → C is called weakly filtered if the category J
is weakly filtered.

Not every weakly filtered category is filtered, since there can be parallel arrows
r, s : i → j but there is no arrow q : j → k with q.r = q.s. Hence, weakly filtered
colimits are a strictly weaker notion than filtered or directed colimits, but if a
functor preserves coequalizers of parallel arrows and preserves filtered colimits, it
will also preserve all weakly filtered colimits.

To show this lemma, we will first extend the weakly filtered category J to a
filtered category. Then any weakly filtered functor can be made into a filtered one
by its left Kan extension along the inclusion; and if we can show that the functor
preserves this Kan extension if it preserves coequalizers, then by equation 1.7 it
will preserve any weakly filtered diagram.

The filtered completion J0 of a weakly filtered category will have, for all
objects j ∈ J an object  and a morphism from j to  which coequalizes all
parallel arrows into j, thus satisfying the second condition for filtered categories.
To have the resulting category still satisfy the first condition, we further need to
add in exactly one morphism between  and k iff there is at least one between j

and k.

Definition 1.3.3 (The Filtered Completion) Given a weakly filtered cate-
gory J , its filtered completion J0 is defined as the category with

• objects: {j,  | j ∈ J }

• morphisms:

f : i → j for f : i → j in J
ιi,j : i →  for i, j ∈ J if there is f : i → j in J
κi,j : ı →  if there is f : i → j in J

where for all f, g : i → j, f = g. Further, J0(ı, j)
def= ∅ for all i, j ∈ J .

Composition in J0 is defined as follows (for i, j, k ∈ J):

1. for f : i → j, g : j → k, g.f is given by composition in J ;

Chapter 1 — Introduction and Preliminaries 22

2. for κi,j : ı → , κj,k :  → k, κj,k
.κi,j

def= κi,k (where κi,k is given by the
composition g.f of the morphisms f : i → j and g : j → k giving rise to
κi,j and κj,k);

3. for f : i → j, ιj,k : j → k, ιj,k.f
def= ιi,k (where ιi,k is given by g.f : i → k in

J);

4. for ιi,j : i → , κj,k :  → k, κj,k
.ιi,j

def= ιi,k (where ιi,k is given by the
composition g.f of f : i → j, g : j → k giving rise to ιi,j and κj,k).

The identities are 1j and κj,j (given by 1j).
Let J be the full subcategory of J0 given by all objects  ∈ J0 for j ∈ J ; this

subcategory is ismorphic to J(J) (where J is the functor from page 42 below)
taking a category to a preorder by identifying all arrows with the same source
and target.

The functor I : J → J0 is the inclusion J ↪→ J0.

Lemma 1.3.4 If J is weakly filtered, then J0 is filtered.

Proof. First, we show that for all j, k ∈ J0 there is i ∈ J0, p : j → i, q : k → i in
J0. We distinguish four cases: firstly, j, k ∈ J , then because J is weakly filtered,
there is i ∈ J , and p : j → i, q : k → i in J and hence in J0; secondly, if , k ∈ J ,
then since J is weakly filtered, there is i ∈ J , and κj,i :  → ı, κk,i : k → ı in
J0; thirdly, if j ∈ J , k ∈ J , then there is i ∈ J , and p : j → i, q : k → i in
J , and hence ı ∈ J0, ιj,i : j → ı, κk,i : k → ı; and finally  ∈ J , k ∈ J , which is
symmetric to the third case.

It remains to show that for any two arrows r, s : i → j in J0, there is an arrow
q : j → k in J0 such that q.r = q.s. We have three cases: firstly, if i, j ∈ J , then
q

def= ιj,j with ιj,j .r = ιj,j .s = ιj,i; secondly, if ı,  ∈ J , then r = s = κi,j, hence
q

def= 1; thirdly, if i ∈ J ,  ∈ J , then r = s = ιi,j, hence q
def= 1. A fourth case,

ı ∈ J , j ∈ J , can be excluded by definition of J0. �

We can now turn any weakly filtered functor F : J → C into a filtered functor
by taking its Kan extension along I : J → J0; by isomorphism 1.7, the colimit
will remain the same. If a functor T : C → D preserves this Kan extension and
filtered colimits, then it will preserve weakly filtered colimits. Under some mild
additional assumptions, it turns out that in addition to preservation of filtered
colimits, preservation of coequalizers is sufficient.

The following are the additional assumptions we need to make. They roughly
say that the diagrams are finitely generated, and are formulated in quite a strong

Chapter 1 — Introduction and Preliminaries 23

way such that they still hold for the diagrams we consider (in chapter 3), while
making rather weak assumptions on the functor F in question for an easy proof.
For example, the requirement below that the hom-sets be at most countably
infinite could be dropped if we required the functor to preserve coequalizers of
arbitrary sets of parallel morphisms, but since the diagrams in question have
countably infinite hom-sets we considered the weaker assumption that the functor
preserves coequalizers of pairs of parallel arrows.

Definition 1.3.5 ((Weakly) ω-Filtered Categories) A (weakly) filtered cat-
egory J is called (weakly) ω-filtered, if

(i) for all j ∈ J , card(|(J ↓ j)|) = card({i | ∃f : i → j in J }) ≤ ℵ0

i.e. for any object j there are at most countably infinitely many objects
from which there is a morphism into j

(ii) for all i, j ∈ J , card(J (i, j)) ≤ ℵ0, i.e. all hom-sets are at most
countably infinite.

Lemma 1.3.6 Given a weakly ω-filtered category J , a functor F : J → C
where C is cocomplete, and a functor T : C → D which preserves coequalizers
and filtered colimits, then T preserves the left Kan extension along I : J → J0:

TLanIF ∼= LanITF (1.8)

Proof. Since C is cocomplete, the left Kan extension can be constructed pointwise
by equation 1.5: hence, for j ∈ J0, LanIF (j) is given as

LanIF (j) = colim ((I ↓ j)
P - J F - C) (1.9)

We will now investigate how cones over FP look, and construct a colimiting
one. We will then show the lemma by showing that T preserves this colimiting
cone.

We first show that for all i, j ∈ J , there is an object S ∈ C and a morphism
q : Fj → S in C such that q is the coequalizer of all arrows Fk : F i → Fj for
k : i → j in J , written

(S, q) = coeq ({Fk : F i → Fj | k : i → j in J })

and that T preserves this coequalizer. Since all hom-sets in J are at most count-
ably infinite, we can enumerate the morphisms in J (i, j) as f1, f2 . . . , fn, If

Chapter 1 — Introduction and Preliminaries 24

J(i, j) is empty, then S
def= Fj and q

def= 1Fj. Otherwise, S and q are given as the
colimit colim

n<ω
Sn of the ω-chain (Sn)n<ω with ιn : Sn−1 → Sn defined as

S0
def= Fj q0

def= 1Fj

(Sn+1, ιn+1)
def= coeq (qn

.Ffn+1, qn
.Ff0) qn+1

def= ιn+1.qn

where we write (S, q) for the coequalizing object and morphism of the two arrows
qn

.Ffn+1 and qn
.Ff0. Then for all m < ω, i, j < m, qm

.Ffi = qm
.Ffj, hence the

colimit (S, q) of the chain makes all the arrows equal. It remains to show this
is the coequalizer of all morphisms in J (i, j), which is shown by the universal
property: suppose there is an object X ∈ C and a morphism g : Fj → X such
that for all h1, h2 : i → j in J , g.Fh1 = g.Fh2, then we construct a unique
morphism !g : S → X such that g =!g.q. The morphism !g is given by a cone
νn : Sn → X over the chain such that for all n < ω, νn

.qn = g. This cone is
defined inductively as follows: ν0

def= g, with ν0.q0 = g; and νn+1 is given by νn

as follows: with g.Ffn+1 = g.Ff0, we have νn
.qn

.Ffn+1 = νn
.qn

.Ff0, and since
(Sn+1, qn+1) is the coequalizer of qn

.Ffn+1 and qn
.Ff0, there is a unique νn+1

such that νn+1.ιn+1 = νn. Then we have νn+1.qn+1 = νn+1.ιn+1.qn = νn
.qn = g,

as required. Since T preserves filtered colimits, it will preserve the colimit of the
chain, and since it further preserves coequalizers, it will preserve the coequalizer
of all arrows:

T (coeq ({Fk : F i → Fj | k : i → j in J }))
∼= coeq ({TFk : TF i → TFj | k : i → j in J }) (1.10)

We now turn to the cone over FP . Formally, a cone ν : FP ⇒ ∆x is given
by morphisms νf : FP (f) → x in C, indexed by objects f of (I ↓ j), which are in
turn morphisms f : i → j in J0 where i is in the image of the inclusion functor I

and thus in J , such that for all morphism u : f → g (where g : k → j) in (I ↓ j),
given by morphisms u : i → k in J such that g.u = f , νg

.FP (u) = νf , which
amounts to νg

.Fu = νf .
We first show that any cone ν : FP ⇒ ∆x over FP is determined by a single

morphism ν : Fj → x in C which if j ∈ J has to make all parallel arrows into j

equal: i.e. for all f1, f2 : i → j in J , ν.Ff1 = ν.Ff2.
We consider two cases: j ∈ J , and  ∈ J . For the first, the identity 1j :

Ij → j is an object of (I ↓ j), giving a morphism ν1j : j → x, and moreover it
is terminal— for any other f : Ii → j, there is a unique morphism in (I ↓ j),
given by f , into 1j : Ij → j. Hence, any νf : FP (f) → x has to filter through

Chapter 1 — Introduction and Preliminaries 25

ν1 : j → j: νf = ν1.FP (f), which decodes as

F i
νf - x

Fj

ν1

-

Ff
-

hence ν1 determines the value of νf for all other f : i → j.
For the second case, an object (I ↓ ) is a morphism Ii →  in J0, which is

ιi,j, given by some f : i → j in J . The identity 1 : j → j gives a weakly terminal
object ιj,j, because for any f : i → j, ιj,j.f = ιi,j; but this not unique, since there
can be another g : i → j, which gives the same object in (I ↓ j) (namely, ιi,j),
but a different morphism in (I ↓ j) into ιj,j , given by g: ιj,j .g = ιi,j . Now both
f and g give rise to the same object ιi,j in (I ↓ j) and hence the same morphism
νιi,j : F i → x for the cone ν, which is also given by both f and g filtering through
ν1:

F i
νιi,j - x

Fj

ν1

-

Fg

-
Ff

-

Hence if for all f1, f2 : i → j, Ff1.ν1 = Ff2.ν1 , then ν1 : Fj → x gives rise to a
cone over FP .

It is now clear what a colimiting cone over FP is; namely, for j ∈ J , it is given
by ν

def= 1Fj, and for j ∈ J , ν is the coequalizer in C of the image Ff, Fg : F i → Fj

of parallel arrows f, g : i → j into j under F . This reflects the intuition behind
the construction of J0 and the Kan extension: on the objects of J , nothing
changes, but the additional objects of J0 get mapped to the coequalizing objects,
making J0 filtered.

We are now going to construct a colimiting cone over FP , and show that T

preserves this construction. For the first case, j ∈ J , this is rather trivial: with
ν

def= 1Fj, T (ν) = 1TFj because any functor preserves identities.
For the second case, let j ∈ J . Since J is weakly ω-filtered, the objects of

(I ↓ j) can be enumerated as a sequence j1, j2, . . . , jn, We now define a chain
(Si)i<ω the colimit of which will be a colimiting cone over FP . As above, we
write (S, q) = coeq (M) for the coequalizing object and morphism of a set M of

Chapter 1 — Introduction and Preliminaries 26

Fj = S0
ν - x

Fj1
--- Fj

q1 -

q0

==
==

==
==

==
==

=

S1

σ1

?

µ1

-

Fj2

--

S2

σ2

?

µ2

-

q2

-

Fj3

S3

σ3

?

µ3

-

q3

-

(1.11)

morphisms with the same source and target:

(S0, σ0)
def= (Fj,1Fj)

q0
def= 1Fj

(Sn+1, σn+1)
def= coeq ({qn

.Ff | f : jn → j in J })

qn+1
def= σn+1.qn

(see also diagram 1.11). The colimit of this chain is also a colimit cone over FP :

colim FP ∼= colim
n<ω

Sn

This is shown by its universal property: given any other cone over FP , which as
shown above is given by a morphism ν : Fj → x such that ν.Ff = ν.Fg for all
f, g : i → j, there is a unique cone morphism !ν : colim

n<ω
Sn → x. This morphism

is constructed by constructing a cone over the chain (Si)i<ω, given by morphisms
µi : Si → x such that ν = µn

.qn, as follows:

• µ0
def= ν, with ν = µ0.1Fj = µ0.q0;

• given µn : Sn → x, we have ν = µn
.qn and for any f, g : jn → j, ν.Ff =

ν.Fg. Hence µn
.qn

.Ff = µn
.qn

.Fg, so by the universal property of Sn+1

there is µn+1 : Sn+1 → x s.t. µn+1.σn = µn (which makes µi a cone over the
chain), and further

µn+1.qn+1 = µn+1.σn+1.qn = µn
.qn = ν

as required (see also diagram 1.11).

Chapter 1 — Introduction and Preliminaries 27

It remains to show that T preserves the colimiting cone just constructed. Since
T preserves filtered colimits, it in particular preserves colimits of ω-chains, hence

T colim
n<ω

Sn
∼= colim

n<ω
TSn

Further, by equation 1.10, T preserves coequalizers of sets of morphisms, hence

TSn = T (coeq ({qn
.Ff | f : jn → j in J }))

∼= coeq ({Tqn
.TFf | f : jn → j in J })

This describes the colimiting cone for (I ↓ j)
P - J0

TF- D, which gives
LanITF . Hence, for all j ∈ J0, TLanIF (j) ∼= LanITF (j). �

Lemma 1.3.7 A functor T : C → D, where C is cocomplete, preserves weakly
ω-filtered colimits if it preserves filtered colimits and coequalizers.

Proof. Let J be a weakly ω-filtered category and F : J → C, then we have

T (colim F) ∼= T colim LanIF by isomorphism 1.7
∼= colim TLanIF since T preserves filtered colimits,

and LanIF is filtered by lemma 1.3.4
∼= colim LanITF by isomorphism 1.8
∼= colim TF by isomorphism 1.7

�

We call a functor F finitary if it preserves filtered colimits, and strongly finitary
if it preserves weakly ω-filtered colimits.5 A monad is called (strongly) finitary if
its action is (strongly) finitary, and the category given by strongly finitary monads
and all monad morphisms between them is written as MonFin(C).

1.4 Basic Notions of Enriched Category Theory

The following is an introduction to those concepts and notions of enriched cat-
egory theory which shall be needed later on. No proofs are given. The reader
is referred to the standard text in the field [36] for an in-depth presentation of
the theory, although some readers may find the concise precision of the text too
demanding, and it covers far more material than is required here. [4, Chapter 6]
gives a more detailed introduction to the area, covering all the concepts presented
here, and is the recommended companion to this introduction. Finally, [46] con-
tains a good motivation, and a very readable introduction to enriched category
theory.

5A note on the terminology: since not all weakly filtered colimits are filtered, preservation
of weakly filtered colimits is a stronger requirement than preservation of filtered colimits, hence
we call those functors strongly finitary.

Chapter 1 — Introduction and Preliminaries 28

1.4.1 Symmetric monoidal closed categories

A monoidal category V = (V0, ⊗, I, a, l, r) is given by

• a category V0 called the underlying category,

• a functor ⊗ : V0 × V0 → V0 called the multiplication,

• an object I ∈ V0 called the unit,

• for all x, y, z ∈ V0, an isomorphism ax,y,z : (x ⊗ y) ⊗ z → x ⊗ (y ⊗ z) called
the associativity, which is natural in x, y and z,

• and for all x ∈ V0, isomorphism lx : I ⊗ x → x and rx : x ⊗ I → x called
left and right unit respectively, which are natural in x,

making diagrams 1.12 and 1.13 commute for all objects W, X, Y and Z. Dia-

((W ⊗ X) ⊗ Y) ⊗ Z
a- (W ⊗ X) ⊗ (Y ⊗ Z)

a- W ⊗ (X ⊗ (Y ⊗ Z))

(W ⊗ (X ⊗ Y)) ⊗ Z

a ⊗ 1Z

?

a
- W ⊗ ((X ⊗ Y) ⊗ Z)

1W ⊗ a
6

(1.12)

(X ⊗ I) ⊗ Y
a

- X ⊗ (I ⊗ Y)

X ⊗ Y
1X ⊗ l�r ⊗ 1Y

-
(1.13)

grams of isomorphisms such as these are called coherence axioms. They ensure
that every diagram built out of the left and right unit, associativity and multipli-
cation commutes (see [52, Chapter VII]). If the isomorphisms are all identities,
the monoidal category V is called strict. In that case, we shall allow ourselves
to omit the identities when denoting V , as we shall when these are canonical
isomorphisms: for example, (Set, ×, {∗}) is the monoidal category of small sets
with the cartesian product and the unit set (and the canonical isomorphisms),
and (Set, +, ∅) is the monoidal category of small sets with the coproduct and the
empty set. Other examples of monoidal categories include the category Grph of
graphs (see §1.5.1 below), the category Cat of small categories (see §1.5.3 below),
the category→, and more generally, ordered sets with finite intersections.

A monoidal category V is symmetric if there is natural isomorphism sx,y :
x ⊗ y → y ⊗ x, subject to certain other coherence axioms and the symmetry
axiom sy,x

.sx,y = 1x⊗y.

Chapter 1 — Introduction and Preliminaries 29

A monoidal category V is closed if the functor − ⊗ X : V0 → V0 has a right
adjoint [X, −] : V0 → V0 for every object X, with the counit εX : [X, Y]⊗X → Y

called the evaluation at X.
If the multiplication is the cartesian product of the two objects, and the unit

the terminal object, with the associativity and unit the canonical isomorphisms,
then V is cartesian; and if it is closed, it is a cartesian closed category.

In the examples above, Set is cartesian closed, Grph is closed with respect
to the “tensor product” of two graphs as defined below, but not with respect to
the cartesian product, and Cat is closed with respect to both the cartesian and
another monoidal product.

For a monoidal category V , a morphism f : I → X in V0 can be regarded
as an element of X; under the mild assumption that V0 is locally small (i.e. all
hom-sets are small) there is a functor V

def= V0(I, −) : V0 → Set which gives the
“underlying set of objects” for the objects of V . For example, for a graph G, V G
is (isomorphic to) its set of vertices, and for a category C, V C is its set of objects.

1.4.2 V-categories

The monoidal structure is all one needs to do enriched category theory: we can
now replace the set of morphisms between any two objects with an object from V0,
and obtain V-categories, V-functors, and V-natural transformations analogously.

If we want to explicitly distinguish categories as defined above from V-cate-
gories we are just about to define and 2-categories later on, we will call them
ordinary categories (and similarly, ordinary functors, natural transformations,
adjunctions etc.)

Let V be a monoidal category. A V-category C is given by

• a set |C| of objects,

• for every two objects X, Y ∈ C, an object C(X, Y) ∈ V0, called the hom-
object,

• for all X, Y, Z ∈ C, a morphism cX,Y,Z : C(Y, Z) ⊗ C(X, Y) → C(X, Z) in V0

called the composition,

• and for all X ∈ C, a morphism iX : I → C(X, X) in V0 called the identity
on X,

such that the composition is associative and the identity a unit on the left and
right.

Given two V-categories C and D, a V-functor F : C → D is given by

Chapter 1 — Introduction and Preliminaries 30

• an object function F Obj : |C| → |D|, and

• for any two objects X, Y ∈ C, a morphism in V0

FX,Y : C(X, Y) → D(F Obj(X), F Obj(Y))

which respect the composition and identity.
As a matter of convenience, we usual do not distinguish between F and F Obj,

with the tacit understanding that we mean F Obj(X) in the previous notation
when writing F (X) for an object X ∈ C.

Given two V-functors F, G : C → D, a V-natural transformation α : F ⇒ G is
given by a family of morphisms {αX : I → D(FX, GX)}X∈C indexed by objects
in C, which is natural in the sense that diagram 1.14 commutes for all X and Y .

C(X,Y)⊗I
GX,Y ⊗αX- D(GX,GY)⊗D(FX,GX)

C(X,Y)

r−1
X,Y -

D(FX,GY)

cFX,GX,GY

-

I⊗C(X,Y)
αY⊗FX,Y

-l−1
X,Y

-
D(FY,GY)⊗D(FX,FY)

cFX,FY,GY

-
(1.14)

We shall in the following assume that V is an arbitrary but fixed symmetric
monoidal closed category. Also, functors between V-categories are always un-
derstood to be V-functors, and natural transformations between V-functors are
always V-natural transformations.

1.4.3 2-categories

The category of all small V-categories, V-functors, and V-natural transformations
between them has as much structure as Cat, the category of all small ordinary
categories, so all constructions on ordinary categories which can be expressed
in terms of functors and natural transformations in Cat are also possible on V-
categories. To make this precise, the concept of a 2-category will be introduced.

A 2-category is a category enriched over the category of all small categories
with the cartesian product, the one-object-category 1 as unit and the canonical
isomorphisms; a 2-functor is Cat-enriched functor, and so on. In more detail, a
2-category C has

• a set |C| of objects,

• for every two objects X, Y ∈ C, a hom-category C(X, Y);

Chapter 1 — Introduction and Preliminaries 31

• for all X, Y, Z ∈ C, a bifunctor ◦X,Y,Z : C(Y, Z) × C(X, Y) → C(X, Z);

• and for all X ∈ C, an object 1X ∈ C(X, X) in the hom-category;

A 2-category has two kinds of composition: the composition within each hom-
category, called vertical composition, and the composition given by the bifunctor
◦X,Y,Z, called horizontal composition. The functoriality of ◦ means that it has
to preserve the vertical composition; this is also called the interchange law. The
objects of the hom-categories are also called the 1-cells of C, and the morphisms
of the hom-categories the 2-cells .

By taking the objects |C| of C, and the objects |C(X, Y)| as hom-sets between
X and Y , with the object function of ◦ as the composition, we obtain the under-
lying ordinary category C0 of C; and similarly, we obtain an underlying ordinary
functor F0 for a 2-functor F .

The horizontal and vertical composition allows us to draw “pasting diagrams”
[40, 66] to reason about the equality of 2-cells. Also, given a morphism f : X → Y

and a 2-cell α ∈ C(Y, Z), we can compose α with f , written as f−◦α
def= 1f ◦ α.6

As an example of this, here is the diagram defining 2-naturality: given two 2-
functors F, G : C → D, a 2-natural transformation ν : F ⇒ G is, for every object
X ∈ C, a 1-cell νX ∈ D(FX, GX); then diagram 1.14 is a diagram of functors,
which on the object level imply the usual naturality, and on the morphism level
commutativity of diagram 1.15. Since in general V-natural transformations form

FX

Ff -
⇓ Fα

Fg
- FY

GX

νX

? Gf -
⇓ Gα

Gg
- GY

νY

?

(1.15)

a V-object, there is also a notion of 2-cells between 2-natural transformations: a
modification γ : ν → µ : F ⇒ G : C → D is given by a family of 2-cells {γX}X∈X

6This is also sometimes referred to as tadpole composition, since this is what it is supposed
to look like in a diagram. Incidentally, it is possible to define a 2-category in terms of this
tadpole compositions: a set of objects, a set of morphisms between objects, and a set of 2-cells
between morphisms, with an identity morphism for every object, an identity 2-cell for every
morphism, a (horizontal) composition between the morphisms, and a tadpole composition “on
the left” between any morphism f : Y → X and 2-cell α : g ⇒ h : Y → Z, and “on the right”
between any 2-cell α and morphism u : Z → U , which is subject to ten equations[82, pg.52].

Chapter 1 — Introduction and Preliminaries 32

indexed by objects in C satisfying diagram 1.16.7

FX
Ff - FY

GX

νX

?

γX⇒ µX

? Gf - GY

νY

?

γY⇒ µY

?

(1.16)

2-categories are more than just another enriched category; they are the “natu-
ral” setting for constructions such as adjunctions [40] and monads [85], the whole
theory of which can be entirely formulated in terms of 1-cells and 2-cells in a
2-category.8 Since small V-categories, V-functors and V-natural transformations
between form a 2-category V-Cat, we can deduce how to define adjunctions and
monads for V-categories as specializations of the more general case.

1.4.4 V is a V-category

The closed structure of V makes V itself a V-category: more precisely, if V0 is
closed, we have a bijection

V0(X ⊗ Y, Z) ∼= V0(X, [Y, Z])

Let X
def= I , and recall the definition of V as V

def= V0(I, −), then

V0(Y, Z) ∼= V0(I ⊗ Y, Z) ∼= V0(I, [Y, Z]) = V [Y, Z] (1.17)

so the V-object [Y, Z] is the lifting of the hom-set between Y and Z through V ;
and we can define the V-category V :

• the objects are the same as V0: |V| def= |V0|;

• for any two objects X, Y , V(X, Y) def= [X, Y];

• the composition is given by under the bijection

V0([Y, Z] ⊗ [X, Y], [X, Z]) ∼= V0(([Y, Z] ⊗ [X, Y]) ⊗ X, Z)

7This means that the 2-category Cat-Cat of small 2-categories, 2-functors and 2-natural
transformations is enriched over Cat-Cat, and thus a “3-category”, and this process can be
carried on to n-categories, but we shall refrain from doing so here, since little is known about
the medical implications.

8For example, the construction of an adjunction from a monad by the Eilenberg-Moore
category CT for a monad T on a V-category C can be described as the left adjoint for the
2-functor mapping every category to the identity monad on it; and the Kleisli construction is
just the dual of this case.

Chapter 1 — Introduction and Preliminaries 33

as the composition of

([Y, Z] ⊗ [X, Y]) ⊗ X
a- ([Y, Z] ⊗ ([X, Y] ⊗ X))

1 ⊗ εX- ([Y, Z] ⊗ Y)
εY- Z

• and the identities are given by the image of l : I ⊗ X → X under the
bijection V0(I, [X, X]) ∼= V0(I ⊗ X, X)

1.4.5 Enriched Functor Categories

Under the assumption that V is complete, and again certain size conditions,
given two V-categories C,D, there is V-category V [C, D], the underlying ordinary
category of which is V-Cat(C, D), the category of V-functors and natural trans-
formations between them; for the details of this construction, we refer to [36,
Chapter 2] or [4, Proposition 6.3.1].

1.4.6 Limits and Colimits for V-categories

The generalization of limits from ordinary category theory to the enriched case
is more subtle. Recall that a limit for an ordinary functor F : J → C is defined
in terms of the representability of the functor [J , C](∆−, F) : Cop → Set. The
problem is that it is not possible to define the constant functor ∆Y : J → C in
the enriched context, because we would have to give, for all J, K ∈ J , a morphism
∆XJ,K in V0 filtering through the identity on X (diagram 1.18); for the ordinary

J (J, K)
∆XJ,K - C(X, X)

I

iX

-

m
-

(1.18)

case, I = {∗} is terminal in Set, so m is the unique morphism !J (J,K) into {∗}, but
in general this map m need not exist.

It turns out that the appropriate generalization of this concept is to allow
weighted or indexed limits. A weight (or index) for a diagram given by a functor
F : J → C is a functor G : J → V . Then the limit of F weighted or indexed
by G, exists if the functor [J , V](G, C(X, F−)) exists for all X ∈ C and admits a
representation

C(X, limGF) ∼= [J , V](G, C(X, F−))

We shall not pursue this theory here, since we do not need it below. The in-
terested reader is referred to [4, Section 6.4] for a more lucid motivation of the

Chapter 1 — Introduction and Preliminaries 34

construction, and to [36] for the finer points of the theory. For the reader in-
terested in examples, [38] presents constructions like comma-categories and lax
limits as (simple) weighted limits in Cat.

Like ordinary limits and colimits, weighted limits (colimits) are preserved by
right (left) adjoints (which are enriched adjunctions, of course). For ordinary
categories, we can weigh every diagram with ∆({∗}) : J → Set (for any J),
recovering the conical limits from §1.3.3.

1.4.7 Tensors and Cotensors

In the category Set, sets of cardinality n represent n-tuples of elements under
the following bijection:

Set(
∐
n

{∗}, Z) ∼=
∏
n

Set({∗}, Z) (1.19)

There is no reason that a similar bijection should hold in V0; hence, to represent
“tuples” of elements the notions of tensor and cotensor are introduced. In a V-
category A, a the tensor of an object A ∈ A and X ∈ V is an object V ⊗ A s.t.
for all B ∈ A,

A(X ⊗ A, B) ∼= V(X, A(A, B))

(Note the overloading of the symbol ⊗.) Dually the cotensor of A and X is an
object X t A s.t.

A(A, X t B) ∼= V(X, A(A, B))

If these objects exist for all A and X, we say A is tensored (and cotensored,
respectively). Tensors and cotensors are the simplest examples of weighted limits:
the cotensor X t A is the limit of the functor F : 1 → A (where 1 is the one-
object V-category), weighted by G : 1 → V with G({∗}) = X. Proposition 1.3.1
now generalizes, a V-category A has all weighted colimits if it has all coproducts,
coequalizers and is cotensored. Further, if U : A → B has a left adjoint, then
U preserves cotensors as well as weighted colimits; and on the other hand, if
the underlying ordinary functor U0 : A0 → B0 has an ordinary left adjoint, and
U : A → B preserves cotensors, then U has a left adjoint.

1.4.8 Change of base

Let V = (V0, ⊗, I) and W = (W0, ⊕, J) be two monoidal closed categories, than
a morphism between them is given by

• a functor F : V0 → W0,

Chapter 1 — Introduction and Preliminaries 35

• for all objects X, Y ∈ V , a morphism τX,Y : FX ⊕FY → F (X ⊗ Y) in W0,
which is natural in X and Y , and

• a morphism ε : J → F (I) in W0.

respecting the associativity and the left and right unit (and the symmetry, if it is
a morphism between symmetric monoidal closed categories).

A morphism like the above induces a 2-functor F ∗ : V-Cat → W-Cat, which
is defined as follows: let C be a V-category, then the W-category D def= F ∗(C)
has the same objects as C; for any two objects, D(X, Y) def= F (C(X, Y)), the
composition is given by

F (C(Y, Z)) ⊕ F (C(X, Y))
τ- F (C(Y, Z) ⊗ C(X, Y)

FcX,Y,Z- F (C(X, Z))

and the identities for X ∈ D are given by

J
ε - F (I)

F iX- F (C(X, X))

An application of this is that for any symmetric monoidal closed category
V , there is a 2-functor U : V-Cat → Cat, defined as the lifting of the functor
V

def= V0(I, −) → Set taking a V-category C to its underlying ordinary category
UC.

If V is cocomplete, this functor has a left adjoint9 FV(−) : Cat → V-Cat,
mapping an ordinary category C to its free V-category FV(C); briefly, the con-
struction is as follows: the functor V : V0 → Set has an ordinary left adjoint
F : Set → V0, which for a set X is

∐
X I , the X-th copower of the unit in V0,

and we have a bijection

V0(
∐
X

I, Y) ∼=
∏
X

V0(I, Y) ∼= Set(X, V0(I, Y)) (1.20)

For an ordinary category C, the free V-category has the same objects as C, and as
hom-objects the image of the hom-sets under F . Again, we refer to the literature
for the details of the construction ([4, Section 6.4] or [36, Section 2.5]).

1.5 Particular Categories

We shall in the following investigate the category of graphs, the category of binary
relations, and the category of small categories, since they will play an important
rôle in modelling reductions later on.

9To be precise, a left adjoint 2-functor.

Chapter 1 — Introduction and Preliminaries 36

1.5.1 Graphs and the Category Grph

This section reviews the definitions of a graph, the category of all graphs, paths
in a graph and the relation between graphs and categories. A closer examination
of the category of all graphs reveals that it has a closed structure but it is not
cartesian closed. We will further investigate the relation between graphs and
relations, and categories and pre-orders.

A Warning

In traditional graph theory, there are various definitions of graphs. Here, we
prefer (of course) the definition from [52]. The reader with a background in graph
theory rather than category theory should be aware of the following discrepancies
between our definition and those found in graph theory: firstly, our graphs are
directed (but we still say they have edges, not arcs, as is sometimes done); and
secondly, our graphs can have more than one edge between two given vertices
(graphs like these are sometimes referred to as multigraphs [92], although this
term does not seem to be standard).

Graphs and the Category Grph

A graph G = (G0, G1, δs, δt) is given by a set of vertices G0, a set of edges G1, and
two functions δs, δt : G0 → G1 assigning a source and a target vertex to every
edge.

Given a graph G as above, we write V (G) for its set of vertices G0 and E(G)
for its set of edges G1. Further, we write e : x → y ∈ E(G) as an abbreviation of
the statement that e is an edge in G with source x and target y.

A graph morphism f : G → H from a graph G to a graph H is given by two
functions fV : V (G) → V (H) and fE : E(G) → E(H) respecting the source and
target mapping, i.e.

δ′s.fE = fV
.δs

δ′t.fE = fV
.δt

(1.21)

The category Grph consists of graphs as objects and graph morphisms as
morphisms, with the evident identities and compositions.

More abstractly, a graph is a functor from the category⇒ to the category Set

of sets. The category Grph is the functor category [⇒,Set], and equation 1.21
just says that graph morphisms are natural transformations. This abstract view
tells us that Grph is lfp, and it also tells us the generators in Grph (see §1.3.8
on page 19): the representable functors. Since the category ⇒ has two objects,

Chapter 1 — Introduction and Preliminaries 37

there are two10 representable functors, giving two fp objects, namely the graph
I, and the graph→ which has two vertices and a single edge between them.

Paths in a Graph

A path in a graph G is given by a sequence <X1, e1, X2, . . . , Xn+1> where n ≥ 0,
Xj ∈ V (G), ei ∈ E(G) and δs(ei) = Xi, δt(ei) = Xi+1 for j = 1, . . . , n + 1 and
i = 1, . . . , n. The set of all paths in G is denoted by G∗.

For a path p = <X1, e1, X2, . . . , Xn+1>, its source and target are defined
as s(p) def= X1, t(p) def= Xn+1. For two paths p = <X1, e1, X2, . . . , Xn+1>, q =
<Y1, f1, Y2, . . . , Ym+1> such that Xn+1 = Y1, their concatenation (composition) is
defined as

p::q
def= <X1, e1, X2, . . . , Xn+1, f1, Y2, . . . , Ym+1>

The length of a path is the number of edges it contains:

|<X1, e1, X2, . . . , Xn+1>| def= n

In a non-empty path <X1, e1, X2, . . . , Xn+1> (i.e. n > 0), we can omit the vertices
Xi, since they are implicitly given by the edges. Thus, in the following, we write
<e1, e2, . . . , en> for a non-empty path <δs(e1), e1, δt(e1), e2, δt(e2), . . . , δt(en)>; and
for the empty path <X> with X ∈ V (G), we write idX.

A path congruence on the paths G∗ is an equivalence relation ≡ ⊆ G∗ × G∗

which is compatible with path composition, i.e. the following two implications
hold:

p ≡ q ⇒ s(p) = s(q), t(p) = t(q) (1.22)

and for all paths p, q, r, s ∈ G∗ such that t(p) = s(q) and t(r) = s(s),

p ≡ r, q ≡ s ⇒ p::q ≡ r::s (1.23)

Free Categories and Underlying Graphs

For a graph G, its free category F(G) has the vertices V (G) of G as objects, and
paths in G as morphisms, with idX as identities and concatenation as composition.
This assignment extends to a functor F : Grph → Cat.

Every small category C has an underlying graph, the vertices of which are the
objects of C, and the edges are the morphisms of C (with source and target as in
C). This extends to a functor U : Cat → Grph, which is the right adjoint of the
functor F .

10Up to isomorphism.

Chapter 1 — Introduction and Preliminaries 38

By this adjunction, to define a functor M : F(G) → X , it is sufficient to define
a graph morphism d : G → UX . Then, d is called a diagram in X .

A Monoidal Closed Structure on Grph

Grph has a cartesian product, but is not cartesian closed. Grph also has a
tensor product, which leads to a closed structure in which the internal homs are
“transformations” – just like natural transformations on Cat, but without the
naturality condition.

Given two graphs G, H, their cartesian product G × H is defined as the graph
with

V (G × H) def= V (G) × V (H)

E(G × H) def= E(G) × E(H)

with the obvious source and target mappings. But this definition does not lead
to a closed structure; there is no right adjoint for the functor −×G. There is one
for a different monoidal structure, though:

Definition 1.5.1 (Tensor Product of Graphs) Given two graphs G, H, their
tensor product G ⊗ H is defined as the graph with

V (G ⊗ H) def= V (G) × V (H)

E(G ⊗ H) def= V (G) × E(H) + E(G) × V (H)

with the source mapping defined as follows:

δs((x, e)) def=
{

(x, δs(e)) if x ∈ V (G), e ∈ E(H)
(δs(e), x) if e ∈ E(G), x ∈ V (H)

and the target mapping defined analogously.

The unit of the monoidal structure is the one-element graph I with one vertex,
no edges and empty source and target mappings: I def= ({∗}, ∅, !, !). Note that
this is not the unit of the cartesian structure, since for any graph G, I × G has
an empty set of edges; rather, the unit for the cartesian structure is given by
1 def= ({∗}, {∗},1{∗},1{∗}).

When showing that the structure given by the tensor product and the unit as
defined above is indeed monoidal structure (and even closed), the main emphasis
will be on the edges of the graphs involved, since on the vertices, this is the
cartesian product on Set (which is well-known to be monoidal and closed).

Lemma 1.5.2 Grph def= (Grph, ⊗, I) is a symmetric monoidal category.

Chapter 1 — Introduction and Preliminaries 39

Proof. The proof of associativity of the tensor requires distributivity of the co-
product (disjoint union) over the cartesian product in Set, plus associativity and
commutativity of the two. Hence, for three graphs G, H, K, the set of edges (for
the vertices, associativity is just associativity of the product in Set), is given by

E((G ⊗ H) ⊗ K)
= V (G) × V (H) × E(K) + (V (G) × E(H) + E(G) × V (H)) × V (K)
∼= E(G) × V (H) × V (K) + V (G) × E(H) × V (K) + V (G) × V (H) × E(K)
∼= V (G) × (V (H) × E(K) + E(H) × E(H))E(G) × V (H) × V (K)
= E(G ⊗ (H ⊗ K))

The third line gives the set of edges of three edges as a polynomial in the product
and sum on Set. This polynomial allows the “pointwise” verification of the
coherence diagrams 1.12 and 1.13; e.g. for four graphs G1, G2, G3, G4, the edges of
the tensor product can be given as a similar polynomial, which is the result of
either way of chasing round diagram 1.12 (see [52, pg. 159]). Symmetry again
follows from symmetry of the product and coproduct on Set. �

This leads to the closed structure on Grph: a transformation between graph
morphisms is essentially like a natural transformation but without the naturality
condition (for which to be stated the composition of edges would be needed).

Definition 1.5.3 (Transformation) Given two graph morphisms f, g : G → H
from a graph G to a graph H, a transformation α : f ⇒ g is a set of edges in
H indexed by vertices in G, such that for all x ∈ V (G) there is a αx : fV (x) →
gV (x) ∈ E(H).

We obtain a graph representing the function space between two graphs, the so-
called internal hom in Grph:

Definition 1.5.4 The internal hom (or function space graph) of two graphs G, H
is the graph [G, H] which has as its vertices all graph morphisms from G to H, and
as edges all transformations between these graph morphisms, with the obvious
source and target mappings.

We now want to show that the internal hom indeed represents the function
space, i.e. for any given graph G, the functor [G, −] : Grph → Grph is right
adjoint to the tensor product with G.

Lemma 1.5.5 For any graph G, the functor [G, −] : Grph → Grph is right
adjoint to the functor − ⊗ G : Grph → Grph. Hence, the monoidal category
Grph def= (Grph, ⊗, I) is closed.

Chapter 1 — Introduction and Preliminaries 40

Proof. For all graphs H, there is a graph morphism eH : [G, H] ⊗ G → H which
is natural in H and universal from − ⊗ G to H, defined as follows:

eHV (m, x) def= mE(x)

eHE(α, y) def= αx : mE(y) → nE(y) for α : m ⇒ n : G → H, y ∈ V (G)

eHE(m, a) def= mE(a) for m : G → H, a ∈ E(H)

Showing that this is a graph morphism, and natural in H is fairly routine. To show
that it is universal, we have to show that for all graphs K and graph morphisms
f : K ⊗ G → H, there is a unique f̂ : K → [G, H], called the currying of f , such
that

[G, H] ⊗ G eH - H

K ⊗ G

f̂ ⊗ 1G

6

f

-

f̂ is defined as follows: on vertices, it maps a morphism m : K → H to a
a graph morphism f̂ (m) : G → H which itself is given by on the vertices by
f̂(m)V (x) def= fV (m, x) and on the edges by f̂(m)E(e) def= fE(m, e); and on edges,
f̂ maps a transformation α : m ⇒ n : K → H to a transformation β : f̂(m) ⇒
f̂(n) : G → H, defined as βx

def= fE(α, x). The requirement that this is a graph
morphism amounts to the universality (any other such graph morphism is equal
to f̂). �

In the preceding, we have concentrated on the monoidal structure on the
objects; of course, one has to show that ⊗ is in fact a functor. For two graph
morphisms f : G → G ′, g : H → H′, f ⊗ g is a graph morphism f ⊗ g : G ⊗ H →
G ′ ⊗ H′ which on the edges is defined is defined as follows (on the vertices, it is
the obvious definition):

(f ⊗ g)E〈x, e : y → y′〉 def= 〈fV (x), eE〉
(f ⊗ g)E〈e : x → x′, y〉 def= 〈fE(e), yV 〉

The internal hom [G, −] on morphisms maps f : H → K to the postcomposition
f .(−) with f , much like its analogue Set(X, −) : Set → Set in the category of
small sets.

1.5.2 Binary Relations and the category Rel

A binary relation R on a set X is a subset of the product X ×X, written (X, R).
A relation morphism f : (X, R) → (Y, S) is a function f : X → Y which is

Chapter 1 — Introduction and Preliminaries 41

monotone, i.e. for all x, y ∈ X, xRy ⇒ (fx)S(fy), where xRy is the infix notation
for (x, y) ∈ R which will be used in the following. This gives the category Rel of
relations and morphisms between them; it has, just as graphs, a cartesian product
R × S and a tensor product R ⊗ S defined as follows:

(X, R) × (Y, S) def= (X × Y, {((x1, y1), (x2, y2)) | x1Rx2 ∧ y1Sy2})

(X, R) ⊗ (Y, S) def= (X × Y, {((x1, y1), (x2, y2)) | (x1 = x2 ∧ y1Sy2) ∨
(x1Rx2 ∧ y1 = y2)})

The unit for the cartesian product is given by the one-element all-relation 1 def=
({∗}, {(∗, ∗)}), and the unit for the tensor product, the one-element empty relation
I def= ({∗}, ∅). We obtain two monoidal structures on Rel, and Rel is closed with
respect to both of these, but with two different relations on the functions: given
(X, R) and (Y, S), then the function space between them will be the set [X, Y] of
all functions from X to Y which are monotone w.r.t.. R and S. If we order the
functions pointwise

f < g ⇔ ∀x ∈ X. fx S gx

then the relation ([X, Y], <) is the internal hom with respect to the tensor prod-
uct. If on the other hand we order the functions implicational

f � g ⇔ ∀x, y ∈ X. xRy ⇒ fx S gy

then the relation ([X, Y], �) is the internal hom with respect to the cartesian
product.

Closures

Given two relations (X, R) and (X, S), their relational product is defined as

(X, R; S) def= (X, {(x, z) | ∃y.xRy ∧ ySz})

The reflexive closure of a relation (X, R) is defined as

(X, R)= def= (X, R ∪ {(x, x) | x ∈ X})

and the transitive closure (X, R)+ as the smallest relation closed under the rela-
tional product (X, R) ⊆ (X, R; R). Both the reflexive and the transitive closure
of a relation can be given by monads on the category Rel, the algebras being
reflexive and transitive relations, respectively. They can be combined into a sin-
gle monad, giving for a relation (X, R) its transitive-reflexive closure (X, R)∗.

Chapter 1 — Introduction and Preliminaries 42

Hence, there is the following system of adjunctions between the categories of re-
flexive, transitive and reflexive-transitive relations. A relation which is reflexive
and transitive is also called a preorder, with Pre the category of preorders:

Rel
(−)=

-
⊥� ⊃

RRel

TRel
∪

6

a (−)+

? (−)R

-
⊥� ⊃

Pre
∪

6

a (−)+

?

In this case, the two monads can be combined in both possible ways, making the
diagram commute; in general, this is not the case (e.g. if we replace the reflexive
by the symmetric closure above). The reflexive-transitive closure of a relation
(X, R) is written as (X, R)∗, and satisfies the following property with respect to
the relational product

(X, R ∪ S)∗ = (X, R∗; S∗)∗ (1.24)

Relations and Graphs

A relation (X, R) can be considered as a graph G(R) def= (X, R, π1, π2); hence a
relation is equivalent to a graph with at most one edge between any two given
vertices, and we can even say that Rel is a subcategory of Grph. On the other
hand, given a graph G, we obtain a binary relation |G| ⊆ V (G) × V (G) on the
vertices of G, defined by (x, y) ∈ |G| ⇔ ∃p : x → y ∈ E(G). This extends to a
functor G : Rel → Grph, which is left adjoint to the inclusion Rel ↪→ Grph, so
Rel is a reflective subcategory of Grph.

Similarly, a preorder can be considered a category with at most one morphism
between any two morphisms, with the identities and composition given by the
reflexivity and the transitivity. The adjunction between Rel and Grph can
be lifted to categories and preorders: for a category C, the relation given by
the underlying graph of C is a preorder, giving a functor J : Cat → Pre by
J(C) def= |UC| which identifies all morphisms between the same source and target,
which is left adjoint to the inclusion I : Pre ↪→ Cat. Moreover, the counit of
this adjunction is the identity

J(I(X)) = X (1.25)

since any preorder X considered as a category will have at most one morphism
between any two objects:

Chapter 1 — Introduction and Preliminaries 43

In summary we obtain the following system of commuting adjunctions:

Rel
(−)∗ -
⊥� ⊃

Pre

Grph
?

∩

` |−|

6

F -
⊥�
U

Cat
?

∩

` J

6

1.5.3 Small Categories and the Category Cat

In this section, we will investigate the internal structure of the category Cat of
all small categories. The results in this section are more or less standard.

Epimorphisms and Monomorphisms in Cat

An epimorphism in Cat is a functor which is surjective on objects, and surjective
under closure on morphisms11, i.e. given F : X → Y, for all β ∈ MorY there are
α1, . . . , αn ∈ MorX such that β = F (αn).F (α1). A monomorphism in Cat

is a functor which is injective on objects, and injective on morphisms (i.e. it is
faithful); we call such functors injective in the following.

Closed Monoidal Structures on Cat

The cartesian product of two categories X , Y is called a product category, and has
as objects and morphisms pairs of objects and morphisms from X and Y (with
the obvious pointwise definitions for identity and composition):

|X × Y| def= |X | × |Y|
X × Y((x1, y1), (x2, y2))

def= X (x1, x2) × Y(y1, y2)

Further, Cat is cartesian closed: for any category X , the functor −×X : Cat →
Cat mapping Y to the product category Y×X has a right adjoint [X , −] : Cat →
Cat mapping Y to the functor category [X , Y].

Cat also inherits the tensor product from Grph. For two categories, X , Y,
their tensor product X ⊗ Y has the same objects as the product category, but as
morphisms sequences of pairs of objects and morphisms <(α1, β1), . . . , (αn, βn)>
such that for i = 1, . . . , n, either αi ∈ X , βi ∈ Y(xi, yi) with βi 6= 1xi and if
i < n then αi+1 ∈ X (xi+1, yi+1), βi+1 ∈ Y with αi = xi+1 and yi = βi+1, or the

11This does not mean it is full, as one might perhaps expect.

