
Nested Sketches
(Preliminary Version)

Horst Reichel∗
TU Dresden

1 Introduction

Since the fundamental work of Lawvere in 1963 [7] it is common to understand
a theory as category with additional structure, to understand a model of the
theory as a functor preserving the additional structure, and to represent homo-
morphisms by natural transformations. The resulting model category becomes
a suitable subcategory of a functor category. Many different classes of mathe-
matical structures have been described and investigated in this way. The aim
of this paper is, to find a functorial model theory for those classes of algebras
that appear naturally as semantics of algebraic specifications of parameterized
data types, using initial respectively more general free functor semantics, and
to extend the functorial model theory to specifications that use as well induc-
tively defined data types as coinductively defined patterns of behavior and their
systematic combinations.

The final result is a categorical model theory of discrete mathematical structures
whose basic operations may have arbitrarily structured domains and codomains.
Such kind of structures have been first systematically investigated by T. Hagino
in his PhD thesis , [5]. The basic idea to achieve this generalized categorical
model theory is the use of combined left and right Kan extensions in order to
constrain iteratively functor categories.

The resulting categorical model theory generalizes algebraic and essentially alge-
bric theories, since algebras are structures whose basic operations have a struc-
tured domain, being a product or finite limit, and the codoamin is one of the
basic types (usually called sorts in algebra). The approache also generalizes coal-
gebras, for which dually the codomains of the basic operations are structured
and the domain is one of the basic types.

As we will the, we are also able to represent model categories that have not jet
∗This work has been partially supported by EPSRC grant GR/M36694

1

been described by different kinds of sketches. To justify the last statement we
consider the description of lists and trees as described in the electronic supple-
ment of Barr and Wells book [2].

In the Section 1.1.2 The sketch for lists there is used a finite discrete sketch
with objects L, D, L+, 1 and morphisms head : L+ → D, tail : L+ → L an two
other unnamed ones that are used to express by a sum sketch that L+ = 1+L+.
Additional product sketches imply that 1 has to be mapped by a model M to
a final object of a category, i.e., to a singleton set in the category of sets, and
that for a model M(L+) = M(D) ×M(L) holds.

It is easy to check that the intended interpretation:

M(L) = set of all finite lists of elements in M(D)

with M(L+) = set of all finite nonempty lists in M(D) is a model.

But the intended interpretation is not the only model. The discrete sketch
does only imply that for each model M the set M(L) is a fixed point (up to
isomorphism) of the recursive type equation

M(L) ≡ 1 + (M(D) ×M(L).

The intended interpretation is given by the least fixed point, and there are
several other ones not isomorphic to the intended model. Thus, the used for-
malization by discrete sketches is not able to constrain the functor category to
the intended class of models.

In the next section be will introduce the notion of nested sketches and we will
show, that this kind of constraining functor categories can represent exactly the
intended class of functors, such that up to isomorphisms, a functor

M : C→ Set

is a model of a corresponding set of nested sketches, if and only if M(L) =
M(D)∗, where M(D)∗ denotes the set of finite list with elements in M(D).

2 Nested Sketches

In the following we assume that C denotes a finitely generated category, rep-
resented by a finite directed graph G(C) and a finite set Rel(C) of defining
relations, where a defining relation 〈w1, w2〉 ∈ Rel(C) is an ordered pair of finite
paths over G(C) with the same beginning and end node.

If F : A→ B and G : B→ C are functors, there composition will be denoted by
F ; K : A→ C.

2

Definition 2.1. A projective sketch (respectively injective sketch) in a category
C is given by three functors

J : C0 → C1, K : C1 → C, F : C0 → C

and a natural transformation

π : J ; K ⇒ F

respectively by a natural transformation

η : F ⇒ J ; K.

A functor M : C→ Sem is a model of a projective sketch if

(K; M : C1 → Sem, (π; M) : J ; K; M ⇒ F ; M)

is a right Kan extension of F ; M : C0 → Sem along J : C0 → C1.

Correspondingly M : C→ Sem is a model of an injective sketch if

(K; M : C1 → Sem, (η; M) : F ; M ⇒ J ; K; M)

is a left Kan extension of of F ; M : C0 → Sem along J : C0 → C1.

A sketch in C is either an injective or a projective sketch in C. A functor
M : C → Sem is a model of a finite set of sketches if it is a model of each of
sketch in the given set. 2

Sketches as defined here do not improve the expressiveness with respect to the
kind of sketches used by Barr and Wells [2]. They have been considered by
Ross Street in the 60th, according to a personal communication, but have not
been published. One advantage of the introduced sketches is the possibility to
represent countable limit and colimit sketches in a finite manner. This can be
illustrated by a specification of natural numbers.

Example 1: We take the category C which is defined by the generating graph
G(C)

B
z // N

s // N

and with the empty set of defining relations. We take C0 = 1, i.e., the category
with exactly one object 1, C1 = C, K = IdC, J(1) = B, F (1) = B and the
natural transformation η : F ⇒ J ; K is the identity of F (= J ; K). This defines
an injective sketch in C.

One can easily check that a functor M : C → Set is a model of that injective
sketch, if (up to isomorphisms)

M(N) = IN ×M(B) =
∑
i∈IN

M(B)i

3

Proving that one has to show that for each functor X : C1 → Set and each
natural transformation α : F ⇒ J ; X there is exactly one natural transformation
α∗ : K; M ⇒ X with α = (η; M)◦(J ; α∗). This natural transformation is defined
by α∗B = αB and the component

α∗N : IN ×M(B)→ X(N)

is given by
α∗N(0, x) = (X(z))(αB(x))
α∗N(i + 1, x) = X(s)i+1((X(z))(αB(x)))

If one wants to specify exactly the natural numbers (up to isomorphisms), one
has to add a product sketch which forces a model to map the object B to the
terminal object in the category of sets. 2

However, trying to extend this idea to a specification of finite lists will fail.

Example 2: For the example of the parametric data type of finite lists we take
a category C2 with obj(C2) = {B, C, L, P} and with the following generating
morphisms

nil : B → L
cons : P → L
p1 : P → C
p2 : P → L

which constitute the generating graph G(C2). Also in that case the set of
defining relations is empty.

Beside two product sketches, where one forces a model to map B to the terminal
object and the other to map the object p to the product of the images of L and
C, one takes an injective sketch defined as follows. C1 = C2, C0 = 1 +1 having
exactly the two objects 1 and 2. K = IdC, F (1) = B = J(1), F (2) = C = J(2)
and η : F ⇒ J ; K is the identity again.

But, now a functor M : C2 → Set is a model of that injective sketch, if M(L) =
M(P) = ∅. 2

Why does the conjunction of that injective sketch with the two product sketches
do not work as expected? That’s because the intended interpretation M : C2 →
Set with M(L) = M(C)∗ does not have the required universal property of a
left Kan extension within the whole functor category SetC

2
, but only within the

subcategory of those functors being a model of the two product sketches.

How one can relate the universal property of a Kan extension to a subcategory
of the functor category? This possibility will be achieved by the notion of nested
sketches in a category C defined as follows.

Definition 2.2

4

1. For each category C there is a trivial nested sketch denoted by >(C).

2. Any finite set of nested sketches in an category C is again a nested sketch
in C, written

∆ = {∆1, . . . , ∆n}

3. Let be

(J : C0 → C1, F : C0 → C, K : C1 → C, η : F ⇒ J ; K)

be an injective sketch in C, let ∆1 be a nested sketch in C1, and ∆0 a
nested sketch in C0. Then

∆ = 〈(∆1,C1), (∆0,C0), J, F, K, η : F ⇒ J ; K〉

is a nested sketch in C.

