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Abstract

In composing the Definition of Standard ML [1], the authors chose not
to give an account of the operation of memory management. This was the
right decision when focussing upon the abstract description of a sophist-
icated high-level language. However, the issues associated with memory
management cannot be ignored by the compiler writer who must make
decisions which have a great impact on the performance of the compiled
code.

In the first half of this report, an abstract machine formalism of an
efficient tag-free garbage-collector is presented which exposes many im-
portant memory management details such at the heaps, stacks, and envir-
onments. This model provides an implementor with an unambiguous and
precise description of a memory management strategy for Standard ML.
The second half of the report extends the abstract machine model to
provide a formalism of distributed memory management in the LEMMA
interface [2]. The extended model provides an appropriate setting for an
implementation of Concurrent ML [3].
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1 Introduction

A significant advantage of high-level programming languages, such as Stand-
ard ML, is that the programmer is freed from the error-prone tasks associated
with memory management. This is reflected in The Definition of Standard ML
[1] which avoids an explicit treatment of memory management except to say that
“there are no [semantic] rules concerning the disposal of inaccessible addresses”.

For many purposes, such as reasoning about programs, this approach is
entirely suitable. Nonetheless, the issues of memory management cannot be
entirely overlooked. An important use of the Definition is to serve as a guide
for the compiler writer who must make memory management decisions that
critically affect the performance of compiled code. Other authors have also
argued for the usefulness of a semantic model in making precise the important
notions of space-safety and data sharing [4].

In a previous paper [5] a novel abstract machine, with an explicit treatment
of memory management, was presented for the purpose of describing a run-
time code-replacement operation. The intention of this report is to extend this
model to provide a complete semantic account of memory management in both
a sequential and distributed setting.

Memory is typically modelled using a stack and a heap. The stack holds
temporary values of known size whose lifetime is determined by function ap-
plications, e.g. function parameters and local variables. The heap holds all
other values, e.g. closures and dynamic data structures. Memory management
of the stack is relatively straightforward as values are simply added or removed
from the top of the stack. By contrast, memory management of the heap is
considerably more challenging.

Without a system for automatic memory management, the programmer is
left to manage the heap using explicit allocation and de-allocation facilities, e.g.
malloc and free in C. For non-trivial programs this can be a very significant
burden as it is, in general, very hard to ensure that an area of memory will not be
required by a later computation. If memory is de-allocated too hastily, then the
program will fail when it requires a value that has been removed. Conversely, if
memory is de-allocated too conservatively, then the program may exhaust the
supply of memory available.

The prevailing technique for automatic memory management of the heap is
garbage collection. Heap allocation is performed (implicitly) by the program-
mer, and de-allocation by the garbage collector. Garbage collection is based
on the idea that if a value is reachable, either from the stack or from a set of
roots, then it must not be discarded. A survey of different garbage collection
techniques is presented in [6].

It is also worth noting that an alternative, called region based memory man-
agement, has recently been developed [7]. In this scheme, the memory is mod-
elled using multiple stacks each containing values of a single type. A sophistic-
ated region inference algorithm is used to determine the memory requirements
of the program at compile-time, thereby avoiding the need for run-time garbage
collection. Although this technique appears to be the ideal solution for memory
management, it will not be used in this report as the inference algorithm is
primarily designed for sequential operation and contains no obvious method of
integration into a distributed environment.

The semantic account of sequential memory management in the first half

2



of this report consists of a formalisation of the two-space copying garbage col-
lection technique which extends the tag-free algorithm presented in [8]. The
advantages of the two-space technique are well known, for example, the data
is compacted during collection which improves locality, and cyclic garbage is
removed. However, the primary reason for selecting this algorithm is that it
extends naturally into a distributed setting.

In the distributed case, it is not enough to simply formalise the garbage
collection operation. A number of additional operations are also required for
distributed memory management, e.g. data sharing between processors. These
operations are presented in the LEMMA interface definition [2]. Thus, the
second-half of this report will concentrate on a formalisation of this interface.

The LEMMA memory interface was created to support a distributed concur-
rent extension of Standard ML [3]. In that extension, the language is augmented
with a number of constructs for communication and concurrency (Figure 1).

channel : ∀ α . unit→ α channel
send : ∀ α . α channel× α→ unit
receive : ∀ α . α channel→ α
fork : (unit→ unit)→ unit
rfork : int× (unit→ unit)→ unit

Figure 1: Concurrency Primitives.

Communication channels are created using the channel primitive. A thread
sends a value to another thread using the send primitive, which takes two argu-
ments: a channel and a value. The receiving thread uses the receive primitive,
which takes a channel argument. Both threads are blocked until the value is
passed, which happens atomically. Channels are typed, that is the type system
ensures that values sent and received on a particular channel have the same
type. Threads are created either using the fork primitive, which runs the child
thread on the same processor as its parent, or the rfork primitive, which runs
the child process on a specified processor. Both fork and rfork take a func-
tion argument, whose body is evaluated in the child thread. When the function
returns, the thread is terminated. The rfork primitive takes an additional ar-
gument which specifies where the child thread is to run. An example illustrating
the concurrency primitives is shown in Figure 2. In this example, a thread is
created on processor 2 that simply waits for an integer value on channel c, then
returns the value, incremented by 3, on the same channel. The example con-
cludes by sending the value 7 to the thread, and returns the response (which
will be 10).

let val c = channel()
val = rfork(2, fn => send(c, receive(c) + 3))
val = send(c, 7)

in
receive(c)

end

Figure 2: Concurrent ML Example.
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2 The MΛ Language

Throughout this report, the formalisation of memory management is illustrated
with respect to a typed call-by-value lambda language. The language is rep-
resentative of a typical intermediate language used in a modern ML compiler.
By basing the formalisation on such an intermediate language, it is possible
to demonstrate that the memory-management operations are applicable to the
whole of Standard ML (with the exception on the module system) without en-
countering a great deal of the complexity. For example, Standard ML pattern
matching appears as simpler switch statements in the intermediate language,
having been converted by a higher-level match compiler.

Type τ ::= tn | tn(τ) | τ k | τ1 → τ2 | tv
Type Scheme σ ::= τ | ∀ tv k. τ

Program P ::= (D, X, Λ)

Datatype D ::= datatype tn of (con, τ) k

| datatype (tv k, tn) of (con, τ) l

Exception X ::= exception (con, τ)

Expression Λ ::= scon scon
| con con | con (con, Λ)
| con (con, τ k) | con (con, τ k, Λ)
| decon (con, Λ) | decon (con, τ k, Λ)
| assign (Λ1, Λ2)
| tuple Λ k | select (i, Λ)
| prim (op, Λ k)
| var lv | var (lv, τ k)
| let (lv, σ) = Λ1 in Λ2 | let (lv, σ) k = Λ1 in Λ2

| fix (lv, σ) = Λ1
k in Λ2

| fn (lv, τ1 → τ2) = Λ | fn (lv k , τ1 k → τ2) = Λ
| app (Λ1, Λ2) | app (Λ1, Λ2

k)
| switch Λ1 case (c

map7→ Λ2, Λ3)
| raise (Λ, τ) | handle Λ1 with Λ2

| fork Λ | rfork (Λ1, Λ2)
| channel ()
| send (Λ1, Λ2) | receive Λ

Figure 3: MΛ Abstract Syntax.

Notation: A set is defined by enumerating its members in braces, such
as x = {a, b, c} with ∅ for the empty set. A sequence is an ordered list of
members of a set, e.g. xk = (a, b, c, a). The ith element of a non-empty
sequence is written xi, where 0 < i ≤ k. A finite map from xk to y k is
defined: x

map7→ y = {x1 7→ y1, . . . , xk 7→ yk} (the elements of xk must be
unique). The domain Dom and range Rng are the sets of elements of xk and
y k respectively. A stack is written as a dotted sequence, e.g. S = (a·b·c). The
left-most element of the sequence is the top of the stack, and a pair of adjacent
brackets () is used to represent the empty stack.
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The syntax of the MΛ language is shown in Figure 3. The syntactic cat-
egories of the language include special constants scon (unit, integer, word, real,
character, and string) and constructors con such as c true and e match, with c
ranging over both of these, and i over special constants of integer type. The
meta-variables tn, tv, and lv are used for type names, type variables, and lambda
variables. Type variables tv are bound to types, and lambda variables lv are
bound uniquely to values generated by the evaluation of expressions.

The types τ are either constructor types (which may be nullary or unary),
tuple types, functional types, or type variables. Expressions are provided for
creating values of each of these types directly, with the exception of type vari-
ables. Constructor types tn and tn(τ) include the basic types, as required
by the special constants; value constructor types; reference constructor types;
and exception constructor types. Type-schemes σ can represent polymorphic
types. For example, the polymorphic identity function is represented by the
type scheme ∀ α . α→ α, where α is a type variable.

A program in the language contains a set of datatype declarations, a set of
exception declarations, and an expression. A datatype declaration consists of a
unique type name and a list of typed constructors. Each exception declaration
consists of a unique exception name and an exception type. The expressions
divide into those for constructing and de-constructing values, defining and ma-
nipulating variables, and controlling the order of evaluation. A small example is
shown in Figure 4 to illustrate the differences between Standard ML andMΛ.

Standard ML:

exception Factorial
fun fac n = if (n < 0) then raise Factorial

else if (n = 0) then 1
else n * fac(n - 1)

fac 10;

MΛ Translation:

(∅, exception (e factorial, t unit),
fix (fac, t int→ t int) =

fn (n, t int→ t int) =
switch (prim (LTi, (var n, scon 0)))
case ({c true 7→ raise (con e factorial, t int),

c false 7→
switch (prim (EQi, (var n, scon 0)))
case ({c true 7→ scon 1,

c false 7→
prim (MULi, (var n,

app (var fac, prim (SUBi, (var n, scon 1)))))},
raise (con e match, t int))},

raise (con e match, t int))
in app (varfac, scon 10))

Figure 4: Factorial Example.
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3 Sequential Memory Management

In order to formalise the sequential garbage collection operation, it is necessary
to define the dynamic semantics of the sequential sub-language (i.e. exclud-
ing the communication and concurrency operations). The dynamic semantics
of MΛ are formalised by a transition relation between states of an abstract
machine. The machine describes the memory management behaviour of an im-
plementation of the language, except that it abstracts from the allocation of
environments. The allocation of environments simply adds extra baggage to
the rules, for a treatment of this topic see [9]. The organisation of the MΛ
abstract machine has some features in common with the λ→∀gc abstract machine
[4] which is used in the formal description of the behaviour of the TIL/ML com-
piler. However, the transitions differ considerably as MΛ does not adopt the
named-form representation of expressions and types.

The syntax of the abstract machine is given in Figure 5. The state of the
machine is defined by a 4-tuple (H, E, ES , RS) of a heap, an environment, an
exception stack, and a result stack. The heap is used to store all the run-time
data of the program, while the environment provides a view of the heap relevant
to the fragment of the program being evaluated, e.g. a mapping between the
bound variables currently in scope, and their values on the heap. The exception
stack stores pointers to exception handling functions (closures). The result
stack holds pointers to temporary results during evaluation. Thus, the memory
of the machine is effectively modelled by the heap, as the stacks simply contain
pointers into the heap.

Machine State M ::= (H, E, ES , RS)

Heap H ::= (TH , VH )

Type Heap TH ::= p
map7→ ty

Heap Types ty ::= tn | tn(p) |
p k | p1 → p2 |
tv | ∀ p1

k . p2

Value Heap VH ::= l
map7→ val

Heap Values val ::= scon | con | con(l) |
l k | 〈〈E, lv k, Λ〉〉 | Ω

Environment E ::= (TE , CE , VE)

Type Env. TE ::= tn
Constructor Env. CE ::= con

map7→ p

Variable Env. VE ::= lv
map7→ (l, p)

Exception Stack ES ::= () | (l, p)·ES

Result Stack RS ::= () | p·RS | (l, p)·RS | E·RS

Figure 5: MΛ Abstract Machine Syntax.
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The heap consists of a type-heap mapping pointers to allocated types, and
a value-heap mapping locations to allocated values. The heap types corres-
pond directly to types in theMΛ language, and the heap values correspond to
the heap types. Nullary constructors scon and con have type tn . Unary con-
structors con(l) have type tn(p). Tuples l k have type p k and function closures
〈〈E, lv k, Λ〉〉 have type p1 → p2. The type heap and value heap are represented
by finite-maps, as heap-locations and type-pointers may be bound only once.

The shape of the data at a particular heap-location is determined by its
corresponding type. Without this type information, a heap value is simply a
collection of binary information. The type information makes clear the internal
representations of the value, e.g. pointers for garbage collection. Thus, each
heap-location must be paired with a type-pointer: (l, p).

It is important to note that there is no explicit notion of a memory address.
For example, it is not possible to perform pointer arithmetic, e.g. p1 + p2. The
only operations permitted on type-pointers and heap-locations are the compar-
ison for equality, e.g. p1 = p2, and the retrieval of the corresponding value from
the heap, e.g. H(p) = tn.

