
A Theory of Program Refinement

Ewen W.K.C. Denney

Doctor of Philosophy

University of Edinburgh

1998

Do mo phàrantan

Abstract

We give a canonical program refinement calculus based on the lambda calculus

and classical first-order predicate logic, and study its proof theory and seman-

tics. The intention is to construct a metalanguage for refinement in which basic

principles of program development can be studied.

The idea is that it should be possible to induce a refinement calculus in a

generic manner from a programming language and a program logic. For con-

creteness, we adopt the simply-typed lambda calculus augmented with primitive

recursion as a paradigmatic typed functional programming language, and use

classical first-order logic as a simple program logic.

A key feature is the construction of the refinement calculus in a modular

fashion, as the combination of two orthogonal extensions to the underlying pro-

gramming language (in this case, the simply-typed lambda calculus).

The crucial observation is that a refinement calculus is given by extending a

programming language to allow indeterminate expressions (or ‘stubs’) involving

the construction ‘some program x such that P ’. Factoring this into ‘some x . . .’

and ‘. . . such that P ’, we first study extensions to the lambda calculus providing

separate analyses of what we might call ‘true’ stubs, and structured specifications.

The questions we are concerned with in these calculi are how do stubs interact

with the programming language, and what is a suitable notion of structured

specification for program development.

The full refinement calculus is then constructed in a natural way as the com-

bination of these two subcalculi. The claim that the subcalculi are orthogonal

extensions to the lambda calculus is justified by a result that a refinement can

actually be factored into simpler judgements in the subcalculi, that is, into logical

reasoning and simple decomposition.

The semantics for the calculi are given using Henkin models with additional

structure. Both simply-typed lambda calculus and first-order logic are interpreted

using Henkin models themselves. The two subcalculi require some extra structure

and the full refinement calculus is modelled by Henkin models with a combination

of these extra requirements. There are soundness and completeness results for

each calculus, and by virtue of there being certain embeddings of models we

can infer that the refinement calculus is a conservative extension of both of the

subcalculi which, in turn, are conservative extensions of the lambda calculus.

Acknowledgements

Thanks to Gordon Plotkin and John Power for supervising this thesis and for

providing advice and encouragement. I hope their suffering over my writing has

not been in vain. Marcelo Fiori also supervised the early stages. Thanks also to

John for his famous chats.

I had useful conversations with Alex Bunkenburg, Joe Morris, Álvaro Moreira,

Masahito Hasegawa, Thomas Kleymann, David Aspinall, and Jitka Stř́ıbrná.

This work was supported by an EPSRC studentship and, in the final year, by

a part-time research contract with Gordon Plotkin.

This thesis was examined by Don Sannella and Peter O’Hearn. Thanks to

them for all their helpful comments.

Thanks to Yukki and my parents for their support. agus mòran taing.

Declaration

I declare that this thesis was composed by myself and that the work contained

therein is my own, except where explicitly stated otherwise in the text.

(Ewen W.K.C. Denney)

Table of Contents

Chapter 1 Introduction 4

1.1 Refinement Methodology . 5

1.1.1 Stepwise Development . 6

1.1.2 Programming Knowledge 10

1.2 Program Logics and Specification 12

1.3 Calculi . 14

1.3.1 Refinement Terms . 15

1.3.2 Refinement Types . 17

1.3.3 Refinement Calculus . 18

1.4 Other Methodologies . 19

1.5 Choices . 22

1.6 Related Work . 23

1.6.1 Refinement Terms . 23

1.6.2 Refinement Types . 25

1.6.3 Refinement Calculi . 27

1.7 Summary of Thesis . 28

1.8 Notation . 30

Chapter 2 Preliminaries 32

2.1 Simply-typed Lambda Calculus 32

2.1.1 Syntax . 32

2.1.2 λ×→-Axiom Systems . 35

2.1.3 Booleans and Naturals . 35

2.2 Models of Simply-typed Lambda Calculus 39

2.3 First-order Logic of Simply-typed Lambda Calculus 44

2.4 Models of First-order Logic . 48

Chapter 3 Refinement Terms 52

3.1 Introduction . 52

3.2 The Calculus . 53

1

Chapter 0 — 2

3.2.1 Syntax . 53

3.2.2 Judgements . 55

3.2.3 λ?-Axiom Systems . 55

3.3 Metatheory . 73

3.4 Models . 76

3.5 First-order Logic of Simply-typed Refinement 83

3.6 Conclusions . 87

Chapter 4 Refinement Types 88

4.1 Introduction . 88

4.2 Example . 90

4.3 The Calculus . 94

4.3.1 Syntax . 94

4.3.2 Judgements . 96

4.3.3 λ(:)-Axiom Systems . 97

4.3.4 Rules of the Calculus . 99

4.3.5 Booleans and Naturals . 111

4.3.6 Metatheory . 114

4.4 Division by 2 Revisited . 119

4.5 Models . 120

4.6 Conclusions . 134

Chapter 5 Refinement Calculus 135

5.1 Introduction . 135

5.2 The Calculus . 137

5.2.1 Syntax . 137

5.2.2 Judgements . 139

5.2.3 λv-Axiom Systems . 139

5.2.4 Rules of the Calculus . 140

5.3 An Example of Refinement . 154

5.4 Comparisons . 159

5.4.1 Extended ML . 159

5.4.2 Aspinall’s λASL+ . 160

5.4.3 Type Theory . 161

5.4.4 Lego . 162

5.4.5 Refinement Calculus of Back, Morgan and Morris 163

5.5 Metatheory . 167

5.6 Models . 177

Chapter 0 — 3

5.6.1 Discussion . 178

5.6.2 λv-Henkin Models . 179

5.7 Conclusion . 192

Chapter 6 Conclusions and Further Work 193

6.1 Conclusions . 193

6.1.1 Refinement Terms . 195

6.1.2 Refinement Types . 195

6.2 Technical Extensions and Conjectures 196

6.3 Operational Semantics . 199

6.3.1 Refinement Terms . 199

6.3.2 Refinement Types . 202

6.4 Annotations . 202

6.5 Search Calculi . 203

6.6 Logical Variables . 205

6.7 Second Order: Data Refinement 205

6.8 Full Recursion . 206

6.9 Program Transformation . 206

6.10 Abstract Viewpoint . 207

6.11 Aspects of the Software Life-cycle 208

6.11.1 Prototyping . 208

6.11.2 Maintenance . 209

6.11.3 Reverse Engineering . 209

Appendix A Notation 210

Bibliography 211

Chapter 1

Introduction

Program refinement is a programming methodology in which a formal description

of what a program should do — a specification — is gradually refined into an

executable program satisfying that specification.

This thesis is a study of program refinement for a simple idealised program-

ming and specification language. Although our analysis is theoretical, we give

motivation from practical considerations.

The kind of issues with which we are concerned are:

• What logical machinery and semantic principles are involved in program

refinement?

• Are there interesting fragments of refinement calculus which have practical

uses?

• Given a program logic, what is a suitable specification language based on

it for program refinement?

• Understanding the general relationship between a refinement calculus, a

programming language, and a program logic.

• How might the structure of a calculus inform the architecture of tools for

program development?