4. Let be

(J : C0 → C1, F : C0 → C, K : C1 → C, π : J ; K ⇒ F)

be a projective sketch in C, let ∆1 be a nested sketch in C1, and ∆0 a
nested sketch in C0. Then

∆ = 〈(∆1,C1), (∆0,C0), J, F, K, π : J ; K ⇒ F 〉

is a nested sketch in C.

In the following we define under which conditions a functor M : C→ Sem is a
model of a nested sketch in C:

1. Each functor M : C→ Sem is a model of the trivial nested sketch >(C).

2. M : C → Sem is a model of ∆ = {∆1, . . . , ∆n} if it is a model for each
∆i, i = 1, . . . , n.

3. M : C→ Sem is a model of

∆ = 〈(∆1,C1), (∆0,C0), J, F, K, η : F ⇒ J ; K〉

if

(a) K; M : C1 → Sem is a model of ∆1.

(b) F ; M : C0 → Sem is a model of ∆0.

(c) For each functor X : C1 → Sem such that X is a model of ∆1 and
J ; X is a model of ∆0, and for each natural transformation α : F ⇒
J ; X there is exactly one natural transformation α∗ : K; M ⇒ X
with α = (η; M) ◦ (J ; α∗).

5

4. M : C→ Sem is a model of

∆ = 〈(∆1,C1), (∆0,C0), J, F, K, π : J ; K ⇒ F 〉

if

(a) K; M : C1 → Sem is a model of ∆1.
(b) F ; M : C0 → Sem is a model of ∆0.
(c) For each functor X : C1 → Sem such that X is a model of ∆1 and

J ; X is a model of ∆0, and for each natural transformation α : J ; X ⇒
F there is exactly one natural transformation α∗ : X ⇒ K; M with
α = (J ; α∗) ◦ (π; M).

A pair (C, ∆) consisting of a finitely generated category and a nested sketch in
C will be called a theory of nested sketches NS-theory for short. 2

Using the trivial nested sketch for ∆1 and ∆0 in definitions (3) and (4) one
gets the injective and projective sketches as special cases of nested sketches.
Therefore we will in the following no more distinguish between nested and flat
sketches, and will uniquely use the more general notion of nested sketches.

With this more general notion we are now able to specify the parametric data
type of finite lists.

Example 3: We take the injective sketch of Example 2 and build a nested
sketch according part (3) of the preceding definition, by taking ∆1 to consists
of the two product sketches (seen as nested sketches in C1), and taking for ∆0
the trivial nested sketch >(C0).

Let ∆tree denote the resulting nested sketch in C. Now the class of models
M : C → Set of ∆tree coincides with those interpretation where M(B) is a
singleton set {∗}, M(C) can be an arbitrary set, M(L) = M(C)∗ is the set of all
finite list with elements in M(C), and M(P) = M(C)×M(L). M(p1), M(p2) are
the projections, M(nil) : {∗} →M(L) maps ∗ to the empty list and M(cons) :
M(C)×M(L)→M(L) maps an element x0 ∈M(C) and a list l = [x1, . . . , xn] ∈
M(L) to the list [x0, x1, . . . , xn]. 2

What about the existence of models? Can an NS-theory be unsatisfiable? This
general questions can easily be answered, since for any NS-theory (C, ∆) the
unique functor !C : C → 1 is a model. Evidently the category 1 is not an
interesting domain to construct models. The interesting question is, if in a
specific category like Set models exist. In general the answer is no. To see
that we take C = 1 and let ∆ consists of two discrete sketches which force a
model M : C → Sem to map the unique object as well to the initial as to the
terminal object of Sem. Since in Set the initial object is not terminal and vice
versa, there is no model in Set for that NS-theory. But, this NS-theory has for
instance a model in the category of commutative groups.

6

Another interesting question concerns the existence of generic models, where
a model M∆ : C → L∆ of an NS-theory (C, ∆) is called generic, if for each
model M : C → Sem of (C, ∆) there is a unique functor M ′ : L → Sem with
M = M∆; M ′.

Theorem 2.3 For each NS-theory (C, ∆) there exists (up to isomorphisms) a
unique generic model M : C→ L.

Proof: From the definition of generic models immediately follows that a generic
model, if it exists, is unique up to isomorphisms.

So it remains to show that there is a generic model. This will be proved by
induction on the depth of nested sketches, which will be defined next.

According to the inductive definition of nested sketches, the depth i(∆) of a
nested sketch can be defined as follows:

i(>(C)) = 0
i({∆1, . . . , ∆n}) = max{i(∆1), . . . , i(∆n)}
i(〈(∆1,C1), (∆0,C0), J, F, K, π : J ; K ⇒ F 〉) = 1 + max{i(∆1), i(∆0)}
i(〈(∆1,C1), (∆0,C0), J, F, K, η : F ⇒ J ; K〉) = 1 + max{i(∆1), i(∆0)}

Let be ∆ a nested sketch in C and H : C→ C′ any functor. Then we can define
the nested sketch

∆; H in C′ (∗)
by using the inductive nature of nested sketches.
First we set
>C; H = 〈(>C,C), (>C,C), IdC, H, H, IdH : H ⇒ H〉
which can be seen as well as an instance of a nested sketch according (3) as well
of (4) in Definition 2.2. The nested sketch >C; H is semantically equivalent to
>C′ since each functor G : C′ → C′′ is a model of >C; H.
Next we set ∆; H = {∆1; H, . . . , ∆n; H} if ∆ = {∆1, . . . , ∆n}, and
∆; H = 〈(∆1,C1), (∆0,C0), J, F ; H, K; H, η; H : F ; H ⇒ J ; (K; H)〉
if ∆ = 〈(∆1,C1), (∆0,C0), J, F, K, η : F ⇒ J ; K〉, and finally
∆; H = 〈(∆1,C1), (∆0,C0), J, F ; H, K; H, π; H : J ; (K; H)⇒ F ; H〉
if ∆ = 〈(∆1,C1), (∆0,C0), J, F, K, π : J ; K ⇒ F 〉.

Equipped with this notions we can start the inductive construction of a generic
model.

The starting point is trivial, since for a nested sketch with ∆ in C with i(∆) = 0
the identity of C is a generic model.

Now we assume, that for any nested sketch ∆ with i(∆) ≤ n+1 a generic model
is given by M∆ : C→ L∆.

Let ∆′ = 〈(∆1,C1), (∆0,C0), J, F, K, η : F ⇒ J ; K〉 be a nested sketch with
i(∆′) = n + 1 which implies max{i(∆)0), i(∆)1)} = n.

7

Let be ∆ = {∆1; K, ∆0; F}. Then i(∆) = n and the induction hypothesis can
be applied to ∆.

The generic model M∆′ : C → L∆′ will be constructed as injective limit of a
chain

Qi : Li → Li+1, i = 0, 1, . . .

with L0 = L∆, and each Li will be given by a directed graph G(Li), representing
the generating morphisms, and by a congruence relation ρi in the category freely
generated by G(Li), i.e., in the category of finite paths over G(Li). The chain
of pairs 〈G(Li), ρi〉 will be inductively defined, and it will turn out that it is
an increasing chain, so that the the injective limit will be given by the infinite
unions, separately constructed in each component.

The construction of the chain starts with the pair 〈G(L0), ρ0〉 with results from
the induction hypothesis. Now let be given 〈G(Li), ρi〉.
Let Hi : C→ Li be the composition Hi = M∆; Q0; . . .Oi−1.