The following syntactic conventions are used for performing heap allocations:
H[l1 7→ val1, . . . , lk 7→ valk] allocates values val1, . . . , valk on the value
heap, binding them to fresh locations l1, . . . , lk. H[p1 7→ τ1, . . . , pk 7→ τk]
allocates types τ1, . . . , τk on the type heap, binding them to fresh type-pointers
p1, . . . , pk. There are no corresponding operations for removing values or
types from the heap as this is achieved through garbage collection. However,
the assignment of references and the fixed-point operator require a heap-update
operation. Assignment uses the update operation H[l1

upd7→ c ref(l2)] to update
the reference at l1 to c ref(l2). This is clearly a trivial operation as it only
requires the update of a single heap-location. The fixed-point case is slightly
more complex: H[l 7→ Ω] allocates a dummy closure on the value heap bound
to a fresh heap-location l. This location can subsequently be updated with a
mapping to a closure H[l

upd7→ 〈〈E, lv k, Λ〉〉]. In this case, a suitably-sized area
of the heap must be reserved to hold the closure.

M = (H, E, (), (), P )

H = (TH , ∅)
TH = {p1 7→ t unit→ t bool,

p2 7→ tv1, p3 7→ ∀ (p2) . t unit→ t list(p2),
p4 7→ tv2, p5 7→ ∀ (p4) . (p4, t list(p4))→ t list(p4),
p6 7→ tv3, p7 7→ ∀ (p6) . p6 → t ref(p6),
p8 7→ t unit→ t exn}

E = (TE , CE , ∅)
TE = {t unit, t int, t word, t real, t char, t string, t bool,

t list, t ref, t exn}
CE = {c true 7→ p1, c false 7→ p1,

c nil 7→ p3, c cons 7→ p5, c ref 7→ p7,
e match 7→ p8, e bind 7→ p8}

Figure 6: Initial Machine State.
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The environment records the allocation of MΛ values, mapping them to
pairs of heap locations and type-pointers. As identifiers and variables are unique,
their corresponding environments are represented by finite-maps, with the ex-
ception of the type environment where it is sufficient just to use a set for type
names. The following notational conventions are used for extending the envir-
onment: E[tn] adds tn to the type environment, E[con 7→ p] binds the con-
structor con to the heap pointer p in the constructor environment. Similarly,
E[lv 7→ (l, p)] denotes the binding of a lambda variable to a type-pointers
and heap-location in the environment. There are no operations for removing
bindings from the environment. However, unlike the heap, a copy of the current
environment may be made at any time, for example by creating a closure. Thus,
bindings can effectively be removed from the environment by reverting to an old
copy of the environment.

Execution of the abstract machine is defined by a transition system between
machine states. The individual transitions are listed in Appendix A. The top-
level transition has the form (H1, E1, ES 1, RS1, P )⇒ (H2, E2, ES2, RS 2),
where P is an MΛ program, (H1, E1, ES 1, RS1) is the initial machine state
(as illustrated in Figure 6), and (H2, E2, ES2, RS 2) is the final machine state.

The majority of the rules in Appendix A concern the evaluation of expres-
sions: (H1, E1, ES 1, RS 1, Λ)⇒ (H2, E2, ES 2, (l, p)·RS 2). Evaluating an
expression always generates a new machine state and leaves a single pair on the
result stack. A new machine state is generated at each step as garbage collec-
tion may occur in the middle of an evaluation (this will be discussed in the next
section). The transitions for the prim expression do not appear as they are
largely trivial. The primitive operations, as defined in the Standard ML Initial
Basis, are listed in Figure 7.

There are three possible outcomes which result from an evaluation: termin-
ation, exceptional termination and non-termination. Firstly, the sequence of
transitions may terminate normally yielding a single pair (l, p) in the result
stack which references the result. Secondly, the sequence may terminate prema-
turely, through an uncaught exception, yielding a pair (l, p) at the top of the
result stack which references the exception. Finally, the machine may encounter
an infinite sequence of transitions and fail to terminate.

Absolute Value (abs) ABSi, ABSr
Negate (˜) NEGi, NEGr

Divide (/) DIVr

Integer Divide (div) DIVi, DIVw

Modulo (mod) MODi, MODw

Multiply (*) MULi, MULw, MULr
Add (+) ADDi, ADDw, ADDr

Subtract (-) SUBi, SUBw, SUBr
Less (<) LTi, LTw, LTr, LTc, LTs
Greater (>) GTi, GTw, GTr, GTc, GTs
Equal (=) EQi, EQw, EQr, EQc, EQs

i = integer, w = word, r = real, c = char, s = string

Figure 7: Primitive Operations (op).
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A number of the evaluation rules in Appendix A (e.g. Rule 85) make use
of the instance(pσ , pτ) operation which performs the instantiation of the type-
scheme referenced by pσ with the types referenced by pτ (i.e. the type variables
in pσ are substituted with types from pτ). The rules associated with this opera-
tion appear in Figure 8. These rules Rule 1 creates a substitution environment
S from the type variables of pσ to the types of pτ . The subst(S, p) opera-
tion (Rules 2 to 7) are then invoked to perform the substitution. There is a
separate case for each of the types in the language. Substitution is performed
recursively until all if the types have been examined. Rule 7 performs the actual
substitution of a type variable with a type from S.

H1(pσ) = ∀ p1
k . p2

H1(pτ) = p3
k

S = {p1
1 7→ p1

3, . . . , p
k
1 7→ pk3}

(H1, E, ES , RS1, subst(S, p2))⇒ (H2, E, ES , RS2)

(H1, E, ES , RS1, instance(pσ, pτ ))⇒ (H2, E, ES , RS2)

(1)

H(p) = tn

(H, E, ES , RS , subst(S, p))⇒ (H, E, ES , p·RS)
(2)

H1(p1) = tn(p2)

(H1, E, ES , RS , subst(S, p2))⇒ (H2, E, ES , p3·RS)

(H1, E, ES , RS , subst(S, p1))⇒ (H2[p4 7→ tn(p3)], E, ES , p4·RS)

(3)

H1(p1) = p2
k

(H1, E, ES , RS , subst(S, p1
2))⇒ (H2, E, ES , p1

3·RS) · · ·
(Hk, E, ES , RS , subst(S, pk2))⇒ (Hk+1, E, ES , pk3 ·RS)

(H1, E, ES , RS , subst(S, p1))⇒ (Hk+1[p4 7→ p3
k ], E, ES , p4·RS)

(4)

H1(p1) = p2 → p3

(H1, E, ES , RS , subst(S, p2))⇒ (H2, E, ES , p4·RS)

(H2, E, ES , RS , subst(S, p3))⇒ (H3, E, ES , p5·RS)

(H1, E, ES , RS , subst(S, p1))⇒ (H3[p6 7→ p4 → p5], E, ES , p6·RS)

(5)

H(p) = tv p /∈ Dom S
(H, E, ES , RS , subst(S, p))⇒ (H, E, ES , p·RS)

(6)

H(p) = tv p ∈ Dom S
(H, E, ES , RS , subst(S, p))⇒ (H, E, ES , S(p)·RS)

(7)

Figure 8: Polymorphic Type Instantiation.
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3.1 Sequential Garbage Collection

The following semantic account of sequential memory management consists of
a formalisation of two-space copying garbage collection. Before proceeding, it
is necessary to obtain an understanding of the basic algorithm. The address
space of the heap is divided into two contiguous semi-spaces. During normal
program execution, only one of these semi-spaces is used. Memory is allocated in
a linear fashion until garbage collection appears to be profitable. At this point,
the copying collector is called to reclaim space. The current semi-space (from
space) is recursively scanned from the root objects, and all reachable objects
are copied into the other semi-space (to space). When all of the objects that
are reachable from the roots have been copied, the collection is finished, and
the old semi-space (from space) can be discarded (see Figure 9). Subsequent
memory allocations are performed in the new space (to space). The role of the
semi-spaces is then reversed for the next garbage collection.

roots

from space
(before collection) (after collection)

to space

free space

· · · garbage
. . .

. . .

. . .

. . .

. . .. . .. . .

. . .

. . .

. . . . . . . . . . . .

Figure 9: Two-Space Copying Garbage Collection

The MΛ garbage collection algorithm uses the type-based, tag-free style
of [8]. The key idea is to preserve all heap values and types that are reachable
either directly or indirectly from the current environment and stacks. The type
information is used to determine the shape of the heap values. This allows the
extraction of further locations and their types from the heap values without
resorting to extra tags on the values themselves.

The garbage collector uses several data structures illustrated in Figure 10.
The state of the garbage collector is the 4-tuple (Hf , Ht , PF , LF ). The from
space (heap) is denoted Hf , and the to space (heap) is denoted Ht. When a
type or a value is copied from Hf into Ht, an entry is created in either PF or
LF respectively. An entry p1 7→ p2 in PF represents a copied type where p1
is the old type-pointer in Hf , and p2 is the new type-pointer in Ht . Similarly,
an entry l1 7→ l2 in LF represents a copied value. These forwarding tables are
used during garbage collection to ensure that a type or value is copied only once
between spaces.
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Garbage Collection State GC ::= (Hf , Ht , PF , LF )

From Semi-space Hf ::= H
To Semi-space Ht ::= H
Forwarding Type Pointer PF ::= p1 7→ p2

Forwarding Value Pointer LF ::= l1 7→ l2

Figure 10: Garbage Collection Structures.

The garbage collection operation is defined by a transition system between
garbage collection states. The roots of the garbage collection are the current
environment E, the exception stack ES, and the result stack RS. Garbage
collection is incorporated into the dynamic semantics of MΛ through the rule
in Figure 11. Garbage collection can occur when an expression Λ is to be
evaluated. At this point, the machine is interrupted, the garbage collector
is initialised, and collection proceeds from each of the roots in turn. Once
collection has completed, the evaluation of Λ resumes with the new abstract
machine state.

The complex issue of when to initiate a collection will not be dealt with in
detail here. However, a discussion can be found in [10] where the authors arrive
at the following rule:

• For some constant R > 1, when current memory usage is more than R
times the amount of reachable data preserved by the previous garbage
collection, start a new garbage collection.

The MΛ abstract machine transitions in Appendix A have been designed
with garbage collection in mind. As stated earlier in Section 3, a new machine
state is generated by the evaluation of each expression to reflect the fact that
garbage collection may have occurred. A number of the other rules also involve
extra garbage collection considerations. For example, in the let expression
(Rule 98) a copy of the environment is placed on the result stack while the
body of the let expression is evaluated. This environment is later restored from
the result stack to remove any bindings created during the evaluation of the
body. The numbering of these environments reflects the fact that collections
may have occured during the evaluation, and the stored environment on the
result stack may have been updated.

(Hf , ∅, ∅, ∅, E1)⇒gc (Hf , Ht1, PF 1, LF 1, E2)

(Hf , Ht1, PF 1, LF 1, ES1)⇒gc (Hf , Ht2, PF 2, LF 2, ES2)

(Hf , Ht2, PF 2, LF 2, RS1)⇒gc (Hf , Ht3, PF 3, LF 3, RS2)

(Ht3, E2, ES2, RS2, Λ)⇒ (Ht4, E3, ES3, RS3)

(Hf , E1, ES1, RS1, Λ)⇒ (Ht4, E3, ES3, RS3)

(8)

Figure 11: Garbage Collection Introduction.
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The garbage collection rules are defined in Figures 12 through 15. These
in turn deal with the garbage collection of types, values, environments, and
stacks. The garbage collection of types is defined by a series of rules of the form
(Hf , Ht1, PF 1, LF , p1)⇒gc (Hf , Ht2, PF 2, LF , p2). These rules perform
a recursive copy of the type referenced by p1 (in Hf ) into Ht. The final state
contains the copied type in Ht2, a new pointer to the type p2, and entries in
PF 2 for the copied type. There are separate rules for each of the MΛ types.
Rule 9 ensures that types are only copied once.

p1 ∈ Dom PF

(Hf , Ht, PF , LF , p1)⇒gc (Hf , Ht, PF , LF , PF(p1))
(9)

p1 /∈ Dom PF Hf (p1) = tn

(Hf , Ht, PF , LF , p1)⇒gc (Hf , Ht[p2 7→ tn], PF [p1 7→ p2], LF, p2)
(10)

p1 /∈ Dom PF 1 Hf (p1) = tn(p2)

(Hf , Ht1, PF 1, LF , p2)⇒gc (Hf , Ht2, PF 2, LF , p3)

(Hf , Ht1, PF 1, LF , p1)⇒gc

(Hf , Ht2[p4 7→ tn(p3)], PF2[p1 7→ p4], LF , p4)

(11)

p1 /∈ Dom PF 1 Hf (p1) = p2
k

(Hf , Ht1, PF 1, LF , p1
2)⇒gc (Hf , Ht2, PF 2, LF , p1

3) · · ·
(Hf , Htk, PFk, LF , pk2)⇒gc (Hf , Htk+1, PFk+1, LF , pk3)

(Hf , Ht1, PF 1, LF , p1)⇒gc

(Hf , Htk+1[p4 7→ (p1
3, . . . , p

k
3)], PFk+1[p1 7→ p4], LF , p4)

(12)

p1 /∈ Dom PF 1 Hf (p1) = p2 → p3

(Hf , Ht1, PF 1, LF , p2)⇒gc (Hf , Ht2, PF 2, LF , p4)

(Hf , Ht2, PF 2, LF , p3)⇒gc (Hf , Ht3, PF 3, LF , p5)

(Hf , Ht1, PF 1, LF , p1)⇒gc

(Hf , Ht3[p6 7→ p4 → p5], PF 3[p1 7→ p6], LF , p6)