Chapter 1 — Introduction and Preliminaries 44

other way around, i.e. αi ∈ X (xi, yi), βi ∈ Y with αi 6= 1xi and if i < n then
αi+1 ∈ X , βi+1 ∈ Y(xi+1, yi+1) with yi = αi+1 and βi = xi+1. The source of the
path above is the source of (α1, β1), which is (α1, x1) if α1 ∈ X , β1 ∈ X (x1, y1),
and (x1, β1) otherwise; the target is defined analogously. The identity is given
by the empty sequence, and composition by concatenation and composition in X
and Y. This monoidal structure is closed: the functor − ⊗X : Cat → Cat has a
right adjoint. This is best explained in terms of the internal hom resulting from it:
given two functors F, G : X → Y, a transformation α : F ⇒ G between them is
a family {αX : FX → GX}X∈X of arrows in Y, indexed by the objects in X . (In
other words, a natural transformation without the naturality requirement 1.1).
Taking the functors between X and Y as objects, we obtain the category of
functors and transformations between them, denoted as [[X , Y]], and we have the
adjunction − ⊗ X −−| [[X , −]].

In summary, we obtain the two closed monoidal categories CatC
def= (Cat, ×,1)

and CatS
def= (Cat, ⊗,1).

Coproducts and Coequalizers in Cat

In order to construct colimits in Cat, using proposition 1.3.1 we need coproducts
and coequalizers. The first is easy: the coproduct of two categories C and D is
given by their disjoint union, the objects and morphisms of which are the disjoint
union of the objects and morphisms of C and D, respectively.

The construction of the coequalizer is a bit more involved. Given two functors
F, G : X → Y, their coequalizer in Cat is a category Z and a functor Q : Y → Z,

X
F -

G
- Y Q - Z

with Z defined as follows (see also [24, Chapter I.1]):

• Its objects are given by the coequalizer in Set of the two object functions
|F |, |G| of F and G respectively; in other words, the objects of Y quotiented
by the equivalence closure ≡O of the relation ∼ defined as

x ∼ y ⇔ ∃z ∈ Y.Fz = x, Gz = y

• Its morphisms are given as follows: we define the graph Z0 which has

Vertices: V (Z0)
def= |Y|/≡O

Edges: E(Z0)
def= {α : [x] → [y] | α ∈ Y(x, y)}

The equivalence relation ≡M on Z0
∗ is defined as the smallest path congru-

ence on Z0
∗ such that

Chapter 1 — Introduction and Preliminaries 45

(i) for all α ∈ Y(x, y), β ∈ Y(y, z), <α, β> ≡M <β.α>

(ii) for all α ∈ MorX , <Fα> ≡M <Gα>

Then for X, Y ∈ Z, the set of morphisms is

Z(X, Y) def= {α ∈ Z0
∗ | s(α) = X, t(α) = Y }/≡M

For an object X ∈ Y, the identity on X is the equivalence class of the empty
path 1X

def= [idX]. The composition of two morphisms [A], [B] is given by
[B].[A] def= [A::B]. This is well-defined because ≡M is a path congruence.

The functor Q : Y → Z maps objects to their equivalence classes, and
morphisms to the equivalence class of the singleton sequence: for x ∈ Y and
α ∈ Y(x, y),

Q(x) def= [x]

Q(α) def= [<α>]

1.6 Basic Principles of Term Rewriting

In this section, we will briefly recall those basic concepts of term rewriting which
we will need in this thesis. For a more detailed introduction, we refer the reader
to e.g. [41, 10].

1.6.1 Abstract Reduction Systems and Term Rewriting
Systems

The following definition is slightly paraphrased from [41]:

Definition 1.6.1 An abstract reduction system is a structure A = 〈A, {→α}α∈I〉
consisting of a carrier set A and a family of binary relations →α⊆ A × A, called
reduction or rewrite relations.

Fix a countably infinite set V of variables.12 A substitution is a map σ :
TΩ(V) → TΩ(V) such that σ(f(t1, . . . , tn)) = f(σt1, . . . , σtn) for all operations
f ∈ Ω. A context is a term C ∈ TΩ]{�}(V) with exactly one occurrence of a
special constant �. A context is generally denoted by C[]. If t ∈ TΩ(V), the
result of substituting t for � in a context C[] is written C[t].

12Which in [41] is actually taken to be part of the signature.

Chapter 1 — Introduction and Preliminaries 46

A rewrite rule r : t → s is given by two terms t, s ∈ TΩ(V). A rewrite rule gives
rise to reduction steps C[σ(t)] →r C[σ(s)], for all contexts C[], and substitutions
σ.

Then for every term rewriting system Θ = (Ω, R), given by a signature Ω
and a set of rewrite rules R, there is an abstract reduction system (the one-step
reduction relation) (TΩ(V), {→r}r∈R).

The many-step reduction relation {�r} is defined as the transitive-reflexive
closure of {→r}, describing the reduction of term s to another term t in 0 or more
steps. The one-step reduction relation →R is the union of →r for all r ∈ R (and
similarly �R). Further, the equivalence closure of �R, denoted =R, is called
the convertibility relation generated by R, and describes the equational theory
generated by the term rewriting system, or equivalently, the theory of the rewrite
rules considered as equations.

1.6.2 Commutativity, Confluence and
Strong Normalization

Properties of term rewriting systems such as confluence and strong normalisation
can be defined on the level of binary relations (see §1.5.2 above). This has the
advantage that one can prove lemmas (such as the Hindley-Rosen lemma below)
directly at this more abstract level.

Definition 1.6.2 (Commuting Relations) A binary relation →R⊆ X × X

commutes with a binary relation →S⊆ X × X if for all x, y, z ∈ X such that
x →R y and x →S z, there is a u ∈ X such that

x

y

R

� z

S

�

u

R
�

S �

(where �R is the reflexive-transitive closure of →R).

A binary relation is confluent if it commutes with itself. If above y →S= u,
y →R= u we say that →R subcommutes with →S. If both →R and →S above are
confluent, then commutativity means that their union is confluent as well:

Lemma 1.6.3 (Hindley-Rosen [71]) Given two confluent binary relations
→R ⊆ X × X, →S ⊆ X × X where →R commutes with →S, then →R ∪ →S is
confluent.

Chapter 1 — Introduction and Preliminaries 47

Definition 1.6.4 (Strong Normalization) A binary relation →R ⊆ X × X is
called strongly normalizing (terminating) if there is no infinite sequence

x1 →R x2 →R x3 →R . . .

Finally, the notions of confluence and strong normalization carry over to term
rewriting systems: a term rewriting system Θ = (Ω, R) is confluent if the one-step
reduction relation →R is confluent, and a term rewriting system Θ = (Ω, R) is
strongly normalizing (or terminating) if →R is strongly normalizing.

A binary relation (or term rewriting system) which is both confluent and
strongly normalizing is called complete.

1.7 Words and Languages

This section contains a few definitions and lemmas dealing with the algebra of
words over a language. These are technical preliminaries for §3.2, so the reader
may want to defer studying these definitions until that point.

Let L∗ be the language of words over an alphabet L. We write ε for the empty
word in L∗, and juxtaposition for the concatenation of words. Further, L+ is the
sublanguage of non-empty words: L+ def= L∗ \ {ε}. ≤ ⊆ L∗ × L∗ is the prefix
ordering on words: w1 ≤ w2 iff there is u ∈ L∗ such that w1u = w2. < is the
strict prefix ordering: w1 < w2 iff there is u ∈ L+ such that w1u = w2. The length
of a word w ∈ L∗ is defined as follows: |ε| def= 0, |jw′| = 1 + |w′| for j ∈ L, w′ ∈ L∗

Lemma 1.7.1 Let v, w, x, y ∈ L∗ such that vw = xy, then one of the following
three is true: v < x, x = v, or x < v.

Proof. By induction on the length of w and a careful case distinction [47].
�

The notion of a decomposition as defined in the following, and the lemmas to
go with it, seem not to be standard, hence we go into perhaps more detail than
the substance of the material warrants.

A decomposition of a word w ∈ L∗ is given by words x, y, z ∈ L+ such that
xyz = w. We will need the following facts about decompositions:

Lemma 1.7.2 Given two decompositions w = rst and w = xyz, at least one of
the following six cases is true:

(i) there is u ∈ L∗ s.t. w = rsuyz;

Chapter 1 — Introduction and Preliminaries 48

(ii) there is u ∈ L∗ s.t. w = xyust;

(iii) there are u, v ∈ L∗ s.t. v ≤ y, xv = r, vs = yu and ut = z;

(iv) there are u, v ∈ L∗ s.t. u ≤ s, ru = x, uy = sv and vz = t;

(v) there are u, v ∈ L∗ s.t. ruyvt = w;

(vi) there are u, v ∈ L∗ s.t. xusvz = w.

In case (i) and (ii), we say s and y are independent; in case (iii) and (iv), we
say they are overlapping; in case (v) we say s contains y, and in case (vi) that y

contains s.

Proof. Using lemma 1.7.1, we do a case distinction on the strict prefix ordering:

1. x < r then ∃v′ ∈ L∗.xv′ = r, with the following sub-cases:

(a) xy ≤ r then ∃u′ ∈ L∗.xyu′ = r: case (ii) with u
def= u′;

(b) r < xy then ∃u′ ∈ L∗.ru′ = xy, with the following two sub-cases:

i. xy ≤ rs then ∃w′ ∈ L∗.xyw′ = rs: case (iii) with u
def= w′, v

def= v′;

ii. rs < xy then ∃w′ ∈ L∗.rsw′ = xy: case (vi) with u
def= v′, v

def= u′ as
given.

2. x = r then we have the following sub-cases:

(a) y = s: cases (iii) and (iv) with u, v
def= ε;

(b) y < s then ∃u′ ∈ L∗.su′ = y: cases (iii) and (v) with u
def= ε, v

def= u′.

(c) s < y then ∃u′ ∈ L∗.yu′ = s: cases (iv) and (vi) with u
def= ε, v

def= u′.

3. r < x: symmetric to the first case, covering cases (i), (iv) and (v).
�

We will below be interested in cases in which we can make the following useful
simplification:

Lemma 1.7.3 Given two decompositions w = rst and w = xyz of w such that
||s| − |y|| ≤ 1, then cases (v) and (vi) are subsumed by cases (iii) and (iv). In
other words, s and y are either independent or overlapping.

Proof. Assume that s contains y, then there are u, v ∈ L∗ such that ruyvt = w,
then uyv = s, and |u| + |y| + |v| = |s|, |u| + |v| = |s| − |y| ≤ 1, hence |u| = 0
or |v| = 0. |u| = 0 implies u = ε, and this is covered by case (iii) with v′

def= ε,
u′

def= s; similarly, |v| = 0 implies v = ε, which is covered by case (iv) with v′
def= u,

u′
def= ε. �

Chapter 2

A Compositional Semantics for
Term Rewriting Systems

Signatures and equational presentations (i.e. signatures together with sets of equa-
tions) can be modelled by monads on the category Set of all small sets. Here is
how a monad T = 〈T, η, µ〉 on Set captures the way terms are built:

• For a set X, we can consider TX to be the term algebra (the set of terms
built over the variables X);

• then the unit ηX : X → TX describes how to make elements of X into
variables (i.e. terms);

• and the multiplication µ : TTX → TX describes how to substitute terms
for variables.

The monad laws mean that this substitution is associative, and that substituting
a term into a variable, and a variable for itself, yields the identity (in an informal
notation, x[t/x] = t and t[x/x] = t). The naturality of η and µ mean that the
process of taking an element of X to a variable has be uniform over all sets X (i.e.
does not depend on the set X). It turns out this is all one needs to do universal
algebra (see [53]).

The key issue of this chapter will be the generalization of this construction
to “sets with structure”, by endowing the set TX of terms with a reduction
structure between its elements. We will now try to sketch what this structure
could be before describing the difficulties we are likely to encounter during the
generalization. This will be the main motivation for the rest of this chapter,
which will deal with resolving the issues and questions raised in the following two
paragraphs.

49

Chapter 2 — Compositional Semantics for Term Rewriting Systems 50

Sets With Structure

What do we mean by “set with structure”? The intuitive picture is of a set as
collection of elements (denoting terms), then the structure consists of some sort of
“arrows” in between them (denoting reductions). The exact definition depends
on the kind of reduction structure we are interested in. In particular, we can
distinguish between one-step and many-step reductions, and between named and
unnamed reductions (with the latter, any two reductions between the same two
terms are equal). Each of these structures corresponds to one concrete instantia-
tion of the abstract theory.

The Monad Construction

The generalization of the monad construction is more subtle than a cursory first
glance might suggest1, because we have to make explicit some of the implicit
properties of Set used in the modelling of the equational presentations.

First, in the category Set we can completely forget about the internal struc-
ture of the objects, since every set X is determined by the morphisms into it,
which in turn form a set. Abstracting from the properties of objects is a key con-
cept in category theory, so if we generalize our objects to “sets with structure”,
we have to generalize the set of morphisms (hom-sets in category theory parlance)
to sets-with-structure of morphisms as well; this means our construction has to
be an enriched monad in the sense of §1.4.

The second realization is that terms are just composed operations. Conse-
quently, contexts (sets of variables to build terms from) and arities (the number
of arguments of an operation) are essentially the same, and have to modelled by
the same objects of the base category.2 In Set, these are finite sets (as contexts) or
natural numbers or finite ordinals (as arities). In categories of sets-with-structure,
this rôle will be taken, roughly speaking, by finite sets-with-structure. This means
the arities of operations can be more than just natural numbers, and will have
interesting ramifications on the rewrite rules, since it will allow rewrites between
variables.

Compositionality

Giving a “semantics” to a formal system such as a term rewriting systems or
equational specification amounts to constructing a mapping from the syntactic

1In particular, it is not sufficient to merely change the base category of the monad.
2One particular point here is that the arities are modelled by objects of the base category

in the first place, something which may not be clear a priori.

Chapter 2 — Compositional Semantics for Term Rewriting Systems 51

presentation of these systems into a mathematical structure such as relations
(for term rewriting systems) or sets and operations on them (for equational pre-
sentations). One then aims to understand the formal system by reflecting the
behaviour of the predefined structure back to the formal system; e.g. an equation
which holds in all algebras satisfying an equational presentation follows from the
equations of the presentation.

A semantics is called compositional if the mapping preserves structuring op-
erations, such as the disjoint union. The structuring operations, and their defini-
tions on both the syntactic and the semantic representations will be the focus of
the next chapter, but in this chapter we will show that our semantics satisfies a
property which makes it preserve most structuring operations; namely, it is a left
adjoint.

Structure of this Chapter

The rest of this chapter is structured as follows:

• In §2.1, we will recall the categorical treatment of universal algebra by
monads on the category Set of all small sets. Besides motivation, this will
provide us with the objects of sets with structure.

• We will then in §2.2 present the basic principles of the theoretical founda-
tion of this work as developed by Kelly and Power in [39]. This section
is optional, and can be skipped by readers feeling uneasy about enriched
category theory.

• In §2.3, we will instantiate the general theory of §2.2 to our particular needs,
explaining the general notions (as far as needed) in the process. We will then
develop a term construction, ultimately yielding a monad on the category
Pre of preorders modelling a term rewriting system.

• In §2.4, we will develop some properties of the monad as needed in the later
chapters.

• Finally, in §2.5, we will show the semantics to be compositional in the
sense that it is left adjoint; the precise meaning of this, and the structuring
operations themselves will be discussed in the next chapter.

The main section of this chapter is §2.3; the two sections before are motiva-
tion and definitions leading up to that section. The hurried reader may choose
to restrict his attention in these sections to definition 2.1.2 and §2.1.2, which
introduce notations used extensively in the following.

Chapter 2 — Compositional Semantics for Term Rewriting Systems 52

2.1 Signatures and Equational Presentations

In this section, we recall the well known notions of universal algebra and their
categorical treatment, such as the definitions of signatures, signature morphisms,
algebras and algebra homomorphisms (the “semantic” treatment of signatures)
in §2.1.1, and the construction of the term algebra (the “syntactic” treatment)
in §2.1.2. The fact that the term algebra is free over other algebras of the same
signature corresponds to an adjunction between the category of algebras for the
signature, and the category of all small sets. This naturally leads to the modelling
a signature by a monad on Set. In §2.1.3 we will develop the notion of the internal
signature of a monad; the mapping of a signature to the modelling monad, and
of a monad to its internal signature will be adjoint. Finally, as an aside in §2.1.4
we will sketch the modelling of equational presentations.

The reader familiar with e.g. the material in the first three chapters of [12] will
be able to skip §2.1.1 and §2.1.2, but should have a brief glance at definitions 2.1.1
and 2.1.2 to pick up our notation.

2.1.1 Signatures and Algebras

Signatures and Signature Morphisms

Signatures or operator domains are sets of operators equipped with an arity.
Morphisms are maps between them respecting these arities; and signatures and
the morphisms between them give rise to the category Sig.

Definition 2.1.1 (Signature) A finitary signature or operator domain Ω is given
by a map Ω : N → Set, giving for a natural number n ∈ N the set Ωn

def= Ω(n) of
operations of arity n.

In the literature, the name operator domain is mainly used for the traditional
single-sorted case [8, 53], and signature for the many-sorted case used in the
context of algebraic specifications [12]. We will stick to the second term. Also,
normally signatures are defined “the other way around”, as a set of operations Ω
together with a function ar : Ω → N assigning an arity to each operation. This
is equivalent to definition 2.1.1 in the sense that given a signature as Ω′ : N →
Set, one can always define a set of operators Ω together with an arity function
ar : Ω → N, and vice versa, but definition 2.1.1 allows an easier development of
the theory.

If the arities of the operations are not restricted to finite ordinals, one obtains
infinitary signatures. Using monads, these can also be treated in much the same

Chapter 2 — Compositional Semantics for Term Rewriting Systems 53

way as the finitary ones3, but the resulting monads do not enjoy some of the
properties needed later on (see section 2.4.1). Moreover, they do not seem of
great practical relevance; hence, we restrict ourselves to finitary signatures, and
in the following, mean finitary signatures whenever we merely say signature.

Given two signatures Ω and Σ, a signature morphism σ : Ω → Σ is a family
of maps {σn : Ω(n) → Σ(n)}n∈N. This gives the category Sig with signatures as
objects, and signature morphisms as morphisms. More abstractly, if we consider N
as a discrete category, Sig is the functor category [N,Set]; a signature morphism
is a natural transformation, but since N is discrete, the naturality condition is
vacuous.

When writing signatures, we will use subscripts to denote the arities; e.g.
writing Ω = {F1, K2} means there is a signature Ω = {1 7→ {F}, 2 7→ {K}}.

Algebras for a Signature

Given a signature Ω, a Ω-algebra A = (AS, {ωA}ω∈Ω), is given by a set AS, called
the carrier set and, for all operations ω ∈ Ωn, a function ωA : An → A.

Given two Ω-algebras A, B, a homomorphism between them is given by a
map f : AS → BS respecting the operations in Ω: for all ω ∈ Ωn, and for all
a1, . . . , an ∈ AS,

ωB(f(a1), . . . , f(an)) = f(ωA(a1, . . . , an)) (2.1)

Alternatively, this requirement can be written (without using elements of AS) as
ωB

.fn = f .ωA (where fn is the n-fold product of f with itself, rather than the
n-fold composition of f with itself). We obtain, for a signature Ω, the category
Ω-Alg of Ω-algebras.

2.1.2 The Term Algebra

Very crudely spoken, a term is a syntactic entity generated by the signature.
Terms have the structure of an algebra, and moreover a very important one (it is
“freely generated”, meaning there is exactly one mapping to any other algebra).
Another way to regard terms is as composed operations; then the set of all terms
is the closure of the operations under composition.

The Term Algebra Construction

Given a set X of variables, the term algebra TΩ(X) is the smallest set which
contains all variables x ∈ X and is closed under application of the operations in

3This is one of the advantages of the monad treatment.

Chapter 2 — Compositional Semantics for Term Rewriting Systems 54

Ω. Put formally (this also fixes the notation we use for terms in the following)4

Definition 2.1.2 (Term Algebra) Given a signature Ω and a set X, the term
algebra TΩ(X) is the smallest set satisfying the following implications:

’x ∈ TΩ(X) x ∈ X
t1, . . . , tn ∈ TΩ(X)

ω(t1, . . . , tn) ∈ TΩ(X)
ω ∈ Ωn

The set of variables of a term t ∈ TΩ(X) is defined inductively as follows:

var(’x) def= {x}
var(ω(t1, . . . , tn))

def=
⋃

i=1,... ,n

var(ti)

We are now going to extend construction 2.3.4 to a monad. In order to prove the
monad properties, we need a structural induction scheme.

Structural induction

To prove that a predicate holds for all terms, a method called structural induction
is used:

Proposition 2.1.3 For a predicate R on TΩ(X), we write t |= R (R holds for t)
if t ∈ R for t ∈ TΩ(X). Then t |= R for all t ∈ TΩ(X) (R holds for all terms) if
the following two implications hold:

x ∈ X ⇒ ’x |= R

ω ∈ Ωn, t1 |= R, . . . , tn |= R ⇒ ω(t1, . . . , tn) |= R

The first of these is called the induction base, the second the induction step.

Proof. This is proven by reducing it to natural induction. For the details, see e.g.
[12, pg. 19]. We define the size of a term as the number of operation symbols
in it; then for a predicate R define a predicate q on the natural numbers such
that q(n) holds iff. R holds for all terms of size n or less; then show that if the
two implications above hold, q(n) holds for all n ∈ N, and hence for all terms, by
natural induction on n. �

4The reader may wonder about the reason for notation ’x: later on we will consider terms
built over terms, and we will have to distinguish terms like ’x in TΩ(X) and ’’x in TΩ(TΩ(X)),
or even ’K(’x) and K(’’x) in TΩ(TΩ(X)).

Chapter 2 — Compositional Semantics for Term Rewriting Systems 55

Freeness of the Term Algebra

The term algebra is free in the class of all algebras over a set X, meaning there is
exactly one homomorphism from it to any other algebra A once the assignment
of the variables in X has been fixed. This homomorphism lets us evaluate terms
from TΩ(X) in A.

Lemma 2.1.4 Given a set X, an Ω-algebra A, and a map σ : X → AS (called an
assignment of the variables in X), there is a unique map σ : TΩ(X) → AS which
is an algebra homomorphism, called the homomorphic extension of σ, satisfying

X
ηX- TΩ(X)

AS

σ
?σ -

(2.2)

diagram 2.2, where ηX is the inclusion of the variables into the term algebra,
defined as

ηX(x) def= ’x

Proof. σ is defined as follows:

σ(ω(t1, . . . , tn))
def= ωA(σ(t1), . . . , σ(tn))

σ(’x) def= σ(x)

The second of these equations makes diagram 2.2 commute. Any homomorphism
has to satisfy equation 2.1 which is the first equation. Hence σ is uniquely defined.

�

In fact, the inclusion ηX is the unit of an adjunction between the category of
all sets, and the category of all Ω-algebras, given by

FΩ −−| UΩ : Set → Ω-Alg (2.3)

where the left adjoint FΩ maps any set X to the term algebra TΩ(X), and the
right adjoint UΩ maps any Ω-algebra A to its carrier set AS. The uniqueness of
the homomorphic extension is exactly the universal property of the unit of the
adjunction.

Chapter 2 — Compositional Semantics for Term Rewriting Systems 56

A Signature is Modelled by a Monad

Like every adjunction, this gives rise to a monad which as argued in the intro-
duction exactly captures the way terms are built. We will first describe the left
adjoint FΩ in more detail:

Definition 2.1.5 The functor FΩ : Set → Ω-Alg maps a set X to TΩ(X), and
a map f : X → Y in Set to its lifting f∗ : TΩ(X) → TΩ(Y), defined as follows:

f∗(ω(t1, . . . , tn))
def= ω(f∗(t1), . . . , f∗(tn)) where ω ∈ Ωn

f∗(’x) def= ’fx

That f∗ is an Ω-homomorphism (i.e. respects the operations) is obvious.
That the assignment f : X → Y to f∗ : TΩ(X) → TΩ(Y) is functorial (preserves
composition and identities) is shown by routine structural induction.

The counit of the adjunction is a natural transformation εA : FΩ(UΩ(A)) → A

for every Ω-algebra A, which can be thought of as the evaluation of terms t in
the algebra A. It is defined as follows:

εA(’x) def= x

εA(ω(x1, . . . , xn))
def= ωA(εA(x1), . . . , εA(xn))

(2.4)

Proposition 2.1.6 Every signature Ω gives rise to a monad TΩ
def= 〈TΩ, η, µ〉

on Set, where TΩ maps X to the term algebra TΩ(X), and f : X → Y to its
lifting f∗ : TΩ(X) → TΩ(Y). The multiplication is given by µ

def= UΩεFΩ, or more
explicitly

µX(ω(t1, . . . , tn)) = ω(µX(t1), . . . , µX(tn))

µX(’x) = x

This monad actually subsumes the adjunction 2.3, because one can show that
the Eilenberg-Moore-category of algebras of this monad and the category Ω-Alg

of Ω-algebras are isomorphic; hence the categorical notion of an algebra subsumes
the notion of an Ω-algebra. This even works for equational presentations, so
“finitary universal algebra is the study of finitary monads on Set” [53, pg. 42].

Finitariness

The monad TΩ satisfies an important continuity condition: it is finitary. To
understand this condition, consider the term algebra TΩ(X) over an infinite set

Chapter 2 — Compositional Semantics for Term Rewriting Systems 57

X. Since every operation ω ∈ Ωn can only take finitely many arguments, every
term t ∈ TΩ(X) can only contain finitely many variables from X; and hence,
instead of building the term algebra over the infinite set X, we can also build the
term algebras over all finite subsets X0 of X and take the union of these:

TΩ(X) =
⋃

X0⊆X

TΩ(X0)

Categorically, we say that the set X is the colimit of the directed diagram of
its finite subsets; and above equation means that the functor TΩ has to preserve
directed colimits or in other words is finitary.

The monad TΩ arising from a signature even is strongly finitary, since the
absence of equations means precisely that the action TΩ preserves coequalizers
and hence weakly filtered colimits (see lemma 1.3.7), whereas the monad T(Ω,E)

arising from an equational presentation will not preserve coequalizers and hence
be merely finitary.

That TΩ is finitary will be proven in greater detail in §2.4.1 where the present
case is treated as a corollary.

2.1.3 The Internal Language of a Monad

Not only does every signature give rise to a monad, a monad gives rise to a
signature as well. In analogy to the situation with the simply typed λ-calculus
and cartesian closed categories [45], this signature is called the internal language
of the monad.

Internal Signatures

Definition 2.1.7 (Internal Signature) The internal signature of a finitary mo-
nad S = 〈S, η, µ〉 on Set is given by

Σ(S)(n) def=
⋃

card (X)=n

S(X)

The unit and multiplication of the monad give the infrastructure to talk about
terms. Specifically, an operation f of arity n is given by an element f ∈ SX with
card(X) = n. card(X) = n means that X is isomorphic to n copies of the one-
element set 1. A map 1 → Z represents exactly one element of Z, hence a map
X → Z corresponds to an n-tuple of elements of Z under the following bijection:

Set(X, Z) ∼= Set(
∐
n

1, Z) ∼=
∏
n

Set(1, Z) ∼=
∏
n

Z (2.5)

Chapter 2 — Compositional Semantics for Term Rewriting Systems 58

Given t1, . . . , tn in Z, we use the notation [t1, . . . , tn] to denote the morphism
from X to Z given by the previous bijection. If these n elements are operations
themselves (i.e. Z = SY for some Y), the composition of the operation f with
these operations is given by the image of f under the following two morphisms:

SX
S[t1, . . . , tn]- SSY

µY - SY

Alternatively, if we think of f, t1, . . . , tn as terms, this defines the substitution of
the variables from X in f with the terms t1, . . . , tn. Hence, both the substitution
of variables and the composition of operations are modelled by the same construc-
tion. By slight abuse of notation, we write f [f1, . . . , fn] for this substitution.

The Adjunction F −−| U

The mappings of a signature Ω to the monad TΩ, and of a monad S to its internal
signature Σ(S) form an adjunction between the category of signatures and the
category of finitary monads on Set. This adjunction between the category of
syntactic and semantic presentations justifies our calling the semantics composi-
tional: structuring operations like the coproduct are colimits, and a left adjoint
functor preserves these. We will further elaborate on this point below.

We are now going to construct this adjunction. The category Sig has been
defined above and the category MonFin(Set) has been given in §1.3.6 on page 17,
so we first need to extend the two maps to proper functors:

Definition 2.1.8 The functor F : Sig → MonFin(Set) maps a signature Ω to
the monad TΩ, and a signature morphism σ : Ω → Σ to its lifting, the monad
morphism σ̂ : TΩ ⇒ TΣ, which is defined pointwise for X ∈ Set as follows:

σ̂X(e(t1, . . . , tn))
def= (σe)(σ̂X(t1), . . . , σ̂X(tn))

σ̂X(’x) def= ’x

The functor U : MonFin(Set) → Sig maps a finitary monad T = 〈T, η, µ〉 to
its internal signature Σ(T), and a monad morphism σ : T ⇒ S to a signature
morphism Uσ : Σ(T) → Σ(S) defined by

(Uσ)n(f) def= σX(f) for f ∈ TX with card(X) = n (2.6)

It is easy to see that σ̂ is natural in X and a monad morphism. Uσ is a
signature morphism by construction. We further have to show the functoriality
of F and U , i.e. preservation of identity and composition. For F , this means that
given a signature Ω, 1̂Ω = idTΩ , which is proven by showing 1̂σ(t) = t for all

Chapter 2 — Compositional Semantics for Term Rewriting Systems 59

X ∈ Set and t ∈ TΩ(X) by (an easy) structural induction on t, and that given
two signature morphisms σ : Ω → Σ, τ : Σ → Σ′, τ̂ .σ̂ = τ̂ .σ, which is proven by
showing that τ̂(σ̂(t)) = τ̂ .σ(t) for all X ∈ Set and t ∈ TΩ(X). For U , we have
to show that U(idT) = 1L(T), which follows just by definition (idT,X(f) = f for
all X ∈ Set, t ∈ TX in equation 2.6), and that U(τ .σ) = Uτ .Uσ, which again
follows from equation 2.6.

Lemma 2.1.9 The two functors F and U form an adjunction F −−| U : Sig →
MonFin(Set).

Proof. We show adjointness by constructing a unit υΩ : Ω → Σ(TΩ) which is
universal from Ω to U .

The unit is a signature morphism υΩ : Ω → UTΩ which is defined as υΩ,n(ω) def=
ω(’0, . . . , ’n − 1) (with the natural number n considered as the ordinal n =
{0, . . . , n − 1}). Clearly υ is natural in Ω. To show that it is universal from Ω to
U , we have to show that given any monad S = 〈S, ζ, ξ〉, and a signature morphism
ν : Ω → Σ(S), there is a unique monad morphism !ν : TΩ ⇒ S such that

(U !ν).υΩ = ν (2.7)

which we define as follows (where ω ∈ Ωn, hence ν(ω) ∈ SY with card(Y) = n):

!ν,X(ω(t1, . . . , tn))
def= ξX

.S[!ν,X(t1), . . . , !ν,X(tn)](ν(ω))

!ν,X(’x) def= ζX(x)

This definition is unique, since the second line makes !ν satisfy equation 2.7, and
the first line makes it a monad morphism. �

The counit of this adjunction consists of monad morphisms εT : TΣ(T) ⇒ T.
We can think of εT as evaluating terms built over the internal signature of T in
T, and we say that the monad T admits an equation t1 = t2 if εT (t1) = εT (t2),
leading to the concept of an internal language consisting of the internal signature
and the set of equations admitted by the monad (see below). The counit is given
by εT =!1T , or more explicitly:

εT,X(f(t1, . . . , tn)) = µX
.T [εT,X(t1), . . . , εT,X(tn)](f)

εT,X(’x) = ηX(x)

We will below need to refer to this being natural in T , so let us conclude by
spelling out what this means: if we have a monad morphism σ : T ⇒ S, we have

Chapter 2 — Compositional Semantics for Term Rewriting Systems 60

for all sets X:

TΣ(T)X
εT,X- TX

TΣ(S)X

ÛσX

?

εS,X

- SX

σX

?

(2.8)

The Internal Language at Work

We will below need the property that lifted morphisms commute with the sub-
stitution, i.e. given g : Y → Z, t1, . . . , tn ∈ TY , and t ∈ TX with card(X) = n,
then

g∗(t[t1, . . . , tn]) = t[g∗(t1), . . . , g∗(tn)] (2.9)

This can be proven by an easy structural induction on the term t, but we can prove
it directly and more elegantly in the internal signature. Equation 2.9 translates
as

g∗(µY (T [f1, . . . , fn](t))) = µZ(T [g∗t1, . . . , g∗tn](t))

By applying g∗ to both sides of bijection 2.5 we get [g∗t1, . . . , g∗tn] = g∗[t1, . . . , tn].
The proof then is given by diagram 2.10, where triangle (1) commutes because T is
a functor preserving composition (recall that g∗ = Tg), and square (2) commutes
because µ is a natural transformation.

TX
T [t1, . . . , tn]- TTY

µY - TY

(1) (2)

TZ

g∗∗

?

µZ

-

T [g∗t1, . . . , g∗tn] -

TZ

g∗

?

(2.10)

2.1.4 Equational Presentations

We have shown that every signature can be modelled by a finitary monad on
the category Set. In fact, monads are more general and can be used to model
equational presentations, which consist of a signature and a set of equations on
the derived terms. We shall briefly review this material, but leave the reader to
consult the standard references [69, 53, 52] for more details.

Chapter 2 — Compositional Semantics for Term Rewriting Systems 61

Definition 2.1.10 (Equations and Equational Presentations) Let Ω be a
signature. A (finitary) Ω-equation is of the form X ` t = s where X is a (finite) set
and t, s ∈ TΩ(X). An equational presentation A = (Ω, E) consists of a signature
Ω and a set E of Ω-equations.

Given an equational presentation A = (Ω, E) one defines the relations ∼X on
the set of terms TΩ(X) as the least equivalence relation generated by

(X ` t = s) ∈ E θ : X → TΩ(Y)
θ(t) ∼Y θ(s)

f ∈ Ωn ti ∼X ui for i = 1, . . . , n

f(t1, . . . , tn) ∼X f(u1, . . . , un)

where θ is the homomorphic extension (see lemma 2.1.4) of θ, i.e. the function
substituting θ(x) for each variable x in a term. The term algebra construction
generalizes from signatures to equational presentations by mapping a set X to
the term algebra TΩ(X) quotiented by the equivalence relation ∼X

TA(X) = TΩ(X)/ ∼X

Lemma 2.1.11 Given an equational presentation A, the map X 7→ TA(X) ex-
tends to a finitary monad TA on the category Set.

Proof. Essentially the same as TΩ proposition 2.1.6, except that one must ensure
that provability is respected. See any of [69, 52, 53] for more details. �

An Ω-algebra A admits an Ω-equation X ` t = s if for all σ : X → AS, t and
s evaluate to the same value in A: σ(t) = σ(s). For an equational presentation
A = (Ω, E), an A-algebra is an Ω-algebra admitting all equations in E. We obtain
the category of A-algebras, and the term algebra TA(X) is free in all algebras over
X (lemma 2.1.4).

We can further extend §2.1.3 to equational presentations:

Definition 2.1.12 (Internal Language) The internal language of a finitary
monad T = 〈T, η, µ〉 on Set is the equational presentation

L(T) def= (Σ(T), E(T))

where E(T) is the set of equations admitted by the monad T, defined as

E(T) def= {X ` t = s | X ∈ Setfp, εT,X(t) = εT,X(s)}

Chapter 2 — Compositional Semantics for Term Rewriting Systems 62

One can then extend the adjunction from lemma 2.1.9 to an adjunction be-
tween the category of equational presentations, and finitary monads on Set, but
we shall refrain here from doing so.

As a side remark for the interested reader, we note that Birkhoff’s theorem
for equational presentations, which gives sufficient and necessary conditions for
a set of Ω-algebras to be the set of algebras for an equational presentation finds
a categorical counterpart in Beck’s theorem [52, pg. 147] (generalized in [39,
Theorem 2.4]), which gives sufficient and necessary conditions for a category to
be monadic over Set, but can be generalized to base categories other than Set.

2.2 Basic Principles of Enriched Monad Theory

!
Categories As has been pointed out at the beginning of this chapter, the main point
of the construction of the semantics as a monad from a categorical point of view
is that it has to be enriched over the category V of sets-with-structure. In this
section, we will present the basic principles of the theoretical foundations of this
work: the theory of enriched monads as developed by Kelly and Power in [39].
Readers who feel put off by the very first sentence of the following paragraph
should probably skip this section and continue with §2.3, which is the application
of this (rather abstract) theory, and will be understandable without this section.

This general theory deals with finitary monads on a locally finitely presentable
V-category A (where V is lfp as a closed category [37], meaning that V0 is lfp as
an ordinary category, the tensor product preserves finite presentability and the
unit I is fp.) Further, A is small in the sense that there is a small set N (regarded
as a discrete category) of objects representing isomorphism classes of fp objects
of A, with the inclusions I : N ↪→ Afp, J : Afp ↪→ A.

In this abstract setting, a signature is a functor B : N → A, which for all
b ∈ N gives the A-object of b-ary operations. For such a signature, one constructs
a monad corresponding to the term algebra as the free monad on the left Kan
extension of B along JI . More explicitly, FB is given as the colimit of the
following sequence of functors:

FB
def= colim

n<ω
Sn

S0
def= JI

Sn+1(c)
def= c +

∑
e∈N

A(e, Snc) ⊗ Be (2.11)

We can think of Sn+1(X) as the terms of depth n + 1, which are either variables,
or constructed from operations of arity c applied to c-tuples of terms of depth n.

Chapter 2 — Compositional Semantics for Term Rewriting Systems 63

On the other hand, we can precompose every finitary monad with IJ to obtain
a functor N → A; and there is an (ordinary) adjunction

[N , A]
� F

⊥
U

- MonFin(A) (2.12)

The main result of [39] is that every finitary monad T on A can be presented,
i.e. given as the coequalizer of σ and τ in the category of finitary monads over A:

FE
σ -

τ
- FB - T

Under adjunction 2.12, this corresponds to two maps E
σ′ -

τ ′
- UFB, which

for all objects c ∈ N gives a pair (σ′(Ec), τ ′(Ec)) of terms from FBc, which we
can consider to be “equations” since T has to coequalize these maps.

Note how the tensor product between an object from V0 (on the left) and an
object from A (on the right) in equation 2.11 generalizes bijection 2.5 (see §1.4.7
on page 34). This is the general notion of “c-tuples” (where c is an fp object):
maps from finitely presentable objects, represented by the tensor. In our case, A
will always be V , so the tensor is just the monoidal product, but this seem more
like a matter of coincidental convenience rather than purposeful planning.

Further, the c-object of operations will be a relation (preorder etc.), the objects
of which are the usual term-forming operations of arity c; and the edges of which
will be the rewrite rules. In order to specify rewrites between composed operations
(terms) and not only between basic operations, we use the equations to specify
source and target of a rewrite rule. Let A = V = Pre, and consider the simple
system

(Ω = {G1, F2}, R = {F (G(x), y) → G(y)}

then the corresponding signature would be given by the functor

B(I) def= ({G}, ∅)

B(I + I) def= ({F, s, t}, <) where s < t

with the equations F (G(x), y) = s(x, y) and G(y) = t(x, y), given by E(I + I) =
({A, B}, ∅) and maps σ′(A) = F (G(x), y), τ ′(A) = x etc. We do not explicitly
write down these equations; they will occur implicitly in the term constructions
below. Further, the arity c above being non-discrete corresponds exactly to the
variable rewrites. These should not occur for term-forming operations (like F and

Chapter 2 — Compositional Semantics for Term Rewriting Systems 64

G above), which corresponds to the monad T being regular (in particular, being
strongly finitary as opposed to just finitary).

It is interesting to see how the difference between an n-ary operation, and
a term built over a set with n variables is modelled. The former always takes
precisely n arguments, and will “use” each of them once; the latter may “discard”
values substituted for a variable, or “use” a variable more than once.5 This
difference is described by the left Kan extension along the inclusion J : N → Afp;
for example, consider a signature with just one binary operation F, corresponding
to a functor B(2) = {F}, then the left Kan extension is given by

LanJB(c) def=
∑
e∈N

Afp(e, c) ⊗ Be

which for the following sets gives us the following values:

∅ 7→ ∅
{x} 7→ {((x, x), F)}

{x, y} 7→ {((x, x), F), ((y, y), F), ((x, y), F), ((y, x), F)}

These are more recognisable when written as terms, e.g. F(x, x). We will not
use this in the following, but this observation allows a precise characterization
of linear terms (terms which use each of the variables in their context exactly
once): these are those for which in equation 2.11 the V0-object A(e, Snc) is an
isomorphism (and this for all n < ω).

In the following section, we are going to give a particular syntactic construction
for the case of V = (Pre, ×, I), and later review how this can be seen as a special
instance of equation 2.11.

Following [39], we can assume that N and Afp have the same objects. In
our particular case, the finitely presentable objects of Rel and Pre are the re-
lations or preorders with a finite number of objects, and in Grph, the graphs
with a finite number of vertices and edges. Finitely presentable objects in Cat

are categories with a finite number of objects, and a finite set M of morphisms
in MorX , such that every morphism is given by identifying a finite number of se-
quence of morphisms from M (or equivalently, all free categories of locally finitely
presentable objects in Grph closed under finite coequalizers in Cat) [15, pg. 3].
This awkward definition is one of the reasons that the technical details of the mo-
nad construction for preorders are much simpler for preorders than for categories;
the correct modelling of contexts by finitely presentable objects in Cat requires
careful attention to the morphisms of the contexts– something which is not very
interesting from the term rewriting point of view.

5This is like the weakening or contraction rules in linear logic or sequent calculi.

Chapter 2 — Compositional Semantics for Term Rewriting Systems 65

To sum up this section, in order to put the general theory to work, we need
to find a locally finitely presentable, symmetric monoidal closed category V (or
a symmetric monoidal closed V along with an lfp V-category A). Then equa-
tion 2.11 gives us a general recipe for constructing terms, and the main result
tells us how to treat equations. To instantiate this general theory for our use, we
now have to find a suitable V and A.

2.3 Enriched Monads as a Semantics for Term
Rewriting Systems

In §2.1, we have presented a uniform treatment of signatures and equational pre-
sentations by monads on Set. In the previous section, we have presented the
generalization of the underlying category theory. We will now apply the previ-
ous section to term rewriting systems, obtaining a semantics for term rewriting
systems. The theory of enriched monads as presented there provides the founda-
tion of this work, a technical framework which by instantiating its parameters is
adapted to our needs. It is not at all necessary to have understood (or even read)
§2.2 to understand what follows; we will develop and motivate the semantics in-
dependently before showing how they are a specialization of the general theory.
We will obtain a semantics which has several advantages:

• it has a solid mathematical foundation, and is easily adaptable;

• it is compositional (§2.5);

• it is useful (as will be demonstrated by the applications in Chapters 4 and
5).

The semantics in places differs from the literature definition 1.6.1: it has another
way of dealing with one-step reductions, and admits a more general form of rewrite
rule. In the important part, however, the two semantics coincide: a term reduces
to another term in the new semantics in nil or many steps iff it does so in the
old, as we will show in §2.3.5.

In order to instantiate the general theory, we first need to decide what exactly
“sets with structure” should be. There is more than one possible choice here,
each of which corresponds to a different aspect of term rewriting one might be
interested in.

Chapter 2 — Compositional Semantics for Term Rewriting Systems 66

2.3.1 Sets with Structure

The usual semantics for term rewriting systems are abstract reduction systems,
which are given by a set A and a family {→α}α∈I of binary relations →α⊆ A×A on
A (see definition 1.6.1 on page 45). When combining two term rewriting systems
one does not distinguish between different reductions between the same two terms
in the same term rewriting system at all, the index set just being I = {1, 2} (where
→1 are the reductions in the first system, and →2 the reductions in the second
system). Thus it seems also feasible to model the reduction by just one binary
relation. For many-step reductions this relation has to be reflexive and transitive
(i.e. a preorder).

Nat
def= (Nat, RNat)

Nat
def= {Z0, S1, A2}

RNat
def= { A(Z, ’x) → ’x,

A(S(’x), ’y) → S(A(’x, ’y))}

Table 2.1: The term rewriting system Nat

The question is really which reductions one wants to distinguish with the
indexing set I . E.g. given the term rewriting system Nat in table 2.1, there are
two reductions from A(S(A(Z, ’x)), ’y) to S(A(’x, ’y)) (see diagram 2.13); and

A(S(A(Z, ’x)), ’y)

A(S(’x), ’y)
�

S(A(A(Z, ’x), ’y))
-

S(A(’x, ’y))
�-

(2.13)

the question is whether we want these two reductions to “be the same”, and what
this equality of reductions means in the first place. A satisfactory treatment of
this question leads to an “algebra of reductions”. If we do not wish to distinguish
between different reductions, we say we are dealing with unnamed reductions,
otherwise we have named reductions.

In summary, depending on whether we want to investigate unnamed or named,
and one-step or many-step reductions, our “sets with structure” can be binary
relations, graphs, preorders or categories (see table 2.2).

Deciding between one-step and many-step reductions is easy, since modularity
results as a rule are about combining many-step reductions, so the crucial question

Chapter 2 — Compositional Semantics for Term Rewriting Systems 67

Unnamed reductions Named reductions
One-step Binary Relations Graphs
Many-step Preorders Categories

Table 2.2: “Sets with Structure”

is whether we are interested in named or unnamed reductions. The arguments in
favour of unnamed reductions are that

• the construction is considerably simpler, and does not obscure the merits
of the semantics by technical details which are uninteresting from the term
rewriting point of view,

• and it is closer to the literature.

where the arguments for named reductions are that

• it is more general, yet still a faithful interpretation of the literature,

• it allows us to address a variety of new questions and problems,

• and semantically, preorders are categories anyway.

We will combine the advantages of both approaches by sidestepping the decision
and proceeding as follows: we will first give a term construction for unnamed
reductions, and show how to model the theory of a term rewriting system by a
monad on the category Pre of preorders.

The semantic framework in the rest of this thesis will be monads on Cat

however6, as from the categorical point of view the restriction to preorders does
not offer many advantages. Since preorders are categories anyway the proofs for
Cat carry over to Pre. The full description of how to model the named many-
step theory by a monad on Cat has been put into appendix A, where the reader
can peruse the full details.

Instantiating the General Theory

!
Categories, In order to instantiate the general theory, we need to check whether the
category of sets-with-structure satisfy the criteria of the theory; in particular,
whether they form a locally finitely presentable, symmetric monoidal closed V-
category. Fortunately, the category Pre is locally finitely presentable — the

6To be precise, monads enriched over Cat with the usual cartesian structure. There is
another closed monoidal structure on Cat we could enrich over, but it does not seem to offer
any theoretical advantages in our setting; see page 180 for further discussion.

Chapter 2 — Compositional Semantics for Term Rewriting Systems 68

important point here is that there is the notion of “finite objects” (the fp objects),
given by finite preorders — and it also is symmetric monoidal closed — there is the
cartesian product of two preorders, and a function space between two preorders,
the elements of which again form a preorder (by the pointwise order).

Further, bijection 2.5 generalizes to a bijection on preorders:

Pre(
∐
n

1, X) ∼=
∏
n

Pre(1, X) (2.14)

since (t1, . . . , tn) ≤ (s1, . . . , sn) iff for i = 1, . . . , n, ti ≤ si. Further, this bijection
also holds for categories (as will be needed in the appendix)

Cat(
∐
n

1, C) ∼=
∏
n

Cat(1, C) (2.15)

since a functor 1 → C is just an object of C, and giving a natural transformation
on the left amounts to giving n morphisms in C, which is exactly a morphism in
the product category on the right.

2.3.2 Arities, Contexts and Rewrite Rules

The two main principles of the monad semantics can be summed up as

• terms are composed operations;

• arities are contexts, given by the finitely presentable objects of the base
category.