Although we pose these questions here in general terms, for concreteness we

use typed λ-calculus as a paradigmatic functional programming language, and

classical first-order logic as a program logic. It is our hope that by making clear

how these choices affect our analysis, we will attain some degree of generality.

The significance of these decisions is discussed below.

In order to address these questions, we carry out a modular analysis of a simple

refinement calculus. We suggest that a refinement calculus can be understood as

4

a combination of two extensions to the underlying programming language — one

accounting for specifications, and the other for what we call ‘pure’ refinement.

Just as the lambda calculus can be used as a metalanguage for studying func-

tional programming languages, so the lambda calculus based refinement calculus

we develop could be used as a metalanguage for studying refinement in func-

tional programming languages. The interest in studying metalanguages is that

they provide a simple setting in which fundamental issues can be studied.

The purpose of this analysis then is not to justify or consider refinement as

a viable methodology, nor to develop an industrial strength refinement calculus1,

but to fully work out the theory of refinement in one limited area. Ultimately this

knowledge could help to delimit the boundary between manual and automated

program development and so be used in theorem provers.

Certainly, a theory of specification and programming is a necessary precursor

to having tools which support automatic or manual refinement and synthesis. We

will suggest later how the theory can inform the construction of a tool.

In this introduction we give an overview of the issues involved and how our

refinement calculus is built up. We start with a description of the refinement

methodology of program development in Section 1.1, then in Section 1.2 describe

the related notion of program verification in terms of a simple satisfaction relation

between programs and specifications, and the relevance of program logics for

refinement. Then we will see that there are essentially two themes in refinement

— structure on specifications, and internalisation of development — and this is

discussed in Section 1.3, where we give an overview of the calculi in this thesis.

In Section 1.4 we compare the particular form of refinement studied here with

other methodologies. In Section 1.5 we discuss the significance of the choices we

have made for programming language and program logic. Then in Sections 1.6

and 1.7 we describe related work and summarise the thesis.

1.1 Refinement Methodology

We now describe how program refinements are constructed, and consider what

features a calculus should have in order to formalise refinement. There are two

uses for refinement. First, it is a methodology for the construction of correct

programs. Second, refinement can form the basis of a framework in which pro-

gramming knowledge can be presented (as collections of refinements).

1A contradiction in terms, some would say!

5

1.1.1 Stepwise Development

When programmers write programs they often use a mixture of top-down and

bottom-up development. Central to the method of top-down development is the

idea of a stub. Suppose we are writing some program, the main body of which

needs to use a sorting function on lists. We prefer to get the structure of the

main body correct first before writing the sorting function, but in order to get

the program to compile, or even to type-check, we must at least declare the sorting

function, and give it a dummy body — a stub.

fun Sort l = nil;

Any use of the function elsewhere is now well-defined

l′ = Sort some list;

Conceptually, however, this seems rather inelegant. Practically, although the

program will compile and will run, the programmer must always bear in mind

that this is not ‘true’ code. When testing the behaviour of the partially written

program this must be taken into account. One way of avoiding behaviour which

depends on dummy bodies would be to use some kind of error or exception mech-

anism as a stub. This is not entirely satisfactory, however, since it is possible

that the programmer might forget that various stubs are left throughout the pro-

gram. It would be better to have a language construct that allows true stubs to

be written. The sorting function would be written as

fun Sort l =?int list;

The idea is that ?int list stands for some unwritten code of type int list. This

can then be type-checked and the system would give a warning message to the

effect that certain lines of code still remain to be implemented. We would like to

be able to compile and run such partially written programs. In general, this is not

possible since our program might just be one big stub. However, we would like an

understanding of programs with stubs which lets us do this whenever possible.

Now, this much is a true description of (part of) what programmers do in

practice. However, it is little more than a convenient notation for recording the

development of a program through a sequence of abstractions. The essence of

refinement lies in being able to use the full expressive power of a program logic.

Rather than just have a stub for ‘some program’ we use the logic to say ‘some

program such that P ’. So whereas above we could do no more than just specify

the type of a program using ?τ , we now extend this to ?(x:τ)P , meaning ‘some

6

program x such that P ’, where proposition P can contain free variable x of type

τ . For example, suppose we have defined predicates Sorted and Permutation in

first-order logic. We can then write

fun Sort l =?(l′:int list) Sorted (l′) ∧ Permutation(l,l′) ;

This should be thought of as a description of some program which takes a list

l and returns a list l′ such that l′ is sorted and a permutation of l, and not

as a nondeterministic function which returns all such l′. This contrast between

nondeterminism and, what we will refer to as underdeterminism, is of central

importance in this thesis and is discussed in more detail below.

We can think of these combinations of logical specifications with program

code as a kind of ‘abstract program’. Languages which combine program and

specification constructs in this way are called wide-spectrum languages.

Now, we proceed by doing a case analysis on the input. If the input is the nil

list then clearly we just return the nil list. If it is of the form x :: xs then we must

decide how this is to be sorted. We can decompose the sortedness of a nonempty

list into the correct insertion of some element into a sorted list, since,

Sorted (l1) ∧ Sorted (l2) ∧ l1 ≤ x ∧ x ≤ l2 ⊃ Sorted (l1 ++ (x :: l2))

Let us write Insertion (l, x, l′) for the proposition that the list l′ is the insertion

of x into list l, that is,

(∃l1 : int list . ∃l2 : int list . l = l1 ++ l2 ∧ l1 ≤ x ∧ x ≤ l2 ∧ l′ = l1 ++ (x :: l2)

Using the above proposition, we can prove that

Sorted (l) ∧ Insertion (l, x, l′) ⊃ Sorted (l′)

Using this idea, we replace the specification of sorting with this more constructive

form.

fun Sort l =
?(l′ : int list) l = nil ⊃ l′ = nil ∧
∃x : int .∃xs : int list . l = x :: xs ⊃ ∃xs′ : int list.Sorted(xs′)∧Permutation(xs, xs′)∧Insertion (xs′, x, l′)

Now, this specification has a recursive form. Assuming the existence of a refine-

ment rule which lets us replace a recursive specification with a recursion over a

specification, we aim to shift the recursion from specification to code. This is

more clearly explained by the example. Let us write Insert for the specification

(f : int list→ int→ int list) ∀l : int list . ∀x : int . Insertion (l, x, f l x)

7

After introducing the recursion, the sorting specification is

fn l : int list⇒ listrec (nil, ?Insert, l)

This is a specification of insertion sort. Although this may seem rather a large

step, we will cover a similar example in more detail in Chapter 5.

Thus, we decompose the specification into the simpler specification of an in-

sertion function, and some code to carry out the recursion over the list.

The development so far can be represented as a process of refinement of a

piece of ‘unwritten code’ corresponding to the original specification, which we

summarise as

?Sort v fn l : int list⇒
?(l′ : int list) l = nil ⊃ l′ = nil ∧
∃x : int .∃xs : int list . l = x :: xs ⊃
∃xs′ : int list.Sorted(xs′) ∧ Permutation(xs, xs′) ∧ Insertion (xs′, x, l′)

v fn l : int list⇒ listrec (nil, ?Insert, l)

This hierarchical separation of concerns illustrates the stepwise refinement method-

ology of program development. The idea is to gradually implement the specifi-

cation in stages. At each stage, we either simplify a specification, possibly by

decomposing it into a combination of subspecifications, or introduce some pro-

gram code. Thus refinement can be seen as consisting of two alternating phases.