(13)

p1 /∈ Dom PF Hf (p1) = tv

(Hf , Ht, PF , LF , p1)⇒gc (Hf , Ht[p2 7→ tv], PF [p1 7→ p2], LF, p2)
(14)

p1 /∈ Dom PF 1 Hf (p1) = ∀ p2
k. p3

(Hf , Ht1, PF 1, LF , p1
2)⇒gc (Hf , Ht2, PF 2, LF , p1

4) · · ·
(Hf , Htk, PFk, LF , pk2)⇒gc (Hf , Htk+1, PFk+1, LF , pk4)

(Hf , Htk+1, PFk+1, LF , p3)⇒gc (Hf , Htk+2, PFk+2, LF , p5)

(Hf , Ht1, PF 1, LF , p1)⇒gc

(Hf , Htk+2[p6 7→ ∀ p4
k. p5], PFk+2[p1 7→ p6], LF , p6)

(15)

Figure 12: Type Heap Rules.
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l1 ∈ Dom LF

(Hf , Ht, PF , LF , (l1, p1))⇒gc (Hf , Ht , PF , LF , (LF (l1), p1))
(16)

l1 /∈ Dom LF Hf (p1) = tn

(Hf , Ht, PF , LF , (l1, p1))⇒gc

(Hf , Ht [l2 7→ Hf (l1)], PF , LF [l1 7→ l2], (l2, p1))

(17)

l1 /∈ Dom LF 1 Hf (p1) = tn(p2) Hf (l1) = con(l2)

(Hf , Ht1, PF 1, LF 1, (l2, p2))⇒gc (Hf , Ht2, PF 2, LF 2, (l3, p2))

(Hf , Ht1, PF 1, LF 1, (l1, p1))⇒gc

(Hf , Ht2[l4 7→ con(l3)], PF 2, LF 2[l1 7→ l4], (l4, p1))

(18)

l1 /∈ Dom LF 1 Hf (p1) = p2
k Hf (l1) = l2

k

(Hf , Ht1, PF 1, LF 1, (l12 , p
1
2))⇒gc (Hf , Ht2, PF 2, LF 2, (l13 , p

1
2)) · · ·

(Hf , Htk, PFk, LFk, (lk2 , pk2))⇒gc

(Hf , Htk+1, PFk+1, LFk+1, (lk3 , p
k
2))

(Hf , Ht1, PF 1, LF 1, (l1, p1))⇒gc

(Hf , Htk+1[l4 7→ (l13, . . . , lk3 )], PFk+1, LFk+1[l1 7→ l4], (l4, p1))

(19)

l1 /∈ Dom LF 1 Hf (p1) = p2 → p3 Hf (l1) = 〈〈E1, lv
k, Λ〉〉

(Hf , Ht1, PF 1, LF 1, E1)⇒gc (Hf , Ht2, PF 2, LF 2, E2)

(Hf , Ht1, PF 1, LF 1, (l1, p1))⇒gc

(Hf , Ht2[l2 7→ 〈〈E2, lv
k, Λ〉〉], PF 2, LF 2[l1 7→ l2], (l2, p1))

(20)

l1 /∈ Dom LF 1 Hf (p1) = p2 → p3 Hf (l1) = Ω

(Hf , Ht1, PF 1, LF 1, (l1, p1))⇒gc

(Hf , Ht2[l2 7→ Ω], PF 2, LF 2[l1 7→ l2], (l2, p1))

(21)

Figure 13: Value Heap Rules.

The garbage collection of values is defined in Figure 13 by rules of the form
(Hf , Ht1, PF 1, LF 1, (l1, p1))⇒gc (Hf , Ht2, PF2, LF 2, (l2, p2)). These
rules perform a recursive copy of the value referenced by l1 into Ht1. This uses
the type referenced by p1 to determine the shape. The result is a new location
l2 which references the copied value in Ht2. There is a separate rule for each of
the MΛ values. In the case where the value is a closure (Rule 20), the rules in
Figure 14 are used to copy the closure environment.

The collection rules for environments are given in Figure 14. These rules
have the form (Hf , Ht1, PF 1, LF 1, E1)⇒gc (Hf , Ht2, PF 2, LF 2, E2). The
environment E1 is decomposed into a constructor environment CE1, and a value
environment V E1. A new constructor environment CE2 is built by copying all
of the types referenced in CE1. Similarly, a new value environment V E2 is
built by copying all of the values and types referenced in V E1. Finally, a new
environment E2 is built from CE2, and V E2.
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E1 = (TE , CE 1, VE1)

CE1 = {con1 7→ p1
1, . . . , con

k 7→ pk1}
(Hf , Ht1, PF 1, LF 1, p

1
1)⇒gc (Hf , Ht2, PF 2, LF 1, p

1
2) · · ·

(Hf , Htk, PFk, LF 1, p
k
1 )⇒gc (Hf , Htk+1, PFk+1, LF 1, p

k
2)

CE2 = {con1 7→ p1
2, . . . , con

k 7→ pk2}
V E1 = {lv1 7→ (l11, p1

1), . . . , lvl 7→ (ll1, pl1)}
(Hf , Htk+1, PFk+1, LF 1, p

1
1)⇒gc (Hf , Htk+2, PFk+2, LF 1, p

1
2) · · ·

(Hf , Htk+l, PFk+l, LF 1, p
l
1)⇒gc (Hf , Htk+l+1, PFk+l+1, LF 1, p

l
2)

(Hf , Htk+l+1, PFk+l+1, LF 1, (l11, p1
1))⇒gc

(Hf , Htk+l+2, PFk+l+2, LF 2, (l12, p
1
1)) · · ·

(Hf , Htk+2l, PFk+2l, LF l, (ll1, p
l
1))⇒gc

(Hf , Htk+2l+1, PFk+2l+1, LF l+1, (ll2, p
l
1))

V E2 = {lv1 7→ (l12, p
1
2), . . . , lv

l 7→ (ll2, p
l
2)}

E2 = (TE , CE 2, VE2)

(Hf , Ht1, PF 1, LF 1, E1)⇒gc (Hf , Htk+2l+1, PFk+2l+1, LF l+1, E2)

(22)

Figure 14: Environment Rule.

The garbage collection rules in Figure 15 are used to copy a stack recurs-
ively. The item at the top of the stack is either a type, a value, or an envir-
onment. This will cause the invocation of the corresponding rule from one of
the previous three figures. The four rules for collecting stacks all have the form
(Hf , Ht1, PF1, LF 1, S1)⇒gc (Hf , Ht2, PF 2, LF2, S2).

(Hf , Ht, PF , LF , ())⇒gc (Hf , Ht , PF , LF , ())
(23)

(Hf , Ht1, PF 1, LF 1, p1)⇒gc (Hf , Ht2, PF 2, LF 1, p2)

(Hf , Ht2, PF 2, LF 1, S1)⇒gc (Hf , Ht3, PF 3, LF 2, S2)

(Hf , Ht1, PF 1, LF 1, p1·S1)⇒gc (Hf , Ht3, PF 3, LF 2, p2·S2)

(24)

(Hf , Ht1, PF 1, LF 1, p1)⇒gc (Hf , Ht2, PF 2, LF 1, p2)

(Hf , Ht2, PF 2, LF 1, (l1, p1))⇒gc (Hf , Ht3, PF 3, LF 2, (l2, p1))

(Hf , Ht3, PF 3, LF 2, S1)⇒gc (Hf , Ht4, PF 4, LF 3, S2)

(Hf , Ht1, PF 1, LF 1, (l1, p1)·S1)⇒gc (Hf , Ht4, PF 4, LF 3, (l2, p2)·S2)

(25)

(Hf , Ht1, PF 1, LF 1, E1)⇒gc (Hf , Ht2, PF 2, LF 2, E2)

(Hf , Ht2, PF 2, LF 2, S1)⇒gc (Hf , Ht3, PF 3, LF 3, S2)

(Hf , Ht1, PF 1, LF 1, E1·S1)⇒gc (Hf , Ht3, PF 3, LF 3, E2·S2)

(26)

Figure 15: Stack Rules.
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4 Distributed Memory Management

The LEMMA memory interface [2] identifies two main services that are required
for distributed memory management: sharing of distributed data, and distrib-
uted garbage collection. As far as possible, the LEMMA interface has been
designed to be independent of the details of the language implemented on it,
and also as independent as possible of the memory and communication system
on which it is implemented. The interface definition is simply a function-level
specification, the actual implementation is left open. Different implementations
of the interface have been created for parallel computers [11] and local-area
networks of workstations [12]. A wide-area network implementation is also in
progress. In each case, the assumptions regarding the speed and reliability of the
underlying network require a different solution. Here the focus is on providing
an abstract machine definition suitable for the LEMMA interface on a reliable
local-area network. However, the resulting definition can easily be extended to
cover a range of possibilities.

The LEMMA interface is based on the Distributed Shared Memory (DSM)
model [13]. In this model, the memory of the distributed system is treated as
a single globally-addressable object. LEMMA statically partitions the global
address space into contiguous semi-spaces, where each semi-space is managed
by a different machine. Each machine is responsible for allocation and garbage-
collection within its own semi-space.

Space Managed
By Machine3

Space Managed
By Machine2

Space Managed
By Machine1

Data Copied
From Machine2

Virtual Address Spaces

Machine1 Machine3Machine2

Figure 16: Distributed Memory Access.

In a parallel implementation, where communication costs are low, data ac-
cesses are simply performed in-place in the global address space. However, in a
workstation implementation, the overheads associated with distributed memory
access necessitate a form of caching mechanism. The solution adopted by the
workstation implementation of LEMMA uses the fact that a typical worksta-
tion has a very large virtual address space, but only uses a fraction of it for
its real memory. Thus, the virtual address space on each machine is used to
represent the entire distributed address space. When a machine wishes to ac-
cess some external data, it simply addresses its own virtual address space at
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the required location. The page-faulting mechanism of the operating system is
extended to fetch the data from the remote machine, as illustrated in Figure 16.
Further accesses to the data will simply use the local copy. This operation can
be implemented very efficiently on a typical UNIX workstation.

It is clear that some form of coherency protocol is also required. The original
data may be updated, invalidating any copies on other machines. A number of
schemes for ensuring coherency are detailed in [14]. One significant property
of typical Standard ML programs is that most of the data values are immut-
able. The only values on which updates are permitted are references. Thus,
LEMMA distinguishes between mutables and immutables and only performs
coherency checks on the mutables. For brevity, only the caching of immutables
is formalised in this report. Mutables are simply accessed in-place remotely. A
formalisation of the caching and coherency mechanism for the mutables is left
as further work.

The provision of efficient algorithms for distributed garbage collection con-
tinues to be a very active area of garbage collection research. Techniques vary
from simple schemes (e.g. where one process garbage collections while another
executes), up to complex multi-generational schemes. A survey of distributed
garbage collection techniques is presented in [15]. The technique presented here
is not the most efficient, but extends naturally from the sequential case described
in the previous section. A number of techniques for improving the efficiency of
the algorithm are outlined in [12].

Each semi-space of the global address space managed by each machine is
further divided in two to constitute the from and to spaces. The collective from
and to spaces are the concatenation of these local spaces. Garbage collection
begins with a global synchronisation. All of the machines perform garbage
collection in parallel, but asynchronously. The task of each machine is to ensure
that all of the objects in the collective from space that are reachable from its own
roots have been copied into the collective to space. Once all of the machines have
finished, the global garbage collection is complete and each machine resumes
executing in its local to space.

The garbage collection algorithm executed by each machine is the same as
the sequential variant with the following addition:

• When machine A encounters a pointer to an object managed by machine
B, it sends a message containing the pointer to machine B.

• If the object has already been copied, machine B returns the updated
pointer, so machine A can update the object that it was scanning.

• If the object has not been copied, machine B proceeds with the copy and
returns the updated pointer to machine A. During the copy, machine B
may encounter further remote pointers, in which case the above steps are
repeated.

The protocol has the property that an object is always copied by the machine
that first created it, even if that machine no longer has a reference to it. It must
also be noted that the garbage collection invalidates all of the cached copies of
objects on other machines. Optimisations which permit object migration, and
provide cache contents preservation are described in [12] although they will not
be formalised here.
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4.1 Distributed Abstract Machine

The provision of an abstract machine definition for the completeMΛ language
introduces a number of interesting problems. The language includes primitives
for providing communication and concurrency. However, it is far from obvious
how these should be expressed in the abstract machine semantics. An examina-
tion of the literature on concurrency in structured operational semantics reveals
that a ‘single-step’ (atomic action) approach is typically used to express the
computation. Concurrency is then introduced by interleaving the atomic ac-
tions of the processes. Unfortunately, this approach is directly in contrast with
the abstract machine style, where the intermediate steps are hidden and only
the final state of the computation is of interest.

At first glance, it appears that the semantics must be rewritten in the single-
step style before the concurrent extensions can be expressed. This is undesirable
for a number of reasons. The abstract machine model provides an ideal setting
for expressing memory management behaviour in a manner that approximates
an actual implementation. Furthermore, the single-step approach requires a
large number of rules for even the simplest of operations. A further problem
can occur when some of the intermediate states do not correspond directly to
programs in the language. In such cases, the language may need to be extended
with additional constructs before the semantics can be defined. Techniques ex-
ist for automatically performing this transformation in a number of cases [16].
However, the transformed semantics is rather messy in comparison to the ori-
ginal, and this makes reasoning about the extended language more tedious.