In order to be able to compose operations in a meaningful way, we need to handle
arities appropriately. In the equational case, arities are natural numbers. Here,
the fp objects of Pre are finite preorders. This has interesting ramifications: if
contexts and arities are to be finite preorders, they do not have to be discrete.
In other words, we should be able to assume more about variables than merely
their existence. For if a context X = {x, y, z} of variables is just a way of
modelling the assumption that there are three entities x, y and z which we can
build terms with, then to model reductions there should be a way of assuming
there are reductions between these. For example, in the context X above a rewrite
α : x → y would mean that whatever we instantiate x and y with, there has to
be a rewrite between the two of them. Consequently, we arrive at the concept of
a generalized rewrite rule (Y ` l → r) where Y is a finite preorder. The “usual”
case — sets of variables without a reduction structure — will be retained as a
special case of the generalized concept.

Chapter 2 — Compositional Semantics for Term Rewriting Systems 69

Definition 2.3.1 (Generalized Rewrite Rule) A generalized rewrite rule in
a signature Ω is given by a triple (X, l, r), written as (X ` l → r), where X =
(X0, ≥) is a preorder, and l, r ∈ TΩ(X0). X is called the context, l the left-hand
side, and r the right-hand side of the rule.

If the preorder X is discrete, the rewrite rule is called ordinary; if the preorder
X is finite, it is called finitary.

If x ≥ y in the context X, we say there is a variable rewrite from x to y.

It should be pointed out that this definition is a conservative extension of
definition 1.6.1 in the sense that the special case of ordinary rewrite rules are
precisely the rewrite rules from definition 1.6.1. In the following, we always mean
generalized rewrite rule when writing rewrite rule.

With generalized rewrite rules, it is now possible to encode the requirement
that two (or more variables) have a common reduct directly into the rewrite
rules. For example, given the preorder X = (X0, ≤) as a context, which has
objects X0

def= {x, y, z}, ordered as x ≤ z, y ≤ z, then the rewrite rule (X `
F(’x, ’y) → G(’z)) means that only if we can instantiate x and y with terms t1

and t2 which have common reduct t3 (which is the instantiation of z), then there
is a reduction from F(t1, t2) to G(t3).

Further, a rewrite rule (X ` l → r) is called

• variable-introducing if var(r) 6⊆ var(l) (there are variables on the right hand
side which do not occur on the left);

• collapsing if ∃x ∈ X. r = ’x (the right hand side is a variable);

• expanding if ∃x ∈ X. l = ’x (the left hand side is a variable).

We can now define term rewriting systems:

Definition 2.3.2 (Term Rewriting System) A term rewriting system Θ =
(Ω, R) is given by a signature Ω and a set of rewrite rules R for Ω.

A term rewriting system Θ = (Ω, R) is finitary if Ω is finitary and all rules in R

are finitary. Since we only deal with finitary operations, we restrict ourselves to
finitary rewrite rules as well; hence, in the following, when we say rewrite rule we
mean a finitary rewrite rule.

Normally, one restricts term rewriting systems not to contain expanding or
variable-introducing rules [41]. We do not do this here, since none of the follow-
ing constructions depend on it. By carefully observing where these conditions are

Chapter 2 — Compositional Semantics for Term Rewriting Systems 70

needed in the proofs below, we shall seek to generalize as far as possible to sys-
tems not satisfying these conditions. One of these generalizations will depend on
the concept of bounded variables, which are variables which themselves need not
appear on the left-hand side of a rewrite rule, but which rewrite from something
occuring there:

Definition 2.3.3 (Bounded Variables) For a rewrite rule (X ` l → r), a vari-
able y ∈ X is bounded if there is x ∈ var(l) s.t. x ≥ y.

A rewrite rule (X ` l → r) introduces bounded variables if if it is variable-
introducing, but all variables are bounded; a rule for which there is x ∈ X which
is not bounded is said to introduce unbounded variables.

Note that a unbounded variable necessarily will not occur on the left-hand side
of a rule, because for all x ∈ var(l), x ≥ x.

We will now construct a free or term algebra for a term rewriting system,
which we will call the term reduction algebra. This construction will then be
extended to a monad on Pre.

2.3.3 The Term Reduction Algebra and the Monad TΘ

In definition 1.6.1 on page 45, the rewriting relation is obtained as a sequence of
single step rewrites, which are defined to be the rewrite rules with the variables
substituted, placed in a context; i.e. if l → r is a rewrite, and σ is a substitution,
then C[σ(l)] → C[σ(r)] is a single rewrite step, where σ(t) is the result of applying
substitution σ to term t.

We shall here do very much the same, but without explicitly defining con-
texts, rather relying on an inductive definition. The term reduction algebra on a
preorder X = (X0,<) will be the smallest preorder on the terms TΩ(X0) formed
by the following rules:

• All variable rewrites (rule [Var] below) are reductions;

• Operations have to preserve reductions [Pre]. Larger contexts are built by
repeated applications of this rule;

• Instantiation of a rewrite rule [Inst]: if we can assign a term to each object
in the context, such that for each variable rewrite in the context there is
a reduction between the two corresponding terms, then the instantiated
left-hand side of the rule reduces to the instantiated right-hand side of the
rule.

Chapter 2 — Compositional Semantics for Term Rewriting Systems 71

Definition 2.3.4 (Term Reduction Algebra) Given a term rewriting system
Θ = (Ω, R) and a preorder X = (X0,<), the term reduction algebra on X is
the smallest preorder TΘ(X) = (TΩ(X0), ≥) on the terms over X0 satisfying the
implications in table 2.3.

[Var]

x < y
’x ≥ ’y

x, y ∈ X0

[Pre]

t1 ≥ s1, . . . , tn ≥ sn

ω(t1, . . . , tn) ≥ ω(s1, . . . , sn)
ω ∈ Ωn

[Inst]

ρ = ((Y0,<) ` l → r) ∈ R, Y0 = {y1, . . . , yn}
∀i = 1, . . . , n ∀j = 1, . . . n. yi < yj ⇒ ti ≥ tj

l[t1, . . . , tn] ≥ r[t1, . . . , tn]
t1, . . . , tn ∈ TΩ(X0)

Table 2.3: Definition of the Term Reduction Algebra.

Note that we do not need an explicit rule for the formation of sequences, since
every preorder has to be transitive anyway.

Example 2.3.5 Given the term rewriting system Nat and the preorder Z =
(Z0, ≤) with Z0

def= {a, . . . , z}, ordered lexicographically (a ≤ b etc.) then the
term reduction algebra TNat(Z) has the terms TNat(Z0), ordered as follows:

A(Z, t) ≥ t,

A(S(t), s) ≥ S(A(t, s))

So for example, we have A(S(S(Z)), ’a) ≥ S(S(A(Z, ’a))) ≥ S(S(’a)), or
A(S(’a), ’b) ≥ S(A(’a, ’b)) ≥ S(A(’a, ’c)), or S(S(’e)) ≥ S(S(’f)), but
of course not S(’a) ≥ ’a. �

Example 2.3.6 This example involves a generalized rewrite rule. Given the
term rewriting system Ref = (∅, RNat) which has an empty signature and only
one rule

RNat
def= {(({x, y}, x ≤ y) ` ’y → ’x)}

Then for a preorder X = (X0,<), TRef(X) only has variables ’x for x ∈ X as
terms, but the reduction order ≥ is the reflexive closure of <; and since it is also
a preorder, which is transitive and reflexive, it is in fact the equivalence closure
of X. �

Chapter 2 — Compositional Semantics for Term Rewriting Systems 72

Structural Induction

To show that a predicate P holds for all reductions in TΘ(X), we use a structural
induction, not unlike the structural induction on terms in proposition 2.1.3.

Proposition 2.3.7 Given a preorder X = (X0, ≥) and a binary relation PX ⊆
TΘ(X) × TΘ(X). If for all s, t ∈ TΘ(X), s ≥ t implies (s, t) ∈ PX we say that
PX holds for all reductions in TΘ(X). This is the case if PX is a preorder and
satisfies the following three implications:

x ≥ y

(’x, ’y) ∈ PX

∀i = 1, . . . , n.(si, ti) ∈ PX

(ω(t1, . . . , tn), ω(s1, . . . , sn)) ∈ PX
ω ∈ Ωn

∀i, j.yi ≥ yj ⇒ (ti, tj) ∈ PX

(l[t1, . . . , tn], r[t1, . . . , tn]) ∈ PX
((Y0, ≥) ` l → r) ∈ R, Y0 = {y1, . . . , yn}

Proof. This is proven by reducing it to well-founded induction. We define a
partial map size : TΘ(X) × TΘ(X) ⇀ N, which for s, t ∈ TΘ(X) is only defined if
we can derive s ≥ t, and then gives the number of times we have to apply one of
the rules [Pre] and [Inst], starting with the variable rewrites (rule [Var]) which
have size 0, or the reflexive closure (i.e. s = t). We define a predicate q on N:

q(n) ⇔ (∀s, t ∈ TΩ(X). size(s, t) ≤ n ∧ s ≥ t ⇒ (s, t) ∈ PX)

and show that the three implications above give rise to a well-founded induction by
which we can show that for all n ∈ N, q(n). We conclude that for all s, t ∈ TΩ(X)
if s ≥ t then (s, t) ∈ PX . The appendix contains a more detailed proof of the
general construction for categories (proposition A.1.5 on page 177). �

We are now going to define the monad TΘ, starting with its action, the en-
dofunctor TΘ : Pre → Pre. Its object function will map X to TΘ(X), and on
the morphisms, it will map a preorder morphism to the lifting of the underlying
function on the term algebras.

The Action of the Monad

Chapter 2 — Compositional Semantics for Term Rewriting Systems 73

Lemma 2.3.8 The mapping of a preorder X to the term reduction algebra
TΘ(X) extends to a functor TΘ, by mapping a preorder morphism f : (X0, ≥) →
(Y0, ≥) to its lifting f∗ : TΩ(X0) → TΩ(Y0) from definition 2.1.5.

Proof. We have to show that TΘ is indeed a functor, in particular that f∗ is a
preorder morphism, and that the lifting process preserves the pointwise order on
morphisms (making TΘ a Pre-enriched functor).

To show that f∗ is a preorder morphism we have to show

t ≥ s ⇒ f∗t ≥ f∗s (2.16)

This is proven by structural induction on the reduction f∗t ≥ f∗s:

1. If x ≥ y in X, then fx ≥ fy in Y , and hence f∗(’x) ≥ f∗(’y).

2. If (Z ` l → r) ∈ R, and l[t1, . . . , tn] ≥ r[t1, . . . , tn], then we can assume
that ti ≥ tj ⇒ f∗ti ≥ f∗tj, hence l[f∗t1, . . . , f∗tn] ≥ r[f∗t1, . . . , f∗tn], and
using equations 2.9:

f∗(l[t1, . . . , tn]) = l[f∗t1, . . . , f∗tn]

≥ r[f∗t1, . . . , f∗tn]

= f∗(r[t1, . . . , tn])

3. Finally, for e(t1, . . . , tn) ≥ e(s1, . . . , sn) where ti ≥ si (for i = 1, . . . , n),
we can assume that f∗ti ≥ f∗si, then

f∗(e(t1, . . . , tn)) = e(f∗t1, . . . , f∗tn)

≥ e(f∗s1, . . . , f∗sn)

= f∗(e(s1, . . . , sn))

where the equations hold by definition of f∗.

Preorder morphisms are ordered pointwise: for f, g : X → Y , f ≥ g iff for
all x ∈ X0, fx ≥ gx. We have to show that the lifting preserves this order, and
hence gives rise to a Pre-enriched functor:

∀x ∈ X0.fx ≥ gx ⇒ ∀t ∈ TΩ(X0).f∗t ≥ g∗t (2.17)

This is proven by structural induction on the term t; the induction assumption
is ’x ∈ TΩ(X0), then f∗(’x) = ’fx ≥ ’gx = g∗(’x); for the induction step, let
e(t1, . . . , tn) ∈ TΩ(X0) and assume f∗(ti) ≥ g∗(ti), then

f∗(e(t1, . . . , tn)) = e(f∗t1, . . . , f∗tn) ≥ e(g∗t1, . . . , g∗tn) = g∗(e(t1, . . . , tn))

The lifting preserves identities and composition because of the functoriality of
TΩ, and hence definition 2.1.5 is correct. �

Chapter 2 — Compositional Semantics for Term Rewriting Systems 74

Unit and Multiplication

The unit and multiplication of the monad are given by the unit and multiplication
of the monad TΩ from proposition 2.1.6. We have to show that they are preorder
morphisms (i.e. preserve the order); naturality has been shown above.

The unit is trivially a preorder morphism by rule [Var]. That the multiplica-
tion is a preorder morphism is proven by structural induction; the crucial step is to
show that µX0(l[t1, . . . , tn]) ≥ µX0(r[t1, . . . , tn]) for a rule ((Z0,<) ` l → r) ∈ R

with card(Z0) = n, and ti ∈ TΩ(TΩ(X0)) with ti ≥ tj if zi < zj. We first show by
induction on the term that for all s ∈ TΩ(Z0)

µX0(s[t1, . . . , tn]) = s[µX0(t1), . . . , µX0(tn)] (2.18)

Since by rule [Inst], l[t1, . . . , tn] ≥ r[t1, . . . , tn], we now have to show that
µX0(l[t1, . . . , tn]) ≥ µX0(r[t1, . . . , tn]), which easily follows from equation 2.18
and rule [Inst].

The monad laws will hold since they just carry over from the underlying
morphisms. Hence, we have the main proposition of this section:

Proposition 2.3.9 Every term rewriting system Θ = (Ω, R) gives rise to a mo-
nad TΘ

def= 〈TΘ, η, µ〉 on the category Pre, enriched over Pre.

We will now explore how proposition 2.3.9 works the other way around: how
we can consider a monad on Pre as a term rewriting system by considering its
internal language, generalizing §2.1.3. We will close the section by relating the
term reduction algebra defined above to the “traditional” definition 1.6.1.

2.3.4 The Internal Language of a Monad

Given a monad T = 〈T, η, µ〉 on Pre, the object functions of its components
yield an ordinary monad on Set, called the underlying object monad of T and
denoted T0

def= 〈T Obj, ηObj, µObj〉. The internal signature of this monad yields
a term language about the objects of the monad T. The counit of the ad-
junction from lemma 2.1.9 gives us, for any preorder X = (X0,<), a function
εT0,X0 : TΣ(T0)(X0) → TX0 which lets us evaluate terms built in the internal
signature in the monad T. The internal language of T should now give us all
rewrites admitted by T, much like the internal language of a monad on Set are
all equations admitted by the monad (definition 2.1.12).

Definition 2.3.10 (Internal Language) The internal language of a finitary
monad T = 〈T, η, µ〉 on Pre is given by

L(T) def= (Σ(T0), R(T))

Chapter 2 — Compositional Semantics for Term Rewriting Systems 75

where Σ(T0) is the internal signature (definition 2.1.7) of the underlying monad
T0 on Set, and R(T) is the set of rewrite rules admitted by the monad T defined
as follows:

R(T) def= {(X ` l → r) | X ∈ Prefp, TX = (Y0, ≥), εT0,X(l) ≥ εT0,X(r)}

Note that it is sufficient to define the internal language over the finitely pre-
sentable objects Prefp, since all other objects are given as a directed colimit of
fp objects, and finitary functors preserve directed colimits.

We will now consider two examples for the internal language, in a slightly
informal manner.

Example 2.3.11 As a very simple example, consider the internal language of
the identity monad 1Pre = 〈1Pre,1,1〉 which just maps a preorder to itself.

Then Σ(1Pre)n = {x | x ∈ X, card(X) = n} or slightly rephrased Σ(1Pre)n =
{xi | xi ∈ {x1, . . . , xn}}. The terms we can build in the internal language are e.g.
t = xi(x1, . . . , xn), which the evaluation takes to ε(t) = xi. �

Example 2.3.12 The monad B = 〈B, ηB, µB〉 freely adjoins an initial element
⊥ to the argument preorder. Its action is defined as

B(X, ≥) def= (X + {⊥},<)

where the order is defined as x ≥ y ⇒ x < y, and for all x ∈ X, ⊥ < x. On
morphisms, f : X → Y is mapped to f∗ : B(X) → B(Y) which takes x ∈ X to
f(x) ∈ Y , and ⊥ to ⊥.

The unit ηB,X : X → B(X) embeds X into B(X), whereas µB,X : B(B(X)) →
B(X) identifies the two distinct elements ⊥ added by the two applications of B.

The internal language of this monad is given as follows: its signature has

Σ(B)n = {⊥, x1, . . . , xn}

The terms are evaluated as follows

εB(xi(t1, . . . , tn)) = εB(ti)

εB(⊥(t1, . . . , tn)) = ⊥

The rewrites of the internal language are essentially rewrites ⊥ → t for all terms
t, and l → r if l ≥ r in X, so we can think of this monad as having, for any n ∈ N,
an n-ary operation ⊥, and rewrites ⊥(x1, . . . , xn) → xi. The substitution here
“collapses” the ⊥, so e.g. µB(⊥(’⊥, ’’x)) = ⊥(’x). �

Chapter 2 — Compositional Semantics for Term Rewriting Systems 76

2.3.5 Comparison with the Literature Definition 1.6.1

A natural question to ask is how the term reduction algebra TΘ(X) is related
to the many-step reduction relation �R from definition 1.6.1 on page 45. It is
fairly obvious that if X is discrete, the relation ≥ on the terms is the same as
the many-step reduction �R. In fact, TΘ(X) is given by →R plus the variable
rewrites given by X, closed under congruence, and formally stated this will be the
main result of this section. The constructions and results of this section are only
needed when relating our definitions to definition 1.6.1 (for example, to show that
our definition of confluence below coincides with the one found in the literature),
and this will not be the case again until §4.1.3.

In the following, consider an ordinary term rewriting system Θ = (Ω, R), and
both TΘ(X) = (TΩ(X), ≥) and →R⊆ TΩ(X) × TΩ(X) for an arbitrary but fixed
relation X = (X0, <).7 We are first going to define the congruence closure of <,
followed by the main proposition of this section:

Definition 2.3.13 (Congruence Closure of Variable Rewrites) Given a
preorder X = (X0, <), the congruence closure →X of the variable rewrites in
X is the smallest preorder on TΩ(X) such that

∀x, y ∈ X0.x < y ⇒ ’x →X ’y

ω ∈ Ωn, si →X ti for i = 1, . . . , n ⇒ ω(s1, . . . , sn) →X ω(t1, . . . , tn)

Proposition 2.3.14 All reductions in the reduction algebra are given as a se-
quence of reductions from either the one-step reduction generated by the rules, or
from variable rewrites closed under congruence:

≥ = (→R ∪ →X)∗

Proof. We are going to show the equality by inclusion in both directions. For
notational convenience, let S

def= →R ∪ →X.

1. s ≥ t ⇒ s S∗ t

The proof proceeds by structural induction over s ≥ t. If s ≥ t by rule
[Var], then s →X t, and if s ≥ t by rule [Inst], then s →R t. [Pre] offers
a slight complication, since if there are terms s1, t1, . . . , sn, tn, ∈ TΩ(X) such
that si ≥ ti, we can only assume that for all i = 1, . . . , n, either si →X ti or

7For the latter, following definition 1.6.1 to the letter, X needs to be infinite. This seems to
be a convenience in the definition, made such that one does not run out of fresh variables when
one wants to rename the variables of two terms apart.

Chapter 2 — Compositional Semantics for Term Rewriting Systems 77

si →R ti, but for different values of i, different of the two alternatives may
hold, and we can not uniformly apply the induction assumption.

However, we can decompose a rewrite ω(s1, . . . , sn) ≥ ω(t1, . . . , tn) into n

rewrites

ω(s1, s2, . . . , sn) ≥ ω(t1, s2, . . . , sn)

≥ ω(t1, t2, . . . , sn)

. . . ≥ ω(t1, t2, . . . , tn) (2.19)

Then for i = 1, . . . , n, we can assume that since si ≥ ti, si S∗ ti. Since
both →X and →R are closed under application of operations, we have
ω(. . . , si, . . .) S∗ ω(. . . , ti, . . .) for i = 1, . . . , n, and by transitivity of
S∗ the composition of the n rewrites in equation 2.19 is in S∗.

2. s S∗ t ⇒ s ≥ t

The proof proceeds by a case distinction. If s →X t, then s ≥ t by rules
[Var] and [Pre], if s →R t, then s ≥ t by rules [Inst] and [Pre], and if
sS∗t then s ≥ t by transitivity and reflexivity of ≥.

�

This proposition has an easy corollary which will be useful later on:

Corollary 2.3.15 If the relation X is discrete, then �R = TΘ(X).

2.4 Properties of the Monad TΘ

Monads are a generalisation of universal algebra, in which structures are defined
by operations and equations. Term rewriting systems do not have equations,
hence monads are a more general concept, and not every monad on Pre is gen-
erated from a term rewriting system. In this section, we will try to axiomatize
those properties of monads on Pre which are given by term rewriting systems.
We try to keep these properties as weak as possible — the more general these
properties are, the more generalisations we can later make.

The properties in question are finitariness (corresponding to operations of
finite arity), and preservation of coequalizers (corresponding to absence of equa-
tions), which together are strong finitariness; and further a newly introduced
property called regularity which corresponds to free term generation and essen-
tially means that the monad’s substitution is well-behaved, and that the monad
does not confuse variables with other terms.

Chapter 2 — Compositional Semantics for Term Rewriting Systems 78

We close with a section on non-expandingness, which is not a property char-
acterizing term rewriting systems, but a property of term rewriting systems. We
introduce this property here, since the main results of chapters 4 and 5 only hold
for non-expanding term rewriting systems (and monads).

2.4.1 Finitariness

In a locally finitely presentable category (as Set or Pre) every object can be given
as the directed (or filtered) colimit of the finitely presentable objects. Hence, if
the action of a monad preserves this particular kind of colimits, its action on any
object will be determined by its action on the finitely presentable objects; such
a monad is called finitary (see page 56 above). If moreover the monad preserves
weakly filtered colimits, it is called strongly finitary, and these are precisely the
monads corresponding to finitary term rewriting systems.

We are now going to show that the monad TΘ arising from a finitary term
rewriting system Θ is strongly finitary. We will separately show that TΘ preserves
filtered colimits and coequalizers, and use lemma 1.3.7. The rather technical
proofs of the two main lemmas have been relegated into the appendix, where
they are shown for the more general case of named reductions.

Lemma 2.4.1 Given a term rewriting system Θ = (Ω, R), the monad TΘ is
strongly finitary.

Proof. By specialising lemma A.2.2 (page 187f), the monad TΘ is finitary, and
by specialising lemma A.2.3 (page 190f), the functor TΘ preserves coequalizers.
Hence, by lemma 1.3.7, TΘ is strongly finitary. �

2.4.2 Regular Monads

Regularity is concerned with a couple of additional conditions on the unit and
multiplication of the monad, corresponding to conditions on the variables and the
substitution. These conditions can be described as follows:

• Different objects of X should give rise to different variables;

• Lifted morphisms should not identify variables and terms: given a morphism
f : X → Y , and y ∈ TΘ(Y), x ∈ TΩ(X) such that f∗(x) = ’y, there is
x0 ∈ TΘ(X) such that x = ’x0 and y = f(x0) (corresponding to the η being
regular as defined below). In other words, if a lifted morphism f∗ and the
unit ηX agree on a term, than this term has to be variable which moreover
is given by an object in the image of the unlifted morphism f .

Chapter 2 — Compositional Semantics for Term Rewriting Systems 79

• In the same vein, lifting should be stable under substitution: for f : X → Y

as above, given t ∈ TΘ(X), s ∈ TΘ(TΘ(Y)) such that f∗(t) = µY (s), there is
t0 ∈ TΘ(TΘ(X)) such that t = µX(t0) and s = f∗∗(t0).

These should hold in arbitrary contexts as well. This means that the action of
the monad (which gives the context-building operations) should preserve these
properties.

Further, we will define the properties on the level of monads on Cat; as
mentioned above, these will be the semantic framework in the remainder of this
thesis, so it is worthwhile to give the following definitions on a more general level
from the start. This in particular means that the last two conditions also have
to hold for the morphisms. In fact, the two last conditions above look fairly
similar, and since both the unit and the multiplication are of course natural
transformations, we can formulate them in terms of a natural transformations α:

Definition 2.4.2 (Regular Natural Transformations) Given two functors
T, S : Cat → Cat, a natural transformation α : T ⇒ S is called regular if
given the naturality square

TX αX - SX

TY

Tf
?

αY
- SY

Sf
?

the following two hold:8

∀x ∈ SX , y ∈ TY. Sf(x) = αY(y) ⇒ ∃x0 ∈ TX . x = αX (x0) ∧ y = Tf(x0)

∀r : x → x′ in SX , s : y → y′ in TY. Sf(r) = αY(s) ⇒
∃r0 : x0 → x′0 in TX . r = αX (r0) ∧ s = Tf(r0)

When specializing definition 2.4.2 to preorders, we of course do not have a
regular transformation, we merely have two preorder morphisms f, g such that
f ≤ g in the pointwise order. This simplifies the second condition above. This
also allows us to conveniently express the requirement that the action preserves
“regularity”: it means that the action preserves regularity of natural transforma-
tions.

Definition 2.4.3 (Regular Monads) A monad T = 〈T, η, µ〉 on Cat is regular
if it satisfies the following conditions:

8Note that this does not quite mean the naturality square is a pullback-square, since we do
not require x0 and r0 to be unique.

Chapter 2 — Compositional Semantics for Term Rewriting Systems 80

(i) T is strongly finitary;

(ii) η and µ are regular in the sense of definition 2.4.2, and T preserves
regularity of natural transformations;

(iii) For all categories X , ηX is monic in Cat (i.e. injective on the
objects and faithful), and TΘ preserves monicness.

Proposition 2.4.4 Given a term rewriting system Θ, the monad TΘ is regular.

Proof. In lemma 2.4.1, it was shown that TΘ is strongly finitary. That ηX is
monic follows from the free generation of the term reduction algebra (no terms
are identified). Preservation of monicness is shown by an easy structural induction
(given F : X → Y which is monic, show that F ∗ : TΘ(X) → TΘ(Y) is monic by
showing that F ∗(s) = F ∗(t) implies s = t). That ηX is regular, and that TΘ

preserves regularity follows from the definition of the lifting.
Regularity of µ is proven as follows: on the objects, given s ∈ TΩ(TΩ(Y)), t ∈

TΩ(X) and f : X → Y s.t. f∗(s) = µX(t), we construct a term t0 ∈ TΩ(TΩ(X))
by t0

def= σ(s, t) where σ : TΩ(TΩ(Y)) × TΩ(X) ⇀ TΩ(TΩ(X)) is a partial function,
defined as follows:

σ(e(s1, . . . , sn), e(t1, . . . , tn))
def= e(σ(s1, t1), . . . , σ(sn, tn))

σ(’x, t) def= ’t

σ(s, t) is undefined if f∗(s) 6= µX(t). On the morphisms, a similar proof applies.
�

We have separated strong finitariness from the other three conditions, because
the construction of the coproduct of two monads in §3.1 works for any strongly
finitary (not necessarily regular) monad. It is only for the modularity proofs that
we need the other conditions.

Incidentally, monads in which every component of the unit is a monomor-
phism are called computational monads by Moggi [61], although the monads he
considers are in general not finitary. Further, if one strengthens the requirements
of definition 2.4.2 to the naturality square being a pullback square, such a natural
transformation is called cartesian. Carboni and Johnstone [7] show that if the
unit and multiplication of a monad are cartesian, and T preserves wide pullbacks9,
such monads on Set are exactly those given by finite operations and strongly reg-
ular equations, where an equation is strongly regular if the same variables occur
in each side of the equations, in the same order and without repetition.

9Also called fibre products— pullbacks of more than two morphism with the same source.

Chapter 2 — Compositional Semantics for Term Rewriting Systems 81

2.4.3 Expanding and Collapsing Monads

Recall that a rewrite rule (X ` l → r) is expanding if l = ’x for some x ∈ X.
For the monad TΘ, this means that there are is a rewrite s ≥ t in TΘ(X) where
s is in the image of the unit (s = ’x), and t not (otherwise, it would just be a
variable rewrite). We now want to define this property for any monad T on Pre,
and even more general, on Cat, with Pre just being a special case.

Definition 2.4.5 (Expanding Functors and Monads) A functor F : X →
Y is expanding (at x ∈ X), if there is a morphism α : Fx → y′ in Y s.t. for all
morphisms β : x → y in X , Fβ 6= α.

A monad T = 〈T, η, µ〉 on Cat is expanding if there is a component ηX : X →
TX of the unit which is expanding, and the action preserves expandingness for
injective functors, i.e. if F : X → Y is injective and expanding, then so is TF .

Obviously, a functor is non-expanding if it is non-expanding at all x ∈ X ; i.e.
for all x ∈ X and α : Fx → y, there is β : x → x′ such that Fβ = α. Further, a
monad is non-expanding if all components of the unit are non-expanding, and the
action preserves non-expanding functors. The dual notion of expanding is collaps-
ing (although for reasons explained on page 84 below, the action of the monad is
not required to preserve collapsingness or non-collapsingness respectively).

Definition 2.4.6 (Collapsing Functors and Monads) A functor F : X →
Y is collapsing (at x ∈ X), if F op : X op → Yop is expanding (at x). A monad
T = 〈T, η, µ〉 on Cat is collapsing if all components ηX : X → TX of the unit are
collapsing.

The specialization of definitions 2.4.5 and 2.4.6 to preorders is straightfor-
ward: a preorder morphism f is non-expanding if considered as a functor it is
non-expanding; and a monad T = 〈T, η, µ〉 on Pre is non-expanding if all compo-
nents ηX of the unit are non-expanding, and the action preserves non-expanding
preorder morphisms.

It now remains to show that a non-expanding term rewriting system gives
rise to a non-expanding monad. Clearly, if the term rewriting system is non-
expanding, so is the unit of the monad, but slightly surprisingly the action of the
monad fails to preserve non-expandingness if the term rewriting system intro-
duces unbounded variables (see definition 2.3.3). As a counterexample, consider
the monad B from example 2.3.12 from page 75. Although the unit ηB is non-
expanding, the action of B does not preserve non-expandingness: consider the

Chapter 2 — Compositional Semantics for Term Rewriting Systems 82

unique preorder morphism ! : 0 → 1 from the empty preorder to the one-object
preorder, and let x ∈ 1 be that object, then B(!) : B(0) → B(1) maps the only
object ⊥ ∈ B(0) to ⊥ ∈ B(1), but there is a morphism ⊥ → x in B(1), hence
B(!) is expanding, whereas ! is not.

Before we show that a non-expanding system gives rise to a non-expanding
monad, we need a bit of notation. A partial function from X to Y is written as
X ⇀ Y . A partial function between pre-orders is a partial function between the
underlying sets which respects the order. Given such a partial function f : X ⇀

Y , its lifting to a partial function f∗ : TΩ(X) ⇀ TΩ(Y) is defined analogous to
definition 2.1.5; f∗ is defined at t ∈ TΩ(X) iff f is defined at all x ∈ var(t). With
this machinery, we can prove the following technical lemma, which essentially
says that the lifting of injective functions commutes with substitution— given a
term l and a substitution σ such that σ applied to l lies in the image of a the
lifting of an injective function f , then σ filters through the lifting of f .

Lemma 2.4.7 Given a term rewriting system Θ = (Ω, R) and a rule ρ = (Z `
l → r) in R which does not introduce unbounded variables, an injective function
f : X → Y , a term t ∈ TΩ(X) and a preorder morphism σ : Z → TΩ(Y) such
that f∗(t) = µY (σ∗(l)), which is non-expanding for all z ∈ Z (i.e. if f∗(t) = σ(z)
and z ≥ u in Z, then there is s ∈ TΩ(X) s.t. t ≥ s in TΘ(X) and f∗(s) = σ(u)).

Then there is a preorder morphism τ : Z → TΩ(X) such that

µX(τ ∗(l)) = t (2.20)

σ = f∗.τ (2.21)

Proof. We construct a partial map τ : Z ⇀ TΩ(X) which satisfies equations 2.20
and 2.21, and then show it is totally defined.

The construction proceeds by induction over l. For the induction base, let
l

def= ’z with z ∈ Z, then µY (σ∗(l)) = µY (’σ(z)) = σ(z), hence f∗(t) = σ(z). In
this case, τ has to map z to t. Now for z0 ∈ Z with z ≥ z0, then since f∗ is
non-expanding at z, there is s ∈ TΩ(X) such that t ≥ s and f∗(s) = σ(z0). In
that case, τ has to map z0 to s. In all other cases, τ is undefined. This gives the
following definition for τ :

τ (z0)
def=
{

t for f∗(t) = σ(z0)
⊥ otherwise (2.22)

So, τ is defined for z and all variables to which z rewrites; for the latter the value
of τ is given by non-expandingness of f∗, and it is well-defined by injectivity of
f∗: if f∗(t1) = f∗(t2) then t1 = t2. Equations 2.20 and 2.21 hold by µX(τ ∗(l)) =
µX(’τ (z)) = µX(’t) = t, and σ(z) = f∗(t) = f∗(τ (z)).

Chapter 2 — Compositional Semantics for Term Rewriting Systems 83

For the induction step, we have l = ω(l1, . . . , ln), and further µY (σ∗(l)) =
ω(µY (σ∗(l1)), . . . , µY (σ∗(ln))). The induction assumption is that there are ti ∈
TΩ(X) with f∗(ti) = µY (σ∗(li)) (for i = 1, . . . , n), and that for these we have τi :
Z ⇀ TΩ(X) such that µX(τ ∗(li)) = ti and σ = f∗.τi. Now define τ : Z ⇀ TΩ(X)
as

τ (z) def=
{

τi(z) if τi is defined at z for some i, 1 ≤ i ≤ n
⊥ otherwise

This is well-defined: if τi and τj with i 6= j are both defined at z, then by the induc-
tion assumption, σ(z) = f∗(τi(z)) and σ(z) = f∗(τj(z)), so f∗(τi(z)) = f∗(τj(z)),
and by injectivity of f∗, τi(z) = τj(z). This also means that equation 2.21 holds;
for equation 2.20, µX(τ ∗(ω(l1, . . . , ln))) = ω(µX(τ ∗(l1)), . . . , µX(τ ∗(l1))) =
ω(t1, . . . , tn) = t. This concludes the induction.

It remains to show that τ (z) is defined for all z ∈ Z, and hence τ : Z → TΩ(X)
is a total function as required. First, for all z ∈ var(l), we have some s ∈ TΩ(X)
such that σ(z) = f∗(t), and hence τ (z) = t. Since all variables in Z are bounded,
for all z ∈ Z there is y ∈ var(l) such that y ≤ z, and τ (z) is defined by clause 2.22
above. �

We can now show the main lemma of this section.

Lemma 2.4.8 If a term rewriting system Θ = (Ω, R) is non-expanding and
does not introduce unbounded variables, then the monad TΘ = 〈TΘ, η, µ〉 is non-
expanding.

Proof. According to definition 2.4.5, we have to show that η is non-expanding,
and that TΘ preserves non-expandingness of injective functors.

We first show that η is non-expanding: given s, t ∈ TΩ(X) with s ≥ t in
TΘ(X), then s is in the image of ηX iff there is x ∈ X with s = ’x. Hence, s can’t
be of the form ω(s1, . . . , sn) or l[s1, . . . , sn] for (X ` l → r) in R, since for all l,
l 6= ’x. So s ≥ t can only be derived by rule [Var], and t = ’y with x ≥ y in X.

To show that TΘ preserves non-expandingness of injective pre-order mor-
phisms, suppose f : X → Y (with X = (X0, ≥), Y = (Y0,<)) is injective and
non-expanding; we then have to show that f∗ is non-expanding as well: for all
t ∈ TΩ(X0), if there is s′ ∈ TΩ(Y0) s.t f∗(t) < s′ then there is s ∈ TΩ(X0) such
that f∗(s) = s′ and t ≥ s. The proof proceeds by structural induction on the
reduction f∗(t) ≥ s′ in TΘ(Y), with the following three cases:

1. If f∗(t) ≥ s′ by [Var], then f∗(t) = ’y1 where y1 = f(x1) for x1 ∈ X0, and
s′ = ’y2 with y1, y2 ∈ Y0 and y1 < y2. Since f is non-expanding, there has
to be x2 ∈ X0 such that f(x2) = y2 and then s

def= ’x2.

Chapter 2 — Compositional Semantics for Term Rewriting Systems 84

2. If f∗(t) ≥ s′ by [Pre], then f∗(t) = ω(f∗(t1), . . . , f∗(tn)), and s′ =
ω(s′1, . . . , s′n) with f∗(ti) < s′i, and the induction assumption is that there
are si ∈ TΩ(X0) such that f∗(si) = s′i, and ti ≥ si, all for i = 1, . . . , n.
Then let s

def= ω(s1, . . . , sn), with f∗(s) = s′ and t ≥ s as required.

3. Finally, if f∗(t) < s′ by [Inst], then there is a rewrite rule ρ = (Z ` l → r)
in R, and a preorder morphism σ : Z → TΘ(Y) such that s′ = µY (σ∗(r)) and
f∗(t) = µY (σ∗(l)). The induction assumption is that f∗ is non-expanding
for all z ∈ Z, i.e. if σ(z1) = f∗(t) and z1 ≥ z2, then there is s ∈ TΩ(X) s.t.
t ≥ s and f∗(s) = σ(z1). Then by lemma 2.4.7, there is τ : Z → TΘ(X)
such that µX(τ ∗(l)) = t and σ = f∗.τ . Now let s

def= µX(τ ∗(r)), then t ≥ s

and further

f∗(s) = f∗(µX(τ ∗(r)))

= µY (f∗∗(τ ∗(r)))

= µY ((f∗τ)∗(r))

= µY (σ∗(r))) = s′

as required. This concludes the induction, and the proof.
�

The next lemma says that a non-collapsing term rewriting system gives rise
to a non-collapsing monad. It also explains why a non-collapsing monad does
not have to preserve non-collapsingness: by dualising the proof of lemma 2.4.8,
only monads arising from term rewriting systems in which the variables of the
right-hand side of every rule are contained in the left-hand side, or rewrite to a
variable in there, preserve non-collapsingness, so lemma 2.4.9 would not hold.

Lemma 2.4.9 If a term rewriting system Θ = (Ω, R) is not collapsing, then the
monad TΘ = 〈TΘ, η, µ〉 is non-collapsing.

Proof. By simply dualising the first part of the proof of lemma 2.4.8 as follows.
We have to show that η is non-collapsing: given s, t ∈ TΩ(X) with s ≥ t in TΘ(X),
then t is in the image of ηX iff there is y ∈ X with t = ’y. Hence, t can’t be of the
form ω(t1, . . . , tn) or r[t1, . . . , tn] for (X ` l → r) in R, since for all r, r 6= ’x.
So s ≥ t can only be derived by rule [Var], and s = ’x with x ≥ y in X. �

Chapter 2 — Compositional Semantics for Term Rewriting Systems 85

2.4.4 Quasi-Non-Expanding Term Rewriting Systems and
Monads

In some cases, non-expandingness is a too strong requirement, e.g. when consid-
ering η-expansions [32]. In these cases, it is enough that expanding rewrites can
be contracted again — if there is a rewrite from a variable x to a term t, we can
reduce the term to the variable x again. In the presence of variable rewrites, we
actually don’t need to reduce t back to x, it is sufficient to reduce t to another
variable y such that there is a variable rewrite between x and y. We call these
term rewriting systems quasi-non-expanding.

Definition 2.4.10 (Quasi-Non-Expanding Term Rewriting Systems) A
term rewriting system Θ = (Ω, R) is called quasi-non-expanding (qne), iff for
all preorders X = (X0,<), if there is a rewrite ’x ≥ t in TΘ(X), then t is not a
variable (t 6= ’z), and there is a rewrite t ≥ ’y in TΘ(X) such that x < y.

We can then formulate the corresponding property for functors and monads:

Definition 2.4.11 (Quasi-non-expanding Functors and Monads) A func-
tor F : X → Y is called quasi-non-expanding at x ∈ X , if it is full and for all
α : Fx → y in Y, there are γ : y → y′ in Y, β : x → z in X such that γ.α = Fβ,
and it is quasi-non-expanding if it is quasi-non-expanding at all x ∈ X .

A monad T = 〈T, η, µ〉 on Cat is quasi-non-expanding if all components
ηX : X → TX of the unit are quasi-non-expanding, and the action preserves this
for injective functors: if F : X → Y is quasi-non-expanding and injective, then
so is TF .

The specialization of this definition to preorder morphisms and monads on
Pre is straightforward. Then we have to prove that a qne term rewriting system
gives rise to a qne monad.

Lemma 2.4.12 If the term rewriting system Θ is quasi-non-expanding and does
not introduce unbounded variables, the monad TΘ is quasi-non-expanding.

Proof. That the unit is qne follows easy: given X = (X0,<), then ηX(x) = ’x;
and since Θ is qne, if ’x ≥ t, then t ≥ ’y s.t. x < y.

To show that TΘ preserves qne requires a structural induction analogous to
the proof of lemma 2.4.8. �

Chapter 2 — Compositional Semantics for Term Rewriting Systems 86

2.5 Compositionality

In this section, we will justify our calling the semantics defined above “composi-
tional”. We will in chapter 3 elaborate on the fact that many structuring opera-
tions, such as the disjoint union, non-disjoint union, or push-out style parametri-
sation can be expressed as colimits; as a simple example one may take the disjoint
union of two term rewriting systems given by the coproduct.

One can either take this coproduct in the category of syntactic presentations
(here, term rewriting systems), or in the category of semantic representations
(here, monads). Then “compositionality of the semantics” means that the map-
ping from the syntax to the semantics should preserve the coproduct (or any other
colimit); for this, it is sufficient that the mapping is (or extends to) a left adjoint,
and this will be the main result of this section.

Of course, one also has to show that these colimits exist in both categories,
and this will be the scope of chapter 3. In fact, before we have not done so we
cannot fully claim that the semantics is compositional. The main result of this
section will nevertheless be an important step in that direction.

We first need to define the two categories in question. The category of semantic
representations is the category of strongly finitary monads on Pre, MonFin(Pre)
which is the subcategory of Mon(Pre) (see §1.3.6 on page 17) given by the
strongly finitary monads.

The category of syntactic presentations is given by term rewriting systems
and morphisms between them. A morphism between term rewriting systems is
given by a signature morphism σS and a mapping on the rewrite rules, which
maps every rule (X ` l → r) to one between the images of l and r under the
lifted signature morphism σ̂ (see definition 2.1.8).

Definition 2.5.1 (TRS Morphism and the Category TRS) Given two
term rewriting systems Θ = (Ω, R), Θ′ = (Σ, R′), a term rewriting system mor-
phism or TRS morphism σ : Θ → Θ′ between them is given by

• a signature morphism σS : Ω → Σ,

• and a map σR : R → R′ such that σR(X ` l → r) = (X ` s → t) with
s = σ̂S(l) and t = σ̂S(t).

The category TRS has term rewriting systems as objects, and TRS morphisms
as morphisms.

Chapter 2 — Compositional Semantics for Term Rewriting Systems 87

We can now extend the mapping of a term rewriting system Θ to TΘ to a
functor, and this functor will be left adjoint to the mapping of a term rewriting
system to its internal language from definition 2.3.10.

Definition 2.5.2 The functor F : TRS → MonFin(Pre) maps a term rewriting
system Θ to the monad TΘ, and a TRS morphism σ : Θ → Θ′ to its lifting, the
monad morphism σ̂ : TΘ ⇒ TΘ′, which is defined pointwise for a preorder X as
a preorder morphism σ̂X : TΘ(X) → TΘ′(X), given by the lifting of the signature
morphism σS from definition 2.1.8.

The functor U : MonFin(Pre) → TRS maps a finitary monad T to its internal
language L(T) (definition 2.3.10), and a monad morphism α : T ⇒ S to the TRS
morphism Uα : L(T) → L(S) which on the signatures is as in lemma 2.1.9, and
on rules

(Uα)R(X ` l → r) def= (X ` ÛαS(l) → ÛαS(r))

To show that this definition is correct, we have to show that σ̂ is a preorder
morphism, and that U(α) is a TRS morphism.

By structural induction, we can show that σ̂X is a preorder morphism, and
that it is natural in X. That it satisfies equations 1.3 and 1.4, making it a monad
morphism, follows from the fact that the lifting of σ on the object level satisfies
these equations.

To show that Uα is indeed a morphism of term rewriting systems, we have to
show that (Uα)R(X ` l → r) is a rewrite rule in the internal language of S, i.e.
(Uα)R(X ` l → r) ∈ R(S). Let X0 denote the set of objects of X; and note that
since εT0 is natural in T0 (equation 2.8), we have

αX
.εT0,X0 = εS0,X0

.α̂S (2.23)

With TX = (T0X0, ≥) and SX = (S0X0,<), then by definition (X ` l → r) ∈
R(T) iff εT0,X0(l) ≥ εT0,X0(r). Since αX is a preorder morphism, αX0εT0,X0(l) <
αX0εT0,X0(r), and by equation 2.23, εS0,X0(α̂S(l)) < εS0,X0(α̂S(r)), hence (X `
α̂S(l) → α̂S(r)) is in the internal language of S as required.

To show functoriality of F and U , we only need to show functoriality of the
object functions, as the underlying object functions are covered by §2.1.3. The
proof principles remain the same: structural induction for the functoriality of
F , and unfolding the definition for functoriality of U . The latter requires the
functoriality of U on the terms, and of F , to show that U maps the identity
morphism idT on a monad T to the identity TRS morphism on L(T): for idT,
Û idT(l) = 1̂Σ(T)(l) = 1TΣ(T)(l) = l (similarly for the composition). We can now
state the main proposition of this section:

Chapter 2 — Compositional Semantics for Term Rewriting Systems 88

Proposition 2.5.3 The two functors F and U form an adjunction F −−| U :
TRS → MonFin(Pre).

Proof. We show adjointness by constructing a unit υ : 1TRS → UF which is
universal from Θ to U .

Given a term rewriting system Θ = (Ω, R), the unit at Θ is a TRS morphism
υΘ : Θ → L(TΘ) defined as follows:

• On the signature, it is the unit of the adjunction from lemma 2.1.9:

υΘ,S
def= υΩ

• On the rules, it is defined as

υΘ,R(X ` l → r) def= (X ` υ̂Ω(l) → υ̂Ω(r))

This is a TRS morphism by the triangle laws of the adjunction from lemma 2.1.9:
these imply that εTΩ

.υ̂Ω(l) = l and εTΩ
.υ̂Ω(r) = r, hence (X ` υ̂Ω(l) → υ̂Ω(r)) ∈

R(TΘ).
We first have to show that ν is natural in Θ, i.e. for all σ : Θ → Θ′, we have

υΘ′ .σ = (UF (σ)).υΘ. On the signature part of υ, this follows from lemma 2.1.9;
on the rewrite rules, this means that for all (X ` l → r) ∈ R, UF (σ)(υΘ(X `
l → r)) = υΘ′(σ(X ` l → r)). The proof requires the naturality on the operations
and the functoriality of the lifting, and apart from that just follows by substituting
the definitions.

As the final step, we show the universality of υΘ from Θ to U : given a monad
S = 〈S, ζ, ξ〉 and a TRS morphism ν : Θ → L(S), there is a unique monad
morphism !ν : TΘ ⇒ S such that U !ν.υΘ = ν. This monad morphism is given by
a family of preorder morphisms !ν,X : TΘX → SX for every preorder X, which
are given by lemma 2.1.9.

We have to show that !ν,X is a preorder morphism, i.e. with SX = (S0X0,<),
for all s, t ∈ TΘ(X) such that s ≥ t, !ν,X(s) <!ν,X(t). This is rather unsurprisingly
shown by induction on the structure of the reduction. The base case relies on the
unit ζ of S being a preorder morphism, then ’x ≥ ’y implies ζ(x) < ζ(y), hence
!ν,X(’x) <!ν,X(’y). There are two induction steps, operations and instantiated
rules. For the first, let t = e(t1, . . . , tn) and s = e(s1, . . . , sn) and assume that
for i = 1, . . . , n, ti ≥ si (hence s ≥ t), and by induction assumption !ν(ti) <!ν(si).
By bijection 2.14 (on morphisms) [!ν(t1), . . . , !ν(tn)] < [!ν(s1), . . . , !ν(sn)], and
because S is a Pre-enriched functor, S[!ν(t1), . . . , !ν(tn)] < S[!ν(s1), . . . , !ν(sn)].