On the one hand, logical specifications are replaced with something equivalent

or more specific, so that they are more amenable to implementation. On the

other, there are decomposition rules, where a specification is split into a number

of simpler specifications while introducing a program constructor.

Now, although refinement is an inherently top-down methodology, there is

also a bottom-up aspect. We sometimes want to use programs which have already

been written, from a library say. So-called problem reduction is when a program

is used to directly implement a specification. For example, we might have written

the insertion function before, or be able to take it from a library. We illustrate

this by simply assuming a free variable

ins : int list→ int→ int list

for which ∀l : int list . ∀x : int . Insertion (l, x, ins l x).

The final step in the refinement then is

ins : int list→ int→ int list

` λl : int list . listrec (nil, ?insert, l) v λl : int list . listrec (nil, ins, l)

This is typical of the general form of programming problems. In practice, the

question we ask is given a library of component programs, how can we implement

8

a specification? Even if we start with an empty context, during decomposition of

a specification we will often construct subprograms which can be used elsewhere.

We can represent this formally by a global context of assumptions of the form

x : τ |P , meaning that program x has type τ and that proposition P (which can

contain x) holds. For example, the insertion function is assumed as:

ins : int list→ int→ int list |
∀l : int list . ∀x : int . Insertion (l, x, ins l x)

The final step in the refinement above follows from the following simple rule for

problem reduction:

x : τ |P ` ?(x:τ)P v x

Two important characteristics of refinement are that it is stepwise and piece-

wise. By stepwise, we mean that the specification can be refined into a program

in a number of small steps, while piecewise means that a large specification can be

refined one piece at a time, in the knowledge that this leads to a valid refinement

of the whole specification. This means that the calculus should have rules so

that the refinement relation is transitive and compositional (with respect to the

program constructors). Moreover, the refinement rules should be syntax-directed

(as far as this is possible).

There are some other features we would like in a refinement calculus. If we

can place requirements on the output, it is convenient to also make assumptions

about the input. For example, the specification of a search function might assume

that the input list was sorted. This could be expressed with a notation like

fun Search l n where Sorted(l)
= ?(b:bool) b=true⇐⇒ In(n,l) ;

We are allowed to use the fact that l is sorted when implementing the body.

However, (l : int list) Sorted (l) is not a type of the programming language

We must still produce a function which works for all arguments of type int list.

In particular, any implementation of this specification must produce a result for

unsorted lists. The point is, however, that for the purpose of implementing the

specification it does not matter what the result is for unsorted lists. In a sense,

we can regard two implementations t and t′ as being the same when they give the

same results for sorted lists. We can write this as

t =((l:int list) Sorted (l))→int→bool t′

where we think of (l : int list) Sorted (l)→ int→ bool as the specification of

functions from (l : int list) Sorted (l) and int to bool, and of the equality as

being ‘at the specification’.

9

Now, the intention behind annotating stubs with logical properties is, of

course, that they will eventually be replaced with code satisfying that property.

The slogan of the refinement methodology is that it is correctness preserving —

programs will be automatically correct by construction. By requiring that each

refinement step preserve properties, the program eventually constructed in a chain

of refinement steps from a specification will be guaranteed to satisfy the original

specification. The proof of correctness has been carried out essentially as a side-

effect of the program’s construction. This is easier than verifying the completed

program independent of its construction.

However, if we start a refinement from a mixture of specification and code,

then what is a correct refinement? Indeed, what does it mean for the individual

rules to be correct? This is related to the question of how the specifications,

logic and refinement all relate to each other. It is often most natural to specify a

program using a mixture of logic and algorithm. We will discuss specifications in

more detail below.

Just as we want to be able to reason about programs, so we would like to be

able to reason about abstract programs. We can formalise all of this by defining a

notion of satisfaction of specifications by programs, and extending this to abstract

programs. As this is all carried out in a context of assumptions, the form of the

satisfaction judgement is

x1 sat (x : τ1)P1, . . . , xn sat (x : τn)Pn ` r sat (x : τ)P

Then to say that a refinement rule, Γ ` r v r′, is correct means: for all specifica-

tions (x : τ)P , if Γ ` r sat (x : τ)P then Γ ` r′ sat (x : τ)P .

The notation for refinement is suggestive of the fact that refinement is an

inequality. This raises the question of the relationship it bears to the underlying

equality2 of the programming language. In general, we will address questions of

conservativity of refinement calculi over program logics and the equational theory

of a programming language.

In addition we would like completeness of refinement with respect to the logic,

if at all possible: if Γ ` t sat (x : τ)P then we should be able to obtain the

program by refinement: Γ ` ?(x:τ)P v t.

1.1.2 Programming Knowledge

Although some researchers have portrayed refinement as a framework for eventual

automated programming tools, this should not be seen as the sole selling point of

2That is, some notion of equivalence of programs.

10

the refinement methodology. There is no doubt that constructing a program by

refinement involves more work than just writing it directly. The point is that the

discipline this imposes offers a framework in which programming as a whole can

be more easily carried out. We feel that this aspect of refinement has not been

sufficiently emphasised in the literature.

Actual programming practice involves a sequence of decisions, in which the

programmer figures out how to solve some problem. In figuring out how to imple-

ment a specification, the programmer will use a number of insights in order to (in-

formally) justify these decisions. This sequence of decisions is usually discarded,

just leaving the final program. Such an approach is reasonable if the program is

only intended for consumption by computer. However, program comprehension is

necessary whenever a program is intended to be processed by humans. Moreover,

there are two activities for which it is essential — verification and maintenance.

The difficulty in understanding programs arises from the need to rediscover the

insights that the programmer used in writing the program in the first place, and

so it would be best if these were retained. Hence we are led to study a paradigm

of programming in which derivations are primary. Scherlis and Scott [SS83] dis-

cuss the need for a logic of programming, as distinct from a logic of programs. An

early advocate of refinement and its use for program comprehension was Wirth

[Wir71].

The idea of explaining a program by its refinement can, in principle, be ap-

plied to program optimisation. Although an executable program may consist

of optimised ‘spaghetti’, there will be a level of structured code above this in

the derivation. The relationship between the two is justified by some optimising

transformations.

The particular knowledge of some application domain can be collected in a

library of programs, each paired with its specification, prog sat spec. This can

be viewed as a refinement, spec v prog, but this does not give all the information

that might be useful to a programmer. It is more insightful to read such relation-

ships as a sequence of abstractions. Similarly, for teaching purposes, algorithms

and general programming principles can often be best explained as a refinement

through several levels of abstraction.

The knowledge of experienced programmers is essentially having solutions to

generic problems and how to apply them in particular situations. Empirical stud-

ies have shown that programming knowledge can be encapsulated as collections

of derivations [SE84].

To a certain extent, modern programming languages encourage programmers

11

to indicate levels of abstraction through the use of abstract data types and struc-

tured programming methods, but it is not always possible to express all the

structure in the program text. The refinement paradigm is applicable to all pro-

gramming languages and development methodologies.