For each pair (X, α), where X : C1 → Li is a functor such that it is a model of
∆1 and J ; X is a model of ∆0, and α : F ; Hi⇒ J ; X is a natural transformation,
such that no natural transformation α∗ : K; Hi⇒ X with α = (η; Hi) ◦ (J ; α∗),
for each such pair (X, α) we add the set of generating morphisms

{f(X,α,c) : Hi(K(c)→ X(c) | c ∈ obj(C1)}

to the generating graph G(Li), which leads to the generating graph G(Li+1).
The congruence relation ρi+1 is the smallest congruence relation in the category
freely generated by G(Li+1) such that ρi ⊆ ρi+1 and such that for each (X, α)
used in the construction of G(Li+1) the family α∗ = {f(X,α,c) : Hi(K(c) →
X(c) | c ∈ obj(C1)} becomes the unique natural transformation α∗ : K; Hi ⇒ X
satisfying α = (η; Hi) ◦ (J ; α∗). The association f 7→ [f]ρi+1 defines the functor
Qi : Li → Li+1.

Let be G(L∆′) be the injective limit of the increasing chain of generating
graphs G(Li), i = 0, 1, . . ., and let ρ∆′ be the smallest congruence relation
in the category freely generated by G(L∆′). This two constructions give us
a representation of the category L∆′ , being the injective limit of the chain
Qi : Li → Li+1, i = 0, 1,

Let M0 : L0 → L∆′ the injection into the injective limit, and let M∆′ : C→ L∆′

be the composition of M∆ with M0. The proceeding construction makes it
evident that M∆′ : C→ L∆′ is a model of ∆′.

It remains to show that this model is a generic mode of ∆′.

For that reason let M : C → Sem be an arbitrary model of ∆′. By definition
is K; M a model of ∆1 and F ; M a model of ∆0, which implies that M is a
model of both ∆1; K and ∆0; F , i.e. M is a model of ∆ = {Delta1, ∆0; F}. By

8

induction hypothesis is M∆ : C → L∆ a generic model of ∆. This guarantees
the existence of a unique functor M0 = L∆ → Sem with M = M∆; M0.

Inductively we will show that for each i ∈ IN there is a unique functor Mi :
Li → Sem with (Q0; Q1; . . . ; Qi−1); Mi = M0 which implies the existence of the
required unique M ′ : L∆′ → Sem, since L∆′ is the injective limit of that chain.

For i = 0 the existence of M0 : L∆ → Sem has just been proved. Let Mi :
Li → Sem with the corresponding properties be given. For each pair (X, α),
used to construct new generating morphisms in G(Li+1) we obtain a natural
transformation α; Mi : F ; Hi; Mi ⇒ J ; X; Mi, i.e., α; Mi : F ; M ⇒ J ; X; Mi,
because of Hi; Mi = M . Because M is a model of ∆′ there exists a unique nat-
ural transformation α∗ : K; M ⇒ X; Mi with α; Mi = (η; M) ◦ (J ; α∗). Map-
ping each new generating morphism f(X,α,c) : Hi(K(c)) → X(c) in G(Li+1)
to α∗(c) : M(K(c)) → Mi(X(c)) defines together with Mi a graph homomor-
phisms from G(Li+1) to the underlying graph of the category Sem. The result-
ing unique graph homomorphism M ′′

g : G(L∆′) to the underlying graph of the
category Sem induces finally a functor from the category freely generated by
G(L∆′) to Sem whose kernel contains each ρi. This implies the existence of the
unique functor M∗ : L∆′ → Sem with M = M∆′ ; M∗.

The construction of a generic model of a nested sketch according point (4) of
Definition 2.2 can be done analogously.

If ∆ = {∆1, . . . , ∆n} with i(∆) = n + 1 and more than one of the ∆i’s has
depth n, then one has to consider all pairs (X, α) simultaneously for all ∆i’s
with depth n, in the inductive construction of the category L∆′ . 2

Next we point out a property of nested sketches and their models which basically
guarantees that nested sketches built an institution in the sense of Goguen and
Burstall [3].

Proposition 2.4. Let ∆ be a nested sketch in C and H : C→ B any functor.
A functor M : B → Sem is a model of ∆; H if and only if H; M is a model of
∆.

Proof: The equivalence can be proved again by induction on the structure of
nested sketches.

The case ∆ = >C is trivial, since each functor H : C→ D is a model of >C, and
each functor H ′ : >B → >D is a model of >C; H.

With the induction hypothesis immediately follows that Proposition 2.4 holds
if ∆ = {∆1, . . . , ∆n}.

A bit more interesting are the cases where the nested sketches are constructed
according point (3) or (4) in definition 2.2.

Let ∆ = 〈(∆1,C1), (∆0,C0), J, F, K, π : J ; K ⇒ F 〉 and assume that M is a

9

model of ∆; H.

To prove that H; M is a model of ∆ we assume that there is a functor X : C1 →
Sem and a natural transformation α : F ; (H; M)⇒ J ; X. By associativity of
functor composition we have a natural transformation α : (F ; H;)M ⇒ J ; X,
and since M is a model of ∆; H there is a unique natural transformation α∗ :
(K; H); M ⇒ X with α = ((η; H); M) ◦ (J ; α∗). Using again associativity
we obtain a unique natural transformation α∗ : K; (H; M) ⇒ X with α =
(η; (H; M) ◦ (J ; α∗), which implies that H; M is a model of ∆.

The converse and the case that ∆ is constructed according point (4) in Definition
2.2 can be proved identically. 2

To get an institution of nested sketches in the sense of Goguen and Burstall
one takes the category Catf of finitely generated categories as a category of
signatures, one takes nested sketches in a category C as sentences over the
signature C, and one takes for each functor H : C→ B in Catf the mapping

∆ 7−→ ∆; H

as translation from sentences over C to sentences over B. With respect to that
construction Proposition 2.4 just states the validity of the satisfaction condition
of the institution of nested sketches.

3 Examples of NS-theories and generic models

If a NS-theory only contains product sketches, the corresponding generic model
corresponds to the term model, with the exception that only finitely many
variables are given, since finitely many product sketches do not imply that the
generic model is closed under finite products.

The term model considered as a category can be understood as a minimal logic
for talking about structures whose domains of the basic operations are defined
by products, i.e., for talking about many sorted algebras. The minimal logic,
resulting from a Kan theory containing only product sketches, corresponds to
equational logic.

In the following we will see that the minimal logic, given by the generic model
of a NS-theory can be surprisingly expressive, depending on the constructions
used to define domains and codomains of basic operations.

To get a better understanding for the range of expressiveness of NS-theories we
consider as next theories which contain projective sketches.

Example 4: We take the category C4, given by the generating graph G(C4):

B S
headoo tail // S

10

and the empty set of defining relations. We take the categories and functors
C4

0 = 1, C4
1 = C4, K = IdC4 , J(1) = B = F (1), and the natural transformation

π : J ; K ⇒ F is the identity of F (= J ; K). With the notation of Definition 2.2
we consider the nested sketch (of depth one)

∆4 = 〈(>C4 ,C4), (>1, 1), J, F, K, π : F ⇒ J ; K〉

in C4.