Fortunately, there is an alternative technique inspired by the relational-style
semantics of concurrency presented in [17] and [18]. Consider a transition of
the form: (H1, E1, ES1, RS1, Λ)⇒ (H2, E2, ES 2, RS 2). This transition ex-
presses the evaluation an expression Λ with machine state (H1, E1, ES1, RS1)
resulting in the final machine state (H2, E2, ES 2, RS 2). In the full language,
this treatment is no longer acceptable as the evaluation of Λ may require some
external interaction before it can yield the result. This leads to a definition of
the form (H1, E1, ES 1, RS 1, Λ) t⇒ (H2, E2, ES 2, RS 2), where t is a trace
which records the external interactions required to produce the final result.

Trace t ::= ε | t1 ; t2 | t1 ‖ t2 | cn ! m | cn ? m

Figure 17: Computation and Communication Traces.

For the MΛ language, the definition of traces in Figure 17 is sufficient. A
trace may be empty ε if no external interactions occur. The sequential evaluation
of two expressions leads to a trace of the form t1 ; t2. Similarly, two expressions
evaluated in parallel produce a trace of the form t1 ‖ t2. A message m sent
over a channel cn yields a trace of the form cn ! m, and a message received on
the channel gives the trace cn ? m. Figure 18 contains the reduction rules for
traces. It should always be the case that the traces reduce to ε for a complete
program, or an error will have occurred.
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ε ; t = t (27)

ε ‖ t = t (28)

t1 ‖ t2 = t2 ‖ t1 (29)

cn ! m ‖ cn ? m = ε (30)

cn ! m ; t1 ‖ cn ? m ; t2 = t1 ‖ t2 (31)

Figure 18: Trace Reduction Rules.

The syntax of the distributed abstract machine, hereafter referred to as the
DMΛ abstract machine, is given in Figure 20. In order to remain consistent with
the LEMMA interface definition, the machine contains two levels of abstraction:
processes and threads. The sequential abstract machine defined in Section 3
effectively corresponds to a single thread executing on a machine containing a
single process.

There are a fixed number k of concurrently executing processes Π each con-
taining a local heap H, a cache C , and a multi-set of threads T . It is assumed
that these processes are physically distributed, for example, across a network of
k machines. The memory of the machine is modelled using distributed shared
memory. This means that any process can directly access the data contained
on the heap of any other process, e.g. Hi(p) = ty, where 0 < i ≤ k.

The set of threads associated with each process also execute concurrently.
However, unlike processes, the multi-set of threads may dynamically grow or
shrink. The multi-set may also be empty. Each thread contains a local environ-
ment E, an exception stack ES , and a result stack RS . The threads share the
heap of the parent process.

The execution of processes and threads is defined in Figure 19. All of the
processes execute concurrently as defined in Rule 32. Note the parallel compos-
ition of the traces generated by each process. Concurrent execution of threads
is defined inductively in Rule 33. The base case, an empty multi-set of threads,
is defined by Rule 34.

Π1
1

t1=⇒ Π1
2 · · · Πk

1
tk=⇒ Πk

2

(Π1
1, . . . , Πk

1)
t1‖···‖tk===⇒ (Π1

2, . . . , Πk
2)

(32)

T1
t1=⇒ T3 T2

t2=⇒ T4

T1 ] T2
t1‖t2=⇒ T3 ] T4

(33)

∅ ε=⇒ ∅ (34)

Figure 19: Concurrent Execution of Processes and Threads.
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Machine State M ::= Π k

Process Π ::= (H, C , T )
Thread T ::= (E, ES, RS)

Trace t ::= ε | t1 ; t2 | t1 ‖ t2 | cn ! m | cn ? m
Message m ::= (p) | (l, p) | (E)

Heap H ::= (TH , VH )
Cache C ::= (TC , VC)

Type Heap TH ::= p
map7→ ty

Type Cache TC ::= p
map7→ ty

Heap Types ty ::= tn | tn(p) |
pk | p1 → p2 |
tv | ∀ p1

k . p2

Value Heap VH ::= l
map7→ val

Value Cache VC ::= l
map7→ val

Heap Values val ::= scon | cn | con | con(l) |
l k | 〈〈E, lv k, Λ〉〉 | Ω

Environment E ::= (TE , NE , CE , VE)

Type Env. TE ::= tn
Channel Env. NE ::= cn

Constructor Env. CE ::= con
map7→ p

Variable Env. VE ::= lv
map7→ (l, p)

Exception Stack ES ::= () | (l, p)·ES

Result Stack RS ::= () | p·RS | (l, p)·RS | E·RS

Figure 20: DMΛ Abstract Machine Syntax.

The memory of each process is represented by the heap H and the cache
C. With reference to Figure 16, the area of the virtual address space which
corresponds to the area managed by the process is represented by the heap.
The remainder of the virtual address space is represented by the cache. The
allocation of heap values and types is performed in two stages in the DMΛ
machine. H ↑ l returns the next available heap location in H, and H[l 7→ val]
allocates val on the heap and binds it to the location l. Similarly,H ↑ p returns
the next available type-pointer, and H[p 7→ ty] allocates ty on the heap bound
to the pointer p. Thus, heap locations and type-pointers may effectively be
reserved before being used. Data is allocated on the cache in a single step,
e.g. C[l 7→ val] allocates val in the cache at location l. Cache locations and
pointers do not need to be reserved as they correspond directly to locations and
pointers in the heaps (it is assumed that heap locations and pointers belonging
to different heaps are distinct).
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4.2 Data Caching

The caching mechanisms of the LEMMA interface are formalised by the rules
in Figures 21 and 22. In order for these mechanisms to be effective, all memory
accesses in the DMΛ machine are done via a fetch function. The arguments to
this function are either a type-pointer p or a pair (l, p).

The rules are defined via transitions between machine states of the form
(Π1, . . . , Πk). Each of the rules is defined for a single fetch operation within a
single thread n on a process Πi, where 0 < i ≤ k. The rules utilise the functions
num(p) and num(l) which return the number of the process whose heap contains
the type-pointer p or heap-location l respectively. The mutable(p) predicate
determines if a pointer p references a mutable type. In an implementation,
the heap is typically divided into mutable and immutable areas. Thus, this
predicate may be implemented by simply examining the address of the pointer.

The fetch(p) function returns the type referenced by the type-pointer p.
This function is defined in Figure 21 by four rules corresponding to the following
cases. The type may be local, i.e. contained within the heap of the parent
process, in which case it is accessed directly (Rule 35). The type may be non-
local and mutable in which case, it is accessed remotely in-place (Rule 36). The
type may be remote, but a local copy may exist in the cache, in which case
the cached version is accessed (Rule 37). Finally, if the type is remote and
immutable, and a copy is not present in the cache, then a local copy is made
(Rule 38).

num(p) = i

(Π1, . . . , (Hi, C i, (En, ESn, RSn, fetch(p)) ] T i), . . . , Πk)
ε

=⇒
(Π1, . . . , (Hi, C i, (En, ESn, Hi(p)·RSn) ] T i), . . . , Πk)

(35)

num(p) = j j 6= i mutable(p)

(Π1, . . . , (Hi, C i, (En, ESn, RSn, fetch(p)) ] T i), . . .
(Hj, C j , T j), . . . , Πk) ε=⇒

(Π1, . . . , (Hi, C i, (En, ESn, Hj(p)·RSn) ] T i), . . .
(Hj, C j , T j), . . . , Πk)

(36)

num(p) = j j 6= i ¬mutable(p) p ∈ Dom C i

(Π1, . . . , (Hi, C i, (En, ESn, RSn, fetch(p)) ] T i), . . . , Πk) ε=⇒
(Π1, . . . , (Hi, C i, (En, ESn, C i(p)·RSn) ] T i), . . . , Πk)

(37)

num(p) = j j 6= i ¬mutable(p) p /∈ Dom C i Hj(p) = ty

(Π1, . . . , (Hi, C i, (En, ESn, RSn, fetch(p)) ] T i), . . .
(Hj, C j , T j), . . . , Πk) ε=⇒

(Π1, . . . , (Hi, C i[p 7→ ty], (En, ESn, ty·RSn) ] T i), . . .
(Hj, C j , T j), . . . , Πk)

(38)

Figure 21: Type Heap Caching.
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The fetch(l, p) function is described in Figure 22. The function returns a
pair (val, ty) containing the value and the type corresponding to the location
and pointer of the arguments. Once again, this operation is defined by four rules,
corresponding to the four cases described previously: local, mutable, cached, and
remote. The rules are slightly more complex as the type must first be obtained
via a call to fetch(p) before the value is retrieved.

num(l) = i

(Π1
1, . . . , (Hi

1, C i
1 , (En, ESn, RSn, fetch(p)) ] T i1 ), . . . , Πk

1) t=⇒
(Π1

2, . . . , (Hi
2, C i

2 , (En, ESn, ty·RSn) ] T i2 ), . . . , Πk
2)

(Π1
1, . . . , (Hi

1, C i
1 , (En, ESn, RSn, fetch(l, p)) ] T i1 ), . . . , Πk

1)
t

=⇒
(Π1

2, . . . , (Hi
2, C i

2 , (En, ESn, (Hi
2(l), ty)·RSn) ] T i2 ), . . . , Πk

2)

(39)

num(l) = j j 6= i mutable(p)

(Π1
1, . . . , (Hi

1, C i
1 , (En, ESn, RSn, fetch(p)) ] T i1 ), . . . , Πk

1) t=⇒
(Π1

2, . . . , (Hi
2, C i

2 , (En, ESn, ty·RSn) ] T i2 ), . . .

(Hj
1, C j

1 , T
j

1 ), . . . , Πk
2)

Hj
1(l) = val

(Π1
1, . . . , (Hi

1, C i
1 , (En, ESn, RSn, fetch(l, p)) ] T i1 ), . . . , Πk

1) t=⇒
(Π1

2, . . . , (Hi
2, C i

2 , (En, ESn, (val, ty)·RSn) ] T i2 ), . . .

(Hj
1, C j

1 , T
j

1 ), . . . , Πk
2)

(40)

num(l) = j j 6= i ¬mutable(p) l ∈ Dom C i
1

(Π1
1, . . . , (Hi

1, C i
1 , (En, ESn, RSn, fetch(p)) ] T i1 ), . . . , Πk

1)
t

=⇒
(Π1

2, . . . , (Hi
2, C i

2 , (En, ESn, ty·RSn) ] T i2 ), . . . , Πk
2)

C i
2(l) = val

(Π1
1, . . . , (Hi

1, C i
1 , (En, ESn, RSn, fetch(l, p)) ] T i1 ), . . . , Πk

1) t=⇒
(Π1

2, . . . , (Hi
2, C i

2 , (En, ESn, (val, ty)·RSn) ] T i2 ), . . . , Πk
2)

(41)

num(l) = j j 6= i ¬mutable(p) l /∈ Dom C i
1

(Π1
1, . . . , (Hi

1, C i
1 , (En, ESn, RSn, fetch(p)) ] T i1 ), . . . , Πk

1)
t

=⇒
(Π1

2, . . . , (Hi
2, C i

2 , (En, ESn, ty·RSn) ] T i2 ), . . .

(Hj
1, C j

1 , T
j

1 ), . . . , Πk
2)

Hj
1(l) = val

(Π1
1, . . . , (Hi

1, C i
1 , (En, ESn, RSn, fetch(l, p)) ] T i1 ), . . . , Πk

1) t=⇒
(Π1

2, . . . , (Hi
2, C i

2 [l 7→ val], (En, ESn, (val, ty)·RSn) ] T i2 ), . . .

(Hj
1, C j

1 , T
j

1 ), . . . , Πk
2)

(42)

Figure 22: Value Heap Caching.
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4.3 Concurrency and Communication

The dynamic semantics of the completeMΛ language are formalised by trans-
itions between states of the distributed abstract machine. As with the caching
rules, the transitions are defined for a single thread n executing on a process
Πi, where 0 < i ≤ k.

The initial state of the DMΛ abstract machine is illustrated in Figure 23.
Evaluation begins with a single process Π1, containing the initial heap H1, and
a single thread (E1, (), (), P ), containing the initial environment E1 and the
program program P . The remaining processes Π2 · · · Πk remain idle, with an
empty heap and multi-set of threads, until an rfork is performed by the program.

M = (Π1, (∅, ∅, ∅)2, . . . , (∅, ∅, ∅)k)
Π1 = (H1, ∅, {(E1, (), (), P )})

H1 = (TH , ∅)
TH = {p1 7→ t unit→ t bool,

p2 7→ tv1, p3 7→ ∀ (p2) . t unit→ t list(p2),
p4 7→ tv2, p5 7→ ∀ (p4) . (p4, t list(p4))→ t list(p4),
p6 7→ tv3, p7 7→ ∀ (p6) . p6 → t ref(p6),
p8 7→ t unit→ t exn}

E1 = (TE , ∅, CE , ∅)
TE = {t unit, t int, t word, t real, t char, t string, t bool,

t list, t ref, t exn, t chan}
CE = {c true 7→ p1, c false 7→ p1,

c nil 7→ p3, c cons 7→ p5, c ref 7→ p7,
e match 7→ p8, e bind 7→ p8}

Figure 23: Initial Machine State.