1.2 Program Logics and Specification

The specification of a computer program is a formal description of the essential

properties it is to have. Correctness of a program means that it satisfies some

intended specification and verification is the task of establishing correctness. Ver-

ifying that a program satisfies a specification is, in some sense, dual to refining

specifications to programs.

Program properties can be expressed in a number of ways. We will first

consider logics in which the propositions refer to programs — program logics. The

term ‘program logic’ is often used specifically for the first-order dynamic logic of

Harel [Har79] (see the survey in [vL90] for example), but we use it more generally,

for any logic of programs (although we will only consider one ourselves). Harel

[Har80] gives a survey of different techniques for proving program correctness.

However, a basic distinction can be drawn between extensional and intensional

properties. Extensional (or functional) properties are those concerned with a

program’s input-output behaviour, that is, by viewing it as a black box. Formally,

we can say that they are the properties preserved under extensional equality

(which has a suitable inductive definition). Intensional properties, on the other

hand, depend on the structure of the program itself. Examples of such notions

include complexity, program style, and so on. Here we will be concerned with

extensional properties and say more about this later in Section 1.4.

Program analysis [Nie96] is the task of taking a program and finding which,

of a specific class of properties, it satisfies. These are typically computational in

nature, such as strictness properties, or binding times.

A specification, on the other hand, is generally of more complex properties.

For concreteness, let us use the classical first-order equational theory of simply-

typed λ-calculus as a program logic. We will lay the basis of this in Chapter 2,

12

and give an outline here. The pre-expressions are:

Types τ ::= 1 | γ | τ × τ | τ → τ

Terms t ::= x | k(t1, . . . , tn) | ∗ | 〈t, t′〉 | λx : τ.t | πi(t) | tt′

Propositions P ::= ⊥ | P ⊃ P ′ | ∀x : τ.P | F (t1, . . . , tn) | t =τ t′

Variable contexts Γ ::= 〈〉 | Γ, x : τ

Propositional contexts ∆ ::= 〈〉 | ∆, P

This is with respect to a collection of ground types γ, constants k, and primitive

predicates F (extensional predicates such as Iszero and Even).

There are well-formedness judgements

Γ ` t : τ

Γ ` P wf

and a proof judgement

Γ; ∆ ` P

meaning: for all values in the types of Γ, if each proposition in ∆ holds then P

holds.

Now, the next question is how to write specifications using the program logic.

The simplest choice is to write (x : τ)P , where x is allowed to be free in P , for

the specification of the property of the program x of type τ such that P holds.

The satisfaction judgement can be formulated, then, as

Γ; ∆ ` t sat (x : τ)P

meaning: for all values in the types of Γ, if each proposition in ∆ holds then t

has type τ and P [t/x] holds.

Now either we take this judgement as derived, and an abbreviation for

Γ ` t : τ and Γ; ∆ ` P [t/x]

or we can axiomatise it directly on the structure of P , and have this correspon-

dence as a theorem. For example, we would have rules like

Γ; ∆ ` t sat (x : τ)P Γ; ∆ ` t sat (x : τ)P ′

Γ; ∆ ` t sat (x : τ)P ∧ P ′

This is really just an alternative presentation of the logic, so we do not consider

it when we give the satisfaction rules.

13

It is also possible to have rules on the structure of the terms, such as

Γ; ∆ ` t sat (x : τ)P Γ; ∆ ` t′ sat (y : τ ′)P ′

Γ; ∆ ` 〈t, t′〉 sat (z : τ × τ ′)P [π1(z)/x] ∧ P ′[π2(z)/y]

This is in the spirit of the refinement types which we introduce later as our notion

of specification.

In Chapter 2 we will give a set-theoretic semantics to the logic (making the

extensionality clear) and prove it sound and complete.

The real difference between a specification and a proposition of a program

logic, however, is that a specification possesses structure ‘in the large’ []. It

is important to structure specifications in order to handle the large scale and

complexity involved in real systems. Structure allows us to reason about speci-

fications in a compositional way and, in particular, to carry out component-wise

refinement.

We can distinguish two approaches to structuring specifications — algebraic

and type-theoretic. The distinction is best illustrated by considering how a

datatype would be specified. There is a signature of basic types and operations,

and axioms over this signature. The axioms are given using some base logic,

so specifications are constructed on top of this. This generates a theory for the

datatype consisting of all theorems provable from the axioms. In algebraic spec-

ification the generated theory is regarded as the specification, and structuring of

specifications takes place at the level of the theory. For example, we might take

the union of two theories.

This theory-level structuring should be contrasted with structuring the sig-

nature itself. In type theory, signatures with axioms can be given as existential

types, and then specifications are combined using the type-theoretic constructors.

For example, we can take the product of two specifications. The axioms are given

within the type theory itself.

In Section 1.3.2 below we will suggest a third approach which combines aspects

of both algebraic and type-theoretic specification.

1.3 Calculi

We observed in the discussion of refinement in Section 1.1 that the basic construct

in the calculus is some means of expressing “some x such that P”. We can

factor this into “some x” and “. . . such that P”, and study separate extensions

of λ×→ with each construct. We believe these extensions to be of independent

14

interest providing, respectively, analyses of ‘pure’ refinement and of structured

specifications.

Coming from another direction, we would expect refinement to subsume veri-

fication, and so should be able to extend the verification calculus of Section 1.2 in

some minimal way to get a refinement calculus. We can ask the question, given

a satisfaction system, what are the minimum additions needed to get a refine-

ment calculus? There are essentially two things which need to be added — a

notion of structured proof, so that structure can be transferred from the proof to

a program, and a means of internalising backwards search. These two additions

correspond to the extended calculi which we have mentioned:

• Structured proofs — refinement types

• Internalisation of backwards search — refinement terms.

1.3.1 Refinement Terms

So we first develop a simple equational theory of refinement based on a lambda cal-

culus with true stubs. Rather than use the ML-like notation of

fun Sort l = ?int list, we will write the lambda term λl : int list.?int list. We

will call lambda terms with the possibility of such stubs, refinement terms, and

refer to this possibility of terms only being partially determined as underdetermin-

ism. We are careful to make a distinction between underdeterminism and nonde-

terminism, which we regard as a computational, as opposed to a specificational,

phenomenon. For example, we do not regard abstractions with underdetermined

body as being determined, which is what some authors are led to do, by viewing

terms as being nondeterministic. This difference is not just one of intuition —

different axioms are satisfied. Moreover, we could imagine nondeterminism and

underdeterminism arising together in a concurrent setting, for example. Then it

would be particularly important to maintain a distinction. We will elaborate on

these differences in Chapter 3.

Without logic, the calculus may seem too simple to be interesting but it is

worth studying for a number of reasons. The full refinement calculus is quite

complicated and the subcalculus can act as a stage towards understanding the

full system. As we will see, this is justified by virtue of the full calculus being a

conservative extension.

Secondly, by not having any logical annotations in the stubs, it is possible

to automatically check for well-formedness and, in fact, to evaluate terms in

15

some cases. The calculus could serve as a basis for a simple practical program

development system.

There are two forms of judgement in the calculus. Letting r range over re-

finement terms, we give judgements for typing x1 : σ1, . . . , xn : σn ` r : τ and

refinement x1 : σ1, . . . , xn : σn ` r vτ r′. Refinement subsumes equality, which

can be defined as mutual refinement.