A functor M : C4 → Set is a model of ∆4 iff M(S) = M(B)IN , with (M(h))(f) =
f(0) and (M(t))(f) = λ x.f(x + 1) for each (f : IN →M(B)) ∈M(S), i.e., the
NS-theory (C4, ∆4) specifies the parametric Type of infinite streams. 2

Example 5: We extend the preceding example by taking the category C5,
defined by the generating graph

B S
headoo tail // S S′

head′oo tail′ // S′

and the empty set of defining relations. Now we consider two nested sketches
(both of depth one) given by the following projective sketches:

∆5
1 : C1

1
K1

// C5

1

J1

OO

F1

>>
}

}

}

}

}

}

}

}

∆5
2 : C2

1 = C5 Id // C5

C2
0 = C1

1

J2

OO

F2(=K1)

;;
w
w
w
w
w
w
w
w
w

Where C1
1 = C2

1 = C4, F 1(1) = b = J1(1) and K1, J2 are the inclusion functors.
Since both diagrams commute we can take for π1, π2 the corresponding identities
to define projective sketches.

A functor M : C5 → Set is a model of the NS-theory (C5, {∆5
1, ∆5

2}) iff M(S) =
M(B)IN and M(S′) = (M(B)IN)IN . Thus, the object S′ represents the type
of infinite streams of infinite streams with elements in M(B). This type is a
simple example of a higher order process type, since the outputs of a process
are again processes which themselves output elements of base type B. 2

In the following we generalize the Example 4 in such a way that we allow the pro-
cesses to terminate after an arbitrary finite number of steps. The specification
of this kind of processes requires a nested sketch of depth two.

Example 6: We take the category C6 given by the defining graph

B S
headoo

tail ,,

inl

22 S + T T
inroo

11

and the empty set of defining relations. The nested sketch ∆6 is depicted by

∆6 : ∆6
1 : C6 Id // C6

>1 : 1

J

OO

F

77
n
n
n
n
n
n
n
n
n
n
n
n
n

the natural transformation π : J ; Id ⇒ F (= idF), where J(1) = B = F (1)
and where ∆6

1 consists of one product sketch, constraining the object T to the
terminal object, and one sum sketch, making the object S + T to the sum of S
and T with the two injections inl : S → S + T, inr : T → S + T . 2

Similarly to the specification of the parametric data type of finite lists one has
to nest sketches in Example 6, since for each fixed interpretation M(B) of the
sort B one has to characterize the set M(S) of finite and infinite sequences
of elements in M(B) as a final coalgebra, or equivalently as a most abstract,
deterministic, partial automata with a singleton set as input alphabet, the set
M(B) as output alphabet and M(S) as state set, where M(tail) : M(S) →
M(S) + {∗} represents the state transition function.

The preceding examples have shown that nested sketches with an injective top
sketch are strongly related to inductively defined data types, and that nested
sketches with a projective top sketch are related to coinductively defined process
types. More advanced examples can be found in the literature on algebraic
specifications of data types and on coalgebraic approaches to systems. We will
not go further in that direction.

In the following we will investigate in which way induction and coinduction is
present in the corresponding generic models. i.e., if induction and coinduction
is present in the canonically related term model of the structures specified by
an NS-theory.

Let as first look if induction is available in a generic model of an NS-theory with
injective sketches. For that reason we consider first the following preparative
example.

Example 7: C7 is the category given by the defining graph

T
T inl ,,

T inr

22 T + T (T + T) ×B
p 1oo p 2 // B

B inl ,,

B inr

22 B + B

and the empty set of defining relations. We are interested in the generic model
of the NS-theory

(C7, ∆7 = {∆7
1, ∆

7
2, ∆

7
3, ∆

7
4})

where ∆7
1 constrains the object T + T to the sum of T and T with the two

injections T inl : T → T + T , T inr : T → T + T , where ∆7
2 analogously

12

constrains the object B +B to become the twofold sum of B with the injections
B inl : B → B + B, B inr : B → B + B, ∆7

3 constrains the object T to the
terminal object, and ∆7

4 finally constrains the object (T +T)×B to become the
product of T + T and B with the projections p 1 : (T + T)×B → T + T, p 2 :
(T + T) ×B → B.

In the generic model L∆7 the projective sketch ∆7
3 generates for each object X a

unique morphism !X : X → T with !T = idT and the two sum sketches generate
morphisms cdT : T + T → T , cdB : B + B → B with T inl; cdT = idT =
T inr; cdT and B inl; cdB = idB = B inr; cdB . Whoever constructing the
congruence ρ1 according the proof of Theorem 2.2, the two generated morphisms
cdT and !T+T will be identified. In the next generation step the two morphisms
!B; T inl, !B; T inr : B → B + B generate the morphism !B+!bB : B + B →
T +T . This morphism together with the morphism cdB : B +B → B cause the
product sketch ∆7

4 to generate a morphism

〈!B+!B, cdB〉 : B + B → (T + T)× B

with corresponding equations. We have pointed out that morphism, because
each model M : C7 → Set of ∆7 interprets that morphism as a bijection, i.e.
as an isomorphism in Set, since the disjoint sum of a set M(B) with itself can
be constructed by a product {1, 2} ×M(B). As it is well known, this relation
between products and sums does not hold in each category and so also not in
the generic model. 2

We have developed this simple example so carefully, since induction is usually
expressed as parametric induction, i.e., induction applied to a component of a
Cartesian product. Primitive recursion is a typical induction scheme of that
kind. This kind of induction cannot be present in generic models in general.
In which way the induction is present in generic models will be illustrated, by
defining the operation of adding two natural numbers.

Example 8: If we want to specify the addition of natural numbers as a mor-
phism in the generic model, then there has to be an object representing the
domain of that operation. The argumentation above makes clear that a product
would not work. Coming back to Example 1 we see that a functor M : C→ Set
is a model of the injective sketch introduced there if

M(N) = IN ×M(B) =
∑
i∈IN

M(B)i

If one takes M(B) = IN then we obtain IN × IN =
∑
i∈IN IN i. This instanti-

ation of the parameter can be achieved by the following NS-theory (C8, ∆8 =
{∆8

1, ∆
8
2, ∆

8
3}), where C8 is given by the generating graph

T
z1 // N1 N1

s1oo z2 // N2 N2
s2oo

13

and the empty set of generating relations. ∆8
1 constrains the object T to the

terminal object, and the two injective sketches ∆8
2, ∆8

3 of depth one are given
by the diagrams

∆8
2 : C1

1
K1

// C8

1

J1

OO

F1

>>
}

}

}

}

}

}

}

}

∆8
3 : C2

1 = C1
1
K2

// C8

1

J2

OO

F2

::
v
v
v
v
v
v
v
v
v
v

Where C2
1 = C1

1 is the category given by the defining morphisms

T
z // N N

soo

and the empty set of defining relations. The corresponding functors are de-
fined by J1(1) = T = F 1(1), J2(1) = T, F 2(1) = N1, K

1(z) = z1, K
2(z) =

z2, K
1(s) = s1 and K2(s) = s2. The corresponding natural transformations

η8
2 : F 1⇒ J1; K1 and η8

3 : F 2 ⇒ J2; K2 are the identities.

Pairs of natural numbers (n, m) ∈ IN × IN can be represented by morphisms

z1; s1; . . . ; s1︸ ︷︷ ︸
n−times

; z2; s2; . . . ; s2︸ ︷︷ ︸
m−times

: T → N2.

The sketch ∆8
1 generates for each object X uniquely morphisms !X : X → T .

In the next step we construct morphisms p1, p2 : N2 → N1 in the generic model
which satisfy

z1; s1; . . . ; s1︸ ︷︷ ︸
n−times

; z2; s2; . . . ; s2︸ ︷︷ ︸
m−times

; p1 = z1; s1; . . . ; s1︸ ︷︷ ︸
n−times

z1; s1; . . . ; s1︸ ︷︷ ︸
n−times

; z2; s2; . . . ; s2︸ ︷︷ ︸
m−times

; p2 = z1; s1; . . . ; s1︸ ︷︷ ︸
m−times

and represent projections (not satisfying universal properties).