Chapter 2 — Compositional Semantics for Term Rewriting Systems 89

Since these are two morphisms, ordered pointwise, we have in particular for
e ∈ SX, S[!ν(t1), . . . , !ν(tn)](νe) < S[!ν(s1), . . . , !ν(sn)](νe), and since the mul-
tiplication ζ of S is a preorder morphism, we have ζ(S[!ν(t1), . . . , !ν(tn)](e)) <
ζ(S[!ν(s1), . . . , !ν(sn)](e)), hence !ν(t) <!ν(s) just as required.

For the other induction step, let (X ` l → r) ∈ R, and l[t1, . . . , tn] ≥
r[t1, . . . , tn], then !ν(l) <!ν(r), and by a similar argument !ν(l[t1, . . . , tn]) <
!ν(r[t1, . . . , tn]). �

Finally, note that the category of finitary monads over Pre is in general not
a Pre-category.10 Hence, the adjunction above is merely an ordinary adjunction,
not an enriched one.

2.6 Conclusions and Discussion

Summary

In this chapter, we have reviewed the well-known treatment of universal algebra
by finitary monads on the category Set of all sets. Based on the general theory
of enriched finitary monads, we have generalized this to term rewriting systems,
obtaining for a term rewriting system Θ a monad TΘ on the category Pre of all
preorders. This monad is enriched over Pre. The finite preorders play the rôle
of the natural numbers as arities for operations. Non-discrete finite preorders
lead to non-discrete arities, which lead us to the notion of variable rewrites and
generalized rewrite rules.

The monad on Pre models a particular aspect of term rewriting (namely,
many-step unnamed reductions), and it is feasible to find monads on other base
categories to model other aspects of term rewriting (as done in the appendix).

In the other direction, we have given the internal language L(T) of a monad
T as a term rewriting system, and we have shown that the mapping of a term
rewriting system Θ to the monad TΘ is left adjoint to this, making precise the
claim that the semantics is compositional.

Assessment

The main novelties of the categorical semantics presented in this chapter are the
following features:

• the construction of the semantics as a monad;
10 Put more generally, the monads over V do not form a V-category [39].

Chapter 2 — Compositional Semantics for Term Rewriting Systems 90

• the generalized rewrite rules and variable rewrites; and

• the freeness of the construction, exhibited by the adjunction in proposi-
tion 2.5.3.

The monad construction separates the process of constructing the theory of
a term rewriting system, given by the monad, from the choice of the structure
used to model reductions. Once the theory is constructed, we need not concern
ourselves with the more subtle intricacies of enriched category theory. We can
think of the term reduction algebra as a particular preorder, and the monad TΘ

just maps preorders to preorders; the additional enriched structure of the theory
construction just ensures that this mapping respects the reduction structure.11

When reasoning about this theory, we reason about preorders (or categories);
contrast this with [83, 73, 81, 64], where the reductions between terms are always
2-cells in a 2-category or a Sesqui-category.

The concept of generalised rewrite rules is particularly interesting in the con-
text of the disjoint union of term rewriting systems, since it alleviates the com-
plications usually associated with inner and outer reductions [42]. Because the
rewrites between variables specify exactly the rewrites which are possible for any
instantiation, the inner reduction cannot destroy redexes, and we have a one-step
completion property with respect to rewrites from one system; we will elaborate
on this in chapter 4.

The crucial insights here come from the theory of enriched monads: terms
are composed operations, contexts and arities are the same, and the arities of
operations are the finitely presentable objects of the base category. This leads
to the concept of a generalized rewrite rule: rewrite rules are the operations
which build the reduction structure, and their arity is the context. Using finitely
presentable preorders (or categories) as arities means that the contexts not only
contain variables, but reductions (variable rewrites) between them.

Generalized rewrite rules are interesting from another point of view: they show
how a gentle generalisation suggested by a semantic treatment can lead to a more
satisfying theory. Here, the theory construction would not be a left adjoint if we
would not allow generalized rewrite rules. Of course, one has to be careful that
these generalizations are conservative and do not change the meaning of previous
definitions.

11This is because we use the closed structure of Pre, which makes Pre itself Pre-category,
so instead of Pre-categories we can think in more familiar terms of preorders and preorder
morphisms.

Chapter 2 — Compositional Semantics for Term Rewriting Systems 91

The theory construction being left adjoint is crucial for the compositional-
ity of the semantics: we will in the following chapter see that many important
structuring operations can be expressed as colimits, which are preserved by a left
adjoint.

Possible Extensions

We do not cater for many-sorted signatures. This is more in order to maintain
a minimum of readability and understandability rather than because of technical
difficulties. Briefly, for a set A of sorts, a signature Σ = (A, Ω) is modelled by a
monad on the category SetA, and a term rewriting system to that signature by
a monad on PreA. All the above proofs and constructions still go through, but
have to be decorated with a sorts index S ∈ A; e.g. the term reduction algebra
TΘ(X) is now given by the product of all term reduction algebras TΘ,S(X) for
reductions of sorts S ∈ A. [69] gives this construction for many-sorted equational
presentations; the generalization to term rewriting systems based on the previous
chapter is straightforward.

It is also fairly straightforward to generalize our semantics to rewriting modulo
equations, given by Θ = (Ω, E, R) where E is a set of equations over the signature
Ω, and R is a set of rewrite rules. The theory construction proceeds as above,
only that the objects of our preorder would be equivalence classes of terms, not
terms. Of course, the resulting monad would not satisfy the properties we have
shown in section 2.4 (in particular, preservation of coequalizers and regularity),
so the results of the following chapters do not apply.

Extensions to conditional term rewriting or other variants of term rewriting
are not quite as straightforward and will be discussed in chapter 6.

Chapter 3

Structuring operations

Structuring operations are used to build large specifications or term rewriting
systems from small ones. One of the most basic structuring operations is the
disjoint union, which has been the focus of most research in the term rewriting
literature; more sophisticated ones can be found in [77, 12, 13, 79, 75]. As observed
by Goguen and Burstall [21, 6, 22], quite a lot of structuring operations can be
described by colimits, either in the category of syntactic presentations (here,
term rewriting systems), or in the category of semantic representations (here,
monads). Although colimits cannot express all structuring operations, they can
express those which can loosely be characterized by “shared or disjoint union and
quotienting”; and we posit that this class encompasses many of the important
structuring operations, such that a semantics preserving this class of operations
can justifiably be called compositional. Hence, we have to show that the mapping
from the syntax to the semantics preserves colimits, for which it is sufficient
that the mapping is (or extends to) a left adjoint. If we can then show that
both categories have colimits, we can reason about structured systems in terms
of colimits of their semantics; in our particular case, we can reason about the
disjoint union of term rewriting systems in terms of coproducts of monads. The
adjunction was shown in §2.5, so this chapter is devoted to showing the existence
of the colimits, in particular in the category of strongly finitary monads.

Any colimit can be constructed using coproducts and coequalizers (see propo-
sition 1.3.1), so we will investigate how to construct coproducts and coequalizers
of monads respectively. The main emphasis will be on the coproduct of two mo-
nads, since we will concentrate on this structuring operation in the following two
chapters, when we will investigate how confluence and strong normalization are
preserved under the coproduct.

92

Chapter 3 — Structuring operations 93

Structuring operations

In support of our claim that the class of structuring operations expressible by
colimits comprise many of the important ones we will now exhibit some well-
known structuring operations which can be expressed by colimits of particular
diagrams, and some which cannot.

Since signatures are maps from N to Set, and rewrite rules form sets, we can
give a näıve semantics to structuring operations on the syntactic presentations
in terms of the usual operations on sets; for example, it is clear how to form the
union of two signatures.1 The reader is invited to verify that the usual definition
indeed satisfies the required universal property of the colimit of the diagrams in
the following.

• Disjoint union. The disjoint union of two term rewriting systems Θ1,Θ2

is given by the coproduct Θ1 + Θ2.

• Non-disjoint union. Given two term rewriting systems Θ1 = (Ω1, R1)
and Θ2 = (Ω2, R2) which have a shared part Θ0 = (Ω0, R0), then the union
Θ1 +Θ0 Θ2 is described by the push-out of the inclusions:

(Ω0, R0) ⊂ - (Ω1, R1)

(Ω2, R2)
?

∩

- Θ1 +Θ0 Θ2

?

• Translation along a signature morphism. Given a term rewriting sys-
tem Θ = (Ω, R) and a signature morphism σ : Ω → Σ, the translation of
the rules along the signature morphism is given as (Σ, σ̂(R)). This can be
described by the following push-out:

(Ω, ∅)
(σ, 1)- (Σ, ∅)

(Ω, R)
?

∩

- .?

If σ is the inclusion of Ω into Σ, this describes the extension of the signature
Ω.

1For two signatures Ω,Σ, their union is given by (Ω + Σ)(n) def= Ω(n) + Σ(n).

Chapter 3 — Structuring operations 94

• Parameterization (I). Following the approach for parameterized specifi-
cations from CLEAR [6] and ACT ONE[12], a parameterized term rewriting
system is given by a pair (ΘP , Θ1) with an inclusion i : ΘP ↪→ Θ1. An in-
stantiation of the parameter ΘP is given by a system ΘA and a morphism
h : ΘP → ΘA, with the instantiated parameterized term rewriting system
given by the push-out of h and i.

There are other ways of modelling parameterized specifications, however;2 and
this leads us to examples of structuring operations which can not be modelled
with colimits:

• Parameterization (II). Following the approach of ASL and its successors
[79, 78], a parameterized term rewriting system is now given as ΘP = λX :
Σ.ΘB; then ΘP can be instantiated with any term rewriting system Ξ with
signature Σ, and the instantiation is defined as ΘP (Ξ) def= ΘB [Ξ/X].

• Hidden Operations and Reductions. A term rewriting system with
hidden operations (and rules) is given by a pair (Θ0, Θ1) where the oper-
ations and rules (and sorts, in the many-sorted case) Θ0 are considered to
be visible. This concept cannot be modelled with colimits because given a
monad T all operations and rewrite rules in the internal language L(T) are
visible.

• Observational and Behavioural Equivalence. In the context of alge-
braic specifications, this means that one restricts “observations” to a cer-
tain form, like terms from certain sorts [76]. Some specification languages
provide operations for the closure under observational or behavioural ab-
straction; this cannot be expressed in terms of colimits.

A Unified Treatment

As mentioned before, we will in the remainder of the thesis consider monads on
Cat, enriched over Cat as our semantic domain. The results we will obtain still
apply to the previous definitions and constructions by just regarding preorders as
categories with at most one morphism between any two objects.

2To be precise, there are different kinds of parameterization [74]: specifications of parame-
terized data types (like lists generic over the elements), and parameterized specifications (like
sets generic over the specification of the elements).

Chapter 3 — Structuring operations 95

Structure of this Chapter

The remainder of this chapter is structured as follows:

• In §3.1, we will give a detailed account of the pointwise construction of the
coproduct of two finitary monads, which will be the main section of this
chapter. Along with the initial object given by the identity monad, this
gives all finite products.

• The coproduct monad will map a category X to a category TX , given as
the colimit of a diagram DX . In §3.2 we will investigate the structure of
this colimit, along with a few other technical lemmas.

• We finish by briefly sketching the construction of the coequalizer of two
monads in §3.3, something more of an afterthought since it will not be
needed in the following.

3.1 The Coproduct of Two Strongly Finitary
Monads

Given two strongly finitary monads T1 = 〈T1, η1, µ1〉, T2 = 〈T2, η2, µ2〉 on Cat,
the coproduct monad T1+2 = 〈T, η, µ〉 is given by its universal property: there are
two monad morphisms ι1 : T1 → T1+2, ι2 : T2 → T1+2 (called the injections) such
that for any other monad S = 〈S, ηS , µS〉 with monad morphisms α : T1 → S,
β : T2 → S, there is a unique monad morphism [α, β] : T1+2 → S such that
α = [α, β].ι1 and β = [α, β].ι2.

In the following, we give a pointwise construction of the coproduct monad.
We define the action for each category X ∈ Cat, extend it to an endofunctor,
define unit and multiplication, show it satisfies the monad laws and show the
monad thus defined satisfies the universal property.

Unfortunately, it is unavoidable that the construction becomes rather techni-
cal at times. The essentials of the construction are contained in §3.1.1, whereas
§3.1.2 and §3.1.3 can be omitted by hurried readers (or those disinclined to in-
dulge in technicalities) prepared to accept that the construction indeed gives rise
to the coproduct monad (proposition 3.1.9 being the result of all the technical
work).

Chapter 3 — Structuring operations 96

3.1.1 The Coproduct Monad as a Pointwise Colimit

Principal Subterms and Layers

The definition of the action as given below is not immediately obvious, so we will
first give a motivation of its construction. For an accessible example, consider
two monads on the category Set given by signatures Ω1, Ω2. Then the coproduct
of TΩ1 and TΩ2 should map a set X to the set of all terms built from operations
of Ω1 + Ω2. Terms from TΩ1+Ω2(X) can be decomposed into layers of terms from
TΩ1(X) and TΩ2(X) (aliens or principal subterms); we here give the definition
from [42], slightly paraphrased:

For any signature Ω, a context is an element of TΩ]{�}(X), where �
is a “fresh” constant called a hole. For any context C ∈ TΩ]{�}(X)
with n holes, and terms t1, . . . , tn ∈ TΩ(X), C[t1, . . . , tn] denotes the
result of replacing from left to right the holes in C by t1, . . . , tn.

The root symbol of a term t ∈ TΩ1+Ω2 (X) is defined as

root(t) def=
{

f if t = f(t1, . . . , tn)
x if t = ’x

Let t = C[t1, . . . , tn] with C 6= �, then we write t = C[[t1, . . . , tn]] if
C ∈ TΩi]{�}(X) and root(t1), . . . , root(tn) ∈ Ωj for i, j ∈ {1, 2} and
i 6= j. t1, . . . , tn are principal subterms or aliens. The rank of a term
t ∈ TΩ1+Ω2 (X) is defined as

rank(t) def=
{

1 if t ∈ TΩ1(X)] TΩ2(X)
1 + max{rank(ti) | 1 ≤ i ≤ n} if t = C[[t1, . . . , tn]], n ≥ 1

In our approach we forego the introduction of holes and principal subterms, and
take the notion of a layer as primitive insofar as every application of the action
T1 or T2 corresponds to one layer; i.e. it takes t1, . . . , tn to C[[t1, . . . , tn]]. This
is because we can build term algebras on top of term algebras; for example,
the elements of TΩ1(TΩ2(X)) correspond (roughly) to terms of rank two in the
above definition. However, in term algebras like TΩ2(TΩ1(TΩ2(X))) we will have
terms from TΩ2(X) treated as variables in TΩ1(X) inserted into terms of TΩ2(X),
which should be equivalent to a term from TΩ2(X); for example, if F ∈ Ω2, then
F(’’F(’x)) and F(F(’x)) describe the same term. This identification is called
“collapsing layers”.

Hence, the coproduct should be the disjoint union of all the term algebras

TΩ1+Ω2(X) def= X + TΩ1(X) + TΩ2(X)+
TΩ1(TΩ2(X)) + TΩ2(TΩ1(X))+
TΩ1(TΩ2(TΩ1(X))) + TΩ2(TΩ1(TΩ2(X))) + . . .

Chapter 3 — Structuring operations 97

quotiented by a suitable equivalence relation, which will be affected by the unit
and the multiplication: the unit identifies all the variables from X in the different
term algebras, and the multiplication collapses layers as described above. We
arrive at a definition of the action T as the colimit of a diagram which has all the
combinations of T1 and T2 as objects, and all morphisms which can be formed
using the unit and multiplication of the two monads as morphisms.

The diagram in question will be weakly ω-filtered in the sense of defini-
tion 1.3.5. We will restrict ourselves to strongly finitary monads (the ones pre-
serving diagrams of this kind), since they are the ones of interest and for them
the construction simplifies considerably.

The Action of the Coproduct

In the following, we use the alphabet L def= {1, 2}, and let W
def= L∗ be the words

over that alphabet. We further assume that both monads T1 and T2 are strongly
finitary.

The diagram DX is defined by defining a graph G, and a graph morphims
dX : G → U(Cat). Then DX : F(G) → Cat is the transpose of dX under the
adjunction between Grph and Cat (see page 37). The graph G is defined as
follows:

Vertices: V (G) def= W

Edges: E(G) def= {ew
j,v : wv → wjv | w, v ∈ W, j ∈ L} ∪

{mw
j,v : wjjv → wjv | w, v ∈ W, j ∈ L}

The graph morphism dX : G → U(Cat) is defined as

On the vertices: dX (w) def= T w(X)
On the edges: dX (ew

j,v)
def= T w(ηj,T v(X))

dX (mw
j,v)

def= T w(µj,T v(X))

where for all w ∈ W , the functor T w : Cat → Cat is defined as follows:

T ε def= 1Cat

T jw def= TjT
w

In the following, we will write ηw
j,v for T w(ηj,T v(X)) and µw

j,v for T w(µj,T v(X)): and
we further drop the empty word from super- and subscripts, so e.g. µ1,21 = µε

1,21.
The object function of the endofunctor T will map X to the colimit of DX in

Cat. For a functor F : X → Y (i.e. a morphism in Cat), precomposition with F

of the cone over DY given by the colimit TY = colim DY gives a cone over DX ,
since the following two diagrams commute for all w, v ∈ W, j ∈ L by naturality of

Chapter 3 — Structuring operations 98

ηj and µj , respectively, preserved by applying T v and hence induces a morphism
!F : colim DX → colim DY .

T vwX
ηv

j,w

- T vjwX

T vwY

T vwf

? ηv
j,w - T vjwY

T vjwf

?

T vjjwX
µv

j,w

- T vjwX

T vjjwY

T vjjwf

? µv
j,w - T vjwY

T vjwf

?

(3.1)

Definition 3.1.1 The endofunctor T : Cat → Cat is defined as follows:

On objects: T (X) def= colim DX
On morphisms: T (F : X → Y) def= !F : colim DX → colim DY

In fact, we are working in an enriched setting here, so T should be a monad
enriched over Cat. We have elided the necessary definitions to make T into a 2-
monad on the 2-category Cat, not because this is unnecessary but in order to keep
the categorical details at a manageable level. We will consider the consequences
of the enrichment in detail in §3.1.4.

Before we define the unit and the multiplication of the monad, we need to
show that F(G) is a weakly ω-filtered category (see definition 1.3.5 on page 23),
and hence T1 and T2 preserve the colimit of DX . First, observe that if d : v → w

(v, w ∈ W) is a morphism in F(G), there are also morphisms d′ : uv → uw for all
u ∈ W . Further, F(G) is pointed: for all w ∈ W , there is a morphism p : ε → w,
constructed by induction on w. For w = ε, voilà; for w = jw′ (j ∈ L, w′ ∈ W),
let there be p′ : ε → w′; then there is ej,w′ : w′ → jw′ hence p

def= ejw′
.p′. (Note

that this morphism is of course not unique.) We can now show that:

Lemma 3.1.2 F(G) is a weakly ω-filtered category.

Proof. We first show that F(G) is weakly filtered (definition 1.3.2: given v, w ∈ W ,
there is u ∈ W such that there are morphisms p : v → u, q : w → u. This is
shown by induction on v and w. If v = ε, then by pointedness of F(G), there is
p : ε → w, hence u

def= w, and the same applies if w = ε. Now let w = jw′ and
v = iv′ (with i, j ∈ L, and w′, v′ ∈ W , and assume that there is u′ ∈ W such that
there are p′ : v′ → u′, q′ : w′ → u′. Now there are two cases: i = j, or i 6= j. For
the first case, let u

def= iu′, and then there are p : iw → iu and q : iv → iu. For the
second case, let u

def= iju′; then there are p′′ : iv′ → iu′ and q′′ : jw′ → ju′, so let
p

def= ei
j,u′

.p′′ and q
def= ei,ju′

.q′′ (and again, u is not unique).
To show weakly ω-filteredness, it remains to be shown that:

Chapter 3 — Structuring operations 99

(i) for all v ∈ W , there at most countably infinitely many u ∈ W such
that there is p : u → v. This is the case since there are only countably
infinitely many objects words in W .

(ii) for all u, v ∈ W , the hom-set F(G)(u, v) is at most countably infinite.
This is the case since it is generated from a finite set of edges.

�

Note that F(G) is not directed or filtered, because there are morphisms with
the same source and target which cannot be coequalized by any other morphism
in F(G). For example, there is no morphism d : T 121X → T vX which when
composed with the following two morphisms makes to the two compositions equal:

T 21X

T 1X
η2,1 -

T 121X

η1,21
-

T 12X η12
1

-

η1
2
-

3.1.2 Unit, Multiplication and the Monad Laws

Having defined the action of the monad, it remains to define unit and multipli-
cation and show that they satisfy the monad laws.

The Unit and Multiplication of the Coproduct

Recall that the colimit of a functor D : J → C is given by an object C ∈ C
together with a cone c : D ⇒ ∆C, which is universal amongst these cones, i.e.
given any other cone m : D ⇒ ∆X, there is a unique morphism !m : C → X,
such that m = ∆!m.c (see page 14). This means that defining a morphism
F : colim DX → Y out of the colimit amounts to giving a cone ν : DX ⇒ ∆Y,
given by a family of functors νw : T wX → Y for all w ∈ W which commute
with the morphisms in DX . In the following, let cX : DX ⇒ ∆(colim DX) be the
colimiting cone over DX , with components functors cX ,w : T wX → colim DX ; we
will usually omit the index category X when it is clear from the context. The
unit is defined as the component of the colimiting cone for the empty word ε:

Definition 3.1.3 The natural transformation η : 1Cat ⇒ T is given by

ηX
def= cX ,ε

The multiplication uses the fact that the two monads are strongly finitary. To
define it, we need to give a morphism µX : TTX → TX . Since TTX = colimDTX ,

Chapter 3 — Structuring operations 100

this morphism is given by a cone ν : DTX → TX , that is for all w ∈ W , a
morphism νw : T wTX → TX . T w preserves weakly ω-filtered colimits, hence
T wTX = T wcolim DTX ∼= colim T wDX , and the morphism out of this colimit is
given by another cone νw,v : T wT vX → TX for all v ∈ W defined as follows:

Definition 3.1.4 The multiplication µX : TTX → TX is given by the cone
νw,v : T wT vX → TX which for all w, v ∈ W is defined as

νw,v
def= cwv

Naturality of the unit and multiplication follow from the fact that all compo-
nents of the diagram DX are natural transformations (diagrams 3.1). So given a
functor F : X → Y, diagram 3.2 commutes for any morphism pw,X : X → T wX

X
pw,X - T w

X

Y

F

? pw,Y - T w
Y

T wF

?

(3.2)

in the diagram, making η natural in X .
We now have to show that the unit and multiplication as defined satisfy the

monad laws, and that the monad thus defined has the universal property.

The Monad Laws

Lemma 3.1.5 For η and µ, the monad laws hold:

µX ηTX = 1TX (3.3)

µXTηX = 1TX (3.4)

µXµTX = µXTµX (3.5)

Proof. We show each of these in turn.
To show equation 3.3, we have to show that the cone inducing the composite

µXηTX is the same as the colimiting cone c.
The morphism ηTX : TX → TTX = cTX is given by a cone ζ : DX ⇒ TTX ,

defined as ζw
def= cw,TX .T w(ηX):

T wX T w(ηX)- T wTX
cw,TX - TTX

Since µ is the morphism induced by the cone cuw : T uT wX → TX , we have
to show that for all morphisms d : X → T wX in DX , cuwT ud = cu. In other

Chapter 3 — Structuring operations 101

words, commutativity of the diagram on the left is shown by commutativity of
the diagram on the right:

TX

TTX

ηTX
-

TX

1X

? µX�

T uX

T uT wX

T ud
-

TX

cu

? cuw�

The commutativity of the diagram on the right follows from the fact that if d is
a morphism in DX so is T ud, and c is a cone over DX .

To show equation 3.4, TηX is defined as the unique morphism making the
following diagram commute

X cX - TX

TX

ηX

? cTX- TTX

TηX

?

.................

By definition ηX = cX , so TηX = cTX = ηTX , and then equation 3.4 reduces to
equation 3.3.

For the associativity (equation 3.5), consider

T uT vT wX T ucvw- T uTX

TT vT wX

cu,T vTwX

?

Tcvw

- TTX

cu,TX

?

Tcvw is the unique morphism on the bottom making this square commute. cvw

induces µ, hence the composition along the bottom and the left side induces Tµ;
and the composition along the right side and the top induces µT . Hence, µT = Tµ

and µ.µT = µ.Tµ. �

3.1.3 The Universal Property

We now have to show that the monad defined in the previous section satisfies the
universal property which makes it the coproduct in the category of monads. We
will first define the injections into the coproduct, and given another monad with
two monad morphisms, construct the universal morphism out of the coproduct
which commutes with the injections.

Chapter 3 — Structuring operations 102

The Injections

Definition 3.1.6 The natural transformations ι1 : T1 ⇒ T , ι2 : T2 ⇒ T are
defined by

ι1,X
def= c1 : T1X → TX

ι2,X
def= c2 : T2X → TX

Lemma 3.1.7 ι1, ι2 are monad morphisms.

Proof. We have to show that both satisfy equations 1.3 and 1.4.
The first equation holds because η1,X is a morphism in the diagram DX , and

c a cone over it: η1,X .ι1,X = c1.η1,X = cε = ηX .
For the second equation, consider diagram 3.6, where the upper right triangle

commutes since µ1 is a morphism in DX , and the lower left triangle by definition
of µ. �

T1T1
µ1 - T1

T1TX

T1c1

?

TTX

c1,TX

? µ - TX

c1

?

c11

-

(3.6)

The Universal Property

Lemma 3.1.8 Given a monad S = 〈S, ζ, ξ〉 and two monad morphisms α : T1 ⇒
S, β : T2 ⇒ S, there is a unique monad morphism u : T ⇒ S such that u.ι = α

and u.ι2 = β

Proof. The proof will proceed as follows: we will construct a cone ν : DX ⇒ ∆SX
over the diagram DX which will induce a morphism uX : TX → SX . We will
then show these morphisms form a natural transformation u : T ⇒ S, and that
this natural transformation is a monad morphism. Finally, we show it satisfies
u.ι1 = α and u.ι2 = β.

The definition of the cone ν for an object X ∈ Cat is inductive over w ∈ W .
For w = ε, define νε

def= ζX ; for w = 1v (with v ∈ W), define νT 1v = νT1T v as the

Chapter 3 — Structuring operations 103

composition of diagram 3.7 where square (∗) commutes by naturality of α, and

T1T
vX T1νv- T1SX

(∗)

ST vX

αT vX

?

Sνv

- SSX

αSX

? ξX - SX

(3.7)

for w = 2v correspondingly with β in place of α. Note that for w = 1, we have
(by the above definition with νε = ζ) ν1 = ξX .SζX .αX = αX (by the unit law for
S).

To show that ν is a cone, we have to show that for all morphisms d : T vX →
T wX in DX , we have

T vX
d - T wX

SX

νw
�

νv

-

Since all morphisms in DX are either of the form ηr
i,s or µw

j,v, or sequences of these,
it is sufficient to show that for all w ∈ W the following two hold

νw = ν1w
.η1,w (3.8)

ν11w = ν1w
.µ1,w (3.9)

and application of T1 and T2 preserve these: given an arrow f : T wX → T vX in
DX such that νw = νv

.f , with j ∈ L, the following holds:

νjw = νjv
.Tjf (3.10)

Chapter 3 — Structuring operations 104

We prove the three equations in turn. For equation 3.8, consider diagram 3.11.

T wX
η1,w - T1T

wX

SX

νw

? η1,SX - T1SX

T1νw

?

SSX

αSX

?

ζSX

-

SX

ξX

?

==========================

(3.11)

The square commutes by naturality of η1, the upper of the two triangles by α

being a monad morphism and the lower is the unit law for S. The composition
of the arrows on the right is by definition ν1w, hence the equation holds.

For equation 3.9, consider diagram 3.12. where square (1) commutes because α

T1T1T
wX

µ1,w - T1T
wX

(1)

ST1T
wX

αT1TwX

? SαTwX - SST wX ξTw - ST wX

αT1TwX

?

(2) (3)

SSX

Sν1w

?
�

SξX
SSSX

SSνw

?

ξSX
- SSX

Sνw

?

(4)

SX

ξX
�

ξX
-

(3.12)

is a monad morphism, (2) by applying S to the definition of ν1w, (3) by naturality
of ξ and (4) is the associativity law of S. Then ν11w is the composition of the arrows
on the left side of the diagram, and ν1w is the composition of the arrows on the
right side of the diagram, hence equation 3.9 holds.

Chapter 3 — Structuring operations 105

To show equation 3.10. assume we have f : T w → T vX in DX such that
νw = νv

.f , ν1w = ν1v
.T1f . Applying T1 to this we obtain the upper triangle

in diagram 3.13, where the outer two triangles are the definition of ν1w and ν1v

T1T
wX T1f - T1T

vY

T1SX

T1νv

�

T1νw

-

SSX

αSX

?

SX

ξX

?

ν1v

�

ν1w

-

(3.13)

respectively. Hence equation 3.10 holds as well.
This shows that ν as defined forms a cone ν : DX ⇒ ∆SX over DX , and

hence there is a unique morphism uX : TX → SX such that uX .c = ν. To be
precise, we have to index the cone ν with the category X as well (we have not
done so above to avoid unnecessarily cluttered notation), since there will be one
cone νX for every category X .

To show that the induced morphism uX : TX → SX is natural, we have to
show that given a morphism f : X → Y, the two cones νX , νY over the diagrams
DX and DY are natural in the sense that for all u ∈ W , we have to show that
diagram 3.14 commutes. This proceeds by expanding the definitions of νX ,u and

TuX
T uf- T uY

SX

νX ,u

? Sf - SY

νY,u

?

(3.14)

νY,u in diagram 3.14, and using the fact that all of the components (α, ξ and ζ

for w = ε) are components of natural transformations.

We now show that the natural transformation u : T ⇒ S is a monad mor-
phism, i.e. satisfies equations 1.3 and 1.4. For equation 1.3, we have to show that

Chapter 3 — Structuring operations 106

for all morphisms d : X → T uX in DX , we have νu
.d = ζX . This follows from the

fact that ζX = νε, and the fact that ν is a cone over DX .
For equation 1.4, we have to show that for all u, v ∈ W , diagram 3.15 com-

mutes. In order to do so, we use uX .cuv = νuv and proceed by induction over u.

T uT vX cuv - TX

T uSX

T uνX ,v

�
ST vX

νT vX ,u -

SSX
ξ

-

SνX ,v

�
νSX ,u

-

SX

uX

?

(3.15)

For u = ε, using the unit law of S and the definition of νε = ζX , the diagram
simplifies to diagram 3.16. For the induction step, assume that diagram 3.15

T vX

SX

νv

?

SSX

ζSX

?

ξX
- SX

νv

-1SX

=================

(3.16)

commutes for u, v ∈ W , and than show it commutes for w = 1u (similarly, of

Chapter 3 — Structuring operations 107

course for w = 2u). Consider diagram 3.17, where square (1) is T1 applied to

T1T
uT vX ===================================== T1T

uT vX

T1T
uSX

T1T uνX ,v

?
(1) (4)

T1SSX
T1ξX -

T1νSX ,u

-

T1SX

T1νX ,uv

-

(2) (3)

SSSX

αSSX

?

SξX
- SSX

αSX

?

(5)

SSX

νSX ,1u

?

ξSX
-

ξSX

�
SX

νX ,1uv

?

ξX

-

(3.17)

the induction assumption (using T 1u = T1T u), square (2) and (4) the respective
definitions of ν1u,SX and ν1uv (with νSX ,1 = αSX), square (3) the naturality of
α and (5) the associativity of ξ. This concludes the proof that u is a monad
morphism.

Finally, we have to show that u.ι1 = α. Since ι1,X = c1,X and α = ν1, this
reduces to u.c1 = ν1. (And similarly for u.ι2 = β.) �

Proposition 3.1.9 Given two monads T1 = 〈T1, η1, µ1〉, T2 = 〈T2, η2, µ2〉, their
coproduct is the monad T1+2

def= 〈T, η, µ〉 with the action, unit and multiplication
defined in definitions 3.1.1, 3.1.3 and 3.1.4 respectively.

Proof. In lemma 3.1.5, T1+2 has been shown to be a monad, and in lemma 3.1.8
the universal property of the coproduct has been shown. �

With the initial object in MonFin(Cat) given by the identity monad IdCat

(see §1.3.6 on page 17), we have the following corollary:

Corollary 3.1.10 The category MonFin(Cat) has all finite coproducts.

Chapter 3 — Structuring operations 108

3.1.4 Consequences of the Enrichment

!
Categories We have presented a construction of the coproduct of two monads on
the category Cat, throughout which we have neglected the enrichment– the 2-
categorical properties. It should be stressed that this has been done in order
to simplify the presentation, not because one can disregard the enrichment—
in fact, the appropriate handling of the enrichment is the cornerstone of the
theory developed in this thesis. We will now consider the various issues arising
as consequences of the enriched setting.

Recall from §1.4.6 on page 33 that enriched categories in general have indexed
limits; but since Cat has a terminal object which is the unit of the monoidal
structure, one obtains the usual limits (and colimits) as a special case— so it
makes indeed sense to define the diagram DX as we have done. However, “every-
thing is 2-everything”, or slightly more precise, the monads T1, T2 are 2-monads,
T1+2 has to be made into one, and all natural transformations are 2-natural trans-
formations. Fortunately, MonFin(Cat) is itself not a 2-category, so there is no
corresponding universal property on the 2-cells (i.e. modifications between monad
morphisms), which would mean all diagrams of §3.1.3 would have to bear 2-cells.

T vwX
ηv

j,w

- T vjwX

T vwY

T vwF

?

T vwα⇒ T vwG

? ηv
j,w - T vjwY

T vjwF

?

T vjwα⇒ T vjwG

?

(3.18)

T vjjwX
µv

j,w

- T vjwX

T vjjwY

T vjjwF

?

T vjjwα⇒ T vjjwG

? µv
j,w - T vjwY

T vjwF

?

T vjwα⇒ T vjwG

?

(3.19)

First, we can take the colimit of the ordinary (Set-enriched) functor DX :
F(G) → Cat in the Set-enriched category of all small categories as we have
done; and this will be a colimit in the 2-category of all small 2-categories as well,
since the diagram DX considered as a 2-category only has identity 2-cells.3

We can now define the action T on 2-cells: for a natural transformation α :
F ⇒ G, precomposition with α induces a modification between the two cones

3Similarly, the coproduct of two categories in Cat as an ordinary category enjoys the 2-
colimiting properties in Cat as a 2-category as well.

Chapter 3 — Structuring operations 109

given by F and G respectively; that this is a modification follows from the 2-
naturality of η1, η2 and µ1, µ2. We can replace the morphism F by a 2-cell α :
F ⇒ G in diagrams 3.1, giving diagrams 3.18 and 3.19. Hence there is a unique
a 2-cell !α :!F ⇒!G, which is the action of T on 2-cells.

That η and µ are 2-natural follows from the 2-naturality of the components of
DX , just like naturality of η and µ follows from the naturality of the components.

3.1.5 An Alternative Construction

The previous construction does have some drawbacks: it is rather involved, and it
does not generalize easily to finitary (as opposed to strongly finitary) monads. A
more general construction does seem desirable, and a simple, elegant construction
suggesting itself would be to take the coproduct as the free monad on the functor
Q : Cat → Cat, which maps a category X to the following push-out in Cat:

X η1 - T1X

T2X

η2

?
- QX

?

where the free monad FT on a finitary endofunctor T : C → C is given inductively
by (see [35, 39])

Sn+1(d) def= d + TSn(d) S0(d) def= d FT
def= colim

n<ω
Sn

However, this simple approach does not take the multiplications into account,
and hence the injections ι1, ι2 would not be monad morphisms, since equation 1.4
does not hold. A more sophisticated approach is to consider monads in turns
as algebras, constructing the coproduct as a colimit of algebras (see §6.2.2 on
page 170).

3.2 Deciding the Equality

In this section, we will investigate the structure of the category TX . TX is the
colimit of the diagram DX in Cat, and by proposition 1.3.1, a colimit can be
expressed as a coequalizer. We know how to construct coequalizers in Cat, so we
just need to decode all this information.

The colimiting object colimDX is a category, which has as objects equivalence
classes of objects from

∐
w∈W T wX ; we will call these composed terms. We will

Chapter 3 — Structuring operations 110

give a reduction system which reduces any composed term to a unique normal
form, hence deciding the equivalence. The morphisms of colimDX are equivalence
classes of paths <α1, . . . , αn> of morphisms αi from

∐
w∈W T wX , and we will

consider normal forms and a similar reduction system for the morphisms as well.
However, we will not give a decision procedure for the equality on morphisms,
since we are not really concerned with equality of the paths, as it turns out that
the more relevant characteristic of paths is their length.

In the subsequent chapters, when studying modularity, these normal forms will
play a pivotal rôle; essentially, to see if a property P is modular, one investigates
if P is preserved in passing from a term to its normal form, and if P is preserved
when combining two normal forms.

In the rest of this section we will assume that the monads T1, T2 are regular
(see definition 2.4.3 on page 79), without explicitly requiring it every time.

3.2.1 The Coequalizer

We will now give an explicit construction of the action TX of the coproduct
monad. By proposition 1.3.1, the colimit of DX is given by the coequalizer of

∐
d:u→v in F(G)

T uX
F -

G
-
∐

w∈W

T wX (3.20)

diagram 3.20, where on the left side, we have for any morphism d : T uX → T vX
in DX (with u, v ∈ W) the component T uX of the coproduct, and the two functors
F and G are defined as F (T uX) def= ιu(T uX) and G(T uX) def= ιv(d(T uX)) where ιu

and ιv are the injections into the coproduct on the right.
Let us spell this out in more detail, according to the construction given in

§1.5.3 on page 44. The set of objects of TX is the set of objects in
∐

w∈W T wX ,
quotiented by the equivalence closure ≡O of the relation ∼ given by

x ∼ ηw
j,v(x) (3.21)

x ∼ µu
i,t(x) (3.22)

for all i, j ∈ L and t, u, v, w ∈ W . We will give a normal form by orienting these
equations and obtain a reduction system which we will then show to be complete.
Intuitively, given any composed term t, we will collapse as many layers in t as
we possibly can, and remove all quotes we can remove. For example, consider
the two signatures Ω1 = {K1}, Ω2 = {L1}. The normal form for the composed

Chapter 3 — Structuring operations 111

term K(’K(’x)) ∈ T 11X will be K(K(’x)), for ’’x ∈ T 12X it will be x and for
’L(’’K(’x)) ∈ T 1221X it will be L(’K(’x)).4

The morphisms are equivalence classes of paths <α1, . . . , αn> where αi : xi →
yi in T wX for w ∈ W , and yi ≡O xi+1. The paths are quotiented by the path
congruence ≡M generated by the relation ∼ given by

<α, β> ∼ <β.α> if α, β composable (3.23)

<α> ∼ <ηw
j,v(α)> (3.24)

<α> ∼ <µr
i,s(α)> (3.25)

By applying the same reduction system as for the objects, we are able to give a
normal for paths <α> of length one. For longer paths, we develop the notion of a
path of minimal length.

3.2.2 Normal Forms for Objects

The normal form sketched above corresponds to orienting equation 3.21 right-to-
left, and equation 3.22 left-to-right.

Definition 3.2.1 (The Reduction System →Ob) We define following reduc-
tion systems on the objects of

∐
w∈W T wX :

→µ
def= {x →µ µu

j,v(x) | u, v ∈ W, j ∈ L, x ∈ T ujjvX}
→η

def= {ηu
j,v(x) →η x | u, v ∈ W, j ∈ L, x ∈ T uvX}

→Ob
def= →η ∪ →µ

We now show that �Ob, the transitive-reflexive closure of →Ob, is complete,
and hence obtain a decision procedure for the associated equality. We first tackle
confluence. We show that →Ob is confluent by showing that the two component
systems →µ and →η are confluent, and that they commute. This will be the
scope of the following three lemmas.

These lemmas will make heavy use of the algebra of words over L, and in
particular the notation, definitions and lemmas of §1.7. We typically have two
decompositions w = rst and w = xyz of a word w ∈ W , and a case distinction:
if s and y are independent, then we can apply the naturality of the either µ or
η (and for the latter, we additionally need regularity of η); and if they are not
independent, we use

4Note that we have to state which component of the coproduct a composed term comes from,
since the terms from different components may look the same and yet have different normal
forms. For example, there are terms K(’’x) ∈ T 12X and K(’’x) ∈ T 11X ; and the former is in
normal form, whereas the normal form for the second is K(’x).

Chapter 3 — Structuring operations 112

• the fact that the unit is monic for confluence of →η,

• the associativity of the multiplication for confluence of →µ, and

• the unit law of the monad for the commutativity of �η and �µ.

Lemma 3.2.2 →η is confluent.

Proof. We have to show that given two morphisms ηw
j,v, η

r
i,s in DX such that

wjv = ris, and given y1 ∈ T wvX , y2 ∈ T rsX such that ηw
j,v(y1) = ηr

i,s(y2), there is
u ∈ W, x ∈ T uX , and w′, v′, r′, s′ such that ηw′

i,v′(x) = y1, ηr′
i,s′(x) = y2. There are

two cases here: if i and j are overlapping, then i = j, w = v and r = s, and we
can use monicness of η.

If i and j are independent, then there is u ∈ W such that w0 = wjuis or
w0 = riujv (with w0

def= wjv). Suppose the former. By regularity of ηj (T w

T jusX �ηj,us
T usX

T juisX

ηju
i,s

?
�ηj,uis

T uisX

ηu
i,s

?

(3.26)

applied to the naturality square 3.26), there is x0 ∈ T wus such that ηw
j,us(x0) = y1,

and ηwu
i,s (x0) = y2. Hence, y1 →η x0 and y2 →η x0 as required. �

Lemma 3.2.3 →µ is confluent.

Proof. Here, we have to show that given µw
i,v, µr

j,s such that wiiv = rjjs, then
either w = r, i = j, v = s, or there are w′, v′, r′, s′ ∈ W such that

µw′
j,v′

.µw
i,v = µr′

i,s′
.µr

j,s (3.27)

Let w0
def= wiiv = rjjs. Again, we have two cases:

If ii and jj are independent, there is u ∈ W such that w0 = wiiujjs or
w0 = rjjuiiv. Assume the former, then we have w′

def= wiu, v′
def= s, r′

def= w and
s′

def= ujs. To obtain equation 3.27, apply T w to the following naturality square of
µi (where ujjs = v and wiiu = r):

T iiujjsX
µi,ujjs- T iujjsX

T iiujsX

T iiu(µj,s)

?

µi,ujs

- T iujsX

T iu(µi,s)

?

Chapter 3 — Structuring operations 113

If w0 = rjjuiiv, then there is a similar naturality square for µj .
If ii and jj are not independent, but (by lemma 1.7.3) overlapping, then i = j;

and either w = r and r = s; or w0 = wiiit or w0 = riiiv. For the former, let
w′

def= w, v′
def= s, r′

def= w and t′
def= t, and apply T w to the associativity law to show

equation 3.27:

T iiitX
µi,T itX- T iitX

T iitX

Tiµi,T tX

?

µi,T tX
- T itX

µi,T tX

?

�

Lemma 3.2.4 �η and �µ commute.

Proof. We in fact show something stronger: �η and �µ subcommute (see §1.6.2
on page 46), i.e. given two morphisms e = ηw

j,v, m = µs
i,t in DX such that wjv = siit

(i.e. the target of e is the source of f), then there are either e′ = ηw′
j,v′ , m

′ = µs′
i,t′

s.t. m.e = e′.m′, or m.e = 1wv.
Let w0

def= wjv = siit. If j and ii are independent (as defined in lemma 1.7.2),
then there is a naturality square similar to the one in the proof of lemma 3.2.3.

If j and ii are not independent, by lemma 1.7.3 they are overlapping, hence
i = j and either w = s and v = it, or s = iw and v = t. Then apply T s to the
unit laws (the left side for the first case, the second case for the second case)

T itX
ηi,T itX - T iitX �Ti(ηi,T tX)

T itX

T ivX

µi,T tX

? ===
===

===
===

===
=================

�

We can now show that�Ob, the transitive-reflexive closure of →Ob, is complete
and hence obtain a decision procedure for the associated equality. To do this, we
define the rank of a term t ∈ T wX as rank(t) def= |w| (where |w| is the length of
the word w).

Lemma 3.2.5 �Ob is complete.

Chapter 3 — Structuring operations 114

Proof. First, �Ob is confluent by the Hindley-Rosen lemma 1.6.3, since →η and
→µ are confluent, and �η and �µ commute, by the three lemmas just shown.

To show termination of �Ob, and hence completeness, note that in all rules
of l →Ob r, the rank of l is strictly greater than that of r and hence there can be
no infinite reduction x1 →Ob x2 →Ob x3 �

Since �Ob is complete, every object in t ∈
∐

w∈W T wX reduces to a unique
normal form which we denote NF(t). This forms a decision procedure for the
equivalence of the objects:

Lemma 3.2.6 Given t, t′ ∈
∐

w∈W T wX , Qt = Qt′ iff NF(t) = NF(t′).

Proof. NF(t) = NF(t′) iff t and t′ are related is the equational theory on∐
w∈W T wX generated by �Ob. This theory is clearly the same as that induced

by equations 3.21 and 3.22. �

3.2.3 Normal Forms for Morphisms

We now consider morphisms in the coequalizer of diagram 3.20. On the objects,
the reduction system �Ob gives us a normal form deciding the equivalence gen-
erated by diagram 3.20. It was obtained by orienting equations 3.21 and 3.22.
Unfortunately, we can’t do the same with equations 3.23, 3.24 and 3.25. Ob-
viously, to obtain a strongly normalizing system we would have to orient 3.23
left-to-right, obtaining a reduction system �Comp on the paths. This system is
confluent (by associativity of the composition), but it fails to commute with �η

(the system generated by equation 3.24, see 3.2.7 below), as the following exam-
ples shows. Let the monad T1 be given by a unary operation F, and the monad
T2 by a unary operation G and rules

R2 = {G(’y) → ’y}

and let α be the rewrite F(’G(’x)) → F(’’x) in T 12X , and β : x → y be in
X . Then there is the path <α, ’’β>, which reduces by �Comp to <’’β.α>, and by
�η to <α, ’β>; this span cannot be completed. This doesn’t mean that one can’t
find a complete reduction system to produce normal forms for the paths; it just
means that the straightforward approach does not work. Since we do not need
to effectively decide the equality on morphisms anyway, but are more interested
in the length of these paths (in order to deal with strong normalisation), we will
develop the notion of a path of minimal length: a path such that no equivalent
path is shorter.

Chapter 3 — Structuring operations 115

We will approach the problem as follows: we will first define a normal form
for morphisms in

∐
w∈W T wX , corresponding to a normal form for paths of length

one by orienting clauses 3.24 and 3.25 above. We will then define the notion of
a path of minimal length, and find necessary and sufficient characterisations of
paths of minimal length. For this, we will investigate pairs of two morphisms the
target of the first of which is equivalent to the source of the second, but which
cannot be composed; these will be called incomposable pairs and they correspond
to normal forms for clause 3.23.

Normal Forms for Morphisms in
∐

w∈W T wX

Definition 3.2.7 (The Reduction System →Mor) Define the reduction sys-
tems on the morphisms of

∐
w∈W T wX :

→µ
def= {α →µ µu

j,v(α) | u, v ∈ W, j ∈ L, α : t → t′ ∈ T ujjvX}
→η

def= {ηu
j,v(α) →η α | u, v ∈ W, j ∈ L, α : t → t′ ∈ T uvX}

→Mor
def= →η ∪ →µ

Lemma 3.2.8 →Mor is complete, and every α : x → y in T wX reduces to a
unique normal form NF(α) : x′ → y′ s.t. for all β, Qα = Qβ iff NF(α) = NF(β).