As for the lambda calculus, it would be possible to regard typing as a derived

judgement, with r : τ meaning r vτ r′. However, it is clearer to keep the

judgements separate.

There are refinement rules for decomposition

?σ×τ vσ×τ 〈?σ, ?τ 〉

and problem reduction

Γ, x : τ ` ?τ vτ x

Intuitively, we think of programs either in terms of how they evaluate, or

as computing some mathematical value. We will think of abstract programs in

terms of how they can be implemented. An intuitive way to think of this is that

a term r corresponds to the set of realizers obtained by all possible ways of filling

in the stubs with program code. Refinement, then, is the subset relation. We

axiomatise refinement so that it is complete with respect to this semantics.

Based on this intuition, we can see that only determined terms can be sub-

stituted for variables, as substituting directly would duplicate underdeterminism.

For example, the term (λn : nat.〈n, n〉)?nat should not be equal to 〈?nat, ?nat〉.
However, we do expect (λn : nat.n)?nat = ?nat. For similar reasons to those of

the computational lambda calculus [Mog91], this leads us to introduce a ‘let’

construction, albeit with a different axiomatisation than there.

A direct motivation for introducing a let-construct comes from considering

the result of combining underdetermined terms. Suppose two programs are being

developed one of which depends on the other. Let the partially developed pro-

grams be r1[x] and r2 where the free variable x is intended to be replaced by the

program, the current state of development of which is r2. If we want to consider

the system as a whole, so as to prove some property say, then we cannot just

substitute r2 for x in r1. The combined system can be represented by the let

term

let x : τ be r2 in r1

where τ is the type of r2.

16

1.3.2 Refinement Types

We give a calculus in which we formalise the specification language and program

logic. This task can be phrased in general terms as addressing the question of

what is a suitable notion of specification for a programming language, where the

properties of interest can be expressed using some given program logic. If we

are just interested in input-output relations of programs then classical first-order

logic will suffice for program logic.

In Section 1.2, we used the program logic to give specifications directly, but

noted in Section 1.1.1 that (x : σ)P → (y : τ)Q is a useful abbreviation for com-

bining specifications. We will write Πx:φψ for the specification of those functions

which for all arguments x which satisfy φ return a result which satisfies ψ. This

formulation of specifications is useful for reasoning inductively.

The general idea is to use type constructors to combine specifications. Simi-

larly, we write Σx:φψ for the specification of pairs such that the left component x

satisfies φ and the right satisfies ψ.

We also saw in Section 1.1.1 that it is natural to introduce a notion of equality

at a specification. This leads us to take specifications as primitive rather than

types.

This combination of the program logic with the type theory of the program-

ming language is a form of refinement types. The general idea of refinement types

is to have two levels — an underlying level of program types, and a more expres-

sive level of program properties, which are then treated like types. For us, this

more expressive level will be the specifications.

This provides an alternative to simply using a program logic, or to using a

type theory irrespective of any logic, and we discuss the advantages in Chapter 4.

This simple extension — replacing types by refinement types — affords a

considerable degree of conceptual simplicity. Satisfaction of specifications by

programs can then be formalised as a (refinement) typing judgement. Rather

than write t sat φ we regard satisfaction as generalised typing and write t : φ.

The terms of the λ-calculus are extended by allowing refinement types in

abstractions. This subsumes the idea of indicating assumptions on the input by

annotating the types in abstractions.

Contexts consist of variable assumptions of the form x : φ. This means that

the (refinement) typing judgement formalises the satisfaction of specifications by

programs, under the assumption that some other programs satisfy specifications.

It is also convenient, though not essential, to also allow propositions as as-

sumptions in the context.

17

Finally, we need to define a notion of refinement on specifications, i.e. on

refinement types. This is the replacement of a specification by one more logically

specific (and not the replacement of stubs by code).

If we just use the program logic, then refinement of specifications is no more

than logical implication. With refinement types, however, we must define a refine-

ment judgement, φ vτ φ′, which we give as a form of subtyping on specifications

over a type τ .

1.3.3 Refinement Calculus

We combine the calculi of stubs and specifications to get a logical refinement cal-

culus. The fundamental construct is the logical stub, ?φ, where φ is a refinement

type. Using logical stubs to combine specifications with code gives us a useful

means of specifying programs.

For example, using a refinement type Sorted List, we can specify a search

function as

λn : nat.?Πl:Sorted List(b:bool)b=true⇐⇒ In(l,n)

The rules of the refinement calculus are the natural generalisations from the

subcalculi. The satisfaction of specifications by programs is generalised to ab-

stract programs, with the idea that an abstract program has a property if every

program to which it could refine has that property. This lets us ask of partially

developed programs what properties they are guaranteed to have, when fully

written.

The refinement rules make use of the underlying logic, and just as we intro-

duced a notion of equality at a specification, so we have refinement at a specifica-

tion. We write r vφ r′ for the refinement of r to r′ at refinement type φ, but often

omit the φ when not significant. In fact, the idea of the φ not being significant

can be made formal.

So in the refinement calculus there are two kinds of refinement, one inherited

from each subcalculus. This does reflect programming practice. A partially im-

plemented program, r consists of a mixture of logical specification and program

code. At any stage there are two options open: write some more code, replacing a

piece of specification with concrete program, or modify some specification, either

by replacing it with an equivalent specification, or with a more constrained one.

The connection between logic and refinement is given by the rule

Γ ` φ v φ′

Γ ` ?φ v ?φ′ (1.1)

18

a particular case of which is

Γ, x : τ ` P ′ ⊃ P
Γ ` ?(x:τ)P v ?(x:τ)P ′

and the rule
Γ, x : φ ` r vψ r′

Γ ` λx : φ.r vΠx:φψ λx : φ.r′

For example, in the search function specified above, we can use the information

that l is sorted, expressed as the refinement typing l : Sorted List, when refining

the body.

These are sufficient to derive all uses of the logic in refinement. For example,

refinement steps can generate proof obligations such as

?(z:σ×τ)P [z] v 〈?(x:σ)Q[x], ?(y:τ)R[y]〉

when

∀x : σ.∀y : τ .Q[x] ∧R[y] ⊃ P [〈x, y〉]

but this can be factored into an instance of (1.1) and decomposition.

To summarise then, we want a calculus where we can prove propositions, P ,

where we can prove refinement typings, r : φ, and where we have correctness

preserving refinement rules to prove refinements of the form, r vφ r′, which

generalise ordinary program equality. So we would like an extension of the simply-

typed lambda calculus, where the usual equivalences hold, and in addition, we

can express refinements.

We construct the refinement calculus in a modular fashion, as the combination

of these two calculi. We are justified in understanding the refinement calculus in

this way since it is a conservative extension of both of the subcalculi.

In Figure 1.1 we summarise the important judgements of the different calculi,

and indicate the connections between the calculi and their classes of models. The

upwards arrows are intended to indicate conservative extensions of calculi, and

‘inclusions’ of models, in the sense of there being a correspondence between the

meanings of judgements.