There is a relatively straightforward conversion from the transitions of the
MΛ machine to the DMΛ machine. This conversion is performed via the tem-
plates illustrated in Figure 24.

The first template (43) is used to convert an MΛ program into a DMΛ
program. A MΛ heap H becomes a DMΛ heap Hi. Similarly, am MΛ envir-
onment E becomes a DMΛ environment En, etc. The templates for datatypes
and exceptions are essentially identical and are not given here. The template
for expressions (44) is also very similar.

Owing to the shared-memory model of the DMΛ machine, MΛ memory
accesses must be converted into calls to the fetch function. This is achieved
simply using the templates (45) and (46). There is one slight complication in
that a garbage collection can now occur during a fetch operation. Therefore,
some additional saving and restoring on the result stack is required to ensure
that all pointers will be collected. This is illustrated in the example below.

With a little work, these templates can be used to convert all of the MΛ
rules in Appendix A into their DMΛ counterparts. For brevity, this is left as an
exercise for the reader. The conversion simply involves renumbering the heaps,
stacks, etc. and ensuring that type-pointers and value-locations are saved and
restored on the result stack around instances of the fetch operation.
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MΛ : (H1, E1, ES1, RS1, P )⇒ (H2, E2, ES2, RS2)

DMΛ : (Π1
1, . . . , (Hi

1, C i
1 , (En1 , ESn1 , RSn1 , P ) ] T i1 ), . . . , Πk

1)
t

=⇒
(Π1

2, . . . , (Hi
2, C i

2 , (En2 , ESn2 , RSn2 ) ] T i2 ), . . . , Πk
2)

(43)

MΛ : (H1, E1, ES1, RS1, Λ)⇒ (H2, E2, ES2, (l, p)·RS2)

DMΛ : (Π1
1, . . . , (Hi

1, C i
1 , (En1 , ESn1 , RSn1 , Λ) ] T i1 ), . . . , Πk

1) t=⇒
(Π1

2, . . . , (Hi
2, C i

2 , (En2 , ESn2 , (l, p)·RSn2 ) ] T i2 ), . . . , Πk
2)

(44)

MΛ : H1(p) = ty

DMΛ : (Π1
1, . . . , (Hi

1, C i
1 , (En1 , ESn1 , RSn1 , fetch(p)) ] T i1 ), . . . , Πk

1)
t

=⇒
(Π1

2, . . . , (Hi
2, C i

2 , (En2 , ESn2 , (ty)·RSn2 ) ] T i2 ), . . . , Πk
2)

(45)

MΛ : H1(p) = ty H1(l) = val

DMΛ : (Π1
1, . . . , (Hi

1, C i
1 , (En1 , ESn1 , RSn1 , fetch(l, p)) ] T i1 ), . . . , Πk

1)
t=⇒ (Π1

2, . . . , (Hi
2, C i

2 , (En2 , ESn2 , (val, ty)·RSn2 ) ] T i2 ), . . . , Πk
2)

(46)

Figure 24: Conversion Templates fromMΛ to DMΛ.

As an example, the MΛ app expression (Rule 101) is converted into the
DMΛ abstract machine according to Figure 25. Note the sequential composition
of the evaluation traces for the subexpressions: t1 ; t2 ; t3 ; t4. This must be
performed for all of the rules in the sequential sub-language.

(Π1
1, . . . , (Hi

1, C i
1 , (En1 , ESn1 , RSn1 , Λ1) ] T i1 ), . . . , Πk

1)
t1=⇒

(Π1
2, . . . , (Hi

2, C i
2 , (En2 , ESn2 , RSn2 ) ] T i2 ), . . . , Πk

2)

(Π1
2, . . . , (Hi

2, C i
2 , (En2 , ESn2 , RSn2 , Λ2) ] T i2 ), . . . , Πk

2)
t2=⇒

(Π1
3, . . . , (Hi

3, C i
3 , (En3 , ESn3 , (l2, p2)·(l1, p1)·RSn3 ) ] T i3 ), . . . , Πk

3)

(Π1
3, . . . , (Hi

3, C i
3 , (En3 , ESn3 , (l2, p2)·RSn3 , fetch(l1, p1)) ] T i3 ), . . . , Πk

3)
t3=⇒ (Π1

4, . . . , (Hi
4, C i

4 , (En4 , ESn4 ,

(〈〈Ec, lv, Λc〉〉, ty)·(l3, p3)·RSn4 ) ] T i4 ), . . . , Πk
4)

(Π1
4, . . . , (Hi

4, C i
4 , (Ec[lv 7→ (l3, p3)], ESn4 , E

n
4 ·RSn4 , Λc) ] T i4 ), . . . , Πk

4)
t4=⇒ (Π1

5, . . . , (Hi
5, C i

5 , (En5 , ESn5 , (l4, p4)·E6·RSn4 ) ] T i5 ), . . . , Πk
5)

(Π1
1, . . . , (Hi

1, C i
1 , (En1 , ESn1 , RSn1 , app (Λ1, Λ2)) ] T i1 ), . . . , Πk

1)
t1 ; t2 ; t3 ; t4======⇒ (Π1

5, . . . , (Hi
5, C i

5 , (E6, ESn5 , (l4, p4)·RSn5 ) ] T i5 ), . . . , Πk
5)

(47)

Figure 25: Function Application in DMΛ.
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(Π1
1, . . . , (Hi

1, C i
1 , (En1 , ESn1 , RSn1 , Λ) ] T i1 ), . . . , Πk

1)
t1=⇒

(Π1
2, . . . , (Hi

2, C i
2 , (En2 , ESn2 , (l1, p1)·RSn2 ) ] T i2 ), . . . , Πk

2)

(Π1
2, . . . , (Hi

2, C i
2 , (En2 , ESn2 , RSn2 , fetch(l1, p1)) ] T i2 ), . . . , Πk

2)
t2=⇒

(Π1
3, . . . , (Hi

3, C i
3 , (En3 , ESn3 , (〈〈Ec, lv, Λc〉〉, ty)·RSn3 ) ] T i3 ), . . . , Πk

3)

(Π1
1, . . . , (Hi

1, C i
1 , (En1 , ESn1 , RSn1 , fork(Λ)) ] T i1 ), . . . , Πk

1)
t1 ; t2==⇒

(Π1
3, . . . , (Hi

3, C i
3 , (En3 , ESn3 , (lunit, punit)·RSn3 ) ]

(Ec, ∅, ∅, Λc) ] T i3 ), . . . , Πk
3)

(48)

(Π1
1, . . . , (Hi

1, C i
1 , (En1 , ESn1 , RSn1 , Λ1) ] T i1 ), . . . , Πk

1)
t1=⇒

(Π1
2, . . . , (Hi

2, C i
2 , (En2 , ESn2 , (l1, p1)·RSn2 ) ] T i2 ), . . . , Πk

2)

(Π1
2, . . . , (Hi

2, C i
2 , (En2 , ESn2 , RSn2 , fetch(l1, p1)) ] T i2 ), . . . , Πk

2)
t2=⇒

(Π1
3, . . . , (Hi

3, C i
3 , (En3 , ESn3 , RSn3 ) ] T i3 ), . . . , Πk

3)

(Π1
3, . . . , (Hi

3, C i
3 , (En3 , ESn3 , RSn3 , Λ2) ] T i3 ), . . . , Πk

3)
t3=⇒

(Π1
4, . . . , (Hi

4, C i
4 , (En4 , ESn4 , (l2, p2)·(j, ty1)·RSn4 ) ] T i4 ), . . . , Πk

4)

(Π1
4, . . . , (Hi

4, C i
4 , (En4 , ESn4 , RSn4 , fetch(l2, p2)) ] T i4 ), . . . , Πk

4)
t4=⇒

(Π1
5, . . . , (Hi

5, C i
5 , (En5 , ESn5 , (〈〈Ec, lv, Λc〉〉, ty2)·RSn5 ) ] T i5 ), . . .

(Hj, C j , T j), . . . , Πk
5)

(Π1
1, . . . , (Hi

1, C i
1 , (En1 , ESn1 , RSn1 , rfork(Λ1, Λ2)) ] T i1 ), . . . , Πk

1)
t1 ; t2 ; t3 ; t4=======⇒

(Π1
5, . . . , (Hi

5,C
i
5 , (En5 , ESn5 , (lunit, punit)·RSn5 ) ] T i5 ), . . .

(Hj, C j , (Ec, ∅, ∅, Λc) ] T j), . . . , Πk
5)

(49)

(Π1
1, . . . , (Hi

1, C i
1 , (En, ∅, ∅, (lunit, punit)) ] T i1 ), . . . , Πk

1)
ε=⇒

(Π1
1, . . . , (Hi

1, C i
1 , T i1 ), . . . , Πk

1)

(50)

Figure 26: Concurrency.

It therefore remains to provide a definition for the communication and con-
currency primitives which do not appear in the sequential sub-language. Con-
currency is introduced into the language by the rules in Figure 26. The fork(Λ)
expression creates a new thread on the local process Πi. The Λ expression is
evaluated to obtain a closure 〈〈Ec, lv, Λc〉〉. This closure is simply converted
into a new thread (Ec, ∅, ∅, Λc) and appended to the local multi-set of threads.
The rfork(Λ1, Λ2) expression creates a new thread on a remote process Πj . The
expression Λ1 is first evaluated to determine the remote process number j. Λ2
is then evaluated to provide a closure, which is again converted to a thread,
and appended to the multi-set of threads on process Πj. When a thread has
finished execution, it has the form: (En, ∅, ∅, (lunit, punit)). Such threads are
identified by Rule 50 and removed from the multi-set of threads.
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cn fresh

(Π1, . . . , (Hi, C i, (En, ESn, RSn, channel()) ] T i), . . . , Πk) ε=⇒
(Π1, . . . , (Hi[l 7→ cn][p 7→ t chan], C i,

(En[cn 7→ (l, p)], ESn, (l, p)·RSn) ] T i), . . . , Πk)

(51)

(Π1
1, . . . , (Hi

1, C i
1 , (En1 , ESn1 , RSn1 , Λ1) ] T i1 ), . . . , Πk

1)
t1=⇒

(Π1
2, . . . , (Hi

2, C i
2 , (En2 , ESn2 , (l1, p1)·RSn2 ) ] T i2 ), . . . , Πk

2)

(Π1
2, . . . , (Hi

2, C i
2 , (En2 , ESn2 , RSn2 , fetch(l1, p1)) ] T i2 ), . . . , Πk

2)
t2=⇒

(Π1
3, . . . , (Hi

3, C i
3 , (En3 , ESn3 , RSn3 ) ] T i3 ), . . . , Πk

3)

(Π1
3, . . . , (Hi

3, C i
3 , (En3 , ESn3 , RSn3 , Λ2) ] T i3 ), . . . , Πk

3)
t3=⇒

(Π1
4, . . . , (Hi

4, C i
4 , (En4 , ESn4 , (l2, p2)·(cn, ty)·RSn4 ) ] T i4 ), . . . , Πk

4)

cn ! (l2, p2)

(Π1
1, . . . , (Hi

1, C i
1 , (En1 , ESn1 , RSn1 , send(Λ1, Λ2)) ] T i1 ), . . . , Πk

1)
t1 ; t2 ; t3 ; cn ! (l2, p2)
============⇒

(Π1
4, . . . , (Hi

4, C i
4 , (En4 , ESn4 , (lunit, punit)·RSn4 ) ] T i4 ), . . . , Πk

4)

(52)

(Π1
1, . . . , (Hi

1, C i
1 , (En1 , ESn1 , RSn1 , Λ) ] T i1 ), . . . , Πk

1)
t1=⇒

(Π1
2, . . . , (Hi

2, C i
2 , (En2 , ESn2 , (l1, p1)·RSn2 ) ] T i2 ), . . . , Πk

2)

(Π1
2, . . . , (Hi

2, C i
2 , (En2 , ESn2 , RSn2 , fetch(l1, p1)) ] T i2 ), . . . , Πk

2)
t2=⇒

(Π1
3, . . . , (Hi

3, C i
3 , (En3 , ESn3 , (cn, ty)·RSn3 ) ] T i3 ), . . . , Πk

3)

cn ? (l2, p2)

(Π1
1, . . . , (Hi

1, C i
1 , (En1 , ESn1 , RSn1 , receive(Λ)) ] T i1 ), . . . , Πk

1)
t1 ; t2 ; cn ? (l2, p2)
==========⇒

(Π1
3, . . . , (Hi

3, C i
3 , (En3 , ESn3 , (l2, p2)·RSn3 ) ] T i3 ), . . . , Πk

3)

(53)

Figure 27: Communication.

Communication between threads is performed across bi-directional channels.
New channels are created by the channel() expression (Rule 51). With reference
to Figure 20, the channel environment NE tracks the allocation of channel
names. A channel is represented in the heap as a value cn of type t chan.