Proof. Analogously to lemma 3.2.5 and 3.2.6. �

The mapping of terms and morphisms to their normal form can not be ex-
tended to an endofunctor on

∐
w∈W T wX , since the presence of expanding or

collapsing rewrites means that the normal form need not preserve the source and
target of a morphism. For example, given the rewrite α : ’x → G(’x) in T1(X),
then NF(α) = α which is in T1(X) while NF(’x) = x which is in X. Such a rewrite
is called “layer-expanding”, since it introduces a new layer in a rewrite path. The
dual notion (which is actually more important) is called “layer-collapsing”.

Definition 3.2.9 (Layer-collapsing and Layer-expanding) Let α : s → t

be in T wX , and NF(α) : s′ → t′ be its normal form. Then α is called layer-
collapsing at y ∈ T uvX in Tj if t′ is in the image of ηj: there are u, v ∈ W, j ∈ L
with t′ = ηu

j,v(y). Dually, α is called layer-expanding in Tj if the above holds for
s′ instead of t′.

Note that a rewrite can be layer-expanding or layer-collapsing in both systems
at the same time.

Chapter 3 — Structuring operations 116

Lemma 3.2.10 Layer-expanding (layer-collapsing) rewrites are those for which
the normal form of the source (target) is not the same as the source (target) of
the normal form:

(i) α : s → t in T wX is layer-expanding iff for NF(α) : s′ → t′,
s′ 6= NF(s).

(ii) α : s → t in T wX is layer-collapsing iff for NF(α) : s′ → t′,
t′ 6= NF(t).

Proof. We prove the first clause; the second is proven analogously.
We can apply →µ to a morphism α : x → y if and only if we can apply →µ

to its source x and target y. Further, whenever we can apply →η to α, we can
apply →η to x and y. Hence, whenever α →Mor α′, the source and target of α

reduce as well. The only case in which we can apply →η to x (or y) but not to
α is if x = ηu

j,v(x′), but for all β : x′ → y′, ηu
j,v(β) 6= α (and so α 6→ηβ), which is

precisely the definition of layer-expanding. �

Note that the existence of an α : x → y above such that for all β : NF(x) → x′,
ηu

j,v(β) 6= α is exactly the definition of ηu
j,v being expanding at NF(x), hence if

both monads are non-expanding, we have s′ = NF(s) for all rewrites α : s → t

and their normal form NF(α) : s′ → t′.

Normal Forms for Paths

As mentioned above, for paths <α1, . . . , αn>, we do not get a complete reduction
system deciding the equivalence. Yet, we merely want to reason about their
length, in the light of lemma 5.2.2 below which says that the coproduct monad
is not strongly normalizing if there are arbitrarily long paths in the coproduct.
Hence we introduce the notion of minimal length— a path is of minimal length
if there is no equivalent path which is shorter.

We need to find a sufficient and necessary characterisation for paths of minimal
length. This will lead us to the notion of incomposable pairs, two morphisms α,
β such that the target of α is equivalent to the source of β (hence they form a
path) but α and β are incomposable, and moreover we can’t find two morphisms
equivalent to α and β each which are composable.

Definition 3.2.11 (Minimal Length) A path A = <α1, . . . , αn> is of minimal
length iff

(i) All elements of the path are normal forms: for i = 1, . . . , n,
αi = NF(αi).

Chapter 3 — Structuring operations 117

(ii) No equivalent path is shorter: B ≡ A ⇒ |A| ≤ |B|

In other words, a path A = <α1, . . . , αn> is of minimal length if all αi are in normal
form, and αi and αi+1 cannot be composed in T wX , or are an incomposable pair:

Definition 3.2.12 (Incomposable Pair) For α in T wX , β in T vX , (α, β) are
an incomposable pair if both are in normal form and the target of α is equivalent
to the source of β, but they cannot be composed, nor are they equivalent to
any α′, β ′ which can be composed: NF(δt(α)) = NF(δs(β)) and ∀α′, β ′.NF(α′) =
NF(α) ∧ NF(β ′) = NF(β) ⇒ δt(NF(α)) 6= δs(NF(β))

A path A = <α1, . . . , αn> is of minimal length iff (αi, αi+1) for i = 1, . . . , n−1
are incomposable pairs. To find a characterisation of incomposable pairs, recon-
sider the example on page 114 above. There, we had a pair of two morphisms α,
’β which were not composable. This is not an incomposable pair, since ’β ≡M ’’β,
which is composable with α. Hence we modify the example: consider the two mo-
nads given by the following two term rewriting systems (omitting the signatures):

R1 = {F(F(’x)) → H(’x)}
R2 = {G(’y) → ’y}

Then there is the incomposable pair (α1, α2) with

α : F(’G(’F(’x))) → F(’’F(’x))
β : F(F(’x)) → H(’x)

This situation is prototypical. The point here is that α is layer-collapsing, i.e.
there is y ∈ T 11X such that the target of α is η1

2,1(y). But that alone is not
sufficient, since for any rewrite α′ : y → y′, there would also be a rewrite η1

2,1(α′)
which is composable with α. The point here is that we can apply µ1 to y, so the
source of β is in the image of µ1, but that for all β ′ : y → y′′, µ1(β ′) 6= β. This
means exactly that µ1 is expanding at y— we say β is µ-expansive.

Of course, there is also the dual situation, in which β would be layer-expan-
ding. The precise characterisation is given by the following lemma:

Definition 3.2.13 (µ-Expansive and µ-Contractive) α : x → y is said to
be µ-expansive at z ∈ T ujjwX , if for its normal form NF(α) : x′ → y′ there are
u, w ∈ W , j ∈ L, with µu

j,w(z) = x′ s.t. µu
j,w is expanding at z: for all β : z → z′,

µu
j,w(β) 6= NF(α).

Dually, α : x → y is µ-contractive at z ∈ T ujjwX if for its normal form
NF(α) : x′ → y′, we have µu

j,w(z) = y′ s.t. µu
j,w is collapsing at z: for all β : z′ → z,

µu
j,w(β) 6= NF(α).

Chapter 3 — Structuring operations 118

Lemma 3.2.14 Given two α : x1 → y1, β : x2 → y2 in normal form, such that
Q(y1) = Q(x2). Then (α, β) are an incomposable pair iff

• Either there are r, s ∈ W, i, j ∈ L, i 6= j and z ∈ T riisX such that

(i) α is layer-collapsing at z, with y1 = ηri
j,is(z), and

(ii) β is µ-expansive at z, with x2 = µr
i,s(z), and for all β ′ : z → z′,

µr
i,s(β

′) 6= β.

• or there are r, s ∈ W, i, j ∈ L, i 6= j and z ∈ T riisX such that

(i) β is layer-expanding at z, with x2 = ηri
j,is(z), and

(ii) α is µ-contractive at z, with y1 = µr
i,s(z) andfor all β ′ : z′ → z,

µr
i,s(β ′) 6= β.

Proof. We first prove sufficiency. Assume the first of the two alternatives (the
second is proven analogously), then we have y1 →η z →µ x2. Clearly α and β

cannot be composed. Suppose there were β ′ with β ′ ≡M β which is composable
with NF(α), then β ′ would be in T rijisX ; and since β ′ and β should be equivalent,
and β is a normal form, β ′ �Mor β. But the only possible reduction would be
β ′ →η β ′′ →µ β, for some β ′′ : z → z′′ with µw

j,v(β
′) = β, which is a contradiction

(since β is µ-expansive). On the other hand, if there were α′ with Qα = Qα′ and
α′ composable with NF(β), then the rank of α′ would be the same as for β, which
is rank(α)− 2; so α′ cannot reduce to α, and neither the other way around (since
α is a normal form), so there there can be no such α′.

For necessity, we know that Q(y1) = Q(x2) but δt(NF(α)) 6= δs(NF(β)). Hence
y1 6= δt(NF(α)) (then by lemma 3.2.10, α is layer-collapsing), or x2 6= δs(NF(β))
(then by lemma 3.2.10 β is layer-expanding). Assume the former (corresponding
to the first clause above— the latter gives the second clause), then (by defini-
tion 3.2.9) there are u, v ∈ W, i ∈ L and z ∈ T uvX s.t. y1 = ηu

j,v(z) (this being
clause (i)). Since β is not composable with α, nor equivalent to anything com-
posable with α, the source of β (but not β itself) has to lie in the image of µ; and
this in such a way that µ and η are natural not over each other. In other words,
there is x s.t. y →η z →µ x, but x 6= y and there is no z′ with y →µ z′ →η x.
This is only the case if x2 = µr

i,s(z) with i 6= j, and i and j are not independent,
i.e. w = ri, v = is; and further, β is in the image of µ: for all β ′ : z → z′,
µr

i,s(β ′) 6= β. All of this constitutes clause (ii). �

Chapter 3 — Structuring operations 119

3.3 The Coequalizer of Strongly Finitary Mo-
nads

The coequalizer of two strongly finitary monads is constructed as a pointwise
colimit, just like the coproduct. Given two monads T1 = 〈T1, η1, µ1〉, T2 =
〈T2, η2, µ2〉 on Cat,5 and two monad morphisms α, β : T1 ⇒ T2. Then for a
category X , there is the coequalizer

T1X
αX -

βX
- T2X

q - Q

Mapping every X to the coequalizer Q above would give an endofunctor on Cat,
but it would fail to be a monad, since one cannot construct a multiplication. To
get around this, we take the same approach as for the coproduct: we build a large
diagram from all possible combinations of T1 and T2 which is weakly ω-filtered,
and closed under application of T1 and T2. Then applying T1 or T2 to the colimit
C of the diagram will give rise to a cone over the diagram, and hence a morphism
out of T1C. This way, we can construct a morphism out of the diagram built at
the colimit of another diagram— i.e. the constructed endofunctor applied twice—
and this will give us the multiplication of the monad.

Clearly, the vertices of the diagram should be same as those for the coproduct
diagram— iterated combinations of T1 and T2. For the edges, we will need α and
β, in any context, under application of T1 and T2, and the multiplication of the
two monads. Surprisingly, we do not need the units of the two monads.

Formally, the diagram is given by a graph Q, which has

Edges: V (Q) def= L+

Vertices: E(Q) def= {mw
j,v : wjjv → wjv | w, v ∈ W, j ∈ L} ∪

{aw
v : w1v → w2v | w, v ∈ W} ∪

{bw
v : w1v → w2v | w, v ∈ W}

(Recall that L+ is the set of non-empty words over the alphabet L.) Then, for a
category X ∈ Cat, we define the functor QX : F(Q) → Cat as the transpose of
the graph morphism qX : G → U(Cat), which is given as follows:

On the vertices: qX (w) def= T w(X)
On the edges: qX (mw

j,v)
def= T w(µj,T v(X))

qX (aw
v) def= T w(αT v(X))

qX (bw
v) def= T w(βT v(X))

5Again, these monads are actually enriched, but in this section, we will altogether pass over
this fact.

Chapter 3 — Structuring operations 120

The endofunctor T : Cat → Cat, which is the action of the coequalizer
monad, maps X to colim QX , and a functor F : X → Y to the morphism
colim QX → colim QY , induced by precomposing the colimiting cone over QY

with F ; since all components of the diagram are natural transformations, this
yields a cone over QX , and hence a morphism !F : colim QX → colim QY .

Let c : QX → colimQX be the colimiting cone, then the unit η of the monad is

given by X η2- T2X
c2- colim QX . The multiplication µ, as mentioned above, is

given by the fact that QX is a weakly ω-filtered diagram (which is easy to check —
from any vertex, there is a morphism into T2X which is sufficient for weak filtered-
ness, and for ω-filteredness, card(F(Q)) ≤ ℵ0). Then TTX = colim Qcolim QX ,
and T1 preserves weakly ω-filtered colimits: T1colim QX ∼= colim T1(QX). T1(QX)
is again in QX , so the colimiting cone over QX gives a colimiting cone over T1QX ,
and ultimately over Qcolim QX as well, which induces a morphism colimQcolim QX →
colimQX , which is the multiplication. The proof of the monad laws then proceeds
along the same lines as for the coproduct.

This gives the monad T def= 〈T, η, µ〉, and the monad morphism q : T2X → TX
(given by the colimiting cone c at T2X), both of which form the coequalizer of
the two monad morphisms α, β.

It remains to show that it is indeed the coequalizer, which is shown by the
universal property. Given any other monad S = 〈S, ζ, ξ〉, and a monad morphism
γ : T2 → S such that γα = γβ, there has to be a unique u : T → S such that
uq = γ. This unique u is constructed by giving by a cone νX : QX → SX (for all
categories X), which is defined inductively. The base case is ν1

def= γXαX = γXβX ,
and ν2

def= γ. If νw : T wX → SX is given, we obtain ν1w and ν2w by the following
diagram:

T1T
wX T1νw - T1SX

T2T
wX T2νw - T2SX

αSX

?

βSX

? γSX - SSX ξX- SX
where γSX .αSX = γSX .βSX because γ coequalizes α and β. Hence, we have
constructed the coequalizer of α and β:

Proposition 3.3.1 Given two strongly finitary monads T1, T2, and two monad
morphisms α, β : T1 → T2, the monad T = 〈T, η, µ〉 as defined above is their
coequalizer in MonFin(Cat).

And with proposition 1.3.1 (colimits are given by coproducts and coequalizers)

Chapter 3 — Structuring operations 121

and corollary 3.1.10 (MonFin(Cat) has all coproducts), we have the cocomplet-
ness of MonFin(Cat):

Corollary 3.3.2 The category MonFin(Cat) has all small finite colimits.

3.4 Summary and Conclusion

This chapter started with the claim that “structuring operations are colimits”.
While not all structuring operations can be expressed with colimits, many impor-
tant ones can be; and while this may not be the ultima ratio it may at least serve
as a useful working hypothesis, in particular since we are going to concentrate on
one particular operation, the one which hitherto has received most attention in
the term rewriting literature: the disjoint union of two term rewriting systems.

The working hypothesis has two ramifications. Firstly, it means we have to
look at the colimits in the category of semantic presentations, the category of fini-
tary monads on Cat. To this end, we have given a detailed construction of the
coproduct of two monads, and we have sketched the construction of the coequal-
izer. Together, this gives the existence of all colimits. Secondly, compositionality
can now be given a precise meaning: a semantics is compositional if the map-
ping from syntactic presentations to semantics representations preserves colimits.
Here, this is shown by the existence of a right adjoint for the mapping from the
category of term rewriting systems to the category of monads, and it means in
particular that the coproduct of two monads arising from term rewriting systems
Θ1, Θ2 is isomorphic to the theory of their disjoint union:

TΘ1+Θ2
∼= TΘ1 + TΘ2

This result is important because results about the coproduct monad now per-
tain to the disjoint union — e.g. if we now show that the coproduct is confluent,
then this will mean that the disjoint union of two term rewriting systems is con-
fluent as well.

Apart from constructing the coproduct, we have developed a theory about
“equality of objects and morphisms in the coproduct”. The coproduct essentially
consists of composed terms, which are elements of

∐
w∈W T wX , quotiented by an

equivalence relation which identifies variables and collapses layers. We have given
a decision procedure for this equality, by giving a normal form for the equivalence.
This will aid us in reasoning about the coproduct.

Morphisms in the coproduct are equivalence classes of paths of morphisms
from

∐
w∈W T wX ; here, our main attention has been the length of these paths,

Chapter 3 — Structuring operations 122

since when considering modularity of strong normalization we will show that the
coproduct is strongly normalizing if there is an upper bound on the length of the
paths in the coproduct. Instead of developing a normal form for the morphisms,
we have developed the notion of minimal length for paths — a path being of
minimal length if there is no equivalent path which is shorter.

In conclusion, this chapter has completed the demonstration of the compo-
sitionality of the semantics, and has set up the technical machinery needed to
reason about the modularity of confluence and strong normalization, as we will
do in the next two chapters.

Chapter 4

Modularity of Confluence

In this chapter, we will prove a categorical version of Toyama’s theorem [88]: the
disjoint union of two term rewriting systems is confluent iff the two term rewriting
systems are. In the light of the results of the previous chapter, this means that
the coproduct of two regular monads is confluent iff the two monads are.

The coproduct monad has been defined as the colimit of the diagram DX .
Proposition 1.3.1 from page 16 describes how to construct the colimit of a diagram
from coproducts and coequalizers, so much of the proof that the coproduct is
confluent can be done in a more abstract setting, investigating the preservation
of confluence under the formation of coproducts and colimits in Cat. But even
before we embark on this, we have to define what it means for a category and a
monad to be confluent. This turns out to be a simple extension of the definition
of confluence for relations, but it requires a little more effort to show that this
new, semantic definition is equivalent to the old, syntactic one.

It should be stressed that the parts of this chapter dealing with the preserva-
tion of confluence are solely concerned with regular monads, and nowhere depend
on the fact that these monads arise from term rewriting systems (even if we use
term rewriting systems and signatures as examples.) This allows us to prove a
slightly more general theorem than the original [88].

Structure of the Chapter

• In §4.1, we will define confluence for categories and monads on Cat. We
call this the semantic notion of confluence. We will show that the semantic
notion coincides with the syntactic notion, i.e. the monad TΘ is confluent
according to our definition iff the term rewriting system Θ is.

• In §4.2, we will consider the preservation of confluence under formation of
coequalizers in Cat. (Preservation of confluence for the coproduct of two

123

Chapter 4 — Modularity of Confluence 124

categories is trivial.) We will introduce the notion of a witness of a term,
and show that the coequalizer preserves confluence if any two equivalent
objects have a common witness.

• We will then apply this technique in §4.3 to the coequalizer which gives us
the colimit of the diagram DX . We show that the normal form of a term
t with respect to the induced equivalence, as defined in §3.2.2, is a witness
of t. We then conclude that the coequalizer of DX preserves confluence,
and hence the coproduct of two regular non-expanding confluent monads is
confluent, the main result of this chapter.

• In §4.4, we will drop the non-expanding requirement and investigate quasi-
non-expanding monads (see §2.4.4 on page 85). Extending the main result
of §4.3, we will show that the coproduct of two regular quasi-non-expanding
confluent monads is confluent.

4.1 A Semantic Definition of Confluence

We will first extend the well-known definition of confluence for preorders to con-
fluence of categories and monads. We then show that this semantic definition
coincides with the usual, syntactic definition which talks about derivations of
terms — i.e. that the monad given by a term rewriting system Θ is confluent
according to our new, semantic definition if and only if the system Θ is confluent
according to the old, syntactic definition. This will form proposition 4.1.7, the
main result of this section.

4.1.1 Confluent Monads

Recall from §1.6.2 on page 46 that a preorder X = (X0, ≥) is confluent if for all
elements x, y, z ∈ X0 such that x ≥ y and x ≥ z (called spans or co-initial cells),
there is a completion: an element u ∈ X0 such that y ≥ u, z ≥ u.

When extending this definition to categories, one has to decide whether this
completion is required to commute; i.e. given α, β in diagram 4.1, we will always
require γ, δ to exist, but do we require diagram 4.1 to commute? We will in

x

y

α

�
z

β
-

u
δ�γ -

(4.1)

Chapter 4 — Modularity of Confluence 125

general require it not to commute, since this is closer to what is happening with
term rewriting systems; if it always commutes, we will call the category commut-
ing confluent (and we can show modularity for both confluence and commuting
confluence). Confluence of a category X coincides with the confluence of the
associated preorder J(X), obtained by identifying all morphisms with the same
source and target (see page 43).

Further, a term rewriting system Θ = (Ω, R) is confluent if all spans in �R

can be completed; but here we have to assume that all spans of variable rewrites
can be completed by variable rewrites, which is equivalent to the preorder X

being confluent. Hence, a monad T is confluent if TX is confluent whenever X

is.

Definition 4.1.1 (Confluence) A category C is confluent if for any two mor-
phisms α : x → y, β : x → z there are morphisms γ : y → u, δ : z → u. C is
commuting confluent if additionally γ.α = δ.β.

A monad T = 〈T, η, µ〉 on Cat is (commuting) confluent if for all (commuting)
confluent categories X , TX is (commuting) confluent.

Our definition coincides with Stell’s [82, pg. 105], but is different from Hilken
[29], where confluence is what is here called commuting confluence, and from Jay
[31], where a confluent category is a category enriched over confluent orders.

The reason for introducing two different concepts here (confluence vs. commut-
ing confluence) is that commuting confluence is strictly stronger than confluence.
For example, the term rewriting system G = (ΣG, RG) in figure 4.1 is confluent,1

but not commuting confluent: the span in diagram 4.2 (obtained by applying

ΣG = { e0, I1, o2 }
RG = { o(e, ’x) → ’x, o(I(’x), ’x) → ’x,

o(o(’x)’y, ’z) → o(’x, o(’y, ’z)), o(I(’x), o(’x, ’z)) → ’z,
o(’y, e) → ’y, I(I(’x)) → ’x,
I(e) → e, o(’x, I(’x)) → e,
I(o(’x, ’y)) → o(I(’x), I(’y)), o(’y, o(I(’y), ’x)) → ’x}

Figure 4.1: A Confluent Term Rewriting System for Group Theory

1This may not be evident on first glance, if one has not seen this term rewriting system
before, but it is in fact a rather famous confluent system, obtained by orienting the equations
of group theory as term rewrite rules, and making the system confluent by adding in additional
rules, the so-called Knuth-Bendix completion [43, 41].

Chapter 4 — Modularity of Confluence 126

the second and third rule respectively) can be completed again (by the first and
fourth rule, respectively), but this diagram does not commute in the monad TG on

o(o(I(’x), ’x), ’z)

	�
�
�
� @

@
@
@R

o(e, ’z) o(I(’x), o(’x, ’z))

@
@
@
@R 	�

�
�
�

’z

(4.2)

Cat given by the term named-reduction algebra (see definition A.1.8 on page 183
below).

On the other hand, commuting confluence is a stronger property; a term
rewriting system is commuting confluent if it is confluent without overlapping
rules (hence no spans like in diagram 4.2 above), and if we can show modularity
of commuting confluence, this is a different result than modularity of confluence;
hence, we keep both notions, and show modularity of both. Essentially, in our
proofs if we only make sure there is at least one completion of any span, we can
show modularity of confluence, and for modularity of commuting confluence, we
need to do some more work and show the completions actually commute.

4.1.2 Confluent Term Rewriting Systems

The above definition of confluent monad was preceded by a sentence arguing why
this definition is the one “making sense”. If we want to be able to relate results
about confluent monads to confluent term rewriting systems, we have to formally
show that these two notions coincide by showing that an ordinary TRS Θ is
confluent by the syntactic definition from §1.6.2 if and only if the monad TΘ is
confluent by the semantic definition 4.1.1.

Recall from definition 1.6.1 that →R is the one-step reduction relation induced
by a term rewriting system,�R the many-step reduction relation, and from §1.6.2
on page 46 that an (ordinary) term rewriting system Θ = (Ω, R) is confluent if
�R is confluent. Further, recall from definition 2.3.13 that →X the congruence
closure of the variable rewrites for a preorder X, and from proposition 2.3.14 that
all reductions in TΘ(X) are given as sequences of either one-step reductions, or
variable rewrites:

TΘ(X) = (→R ∪ →X)∗

It is easy to see that if TΘ is confluent, then Θ is confluent (note that a discrete
preorder is confluent, and use corollary 2.3.15: TΘ(X) =�R if X is discrete). In

Chapter 4 — Modularity of Confluence 127

the other direction, we use proposition 2.3.14. By assumption, both →X and →R

are confluent. Unfortunately, they do not commute, that is we do not have a com-
pletion property like the diagram 4.3 otherwise we could use the Hindley-Rosen

x

y

X

� z

R

�

u

X
�

R �

(4.3)

lemma 1.6.3. Let us first see why they do not commute: given the term rewriting
system D = ({G, F}, F(’x, ’x) → G(’x)), and the preorder X = ({a, b, c, d}, ≥),
ordered as a ≥ b, a ≥ c, b ≥ d, c ≥ d, a ≥ d (both of which are obviously con-
fluent), then there is the span in (4.4) which cannot be completed as above. (In

F(’a, ’a)

F(’b, ’c)

X

�
G(’a)

R
- (4.4)

the term F(’x, ’x), ’x is sometimes called a δ-redex; and in the span above, the
rewrite on the left is said to destroy δ-redexes). We can complete spans like this
by first adding another variable rewrite to the rewrite on the left.

This means that →R is strongly extendable over →X as defined by Kahrs [34, pg
19ff]. He shows that if two relations are confluent, and one is strongly extendable
over the other, which additionally is strongly normalizing, then their union is
confluent as well. Here, we can not assume that →X is strongly normalizing,
but we can show that the additional rewrites do not destroy any more δ-redexes
and that they (but only they) commute with →R. Somewhat lost for words, as
one tends to be when christening new exotic and rather abstract concepts, we
say that →X is coherently extendable over →R, and we can prove a variation of
Kahrs’ lemma that the union of two confluent relations, in which one is coherently
extendable over the other, is confluent.

Definition 4.1.2 (Coherent Extendability) A relation →R ⊆ X × X is co-
herently extendable over →S ⊆ X × X, if

(i) there is a subrelation →S0 ⊆ →S (called the commuting subrelation)
that commutes with →R

Chapter 4 — Modularity of Confluence 128

(ii) and for all x, y, z ∈ X such that x �R y, x �S z, there are
u, v ∈ X such that

x
S
� z

u

S0↓↓

y

R

↓↓
S
� v

R
↓↓

Lemma 4.1.3 Given two confluent relations →R, →S ⊆ X ×X such that →R is
coherently extendable over →S and the commuting subrelation →S0 is confluent,
then →R ∪ →S is confluent as well.

Proof. Recall that by equation 1.24 from §1.5.2 we have

(→R ∪ →S)∗ = (�S;�R)∗ (4.5)

Diagram 4.6 shows that �S;�R commutes: the squares (2) are the coherent
extendability of →R over →S, square (1) is confluence of →S, square (3) is the

S � R �

(1) (2)S

↓↓ S �

S

↓↓ S0 � R �

S

↓↓

(3) (4)

(2)

S0

↓↓ S0 �

S0

↓↓ R �

S

↓↓

(4) (5)

R

↓↓
S
�

R

↓↓
S
�

R

↓↓
R
�

R

↓↓

(4.6)

confluence of the commuting subrelation →S0, square (4) is →R commuting with
→S0, and (5) is confluence of →R.

Hence (�S;�R)∗ is confluent, and any relation P such that P ∗ = (�S;�R)∗,
so by equation 4.5, →R ∪ →S is confluent. �

Chapter 4 — Modularity of Confluence 129

4.1.3 Equivalence of the Two Notions

We can now use lemma 4.1.3 to show that the semantic definition 4.1.1 of conflu-
ence coincides with the syntactic definition from §1.6.2. We will first exhibit the
commuting subrelation of →X, and then show that →R is coherently extendable
over →X. First, note that →X is confluent if X is; this is shown by structural
induction. Then the commuting subrelation will consist of the congruence closure
of those variable rewrites which do not destroy any δ-redexes, or in other words
do no rewrite the same variable to different variables:

Definition 4.1.4 Let →C
X be the smallest relation on TΩ(X) such that t →C

X s

iff s = t[y1/x1, . . . , yn/xn] with yi, xi ∈ X and xi ≥ yi for i = 1, . . . , n.

That →C
X is confluent is fairly easy to see, since any span can be completed

pointwise in the variables of the substitution. To show that it commutes with
→R, assume that there is a term t ∈ TΩ(X) such that t = C[σ(l)] for a rule (Y `
l → r) ∈ R and a substitution σ : Y → TΩ(X), and that xi ≥ yi for i = 1, . . . , n.
Let s

def= C[σ(r)] and we have a span t →R s, t →C
X t[yi/xi]i=1,... ,n. Then there is a

completion s →C
X s[yi/xi]i=1,... ,n and C[σ(l)][yi/xi] →R C[σ(r)][yi/xi]. From the

following lemma we obtain the coherent extendability of →R over →X . It shows
that any rewrite in →X can be extended by one from →C

X into one from →C
X by

pointwise completing all destroyed δ-redexes with rewrites which do not destroy
δ-redexes themselves.

Lemma 4.1.5 For all s, t ∈ TΩ(X) such that t →X s, there is u ∈ TΩ(X) such
that s →C

X u and t →C
X u.

Proof. Let X = {x1, . . . , xn}. We are going to construct a sequence s′0, . . . , s′n ∈
TΩ(X) of terms, starting with s′0 = s, and ending with s′n = u. For 1 ≥ i ≥ n,
let R(xi)

def= {y ∈ X | xi ≥ y} (this can be thought of as the set of reducts of
xi). Then by confluence of X, there is zi ∈ X such that ∀y ∈ R(xi). y ≥ zi

(i.e. we can complete any spans created by the different reducts of xi). Let
s′i = s′i−1[z/y1, . . . , z/ym] with R(xi) = {y1, . . . , ym}, then s′i−1 →C

X s′i.
Let u

def= s′n, then s →C
X s′1 →C

X s′2 . . . s′n = u; and further, t →C
X u, since

u = t[zi/xi]i=1,... ,n and xi ≥ yi. �

Lemma 4.1.6 The term rewriting system Θ = (Ω, R) is confluent iff if the monad
TΘ on Pre is confluent.

Chapter 4 — Modularity of Confluence 130

Proof. We have to show that the term rewriting system Θ = (Ω, R) is confluent
iff the term reduction algebra TΘ(X) is confluent whenever the preorder X is con-
fluent. Right-to-left, by corollary 2.3.15 a discrete preorder X is always confluent,
hence TΘ(X) will be confluent, and so will be �R.

Left-to-right, assume that �R is confluent and that X is confluent. From
lemma 4.1.5 it follows that →R is coherently extendable over →X , with →C

X

being the commuting subrelation. Since →C
X is confluent and commutes with

→R, by lemma 4.1.3 (→R ∪ →X)∗ is confluent, and by proposition 2.3.14 (→R

∪ →X)∗ = TΘ(X), hence TΘ(X) is confluent. �

The previous lemma talks about the monad TΘ on Pre given by the term
reduction algebra; it remains to make the final link to the monad on Cat, which is
given by the named reduction algebra (definition A.1.8), and show that confluence
of that monad coincides with confluence of Θ.

Proposition 4.1.7 The term rewriting system Θ = (Ω, R) is confluent iff the
monad TΘ on Cat is confluent.

Proof. We show that the monad TΘ on Cat is confluent iff the monad TΘ on Pre

is confluent, and use lemma 4.1.6.
Left-to-right, given a confluent preorder X, we have to show the term re-

duction algebra TΘ(X) is confluent. By equation 1.25 we have J(I(X)) = X

(where I : Pre → Cat is the inclusion of preorders into categories, see page 42),
hence if X is confluent, so is I(X) and hence because the monad TΘ on Cat is
confluent, TΘ(I(X)) is confluent, which means J(TΘ(I(X))) is confluent, and by
equations A.15 and 1.25, J(TΘ(I(X))) = TΘ(J(I(X))) = TΘ(X), hence TΘ(X) is
confluent as required.

Right-to-left, given a confluent category X , we know J(X) is confluent, and
hence TΘ(J(X)), and by equation A.15, TΘ(J(X)) = J(TΘ(X)), hence TΘ(X) is
confluent, making the monad TΘ confluent. �

That the implication “Θ confluent ⇒ TΘ confluent” is harder to prove than
the other way is an indication that we have managed to incorporate more prop-
erties into the definition without actually strengthening it. The definition has
become less axiomatic, but easier to work with — something one would like from
a semantic definition.

Chapter 4 — Modularity of Confluence 131

4.2 Preservation of Confluence for Coequalizers

We have postulated above that most structuring operations on term rewriting
systems are constructed as colimits. In our category of semantic representations,
these are colimits of monads, which in turn are constructed pointwise as colimits of
diagrams in Cat. Reasoning about preservation of confluence for any structuring
operation then amounts to reasoning about preservation of confluence for colimits
of certain diagrams like DX for the coproduct. The colimit of these diagrams
can be calculated using coproducts and coequalizers in Cat (proposition 1.3.1).
Breaking down the reasoning further, we have to reason about preservation of
confluence for coproducts and coequalizers. That coproducts preserve confluence
is nearly trivial, since the coproduct does not identify any objects or morphisms.
This leaves us with the preservation of confluence under coequalizers, which will
be the scope of this section. In the next section, we will apply the techniques
developed in this section to prove the modularity of confluence for the coproduct
of two monads.

We will attempt to give an abstract characterisation (of the categories and
functors involved) which makes the coequalizer of two functors F, G confluent:

X
F -

G
- Y Q - Z

Recall from §1.5.3 on page 44 that the coequalizer Z of the two functors F, G

is a category which has as objects equivalence classes of objects from Y, and as
morphisms (equivalence classes of) paths in a graph Z0, the edges of which are
morphisms from Y. We first show a lemma which states that Z will be confluent
if Y is, and we can complete any span of two morphisms in Y the sources of which
are equivalent in the equivalence relation induced on the objects: this property
will be referred to as the diamond property, since it corresponds to a “one-step
completion property modulo F”. We then introduce a technique which can be
used to show that the coequalizer (or more precisely, the category Y with respect
to the coequalizer) has said diamond property.

Further, we can systematically strengthen the obtained properties to be suf-
ficient for the preservation of commuting confluence. This will allow us to prove
modularity of both confluence and commuting confluence in the same framework.

4.2.1 The Diamond Property

Definition 4.2.1 (Diamond Property) Given a functor F : Y → Z, the cat-
egory Y has the diamond property with respect to F , written Y |=F ♦, if for all

Chapter 4 — Modularity of Confluence 132

morphisms α : x → x′, β : y → y′ in Y such that Fx = Fy there are morphisms
γ : v → v′, δ : w → w′ in Y such that Fx′ = Fv, Fy′ = Fw and Fv′ = Fw.

If additionally Fγ.Fα = Fδ.Fβ, then we say Y has the strong diamond
property with respect to F , written Y |=F �.

The idea of the following lemma is that to complete a span of two paths
p = <α1, . . . , αn> and q = <β1, . . . , βm> with equivalent sources it is sufficient
to be able to “tile” the squares in figure 4.2 (except that sources and targets of
the squares are merely equivalent, not equal). This tiling is equivalent to two
inductions over both the length of p and q. For commuting confluence, figure 4.2
additionally has to be commute up to equivalence.

α1 - α2 - . . .
αn -

β1

?
α′1
-

β ′1

?
α′2
-

β ′′1

? . . .

β
(n−1)
1

?
α′n

-

β
(n)
1

?

β2

?
α′′1

-

β ′2

?
α′′2

-

β ′′2

? . . .

β
(n−1)
2

?
α′′n

-

β
(n)
2

?

...
...

...
...

...

α(m−1)
1 - α(m−1)

2 - . . .
α(m−1)

n -

βm

?

α
(m)
1

-

β ′m

?

α
(m)
2

-

β ′′m

? . . .

β
(n−1)
m

?

α
(m)
n

-

β
(n)
m

?

Figure 4.2: Completing sequences of morphisms by “tiling”

Lemma 4.2.2 (The Tiling Lemma) Let Q : Y → Z be the coequalizer of
two functors F, G : X → Y in Cat as given in §1.5.3. If Y is confluent and
Y |=Q♦, then Z is confluent; if Y is commuting confluent and Y |=Q�, then Z is
commuting confluent.

Proof. To show confluence, we show that given two paths p, q such that s(p) =
s(q), there are paths r, s such that t(p) = s(r), t(q) = s(s) and t(s) = t(t). For
commuting confluence, we show that additionally p::r ≡M q::s (where ≡M is

Chapter 4 — Modularity of Confluence 133

the equivalence on morphisms induced by Q, see §1.5.3). Both are proven by
induction over the lengths of the two paths p and q.

We first show that for all p = <α1, . . . , αn> and β ∈ Y(x, y) such that
[x] = s(p), there is a morphism β ′ and a path <α′1, . . . , α′n> such that p′

def=
<α1, . . . , αn, β ′> and q′

def= <β, α′1, . . . , α′n> are both paths with the same target:
t(p′) = t(q′); and under the additional assumption Y |=Q�, that p′ ≡M q′.

This is shown by induction on n. The induction base is n = 0, in which
case β ′

def= β. For the induction step, given a path p = <α1, . . . , αn> and
β ∈ Y(x, y) with [x] = δs(α1), since Y |=Q ♦ there are morphisms γ, δ in Y s.t.
Q(δt(α1)) = Q(δs(γ)), Q(y) = Q(δs(δ)) and Q(δt(γ)) = Q(δt(δ)), i.e. <α1, γ> and
<β, δ> are paths with the same target. We can apply the induction assumption to
γ and <α2, . . . , αn> (since the latter is only of length n−1), and obtain morphisms
γ′, α′2, . . . , α′n such that p′

def= <α2, . . . , αn, γ′> and q′
def= <γ, α′2, . . . , α′n> are paths

with the same target. Then the desired completions are γ′ and <δ, α′2, . . . , α′n>,
with t(<β, δ, α′2, . . . , α′n>) = Q(δt(α′n)) = Q(δt(γ′)) = t(<α1, . . . , αn, γ′>) as re-
quired.

Under the stronger assumption Y |=Q�, we have that above

Qγ.Qα1 = Qδ.Qβ ⇔ <α1, γ> ≡M <β, δ>

The induction assumption is strengthened to

<α2, . . . , αn, γ
′> ≡M <γ, α′2, . . . , α′n>

and the desired completions are equivalent as follows:

<α1, α2, . . . , αn, γ
′> ≡M <α1, γ, α′2, . . . , α′n>

≡M <β, δ, α′2, . . . , α′n>

Now we can do an induction on the length m of the second sequence. The
induction base is m = 0, which is trivial. For m > 0, since s(p) = s(q), we can use
the previous result to obtain β ′ and a path α′1, . . . , α′n such that <α1, . . . , αn, β ′>

and <β1, α′1, . . . , α′n> are paths with the same target. The induction assumption
is that for p′

def= <β2, . . . , βm> and q′
def= <α′1, . . . , α′n> there are paths p′′, q′′ such

that t(p′) = s(p′′), t(q′) = s(q′′) and t(p′′) = t(q′′). Then the desired completions
are r

def= <β ′>::q′′ and s
def= p′′.

This concludes that proof that Z is confluent if Y |=Q♦. Under the stronger
assumption that Y |=Q�, we can (in the induction step) use the previous result
to obtain

<α1, . . . , αn, β
′> ≡M <β1, α

′
1, . . . , α′n>

Chapter 4 — Modularity of Confluence 134

Then the induction assumption is that p′::p′′ ≡M q′::q′′, and hence we have

p::r ≡M <α1, . . . , αn, β
′>::q′′

≡M <β1, α
′
1, . . . , α′n>::q

′′

≡M <β1>::q
′::q′′

≡M <β1>::p
′::p′′

≡M <β1, β2, . . . , βm>::p
′′

≡M q::s

This means that the completion commutes, and hence Z is commuting confluent.
�

4.2.2 Witnesses

In this section, we introduce the notion of a witness, and show how it can be used
to assert the diamond property as defined above. The idea is that any span in
Z comes from two morphisms α : x → x′, β : y → y′ in Y such that Qx = Qy;
we call this a span under Q. Being able to complete any such span under Q is
equivalent to Y having the diamond property w.r.t. Q.

In order to find a completion of α and β, we find a span in Y of two morphisms
α′ : z → z′, β ′ : z → z′′ which are equivalent to α and β respectively, then use the
confluence of Y to complete the span in Y, and Q will preserve the completion.
The object z is constructed by introducing a witness. We say an object z witnesses
an object x if for any rewrite α out of x there is a rewrite α′ out of z which is
equivalent (i.e. Qα = Qβ). If we can prove that any two equivalent objects have
the same witness, then we will be able to complete any spans under Q, and obtain
confluence; if we can even prove that the completion commutes, we will obtain
commuting confluence.

Definition 4.2.3 (Witness) Given a functor F : X → Y, and two objects
x, y ∈ X , x is a witness of y with respect to F , written x witF y if Fx = Fy and
for all morphisms β : y → y′ in X , there is a morphism α : x → x′ in X such that
Fα = Fβ.

Lemma 4.2.4 Given the coequalizer Q : Y → Z of two functors F, G : X → Y,
if Y is (commuting) confluent and for all x, y ∈ Y s.t. Qx = Qy there is a common
witness z ∈ Y such that z witQ x and z witQ y then Z is (commuting) confluent.

Chapter 4 — Modularity of Confluence 135

Proof. We show that Y |=Q♦ if Y is confluent, and Y |=Q� if Y is commuting
confluent, and then use lemma 4.2.2.

Given α : x → x′, β : y → y′ such that Qx = Qy. Then since x and y

have a common witness z ∈ Y with Qz = Qy = Qx, there are α′ : z → z′,
β ′ : z → z′′ such that Qα′ = Qα, Qβ ′ = Qβ. α′ and β ′ form a span in Y, which
by confluence of Y has a completion γ : z′ → u, δ : z′′ → u with Qz = Qx′ and
Qz′ = Qy′ as required; hence Y |=Q♦. If further Y is commuting confluent, we
have γ.α′ = δ.β ′, hence (since Q preserves composition) Qγ.Qα′ = Qδ.Qβ ′, hence
Qγ.Qα = Qδ.Qβ, so Y |=Q�. �

We will now put this machinery to work with the diagram DX to show mod-
ularity of confluence and commuting confluence for the coproduct of two regular,
non-expanding monads.

4.3 Toyama’s Theorem

We are now going to prove modularity of confluence: given two regular, non-
expanding monads T1 = 〈T1, η1, µ1〉 and T2 = 〈T2, η2, µ2〉, we want to show that
the coproduct monad T1+2 = 〈T, η, µ〉 is confluent iff the two monads T1 and T2

are. One direction of the implication is easy: if T1+2 is confluent, T1 and T2 must
be confluent as well, since T1 and T2 are faithfully embedded into T by the two
injections. To show the other direction of the implication, we have to show that
under the assumption that T1 and T2 are confluent, for all categories X which
are confluent, TX is confluent.

By definition 3.1.1, the coproduct TX is the colimit of the diagram DX in
Cat. By proposition 1.3.1, this colimit is given by the coequalizer of diagram 3.20
reproduced here:

∐
d:u→v in F(G)

T uX
F -

G
-
∐

w∈W

T wX

In order to be able to use lemma 4.2.4, we first need to show that the target
of the two arrows to be coequalized is (commuting) confluent:

Lemma 4.3.1 If T1 and T2 are (commuting) confluent, then the coproduct∐
w∈W T wX is (commuting) confluent whenever X is.

Proof. It is sufficient to show that for all w ∈ W , T wX is (commuting) confluent.
This is shown by a simple induction on w: for w = ε, T wX = X which is
(commuting) confluent by assumption; and if T wX is (commuting) confluent, so

Chapter 4 — Modularity of Confluence 136

is T jwX = TjT wX (for all j ∈ L), since both T1 and T2 preserve (commuting)
confluence. �

We now need to find a common witness for any two equivalent objects s, t ∈∐
w∈W T wX . Recall from lemma 3.2.6 that for every object t there is a normal

form NF(t) (with respect to the reduction relation �Ob from definition 3.2.1)
which decides the equivalence on the objects induced by F and G, hence Qt = Qs

iff NF(s) = NF(t). This normal form will also be the common witness of s and
t, thus ensuring in one fell swoop that any two equivalent objects have the same
witness and that every object has one. All that remains to be shown is that
the normal form NF(x) of an object x witnesses x. This is shown by a rather
simple induction on the derivation, but we have to assume that the monads
T1, T2 are non-expanding in the sense of definition 2.4.5. This is essential, since
in the presence of expanding rewrite rules Toyama’s theorem doesn’t hold, as
the following counterexample shows. Consider the two confluent term rewriting
systems (where R1 is expanding)

R1
def= {’x → A(’x)}

R2
def= {B(C(’x)) → C(B(’x))}

then in the disjoint union R1 + R2 there is the uncompletable span

B(C(’x))

C(B(’x))

R2

�
B(A(C(’x)))

R1

-

However, instead of requiring every rewrite to be non-expanding, we can slightly
relax the requirement to every rewrite being able to be made into one which is
non-expanding; this is the quasi-non-expanding property from definition 2.4.11
on page 85, and this generalisation will be the subject of §4.4 below.

Lemma 4.3.2 If T1 and T2 are non-expanding, then the normal form of an object
x witnesses x:

NF(x) wit x

Proof. Given any α : x → x′, then by lemma 3.2.10, if T1, T2 are non-expanding,
there is NF(α) : NF(x) → x′. Since Q(NF(α)) = Q(α), NF(x) witnesses x. �

Theorem 4.3.3 (Modularity of Confluence) The coproduct of two regular,
(commuting) confluent, non-expanding monads on Cat is (commuting) confluent.

Chapter 4 — Modularity of Confluence 137

Proof. If X is a (commuting) confluent category, then by lemma 4.3.1, the co-
product

∐
w∈W T wX is (commuting) confluent. Given x, y ∈

∐
w∈W T wX s.t.

Qx = Qy, then by lemma 3.2.6 NF(x) = NF(y), and by lemma 4.3.2, NF(x)witx

and NF(y) wit y, so x and y have a common witness NF(x) = NF(y). Hence by
lemma 4.2.4, the colimit colim DX = TX is (commuting) confluent, making the
monad T1 + T2 (commuting) confluent. �

The original theorem is a corollary of theorem 4.3.3:

Corollary 4.3.4 (Toyama) The disjoint union of two confluent, non-exanding
term rewriting systems which do not introduce unbounded variables is confluent.

Proof. Given two confluent, non-expanding term rewriting systems Θ1, Θ2 which
do not introduce unbounded variables, the monads TΘ1 and TΘ2 are non-ex-
panding by lemma 2.4.8, regular by proposition 2.4.4 and confluent by proposi-
tion 4.1.7. Then by theorem 4.3.3, TΘ1+TΘ2 is confluent, and by proposition 2.5.3,
TΘ1 + TΘ2

∼= TΘ1+Θ2 . Hence (again by proposition 4.1.7), Θ1 + Θ2 is confluent.
�

Note that the proof nowhere used the fact that the monads T1, T2 arise from
term rewriting systems (apart from them being regular). In particular, the proof
of theorem 4.3.3 does not depend on the fact the rules of the term rewriting sys-
tems do not introduce variables, as long as the resulting monad is non-expanding.
Hence by lemma 2.4.8, corollary 4.3.4 holds for term rewriting systems which do
introduce bounded variables on the right as well, slightly generalising the original
theorem [88, 42].

4.4 Modularity of Confluence for
Quasi-Non-Expanding Monads

In this section we will extend Toyama’s theorem (theorem 4.3.3) to systems
which are quasi-non-expanding (qne, see definition 2.4.11). For the proof of the-
orem 4.3.3, lemma 3.2.10 is essential, since it ascertains that for any rewrite
α : s → t which is not layer-expanding, there is a rewrite NF(α) : NF(s) → t,
making the normal form a witness and thus allowing to complete every span un-
der Q. If the monads T1, T2 are expanding, this will not hold any more, but as it
turns out it is sufficient that we are able to compose any rewrite with one which
is not layer-expanding such that the composition is not layer-expanding either.

We will give a more abstract characterisation of this situation: if we have a
confluent subcategory of

∐
w∈W T wX (like the non-layer-expanding morphisms)

Chapter 4 — Modularity of Confluence 138

for which the diamond property wrt Q holds, we call this a completable subcat-
egory; and if we can compose any morphism with one from the subcategory to
obtain a morphism in the subcategory we call this subcategory co-initial. Then
the existence of a completable co-initial subcategory is sufficient to show con-
fluence. Strengthening our assumption to commuting confluence and the strong
diamond property, we obtain commuting confluence.

4.4.1 Completable and Co-Initial Subcategories

Definition 4.4.1 (Completable Subcategory) Given a functor F : X → Y,
a (commuting) completable subcategory w.r.t. F is a subcategory J : C ↪→ X such
that C is (commuting) confluent and satisfies the (strong) diamond property w.r.t.
FJ : C |=FJ♦ (C |=FJ �)

We will in the following omit the embedding functor J , and say that an
object x ∈ X , or a morphism α : x → x′ in X is in C if it is the image of
J . In this notation, the definition of a completable subcategory spells out as
follows: for all morphisms α : x → x′, β : y → y′ in C such that F (x) = F (y)
there are morphisms γ : x′′ → u, δ : y′′ → u′ in C (and if C is commuting
completable, Fγ.Fα = Fδ.Fβ). We can now complete any paths which consist
only of morphisms in C, obtaining a relaxed version of the tiling lemma 4.2.2.