One can easily check that the two equations would hold if the two morphisms
p1, p2 would satisfy the following equations:

z2; p1 = !N1 ; z1
s2; p1 = p1; s1

z2; p2 = idN1

s2; p2 = p2

These two projections can be constructed as

p1 = f(Hp1 ,id,N2), p2 = f(Hp2 ,id,N2)

where the functors Hpi : C2
1 → C8 for i = 1, 2 are defined by Hp1(z) =

z1, Hp1(s) = s1 and Hp2(z) = idN1 , Hp2(s) = idN1 .

14

Even though one can define the two projections, they do not have the universal
property necessary for a product. However, for each model M : C8 → Set of
(C8, ∆8) the mapping M((p1, p2)) : M(N2) → M(N1) ×M(N1) is a bijection.
This is one consequence of distributivity properties of the category of sets with
respect to injective and projective limits.

Finally the morphism

add = f(H+,id,N2) : N2 → N1

using the functor H+ : C2
1 → C8 defined by H+(z) = idN1 , H+(s) = s1 defines

the addition of natural numbers. The corresponding equations represent with
the notation of pairs of natural numbers the following recursive definition:

add(n, 0) = n
add(n, m + 1) = add(n, m) + 1

This is not the only way to construct in the generic model a morphism repre-
senting the addition. 2

This example does not only illustrate the expressive power of generic models, it
shows in addition that the iterative construction of the generic model does not
necessarily converge after finitely many steps, because for the given NS-theory
the schema of primitive recursion can always be applied to that operation, that
has been generated in the step before and delivers a new operation. Thus in the
second step we would generate a morphism representing the multiplication, in
the following a morphism representing the exponentiation and so on.

By the next example we illustrate that generic models also reflect coinduction.

Example 9: Let C9 be the category that results from C4 by adding a new
object, denoted by s× s and two new generating morphisms p1, p2 : s× s→ s.
If ∆4 denotes the projective sketch in C4 as defined in Example 4, and if I :
C4 → C9 denotes the inclusion, then let

(C9, ∆9 = {∆4; I, ∆4
s×s})

denote the NS-theory, where ∆4
s×s denotes a product sketch which makes the

object s×s to the product with the projections p1, p2 : s×s→ s. In the generic
model the product sketch generates a morphism

〈p2, (p1; tail)〉 : s× s→ s× s

satisfying the equations 〈p2, (p1; tail)〉; p1 = p1 and 〈p2, (p1; tail)〉; p2 = p1; tail.
By means of that morphism we can define a functor H : C1

1 → C9 by H(head) =
p1; head and H(tail) = 〈p2, (p1; tail)〉. If α : J ; I ⇒ F ; I denotes the identity
transformation, so that in the next generation step a morphism

f(H,α,s×s) : s× s→ s

15

is generated which satisfies the equations

f(H,α,s×s); head = p1; head
f(H,α,s×s); tail = 〈p2, (p1; tail)〉; f(H,α,s×s)

One can easily recognize the coinductive definition of the merge operation. 2.

The examples show that in the generic models both induction and coinduction
are present in a very natural and explicit way.

The next example represents the parameterized data type of the finitary power
set construction.

Example 10: Let C10 be the category with the object set {t, b, p, b×p, b×b×p},
with the defining morphism
empty : t→ p,
add : b× p→ p,
p2

1 : b× p→ b, p2
2 : b× p→ p,

p3
1 : b× b× p→ b, p3

2 : b× b× p→ b, p3
3 : b× b× p→ p,

d : b × p→ b × b× p,
〈p3

1, p
3
3〉 : b× b× p→ b× p,

〈p3
2, p

3
3〉 : b× b× p→ b× p,

〈p3
1, 〈p3

2, p
3
3〉; add〉 : b × b× p→ b× p,

〈p3
2, 〈p3

1, p
3
3〉; add〉 : b × b× p→ b× p

and with the defining relations

d; p3
1 = d; p3

2 = p2
1, d; p3

3 = p2
2,

〈p3
1, p

3
3〉; p2

1 = p3
1, 〈p3

1, p
3
3〉; p2

2 = p3
3,

. . .
〈p3

2, 〈p3
1, p

3
3〉; add〉; p2

1 = p3
2,

〈p3
2, 〈p3

1, p
3
3〉; add〉; p2

2 = 〈p3
1, p

3
3〉; add,

d; 〈p3
1, 〈p3

2, p
3
3〉; add〉; add = add,

〈p3
1, 〈p3

2, p
3
3〉; add〉; add = 〈p3

2, 〈p3
1, p

3
3〉; add〉; add.

The last two equations express the idempocy and commutativity of adding an
element to a finite set of elements. The other morphisms and equations represent
manipulations with variables, which are not present explicitly.

Let ∆t, ∆b×p, ∆b×b×p be product sketches in C10 that constraint the ob-
ject t to the terminal one and the others to the indicated products and ∆ =
{∆t, ∆b×p, ∆b×b×p}. Finally we define a nested Kan sketch ∆10 in C10

∆ : C10 Id // C10

1

J

OO

F

66
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m

with J(1) = F (1) = b, where the natural transformation η10 : F ⇒ J ; (IdC10) is

16

once more the identity.

A functor M : C10 → Set is a model of the Kan theory (C10, ∆10) if M(p) is
the set of all finite subsets of M(b). 2

Example 10 demonstrates in addition to the preceding examples the use of
defining equations for the constraint category.

But, the example also demonstrates that the notation used so far is not con-
venient for more complex examples. One needs some more readable textual
representations and possibilities to built up complex NS-theories from smaller
ones, defined before.

4 Structuring NS-theories

In the examples above most sketches have been commutative triangles, so that
the corresponding natural transformation is the identity. In addition the functor
J : C0 → C1 has been the embedding of a subcategory. In the following we will
show that natural transformations as parts of nested sketches ar not explicitly
needed and that a restriction to this kind of sketches does not restrict the
expressiveness of sketches.

Definition 4.1. An injective (respectively projective) sketch

(J : C0 → C1, F : C0 → C, K : C1 → C, η : F ⇒ J ; K)

is called a commutative triangle sketch, ct-sketch for short, if J : C0 → C1
is the embedding of a subcategory, if J ; K = F and if η = idF respectively
π : J ; K ⇒ F = idF . A nested sketch is called a nested ct-sketch if all included
sketches are ct-sketches or if it is the trivial nested sketch. 2

Theorem 4.2. For each nested sketch ∆ in a category C there exists a seman-
tically equivalent nested ct-sketch.

Proof: We consider first nested sketches of depth one.

Let
∆ (J : C0 → C1, F : C0 → C, K : C1 → C, η : F ⇒ J ; K)

be an injective sketch in C. This sketch can equivalently be replaced by the
following injective ct-sketch

∆∗ (J∗ : C0 → C∗1, F : C0 → C, K∗ : C∗1 → C, idF : F ⇒ J∗; K∗(= F))

where J∗; K∗ = F and J∗ : C0 → C∗1 is the embedding of a subcategory.