Channels communicate pairs of value-locations and type-pointers (l, p).
These pairs are sent along channels by the send(Λ1, Λ2) expression (Rule 52)
and received by the receive(Λ) expression (Rule 53). The channel along which
communication takes place is provided by evaluating Λ1 in the case of a send,
or Λ in the case of receive. The second argument Λ2 of a send is evaluated to
provide the pair (l, p). The communication operations are blocking. Both the
sending and receiving threads are blocked until the pair (l, p) is passed, which
happens atomically. The notation for sending and receiving across channels is
the same as the communication traces. For example, sending the pair (l, p)
across channel cn is written cn ! (l, p).
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Concurrent ML:

let val c = channel()
val = rfork(2, fn () => send(c, receive(c) + 3))
val = send(c, 7)

in
receive(c)

end

DMΛ Translation:

(∅, ∅,
let (c, t unit) = channel () (i)
in

let ( , t unit) =
rfork (scon 2,

fn ( , t unit→ t unit) =
send (var c, prim (ADDi, (receive (var c), scon 3)))) (ii)

in
let ( , t unit) = send (var c, scon 7) (iii)
in

receive(var c)) (iv)

Simplified Evaluation Trace:

(i) ε
(ii) ε ‖ (c ? (l1, p1) ; c ! (l2, p2))
(iii) (ε ; c ! (l1, p1)) ‖ (c ? (l1, p1) ; c ! (l2, p2))
(iv) (ε ; c ! (l1, p1) ; c ? (l2, p2)) ‖ (c ? (l1, p1) ; c ! (l2, p2))

Trace Reduction:

(ε ; c ! (l1, p1) ; c ? (l2, p2)) ‖ (c ? (l1, p1) ; c ! (l2, p2))
= (c ! (l1, p1) ; c ? (l2, p2)) ‖ (c ? (l1, p1) ; c ! (l2, p2)) by Rule 27
= c ? (l2, p2) ‖ c ! (l2, p2) by Rule 31
= c ! (l2, p2) ‖ c ? (l2, p2) by Rule 29
= ε by Rule 30

Figure 28: Trace Reduction Example.

Earlier in this section (4.1) it was stated that the traces for a correct program
should always reduce to ε. Having now provided the transitions for the commu-
nication and concurrency primitives, Figure 28 shows that this is the case for the
example given in the introduction. For clarity, the traces have been simplified
by removing all the ε traces resulting from the intermediate steps in the evalu-
ation. The first pair that is transmitted across the channel c, corresponding to
the special constant 7, is denoted (l1, p1). The second pair, corresponding to
the special constant 10 (7+3), is denoted (l2, p2).
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4.4 Distributed Garbage Collection

In this section an abstract machine is presented which describes the distributed
garbage collection algorithm. The syntax of this abstract machine, called the
DGC machine, is given in Figure 29.

Machine State GC ::= π k

GC Process π ::= (Hf , Ht , PF , LF , T )
GC Thread T ::= E | S | cnl | cnp | (p1, p2) | (l1, p1, l2)

Trace t ::= ε | t1 ; t2 | t1 ‖ t2 | cn ! m | cn ? m
Message m ::= (p) | (l, p) | (E)

Figure 29: DGC Abstract Machine Syntax.

The organisation of DGC machine is very similar to the DMΛ machine.
There are a fixed number k of concurrently executing processes π each executing
a multi-set of threads T . This similarity is intended. There is a one-to-one
correspondence between DGC processes and DMΛ processes. In an actual
implementation the two machines would be combined. The combined machine
would alternate between the execution of DMΛ and DGC processes and threads
during cycles of program execution and garbage collection. Figure 30 defines
the parallel execution of garbage collection processes and threads.

π1
1

t1=⇒gc π
1
2 · · · πk1

tk=⇒gc π
k
2

(π1
1, . . . , π

k
1 )

t1‖···‖tk===⇒gc (π1
2, . . . , π

k
2 )

(54)

T1
t1=⇒gc T3 T2

t2=⇒gc T4

T1 ] T2
t1‖t2=⇒gc T3 ] T4

(55)

Figure 30: Execution of DGC Processes and Threads.

Each DGC process is effectively a separate copy of the uniprocessor al-
gorithm. Therefore, each process contains a copy of the GC state as defined
in Figure 10. There are separate threads for garbage collecting environments,
stacks, values, and types. Environments are garbage collected using E threads
and stacks are garbage collected using S threads. The garbage collection of
types and values is more complex. Recall from the description of the distrib-
uted garbage collection algorithm, at the beginning of this section, that each
process is responsible for garbage collecting data that is contained within its own
heap. Thus, in the DGC machine a mechanism is required for communicating
pointers to the appropriate processes for collection. This is achieved through
the use of server threads. Each DGC process has two server threads: one for
types and one for values. Each of these server threads has an associated chan-
nel along which messages are sent and received. Hence, the server threads are
named cnil and cnip, where 0 < i ≤ k. When an external pointer is encountered
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during garbage collection, it is simply sent along a channel to the appropriate
server thread which returns an updated pointer along the same channel.

The server thread is determined using the num operation defined in Sec-
tion 4.2. For example, a type referenced by the pointer p1 is garbage collected by
sending it to a server, where i = num(p1): cnip ! (p1). The updated pointer p2 is
subsequently retrieved from the same server: cnip ? (p2). For convenience, these
operations are combined in the garbage collection rules e.g. cnip ! (p1) ? (p2),
which is shorthand for cnip ! (p1) ; cnip ? (p2). In order to simplify the garbage
collection rules, a distinction is not made between local and remote data. All
type-pointers and value-locations are sent in this manner to the servers, even if
the server is on the same process. It would be straightforward to optimise the
local case, but the number of rules would double.

It may be the case that two (or more) threads attempt to communicate
with a single server thread at the same time. In this case, the server makes
a non-deterministic choice between the threads. Only one thread is permitted
to communicate with the server. The remaining threads are blocked until the
server becomes available. Communication with the server is always done by
performing a send operation followed by a receive. This ordering ensures that
the correct thread receives the reply from the server.

The server threads do not actually perform garbage collection. A copying
operation may require the co-operation of a number of other servers. This could
easily lead to a deadlock owing to the blocking nature of the communication
channel, e.g. two servers may become blocked waiting for each other to finish.
One solution would be to fork a new server thread every time the server becomes
busy. However, each of these server threads would require a separate commu-
nication channel which would considerably complicate the collection algorithm.

The solution adopted here involves the use of worker threads to perform the
copying operation. Recall from Section 4.1 that a pointer may be reserved on
the heap. Thus, the server thread simply reserves and returns a pointer while a
separate worker thread is forked to copy the data. A worker thread for copying
a value is denoted (l1, p1, l2). The value referenced by l1 is copied recursively
into the location referenced by l2 using the type reference by p1. Similarly, a
worker thread for copying a type is denoted (p1, p2). The type referenced by
p1 is copied recursively into the heap referenced by p2.

The rule in Figure 32 illustrates how distributed garbage collection is com-
bined with the rules of the DMΛ abstract machine. This rule generates a single
DGC process from a single DMΛ process. Distributed garbage collection re-
quires this operation to be performed on every process in the DMΛ machine.
The set of garbage collection threads (roots) for a single DGC process is gen-
erated from the union of all the environments and stacks contained within the
threads of a DMΛ process. The set of threads also includes the value and type
servers for processing external references.

Garbage collection proceeds until all of the roots have been processed. The
set of DMΛ threads is then rebuilt with the new environments and stacks and
normal evaluation is resumed. Note that the contents of the cache is cleared by
garbage collection.
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An example distributed garbage collection with two processes is illustrated
in Figure 31. In the example, an integer list type is garbage collected. Initially,
the list type t list is referenced by the type-pointer p1 and is contained within
the from heap of process π1. The list type contains a pointer p2 to the integer
type t int contained within the from heap of process π2.

Garbage collection is initiated by sending the pointer p1 to the server thread
cn1
p on process π1. The server thread reserves a pointer p3 on the to heap of

process π1 and returns this pointer. A worker thread (p1, p3) is created to
perform the copy of the list type. During the copy operation, the worker thread
encounters the pointer p2 to the integer type. This pointer is sent to the server
thread cn2

p on process π2. The server thread subsequently reserves a pointer
p4 on the to heap of process π2 and returns this to the worker thread. Now
a new worker thread (p2, p4) is created on process π2 to perform the copy of
the integer type. Meanwhile, the worker thread on process π1 completes the
copy of the list type with the updated pointer p4. Once the worker thread on
process π2 has completed the copy of the integer type, the garbage collection is
complete. The type-pointer p3 references the garbage collected type in the to
heap of process π1.

p1 t list(p2)

t intp2

p4

p3

p3

cn

cnp
1

p
2

from heap

from heap

(p1, p3)
t list(p4)

t int

p4

to heap

to heap

(p2, p4)

p2

p1

π2

π1

Figure 31: Distributed Garbage Collection Example.
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T i1 = {(E1
1 , ES1

1, RS1
1), . . . , (Ej1 , ES j1, RSj1)}

(π1
1, . . . , (Hi

1, ∅, ∅, ∅, E1
1 ]ES1

1 ]RS1
1 ] · · ·

· · · ] Ej1 ]ES
j
1 ]RS j1 ] cnl ] cnp), . . . , πk1 ) t=⇒gc

(π1
2, . . . , (Hi

1, H
i
2, PF i, LF i, E1

2 ]ES1
2 ]RS1

2 ] · · ·
· · · ]Ej2 ]ES

j
2 ] RS j2 ] cnl ] cnp), . . . , πk2 )

T i2 = {(E1
2 , ES1

2, RS1
2), . . . , (Ej2 , ES j2, RSj2)}

(Π1, . . . , (Hi
1, C i

1 , T i1 ), . . . , Πk) t=⇒ (Π1, . . . , (Hi
2, ∅, T i2 ), . . . , Πk)

(56)

Figure 32: Distributed Garbage Collection Introduction.

Figures 33 through 37 define the behaviour of the garbage collection threads.
It is worth noting that these rules are very similar to their sequential equi-
valents in Figures 12 through 15. Where the sequential algorithm collects a
pointer (Hf , Ht1, PF1, LF , p1)⇒gc (Hf , Ht2, PF 2, LF , p2), the distributed
algorithm communicates with a server cnnum(p1)

p ! (p1) ? (p2). A sequential col-
lection effectively corresponds to a single garbage collection process collecting a
single DMΛ process in the DGC machine.

The server thread for types cnp is defined in Figure 33. In Rule 57, the type
referenced by p1 has already been collected. The entry in the forwarding table
PF (p1) is therefore returned. In Rule 58 the type has not been collected. A
pointer p2 is reserved in Ht, to hold the collected type, and returned. A worker
thread (p1, p2) is created to copy the type, and a mapping p1 7→ p2 is added
to the forwarding table. Note that the server is still present in the set of threads
at the end of the rule. This has the effect of restarting the server. The server
thread for values cnl is defined in Figure 35.

The worker thread for types (p1, p2) is defined in Figure 34. There are
separate rules for each of the types in the language. Any type pointers that
are encountered are collected by sending them to the appropriate type server.
The heap is accessed directly, instead of going via the fetch operation, as the
types will always be contained within the local heap. The worker thread for
values (l1, p1, l2) is defined in Figure 35. There are separate rules for each of
the values in the language. The type information referenced by p1 is used to
guide the collection, but the type itself is not collected by these rules. Any value
locations that are encountered are sent to the appropriate value server.

The thread for collecting environments is given in Figure 37. The envir-
onment E1 is decomposed into a constructor environment CE1, and a value
environment V E1. A new constructor environment CE2 is built by collecting
all of the types referenced in CE1. This is achieved by sending all of the type
references to the type servers. Similarly, a new value environment V E2 is built
by collecting all of the values and types referenced in V E1. This is achieved by
sending all of the references to the type and value servers. A new environment
E2 is built from CE2, and V E2.

The final Figure 38 contains the rules for garbage collecting the stacks ES
and RS . There are separate rules depending on wether the item at the top of
the stack is a type (Rule 74), a value (Rule 75), or an environment (Rule 76).
The base case, an empty stack, is handled by Rule 73.
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t1 = cnip ? (p1) p1 ∈ Dom PF i p2 = PF i(p1) t2 = cnip ! (p2)

(π1, . . . , (Hf i, Hti, PF i, LF i, (cnip) ] T i), . . . , πk)
t1 ; t2=⇒ gc

(π1, . . . , (Hf i, Hti, PF i, LF i, (cnip) ] T i), . . . , πk)
(57)

t1 = cnip ? (p1) p1 /∈ Dom PF i Hti ↑ p2 t2 = cnip ! (p2)

(π1, . . . , (Hf i, Hti, PF i, LF i, (cnip) ] T i), . . . , πk)
t1 ; t2=⇒ gc

(π1, . . . , (Hf i, Hti, PF i[p1 7→ p2], LF i, (cnip) ] (p1, p2) ] T i), . . . , πk)
(58)

Figure 33: Type Server Thread.