We also need some more notation for paths: for two paths A, B we say A ∼ B

iff s(A) = s(B) and t(A) = t(B) — i.e. A and B are paths with the same source
and target.

Lemma 4.4.2 Let Q : Y → Z be the coequalizer of two functors F, G : X → Y,
and let J : C ↪→ Y be a completable subcategory of Y w.r.t. Q. We say that a
path A = <α1, . . . , αn> is in C if all αi are in C.

Then for all paths A, B which are in C, and for which s(A) = s(B), there are
paths C, D in C such that t(A) = s(C), t(B) = s(D) and A::C ∼ B::D.

If C is a commuting confluent subcategory, we furthermore have Q(A::C) =
Q(B::D).

Proof. By “tiling”, i.e. induction on the length of A and B (like lemma 4.2.2).
The crucial point here is that the completion of two morphisms α : x → x′,
β : y → y′ in C is in C again, allowing the induction to go through. �

We say the subcategory C is co-initial in X if for every morphism α in X ,
there is a morphism β in C such that their composition β.α is in C as well.

Chapter 4 — Modularity of Confluence 139

Definition 4.4.3 (Co-initial Subcategory) Given a functor F : X → Y, a
subcategory J : C ↪→ X is called co-initial, if for all morphisms f : x → y in X
there is a morphism g : y → z in C such that g.f is in C.

Note that a necessary condition for C to be a co-initial subcategory is that
C contains all the objects of X . Now, if there is a (commuting) completable
subcategory with respect to the coequalizer of two functors which is co-initial as
well, the coequalizing category will be (commuting) confluent:

Lemma 4.4.4 Let Q : Y → Z be the coequalizer of two functors F, G : X → Y.
If there is a co-initial (commuting) completable subcategory w.r.t. Q, and Y is
(commuting) confluent, then Z is (commuting) confluent.

Proof. We will first show that for all paths A = <α1, . . . , αn> there are paths
B = <β1, . . . , βn> and C = <γ1, . . . , γn> in C such that t(A) = s(B), and
A::B ∼ C; and under the stronger assumption that C is a commuting com-
pletable subcategory, we have A::B ≡M C. We can then use lemma 4.4.2 to
conclude confluence of Z.

The proof proceeds by induction on the length of A. The induction assumption
is n = 0, which is trivial. For the induction step, given A = <α1, . . . , αn>, we
can apply the induction assumption to A′ = <α1, . . . , αn−1> and obtain B′ =
<β1, . . . , βn−1>, C ′ = <γ1, . . . , γn−1> in C such that A′::B′ ∼ C ′. Now since C is
a completable subcategory, for αn there is α′ in C s.t. α′n

def= α′.αn is in C. Since
α′n and β1, . . . , βn−1 are in C, there are α′′n and <β ′1, . . . , β ′n−1> (by tiling as in the
proof of lemma 4.2.2) in C with <β1, . . . , βn−1, α′′n> ∼ <α′n, β ′1, . . . , β ′n−1>. Then
let B

def= <α′n, β ′1, . . . , β ′n−1> and C
def= <γ1, . . . , γn−1, α′′n>, both of which are in C,

and t(A) = s(B) and further A::B ∼ C as required. See also diagram 4.7, where

α1 - αn−1- αn -

γ1 -
β1

?

α′

?

α′n

-
...........................

............
β ′1

?
-

βn−1

?
γn−1 -

............-

β ′n−1

?
α′′n -

(4.7)

Chapter 4 — Modularity of Confluence 140

the large triangle on the left is the induction assumption, the small triangle on
the top right corner is given by the fact that C is a co-initial subcategory, and the
parallelograms down the right side are constructed from the top (by tiling) since
β1, . . . , βn−1 and α′n are in C. Note the large triangle, and the parallelograms do
not commute, unless we can assume commuting completability as follows.

If there is a co-initial commuting completable subcategory, we can show that
A::B ≡M C. The induction assumption strengthens to A′.B′ ≡M C ′, and for
β ′1, . . . , β ′n and α′′ we have that <β1, . . . , βn−1, α′′n> ≡M <α′n, β

′
1, . . . , β ′n−1>. Then

we can show that

A::B = <α1, . . . , αn, α′, β ′1, . . . , β ′n−1>

≡M <α1, . . . , αn−1, α
′
n
.αn, β

′
1, . . . , β ′n−1>

≡M <α1, . . . , αn−1, β1, . . . , βn−1, α
′′
n>

≡M A′::B′::<α′′n> ≡M C ′::<α′′n> = C

This concludes the induction.

We can now show confluence. Given two paths A, B such that s(A) = s(B),
we have just shown there are paths B′, A′, C1, C2 in C such that A::A′ ∼ C1 and
B::B′ ∼ C2. By lemma 4.4.2, there are D1, D2 such that C1::D1 ∼ C2::D2.
Hence, for A and B we have A′::D1 and B′::D2 such that A::(A′::D1) ∼
C1::D1 ∼ C2::D2 ∼ B::(B′::D2), so we have a completion for A and Z is
confluent.

Under the stronger assumption of C being a commuting completable subcate-
gory, we have shown that A::A′ ≡M C1 and B::B′ ≡M C2 ; and by lemma 4.4.2,
there are D1, D2 such that C1::D1 ≡M C2::D2. By the same reasoning as above,
it follows that A::(A′::D1) ≡M C1::D1 ≡M C2::D2 ≡M B::(B′::D2), hence we
have a commuting completion for A and B and Z is commuting confluent. �

4.4.2 Finding a Completable Co-initial Subcategory

In this case, the completable co-initial subcategory will be given by the non-layer-
expanding rewrites. That a span of two non-layer-expanding rewrites can be com-
pleted has been shown above, so the main work will be to show that for every
rewrite α, we can find a rewrite β such that β.α is not layer-expanding, and that
this β is not layer-expanding itself. β will exists if both monads T1, T2 are qne, so
any expanding rewrite can be contracted again. However, α can be expanding in
several layers at the same time, so we need to contract all these layers. For exam-
ple, consider the term rewriting system E = (E1, {’x → E(’x), E(’x) → ’x})

Chapter 4 — Modularity of Confluence 141

as the first system, and just the signature with one unary operation F and
no rewrites as the second system; then we have the rewrite F(’’F(’’x)) �
F(’E(’F(’E(’x)))) in T2T1T2T1X which is expanding in two layers at the same
time. However, both can be contracted again, and moreover, the rewrite con-
tracting a rewrite in one layer is not expanding another layer.

Lemma 4.4.5 If T1, T2 are quasi-non-expanding, the subcategory of
∐

w∈W T wX
given by the non-layer-expanding morphisms is co-initial.

Proof. We have to show that for all α in T wX , there is α′ in T wX which is not
layer-expanding such that α′.α is not layer-expanding. Let α : s → t be layer-
expanding, with NF(α) : s0 → t0. Then s0 6= NF(s), with s0 →η s1 →η . . . NF(s0)
(there can be no reduction steps from →µ here, since α →µ α′ iff δs(α) →µ δs(α)).
To be more precise, we have s0, . . . , sn with si = ηui

ji,vi
(si+1) for i = 0, . . . , n − 1

(ui, vi ∈ W, ji ∈ L) and sn = NF(s0).
The proof proceeds by induction on n. The induction base is n = 0, which

is trivial. For the induction step, we assume the lemma for s1 �η NF(s0), and
let s0 = ηu

j,v(s1). Now for NF(α) : s0 → t0, since ηu
j,v is qne there are β : t0 →

t′0, γ : s1 → t1 such that ηu
j,v(γ) = β.NF(α). Since t0 is not in the image of ηu

j,v

(otherwise ηu
j,v would not be full, and Tj not qne), β is not expanding w.r.t. ηu

j,v

and hence not layer-expanding.
However, γ will be expanding w.r.t. ηu1

j1,v1
, i.e. for all δ : s2 → t2 we will have

ηu1
j1,v1

(δ) 6= γ (but ηu1
j1,v1

(s2) = s1). We can apply the induction assumption to s1

and γ: there is γ′ : t1 → t′1 which is not layer-expanding, and further γ′.γ is not
layer-expanding either. With t′0 = ηu

j,v(t1), we can compose β above and ηu
j,v(γ′),

obtaining α′
def= ηu

j,v(γ
′).β. Since both β and ηu

j,v(γ
′) are not layer-expanding, α′ is

neither, and since β.NF(α) is not layer-expanding, α′.NF(α) = ηu
j,v(γ

′).β.NF(α)
will not be. �

Depending on whether the monads T1, T2 are confluent or commuting conflu-
ent, the non-layer-expanding morphisms will form a completable or commuting
completable subcategory of

∐
w∈W T wX .

Lemma 4.4.6 If T1, T2 are (commuting) confluent and quasi-non-expanding, the
non-layer-expanding morphisms form a (commuting) completable subcategory of∐

w∈W T wX w.r.t. Q.

Proof. Given two non-layer-expanding morphisms α : s → s′, β : t → t′ in∐
w∈W T wX such that Q(s) = Q(t). By lemma 3.2.10, we have NF(α) : NF(s) →

Chapter 4 — Modularity of Confluence 142

s′′ and NF(β) : NF(t) → t′′, and by lemma 3.2.6 NF(s) = NF(t) iff Q(s) =
Q(t). By confluence of T wX , the span formed by NF(α) and NF(β) can then be
completed, i.e. there are γ : s′′ → u and δ : t′′ → u in T wX .

If further T wX is commuting confluent, we have γ.NF(α) = δ.NF(β), hence
Q(γ).Q(α) = Q(γ).Q(NF(α)) = Q(δ).Q(NF(β)) = Q(δ).Q(β). �

We can now combine the previous lemmas into the main theorem:

Theorem 4.4.7 (Modularity of Confluence for Quasi-Non-Expanding

Monads) The coproduct of two (commuting) confluent, regular, quasi-non-ex-
panding monads is (commuting) confluent.

Proof. If T1 and T2 are two confluent, quasi-non-expanding monads, and if X is a
(commuting) confluent category, then by lemma 4.3.1, the coproduct

∐
w∈W T wX

is (commuting) confluent. By lemmas 4.4.6 and 4.4.5, the non-layer-expanding
rewrites form a co-initial (commuting) completable subcategory in

∐
w∈W T wX ,

so by lemma 4.4.4 the colimit colim DX = TX is (commuting) confluent, making
the monad T1 + T2 (commuting) confluent. �

Again, the corollary of this is that the disjoint union of two quasi-non-expan-
ding confluent rewrite systems is confluent:

Corollary 4.4.8 The disjoint union of two confluent quasi-non-expanding term
rewriting systems which do not introduce unbounded variables is confluent.

Proof. Substitute theorem 4.3.3 with theorem 4.4.7, and lemma 2.4.8 with lem-
ma 2.4.12 in the proof of corollary 4.3.4. �

Of course, §4.3 is a special case of this section, but we felt developing it
separately would lead to a clearer exposition. The aim of this section is not so
much to prove a more general result, but rather to demonstrate the flexibility and
adaptability of our modularity proof.

4.5 Summary and Conclusion

In this chapter, we have proven the modularity of confluence for the disjoint union.
We first defined a semantic notion of confluence for categories and monads, and
showed that it is equivalent to the usual, syntactic definition in the sense that the
monad TΘ is confluent according to the new, semantic definition if and only if
the term rewriting system Θ is confluent according the old, syntactic definition.

Chapter 4 — Modularity of Confluence 143

Building on the observation that the colimit of any diagram can be constructed
as a coequalizer of coproducts, we then developed techniques to reason about
preservation of confluence for coequalizers in Cat. We gave a property under
which confluence is preserved by a coequalizer, the so-called diamond property,
and we further introduced the notion of a witness.

The main result was to show that the coproduct of two confluent, non-
expanding regular monads is confluent (Toyama’s theorem), using the machin-
ery set up before. Since the proof solely depends on the properties of the two
monads, our proof slightly generalizes the original theorem to systems which in-
troduce bounded variables. We then extended this proof to quasi-non-expanding
monads, showing that the coproduct of two confluent quasi-non-expanding regu-
lar monads is confluent.

To close this section, we will compare our proof with [42], a simplified and
clearer version of the original proof [88]. For the notation and notions used in the
following, the reader should recall the quote on page 96. The authors start their
proof by observing that

the main obstacle for giving a ‘straightforward’ proof of the modular-
ity of confluence is the fact that the black and white layer structure
of a term need not be preserved under reduction. That is, by a de-
structive rewrite step a e.g. black layer may disappear, thus allowing
two originally distinct white layers to coalesce.

They proceed to define the notion of a preserved term — a term from which no
reduction sequence with a destructive rewrite starts, and of inner preserved term,
a term all the principal subterms of which are preserved. It is shown that

• inner preserved terms are confluent (meaning any span starting from the
terms can be completed), and that

• every term reduces to a witness. Given a term s, the witness ṡ is an inner
preserved term such that if all principal subterms of s are confluent, then
for all other terms t, if s� t, then ṡ ↓ ṫ.

The final step is to show that every term t is confluent by induction on the rank
of t. From the induction assumption, it follows that all principal subterms of t

are confluent; so given any reduction t� s, the previous lemma about witnesses
can be applied to ṫ and ṡ, hence t and s are joinable, making t confluent.

Comparing the two proofs, our notion of a witness (definition 4.2.3) is similar
only insofar as it represents reductions as well. Whereas witnesses in [42] are

Chapter 4 — Modularity of Confluence 144

merely joinable, our witnesses represent all reductions in an “algebraic” sense
(i.e. if there is a reduction starting from t, then there is an equivalent reduction
starting from the witness of t as well).

In [42], the main obstacle of the proof — the destructive reductions — is
handled by reducing all terms until no further destructive reductions can occur.
Hence, the completion of a span is not very constructive. In contrast, in our
proof we take the reductions in the theory of the two systems (the many-step
reductions, as given by the monads) as primitive, and show that for any span of
these, we can find ones which are equivalent under the equivalence generated by
combining the two systems, described by the diagram DX and given by its colimit,
and can be joined. This gives our proof an algebraic, and rather constructive,
flavour, since it involves neither preservation nor induction on the ranks of the
terms involved.

Further, the presence of the variable rewrites allows us to abolish the distinc-
tion between inner and outer reductions. Since the variable rewrites specify the
rewrites between the terms which are instantiated for the variables, instantiation
cannot destroy inner redexes. Hence, in a confluent monad every span of rewrites
can be completed in one step (taking many-step reductions in one system as basic
steps). For example, consider the two systems

R1
def= {F(’x, ’x) → G(’x)}

R2
def= {K(’x) → L(’x), K(’x) → H(’x), L(’x) → H(’x)}

Then there is the following span

F(K(’x), K(’x))

F(L(’x), H(’x))

R2

�
G(K(’x))

R1
-

In order to complete this span, we first need some more inner R2-steps on the left.
In the monad semantics, the existence of these R2-steps precisely corresponds to
variable rewrites, which by definition of confluence we can assume to be confluent;
and by rule [Var], these R2-steps are R1-steps as well, so the outer system (R1)
is completable in one step as well. Nevertheless, confluence for monads is not
a strictly stronger concept than confluence for term rewriting systems, as was
shown in proposition 4.1.7. In the proof of that proposition, exactly the above
situation showed up (diagram 4.4), which shows that our definition handles this
situation adequately. The handling of substitution as a natural transformation,
which has to preserve the reduction structure, together with the variable rewrites,
is the key element here.

Chapter 4 — Modularity of Confluence 145

The algebraic nature of the proof extends it to systems with bounded variables
on the right, and further allows the generalisation of §4.4 to quasi-non-expanding
systems. (Both of these allow rules that can arbitrarily increase the rank of
a reduction, and hence break the original proof.) In closing, I think one can
say that the proof method introduced here is substantially new, not merely a
rephrasing of the old proof in a categorical framework.

Chapter 5

Modularity of Strong
Normalization

A term rewriting system is strongly normalizing if there are only finite reduction
sequences: reduction can’t go on for ever. Strongly normalizing systems are also
called terminating, and for variety, we shall use the two words synonymously.

Termination is important, because it means that in an implementation of the
term rewriting system, every reduction eventually ends. A system which is con-
fluent as well as terminating is called complete. A complete term rewriting system
gives a decision procedure for the equational theory the term rewriting system
describes1 (if the term rewriting system has finitely many rules): every term re-
duces to exactly one normal form, and two terms are equal in the equational
theory iff their normal forms are the same.

Known Results about Modularity of Termination

Unlike confluence, strong normalization is in general not modular. The simplest,
earliest and best-known counterexample [87] is given by the following two termi-
nating systems:

R = ({A0, B0, F3}, {F(A, B, ’x) → F(’x, ’x, ’x)})

S = ({G2}, {G(’x, ’y) → ’x, G(’x, ’y) → ’y})

Then in the coproduct, there is an infinite reduction sequence starting

F(G(A, B), G(A, B), G(A, B))�S F(A, B, G(A, B)) →R F(G(A, B), G(A, B), G(A, B)) . . .

One can also show [87] that completeness is not modular, i.e. even if both systems
are confluent as well as terminating, their disjoint union will in general not be

1Actually, to decide the equality weak normalization [41] together with confluence suffices.

146

Chapter 5 — Modularity of Strong Normalization 147

terminating (although of course it will be confluent). There is a wide variety of
conditions, however, under which strong normalization is modular:

• Both systems are not collapsing [72];

• Both systems are not duplicating [72];

• One of the systems is neither duplicating nor collapsing [58];

• Both systems are simply terminating, and finite [44].

This is defined as follows: a simplification ordering for a term rewriting
system Θ = (Ω, R) is a partial order (TΩ(V), >) on the terms2 which

– is monotonic: s > t implies F(. . . , s, . . .) > F(. . . , t, . . .);

– possesses the subterm property: F(. . . , t, . . .) > t

Then Θ is simply terminating if the reduction order can be embedded into
a simplification ordering >, i.e. �R ⊆ >.

• One system is left-linear, the other is right-linear and there is no overlap
between the left sides of the first, and the right sides of the second system
[16];

• Both systems are confluent, and left-linear [89].

• One system is not collapsing, and the other one preserves strong normal-
ization under non-deterministic collapses [23, 62], which means the disjoint
of that system with the system CE is strongly normalizing, where CE is the
term rewriting system

CE def= {G(’x, ’y) → ’x, G(’x, ’y) → ’y}

Some of these conditions are strictly more general than others, for example
the last subsumes all but the second last. We will in this chapter give a tech-
nical framework to prove modularity results for strong normalization, and as an
application show modularity of strong normalization for non-collapsing systems.

2Recall from definition 1.6.1 that the set V of variables is supposed to be part of the signature.

Chapter 5 — Modularity of Strong Normalization 148

Structure of this Chapter

• We fill first (in §5.1) define the notion of strong normalization for categories
and monads on Cat. Just like we have done for confluence, we will show
the equivalence of this semantic definition of strong normalization and the
syntactic definition 1.6.4 from page 47.

• In §5.2, we will give a simple necessary and sufficient condition for the
coproduct of two strongly normalizing monads to be strongly normalizing:
that we cannot form paths of arbitrary length (infinite paths, in a manner
of speaking).

• In §5.3, we will put the technical framework developed in the previous sec-
tion to use and prove modularity of strong normalization for non-collapsing
monads.

5.1 A Semantic Definition of Strong Normaliza-
tion

5.1.1 Termination for Categories and Monads

For termination, we really need to consider categories rather than just preorders.
The reason is that we have to be able to tell apart the identity on an ob-
ject x from some other endomorphism on x, such as the cyclic reduction on
F(G(A, B), G(A, B), G(A, B)) at the beginning of this chapter which makes a term
rewriting system non-terminating. The other possibility would be to use transitive
relations (i.e. modelling a term rewriting system by a monad over the category
TRel of transitive relations). This requires a different semantics than the one
presented in chapter 2, whereas the named reduction semantics from appendix A
is a proper generalization of it.

Roughly speaking, a category is strongly normalizing if the underlying relation
minus the reflexive relation given by the identities is strongly normalizing. We
call this the underlying non-identity relation:

Definition 5.1.1 (Strong Normalization for Categories and Monads)

The underlying non-identity relation of a category C, R−(C) is defined as

R−(C) def= (|C|, {x > y | ∃α : x → y ∧ α 6= 1x})

Chapter 5 — Modularity of Strong Normalization 149

A category C is strongly normalizing (or terminating), written C |= SN, iff its
underlying non-identity relation is strongly normalizing:

C |= SN ⇔ R−(C) |= SN

A monad T on Cat is strongly normalizing if it preserves strong normalization:

X |= SN ⇒ TX |= SN

In a strongly normalizing category, the only endomorphisms are identities.
Further, there can be no pair of morphisms f : x → y, g : y → x: even if gf = 1x

and fg = 1y, we would have an infinite sequence in the underlying irreflexive
relation R−(C), given by x > y > x > y . . . ; hence, the only isomorphisms in
a strongly normalizing category are identities. Such a category (with the latter
property concerning isomorphisms) is called skeletal.

The definition above differs substantially from Hilken’s [29], where strong
normalization is defined in terms of separating cocones for filtered diagrams. The
precise relation between the two definitions still needs to be clarified.

5.1.2 Equivalence of Notions

Just as for confluence, we have to make sure that the our notion of strong normal-
ization coincides with the one found in the literature for term rewriting systems.
Recall from definition 1.6.4 on page 47 that a term rewriting system Θ is ter-
minating if there is no infinite sequence x1 →Θ x2 →Θ x3 →Θ We now
want to show that Θ is terminating by the above definition if and only if TΘ

is by definition 5.1.1. Unfortunately, we cannot directly use proposition 2.3.14,
since as pointed out above in a preorder we cannot distinguish identities from
cyclic rewrites, so we first prove a variation of that proposition, using the term
named-reduction algebra from definition A.1.8.

Lemma 5.1.2 Given a category X , the underlying non-identity relation of the
term named-reduction algebra on X is equal to the transitive closure of the union
of →R and →X, where X

def= R−(X):

R−(TΘ(X)) = (→R ∪ →X)+

Proof. The proof of this lemma is a variation of the proof of proposition 2.3.14.
The equality is proven by proving inclusion in both directions. Right-to-left is
rather easy, since any reduction in →R or →X corresponds to a non-identity
morphism in TΘ(X).

Chapter 5 — Modularity of Strong Normalization 150

Left-to-right we again need to decompose the arguments for the [Pre] rule;
and further, there is a non-identity rewrite s → t only if there is a non-identity
variable rewrite (by rule [Var]) or an instantiated rewrite rule ([Inst]); hence
we have the transitive closure (not the reflexive-transitive closure) on the right.

�

Now the main step in the proof will be to show that →X ∪ →R is terminating
if →R is. We can show that for any reduction in the union of →X and →R, we
get one in →R which has the same number of →R steps; hence if there were an
infinite reduction in the union, there would have to be one in →R as well, which
leads to a contradiction.

The key idea, due to Neil Ghani, is to assume the relation X to be confluent as
well as strongly normalizing. If it isn’t, we can complete it to a relation X̂ which
is confluent, and we show strong normalization of one relation by embedding it
into one which is strongly normalizing. Under this additional assumption, we can
show that any reduction in�S gives rise to one in�R of at least the same length.
This is done by reducing every variable x to its normal form. The normal form
is uniquely determined, and hence this reduction does not destroy any redexes.
This is the content of the following lemma:

Lemma 5.1.3 Given a complete binary relation (X, <), and t1, t2 ∈ TΩ(X) s.t.
t1 →R t2, then

t1
R - t2

NFX(t1)

X

↓↓
R - NFX(t2)

X

↓↓

where NFX(t1) is the normal form of t1 in →X.

Proof. t1 →R t2 iff there is a context C and a substitution σ s.t. t1 = C[σ(l)]
and t2 = C[σ(r)], and l → r ∈ R. Define the substitution τ (x) def= NFX(x) (which
is well-defined since X is complete), then NFX(t1) = τ (t1) = C[τ (σ(l))] (since
substitutions commute with operations and contexts) and similarly NFX(t2) =
C[τ (σ(r))]. Hence, with the substitution σ′ = τ .σ, NFX(t1) �R NFX(t2) as
required. �

Now given a sequence t1 →S t2 →S . . . tn, we can now apply lemma 5.1.3, and
get a normal form with respect to �X. We obtain a shorter sequence containing
only reductions in R.

Chapter 5 — Modularity of Strong Normalization 151

Corollary 5.1.4 Let S
def= →R ∪ →X and (X, <) be complete. For any sequence

P = t1 →S t2 →S . . . tn in →S with m (m ≤ n) reductions in →R, there is a
reduction s1 →R s2 →R . . . sm, where all si are normal forms with respect to →X ,
t1 �X s1 and tn �X sm.

Proof. The corollary is shown by an induction over length n of the sequence P ,
and applying lemma 5.1.3. �

We are now in a position to show the main result of this section:

Proposition 5.1.5 A term rewriting system Θ is strongly normalizing iff TΘ is
a strongly normalizing monad.

Proof. Let X be a strongly normalizing category, and X
def= R−(X). Then by

lemma 5.1.2, R−(TΘ(X)) = (→R ∪ →X)+, hence TΘ(X) |= SN iff (→X ∪ →R)+ |=
SN iff →X ∪ →R |= SN. As an abbreviation, let S

def= →R ∪ →X. Then to show
the lemma, we have to show that →R |= SN iff S |= SN.

One direction is trivial, since →R⊆ S. For the other direction, assume that
X is confluent as well as strongly normalizing, and proceed by contradiction as
follows: assume there were an infinite sequence P = t1 →S t2 →S . . . tn →S . . .

in S+, then this sequence would have to contain infinitely many steps from both
→R and →X (since both are SN). With the additional assumption of X being
complete, we can apply corollary 5.1.4; so there would be an infinite sequence
P ′ in →R. But →R is terminating by assumption, hence there cannot be such a
sequence in →S.

If X is not confluent, then it can be completed to a relation X̂ which is. The
previous paragraph applies to X̂, hence →R ∪ →X̂ is strongly normalizing; but
then (→R ∪ →X) ⊆ (→R ∪ →X̂), and any subrelation of a strongly normalizing
relation is strongly normalizing. �

5.2 Strong Normalization for the Coproduct
Monad

Unfortunately, there is no equivalent of the tiling lemma 4.2.2 for strong normal-
ization. There does not seem to be a useful characterization of preservation of
strong normalization for the coequalizer of two functors.

Hence, we have to bite the bullet and directly reason about the coproduct of
the colimit of DX . Fortunately, we can find a good characterization when this
colimit is strongly normalizing. This characterization is based on the fact that

Chapter 5 — Modularity of Strong Normalization 152

for every path in the colimit of DX , there is an equivalent one of minimal length
(§3.2.3 on page 114). These paths of minimal length give rise to sequences in
the underlying non-identity relation of colim DX , and if roughly speaking there
are no infinite paths of minimal length, then there will be no infinite sequences
in R−(colim DX), and hence colim DX |= SN. In other words, if we cannot form
arbitrarily long paths of morphisms from

∐
w∈W T wX in the coequalizer, then the

coequalizer will be strongly normalizing.
Of course, every path on its own is finite (otherwise it would not have a

target), so we have to be more precise here. We do not have one infinite path,
but a sequence

<α1>, <α1, α2>, <α1, α2, α3>, <α1, α2, α3, α4>, <α1, α2, α3, α4, α5>, . . .

of paths of minimal length which keeps growing indefinitely. We call this an
infinite sequence in colim DX :

Definition 5.2.1 (Infinite Sequence) An infinite sequence (αi)i∈N+ in
colim DX is given by morphisms αi : xi → yi in

∐
w∈W T wX such that for all

k ∈ N+, <α1, . . . , αk> is a path of minimal length.

If we can find such an infinite sequence in colimDX then T1+T2 is not strongly
normalizing.

Lemma 5.2.2 Let T1, T2 |= SN. If there is an infinite sequence (αi)i∈N+ in
colim DX for some strongly normalizing category X , then T1 + T2 2 SN.

Proof. If there is an infinite sequence (αi)i∈N+ in colimDX , we construct an infinite
sequence

z1 < z2 < z3 < . . .

in R−(colim DX) by letting zi
def= [s(αi)], so colim DX 2 SN and hence T1 + T2 2

SN. Since for all k ∈ N+, A = <α1, . . . , αk> is of minimal length, αi 6= 1 for all
i ∈ N+ (otherwise A would not be of minimal length), hence [s(αi)] < [t(αi)] in
R−(colim DX), and with [t(αi)] = [s(αi+1)] = zi+1, zi < zi+1. �

The converse of lemma 5.2.2 does not hold in general, because non-termination
of the coproduct can also be caused by an unbounded increase in rank; see the
counterexample on page 155 below. However, if we restrict ourselves to non-
expanding monads, the converse of lemma 5.2.2 holds.

Lemma 5.2.3 Let T1, T2 |= SN. If T1, T2 are non-expanding and T1 + T2 2
SN, then there is an infinite sequence (αi)i∈N+ in colim DX for some strongly
normalizing category X .

Chapter 5 — Modularity of Strong Normalization 153

Proof. If T1 + T2 2 SN, then colim DX 2 SN for some strongly normalizing
category X , which is the case if there is an infinite sequence

S = z1 < z2 < z3 < . . .

in R−(colimDX). S is given by morphisms fi : zi → zi+1 in colimDX (for i ∈ N+),
with fi 6= 1. Morphisms in colimDX are equivalence classes of paths, represented
by paths of minimal length. Without loss of generality, we can assume that these
paths of minimal length are of length one, i.e. fi = <βi> with βi : xi → yi in∐

w∈W T wX and in normal form. (If they are not, we can decompose them into
paths of length one, obtaining a longer, still infinite sequence S above.)

Hence, S is given by βi : xi → yi in
∐

w∈W T wX with [xi] = zi and [yi] =
zi+1 for i ∈ N+. We now have to construct an infinite sequence in colim DX

from S. Intuitively, this is done by composing as many βi, βi+1 as possible; then
the remaining ones are incomposable and will hence form a path of minimal
length. Since both T1 and T2 are strongly normalizing,

∐
w∈W T wX is strongly

normalizing as well, and so we can only compose finitely many βi and βi+1, so
the remaining sequence will be infinite.

To this end, we define two functions σ, υ : N+ → N+, and a sequence (γβ,k)k∈N+

which for k ∈ N+ gives a pair σ(k), υ(σ(k)) such that σ(k) ≤ υ(σ(k)) and
<γβ,υ(σ(k))> ≡M <βσ(k), . . . , βυ(σ(k))>. σ(k) can be thought of as the first morphism
in the sequence S to make up of the k-th morphism in the infinite sequence, υ(k)
as the last morphism in S still “composable” with βk in the sense that there
are βk, βk+1 which are not an incomposable pair,3 and γβ,υ(σ(k)) gives the k-th
morphism in the infinite sequence. σ, υ and γβ are defined inductively as follows:

σ(1) def= 1

σ(k + 1) def= υ(σ(k)) + 1

γβ,1
def= β1

γβ,k+1
def=
{

βk+1 if (γβ,k, βk+1) are an incomposable pair
α where <α> ≡M <γβ,k, βk+1>

υ(k) =
{

υ(k + 1) otherwise
k if (γβ,k, βk+1) are an incomposable pair

We first show that the above is well-defined. To do so, it is sufficient to show that

∀k ∈ N+ ∃l ∈ N+ . k ≤ l ∧ (γβ,l, βl+1) are an incomposable pair
(5.1)

3This means that we may not be able to compose βk, βk+1 directly but there will be two
morphisms equivalent to βk, βk+1 which are composable. The result of this composition for
βσ(k), . . . , βυ(σ(k)) is accumulated in γβ,k . Actually, σ and υ depend on β as well, and hence
should be indexed with β, but to maintain readability we only do this with γ.

Chapter 5 — Modularity of Strong Normalization 154

Since T1, T2 are non-expanding, by lemma 4.3.2, NF(x) is a witness of x, i.e.
for all α : x → x′, there is β : NF(x) → x′′ s.t. <α> ≡M <β>. Furthermore,
for all α : y → y′ with y ≡O x, there is β : NF(x) → x′ with <α> ≡M <β>,
since NF(y) = NF(x). To show 5.1, let t

def= δs(βk) with t ∈ T wX , and let
i = k, k + 1, k + 2, If (γβ,i, βi+1) are an incomposable pair, l

def= i and we are
done; if not, there is α s.t. <α> ≡M <γβ,i, βi+1> and since t ≡M δs(α), there is
α′ : t → t′ such that <α′> = <α>. So wolg. we may assume that δs(α) is actually
t, and hence all γβ,i are morphisms in T wX . Since for all j ∈ N+, βj 6= 1, this
gives rise to a sequence z0 < z1 < z2 < . . . in R−(T wX), with z0

def= t, zi
def= δt(γβ,i).

But T wX |= SN, so this sequence cannot be infinite, hence there has to be an l

such that (γβ,l, βl+1) are an incomposable pair.
Unfortunately, we are not quite done yet. We would like to define an infi-

nite sequence the k-th element of which is γβ,υ(σ(k)); but from the definition, it
merely follows that γβ,υ(σ(k)) and βυ(σ(k+1)) = βσ(k+1) are an incomposable pair,
not γβ,υ(σ(k)) and γβ,υ(σ(k+1)), as would be required. Hence, we iterate our con-
struction by again composing as many morphisms as can be composed; and again
appeal to strong normalization of the two monads T1, T2 for termination.

In detail, we define sequences (αi
k)k∈N+ for i ∈ N as follows:

α0
k

def= γβ,υ(σ(k))

αi+1
k

def= γαi,υ(σ(k))

It remains to show that this iteration terminates, i.e. for all k ∈ N+, there is
m ∈ N+ such that αm

k = αm+1
k , or equivalently (αm

k , αm
k+1) are an incomposable

pair. This is shown by contradiction: assume there would be k ∈ N+ such that
for all m ∈ N, αm

k 6= αm+1
k . Without loss of generality, we can assume that this is

the smallest such k, i.e. there is an n ∈ N s.t. n ≤ m and for all l ≤ k, αn
l = αn+1

l .
Then the source of all αm

k with n ≤ m would be the same. Call this object t

where t ∈ T wX . With T1, T2 non-expanding, NF(t) witnesses all αm
k , and since

αm
k 6= αm+1

k , there is an infinite sequence z0 < z1 < z2 < . . . in R−(T wX), with
z0

def= NF(t), zi
def= δs(αm+i

k). Since T wX |= SN, there cannot be such a sequence, so
for all k ∈ N+, there is m ∈ N+ such that αm

k = αm+1
k , or equivalently (αm

k , αm
k+1)

are an incomposable pair. We then define the sequence (νk)k∈N+ in colim DX as

νk
def= αi

k where αi
k = αi

k+1

for which by construction, (νk, νk+1) are an incomposable pair as required, hence
(νk)k∈N+ is in infinite sequence in colim DX . �

The negation of lemma 5.2.3 gives us the following useful corollary:

Chapter 5 — Modularity of Strong Normalization 155

Corollary 5.2.4 Let T1, T2 |= SN. If T1, T2 are non-expanding and for ev-
ery strongly normalizing category X , there is no infinite sequence (αi)i∈N+ in
colim DX , then T1 + T2 |= SN.

We now give a counterexample, due to Paul-André Melliès, showing why
lemma 5.2.3 requires the monads to be non-expanding. Recall the monad B =
〈B, ηB, µB〉 from example 2.3.12 on page 75. It was there given on Pre; on Cat,
it adds an object ⊥ and for every object x ∈ X a morphism ⊥ → x to its argu-
ment category X . It is not non-expanding, or more precisely does not preserve
non-expandingness (see page 81), and by this property gives us a counterexample
to the converse of lemma 5.2.3. Let Σ def= {F1} be the signature with just one
unary operation, then in TΣ +B(X) (for any non-empty X), there is the sequence

⊥
β1

- ’F(’⊥)
β2

- ’F(’’F(’⊥))

’F(F(’⊥))

|||

β3

- ’F(F(’’F(’⊥)))

’F(F(F(’⊥)))

|||
. . .

Here, β1 lives in B(TΣ(B(X))), and β2 lives in B(TΣ(B(TΣ(B(X))))); their com-
position (or more precisely, the morphism γ equivalent to the path <β1, β2>)
lives in the latter as well. Similarly, β3 cannot be directly composed with γ, but
β ′3 : ’F(’’F(’⊥)) → ’F(’’F(’’F(’⊥))) (which is equivalent) can. This way, we
construct a sequence α1

def= β1, α2
def= γ1, α3

def= β ′3.γ1, . . . in which the rank strictly
increases (rank(αi) < rank(αi+1)), but which is not an infinite sequence in the
sense of definition 5.2.1. This is only possible because B does not preserve non-
expandingness, in particular B(TΣ(B(TΣ(ηB)))) maps ’⊥ ∈ B(TΣ(B(TΣ(X)))) to
’⊥ ∈ B(TΣ(B(TΣ(B(X))))), and there is β2 as above which does not come from
any map in B(TΣ(B(TΣ(X)))).

5.3 Modularity of Strong Normalization for
Non-Collapsing Monads

As an application of our methodology, we will in this section prove the modularity
of strong normalization for non-collapsing monads, and term rewriting systems.
Our main tools will be lemma 3.2.14 and corollary 5.2.4. The argument will be
that if there are no collapsing rewrite rules, then by lemma 3.2.14 there are no
incomposable pairs (which correspond to new rewrites being created by collapsing
of layers), and hence all sequences in colimDX (for a strongly normalizing category

Chapter 5 — Modularity of Strong Normalization 156

X) will be of length one. Then by corollary 5.2.4 the coproduct monad will be
strongly normalizing.

Lemma 3.2.14 says that an incomposable pair (α, β) is given by two morphisms
such that α is layer-collapsing, and β µ-expansive. The most straightforward
argument would be that if a monad is non-collapsing, which would mean that
its unit is non-collapsing and the action preserves non-collapsingness, then there
could be no layer-collapsing morphisms. Unfortunately, this argument is too
restrictive, since only monads arising from term rewriting systems in which the
variables of the right-hand side of every rule are contained in the left-hand side
preserve non-collapsingness (this the dual of lemma 2.4.8); a counterexample is
obtained by dualising the counterexample given on page 81.

So in order to show the result for all collapsing term rewriting systems, we can
only assume that the units of the monads are non-collapsing. We will now first
give a sketch of the proof for two monads arising from term rewriting systems,
before generalizing the proof to arbitrary monads; when doing so, we will need to
develop certain notions from term rewriting like “variables occuring in a term”
in the monad setting.

5.3.1 Modularity of Termination for Non-Collapsing Term
Rewriting Systems

Given two non-collapsing term rewriting systems Θ = (Ω, R) and Ψ = (Σ, S).
The main lemma will be to show that for any strongly normalizing category X
there is no incomposable pair in colim DX . By lemma 3.2.14, it is sufficient to
show that if there is α : t′ → t in TΘ(TΨ(TΘ(X))) which is in normal form (for
all α′ in TΘ(TΘ(X)), TΘηΨ,TΘ(X)(α′) 6= α), but there is s ∈ TΘ(TΘ(X)) such that
t = TΘηΨ,TΘ(X)(s) (i.e. α is layer-collapsing), then for all β : µΘ,X (s) → s′′ in
TΘ(X) there is β ′ : s → s′ such that β ′ = µΘ,X (β); in other words, if there is a
layer-collapsing rewrite, it cannot be followed by a µ-expansive one.

For the proof, we decompose the rewrite α : t′ → t into its “top layer” α0 and
the rest, as follows. For a term t, we have the set var(t) of variables of t; here,
since t ∈ TΘ(TΨ(TΘ(X))), the variables are a subset of the objects of TΨ(TΘ(X)).
Let σ be the inclusion σ : var(t) ↪→ TΨ(TΘ(X)), then t can be given as t = TΘσ(t0)
where t0 ∈ TΘ(var(t)) is the “top layer”. Similarly, for α there is a rewrite α0

in TΘ(Z) where Z is the subcategory of TΨ(TΘ(X)) given by those terms and
rewrites between them occuring in α; we can define this by structural induction
(just like the variables of a term on page 54). α is then given as α = TΘσ(α0)
where σ : Z ↪→ TΨ(TΘ(X)) is the inclusion of Z into TΨ(TΘ(X)).

Chapter 5 — Modularity of Strong Normalization 157

Since α is a normal form, no rewrite γ in Z is in the image of ηΨ,TΘ(X), i.e. no
rewrite is a variable, and because ηΨ,TΘ(X) is non-collapsing, no target of γ is in
the image of ηΨ,TΘ(X):

∀x ∈ var(t) ∀y ∈ TΨ(TΘ(X)) . x 6= ηΨ,TΘ(X)(y) (5.2)

Now furthermore assume that α is collapsing, i.e. there is s ∈ TΘ(TΘ(X)) such
that TΘηΨ,TΘ(X)(s) = t. We now want to show that for all β : µX (s) → s′ in
TΘ(X) there is β ′ : s → s′′ in TΘ(TΘ(X)) s.t. β = µX (β ′).

We prove this by showing that under the assumptions just given t as above is
a constant, i.e. var(t) = ∅. The proof proceeds by structural induction on t. Let
Z

def= var(t) be the set of variables of the whole term t. For the induction step, if
t = e(t1, . . . , tn) then TΘηΨ,TΘ(X)(s) = e(t1, . . . , tn) only if s = e(s1, . . . , sn) and
TΘηΨ,TΘ(X)(si) = ti— that is the induction assumption. For the induction base,
t = ’x (with x ∈ Z), then TΘηΨ,TΘ(X)(s) = ’x only if s = ’y, ηΨ,TΘ(X)(y) = x.
This can however be excluded by 5.2 above; hence there can only be an s such
that TΘηΨ,TΘ(X)(s) = t if there are no variables in t.

Now if t is a constant, s is a constant as well, as will be µX (s), and if we assume
non-expandingness of the two term rewriting systems, a constant in TΘ(X) only
rewrites to another constant s′ in TΘ(X), which in turn can be given as a constant
s′′ in TΘ(TΘ(X)), giving rise to a rewrite s → s′′ in TΘ(TΘ(X)) as required.

5.3.2 The Monad Proof

The proof just sketched used a couple of concepts for terms which we have not
yet developed in the monad setting:

• A term (or rewrite) from T wX was decomposed into a top layer from T1X ,
and the rest from T wX ;

• For a term t ∈ TX , variables x ∈ X may or may not occur in t;

• From this, constants were defined (terms in which no variables occur), along
with some properties.

For a monad T = 〈T, η, µ〉 on Cat, a term is an object of TX and a rewrite
is a morphism in TX , for some category X (see §2.3.4 on page 74); the category
X is the context, its objects are the variables, and its morphisms the variable
rewrites. But a term t ∈ TΩ(X) need not contain all variables x ∈ X (i.e. there
are t s.t var(t) 6= |X |), so what does it mean for an object x ∈ X to actually occur
in t ∈ TX ? It seems easy to characterize when x does not occur in t; namely,

Chapter 5 — Modularity of Strong Normalization 158

if we can map x to different values while t remains the same. In other words, if
there are two maps (i.e. functors) σ1, σ2 : X → Y such that σ1(x) 6= σ2(x) but
Tσ1(t) = Tσ2(t). Then x occurs in t if Tσ1(t) = Tσ2(t) implies σ1(x) = σ2(x).
This allows us to define the set, or rather the category, of variables of t ∈ TX as
a subcategory of the context X . This notion easily carries over to a morphism
α : s → t in TX .

Definition 5.3.1 (Category of Variables) Given a monad T = 〈T, η, µ〉 on
Cat, then for t ∈ TX , for some X , we say that for x ∈ X ,

x occurs in t ⇔ ∀σ1, σ2 : X → Y . Tσ1(t) = Tσ2(t) ⇒ σ1(x) = σ2(x)

We similarly define when a variable rewrite f : x → y in X occurs in t, and when
x or f occur in α : s → t in TX .

The category of variables Var(t) of t (and Var(α) of α) is defined as the
smallest subcategory of X given by all objects and morphisms occuring in t or α,
respectively.

Note that for an arbitrary monad we can have non-identity variable rewrites
f : x → y occuring in a term t ∈ TX ; this will not occur with monads given by
term rewriting systems, since it corresponds to the presence of an operation with
a non-discrete arity, e.g. an operation F which takes two arguments such that the
first argument has to rewrite to the second one.

It is easy to show that for a monad TΘ given by term rewriting system Θ,
the objects of Var(X) are isomorphic to the set var(t) of variables of t for all
t ∈ TΘ(X); this is done by a structural induction on t, showing that if x ∈ var(t),
x occurs in t as defined above, and on the other hand if x occurs in t than it has to
be an element of var(t). Further, if η is monic we can show that x occurs in η(y) iff
x = y, using naturality if η: Tσ1(ηX (x)) = Tσ2(ηX (x)) iff ηY(σ1(x)) = ηY(σ2(x))
iff σ1(x) = σ2(x).

A fact that is actually needed below is that the variables occuring in the source
and target of a rewrite will occur in the variables of the rewrite itself as well:

Lemma 5.3.2 For a morphism α : s → t in TX , Var(s) and Var(t) are subcat-
egories of Var(α): Var(s) ↪→ Var(α) and Var(t) ↪→ Var(α)

Proof. Given x ∈ X , we want to show that if x occurs in s, then x occurs in α as
well. Since Tσ1, Tσ2 are functors, we have first implication below, and if x occurs
in s we have the second implication:

Tσ1(α) = Tσ2(α) ⇒ Tσ1(s) = Tσ2(s)

Tσ1(s) = Tσ2(s) ⇒ σ1(x) = σ2(x)

Chapter 5 — Modularity of Strong Normalization 159

so taking the two together, we can conclude that x occurs in α.
A similar argument holds for the variable rewrites f : x → y occuring in s

and hence α, making Var(s) a subcategory of Var(α); and similarly, we can show
that Var(t) is a subcategory of Var(α). �

We can now decompose any object t or morphism α : u → v in TiT w(X) (with
i ∈ L, w ∈ W) into t0 ∈ Ti(Var(t)), σ : Var(t) ↪→ T w(X) with t = Tσ(t0), or
α0 : u0 → v0 in Ti(Var(α)), τ : Var(α) ↪→ T w(X) (where τ, σ are the obvious
embeddings).

Constants are objects t or morphisms α in TX the category of variables of
which is the empty category, 0. The empty category is initial in Cat, i.e. for
any other category Y there is a unique functor !Y : 0 → Y. Then the fact that
constants remain constants under substitution of variables, and that in a non-
expanding system constants can only rewrite to constants follow categorically:
for any monad T = 〈T, η, µ〉 on Cat and for all categories Y,

µY(T !TY) = T !Y (5.3)

which is proven by diagram 5.4, where the left triangle is T applied to !TY = ηY .!Y,

T0
T !Y - TY

TTY

TηY

?

µY
-

T !TY
-

TY

=============

(5.4)

the uniqueness of !, and the right triangle is one of the monad laws.
Further, if T is non-expanding, then T (!Y) is non-expanding, i.e. for all t ∈ T0,

if there is α : T !Y(t) → s, then there is α′(t) → s′ in T0 s.t. T !Y(α′) = α. This
follows because !Y : 0 → Y is non-expanding (simply because there is no x ∈ 0 for
which there could be f :!Y(x) → y in Y), and if T is non-expanding, it preserves
this, making T !Y non-expanding.

We have now defined and proven the main notions and properties to show the
main technical lemma:

Lemma 5.3.3 Let T1, T2 be strongly normalizing, regular, non-expanding and
non-collapsing monads on Cat, and X be a strongly normalizing category. Let
α′ : r′ → t′ be a morphism in T1T2T1X with α : r → t its normal form α = NF(α′)
such that α is layer-collapsing, i.e. there is s ∈ T1T1X s.t. t = T1(η2,T1X (t0)). Then

Chapter 5 — Modularity of Strong Normalization 160

µ1,X is not expansive at s, i.e. for all β : µ1,X (s) → s′ in T1X , there is β ′ : s → s′′

such that µ1,X (β ′) = β.