The category C∗1 can be constructed form J : C0 → C1 as follows:

17

Take the sum C0 + C1, then adjoin for each object X ∈ obj(C0) a morphism
hX : X → J(X) and adjoin an equation f ; hY = hX ; J(f) for each morphism
f : X → Y in C0 to the union of the defining relations of C0 and C1. Let
J∗ : C0 → C∗1 denote the embedding of C0 into C∗1
Let J∗1 : C1 → C∗1 be the embedding of C1 and η∗ : J∗ ⇒ J ; J∗1 be the natural
transformation with η∗X = hX for each object X ∈ C0

The resulting pair (C∗1, η∗) has the following universal property:
For each pair of functors F : C0 → C, K : C1 → C and each natural transforma-
tion η : F ⇒ J ; K there exists a unique functor K∗ : C∗1 → C with J∗; K∗ = F
and η = η∗; K∗.

It remains to prove that the two injective sketches ∆, ∆∗ are semantically equiv-
alent.

First let M : C→ Sem be any model of ∆. To prove that this model is aslo a
model of ∆∗ let H : C∗1 → Sem by any functor and α : F ; M ⇒ J∗0 ; H be any
natural transformation.

Then η∗; H : J∗0 ⇒ J ; (J∗1 ; H) and since M : C → Sem is a model of ∆ for the
functor J∗1 ; H : C1 → Sem and the natural transformation α◦ (η∗; H) : F ; M ⇒
J ; (J∗1 ; H) there exists exactly one natural transformation α∗ : K; M ⇒ J∗1 ; H
satisfying

(∗) α ◦ (η∗; H) = (η; M) ◦ (J∗1 ; α∗)

In the next step we lift the two natural transformations

α∗ : K; M(= J∗1 ; K∗; M)⇒ J∗1 ; H
α : F ; M(= J∗0 ; K∗; M)⇒ J∗0 ; H

to a natural transformation

α∗∗ : (K∗; M)|C0+C1 ⇒ H|C0+C1

Because of obj(C∗1) = obj(C0 + C1) and since each morphism in C∗1 which is
neither contained in C0 nor C1 can be represented as X; η∗ : X; J∗0 ⇒ X; J ; J∗1
for some X : 1→ C0 the equation (*) implies the commutativity of the following
diagram:

X; J∗0 ; K∗; M(= X; F ; M)
X;η∗;K∗ ;M(=X;(η;M)) //

X;J∗0 ;α∗∗(=X;α)

��

X; J ; J∗1 ; K∗; M

X;J;J∗1 ;α∗∗(=X;J;α∗)

��
X; J∗0 ; H

X;η∗;H
// X; J ; J∗; H

18

which shows that the lifting defines a natural transformation

α∗∗ : K∗; M ⇒ H.

Evidently holds α = J∗0 ; α∗∗. Since α determines α∗ uniquely, and these two
natural transformations determine α∗∗ uniquely, it is proved that M : C→ Sem
is a model of ∆∗.

For the second part we assume now that M : C → Sem is a model of ∆∗, and
that a functor H : C1 → Sem and a natural transformation α : F : M ⇒ J ; H
is given.

The universal property of (C∗1, η∗) implies the existence of a functor H∗ : C∗1 →
Sem satisfying J∗1 ; H∗ = H, J∗0 ; H∗ = F ; M, and η∗; H∗ = α. Since M : C →
Sem is a model of ∆∗ there is a unique natural transformation α∗ : K∗; M ⇒ H∗

with J∗0 ; α∗ = idF ;M .

The sequential composition of the two natural transformations

η∗; α∗ : J∗0 ; K∗; M ⇒ J ; J∗1 ; H∗

together with the associated equalities

η∗; α∗ = (J∗0 ; α∗) ◦ (η∗; H∗) = (η∗; (K∗; M)) ◦ ((J ; J∗1 ; α∗))

deliver the equality

idF ;M ◦ α = (η; M) ◦ (J ; (J∗1); α∗)

that has to be proved.

If α′ : K; M ⇒ H with η; M) ◦ (J ; α′) would be given, then one can lift this
natural transformation to α′′ : K∗; M ⇒ H∗ with J∗0 ; α′′ = idF ;M and J∗1 ; α′′ =
α′. Because of J∗0 ; α′′ = idF ;M it follows α∗ = α′′, so that J∗1 ; α∗ = J∗1 ; α′′ = α′.
This completes the proof of the second part of the semantical equivalence of ∆
and ∆∗.

The construction of a semantically equivalent projective ct-sketch for a given
projective sketch can be done in a completely analogous way.

If ∆ is a projective, respectively injective ct-sketch in C and H : C → C′
any functor, then ∆; H is evidently a ct-sketch in C′. This simple observation
allows to extend the construction described above inductively to a construction
of semantically equivalent nested ct-sketch of finite depth. 2

This observation above makes it possible to describe complex NS-theories basi-
cally by the concept of sub theories that are initially or finally constraint. Initial
constraints are expressed by injective ct-sketches and final constraints by means
of projective ct-sketches.

19

The construction of complex NS-theories is furthermore based on the fact that
the category of nested ct-sketches is closed under injective limits and that these
limits can be computed in the category of categories.

Definition 4.3. Let (C1, ∆1), (C2, ∆2) by NS-theories with nested ct-sketches.
A functor F : C1 → C2 is called a theory morphism if the translation ∆1; F of
∆1 along F : C1 → C2 is a subset of ∆2. NST denotes category of NS-theories
with nested ct-sketches. 2

Theorem 4.4. The category NST of NS-theories with nested ct-sketches is
closed under injective limits and the forgetful functor U : NST→ CAT into the
category of categories preserves injective limits.

Proof: Since the proof is simple, we sketch only the idea by the example of
pushouts. Let

F : (C0, ∆0)→ (C1, ∆1),
G : (C0, ∆0)→ (C2, ∆2)

be theory morphisms, and let

C0 F //

G

��

C1

QF

��
C2

QG // C

be a pushout diagram in CAT. Then is

QF : (C1, ∆1)→ (C, ∆1; QF ∪∆2; QG)
QG : (C2, ∆2)→ (C, ∆1; QF ∪∆2; QG)

evidently a pushout in NST. 2

Injective limits can be used to define operations that glue together NS-theories.
The main construction used in structuring NS-theories is the pushout. We will
try to take over the structuring operations from the recently defined specification
language CASL, [8].

A specification of an NS-theory (C, ∆) consists of four parts: the first part,
indicated by the key word sort, declares (the names of) the objects of C, the
second part, indicated by op, declares the generating morphisms of C, the third
part, starting with equations, represents the defining relations of C, and the
final part, indicated by constraints, lists the initial and terminal constraints
contained in ∆.

The first operation for combining specifications is the union: If SP1, . . . , SPn
are specifications then

SP1 and SP2 and . . . , SPn

20

is a specification which combines the specifications such that when any part is
common to some of the combines specifications, its interpretation in a model
has to be a common one too.

The next operation is the translation which renames the objects and morphisms
in a specification by means of a functor, i.e., the translation represents the con-
struction of translating an NS-theory along a functor. The translated specifica-
tion is written:

SP with {X1 7→ X′1, . . . , fn 7→ f ′n}

The key word then will be used to represent extensions of specifications. We
distinguish three different kinds of extensions: simple, free and cofree extensions
of a specification.

SP1 then SP ′

adds conservatively new objects, new morphisms and new axioms to the given
specification PS1, i.e. the reduct of a model of the extended specification to the
category described by SP1 has to be a model of SP1.

SP1 then free SP ′ [regarding SP ′′]

requires that a model of the freely extended specification is an extension of a
model of SP1 that it satisfies all axioms stated in SP ′ and that it forms a left
Kan extension of its reduct to SP1 within the class of models satisfying SP ′′.

Accordingly
SP1 then cofree SP ′ [regarding SP ′′]

requires that a model of the cofreely extended specification is an extension of a
model of SP1 that it satisfies all axioms stated in SP ′ and that it forms a right
Kan extension of its reduct to SP1 within the class of models satisfying SP ′′.