Hf i(p1) = tn

(π1, . . . , (Hf i, Hti, PF i, LF i, (p1, p2) ] T i), . . . , πk)
ε⇒gc

(π1, . . . , (Hf i, Hti[p2 7→ tn], PF i, LF i, T i), . . . , πk)

(59)

Hf i(p1) = tn(p3) t = cn
num(p3)
p ! (p3) ? (p4)

(π1, . . . , (Hf i, Hti, PF i, LF i, (p1, p2) ] T i), . . . , πk)
t

=⇒gc

(π1, . . . , (Hf i, Hti[p2 7→ tn(p4)], PF i, LF i, T i), . . . , πk)

(60)

Hf i(p1) = p3
n t = cn

num(p1
3)

p ! (p1
3) ? (p1

4) ; · · · ; cnnum(pn3 )
p ! (pn3 ) ? (pn4 )

(π1, . . . , (Hf i, Hti, PF i, LF i, (p1, p2) ] T i), . . . , πk) t=⇒gc

(π1, . . . , (Hf i, Hti[p2 7→ p4
n], PF i, LF i, T i), . . . , πk)

(61)

Hf i(p1) = p3 → p4 t = cn
num(p3)
p ! (p3) ? (p5) ; cnnum(p4)

p ! (p4) ? (p6)

(π1, . . . , (Hf i, Hti, PF i, LF i, (p1, p2) ] T i), . . . , πk) t=⇒gc

(π1, . . . , (Hf i, Hti[p2 7→ p5 → p6], PF i, LF i, T i), . . . , πk)

(62)

Hf i(p1) = tv

(π1, . . . , (Hf i, Hti, PF i, LF i, (p1, p2) ] T i), . . . , πk) ε⇒gc

(π1, . . . , (Hf i, Hti[p2 7→ tv], PF i, LF i, T i), . . . , πk)

(63)

Hf i(p1) = ∀ p3
n. p4

t1 = cn
num(p1

3)
p ! (p1

3) ? (p1
5) ; · · · ; cn

num(pn3 )
p ! (pn3 ) ? (pn5 )

t2 = cn
num(p3)
p ! (p4) ? (p6)

(π1, . . . , (Hf i, Hti, PF i, LF i, (p1, p2) ] T i), . . . , πk)
t1 ; t2=⇒ gc

(π1, . . . , (Hf i, Hti[p1 7→ ∀ p5
n. p6], PF i, LF i, T i), . . . , πk)

(64)

Figure 34: Type Worker Thread.
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t1 = cnil ? (l1, p1) l1 ∈ Dom LF i l2 = LF i(l1) t2 = cnil ! (l2, p1)

(π1, . . . , (Hf i, Hti, PF i, LF i, (cnil) ] T i), . . . , πk)
t1 ; t2=⇒ gc

(π1, . . . , (Hf i, Hti, PF i[p1 7→ p2], LF i, (cnil) ] T i), . . . , πk)
(65)

t1 = cnil ? (l1, p1) l1 /∈ Dom LF 1 Hti ↑ l2 t2 = cnil ! (l2, p1)

(π1, . . . , (Hf i, Hti, PF i, LF i, (cnil) ] T i), . . . , πk)
t1 ; t2=⇒ gc

(π1, . . . , (Hf i, Hti, PF i, LF i[l1 7→ l2], (cnil) ] (l1, p1, l2) ] T i), . . . , πk)
(66)

Figure 35: Value Server Thread.

Hf i(p1) = tn

(π1, . . . , (Hf i, Hti, PF i, LF i, (l1, p1, l2) ] T i), . . . , πk)
ε

=⇒gc

(π1, . . . , (Hf i, Hti[l2 7→ Hf i(l1)], PF i, LF i, T i), . . . , πk)

(67)

Hf i(p1) = tn(p2) Hf i(l1) = con(l3) t = cn
num(l3)
l ! (l3, p2) ? (l4, p2)

(π1, . . . , (Hf i, Hti, PF i, LF i, (l1, p1, l2) ] T i), . . . , πk)
t

=⇒gc

(π1, . . . , (Hf i, Hti[l2 7→ con(l4)], PF i, LF i, T i), . . . , πk)

(68)

Hf i(p1) = p2
n Hf i(l1) = l3

n

t = cn
num(l13)
l ! (l13, p

1
2) ? (l14, p

1
2) ; · · · ; cnnum(ln3 )

p ! (ln3 , p
n
2 ) ? (ln4 , p

n
2 )

(π1, . . . , (Hf i, Hti, PF i, LF i, (l1, p1, l2) ] T i), . . . , πk)
t

=⇒gc

(π1, . . . , (Hf i, Hti[l2 7→ (l14, . . . , l
n
4 )], PF i, LF i, T i), . . . , πk)

(69)

Hf i(p1) = p2 → p3 Hf i(l1) = 〈〈E1, lv
l, Λ〉〉

(π1
1, . . . , (Hf i1, Hti1, PF i

1, LF i
1, E1 ] T i1), . . . , πk1 ) t=⇒gc

(π1
2 , . . . , (Hf i2, Hti2, PF i

2, LF i
2, E2 ] T i2), . . . , πk2 )

(π1
1, . . . , (Hf i1, Hti1, PF i

1, LF i
1, (l1, p1, l2) ] T i1), . . . , πk1 ) t=⇒gc

(π1
2 , . . . , (Hf i2, Hti2[l2 7→ 〈〈E2, lv

l, Λ〉〉], PF i
2, LF i

2, T
i
2), . . . , π

k
2 )

(70)

Hf i(p1) = p2 → p3 Hf i(l1) = Ω

(π1, . . . , (Hf i, Hti, PF i, LF i, (l1, p1, l2) ] T i), . . . , πk) ε=⇒gc

(π1, . . . , (Hf i, Hti[l2 7→ Ω], PF i, LF i, T i), . . . , πk)

(71)

Figure 36: Value Worker Thread.
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E1 = (TE , NE , CE 1, VE1)

CE 1 = {con1 7→ p1
1, . . . , con

k 7→ pk1}
t1 = cn

num(p1
1)

p ! (p1
1) ? (p1

2) ; · · · ; cnnum(pk1 )
p ! (pk1) ? (pk2)

CE 2 = {con1 7→ p1
2, . . . , con

k 7→ pk2}
VE1 = {lv1 7→ (l11, p

1
3), . . . , lv

l 7→ (ll1, p
l
5)}

t2 = cn
num(p1

3)
p ! (p1

3) ? (p1
4) ; · · · ; cnnum(pl3)

p ! (pl3) ? (pl4)

t3 = cn
num(l11)
l ! (l11, p

1
4) ? (l12, p

1
4) ; · · · ; cnnum(ll1)

l ! (ll1, p
l
4) ? (ll2, p

l
4)

VE2 = {lv1 7→ (l12, p1
4), . . . , lvl 7→ (ll2, pl4)}

E2 = (TE , NE , CE 2, VE2)

(π1, . . . , (Hf i, Hti, PF i, LF i, (E1) ] T i), . . . , πk)
t1 ; t2 ; t3=====⇒gc

(π1, . . . , (Hf i, Hti, PF i, LF i, (E2) ] T i), . . . , πk)

(72)

Figure 37: Environment Thread.

(π1, . . . , (Hf i, Hti, PF i, LF i, () ] T i), . . . , πk) ε=⇒gc

(π1, . . . , (Hf i, Hti, PF i, LF i, () ] T i), . . . , πk)
(73)

t1 = cn
num(p1)
p ! (p1) ? (p2)

(π1
1, . . . , (Hf i1, Hti1, PF i

1, LF i
1, (S1) ] T i1), . . . , πk1 )

t2=⇒gc

(π1
2 , . . . , (Hf i2, Hti2, PF i

2, LF i
2, (S2) ] T i2), . . . , πk2 )

(π1
1, . . . , (Hf i1, Hti1, PF i

1, LF i
1, (p1·S1) ] T i1), . . . , πk1 )

t1 ; t2===⇒gc

(π1
2 , . . . , (Hf i2, Hti2, PF i

2, LF i
2, (p2·S2) ] T i2), . . . , πk2 )

(74)

t1 = cn
num(p1)
p ! (p1) ? (p2) t2 = cn

num(l1)
l ! (l1, p1) ? (l2, p1)

(π1
1, . . . , (Hf i1, Hti1, PF i

1, LF i
1, (S1) ] T i1), . . . , πk1 )

t3=⇒gc

(π1
2 , . . . , (Hf i2, Hti2, PF i

2, LF i
2, (S2) ] T i2), . . . , πk2 )

(π1
1, . . . , (Hf i1, Hti1, PF i

1, LF i
1, ((l1, p1)·S1) ] T i1), . . . , πk1 )

t1 ; t2 ; t3===⇒ gc

(π1
2 , . . . , (Hf i2, Hti2, PF i

2, LF i
2, ((l2, p2)·S2) ] T i2), . . . , πk2 )

(75)

(π1
1, . . . , (Hf i1, Hti1, PF i

1, LF i
1, (E1) ] T i1), . . . , πk1 )

t1=⇒gc

(π1
2 , . . . , (Hf i2, Hti2, PF i

2, LF i
2, (E2) ] T i2), . . . , πk2 )

(π1
2, . . . , (Hf i2, Hti2, PF i

2, LF i
2, (S1) ] T i2), . . . , πk2 )

t2=⇒gc

(π1
3 , . . . , (Hf i3, Hti3, PF i

3, LF i
3, (S2) ] T i3), . . . , πk3 )

(π1
1, . . . , (Hf i1, Hti1, PF i

1, LF i
1, (E1·S1) ] T i1), . . . , πk1 )

t1 ; t2===⇒gc

(π1
3 , . . . , (Hf i3, Hti3, PF i

3, LF i
3, (E2·S2) ] T i3), . . . , πk3 )

(76)

Figure 38: Stack Thread.
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5 Further Work and Concluding Remarks

Modern compilers for higher-order typed programming languages use typed in-
termediate languages to structure the compilation process. The use of such
languages in this report has allowed the construction of efficient tag-free al-
gorithms for both the sequential and distributed cases. In addition, the use of
abstract machine notation has enabled a formal presentation of memory man-
agement separately from other aspects such as syntax and type-correctness.
Unlike traditional models, the abstract machine exposes many important de-
tails such as the heap, stacks, and environments and provides an implementor
with an unambiguous and precise description of memory management.

The use of type information also enables a number of extensions to the
garbage collection algorithm. The model presented here only deals with heap
garbage collection. However, space leaks in the heap may also result from stack
and environment garbage. Stack garbage results from recursive tail-calls, and
environment garbage results from unused bindings. As an example, Figure 39
illustrates the removal of unused bindings from closure environments. CON
returns the set of constructors which appear in Λ, and VAR returns the set of
variables which appear in Λ. Rule 77 is for the sequential case, and Rule 78
is for the distributed case. These rules could easily be combined with Rule 20
(sequential) and Rule 70 (distributed) to improve the efficiency of the garbage
collection algorithms. The collection of stack garbage is a more complex problem
and is currently under investigation.

CON (Λ) ⊆ Dom CE 1 VAR(Λ) ⊆ Dom VE1

〈〈(TE , CE 1 ] CE2, VE1 ]VE2), lv k, Λ〉〉 ⇒gc

〈〈(TE , CE 1, VE1), lv k, Λ〉〉
(77)

CON (Λ) ⊆ Dom CE 1 VAR(Λ) ⊆ Dom VE1

〈〈(TE , NE , CE 1 ] CE 2, VE1 ]VE2), lv k, Λ〉〉 ⇒gc

〈〈(TE , NE , CE 1, VE1), lv k, Λ〉〉
(78)

Figure 39: Closure Garbage Collection.

The abstract machine model has also provided a definition for the mechan-
isms of the LEMMA memory interface. In order to clearly present the memory
management operations, a number of simplifications have been made in the
distributed case, e.g. mutable data is not cached. An obvious extension would
be an inclusion of the optimisation techniques described in [12] and [14]. Bey-
ond these optimisations, it would also be interesting to adapt the model to
cope with wide-area distribution. In this setting, the intention would clearly
be to minimise the amount of communication. Also, the model of distributed
shared memory may be unrealistic and require a change to a purely message-
passing paradigm. It would also be necessary to cope with the presence of
computation and communication failures. This may require some changes to
the Concurrent ML primitives. For example, the addition of time-outs to the
communication operations.
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A Sequential Abstract Machine Definition

A.1 Programs

P = ({D1, . . . , Dk}, {X1, . . . , X l}, Λ)

(H1, E1, ES1, RS1, D
1)⇒ (H2, E2, ES1, RS1) · · ·

(Hk, Ek, ES1, RS1, D
k)⇒ (Hk+1, Ek+1, ES1, RS1)

(Hk+1, Ek+1, ES1, RS1, X
1)⇒ (Hk+2, Ek+2, ES1, RS1) · · ·

(Hk+l, Ek+l, ES1, RS1, X
l)⇒ (Hk+l+1, Ek+l+1, ES1, RS1)

(Hk+l+1, Ek+l+1, ES1, RS1, Λ)⇒ (Hk+l+2, Ek+l+2, ES2, RS2)

(H1, E1, ES1, RS1, P )⇒ (Hk+l+2, Ek+l+2, ES2, RS2)

(79)

Comment: (Rule 79) The Program P is decomposed into datatypes D, excep-
tions X, and an expression Λ. These components are then evaluated in turn by
sequences of transitions.

A.2 Datatype and Exception Declarations

(H, E, ES , RS , datatype tn of (con, τ) k)⇒
(H[p1 7→ τ1 → tn , . . . , pk 7→ τk → tn],

E[tn][con1 7→ p1, . . . , con
k 7→ pk], ES , RS)

(80)

Comment: (Rule 80) Datatype constructors are represented as functions from
the constructor argument type to the datatype name τ → tn. The type of a
nullary constructor is t unit → tn. These function types are allocated on the
type heap H[p 7→ τ → tn], and entered into the environment E[tn][con 7→ p].