Proof. We decompose α into α0 in T1(Var(α)), and σ : Var(α) → T2T1X such
that α = T1σ(α0); and similarly, t into t0 ∈ T1(Var(t)), τ : Var(t) → T2T1X such
that t = T1τ (t0). Since α is a normal form, for all κ in Var(α) there is no λ in T1X
such that η2,T1X (λ) = σ(κ); and then since η2 is non-collapsing, for all x ∈ Var(α)
there is no v ∈ T1X such that η2,T1X (v) = σ(x). By lemma 5.3.2, Var(t) is a
subcategory of Var(α), hence this holds in particular for all x ∈ Var(t): there
is no v ∈ T1X such that η2,T1X (v) = τ (x). On the other hand, t = T1η2,T1X (t0),
hence for all x ∈ Var(t), there is u ∈ T1X such that η2,T1X (u) = τ (x).

Since no x ∈ Var(t) can satisfy both of these properties, we conclude Var(t)
has no objects (or morphisms): Var(t) ∼= 0. Then τ : Var(t) → T2T1X is
the unique morphism !T2T1X : 0 → T2T1X . By T1 applied to uniqueness of !,
T1!T2T1X = T1η2,T1X .T1!T1X , hence t = T1η2,T1X (s) = T1η2,T1X .T1!T1X (t0), and by
injectivity of T1η2 (given by regularity of T1 and T2) s = T1!T1X (t0). This means
that s is a constant as well, as it can be decomposed into t0 ∈ T10 and !T1X : 0 →
T1X .

By equation 5.3, µ1,X (s) = µ1,X (T1!T1X (t0)) = T1!X (t0). Since T1!X is non-
expanding, for all β : µ1,X (s) → s′, i.e. β : T1!X (t0) → s′, there is γ : t0 → s0

such that β = T1!X (γ) = µ1,X (T1!T1X (γ)), hence we have β ′
def= T1!T1X (γ) with

µ1,X (β ′) = β as required. �

Theorem 5.3.4 The coproduct of two strongly normalizing, non-collapsing, reg-
ular, and non-expanding monads T1, T2 on Cat is strongly normalizing.

Proof. Given a strongly normalizing category X , we have to show that the
coproduct T1 + T2 at X , given by colim DX , is strongly normalizing.

By corollary 5.2.4, it is sufficient to show that for all strongly normalizing
categories X , there are no infinite sequences (αi)i∈N+ in colim DX . Such an
infinite sequence consists of morphisms αi in

∐
w∈W T wX such that for all k ∈ N+,

<α1, . . . , αk> is a path of minimal length; then by definition 3.2.11 all (αi, αi+1)
have to be incomposable pairs.

We will show that there are no incomposable pairs; we can then conclude that
there is no infinite sequence. By lemma 3.2.14, an incomposable pair (α, β) is
given by two morphisms α : x1 → y1, β : x2 → y2 in normal form such that there
are r, s ∈ W, i, j ∈ L, i 6= j and z ∈ T riisX where α is layer-collapsing at z with
y1 = ηri

j,is(z), and β is µ-expansive at z: x2 = µr
i,s(z), and for all β ′ : z → z′,

Chapter 5 — Modularity of Strong Normalization 161

µr
i,s(β ′) 6= β. (We can exclude the second case from lemma 3.2.14 here, because

both monads are non-expanding.)
Any layer-collapsing morphism α : s → t in T rijisX gives rise to a layer-

collapsing morphism α′ : s′ → t′ in T ijisX , for which by lemma 5.3.3 there are
no µ-expansive morphisms in T iisX (set X in lemma 5.3.3 to T sX , which is a
strongly normalizing category.) Since T1 and T2 are non-expanding, they will
preserve the non-expandingness of µi,X , hence there is no µ-expansive β in T ris

and hence there cannot be an incomposable pair. �

Modularity of strong normalization for non-collapsing term rewriting systems
then follows as a corollary of this theorem:

Corollary 5.3.5 The disjoint union of two strongly normalizing, non-collapsing,
term rewriting systems which do not introduce unbounded variables is strongly
normalizing.

Proof. Given two strongly normalizing, non-collapsing, non-expanding term re-
writing systems Θ1, Θ2 which do not introduce unbounded variables, the monads
TΘ1 and TΘ2 are strongly normalizing by proposition 5.1.5, non-collapsing by
lemma 2.4.9, regular by proposition 2.4.4 and non-expanding by lemma 2.4.8.
Then by theorem 5.3.4, TΘ1 + TΘ2 is strongly normalizing, and by proposi-
tion 2.5.3, TΘ1 + TΘ2

∼= TΘ1+Θ2 . Hence (again by proposition 5.1.5), Θ1 + Θ2

is strongly normalizing. �

5.4 Summary and Conclusion

In this chapter, we have investigated modularity of strong normalization (termi-
nation) for monads.

We have defined a semantic notion of termination for categories and monads,
and showed it to be equivalent to the usual, syntactic definition found in the lit-
erature, in the sense that the monad TΘ is terminating according to the semantic
definition if and only if the term rewriting system Θ is terminating according the
syntactic definition.

We have given a characterization of termination of the coproduct monad of
two terminating monads by infinite sequences of morphisms from the components
T wX of

∐
w∈W T wX , i.e. the coproduct is terminating if and only if the process

of forming paths terminates. In one direction, this characterization only holds
for non-expanding monads. This technical lemma is an important tool in proving
the strong normalization of the coproduct monad.

Chapter 5 — Modularity of Strong Normalization 162

Unlike confluence, termination is not modular in general, it only holds under
certain assumptions on the term rewriting systems in questions. Usually these
formulations are formulated rather syntactically. Here we have proven modularity
of strong normalization for non-collapsing monads on a semantic level, using
purely categorical reasoning without recourse to the syntax. In order to be able
to this, we had to develop categorical counterparts of certain syntactic properties,
e.g. we had to define a notion of a variable (an object x ∈ X) occuring in a term
(an object t ∈ TX) for an arbitrary monad T. The proof demonstrates that our
approach is also suitable for modularity proofs for strong normalization.

All in all, strong normalization with the inherent notion of “counting steps”
seems less amenable to categorical analysis than confluence, which after all is just
completing diagrams. Nevertheless we were able to show some modularity results,
hopefully setting the scene for some more in the future. A worthwhile target would
be a categorical version of the results by Gramlich [23] and Ohlebusch [62] that
strong normalization is modular for a system which is strongly normalizing under
non-deterministic collapses, or an appropriate categorical version thereof. In the
long run, exploring a more abstract definition of strong normalization (perhaps
along the lines of Hilken [29] mentioned above) may be potentially fruitful avenue
of further research.

Chapter 6

Conclusions and Further Work

The aim of this thesis was to give a semantics to term rewriting systems which
can express the key concepts such as layers and substitutions, but abstracts from
unnecessary syntactic details (such as “contexts”), to demonstrate the advantages
of the semantics by applying it to modularity problems, and to show the usefulness
of (enriched) category theory in the process.

Summary

Our starting point was the modelling of equational presentations by monads on
the category of sets.

We have then generalized this to the modelling of term rewriting systems by
monads on the category of sets-with-structure. Depending on what aspect of
term rewriting one is interested in (one-step vs. many-step, named vs. unnamed
reductions), sets-with-structure can be relations, preorders, categories etc, and
we can instantiate the general theory to any of these. The theoretical basis is
enriched category theory, in particular the theory of finitary enriched monads; the
crucial point here is that the construction has to be properly enriched. One of
the consequences of this is that the finitely presentable objects of the category of
sets-with-structure are the arities of the operations, leading to generalized rewrite
rules in which rewrites between variables are allowed.

We have shown that the mapping of term rewriting systems to monads has
a right adjoint, given by the internal language of a monad, justifying our calling
the semantics compositional; the working assumption here (following Goguen
and Burstall) is that many important structuring operations can be expressed as
colimits. We have shown in detail how to construct the coproduct of two finitary
monads (corresponding to the disjoint union of two term rewriting systems), and
sketched the construction of the coequalizer; from these, any other colimit can be
constructed.

163

Chapter 6 — Conclusions and Further Work 164

As an application of our semantics, we have turned our attention to modular-
ity problems, in particular the modularity of confluence and strong normalization
under the disjoint union. We have proven modularity of confluence (Toyama’s
theorem), and the modularity of strong normalization for non-collapsing term
rewriting systems. By proving these results in our more general, abstract, cat-
egorical framework we were able to extend Toyama’s theorem to systems which
introduce so-called bounded variables on the right, and to quasi-non-expanding
systems.

In the rest of this concluding chapter, we will review other approaches to
categorical term rewriting, and compare them with our work. We will close this
chapter by indicating directions of future research.

6.1 Related Work

Categorical term rewriting — using category theory to give models of term rewrit-
ing systems — is by no means new. We will now give a (necessarily subjective and
incomplete) review of the literature in this field, in order to assess the significance
of the work presented in this thesis.

As far as the category theory is concerned, the reader is referred to [69] for
an account of the work on monads. Suffice it to say here that the modelling
of equational presentations started with Linton [48], and that its generalization,
to base categories other than Set and to enriched categories, is due, apart from
Kelly and Power [39], to Dubuc and Kelly [11], and Burroni [5].

6.1.1 Early Work

The idea of representing term rewriting systems by 2-categories (or other en-
riched categories), in which the morphisms represent the terms and the 2-cells
the reductions between them, goes back to two seminal papers by Seely [81] and
Rydeheard and Stell [73].

Seely [81] argues that “2-categories occur naturally as structures in computer
science”, and as an example presents a 2-category LAMBDA which has the
types of the simply typed λ-calculus as objects, the terms as morphisms and βη-
reductions between the terms as 2-cells. The motivation for putting 2-cells in a
perfectly ordinary category lie in categorical logic: both proofs in intuitionistic
first-order logic and terms of the simply typed λ-calculus can be presented by a
cartesian closed category, in which the types are objects and the terms are mor-
phisms (see [45]). Then reductions between proofs, as studied in proof theory [67],

Chapter 6 — Conclusions and Further Work 165

lead to 2-cells between morphisms and 2-categories as models of these reductions
(called hyperdoctrines [80]), and since reductions between proofs correspond to
reductions in the λ-calculus, one arrives at the 2-category sketched above.

The foundations for this work have been laid by the “Australian school”
around the Sydney Category Seminar and their work on 2-categories and en-
riched categories; in particular, Street [86] proposes the notion of a computad
which is essentially a Semi-Thue or string rewriting system, but without making
the relation to term rewriting explicit; this has been left to Power [64].

Rydeheard and Stell [73] start from a completely different (and more familiar)
angle: the categorical treatment of universal algebra. They consider the Kleisli-
category SetTΩ of the monad TΩ given by a signature Ω: this has sets of variables
as objects, and substitutions of variables as morphisms (i.e. morphisms in SetTΩ

are of the form σ : X → TΩ(Y), where X and Y are sets, which we can think of
as assignment of variables from X to terms in TΩ(Y)), and proceed to introduce
reductions on the substitutions as 2-cells. This work has been developed by Stell
in his thesis [82] and the subsequent [83], in which he advocates the use of Sesqui-
categories instead of 2-categories, because they have a notion of length which
2-categories lack.

6.1.2 Later and Contemporary Work

The work of Seely [81] was further developed by Jay and Ghani [31, 32, 17, 18].
They investigate structures modelling reductions for a specific term rewriting
systems, namely the typed λ-calculus and extensions of it. The category theory
is used to arrive at “well-behaved” rewrite rules; in particular [17] proposes the
idea that the introduction and elimination rules for a particular type should be
adjoint to each other. This for example leads to η-expansions rather than η-
contractions, and was successful in solving a long standing problem about the
confluence of the simply typed λ-calculus with a coproduct type. [17] lead to a
series of papers, systematically applying the theory of η-expansions to increasingly
complicated type theories, from System F [19] to the Calculus of Constructions
[20].

The 2-category TΩ constructed in [73] can be obtained essentially as the
Kleisli-category of the monad TΘ of proposition 2.3.9, except that TΩ has sets
rather than categories as objects. Stell [82, 83] uses Sesqui-categories rather than
2-categories, but the construction remains the same. All of this is more concerned
with investigating the structure of the reductions given by the term rewriting sys-
tems, rather than finding a compositional semantics as is our aim; for example,

Chapter 6 — Conclusions and Further Work 166

a typical theorem [82, Theorem 5.4.2] shows that a specific kind of spans1 in the
Sesqui-category corresponds precisely to the critical pairs of the term rewriting
system. Hilken [29] investigates the algebraic structure given by the 2-cells in the
categorical models of the typed λ-calculus in order to develop a proof theory for
the reductions in the typed λ-calculus.

Gray, in a series of papers, proposed “enriched sketches” to model typed λ-
calculi [28] and algebraic datatypes [26, 25, 27]. This work uses the formalism
of sketches to investigate properties of the datatypes and term rewriting systems
specified (to great effect: [28] shows that the typed λ-calculus can be given as an
initial algebra for a finite limit sketch, and derives from it an implementation in
the rewriting tool Mathematica), and is not concerned with modularity.

Johnson [33], on the other hand, goes a step further and gives a 3-categorical
model of (linear) term rewriting systems. This allows to consider linear term
rewriting systems as Semi-Thue systems with an extra dimension, but it is not
clear that the additional complications of 3-categories outweigh this simplification.

A rather different approach is put forward by Melliès, which he calls axiomatic
rewriting [55, 56]. He defines an Axiomatic Rewrite System as a graph with a
reduction (or derivation) structure on the paths, giving rise to a 2-category, which
is then shown to satisfy certain standardization properties. The key point here is
the correlation of the Church-Rosser property to the existence of push-outs, and
the standardization to factorization systems as in [14].

6.1.3 Other Work

Meseguer [57] uses a generalized form of term rewriting systems called rewrite
theories to model concurrent systems. Briefly, a rewrite theory is a a signature
with equations, and conditional term rewrite rules of the form [s]� [t] if [s1]�
[t1], . . . , [sn] � [tn] meaning the equivalence class [s] rewrites to [t] if all [si]
rewrite to [ti]. The construction of the syntactic model TR(X) for a rewrite
theory R is somewhat similar to the construction of the term reduction algebra
TΘ(X) (similar rules to generate derivations, similar equations on them), but
it is far more general in scope (providing a unified model of concurrency). The
common feature here, also occurring in Milner’s action structures [60] is the use of
enriched categories with a monoidal structure, the morphisms of which are terms,
and the enrichment models the reduction. [9] investigates the relation between
Meseguer’s rewriting logic and Stell’s modelling of term rewriting further, though
not necessarily more deeply.

1Two 2-cells with the same source.

Chapter 6 — Conclusions and Further Work 167

Power [65] considers a categorical formulation of Hoare’s data refinement [30]
in terms of enriched monads over Pos as an instantiation of the enriched monad
theory in [39], but although the categorical framework is essentially the same as
used in this thesis, no explicit connection to term rewriting is made.

Reichel [68] and Stokkermans [84] both consider critical-pair completion pro-
cedures in a 2-categorical framework. This allows an abstract notion of critical
pair completion, subsuming such apparently diverse problems as Knuth-Bendix
completion [43], construction of Gröbner bases or resolution [70]. Although an
elegant abstract notion, it does not lend itself to new results.

Although the phrase “free”2 is liberally used to describe categorical models
of term rewriting systems [83, 57], only [86] explicitly exhibits the adjunction
between syntax (computads) and semantics (the category of 2-categories) (and in
particular, the right adjoint).

6.1.4 Discussion

As mentioned above, the main novelties of the semantics presented in thesis are:

• the construction of the semantics as a monad;

• the generalized rewrite rules and variable rewrites;

• the freeness of the construction, exhibited by the adjunction in proposi-
tion 2.5.3;

• the modularity results obtained from it.

The monad gives the abstract way of building the semantics, and the theory
of enriched monads tells us how the terms are constructed, what arities are, what
algebras are etc. Separate from this, the different choices of enrichment correspond
to different models of reduction, so we can model all of ordered categories, Sesqui-
categories or 2-categories in this framework. This is precisely what makes the
semantics amenable to generalizations in various respects (see §6.2 below): the
“modularization” of the semantics allows to change parts of it without having to
rebuild it from scratch.

When the work mentioned in §6.1.1– §6.1.3 lead to new results (e.g. [18]),
these are mostly proven syntactically, on the level of terms; that term rewriting
results (like the generalization of Toyama’s theorem) are obtained using purely

2Sometimes, “free” is used to describe a left adjoint (e.g. [12]). This wording is unfortunate,
since the more common understanding in calling a functors F : C → D free is that D is monadic
over C.

Chapter 6 — Conclusions and Further Work 168

categorical reasoning is another distinguishing feature of this work. In fact, none
of the work mentioned above tackled modularity, probably because there is no
canonical way to combine arbitrary 2-categories. And while I would not claim
that the construction of the coproduct monad is particularly simple, it is far
simpler than the corresponding combination of 2-categories.

6.2 Future Work

The work in this thesis hopefully serves as a starting point for future research.The
amenability to generalization has been pointed out as one of the advantages of
the approach, so possibilities for future work exist at least in three directions:

• generalizing the term rewriting;

• improvements of the theory;

• or generalizing the structuring operations.

6.2.1 Generalizing the Term Rewriting

This thesis dealt with unconditional, single-sorted, first-order term rewriting sys-
tems. The generalization to many-sorted term rewriting systems is straightfor-
ward (see page 91), but one can envisage other more challenging generalizations:

• Conditional term rewriting systems.

A conditional term rewriting system is given by a signature Ω, and rules l →
r ⇐ s1 ≈ t1 . . . sn ≈ tn. The ≈ can be interpreted in at least three different
ways, giving rise to different variations of conditional rewrite systems (see
e.g. [3]).

One way to model a conditional term rewriting system C in this framework
would be to construct an endofunctor SC on the category Ω-Alg of Ω-
algebras in Pre, taking any algebra A to the smallest algebra A′ s.t. A′ |=
l → r if A |= si ≈ ti for all i = 1, . . . , n and all conditional rules l →
r ⇐ s1 ≈ t1 . . . sn ≈ tn, or taking A to A if this is not the case. Then let
TC be the free monad on SC , and by precomposition with the adjunction
between Pre and Ω-Alg to obtain a monad on Pre. Another way to model
conditional systems would be to encode the conditions in the arities (using
non-discrete arities); this would mean that the arities could be non-finite,
and would lead to non-finitary monads.

Chapter 6 — Conclusions and Further Work 169

• Variable rewrites.

Variable rewrites allow us to write down more things than before, for exam-
ple the equivalence closure of a term rewriting systems as a term rewriting
system (see example 2.3.6 on page 71). In effect, this is a (albeit rather
limited) form of conditional term rewriting, and it would be interesting to
investigate the limits of the additional expressivity gained.

• Hidden sorts and operations.

There should be a way to model hidden operations (and sorts, for the many-
sorted case), and observational equivalence, perhaps by using final semantics
rather than initial semantics [91]. The monad framework might even allow
to combine initial and final semantics [90].

• λ-calculi.

It is well-known how to model typed λ-calculi in cartesian closed categories
[45], and how closed cartesian categories can be obtained as algebras for a
2-monad on Cat; so it should be possible to generalize this to the reduction
structure given by the η-expansion and β-reduction. It would be particularly
attractive to be able to use the modularity results of chapters 4 and 5 to
show confluence and strong normalization of different variations of the typed
λ-calculus.

• Orthogonal term rewriting systems.

A term rewriting system is orthogonal if it is left-linear, and the rules con-
tain no overlapping left sides. This is actually a specialization rather than
a generalization, but orthogonal systems enjoy a lot of desirable properties
(e.g. they are confluent), and it might be worthwhile to arrive at an ab-
stract notion of orthogonality on the level of monads, perhaps along the
lines of [63]. Related to this, one might want to consider critical pairs and
completion procedures in this setting, as in [84] and [68].

• Rewriting modulo equations.

The generalization of the monad construction to a rewriting system with
equations (aka. a rewriting logic [57]) is straightforward and has already
been sketched above (page 91). However, the resulting monad does not pre-
serve coequalizers and will hence not be strongly finitary (only finitary), so
neither the coproduct construction nor the modularity results apply. Hence,

Chapter 6 — Conclusions and Further Work 170

the treatment of rewriting modulo equations, in particular modularity re-
sults for these systems, will require a more general construction for the
coproduct.

• Connection with axiomatic rewriting.

The connection of the approach presented here with Melliès’ axiomatic
rewriting [55, 56] is far from clear, and deserves further clarification. For ex-
ample, can we derive similar modularity results as in chapter 4 if we replace
our definition of confluence with Melliès’ pushout property?

• Other properties.

Although confluence and strong normalization are the most important prop-
erties of term rewriting systems, one might want to prove to investigate
modularity results for other properties such as weak normalization (which is
modular, see e.g. [59], where further modularity results for other properties
can be found as well). In particular, a categorical proof of the modularity of
completeness for left-linear systems [89] would be an interesting challenge
([54] presents a simplified proof of this result).

6.2.2 Improving the Theory

The coproduct construction as given in chapter 3 is rather ad hoc: it assumes
that the two monads in question are strongly finitary, a quite strong restriction.
A more general and systematic approach (suggested by John Power) would start
from the observation that the category of monads on A is itself monadic over
the category of finitary endofunctors on A, and then apply the construction of
colimits of algebras from [2, Chapter 9.3] and [49].

Another area worthy of improvement are the regularity conditions on the mo-
nads in §2.4.2. The present definitions are more a convenient technical shortstop
than a good attempt at an axiomatization, and it would be worthwhile to inves-
tigate whether they can be replaced by a set of conditions which would be easier
to verify, less technical in nature, or hopefully both. In particular, it should be
investigated wether one can replace definition 2.4.2 by requiring the unit and mul-
tiplication to be cartesian natural transformations (see also [7], and the discussion
on page 80).

Chapter 6 — Conclusions and Further Work 171

6.2.3 Generalizing the Structuring Operations

We have only considered coproducts of monads above, so the obvious general-
ization here would be to consider modularity for coequalizers of monads. Unfor-
tunately, in this generality we even lose modularity of confluence (coequalizers
correspond to arbitrary quotienting, and it is easy to see that this destroys con-
fluence). Perhaps attention should be restricted to particular colimits such as
push-outs modelling unions with shared constructors. This would correspond to
a pushout diagram like 6.1 in which the inclusions i1, i2 are non-expanding.

Θ0
⊂

i1 - Θ2

Θ2

i2

?

∩

- Θ1 +Θ0 Θ2

?

(6.1)

6.3 Concluding Remarks

The aim of this thesis was to present a semantics for term rewriting systems which
is on the one hand abstract enough to be able to forget all about the details of
the syntax, and on the other hand still expressive enough to be able to prove the
properties arising from the syntax.

I hope the reader will agree that the proofs given in chapter 4 and 5 justify
these claims. All in all, this work should just be a start — the real test will be to
arrive at really new term rewriting results, along the lines of the future research
mentioned above. A semantics is after all only useful if it gives us new insights
into the area we study.

Appendix A

Using Monads to Model Named
Reductions

In this appendix, we will elaborate on the remarks on page 67 and show how to
model named reductions by a monad on the category of small categories. The
construction contains three main steps, just like the corresponding construction
for unnamed reductions in chapter 2.

Apart from showing how the generic framework of enriched monad theory
adumbrated in §2.2 can be instantiated to a different framework then preorders,
named reductions are important in their own right for two reasons:

• When considering strongly normalizing systems, preorders are actually not
precise enough, because the reflexive closure destroys strong normalization
for any term reduction algebra: the term reduction algebra from defini-
tion 2.3.4 will never be strongly normalizing, neither as a relation (by defi-
nition 1.6.4) nor as a category (by definition 5.1.1). In order to make them
strongly normalizing by definition 5.1.1, we need to be able to tell apart the
identity rewrite 1t : t → t on any term t from other, cyclic rewrites from t

to itself.

• When considering quasi-non-expanding systems, we actually want equations
on the reductions. We would like to be able to express that a reduction
α : t → s has a retract α−1 : s → t, which when composed with α yields the
identity on t: α−1.α = 1t. In order to formulate equations on reductions,
they have to be named.

The structure of this chapter mirrors the structure of chapter 2: we first
define a monad TΘ on the category Cat in §A.1 (as in §2.3)), then show that the
monad is regular (§A.2, corresponding to §2.4), and finally show that there is an

172

Appendix A — Using Monads to Model Named Reductions 173

adjunction between the category of term rewriting systems and the category of
monads on Cat (§A.3, corresponding to §2.5).

A.1 A Term Construction for Named Reduc-
tions

In chapter 2, we have seen how term rewriting systems can be modelled by monads
on the category of sets-with-structure, generalizing the treatment of equational
presentations. The choice of the particular set-with-structure depends on which
aspect of term rewriting one is interested in, and in §2.3, we have seen how a
monad on the category Pre of preorders models unnamed many-step reductions.
In this section of the appendix, we will see how to model named many-step re-
ductions by a monad on the category Cat of all small categories.

The basic construction will be the same— closing the rules under substitution,
application of operations, reflexivity (identities) and transitivity (composition),
but the named reductions offer us some technical complications. Since we now
want to distinguish different reductions between the same two terms, we have to
introduce a term structure on the reductions. This in turn means that where
in the unnamed case it was enough to show that the definitions on the objects
preserve the order structure, we now have to define everything in the morphisms
explicitly.

We will, for a category X , construct the term named-reduction algebra TΘ(X),
a category which has as objects the terms built over the objects of X , and as
morphisms named reductions between the terms. These reductions will be freely
generated, and then quotiented in order to make the mapping of X to the term
reduction algebra a suitably enriched functor, and to make the unit and multi-
plication natural transformations. These equations can also be motivated from a
term rewriting point of view, and it is instructive to see how the instantiation of
the general theory makes sense in a particular setting.

The freely generated term structure, called the prereductions, will be defined
in §A.1.1, together with a substitution function, and a notion of lifting functors
and natural transformations. In §A.1.2, we will define the necessary equations
on the prereductions, obtaining the term named-reduction algebra TΘ(X) on a
category X , which has terms as objects and named reductions between terms
as morphisms. Finally, in §A.1.3, we will show that the mapping X 7→ TΘ(X)
extends to a monad TΘ on Cat. We will close the section by investigating the
relationship to the “unnamed” term reduction algebra defined in §2.3.3.

Appendix A — Using Monads to Model Named Reductions 174

The monad TΘ is of course enriched, and as has been mentioned in §1.5.3 on
page 43, there are two different closed monoidal structures on Cat, the familiar
cartesian one, and a slightly more exotic one called Sesqui (as in Sesqui-category).
It is possible to enrich over either of them, but instead of picking one now, we
will first develop that part of the theory which is common to both enrichments,
and on page 180, we will discuss the differences within this framework; this allows
us a uniform treatment of both enrichments and a discussion of their difference.
As it turns out, the differences are fairly small, amounting to just one additional
equation being necessary for the cartesian closed structure.

A.1.1 Prereductions

Since the contexts of the rewrite rules are given by the finitely presentable ob-
jects of the base category, they will now be given by fp categories (i.e. finitely
presentable objects in Cat, see §1.3.8 on page 19), and we need to readjust the
definition of generalized rewrite rules accordingly. This is merely a rephrasing of
definition 2.3.1 on page 69, which it supersedes for the rest of this section:

Definition A.1.1 (Generalized Rewrite Rule) A generalized rewrite rule in
a signature Ω is given by a triple (X , l, r), written as (X ` l → r), where X is a
category, and l, r ∈ TΩ(|X |). X is called the context, l the left-hand side, and r

the right-hand side of the rule. If the category X is discrete, the rewrite rule is
called ordinary ; if the category X is fp, it is called finitary. If there is a morphism
f : x → y in X , we say there is a variable rewrite from x to y.

When instantiating a finitary rule (X ` l → r), it is no more sufficient to
give the instantiations of the terms, we have to explicitly supply a morphism
Inst(α) for all morphisms α : x → y in X , which means an instantiation of a rule
(X ` l → r) in Z is a functor Inst : X → Z.

The construction of prereductions now follows very much definition 2.3.4 —
the prereductions are given by variable rewrites (rule [Var] below), application
of operations (rule [Pre]) and instantiated rewrite rules (rule [Inst]). Note that
in the latter case, although a finitely presentable category X may have infinitely
many morphisms, a functor F : X → Y is determined by its action on a finite
subset of the morphisms in X .

Definition A.1.2 (Prereductions) For a category X (called the context), the
prereduction graph QΘ(X) on X is the graph with

• vertices, the set of terms built over the objects of X : V (QΘ(X)) def= TΩ(|X |)

Appendix A — Using Monads to Model Named Reductions 175

• edges, the smallest set satisfying the implications in table A.1.

[Var]

κ ∈ X (x, y)
’κ : ’x → ’y ∈ E(QΘ(X))

[Pre]

for i = 1, . . . , m. βi : si → ti in F(QΘ(X))
ω(β1, . . . , βm) : ω(s1, . . . , sm) → ω(t1, . . . , tm) ∈ E(QΘ(X))

ω ∈ Ωm

[Inst]

Inst : Y → F(QΘ(X)) is a functor
ρ[Inst] : s → t ∈ E(QΘ(X))
where s

def= µ|X |(InstObj
∗(l)), t def= µ|X |(InstObj

∗(r))

ρ = (Y ` l → r) ∈ R

Table A.1: Definition of prereduction graph.

The prereductions on X are given by the free category on the prereduction graph
QΘ(X):

PΘ(X) def= F(QΘ(X))

For rule [Pre], recall from page 37 the notation s(s) and t(s) for the source
and target of a path t. Further, for rule [Inst] InstObj

∗ is the lifting of the
object function InstObj of the functor Inst , as from definition 2.1.5, and µ|X |

is the multiplication for terms of the monad TΩ from proposition 2.1.6. Then
µ|X |(InstObj

∗(l)) is the substitution of the variables in l, which in the notation
from page 58 can also be written l[t1, . . . , tn] with ti

def= Inst(yi).
Under the adjunction between Grph and Cat, in order to define a functor

F : PΘ(X) → Y we have to give a graph morphism f : QΘ(X) → UY, and
this means we have to define a vertex function fV : TΩ(|X |) → |Y| (the object
function for F), and a map fE : QΘ(X) → UMorY , mapping edges in TΘ(X)
to morphisms in Y. This way we can define the process of lifting functors and
transformations, which will later become the action of the monad modelling the
term rewriting system on the morphisms and 2-cells of Cat, respectively.

Note that we define the lifting for the slightly more general notion of trans-
formations rather than natural transformations— this means that we can use the
same definition for both different enrichments over Cat.1

1Of course, we will have to show that the lifting of a natural transformation is again natural
— or rather, we will need some equations to enforce this since it is not the case with the
definition as it stands.

Appendix A — Using Monads to Model Named Reductions 176

Definition A.1.3 (Lifting of Functors and Transformations) For a func-
tor F : X → Y its lifting is given by the functor F ∗ : PΘ(X) → PΘ(Y), which on
objects is given by F Obj

∗ : TΩ(|X |) → TΩ(|Y|) from definition 2.1.5, and on the
paths is defined by the following mapping on the edges:

F ∗(ω(α1, . . . , αn))
def= <ω(F ∗α1, . . . , F ∗αn)> where ω ∈ Ωn

F ∗(ρ[Inst]) def= <ρ[F ∗.Inst]> where ρ ∈ R

F ∗(’κ) def= <’(Fκ)>

Given a transformation α : F ⇒ G : X → Y, its lifting is a transformation
α∗ : F ∗ ⇒ G∗ : PΘ(X) → PΘ(Y), given by a family of prereductions in PΘ(Y),
indexed by terms t ∈ TΩ(|X |), defined inductively on t as follows:

α∗ω(t1,... ,tn)
def= <ω(α∗F∗(t1), . . . , α∗F∗(tn))> for t1, . . . , tn ∈ TΩ(|X |)

α∗’x
def= <’αx> for x ∈ |X |

Having defined the lifting, we give the transformation which models the the
substitution of the nascent term calculus. We leave aside the variables (i.e. the
unit) just now, since we do not need them for the time being.

Definition A.1.4 (Substitution) For a category X , the object function of the
functor µX : PΘ(PΘ(X)) → PΘ(X) is given by the natural transformation µ|X | :
TΩ(TΩ(|X |)) → TΩ(|X |) from proposition 2.1.6, and the morphisms function as
follows:

µX (e(α1, . . . , αm))
def= <e(µX (α1), . . . , µX (αm))>

µX (ρ[Inst]) def= <ρ[µX .Inst]>

µX (’κ) def= κ

The process of lifting is unfortunately not functorial. In particular, the lifting
id∗F of the identity transformation idF on a functor F : X → Y is not the identity
transformation idF∗ on the lifted functor, as can be easily seen: the latter is given
by the empty path idF∗(t) for any t ∈ PΘ(X), whereas lifted transformations are
by definition not empty. (Recall from page 37 that the empty path from t to
itself is written as idt.) Hence, we will need to enforce some equations on the
prereductions in order to make it into one. Apart from a category theorist’s idle
worries, there are actually quite good reasons for these equations from the term
rewriting point of view, which we will explain below.

But first, we would like to prove that µX is natural in X . For this, we introduce
our main proof principle — a structural induction scheme like proposition 2.3.7.

Appendix A — Using Monads to Model Named Reductions 177

Structural Induction

We need some notation for fp categories first. Let Y be an fp category, then
FinMorY is the finite set of morphisms generating all other morphisms by com-
position and identifying. Those morphisms determine the image of any functor
F : Y → X , since any functor has to preserve composition, and any morphism
in Y can be given as a composition of morphisms from FinMorY . The reason for
introducing this notation is the computation of the size of a prereduction below,
which would not go through if we would form a sum over an infinite set.

Proposition A.1.5 Given a predicate Z ⊆ PΘ(X), we write α |= Z (Z holds
for α) if α ∈ Z for α ∈ PΘ(X). Then ∀α ∈ PΘ(X). α |= Z (Z holds for all
prereductions), if all implications in table A.2 hold.

[IndBase] <’κ> |= Z
κ : x → y in X

[IndInst]

∀α ∈ FinMorY . Inst(α) |= Z

<ρ[Inst]> |= Z

ρ = (Y ` l → r) ∈ R,
Inst : Y → PΘ(X)

[IndPre]

β1 |= Z, . . . , βn |= Z

<e(β1, . . . , βn)> |= Z
e ∈ Ωn, βi ∈ PΘ(X) for i = 1, . . . , n

[IndSeq]

<α1> |= Z, . . . , <αn> |= Z

<α1, . . . , αn> |= Z
αi ∈ QΘ(X) for i = 1, . . . , n

Table A.2: Structural Induction for Prereductions.

Proof. We prove the validity of structural induction by reducing it to natural
induction. To this end, we define the size of a prereduction (intuitively, the
number of times one of the prereduction forming rules [Pre] and [Inst] is applied)
as follows:

size(’κ) def= 0

size(e(α1, . . . , αn))
def= 1 +

n∑
i=1

size(αi) (A.1)

Appendix A — Using Monads to Model Named Reductions 178

size(<ρ[Inst]>) def= 1 +
∑

α∈FinMorY

size(Inst(α)) (A.2)

size(<α1, . . . , αn>)
def=

n∑
i=1

size(αi)

Given a predicate Z on PΘ(X) as above, we define the predicate q on N:

q(n) ⇔ (∀α ∈ PΘ(X). size(α) ≤ n ⇒ α |= Z)

If under the assumption that the four implications in table A.2 hold we can show
that q(n) holds for all n ∈ N , we can then by definition of q conclude that Z

holds for all prereductions α.
We now show that q(n) holds for all n ∈ N by well-founded induction on n.

Generally, for any path <α1, . . . , αm> ∈ PΘ(X) if we can establish <αi> |= Z for
i = 1, . . . , m, we can use [IndSeq] to conclude <α1, . . . , αm> |= Z.

The induction base is q(0). Then for a path <α1, . . . , αm> ∈ PΘ(X) with
size(<α1, . . . , αm>) = 0, we have that for j = 1, . . . , m, αj must be a variable,
so αj = ’κ; and by applying [IndBase], <’αj> |= Z, hence <α1, . . . , αn> |= Z.
Further, note that by [IndSeq], idt |= Z for all t, i.e. Z holds for all empty paths.

For the induction step, we have to show q(n), assuming q(m) for all m < n;
i.e. assume that for all β ∈ PΘ(X) with size(β) < n, β |= Z, and then show (using
the implications) that for all <α1, . . . , αl> ∈ PΘ(X) with size(<α1, . . . , αl>) = n,
<α1, . . . , αl> |= Z. For i = 1, . . . , l, αi is of size size(αi) ≤ n, and we distinguish
three cases:

1. αi = ’κ, then by [IndBase], <’κ> |= Z.

2. αi = e(β1, . . . , βk), then for all j = 1, . . . , k, by clause A.1 above size(βj) <

n, and by the induction assumption βj |= Z; using [IndPre], we conclude
<e(α1, . . . , αk)> |= Z.

3. αi = ρ[Inst], then similarly by clause A.2 we can apply the induction
assumption to all α ∈ FinMorY , and use [IndInst] to obtain <ρ[Inst]> |=
Z.

Hence we can conclude that <α1, . . . , αm> |= Z and that q(n) holds. �

As an example of structural induction, we show that the substitution µX :
PΘ(PΘ(X)) → PΘ(X) is natural in X , i.e. for all functors F : X → Y, we have

F ∗µX = µYF
∗∗ (A.3)

Appendix A — Using Monads to Model Named Reductions 179

The equation is shown extensionally, i.e. we show that F ∗µX (α) = µYF ∗∗(α) for
all prereductions α in PΘ(PΘ(X)) by structural induction. The induction base is
α = <’κ>, then F ∗(µX (<’κ>)) = F ∗κ = µY<’F

∗κ> = µYF
∗∗<’κ>. The induction

steps proceed by unfolding the definitions, applying the induction assumption,
and folding the definitions again, e.g.

F ∗µX<e(β1, . . . , βn)> = <e(F ∗µXβ1, . . . , F ∗µXβn)>

= <e(µYF
∗∗β1, . . . , µYF

∗∗βn)>

= µYF
∗∗<e(β1, . . . , βn)>

A.1.2 Named Reductions

We are now going to describe the particular set of equations which we are going
to enforce on the prereductions. These equations can be motivated twofold: from
a categorical point of view, these equations make the whole construction into
a monad; in particular, they make the lifting process functorial. This may not
be very interesting from a term rewriting point of view, but one might want
to bear in mind that in category theory, “everything important happens in the
morphisms”2, so having accepted its basic tenets we should let this principle guide
us to a “good” construction. Moreover, we can also motivate these equations from
a term rewriting point of view; here, they mean that the composition of rewrites is
compatible with putting rewrites into a context as well as with taking morphisms
from X to rewrites in PΘ(X), and that identity variable rewrites are identity
rewrites. In an informal notation,

• if C is a context, and α1, α2 prereductions, then

C[α1]::C[α2] = C[α1::α2]

• if κ and λ are composable variable rewrites, then

<’κ>::<’λ> = <’λ.κ>

• and for t ∈ TΩ(|X |),
idt = <’1t>

One could further want that putting a rewrite into context commutes with
instantiating rules; this will be the equation that distinguishes Sesqui-enrichment
from cartesian enrichment.

2Or rather hom-objects, since we are talking enriched categories here.

Appendix A — Using Monads to Model Named Reductions 180

Different Enrichments

At this juncture we need to have another look at the two possible enrichments over
the two monoidal structures on Cat. The above equations are enough — as we
will presently see — to define a monad on CatS, the Sesqui-category of all small
categories. But this monad will not be enriched over CatC, the 2-category of all
small categories, since the lifting of a natural transformation is not necessarily
natural.

To explain this, consider the simple system with two unary operations F, G

and the rule ρ = (Z ` F(’z) → G(’z)), where Z is the category with one object
z. Let X be the category with two objects x, y and a non-identity morphism
f : x → y. By mapping z to x and y, respectively, we have two functors I, J :
Z → X , and the morphism f in X gives a natural transformation α : I ⇒ J.
By definition A.1.3, we can lift I, J and α to α∗ : I∗ ⇒ J∗ : PΘ(X) → PΘ(Y).
Consider the prereduction s

def= <r[1z]> in PΘ(Z), then I∗(s) = <ρ[1x]> and
J∗(s) = <ρ[1y]>. If α∗ were natural, then the following diagram in PΘ(X) would
commute

F(’x)
α∗F(’z)- F(’y)

G(’x)

I∗(s)

? α∗G(’z)- G(’y)

J∗(s)

?

but this does not follow from the equations above. Another way to look at this
is that the rewrite ’f : ’x → ’y put into the contexts given by the source and
target of the rewrite rule ρ should commute with the instantiated rewrite rule.

From a term rewriting point of view, this question is equivalent to asking that
for any rule ρ : l → r, and any rewrite α : s → t, we have

<l[α], ρ[t]> = <ρ[s], r[α]>

and it is debatable whether this question should hold or not. One may think of the
equation as describing that rewrites can take place in parallel, concurrently [57].
From a categorical point of view, cartesian enrichment seems favourable, since
the main advantage of Sesqui-categories is that they have a categorical notion of
length [83], which we do not need for our treatment of strong normalization, and
all in all cartesian enrichment seems more natural.

The language of lifted functors, transformations and the substitution µX from
definition A.1.4 lets us make rather elusive informal notation such as l[α] precise,
as we will be doing now in order to define the necessary equations.

Appendix A — Using Monads to Model Named Reductions 181

Horizontal Composition

Given a natural transformation α : F ⇒ G : X → Y, and a functor H : Y → Z,
the horizontal composition of α with H is a natural transformation Hα : HF ⇒
HG : X → Z, defined by (Hα)x

def= H(αx). Similarly, the horizontal composition
of α with a functor M : W → X is defined as αM : FM ⇒ GM : W → Y,
(αM)x

def= αMx.3

Here, the functors roughly correspond to terms or contexts, and natural trans-
formations correspond to rewrites, so the horizontal composition of α with a
functor H on the left corresponds to putting the rewrite into context, whereas
composition of α with M on the right corresponds to instantiating the variables
in α. To illustrate this principle, we will now prove two equations, which say that
substitution commutes with rewriting (equation A.4), and that translation (along
a lifted functor) commutes with the substitution of variables (equation A.5). The
equations will be needed later on.

For the first equation, given a natural transformation α∗ : F ∗ ⇒ G∗ : PΘ(X) →
PΘ(Y), we can compose α∗ with the functor µX : PΘ(PΘ(X)) → PΘ(X) on the
right, or we can compose the functor µY : PΘ(PΘ(Y)) → PΘ(Y) with the lifting
of α∗, α∗∗ : F ∗∗ ⇒ G∗∗, on the right. Both of these should be equal:

α∗µX = µYα
∗∗ (A.4)

This is also called the 2-naturality of µ, and it is proven by showing that for all
t ∈ PΘ(PΘ(X)), α∗µX (t) = µYα∗∗t . The proof proceeds by structural induction on
the term t. The induction base is given by

α∗µX (’s) = α∗s = µY<’α
∗
s> = µY(α∗∗s)

and the induction step is similar (if even more straightforward).
For the second equation, given a functor F : X → Y, and a natural trans-

formation α : I ⇒ J : Z → PΘ(X), we can lift the horizontal composition F ∗α,
obtaining (F ∗α)∗ : F ∗∗I∗ ⇒ F ∗∗J∗, with (F ∗α)∗t = F ∗∗(α∗t). Together with the
naturality of µ (equation A.3), we obtain

F ∗(µX (α∗t)) = µY(F ∗∗(α∗t)) = µY((F ∗α)∗t) (A.5)

Equations on prereductions

An equation on prereductions is a pair of prereductions in the same context X
with the same source and target, i.e. a triple (X , l, r) where X is a fp category,

3This is special case of the tadpole composition introduced on page 31.

Appendix A — Using Monads to Model Named Reductions 182

and l, r ∈ PΘ(X) s.t. s(l) = s(r), t(l) = t(r). An equation (X , l, r) is denoted as
X ` l = r. Recall from page 37 that a path congruence is an equivalence relation
on paths with the same source and target (implication 1.22), compatible with
the composition (implication 1.23). A congruence relation on prereductions is a
path congruence additionally compatible with the application of operations and
instantiation of rules.

Definition A.1.6 (Prereduction Congruence) For a category X , a prereduc-
tion congruence is given by a path congruence ≡⊆ PΘ(X)×PΘ(X) such that for
all ω ∈ Ωn and α1, β1, . . . , αn, βn ∈ PΘ(X),

α1 ≡ β1, . . . , αn ≡ βn ⇒ <ω(α1, . . . , αn)> ≡ <ω(β1, . . . , βn)>
(A.6)

and for all (Z ` l → r) ∈ R, Inst1, Inst2 : Z → PΘ(X)

(∀α in Z . Inst1(α) ≡ Inst2(α)) ⇒ <ρ[Inst1]> ≡ <ρ[Inst2]>
(A.7)

Given a set of equations on prereductions, we can generate a prereduction con-
gruence for categories X by closing under equivalence (i.e. reflexivity, transitivity
and symmetry) and implications 1.23, A.6 and A.7.

Reductions

Putting the last two sections together, we can now make the informal notation
of the section before that precise.

Definition A.1.7 (Equations on the Prereductions) For an fp category X ,
the set of equations E0 is defined as the smallest set of equations such that:

• For all operations ω ∈ Ωn, and for i = 1, . . . , n, αi ∈ PΘ(X), βi ∈ PΘ(X)
s.t. t(αi) = s(βi)

X ` <e(α1, . . . , αn), e(β1, . . . , βn)> = <e(α1::β1, . . . , αn::βn)> ∈ E0

(A.8)

• For all κ : x → y, λ : y → z in X :

X ` <’κ, ’λ> = <’(λ.κ)> ∈ E0 (A.9)

• For all x ∈ X ,

X ` <’1x> = id’x ∈ E0 (A.10)

Appendix A — Using Monads to Model Named Reductions 183

The set E1 is defined as E0, augmented by the following additional equations:
for all rules ρ = (Z ` l → r) ∈ R, functors Inst1, Inst2 : Z → PΘ(X) and natural
transformations α : Inst1 ⇒ Inst2,

X ` <ρ[Inst1]>::µX (α∗r) = µX (α∗l)::<ρ[Inst2]> ∈ E1 (A.11)

Definition A.1.8 (Term Named-Reduction Algebra) Given a term rewrit-
ing system Θ = (Ω, R). Let ≡0 be the prereduction congruence generated from
the set of equations E0, and ≡1 be the prereduction congruence generated from
E1. Then for a category X , the term named-reduction algebra TΘ(X) on X is the
category with terms TΩ(|X |) as objects and the reductions as morphisms:

TΘ(X) def= PΘ(X)/≡1

with the obvious sources and targets, the identity on t being given by 1t
def= [idt],

and the composition by the composition of (equivalence classes of) paths.

This definition is suited for cartesian enrichment; for the Sesqui variant, we
need to quotient the reductions by the equivalence E0. Instead of using equiva-
lence classes we will continue to work with prereductions, using the congruences
≡0 and ≡1 as equality. This also means we can still use structural induction as
defined above. When defining functions (or predicates) in this manner, we have
to ascertain that they are well-defined, i.e. they preserve the congruence. This
means in particular they have to respect equations A.8 to A.11. We will stress
the cartesian enrichment in the following, since we consider it more important;
but we will use E0 as equality where it is sufficient to do so, making it clear for
which results precisely the additional equation in E1 is used. It turns out that it
is only needed to show the naturality of lifted natural transformations.

A.1.3 The Monad TΘ

We are now going to extend the assignment X 7→ TΘ(X) to a functor on the
category CatC of all small categories, enriched over the cartesian product. We
have defined above (definition A.1.3) the lifting of functors and natural trans-
formations on prereductions; we now have to show that these definitions are
well-defined w.r.t. to the congruences ≡0 and ≡1, respectively; and further, that
this lifting is functorial in the sense that it preserves compositions and identities.