1.4 Other Methodologies

Refinement is just one of many methodologies for formal program development:

other approaches include program extraction and deliverables for example. The

idea in all of these is to start with a formal description of the behaviour of a

19

Γ ` r : τ

Γ ` r vτ r′

Refinement Terms

Γ ` t : φ

Γ ` t =φ t′

Γ ` φ vτ φ′

Refinement Types

Γ ` r : φ

Γ ` r vφ r′

Γ ` φ v φ′

Refinement Calculus

r refinement terms φ refinement types
t determined terms τ types

Judgements

Theories Models

refinement
calculus

p p p p p p p p p p p p p p p p p p p p

Henkin models
with logical factoring

�
�
�
�
�
�
�

@
@
@@

�
�
�
�
�
�
�

@
@
@@

refinement
terms

p p p p p p p p p p p p p p p p p p p p

Henkin models
with factoring

@
@
@

@
@
@@

refinement
types

p p p p p p p p p p p p p p p p p p p p

Henkin models
with per structure

�
�
�
�
�
�
��

�
�
�
�
�
�
��

simply-typed
λ-calculus
+ first-order logic

p p p p p p p p p p p p p p p p p p p p

Henkin
Models

Inclusion of Calculi

Figure 1.1: Overview of Calculi

20

program, usually expressed in some logical language, and construct a program

which meets that description.

The idea in program refinement is to construct the program in a stepwise

manner from the specification, and to have an explicit record of the stage of de-

velopment in a wide-spectrum language. An advantage of using a wide-spectrum

language is that it is often convenient to specify using a mixture of logic and

algorithm. Refinement is a formal program development methodology since each

refinement step preserves correctness, so the program is guaranteed to meet its

description.

It is possible to study refinement via an encoding in a type theory (assuming

that the programming language constructs can be suitably encoded — not nec-

essarily the case in the presence of recursion). Luo [Luo91] gives an encoding of

data refinement in the Extended Calculus of Constructions. An explicit calcu-

lus for refinement, however, has the advantage that it forces us to think directly

about the formalism and the semantics.

Now, a contrast can be drawn between program and data refinement. In data

refinement, a program written using an abstract data type, such as stacks, is

rewritten to use a more concrete data type, lists say. The abstract data type Stack

can be seen as a specification, and the implementation by lists, as a refinement of

the program. Program refinement on the other hand, starts with a specification of

a program, rather than a datatype. In this thesis we are concerned with program

refinement.

Some authors see data refinement as being the central concept in program

development. This is the basis of the VDM methodology [Jon90] for example.

However, we believe that any calculus for data refinement would have to incorpo-

rate program refinement anyway, as the stepwise development of a datatype must

include the stepwise development of its operations, that is, of programs, and so

program refinement seems a natural starting point.

A similar concept to what we have called abstract programs, also used in

program development, is that of program skeletons. These are templates of code

expressing useful algorithm schemes, such as divide-and-conquer. We can regard

refinement terms as a simple formalisation of skeletons, rather than taking them

to be some kind of meta-entity. We cannot in general express skeletons using

parameterisation, since parameters cannot range over code which can contain

local variables.

To many people, “program refinement” and “program transformation” are

synonyms. While the basic idea of either can be generalised to include the other,

21

it is useful to draw a distinction between refinement of a logical specification

into concrete code, and transformation of concrete program code into ‘better’

code. In this thesis then, our notion of refinement will not incorporate program

transformation.

The other key aspect of our approach to refinement is that we work within

an equational paradigm, viewing refinement as a kind of generalised (in)equality:

spec v prog. Although equality seems a natural thing to consider when studying

lambda calculi, a notion of program equivalence is not primary for reasoning about

programs in some languages. It is not so important, for example, in hardware

derivation. Nevertheless, we study refinement in this higher-order manner: given

two terms, prove one refines the other.

This is not the only possibility however. We could have a search-oriented

system where the user starts with the specification and directly refines it to a

program without explicitly indicating a refinement. This is the more likely to be

useful in practice but, curiously, the equational paradigm has received far more

attention from the refinement calculus community. A search-oriented system

might be a more natural formalism for work on program synthesis. We leave it

as conjecture, for the time being, that an equational refinement calculus is the

theory generated from a search calculus.

1.5 Choices

The use of λ×→ involves two choices: a typed language and a functional language.

By providing an element of syntax-direction, types help in narrowing down the

number of refinement rules which can be applied at any stage. As explained

above, types can be used to structure specifications.

We choose to use a functional language, simply because the theory is better

understood. The lambda calculus is a paradigmatic functional language, and

comes in many ‘flavours’. As part of a longer term research plan, we can tackle the

problem of finding refinement calculi for complicated computational scenarios in

a modular way by first finding a refinement calculus for the simply-typed lambda

calculus, and then extending it in a suitable way.

We do not consider full recursion. This may seem like a significant omission,

but non-termination would be a significant addition to the calculus and require

various choices not central to the basic theory of refinement. Instead, we use

well-founded recursion which is sufficiently expressive to get interesting programs.

The reasoning involved in constructing fully recursive terminating programs is the

22

same as in constructing programs which use well-founded recursion.

We use classical first-order logic for our program logic. The intention is that

we should be able to choose an arbitrary logic, and the corresponding refinement

calculus would be induced by the general rules. However, it turns out that in

fact, we must choose an extensional logic. That is, a logic for which t and t′

are extensionally equal whenever for all propositions P , P [t/x] ⇐⇒ P [t′/x].

The refinement calculus makes essential use of replacing ‘equals by (extensional)

equals’ which would not be possible if our specifications described intensional

properties of programs. Intuitionistic logic also has this property; all that matters

is that the atomic propositions are extensional. Classical first-order logic is an

example of a simple and expressive logic.

As for lambda calculi, extensional logics are better understood than more

intensional calculi, so it is more likely that connections can be made between this

and other work.

The approach we have taken here is to start with a programming language,

a specification language, an equational theory and a notion of satisfaction. It

is reasonable to understand the language through its equational theory when we

are only concerned with extensional properties. However, an alternative approach

would be to start with an operational semantics for the programming language,

and understand satisfaction operationally. For example, the equational theory

considered here could be generated from a call-by-name operational semantics.

The sort of question that might be addressed then would be to find the natural

refinement calculus corresponding to a call-by-value semantics, say.

1.6 Related Work

We group relevant work by way of comparison with the calculi of this thesis. We

describe related concepts to underdeterminism, work on structured specifications,

and some calculi of program development.

1.6.1 Refinement Terms

The study of indefinite descriptions — ‘some x such that P ’ — goes right back

to the earliest work on modern logic (e.g. [Ros39]) but the idea there is that a

description ranges over semantic values. Hilbert and his collaborators intro-

duced the ε-operator (see the monograph [Lei69]), as a formalisation of indefinite

descriptions, in order to provide an alternative formulation of mathematical logic.

The expression εx.P , meaning ‘some x such that P ’, is always defined, and denotes

23

some unknown, but fixed, element which satisfies P , if one exists, and otherwise

denotes some arbitrary, but fixed, element.