(H, E, ES , RS , datatype (tv k, tn) of (con, τ) l)⇒
(H[p1 7→ ∀ tv k. τ1 → tn, . . . , pl 7→ ∀ tv k. τ l → tn],

E[tn][con1 7→ p1, . . . , con
l 7→ pl], ES , RS)

(81)

Comment: (Rule 81) Polymorphic datatype constructors are represented by
functions ∀ tv k. τ → tn.

(H, E, ES , RS , exception (con, τ))⇒
(H[p 7→ τ → t exn], E[con 7→ p], ES , RS)

(82)

Comment: (Rule 82) The effect of an exception declaration is analogous to that
of adding a constructor to a pre-defined datatype named t exn.
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A.3 Values

(H, E, ES , RS , scon scon)⇒
(H[l 7→ scon][p 7→ τscon], E, ES , (l, p)·RS)

(83)

Comment: (Rule 83) τscon is the type of the special constant scon (e.g. t int).

E(lv) = (l, p)

(H, E, ES , RS , var lv)⇒ (H, E, ES , (l, p)·RS)
(84)

E(lv) = (l1, p1)

(H1[p2 7→ τ k], E, ES , RS , instance(p1, p2))⇒ (H2, E, ES , p3·RS)

(H1, E, ES , RS , var (τ k, lv))⇒ (H2, E, ES , (l1, p3)·RS)

(85)

(H, E, ES , RS , fn (lv, τ1 → τ2) = Λ)⇒
(H[l 7→ 〈〈E, lv, Λ〉〉][p 7→ τ1 → τ2], E, ES , (l, p)·RS)

(86)

(H, E, ES , RS , fn (lv k, τ1 k → τ2) = Λ)⇒
(H[l 7→ 〈〈E, lv k, Λ〉〉][p 7→ τ1

k → τ2], E, ES , (l, p)·RS)

(87)

Comment: (Rules 86 and 87) These rules allocate a new closure on the value
heap. The second rule is for functions which take multiple arguments. The
closure consists of a copy of the environment, a variables (or list of variables)
to be bound to the function parameters, and an expression for the body of the
function.

A.4 Constructors
E(con) = p1 H(p1) = p2 → p3

(H, E, ES , RS , con con)⇒ (H[l1 7→ con], E, ES , (l1, p3)·RS)
(88)

E(con) = p1

(H1[p2 7→ τ k], E, ES , RS , instance(p1, p2))⇒ (H2, E, ES , p3·RS)

H2(p3) = p4 → p5

(H1, E, ES , RS , con (con, τ k))⇒ (H2[l1 7→ con], E, ES , (l1, p5)·RS)

(89)

(H1, E1, ES1, RS1, Λ)⇒ (H2, E2, ES2, (l1, p1)·RS2)

E2(con) = p2 H2(p2) = p3 → p4

(H1, E1, ES1, RS1, con (con, Λ))⇒
(H2[l2 7→ con(l1)], E2, ES2, (l2, p4)·RS2)

(90)
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(H1, E1, ES1, RS1, Λ)⇒ (H2, E2, ES2, (l1, p1)·RS2) E2(con) = p2

(H2[p3 7→ τ k], E2, ES2, RS2, instance(p2, p3))⇒ (H3, E2, ES2, p4·RS2)

H3(p4) = p5 → p6

(H1, E1, ES1, RS1, con (con, τ k, Λ))⇒
(H3[l2 7→ con(l1)], E2, ES2, (l2, p6)·RS2)

(91)

Comment: (Rules 88 to 91) Constructing a datatype value is analogous to
applying the constructor function τ → tn (or an instance of ∀ tv k. τ → tn for
polymorphic constructors). Unary constructors require an argument Λ of type
τ . A new constructor value is allocated on the value heap with associated type
tn in the type heap.

(H1, E1, ES1, RS1, Λ)⇒ (H2, E2, ES2, (l1, p1)·RS2)

E2(con) = p2 H2(p2) = p3 → p4 H2(l1) = con(l2)

(H1, E1, ES1, RS1, decon (con, Λ))⇒ (H2, E2, ES2, (l2, p3)·RS2)

(92)

(H1, E1, ES1, RS1, Λ)⇒ (H2, E2, ES2, (l1, p1)·RS2) E2(con) = p2

(H2[p3 7→ τ k], E2, ES2, RS2, instance(p2, p3))⇒ (H3, E2, ES2, p4·RS2)

H3(p4) = p5 → p6 H3(l1) = con(l2)

(H1, E1, ES1, RS1, decon (con, τ k, Λ))⇒ (H3, E2, ES2, (l2, p5)·RS2)

(93)

(H1, E1, ES1, RS1, Λ1)⇒ (H2, E2, ES2, RS2)

(H2, E2, ES2, RS2, Λ2)⇒ (H3, E3, ES3, (l2, p2)·(l1, p1)·RS3)

(H1, E1, ES1, RS1, assign (Λ1, Λ2))⇒
(H3[l1

upd7→ c ref(l2)], E3, ES3, (lunit, punit)·RS3)

(94)

Comment: (Rule 94) Assignment uses the update operation l1
upd7→ c ref(l2) to

update the reference at l1 to c ref(l2)

A.5 Structured Expressions

(H1, E1, ES1, RS1, Λ1)⇒ (H2, E2, ES2, (l1, p1)·RS2)

cmap = {c1 7→ Λ1
2, . . . , c

k 7→ Λk2} H2(l1) = val

Λ4 = if val ∈ Dom cmap then cmap(val) else Λ3

(H2, E2, ES2, RS2, Λ4)⇒ (H3, E3, ES3, RS3)

(H1, E1, ES1, RS1, switch Λ1 case (cmap, Λ3))⇒ (H3, E3, ES3, RS3)

(95)

(H1, E1, ES1, RS1, Λ1)⇒ (H2, E2, ES2, RS2) · · ·
(Hk, Ek, ESk, RSk, Λk)⇒

(Hk+1, Ek+1, ESk+1, (lk , pk) · · · (l1, p1)·RSk+1)

(H1, E1, ES1, RS1, tuple Λ k)⇒
(Hk+1[lk+1 7→ (l1, . . . , lk)][pk+1 7→ (p1, . . . , pk)], Ek+1,

ESk+1, (lk+1, pk+1)·RSk+1)

(96)
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Comment: (Rule 96) A tuple is constructed by evaluating its members Λk in
left-to-right order. The resulting (l, p) pairs are kept on the result stack RS
until the last one is evaluated. A tuple l k is then allocated on the value heap
(with a corresponding type on the type heap) to hold the results.

(H1, E1, ES1, RS1, Λ)⇒ (H2, E2, ES2, (l1, p1)·RS2)

H2(l1) = l2
k H2(p1) = p2

k

(H1, E1, ES1, RS1, select (i, Λ))⇒ (H2, E2, ES2, (li2, p
i
2)·RS2)

(97)

(H1, E1, ES1, RS1, Λ1)⇒ (H2, E2, ES2, (l1, p1)·RS2)

(H2[p2 7→ σ], E2[lv 7→ (l1, p2)], ES2, E2·RS2, Λ2)⇒
(H3, E3, ES3, (l3, p3)·E4·RS3)

(H1, E1, ES1, RS1, let (lv, σ) = Λ1 in Λ2)⇒ (H3, E4, ES3, (l3, p3)·RS3)

(98)

(H1, E1, ES1, RS1, Λ1)⇒ (H2, E2, ES2, (l1, p1)·RS2) H2(l1) = l2
k

(H2[p1
2 7→ σ1, . . . , pk2 7→ σk], E2[lv1 7→ (l12, p

1
2), . . . , lv

k 7→ (lk2 , p
k
2 )],

ES2, E2·RS2, Λ2)⇒ (H3, E3, ES3, (l3, p3)·E4·RS3)

(H1, E1, ES1, RS , let (lv, σ) k = Λ1 in Λ2)⇒ (H3, E4, ES3, (l3, p3)·RS3)

(99)

A.6 Function Expressions

(H1[l11 7→ Ω, . . . , lk1 7→ Ω][p1
1 7→ σ1, . . . , pk1 7→ σk],

E1[v1 7→ (l11, p1
1), . . . , vk 7→ (lk1 , pk1)], ES1, RS1, Λ1

1)⇒
(H2, E2, ES2, (l2, p2)·RS2)

(H2[l11
upd7→ H2(l2)], E2, ES2, RS2, Λ2

1)⇒ (H3, E3, ES3, (l3, p3)·RS3) · · ·
(Hk[lk−1

1
upd7→ Hk(lk)], Ek, ESk, RSk, Λk1)⇒

(Hk+1, Ek+1, ESk+1, (lk+1, pk+1)·RSk+1)

(Hk+1[lk1
upd7→ Hk+1(lk+1)], Ek+1, ESk+1, RSk+1, Λ2)⇒

(Hk+2, Ek+2, ESk+2, RSk+2)

(H1, E1, ES1, RS1, fix (lv, σ) = Λ1
k in Λ2)⇒

(Hk+2, Ek+2, ESk+2, RSk+2)

(100)

Comment: (Rule 100) This rule achieves a simultaneous binding of a sequence
of function closures (obtained from evaluating Λk) to the variables v k. Initially,
a dummy closure is allocated on the heap for each variable. The closure expres-
sions are then evaluated in turn, and the dummy closures are updated to real
closures. Thus, when the body expression Λ2 is evaluated, all of the dummy
closures will have been updated, and any closure which references another will
do so correctly when evaluated.
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(H1, E1, ES1, RS1, Λ1)⇒ (H2, E2, ES2, RS2)

(H2, E2, ES2, RS2, Λ2)⇒ (H3, E3, ES3, (l2, p2)·(l1, p1)·RS3)

H3(l1) = 〈〈Ec, lv, Λc〉〉
(H3, Ec[lv 7→ (l2, p2)], ES3, E3·RS3, Λc)⇒

(H4, E4, ES4, (l3, p3)·E5·RS4)

(H1, E1, ES1, RS1, app (Λ1, Λ2))⇒ (H4, E5, ES4, (l3, p3)·RS4)

(101)

Comment: (Rule 101) The function application rule applies the function expres-
sion Λ1 (which evaluates to a closure) to the argument expression Λ2. Firstly,
both expressions are evaluated. The closure is then obtained from the result of
Λ1, and the result of Λ2 is bound to the variable v in the closure environment
E1. The body of the closure Λ3 is then evaluated in this environment. The
previous environment E is then restored. The result of the function application
remains on the result stack.

(H1, E1, ES1, RS1, Λ1)⇒ (H2, E2, ES2, RS2)

(H2, E2, ES2, RS2, Λ1
2)⇒ (H3, E3, ES3, RS3) · · ·

(Hk+1, Ek+1, ESk+1, RSk+1, Λk2)⇒
(Hk+2, Ek+2, ESk+2, (lk2 , pk2 )·(l12, p1

2)·(l1, p1)·RSk+2)

Hk+2(l1) = 〈〈Ec, lv k, Λc〉〉
(Hk+2, Ec[lv1 7→ (l12, p

1
2), . . . , lv

k 7→ (lk2 , p
k
2 )],

ESk+2, Ek+2·RSk+2, Λc)⇒ (Hk+3, Ek+3, ESk+3, (l3, p3)·Ek+4·RSk+3)

(H1, E1, ES1, RS1, app (Λ1, Λ2
k))⇒ (Hk+3, Ek+4, ESk+3, RSk+3)

(102)

A.7 Exceptions

(H1, E1, (), RS1, Λ)⇒ (H2, E2, (), RS2)

(H1, E1, (), RS1, raise Λ)⇒ halt (H2, E2, (), RS2)
(103)

Comment: (Rule 103) If there are no closures on the exception stack then a
raised exception will not be handled. The effect of an un-handled exception is
to halt the evaluation of the abstract machine.

(H1, E1, ES1, RS1, Λ)⇒ (H2, E2, (l1, p1)·ES2, (l2, p2)·RS2)

H2(l1) = 〈〈Ec, lv, Λc〉〉
(H2, Ec[lv 7→ (l2, p2)], ES2, E2·RS2, Λc)⇒

(H3, E3, ES3, (l3, p3)·E4·RS3)

(H1, E1, ES1, RS1, raise Λ)⇒ (H3, E4, ES3, (l3, p3)·RS3)

(104)

Comment: (Rule 104) If an exception is raised, and the exception stack is non-
empty, the closure at the top of the exception stack is evaluated (see Rule 101).
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Λ2 = (fn (lv, τ1 → τ2) = Λ3)

(H1, E1, ES1, RS1, Λ2)⇒ (H2, E2, ES2, (l1, p1)·RS2)

(H2, E2, (l1, p1)·ES2, RS2, Λ1)⇒ (H3, E3, (l2, p2)·ES3, RS3)

(H1, E1, ES1, RS1, handle Λ1 with Λ2)⇒ (H3, E3, ES3, RS3)

(105)

Comment: (Rule 105) This rule ensures that an exception raised in Λ1 is
handled by Λ2 (which is syntactically a closure, as ensured by the equation
Λ2 = (fn (lv, τ1 → τ2) = Λ3)). This amounts to simply applying Rule 86 to
Λ2 and placing it on the exception stack while Λ1 is evaluated. The raise rule
performs the actual evaluation of the exception handler.
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