We first treat the lifting of functors. Given a functor F : X → Y, we have
to show that equations A.8 to A.11 are preserved, i.e. if Z ` s = t ∈ E0 then
F ∗(l) ≡0 F ∗(r). For equation A.8, we use the fact that F ∗ preserves composition

Appendix A — Using Monads to Model Named Reductions 184

of paths, for equation A.9 the fact that F is a functor and preserves composition
in X , and for equation A.10, the fact that F preserves identities (hence <’1Fx> =
<’F1x>). For equation A.11, we use equation A.5, then

F ∗(<ρ[Inst1]>::µX (α∗r)) = <ρ[F ∗Inst1]>::µY((F ∗α)∗r)

≡1 µY(F ∗α)∗l ::<ρ[F
∗Inst2]>

= F ∗(µX (α∗l)::<ρ[Inst2]>)

This ends the proof that F ∗ is well-defined. We now turn to natural transforma-
tions. Given ν : F ⇒ G : X → Y, ν∗ is clearly well-defined. To prove that ν∗ is
natural, we have to show that for all α : s → t in PΘ(X),

F ∗(α)::ν∗t ≡1 ν∗s::G
∗(α)

The proof proceeds by structural induction on α. The induction base uses the
naturality of ν: let κ : x → y in X , then

F ∗<’κ>::ν∗’y = <’Fκ>::<’νy> ≡0 <’νy
.Fκ> = <’Gκ.νx> ≡0 ν∗’x::G∗<’κ>

The induction steps [IndPre] and [IndSeq] are just a matter of applying the
definitions, and the induction assumption. The case [IndInst] is different. We
first apply the definition of F ∗, followed by equations A.4 and A.11:

F ∗(<ρ[Inst]>)::ν∗µX Inst∗(r) = <ρ[F ∗Inst]>::µX ν∗∗Inst∗(r)

= <ρ[F ∗Inst]>::µX (ν∗Inst)
∗
r

≡1 µY(ν∗Inst)
∗
l ::<ρ[G

∗Inst]>

= νµY Inst∗(l)::G
∗<ρ[Inst]>

This ends the proof of well-definedness for ν∗. We can now define the action of
the monad.

Definition A.1.9 (Action of the Monad) Given a term rewriting system Θ =
(Ω, R), the functor TΘ : Cat → Cat maps a category X to the term reduction
algebra TΘ(X) on X , a functor F : X → Y to its lifting F ∗ : TΘ(X) → TΘ(Y),
and a natural transformation ν : F ⇒ G to its lifting ν∗ : F ∗ ⇒ G∗.

We have to show that TΘ is indeed a functor (a 2-functor to be precise), mean-
ing it preserves composition and identities for functors natural transformations.

The former means that for two functors F : X → Y and G : Y → Z,
(GF)∗ = G∗F ∗, and for any category X , (1X)∗ = 1TΘ(X), both of which are

Appendix A — Using Monads to Model Named Reductions 185

proven pointwise (i.e. for any category X) by routine structural induction (on the
reductions in TΘ(X)). The latter means that for any two natural transformations
ν : F ⇒ G : X → Y and ι : G ⇒ H : X → Y, (ι.ν)∗ = ι∗.ν∗. This is also proven
pointwise: for any category X , and any object t ∈ TΘX (i.e. term t ∈ TΩ(|X |)),
show that (ι.ν)∗t ≡0 ι∗t .ν∗t by structural induction on t.

The identity on a functor F : X → Y is given the identity transformation
idF : F ⇒ F (see page 14). Preservation of this means that the lifting of the
identity is the same as the identity on the lifting, i.e. idF∗ = id∗F . In the same vein
as before, the proof proceeds pointwise, showing for any category X , idF∗(t) ≡1

id∗F (t) for all objects t ∈ TΩ(|X |) by structural induction on t. We are now in a
position to state the main result:

Proposition A.1.10 Every term rewriting system Θ = (Ω, R) gives rise to a
monad TΘ = 〈TΘ, η, µ〉 on Cat.

Proof. The action of the monad has been defined in definition A.1.9, and the
multiplication in definition A.1.4. Equations A.3 and A.4 show naturality and
2-naturality of µ. It remains to define the unit, and show the monad laws.

The unit is given by a natural transformation η : 1Cat ⇒ TΘ, which is a family
of functors

ηX : X → TΘ(X)

indexed by categories X . On objects, it is defined by the natural transformation
η|X | : 1|X | ⇒ TΩ from lemma 2.1.4, and on morphisms as follows:

ηX (κ) def= <’κ>

Showing that every ηX is a functor, and that η forms a natural transformation is
a matter of routine induction.

It remains to prove the monad laws. In particular these are

µX .ηTΘ(X) = 1X (A.12)

µX .η∗X = 1X (A.13)

µX .µ∗X = µX .µTΘ(X) (A.14)

All of these equations are proven pointwise on reductions α ∈ TΘ(X). Equa-
tion A.12 follows straightforward from the definition of η and µ. Equations A.13
and A.14 are proven by routine structural induction on α. �

Appendix A — Using Monads to Model Named Reductions 186

A.1.4 Named vs. Unnamed Reductions

In §2.3.3 on page 70, the term reduction algebra was defined (which we will call
term unnamed-reduction algebra in the following to distinguish it from the term
named-reduction algebra), and a natural question to ask is the precise relation
between that and the term named-reduction algebra which we have just defined.
The answer is that the preorder given by the term named-reduction algebra over
a category X is equal to the term unnamed-reduction algebra over the preorder
given by X . For the following, recall that J : Cat → Pre is the functor taking a
category to a preorder by identifying all morphisms between the same objects in
the category (see page 42).

Lemma A.1.11 For a term rewriting system Θ = (Ω, R), and an fp category X ,

J(TΘ(X)) = TΘ(J(X)) (A.15)

where on the left we have the term named-reduction algebra, and on the left the
term unnamed-reduction algebra built over the preorder J(X).

Proof. Obviously, the objects of J(TΘ(X)) and TΘ(J(X)) are the same (namely,
the terms TΩ(|X |)); it remains to show that there is a reduction s ≥ t in TΘ(J(X))
iff there is a reduction α : s → t in TΘ(X) (for s, t ∈ TΩ(|X |)). We show that s ≥ t

in TΘ(J(X)) iff there is a prereduction α : s → t by a routine structural induction
in two directions, observing that for all rules in table A.1, definition A.1.2, there
is a corresponding rule in table 2.3, definition 2.3.4, and vice versa. Then iff there
is at least one prereduction, there will be at least one reduction. �

However, the term unnamed-reduction algebra considered as a category over
a preorder X is not isomorphic to the term named-reduction algebra over X

considered as a category, because the former (but not the latter) will identify any
two reductions with the same source and target.

A.2 Properties of the Monad TΘ

We are now going to show that the monad TΘ is regular in the sense of defini-
tion 2.4.3. We first show that TΘ is strongly finitary. For this, we separately show
that TΘ preserves filtered colimits, and coequalizers, and then use lemma 1.3.7.
To prove preservation of filtered colimits, we need the following lemma, which
roughly says that a colimit does not contain more objects and morphisms than
necessary:

Appendix A — Using Monads to Model Named Reductions 187

Lemma A.2.1 Given a filtered functor F : J → Cat, and a colimiting cone
c : F ⇒ ∆C, then all objects and morphisms in C are in the image of c in the
following sense:

∀x ∈ C ∃j ∈ J , y ∈ Fj. x = cj(y) (A.16)

∀α ∈ MorC ∃j ∈ J , β ∈ MorFj. cj(β) = α (A.17)

Proof. Recall from proposition 1.3.1 that every colimiting cone can be constructed
as a coequalizer, and that every coequalizer is epi. From section 1.5.3 we know
that epis in Cat are functors which are surjective on objects (that is (A.16)
above), and surjective under closure on morphisms:

∀α ∈ C ∃j ∈ J , β1, . . . , βn ∈ MorFj . cj(βn).cj(β1) = α
(A.18)

For filtered colimits, the hom-sets of C can be constructed “pointwise” without
needing to close under composition since F does not identify objects (cf. [4,
5.2.2.f]), then (A.18) simplifies to (A.17) above. �

Lemma A.2.2 Given a term rewriting system Θ = (Ω, R), the monad TΘ is
finitary.

Proof. Let F : J → Cat be a functor with J filtered. Let c : F ⇒ ∆X be a
colimiting cone for F . We now want to show that the lifting c∗ : TΘF ⇒ ∆TΘ(X)
of c is colimiting for TΘF . We do this by establishing the universal property: given
any other cone ν : TΘF ⇒ ∆Y over TΘF , there is a unique functor !ν : X → Y
such that

TΘF ===
c∗

⇒ ∆TΘ(X)

∆Y

∆!ν�
wwwwwwwwν

============⇒

We are now going to define the functor !ν . The idea of the proof is as follows:
we show that any object in TΘ(X) is in the image of c∗ (A.19 below), and then
its value under !ν is the value of this object under ν. This gives a mapping on
the objects of TΘ(X), which we then extend to a functor.

To define !ν, we first prove that

∀t ∈ TΩ(|X |) ∃j ∈ J , y ∈ TΩ(|Fj|) . c∗j(y) = t (A.19)

Appendix A — Using Monads to Model Named Reductions 188

and then define

!ν(t)
def= νj(y) (A.20)

and we furthermore have to show that this definition is well-defined (in particular,
independent of the choice of j in A.19).

Both the proof of A.19 and of the well-definedness proceed by structural in-
duction on t. For the induction base, let ’x ∈ TΩ(|X |), then x ∈ X , and by
lemma A.2.1, there is j ∈ J , y ∈ Fj such that x = cj(y), hence c∗(’y) = ’x.

For the induction step, let ω(t1, . . . , tn) ∈ TΩ(|X |), and assume that for
i = 1, . . . , n, we have ki ∈ J and t′i ∈ Fki s.t. c∗ki(t

′
i) = ti. Since J is filtered,

there is an object j ∈ J and morphisms pi : ki → j, and with c∗ being a cone
over TΘF , we have

c∗ki = c∗j(Fpi)∗

and then y is defined as

y
def= ω((Fp1)∗(t′1), . . . , (Fpn)∗(t′n))

and as required

c∗j(y) = c∗j(ω((Fp1)∗(t′1), . . . , (Fpn)∗(t′n)))

= ω(c∗j(Fp1)∗(t′1), . . . , c∗j(Fpn)∗(t′n))

= ω(c∗k1
(t′1), . . . , c∗kn(t

′
n))

= ω(t1, . . . , tn)

Now show that equation A.20 is well-defined: suppose we have another object
l ∈ |J | with morphisms qi : ki → l; then this defines

z
def= ω((Fq1)∗(t′1), . . . , (Fqn)∗(t′n))

and we have to show that νl(z) = νj(y). By filteredness of J , for i = 1, . . . , n

there is an object m ∈ J and morphisms s : l → m and r : j → m such that
s.qi = r.pi; and since ν is a cone over TΘF , diagram A.21 commutes and we have

TΘF l

TΘFki

(Fqi)∗
-

TΘFm
νm -

(Fs)∗
-

|X |

νl

-

TΘFj

νj

-

(Fr)∗
-

(Fpi)∗ -

(A.21)

Appendix A — Using Monads to Model Named Reductions 189

the following:

νj(y) def= νj(ω((Fp1)∗(t′1), . . . , (Fpn)∗(t′n))

= νm(ω((Fr)∗(Fp1)∗(t′1), . . . , (Fr)∗(Fpn)∗(t′n)))

= νm(ω((Fs)∗(Fq1)∗(t′1), . . . , (Fs)∗(Fqn)∗(t′n)))

= νl(ω((Fq1)∗(t′1), . . . , (Fqn)∗(t′n)))

= νl(z)

This concludes the structural induction and the construction of the object
function of !ν. We now have to construct !ν on the morphisms. We have to show
that

∀α ∈ TΘ(X) ∃j ∈ J β ∈ TΘ(Fj) . c∗j(β) = α (A.22)

and then define

!ν(α) def= νj(β) (A.23)

Again, this is proven by structural induction, this time on the reduction α.
The base case is <’κ> ∈ TΘ(X), then κ ∈ MorX and by lemma A.2.1 there

is j ∈ J , λ ∈ MorFj such that cj(λ) = κ, hence c∗(<’λ>) = <’κ>. The case of
<ω(α1, . . . , αn)> is very similar to the induction step of the object case above
(use induction assumption for the αi, and filteredness of J).

For the case of <ρ[Inst]>, with ρ = (Z ` l → r), the induction assumption is
that for all α : z → z′ in Z there is lα ∈ J , βα : s → t in TΘ(Fj) s.t. c∗lα(βα) =
Inst(α). Again, by filteredness there is j ∈ J and morphisms pα : lα → j s.t.
c∗lα = c∗j(Fpα)∗. We define the instantiation

Inst ′(α) = Fpα(βα)

then c∗j(Inst ′(α)) = c∗j(Fpα(βα)) = c∗lα(βα) = Inst(α) and have y
def= <ρ[Inst ′]>,

with

c∗j<ρ[Inst ′]> = <ρ[c∗j Inst]>

= <ρ[Inst]>

Uniqueness is again proven like before: if there is any other object l ∈ J sat-
isfying A.22, then there is another object m ∈ |J | and morphisms r : j → m,
s : l → m, and both νl and νj filter through νm, hence !ν(x) is well-defined. This
ends the structural induction on the reductions, and the proof.

�

Appendix A — Using Monads to Model Named Reductions 190

Lemma A.2.3 Given a term rewriting system Θ, the functor TΘ preserves co-
equalizers.

Proof. Given two functors F, G : X → Y. Let Q : Y → Z be the coequalizer
of F and G, and P : TΘ(X) → C be the coequalizer of F ∗ and G∗. To show the
lemma, we show that C and TΘ(Z) are isomorphic.

Since all coequalizers are epi (see lemma A.2.1), all objects in C lie in image of
P (which in the following will just be denoted by the representative [x] = P (x));
and for the same reason, all objects in Z lie in the image of Q, hence all objects
in TΘ(Z) lie in the image of Q∗. We show the isomorphism by showing that, for
all objects s, t ∈ TΩ(|Y|)

Q∗(s) = Q∗(t) ⇔ [s] = [t] (A.24)

and for all reductions α, β in TΘ(Y)

Q∗(α) = Q∗(β) ⇔ [α] = [β] (A.25)

In other words, we prove that the equivalence generated by F ∗ and G∗ is a con-
gruence on the terms; and this follows from the fact that F ∗ and G∗ by definition
respect the structure of the terms.

We will first prove equation A.24. To this end, some notation: let ∼ be the
relation generating the equivalence ≡ on TΩ(|Y|), defined as

x ∼ y ⇔ ∃z ∈ TΩ(|X |).f∗z = x, g∗z = y

then ≡ is the equivalence closure of ∼. The proof proceeds by structural induc-
tion on both s (the outer induction) and t (the inner induction).q We distinguish
four case (corresponding to the inner and outer induction bases and steps, respec-
tively):

1. s = ’x, t = ’y

For all x ∈ X , Q∗(’x) = ’Qx = ’[x] = [’x]; hence Q∗(’x) = Q∗(’y) iff
[x] = [y] iff [’x] = [’y].

2. s = ’x, t = ω(t1, . . . , tm)

Since Q∗(’x) 6= Q∗(ω(t1, . . . , tm)), we show that [’x] 6= [ω(t1, . . . , tm)].
In this case s 6∼ t, since there is no z ∈ TΩ(|X |) such that F ∗z = ’x and
G∗z = ω(t1, . . . , tm) (because F ∗z = ’x only if z = ’u, and then G∗z 6=
ω(t1, . . . , tm), and vice versa). This is preserved by the equivalence closure:
reflexive and symmetric closure are trivial, and for the transitive closure,
G∗z1 = F ∗z2 only if both z1 = ’u1 and z2 = ’u2, or z1 = e(u1, . . . , un) and
z2 = e(v1, . . . , vn) with F ∗ui = G∗vi.

Appendix A — Using Monads to Model Named Reductions 191

3. s = e(s1, . . . , sn), t = ’y

This case is symmetric to the one before.

4. s = e(s1, . . . , sn), t = ω(t1, . . . , tm)

Q∗(e(s1, . . . , sn)) = Q∗(ω(t1, . . . , tm)) iff e = ω and Q∗si = Q∗ti for i =
1, . . . , n. The induction assumption here is that Q∗(si) = Q∗(ti) iff [ti] =
[si]; and it remains to show that [e(s1, . . . , sn)] = [ω(t1, . . . , tm)] iff e = ω

and [si] = [ti] for all i = 1, . . . , n. The direction “only if” is easy to
see; to show the other direction, note that F ∗z = e(s1, . . . , sn) implies z =
e(z1, . . . , zn) (similarly for G∗); with this, we can show that e(s1, . . . , sn) ∼
ω(t1, . . . , tm) if e = ω and si ∼ ti for i = 1, . . . , m. This is preserved under
the equivalence closure, hence [e(s1, . . . , sn)] = [ω(t1, . . . , tm)] iff e = ω

and [si] = [ti] for all i = 1, . . . , n as desired.

This ends the proof of equivalence A.24.
The proof is completed by showing the equivalence between the morphisms

of C and TΘ(Z) (equation A.25). This proof proceeds by a similar structural
induction on the two reductions α, β in equation A.25. The basic proof scheme is
the same, but for reductions we have four implications in the structural induction,
as opposed to two for terms, leading to sixteen cases. Reductions generated
from different rules can never be equivalent (cases 3 and 4 above), nor can lifted
functors identify them; rules generated with the same rule are identified if they
are generated with the same parameter (the operations e and ω above, here either
two operations, or two rules), which is exactly the case in which the lifted functors
can identify objects. �

We can now state the main result of this section:

Proposition A.2.4 Given a term rewriting system Θ, the monad TΘ on Cat is
regular.

Proof. By lemma A.2.2, TΘ is finitary, by lemma A.2.3 preserves coequalizers,
hence by lemma 1.3.7, TΘ is strongly finitary.

That η is monic follows straightforward from the definition, as well as η being
regular. That µ is regular is proven similar to proposition 2.4.4; we have to
extend the partial function σ from the objects to the morphisms, by defining the

Appendix A — Using Monads to Model Named Reductions 192

morphism function of σ : TΘ(TΘ(Y)) × TΘ(X) ⇀ TΘ(TΘ(X)) as follows:

σ(e(α1, . . . , αn), e(β1, . . . , βn))
def= e(σ(α1, β1), . . . , σ(αn, βn])

σ(ρ[Inst], ρ[Inst ′]) def= ρ[σ〈Inst , Inst ′〉]
σ(’κ, λ) def= <’λ>

One now shows that this is well-defined, i.e. respects the equations A.8 to A.11
by a structural induction on the first argument. �

A.3 Compositionality

This section extends §2.5 to the named reduction case. There it was shown that
there is an adjunction

TRS
-

⊥� MonFin(Pre)

between the category of term rewriting systems, and the category of strongly
finitary monads on Pre, and it was argued that this adjunction justified our
calling the semantics compositional. Here, we are going to show that there is an
adjunction

TRS
-

⊥� MonFin(Cat)

between the category of term rewriting systems, and the category of strongly
finitary monads on Cat, making the named reduction semantics compositional
as well.

We first define the internal language of a finitary monad on Cat. This internal
language is a more elaborate version of the internal language for a monad on Pre

(see §2.3.4 on page 74), where we can now tell the structure of a reduction — one
can think of this as the reason, or proof, why one term rewrites to another.

For the following, recall the adjunction from lemma 2.1.9, given by the monad
generated from a signature, and the internal signature of a monad; in particular
its counit, consisting of natural transformations εT : TΣ(T) ⇒ T for every monad
T on Set, which allows us to evaluate terms built in the internal signature in T.

Definition A.3.1 (The Internal Language) The internal language of a fini-
tary monad T = 〈T, η, µ〉 on Cat is given by

L(T) def= (Σ(T0), R(T))

Appendix A — Using Monads to Model Named Reductions 193

where Σ(T0) is the internal signature (definition 2.1.7) of the underlying object
monad T0 on Set (see §2.3.4 on page 74), and R(T) is the set of rewrite rules
admitted by T defined as follows:

R(T) def= {r(α) : (X ` l → r) | ∃X ∈ Catfp,
α ∈ TX (εT0,|X |(l), εT0,|X |(r))}

where r(α) can be thought of as the rewrite rule given by the the morphism α.

We are now going to extend the mapping of a term rewriting system Θ to the
monad TΘ from proposition A.1.10, and on the other hand a monad to its internal
language, to a pair of functors between the categories TRS and MonFin(Cat).

Definition A.3.2 The functor F : TRS → MonFin(Cat) maps a term rewriting
system Θ to the monad TΘ, and a TRS morphism σ : Θ → Θ′ to its lifting, the
monad morphism σ̂ : TΘ ⇒ TΘ′ , defined pointwise for every category X as a
functor σ̂X : TΘ(X) → TΘ′(X). The object function is given by the lifting of the
signature morphism σS in definition 2.1.8, and the morphism function as follows:

σ̂X (e(α1, . . . , αn))
def= <(σSe)(σ̂X (α1), . . . , σ̂X (αn))>

σ̂X (ρ[Inst]) def= <(σR)[σ̂X .Inst]>

σ̂X (’κ) def= <’κ>

The functor U : MonFin(Cat) → TRS maps a finitary monad T to its internal
language L(T), and a monad morphism σ : T ⇒ S to the TRS morphism Uσ :
L(T) → L(S) which on the signatures is as in definition 2.1.7, and on rules

UσR(r(α) : (X ` l → r)) def= r(σX (α)) : (X ` (̂Uσ)S(l) → (̂Uσ)S(r))

That the lifting σ̂ is natural in X is shown by structural induction; that it
satisfies equation 1.3 is fairly obvious, that it satisfies 1.4 requires another easy
induction. Hence σ̂ is a monad morphism. Two more structural inductions show
that the lifting is functorial, i.e. τ̂ .σ = τ̂ .σ̂, and 1̂Θ = idTΘ.

To show that Uσ as above is a morphism of term rewriting systems, we
have to show that UσR(r(α)) is a rewrite rule in the internal language of S,
i.e. UσR(r(α)) ∈ R(S). Since εT0 is natural in T0 (equation 2.8), we have

σ|X |.εT0,|X | = εS0,|X |.σ̂S

Appendix A — Using Monads to Model Named Reductions 194

and hence the following chain of implications:

α ∈ TX (εT0,|X |(l), εT0,|X |(r))
⇒ σXα ∈ SX (σ|X |εT0,|X |(l), σ|X |εT0,|X |(r))
⇒ σXα ∈ SX (εS0,|X |.σ̂S(l), εS0,|X |.σ̂S(r))
⇒ r(σX (α)) ∈ R(S)

We can now show the main result of this section, that the two functors F and U

are adjoint.

Proposition A.3.3 The two functors F and U form an adjunction F −−| U :
TRS → MonFin(Cat).

Proof. Given a term rewriting system Θ = (Ω, R), the unit of the adjunction is a
TRS morphism υΘ : Θ → L(TΘ) defined as follows:

• On the signatures, it is the unit of the adjunction from lemma 2.1.9:

υΘ,S
def= υΩ

• On the rules, it is defined as

υΘ,R(ρ) def= r(<ρ[1X]>) : (X ` υ̂Ω(l) → υ̂Ω(r))
where ρ = (X ` l → r)

This is a TRS morphism by the triangle laws of the adjunction from lemma 2.1.9:
these imply that εTΩ

.υ̂Ω(l) = l and εTΩ
.υ̂Ω(r) = r, hence r(<ρ[1X]>) ∈ R(TΘ).

To show adjointness, we show the universality of υΘ from Θ to U : given a
monad S = 〈S, ζ, ξ〉 and a TRS morphism ν : Θ → L(S), there is a unique
monad morphism !ν : TΘ ⇒ S such that U !ν .υΘ = ν. This monad morphism is a
natural transformation given by a family of functors !ν,X : TΘX → SX for every
category X , which on the objects are given by !S0,|X | : TΩ(|X |) → S0(|X |) from
lemma 2.1.9, and on the morphisms is defined as follows:

!ν,X (e(α1, . . . , α1))
def= ν(e)[!ν,X (α1), . . . , !ν,X (αn)]

!ν,X (ρ[Inst]) def= ξX (S(!ν,X .Inst)(φ))

where r(φ) = ν(ρ)

!ν,X (’κ) def= ζX (κ)

which is readily shown to be natural in X , a monad morphism and the only one
satisfying the equation above. �

We finish this section by again drawing attention to the fact that the adjunc-
tion above is ordinary, not enriched (see the footnote on page 89).

Appendix A — Using Monads to Model Named Reductions 195

A.4 Summary and Conclusion

In this appendix, we have shown how to instantiate the general theory of enriched
monads in a slightly different and more elaborate way, obtaining a semantics for
named reductions by monads over the category Cat of all small categories. The
construction of the semantics is mainly an extension of chapter 2 to a suitable
term structure on the morphisms. The semantics is compositional as well, i.e.
there is an adjunction between the category of term rewriting systems and the
category of finitary monads over Cat.

This semantics goes beyond normal term rewriting in that we can distinguish
different reductions between two terms. One could use this setting to e.g. reason
about reduction strategies. It is also useful when reasoning about strong normal-
ization, where one needs to be able to tell the identity on a object apart from
other endomorphisms (since the latter always lead to non-termination).

Bibliography

[1] J. Adamek and J. Rosický. Locally Presentable and Accessible Categories.
Number 189 in London Mathematical Society Lecture Note Series. Cam-
bridge University Press, 1994.

[2] M. Barr and C. Wells. Toposes, Triples and Theories. Number 278 in
Grundlehren der mathematischen Wissenschaften. Springer Verlag, 1985.

[3] J. A. Bergstra and J. W. Klop. Conditional rewrite rules: Confluence and
termination. Journal of Computer and System Sciences, 32:323– 362, 1986.

[4] F. Borceux. Handbook of Categorical Algebra 2: Categories and Structures.
Number 51 in Encyclopedia of Mathematics and its Applications. Cambridge
University Press, 1994.

[5] A. Burroni. Algèbres graphiques. Cahiers de Topologie et Géométrie
Différentielle, 23:249– 265, 1981.

[6] R. M. Burstall and J. A. Goguen. The semantics of CLEAR, a specification
language. In Proc. Advanced Course in Abstract Software Specification, num-
ber 86 in Lecture Notes in Computer Science, pages 292– 332, Copenhagen,
1980. Springer Verlag.

[7] A. Carboni and P. T. Johnstone. Connected limits, familial representability
and Artin glueing. Mathematical Structures in Computer Science, 5:441–
449, 1995.

[8] P. M. Cohn. Universal Algbra. Harper and Row, 1965.

[9] A. Corradini, F. Gadducci, and U. Montanari. Relating two categorical
models of term rewriting. In J. Hsiang, editor, Rewriting Techniques and
Applications, 6th International Conference, number 914 in Lecture Notes
in Computer Science, pages 225– 240, Kaiserslautern, Apr. 1995. Springer
Verlag.

196

Bibliography 197

[10] N. Dershowitz and J. P. Jouannaud. Rewrite systems. In S. Abramsky, D. M.
Gabbay, and T. S. E. Maibaum, editors, Handbook of Theoretical Computer
Science, volume B (Formal Methods and Semantics), chapter 6, pages 243–
320. The MIT Press, 1990.

[11] E. J. Dubuc and G. M. Kelly. A presentation of topoi as algebraic relative
to categories or graphs. Journal for Algebra, 81:420–433, 1983.

[12] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 1: Equa-
tions and Initial Semantics, volume 6 of EATCS Monographs on Theoretical
Computer Science. Springer Verlag, 1985.

[13] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 2: Module
Specifications and Constraints, volume 21 of EATCS Monographs on Theo-
retical Computer Science. Springer Verlag, 1990.

[14] P. J. Freyd and G. M. Kelly. Categories of continuous functors I. Journal
for Pure and Applied Algebra, 2:169–191, 1972.

[15] P. Gabriel and F. Ulmer. Lokal präsentierbare Kategorien. Number 221 in
Lecture Notes in Mathematics. Springer Verlag, 1971.

[16] H. Ganzinger and R. Giegerich. A note on termination in combinations of
heterogeneous term rewriting systems. Bulletin of the EATCS, 31, Feb. 1987.

[17] N. Ghani. Adjoint Rewriting. PhD thesis, University of Edinburgh, 1995.

[18] N. Ghani. βη-equality for coproducts. In Second Conference on Typed
Lambda Calculus and its Applications, Edinburgh, Apr. 1995.

[19] N. Ghani. Eta-expansions in system F. Technical Report LIENS-96-10,
LIENS-DMI, École Normale Supérieure, 1996.

[20] N. Ghani. Eta-expansions in dependent type theory— the calculus of con-
structions. In Typed Lambda-Calculus and Applications, number 1210 in
Lecture Notes in Computer Science, pages 164– 180. Springer Verlag, 1997.

[21] J. A. Goguen. A categorical manifesto. Technical Report PRG-72, Oxford
University Computing Laboratory, Programming Research Group, Oxford,
England, Mar. 1989.

[22] J. A. Goguen and R. Burstall. Institutions: Abstract model theory for spec-
ification and programming. Journal of the ACM, 39:95– 146, 1992.

Bibliography 198

[23] B. Gramlich. Generalized sufficient conditions for modular termination of
rewriting. In Proceedings of the Third International Conference on Algebraic
and Logic Programming, number 632 in Lecture Notes in Computer Science,
pages 53–68. Springer Verlag, 1992.

[24] J. W. Gray. Formal Category Theory: Adjointness for 2-Categories. Number
391 in Lecture Notes in Mathematics. Springer Verlag, 1974.

[25] J. W. Gray. Categorical aspects of data type constructors. Theoretical Com-
puter Science, 50:103–135, 1987.

[26] J. W. Gray. The category of sketches as a model for algebraic semantics.
In J. W. Gray and A. Scedrov, editors, Categories in Computer Science and
Logic, number 92 in Contemporary Mathematics, pages 109–135. American
Mathematical Society, 1989.

[27] J. W. Gray. The integration of logical and algebraic types. In H. Ehrig,
editor, Categorical Methods in Computer Science (with Aspects from Topol-
ogy), number 393 in Lecture Notes in Computer Science, pages 16–35, Berlin,
1989. Springer Verlag.

[28] J. W. Gray. Order-enriched sketches for typed lambda calculi. In Carboni,
Pedicchio, and Rosolini, editors, Category Theory, number 1488 in Lecture
Notes in Mathematics, pages 105–130, Como, 1990. Springer Verlag.

[29] B. Hilken. Towards a proof theory of rewriting: the simply typed 2λ-calculus.
Theoretical Computer Science, 170:407– 444, 1996.

[30] C. A. R. Hoare and J. He. Data refinement in a categorical setting, Feb.
1988.

[31] C. B. Jay. Modelling reductions in confluent categories. In Proceedings of
the Durham Symposium on Applications of Categories in Computer Science,
1990.

[32] C. B. Jay and N. Ghani. The virtues of η-expansion. Journal for Functional
Programming, 5(2):135– 154, Apr. 1995.

[33] M. Johnson. Linear term rewriting systems are higher dimensional string
rewriting systems. In C. M. I. Rattray and R. G. Clark, editors, The Unified
Computation Laboratory, pages 103– 112. Oxford University Press, 1991.

[34] S. Kahrs. λ-rewriting. PhD thesis, Universität Bremen, Jan. 1991.

Bibliography 199

[35] G. M. Kelly. A unified treatment of transfinite constructions for free alge-
bras, free monoids, colimits, associated sheaves and so on. Bulletins of the
Australian Mathematical Society, 22:1– 83, 1980.

[36] G. M. Kelly. Basic Concepts of Enriched Category Theory, volume 64 of
London Mathematical Society Lecture Note Series. Cambridge University
Press, 1982.

[37] G. M. Kelly. Structures defined by finite limits in the enriched context I.
Cahiers de Topologie et Géométrie Différentielle, XXIII(1):3–40, 1982.

[38] G. M. Kelly. Elementary observations on 2-categorical limits. Bulletins of
the Australian Mathematical Society, 39:301–317, 1989.

[39] G. M. Kelly and A. J. Power. Adjunctions whose counits are coequalizers,
and presentations of finitary monads. Journal for Pure and Applied Algebra,
89:163– 179, 1993.

[40] G. M. Kelly and R. Street. Review of the elements of 2-categories. In Category
Seminar Sydney 1972/73, number 420 in Lecture Notes in Mathematics,
pages 75–103. Springer Verlag, 1974.

[41] J. W. Klop. Term rewriting systems. In S. Abramsky, D. M. Gabbay, and
T. S. E. Maibaum, editors, Handbook of Logic in Computer Science, volume
2 (Background: Computational Structures), pages 1–116. Oxford University
Press, 1992.

[42] J. W. Klop, A. Middeldorp, Y. Toyama, and R. de Vrijer. A simplified proof
of Toyama’s theorem. Information Processing Letters, 49:101–109, 1994.

[43] D. Knuth and P. Bendix. Simple word problems in universal algebra. In
J. Leech, editor, Computational Problems in Universal Algebras, pages 263–
297. Pergamon Press, 1970.

[44] M. Kurihara and A. Ohuchi. Modularity of simple termination of term
rewriting systems with shared constructors. Theoretical Computer Science,
103:273– 282, 1992.

[45] J. Lambek and P. J. Scott. Introduction to Higher Order Categorical Logic,
volume 7 of Cambridge studies in advanced mathematics. Cambridge Uni-
versity Press, 1986.

Bibliography 200

[46] F. W. Lawvere. Metric spaces, generalized logic, and closed categories. In
Rend. del Sem. Mat. e Fis. di Milano, volume 43, pages 135–166, 1973.

[47] F. W. Levi. On semigroups. Bulletin of the Calcutta Mathematical Society,
36:142–146, 1944.

[48] F. E. J. Linton. Some aspects of equational categories. In S. Eilenberg, D. K.
Harrison, S. MacLane, and H. Röhrl, editors, Proceedings of the Conference
on Categorical Algebra, pages 84–94, La Jolla, 1965. Springer Verlag.

[49] F. E. J. Linton. Coequalizers in categories of algebras. In B. Eckmann,
editor, Seminar on Triples and Categorical Homology Theory, number 80 in
Lecture Notes in Mathematics, pages 75– 90. Springer Verlag, 1969.

[50] C. Lüth. Compositional term rewriting: An algebraic proof of Toyama’s
theorem. In H. Ganzinger, editor, Rewriting Techniques and Applications,
7th International Conference, number 1103 in Lecture Notes in Computer
Science, pages 261– 275, New Brunswick, USA, July 1996. Springer Verlag.

[51] C. Lüth and N. Ghani. Monads and modular term rewriting. In Cate-
gory Theory in Computer Science CTCS’97, number 1290 in Lecture Notes
in Computer Science, pages 69– 86, Santa Margherita, Italy, Sept. 1997.
Springer Verlag.

[52] S. Mac Lane. Categories for the Working Mathematician, volume 5 of Grad-
uate Texts in Mathematics. Springer Verlag, 1971.

[53] E. G. Manes. Algebraic Theories, volume 26 of Graduate Texts in Mathe-
matics. Springer Verlag, 1976.

[54] M. Marchiori. Modularity of completeness revisited. In J. Hsiang, editor,
Proceedings of the 6th International Conference on Rewriting Techniques and
Applications, number 914 in Lecture Notes in Computer Science, pages 2–
10, Kaiserslautern, Apr. 1995. Springer Verlag.

[55] P.-A. Melliès. A factorisation theorem in rewriting theory. In Category The-
ory in Computer Science CTCS’97, number 1290 in Lecture Notes in Com-
puter Science, pages 49– 68, Santa Margherita, Italy, Sept. 1997. Springer
Verlag.

[56] P.-A. Melliès. A stability theorem in rewriting theory. In 14th Annual Sym-
posium on Logic in Computer Science, Indianapolis, USA, 1998. IEEE, Com-
puter Society Press.

Bibliography 201

[57] J. Meseguer. Conditional rewriting logic as a unified model of concurrency.
Theoretical Computer Science, 96:73–155, 1992.

[58] A. Middeldorp. A sufficient condition for the termination of the direct sum of
term rewriting systems. In Fourth Annual Symposium on Logic in Computer
Science, pages 396–401. IEEE, Computer Society Press, June 1989.

[59] A. Middeldorp. Modular Properties of Term Rewriting Systems. PhD thesis,
Vrije Universiteit te Amsterdam, 1990.

[60] R. Milner. Action structures. Technical Report ECS-LFCS-92-249, LFCS,
Dec 1992.

[61] E. Moggi. Computational lambda-calculus and monads. In Fourth Annual
Symposium on Logic in Computer Science. IEEE, Computer Society Press,
June 1989.

[62] E. Ohlebusch. On the modularity of termination of term rewriting systems.
Theoretical Computer Science, 136:333– 360, 1994.

[63] V. v. Oostrom. Confluence for Abstract and Higher-Order Rewriting. PhD
thesis, Vrije Universiteit te Amsterdam, 1994.

[64] A. J. Power. An abstract formulation for rewrite systems. In D. H. Pitt,
D. E. Rydeheard, P. Dybjer, A. M. Pitts, and A. Poigné, editors, Category
Theory and Computer Science, number 389 in Lecture Notes in Computer
Science, pages 300–312, Manchester, Sept. 1989. Springer Verlag.

[65] A. J. Power. An algebraic formulation for data refinement. In M. Main,
A. Meton, M. Mislove, and D. Schmidt, editors, Mathematical Foundations
of Programming Semantics. 5th International Conference, number 442 in Lec-
ture Notes in Computer Science, pages 390–401. Springer Verlag, Mar/Apr
1989.

[66] A. J. Power. A 2-categorical pasting theorem. Journal of Algebra, 2(129),
Mar 1990.

[67] D. Prawitz. Ideas and results in proof theory. In J. E. Fenstad, editor,
Proceedings of the 2nd Scandinavian Logic Symposium, pages 235–307. North
Holland, 1971.

Bibliography 202

[68] H. Reichel. A 2-category approach to critical pair completion. In Recent
Trends in Data Type Specification, number 534 in Lecture Notes in Computer
Science, pages 266–273. Springer Verlag, 1991.

[69] E. Robinson. Variations on algebra: monadicity and generalisations of equa-
tional theories. Technical Report 6/94, Sussex Computer Science Technical
Report, 1994.

[70] J. A. Robinson. A machine-oriented logic based on the resolution principle.
Journal of the ACM, 12:23– 41, 1965.

[71] R. K. Rosen. Tree-manipulating systems and Church-Rosser theorems. Jour-
nal of the ACM, 20:160– 187, Nov 1973.

[72] M. Rusinowitch. On the termination of the direct sum of term-rewriting
systems. Information Processing Letters, 26(2):65–70, 1987.

[73] D. E. Rydeheard and J. G. Stell. Foundations of equational deduction: A
categorical treatment of equational proofs and unification algorithms. In
Category Theory and Computer Science, number 283 in Lecture Notes in
Computer Science, pages 114– 139. Springer Verlag, 1987.

[74] D. Sannella, S. Soko lowski, and A. Tarlecki. Toward formal development
of programs from algebraic specifications: Parameterisation revisited. Acta
Informatica, 29(8):689–736, 1992.

[75] D. T. Sannella and R. M. Burstall. Structured theories in LCF. In 8th

Colloqium on Trees in Algebra and Programming, number 159 in Lecture
Notes in Computer Science, pages 377– 391, L’Aquila, Italy, 1983. Springer
Verlag.

[76] D. T. Sannella and A. Tarlecki. On observational equivalence and algebraic
specification. Journal of Computer and System Sciences, 34(2/3):150– 178,
April/June 1987.

[77] D. T. Sannella and A. Tarlecki. Specifications in an arbitrary institution.
Information and Computation, 76(2/3):165–210, Feb/Mar 1988.

[78] D. T. Sannella and A. Tarlecki. A kernel specification formalism with higher-
order parameterisation. LFCS Report Series ECS-LFCS-91-139, LFCS, Feb.
1991.

Bibliography 203

[79] D. T. Sannella and M. Wirsing. A kernel language for algebraic specification
and implementation. In International Conference on Foundations of Com-
putation Theory, number 158 in Lecture Notes in Computer Science, pages
413– 427, Borgholm, Sweden, 1983. Springer Verlag.

[80] R. A. G. Seely. Hyperdoctrines and Natural Deduction. PhD thesis, Univer-
sity of Cambridge, Jun 1977.

[81] R. A. G. Seely. Modelling computations: A 2-categorical framework. In
Proceedings of the Second Annual Symposium on Logic in Computer Science,
pages 65–71, 1987.

[82] J. G. Stell. Categorical Aspects of Unification and Rewriting. PhD thesis,
Unversity of Manchester, 1992.

[83] J. G. Stell. Modelling term rewriting systems by Sesqui-categories. Technical
Report TR94-02, Keele Unversity, Jan. 1994.

[84] K. Stokkermans. A categorical formulation for critical-pair/completion pro-
cedures. In M. Rusinowitch and J. L. Rémy, editors, Third International
Workshop on Conditional Term Rewriting Systems, number 656 in Lecture
Notes in Computer Science, pages 171–175, Pout-à-Mousson, 1992.

[85] R. Street. The formal theory of monads. Journal for Pure and Applied
Algebra, 2:149–168, 1972.

[86] R. Street. Limits indexed by category-valued 2-functors. Journal for Pure
and Applied Algebra, 8:149–181, 1976.

[87] Y. Toyama. Counterexamples to termination for the direct sum of term
rewriting systems. Information Processing Letters, 25(3):141–143, 1987.

[88] Y. Toyama. On the Church-Rosser property for the direct sum of term
rewriting systems. Journal of the ACM, 34(1):128–143, 1987.

[89] Y. Toyama, J. W. Klop, and H. P. Barendregt. Termination for the direct
sums of left-linear complete term rewriting systems. Journal of the ACM,
42(6):1275– 1304, Nov 1995.

[90] D. Turi and G. Plotkin. Towards a mathematical operational semantics. In
Twelfth Annual Symposium on Logic in Computer Science. IEEE, Computer
Society Press, 1997.

Appendix A — Bibliography 204

[91] D. Turi and J. Rutten. On the foundations of final co-algebra semantics: non-
well-founded sets, partial orders, metric spaces. Mathematical Structures in
Computer Science, To appear, 1998.

[92] H. P. Yap. Some Topics in Graph Theory, volume 108 of London Mathemat-
ical Society Lecture Note Series. Cambridge University Press, 1986.

Index

2-cells, 31

abstract reduction system, 45
action of a monad, 17
adjunction, 15

F −−| U : Sig → MonFin(Set), 59
F −−| U : TRS → MonFin(Pre),

88
F −−| U : TRS → MonFin(Cat),

194
F −−| U : [N , A] → MonFin(A),

63
algebra

for a monad, 17
for a signature, 53

aliens, 96

bounded variable, 70

cartesian product, 15
of categories, 43
of graphs, 38
of relations, 41

category, 13
— of variables, 158
∅, 15
→, 16
CPO, 20
⇒, 16
2-category, 30
Cat, 43–45
MonFin(C), 27
F(G), free category, 37

Grph, 36–40
Ω-Alg, 53
Pre, 42
Rel, 40–43
Set, 14
Sig, 53
TRS, 86
V-Cat, 32
cartesian closed —, 29
closed monoidal —, 29
cocomplete —, 15
complete —, 15
discrete —, 13
filtered —, 20
functor —, 14
locally finitely presentable —, 20
monoidal —, 28
of monads Mon(C), 18
ordinary —, 29
product —, 43
small —, 14
symmetric monoidal —, 28
underlying ordinary —, 35
V-category, 29
weakly filtered —, 21

coequalizer, 16
in Cat, 44
of monads, 119–121

coherent extendable, 127
colimit, 14

filtered —, 20

205

in Cat, 44
weakly filtered —, 21

collapsing
functor, 81
monad, 81

commuting confluent, 125
commuting relations, 46
commuting subrelation, 127
complete relation, 47
composition, 13

horizontal —, 31
tadpole —, 31
vertical —, 31

cone, 14
confluence

commuting —, 125
confluent

category, 125
monad, 125
relation, 46
term rewriting system, 47

constants, 159
context, 45
coproduct, 16
coproduct of two monads, 95–107
cotensor, 34
counit of adjunction, 15

decomposition of a word, 47
diagram DX , 97
diamond property, 131
dual, 13

edges, 36
epimorphism, 13

in Cat, 43
equalizer, 16
equational presentation, 61

evaluation of terms
in an algebra, 56

expanding
— functor, 81
— monad, 81

fork, 16
fp, see objects, finitely presentable
functor, 13

V : V0 → Set, 29
2-functor, 30
F : Sig → MonFin(Set), 58
U : MonFin(Set) → Sig, 58
TΘ, 72
F : TRS → MonFin(Pre), 87
U : MonFin(Pre) → TRS, 87
F : TRS → MonFin(Cat), 193
U : MonFin(Cat) → TRS, 193
constant —, 14
diagonal —, 14
expanding —, 81
faithful, 14
finitary, 27
full, 14
injective —, 43
ordinary —, 29
representable, 14
strongly finitary, 27
V-functor, 29

generator, 20
graph, 36

underlying —, 37
graph morphism, 36

hom-functors, 14
hom-objects, 29
hom-set, 13
homomorphic extension, 55

206

identity, 13
incomposable pair, 117
infinite sequence, 152
interchange law, 31
internal

equations, 61
language, 60, 61, 74, 192
signature, 57

isomorphism, 13

Kan extension, 18

layer-collapsing, 115
layer-expanding, 115
lfp, see category, locally finitely pre-

sentable
lifting, 72

of a functor, 176
of a morphism in Set, 56
of a natural transformation, 176
of a TRS morphism, 87, 193

limit, 14
indexed or weighted, 33

minimal length, 116
modification, 31
monad, 17

B, 75
TΩ, 56
TΘ, 74
arising from adjunction, 17
expanding —, 81
finitary, 56
identity —, IdC, 18
morphism, 17
presentation of finitary monads,

63
strongly finitary —, 27

monad laws, 17

monadic, 17
monomorphism, 13

in Cat, 43
morphism, 13

epi, 13
monic, 13
universal —, see universality

µ-contractive, 117
µ-expansive, 117
multiplication

of a monad, 17
of a monoidal category, 28

natural transformations
cartesian —, 80

natural transformation, 14
identity —, 14

naturality, 14
non-collapsing, 81
non-expanding, 81
normal form

for morphisms of
∐

w∈W T wX , 115
for objects of

∐
w∈W T wX , 114,

115

object, 13
finitely presentable —, 19
initial —, 15
terminal —, 15

occurrence, 158

path, 37
— congruence, 37
concatenation ::, 37
empty idX , 37
length, 37
source s(p), 37
target t(p), 37

postcomposition, 14

207

precomposition, 14
preorder, 42
prereduction congruence, 182
prereductions, 174
principal subterms, 96
product, 15

quasi-non-expanding, 85

reduction
many-step —, �R, 46
named —, 66
one-step —, →R, 46
reduction —, 183
unnamed —, 66

reduction system
�η, 115
→η, 111
→Mor, 115
→µ, 111, 115
→Ob, 111

reflexive closure, 41
regular

monad, 79
natural transformation, 79

relational product, 41
rewrite rule, 46

admitted by a monad, 75, 193
collapsing, 69
expanding, 69
generalized, 69, 174
ordinary, 69
variable-introducing, 69

root symbol, 96

sets with structure, 66
signature, 52, 62

morphism, 53
span, 124

under Q, 134
strongly normalizing

category, 148
monad, 148
relation, 47
term rewriting system, 47

structural induction, 54, 72, 177
subcategory

co-initial, 139
commuting completable, 138
completable, 138

subcommuting relation, 46
substitution, 45

tensor, 34
tensor product, 63

of categories, 43
of graphs, 38
of relations, 41

term algebra, 54
term reduction algebra, 71

named, 183
term rewriting system, 69

orthogonal, 169
terminating, see strongly normalizing
tiling lemma, 132
transformation

of functors, 44
of graph morphisms, 39

transitive closure, 41
triangle laws, 15
TRS morphism, 86

underlying non-identity relation, R−(C),
148

unit
of a monad, 17
of a monoidal category, 28

208

of an adjunction, 15
universality, 15
universe, 12

variable rewrite, 69
variables

— by Kan extension, 64
— of a term, 54

vertices, 36

witness, 134
words

empty — ε, 47
non-empty words over an alpha-

bet L+, 47
over an alphabet L∗, 47
prefix ordering, 47

209