The logic of ε-expressions is modelled using some arbitrary, but fixed, choice

function which picks out a member of each nonempty set and returns anything

for the empty set. This means, then, that the value of [[x ` εy.>]](n) is fixed,

for any given interpretation of terms, and does not depend on n. Thus, the ab-

straction λx.εy.> denotes a constant function. Thus, the ε-operator for indefinite

descriptions is essentially a localisation of global variables. Although descriptions

can appear embedded anywhere in a term, this is just like using global variables

since the denotation must be a value.

We might imagine that a similar technique could be used for our purposes as

the terms of our calculus can be thought of a kind of parameterised programs. The

simplest choice would be to just consider terms with a free variable in the global

context, representing a ‘hole’ to be filled in with program code. This will not work

however, since variable capture prevents the variable being replaced by programs

which contain local variables. Therefore we must embed underdeterminism locally

in the terms with the ?τ construct. We will discuss this further in Chapter 3.

Hermida and Jacobs’ study of indeterminates in the lambda calculus [HJ95]

is essentially the same form of global indeterminacy and does not account for

substitution allowing variable capture.

Although much work has been published on refinement calculi, there seem

to be no fully axiomatised systems. Morgan [Mor94] describes the ‘classical’

refinement calculus, developed independently by Back, Morgan and Morris. This

is an imperative language extended with specification constructs. Their system

however, uses nondeterminism to express specification constructs. We believe this

to be a mistake, as nondeterminism is a computational phenomenon distinct from

our view of underdeterminism as a specificational phenomenon at a level above

the programming language. Moreover, we might want to consider a combination

of nondeterminism and underdeterminism, for example when developing a logic

program.

Proof development systems, such as Lego [LP92], allow users to interactively

construct a proof by refinement. Intermediate states in a proof development may

be modelled as underdetermined terms. The idea there of allowing existential

variables in terms is similar to our refinement terms. In a similar vein, so-called

logical variables have been used in artificial intelligence, and are essentially the

same concept.

We make a more extensive comparison with the refinement calculi of Back

24

et.al., and with Lego, in Section 5.4.

The concept of underdeterminism also arises in linguistics (with the name

‘underspecification’), where semantically ambiguous statements such as “every

student is ?noun phrase” are studied. Bos [Bos95] for example, considers a language

with metavariables for representing such statements.

1.6.2 Refinement Types

A number of authors have advocated program analysis using annotated type sys-

tems. An example in the ‘non-standard type system as program logic’ paradigm

is [NN88], a system for binding time analysis (and optimisation). Jensen [Jen91]

performs strictness analysis using intersection types and primitive types to indi-

cate termination. Burn [Bur92] considers a more general framework, with inter-

section and union types. Each of these systems axiomatises property deductions

using refinements φ v φ′.

Pfenning, who introduced the term “refinement type”, gave a refinement type

system for expressing properties of mini-ML programs [FP91]. In another work

[Pfe93] he gave an extension to LF with (possibly intensional) properties such as

“in normal form” (a property of derivations), given as refinement types. He does

not allow refinement types in abstractions though. In both works, the idea is

that refinement types offer greater expressivity but carefully restricted to retain

desirable properties.

The paper of Coppo, Damiani and Giannini [CDG96] is quite similar to our

approach, using refinement types for dead code elimination. They also give a

semantics using pers.

There have been various approaches by type theorists to combining logic and

types. Feferman’s system of variable types [Fef85] extends λ×→ with subset types,

though equality does not depend on the type. Refinement (of refinement types)

can be defined in the logic, but is not explicitly axiomatised. Talcott [Tal90] used

a similar form of refinement types (though the underlying theory is untyped),

based on Feferman’s work, in order to express local information for use in trans-

formations to introduce continuations. However, since she lacks a typed equality,

local assumptions cannot be discharged and conclusions take the form “t = t′ if

x satisfies φ”, rather than λx.t =φ→ψ λx.t′, say.

Other type-theoretic approaches include [Asp95, AC96], which differ from the

present work in being concerned with subtyping type families. Dependency there

is at the level of types themselves, whereas we only allow dependent structure

at the refinement type level. Aspinall’s [Asp95] dependent type theory, λ≤{}, is

25

formally similar in that it has subtyping on dependent functions and products.

Dependency in λ≤{} comes from singleton types, which are a special case of subset

types. The purpose of Aspinall’s system is not to be a specification language,

however, but to give a type structure to specification building operations. His

system is based on subtyping rather than refinement types. We discuss Aspinall’s

thesis further in 5.4.2.

Hayashi’s ATTT [Hay94b] is a rich type theory conservatively extending the

polymorphic lambda calculus with singleton, union and intersection types. It

is based on the refinement type philosophy, maintaining a distinction between

types and specified subsets in order to eliminate non-computational information

during program extraction. Refinement types are not allowed on abstractions.

Dependent function and product types can be defined from the nondependent

constructors [Hay94a], as well as subset types constructed using full second order

intuitionistic logic. The type theory can also internalise notions of realisability

and refinement.

As pointed out by Hayashi, schemas in the Z specification language [Spi92]

can be seen as refinement types. They comprise two parts — a typing declaration,

and a logical predicate given as a collection of axioms.

The deliverables approach [BM92, McK92] is to consider a program paired

with its proof of correctness. We are similarly motivated in wanting to structure

specifications using program types, but differ in taking proof existence as more

important than the proof itself — terms do not need a witness to satisfy a re-

finement type. In the conclusion to [McK92], McKinna suggests dropping the

requirement for proof existence and, moreover, that implementations should be

regarded as being equal up to some extensional equivalence. He proposes a def-

inition of specification which includes an explicit definition of per. Our calculus

could be regarded as an internal language for this notion.

The work of Luo [Luo91] presents an encoding of specifications and ‘speci-

fication morphisms’ (corresponding to our terms) in an expressive type theory.

Our work provides a more direct analysis of the concept of specification by giving

an explicit syntax and axiomatisation. The existential form of Martin-Löf’s type

theory with subset types in [NPS90] is similar, and indeed, our work on refine-

ment types could be regarded as providing an alternative interpretation of their

system.

The program refinement community has traditionally used unstructured spec-

ifications of the (x : τ)P form. For example, Morgan [Mor94] describes a refine-

ment calculus based on the use of propositions of first-order predicate logic.

26

1.6.3 Refinement Calculi

Although there have been many papers on refinement calculi, no authors in this

area seem to have presented explicit proof-theoretic axiomatisations of refinement,

or given a logic for reasoning about refinement terms. Laws are usually introduced

as needed. Proving properties of partially developed programs seems not to have

been considered before, except in the sense of regarding abstract programs as

specifications so that satisfying a property amounts to refinement.

The classical refinement calculus of Back, Morgan and Morris [Bac88, Mor94,

Mor87], based on Dijkstra’s Guarded Command Language [Dij76], is a calculus

for deriving imperative programs from specifications expressed in terms of pre-

and postconditions in first-order logic. They do not consider refinement on ex-

pressions. The Guarded Command Language is nondeterministic and, though not

a refinement calculus, seems to have influenced later refinement calculi in their

use of nondeterminism for specification.

Bunkenburg [Bun97] continued their approach for a functional language, re-

taining some imperative features using a state monad in the style of the compu-

tational lambda calculus. Norvell and Hehner [NH92] and Ward [War94] consider

functional languages based on the untyped lambda calculus.