Thus, SP1 represents (C0, ∆0), SP ′ describes the extension to C1 and SP ′′

represents ∆1. In this way we are able to represent a single ct-sketch with
C = C1 and K = IdC. In this way basic patterns of initial and terminal
constraints can be defined. By translations this patterns can be adapted to
other specifications

It is not the aim of this paper to define a new specification language. We
only want to sketch in which way specifications could be composed by means
of structuring operations on NS-theories, and we want to be able to represent
more complex examples of NS-theories in a readable way.

In the following we give some simple specifications which will be used later to
build more complex specifications.

Triv = sorts : Elem end

21

Nat1 = Triv then free
sort Nat
ops zero : Elem→ Nat

succ : Nat→ Nat end

This specification represents the NS-theory of Example 1.

Other basic patterns of constraints are the following:

Terminal = ∅ then cofree
sort 1 end

Sum = sort A, B
then free
sort S
op inA : A→ S

inB : B → S end

Prod = sort A, B
then cofree
sort P
op pA : P → A

pB : P → B end

In the following specification some of this patterns are used within the constraints
part of the specification.

Nat2 = sort B, Nat1, Nat2
op zero1 : B → Nat1

succ1 : Nat1→ Nat1
zero2 : Nat1→ Nat2
succ2 : Nat2→ Nat2

constraints
Terminal with {1 7→ B}
Nat1 with {zero 7→ zero1, succ 7→ succ1}
Nat1 with {zero 7→ zero2, succ 7→ succ2}
end

This specification describes Examples 8 and the following specification

22

Streams = Triv then cofree
sort Streams
op head : Streams→ Elem

tail : Streams→ Streams end

corresponds to Example 4.

Since product and sum sketches are so frequently used, we will use them as
built in constructions, and will not explicitely use the injective or projective
sketches described above. In addition we use for terms generated by products
and sums the usual notations with variables in order to improve readability.
Thus, if generating morphisms f : A×B → C, h : B → A, g : A→ B are given,
then f(h(x), g(y)) : B × A → C, and f(x, g(x)) : A → C, and if additionally
t : C → (A + B) is given, then [g(f(x)), f(x)] : C → B and [g(f(x)), h(f(x))] :
C → (B + A).

The specifications given so far correspond to ct-sketches of depth one. The next
example represents a ct-sketch of depth two.

Sequences = Triv then cofree
sort Sequences, 1
op head : Sequences → Elem

tail : Sequences→ (Sequences + 1)
regarding 1, Sequence + 1
end

5 The expressive power of the generic model

By the following examples we will demonstrate, that the investigation of the
generic model of an NS-theory can be very helpful for the understanding of the
corrsponding structure. Since inductively defined data types are well understood
we will predominantly deal with coinductively defined structures.

As made visible in Example 8 some very useful relations between injecitve and
projective limites valid in the category of sets are not satisfied in generic models.
Since we are basically intersted in model in Set we will enforce some of this
properties. A first example in this direction is the specification Bool of truth
values.

Bool = sort Bool, Bool + Bool, 1
op true, false : 1→ Bool

inl, inr : Bool → Bool + Bool

23

constraints
Terminal with {1 7→ 1}
Sum with {inA 7→ true, inB 7→ false}
Sum with {inA 7→ inl, inB 7→ inr}
Prod with {pA 7→ [()Bool+Bool ; true, ()Bool+Bool ; false],

pB 7→ [idBool, idBool]}
end

Up to isomorphism the unique model M : Bool→ Set is given by M(Bool) =
{true, false}, M(inl)(x) = (true, x), M(inr)(x) = (false, x).

It is easy to see that all operations on truth values are represented in the generic
model of Bool. For instance, the conjunction is represented by

[idBool, (()Bool; false)] : Bool + Bool → Bool

and the disjunction by

[(()Bool; true), idBool] : Bool + Bool → Bool.

As next we give a specification of the finitary power set construction, which will
be needed later to represent the codomain of the state transition function of
nondeterministic, image finite transition systems.

Sets = Triv and Bool then free
sort Set, Elem × Set, Elem ×Elem × Set
op empty : 1→ Set

join : Elem× Set → Set
equations x, y : Elem, s : Set
join(x, join(x, s)) = join(x, s)
join(x, join(y, s)) = join(y, join(x, s))
regarding Elem × Set, Elem ×Elem × Set, Bool

end

and let be

Set1 = Set then
op h : Elem→ Bool end

In Set1 with exception of the sort Elem and the morphism h : Elem → Bool
all other objects and morphism are subject of a constraint, so that their inter-
pretations are unique up to isomorphisms.

24

In the generic model of Set1 one can find morphisms

allh : Set → Bool, exh : Set → Bool

such that for each model M : Set1 → Set of Set and each finite subset X ⊆
M(Elem) hold

• M(allh)(X) = true if and only if for all x ∈ X, M(h)(x) = true, and

• M(exh)(X) = true if and only if there is at least one x ∈ X such that
M(h)(x) = true.

These morphisms in the generic model are induced by the free extension and
respectively by the functors

Fall : {Set 7→ Bool, empty 7→ true,
join 7→ and(h(x), y) : Elem ×Bool → Bool}

Fex : {Set 7→ Bool, empty 7→ false,
join 7→ or(h(x), y) : Elem× Bool → Bool}

To justify these constructions one has to proof that the given interpretations of
the morphism join satisfy the required equations. But, this is easy to see, since
conjunction and disjunction are both idempotent and commutative.

The next example approaches transition systems. There are many ways to
formalize transition systems. One way is, to understand a transition system as
a relational structure with a ternary relation

next ⊆ States ×Actions× States

which describes by 〈s1, a, s2〉 ∈ next that s2 is a possible successor state of s1 if
the system performs the action a.

Constraining a morphism f : A → B to a monomorphism or dualy to an
epimorphism can be done by pullback or pushout sketches, which state that
idA; f = ida; f respectively f ; idB = f ; idB are pullback, respectively pushout
diagrams. To be more precise, let be

Pullback =
sort A, B, C
op f : A→ C

g : B → C
then cofree
sort P
op pf : P → A

pg : P → B

25

equations
pf ; f = pg; g

end

Pushout =
sort A, B, C
op f : C → A

g : C → A
then free
sort P
op pf : A→ P

pg : B → P
equations

f ; pf = g; pg
end

Transition systems can now be formalized as models of the following NS-theory:

TRsystems1 =
sort Actions, States, R, States × Actions× States
op inc : R→ States ×Actions× States
constraints
States× Actions× States
Pullback with{f 7→ inc, g 7→ inc, pf 7→ idR, pg 7→ idR}
end

If we are interested in the most abstract TR-system for any given set of actions,
we have to constrain the model class using a cofree extension.

TRsystems2 = Triv with {Elem 7→ Actions} then cofree
sort States, R, States ×Actions× States
op inc : R→ States ×Actions× States
regarding States × Actions× States
Pullback with{f 7→ inc, g 7→ inc, pf 7→ idR, pg 7→ idR}
end

However, a functor M to Set is a model of TRsystems2 iff M(States) = {∗}
and M(R) = {∗} ×M(Actions) × {∗}, i.e., the state set of the most abstract
model collapses. The collaps is caused by the lack of observations for the states.
This fact may be seen as a hint not to formalize transition systems as such kind
of structures.

In a growing number of papers transition systems are formalized as coalgebras,
see [9] and [6]. This would leed to the following specification of most abstract
transition systems for given sets of actions:

26

TRsystems = Triv with{Elem 7→ Actions}then cofree
sort States, Statesets, Actions × States
op next : Action × States→ Statesets

empty : 1→ Statesets
join : States × Statesets → Statesets

regarding
Bool, Actions× States
Sets with{Elem 7→ States, Sets 7→ Statesets}
end

What about the collaps of the state set in that case? Even though there is no
explicite observation operation in the specification TRsystems the state set
does not collaps in the most abstract model. This is caused by the fact that
in the most abstract model M , within the class of models in Set, two states
s1, s2 ∈ M(States) are different, if there is a morphism t : States → Bool in
the generic model such that M(t)(s1) 6= M(t)(s2).

In the following we investigate what kind of observations or experiments t :
States→ Bool in the generic model LTRsystems exist.

First we have the observation ()States; true : States → Bool which is induced
by constraining the object 1 to the terminal one. Using the constraint Set in
TRsystems, this observation induces the morphisms

all(()States;true) : Statesets → Bool, ex(()States;true) : Statesets→ Bool.

M(all(()States;true)) : M(Statesets) → {true, false} becomes the constant func-
tion true, but

M(ex(()States;true))(X) = true iff X 6= ∅.
Therefor we obtain for any (a, s) ∈M(Actions) ×M(States) that

M(next; ex(()States;true))(a, s) = true

if and only if there is at least one successor state of s ∈ M(States) performing
the action a ∈M(Actions), i.e.

M(next; ex(()States;true))(a, s) = true iff M |=s 〈a〉true.

This observation can now be used to construct other ones. To make this gener-
ation process precise we have to work in the following specification.

Let be Act be a fixed set of actions and let TRsystems[Act] be the specification

TRsystems[Act] = TRsystems then
constraints
InfSum with Actions 7→

∑
a∈Act 1

27

InfSum with Actions× States 7→
∑
a∈Act States

end

The generic model of TRsystems[Act] contains as observations t : States →
Bool all formulae of the modal logic with action set Act. Let for instance
be a1, a2 ∈ Act and ina1 , ina2 : States →

∑
a∈Act States the corresponding

injections of the infinite sum, then

t〈a1〉true = ina1 ; next; ex(()States;true) : States→ Bool

represents the modal formula 〈a1〉true, and

ina2 ; next; allt〈a1〉true
: States→ Bool

represents the modal formula [a2]〈a1〉true.

The specifications TRsystems and TRsystems[Act] are related in such a way
that the unique model of TRsystems[Act] in Set is isomorphic to that model
M of TRsystems with M(Actions) = Act.

It is well known that for image finite transition systems two states are equiva-
lent with respect to strong bisimulation if they cannot be distinguished by any
formula of modal logic. Therefore, the unique model of TRsystems[Act] in
Set is fully abstract with respect to strong bisimulation and can be constructed
as the canonical model of the modal logic with action set Act, see [4]. A con-
struction of the unique model of TRsystems[Act] as terminal coalgebra of the
endofunctor,

PAct : Set→ Set with PAct(X) = (Pfin(X))Act,

where Pfin : Set → Set denotes the finitary power set functor, is given in [1]
and [10].

It is this example which from our point of view justifies to understand the generic
model of an NS-theory as a minimal logic representing essential properties of
the specified structures. But this example demonstrates additionally, that one
can not expect very interesting properties of the categories of models of an NS-
theory in a given category Sem. It seems that there is some kind of tradeoff
in the interest in the model class of an NS-theory and the generic model: If
the model class has reach structure the generic model seems to be rather simple
and conversely, if the model class has a simple structure (being an isomorphisms
class for instance) all the more interest deserves the generic model.

An advantage of models of NS-theories over coalgebras is the possibility to deal
with binary state transition functions. To demonstrate this we consider the
following specification:

28

2-1-TreeFun = Triv with cofree
sort St, St × St
op head : St→ Elem

tail : St→ St
comp : St × St → St

regarding St × St
end

Without the product object St × St and the binary state transition operation
comp : St × St → St this specification would define the infinite streams over
the freely interpretable sort Elem. The existence of the binary state transi-
tion operation does not cause any problems to qualify the models Mcofree :
2-1-TreeFun → Set. One has just to apply the usual construction of a right
Kan extension to see that

Mcofree(St) = {f : TSt→Elem →M(Elem)},

where TSt→Elem denotes the set of all terms with one variable of sort St that
produce a value of sort Elem. These terms may be illustrated as trees with at
most two subtrees, i.e., one or twofold branching trees.

To prove the required universal property of Mcofree : 2-1-TreeFun→ Set we
consider the algebraic signature

2-1-Tree =
sort St
op s0 : 1→ St

tail : St→ St
comp : St × St → St

end

The set of terms TSt→Elem forms an initial algebra of 2-1-Tree, so that for
each model M : 2-1-TreeFun → Set and each m0 ∈ M(St) there is exactly
one 2-1-Tree-homomorphism

fm0 : TSt→Elem →Mcofree|2-1-Tree

with fm0(s0) = m0 which defines a mapping

hm0 : TSt→Elem →Mcofree(Elem)

by hm0(t) = M(head)(fm0(t)), i.e. by applying Mcofree(head) to the unique
value of t (als element of the initial 2-1-Tree-algebra) in the 2-1-Tree-algebra

29

Mcofree|2-1-Tree
canonically derived from Mcofree by interpreting s0 by m0.

This construction delivers the required unique homomorphism from M to Mcofree.

It is worth to mention, that in this and similar examples the set of distinguishing
observations can canonically be constructed as an initial algebra. This makes
it additionally possible, to use equations within the cofree constraint part of a
specification, i.e. one can easily deal with state valued equations in specifications
of processes.

References

[1] M. Barr. Terminal coalgebras in well–foundet set theory. Theoretical Com-
puter Science, 114:299–315, 1993.

[2] M. Barr and C. Wells. Category Theory for Computing Science (second
edition). International series in computer science. Prentice Hall, 1996.

[3] J.A. Goguen and R. M. Burstall. Institutions: Abstract model theory for
specification and programming. Journal of the Association for Computing
Machinery, 39:95–146, 1992.

[4] Robert Goldblatt. Logics of Time and Computation. Number 7 in CSLI
Lecture Notes. CSLI, Center for the Study of Language and Information,
second edition, 1992.

[5] T. Hagino. A categorical programming language. PhD thesis, Edinburgh
University, 1987.

[6] Bart Jacobs and Jan Rutten. A tutorial on (co)algebras and (co)induction.
Bulletin of the EATCS, (62):222–259, June 1997.

[7] F.W. Lawvere. Functorial semantics of algebraic theories. Proc. Nat. Acad.
Sci. U.S.A., 50:869–873, 1963.

[8] CoFI Task Group on Langugage Design. Casl, the common algebraic speci-
fication language (summary). Technical report, CoFI: The Common Frame-
work Initiative, 1998.

[9] J.J.M.M. Rutten. A calculus of transition systems (towards universal coal-
gebra). In A. Ponse, M. de Rijke, and Y. Venema, editors, Modal Logic
and Process Algebra, a bisimulation perspective, volume 53 of CSLI Lecture
Notes, pages 231–256, Stanford, 1995. CSLI Publications. FTP-available
at ftp.cwi.nl as pub/CWIreports/AP/CS-R9503.ps.Z.

[10] J.J.M.M. Rutten. Universal coalgebra: a theory of systems. Technical
Report CS-R9652, CWI, Amsterdam, 1996. to appear in Theoretical Com-
puter Science.

30