All these authors have based their calculi on nondeterminism which, we will

see, has consequences for the axiomatisation of refinement.

In the presence of nontermination, this use of nondeterminism gives rise to a

choice between demonic and angelic nondeterminism, a choice arising from com-

putational considerations which we believe to be unnecessary. However, we do

not consider nontermination here. Most authors have considered total correct-

ness, which leads to the use of demonic nondeterminism. Ward also adds angelic

nondeterminism, though it is doubtful whether this brings any advantages when

not considering concurrency.

We mentioned the algebraic approach to specification in Section 1.2 above.

This is a program specification and development methodology [vL90] centred on

the use of abstract data types. An ADT is specified to be an algebra (in the sense

of universal algebra) with a given signature, which satisfies a collection of axioms.

Thus, a simple specification, 〈Σ, E〉, consists of a signature, Σ, and a collection

of axioms, E, over that signature. There are various theory-level operators for

combining such specifications. In the simplest approach, programs are thought

of as total algebras, so there are various extensions to cope with partiality, errors

and so on.

There are two styles of semantics. On the one hand, a specification can be

27

viewed as an exact description of a program, so the semantics is defined as some

specific algebra (such as the initial or terminal algebra for this specification, with

respect to algebra homomorphisms). On the other hand, the specification can be

taken to be a description of the required properties of the program, but leaving

some possibilities open. In this ‘loose’ approach, the semantics of a specification

is taken to be the collection of all algebras which satisfy the specification, or

possibly some restriction on this (such as all reachable algebras).

The loose approach is appropriate for program development. Here, refinement

is thought of as “the implementation of one specification by another”, and is

defined formally as: SP ′ is an implementation of SP if sig(SP ′) = sig(SP)

and mod(SP ′) ⊆ mod(SP), that is, as model inclusion over the same signature.

This is a very general semantic definition of refinement. There are no axioms

for actually proving refinements, for example. More elaborate notions in terms

of ‘constructors’ and abstraction have been developed by Sannella and Tarlecki

[ST87].

Extended ML [San91, KST97] is a wide-spectrum language which extends (a

subset of) the functional programming language ML. It is similar to our calculus

in that there are essentially two specification features — a place holder, ?, and the

facility to incorporate logical axioms in signatures. See Section 5.4.1 for further

discussion.

Bednarczyk and Borzyszkowski [BB95] present a system of rules for finding

programs which inhabit specifications. Although they have partial terms repre-

senting intermediate steps in the search for inhabitation, they do not have an

explicit refinement relation. The Lego proof system [LP92] has a notion of re-

finement of proof state. If we regard refinement terms as being representations

of such a proof state, then Lego’s notion of refinement is like ours.

The relational calculus, Ruby [JS91], is essentially an untyped functional lan-

guage extended with inverses. It is the use of inverses which gives the language

specificational power. Nevertheless, specifications in Ruby are usually functions,

and refinement amounts to equational transformation.

1.7 Summary of Thesis

In Chapter 2 we make some preliminary definitions which will be used in the rest

of the thesis. We give the basic equational theory of the simply-typed lambda

calculus, and describe the applied theory of booleans and naturals. We give a first-

order logic theory over this, explaining how induction is formalised. The calculus

28

and logic can be given a semantics using Henkin models, a class of non-standard

set-theoretic models which we define. We prove soundness and completeness of

the equational and logical theories with respect to this class of models.

In Chapter 3 we give the calculus of refinement terms. We add ?τ terms to the

simply-typed lambda calculus, as a formalisation of true stubs, getting a system

for the study of what we call simply-typed underdeterminism. The judgements of

the calculus are

Γ ` r : τ

Γ ` r vτ r′

We show that terms can be expressed in a particular canonical form and use this

to derive some results about refinement. We then show that all refinements can

be given in a standard form in which replacement of stubs by code precedes all

equational reasoning.

The terms can be interpreted in Henkin models, with each type σ being as-

cribed a set σA, and terms in context Γ ` r : σ interpreted, given the appropriate

notion of environment, as subsets of σA. We show that terms can be expressed in

a canonical form, and use this to prove completeness of the calculus with respect

to the class of models.

We study a first-order logical theory of refinement, where the atomic propo-

sitions are refinements, and give a semantics using Henkin models, for which the

logic is proven sound and complete. We infer that the logical theory is conserva-

tive over the equational theory.

In fact, since the first-order logic of equality in Chapter 2 is also complete

with respect to this class of models, we are able to show that every refinement is

equivalent to a proposition in first-order logic involving only equality.

In Chapter 4 we give the calculus of refinement types. This involves an analysis

of a suitable notion of specification for refinement, independently of considerations

of underdeterminism. We argue that it is natural to use (a syntax representing)

partial equivalence relations (pers) for specifications. Terms, then, denote equiv-

alence classes of pers. Refinement typing subsumes typing and formalises the

satisfaction of specifications by programs. There is a refinement relation on re-

finement types.

The judgements are

Γ ` t : φ

Γ ` P

Γ ` t =φ t′

29

Γ ` φ v φ′

The calculus is interpreted using a per structure over the sets in a Henkin model.

We prove soundness and completeness with respect to such ‘Henkin pers’, which

lets us conclude that the system is a conservative extension of both the simply-

typed lambda calculus, and of first-order logic.

In Chapter 5 we present the combination of the two subcalculi, giving a refine-

ment calculus for the refinement of specifications in first-order logic into lambda

terms. The syntax of the full refinement calculus is

φ ::= 1 | γ | Σx:φψ | Πx:φψ | (x : φ)P

r ::= x | k(r1, . . . , rn) | ∗ | 〈r, r′〉 | λx : φ.r | ?φ | π1(r) | π2(r) |
rr′ | let x : φ be r in r′

P ::= ⊥ | P ⊃ P ′ | ∀x : φ.P | F (r1, . . . , rn) | r vφ r′

Γ ::= 〈〉 | Γ, x : φ | Γ, P

We show that the subcalculi can be embedded in the full refinement calculus

by defining relations between terms which generalise the nonlogical refinement

and logical equality of those systems. We show that logical refinement can be

factored into these two relations. We also extend the result from Chapter 3 on

standardisation of refinements to the full calculus.

Unlike the calculus of simple underdeterminism, refinement terms here can not

be interpreted as sets. Both refinement terms and refinement types are interpreted

as pers in Henkin Models, and we show how this generalises the semantics of the

subcalculi.

We prove soundness of the calculus, but have to be careful with how com-

pleteness is formulated. For a restricted class of terms, omitting any higher-order

features, we have completeness of the various judgements with respect to inter-

pretation in the class of models.

In Chapter 6 we make some conclusions and suggestions for future work,

suggesting how the simple notion of refinement described here could be extended

to other situations, and how refinement itself might be incorporated into a larger

theory of program development.

1.8 Notation

Following Martin-Löf [Mar96] we refer to the atomic statements of a theory as

basic judgements. These are either judgements of well-formedness or of truth.

The most general form of judgement is in hypothetico-general form, that is, under

30

the assumption of hypotheses and in a context of free variables. In this thesis

we will work in contexts consisting of a combination of variables and proposi-

tional assumptions. We will use Γ as a metavariable for contexts, appropriate to

whichever calculus is under consideration. We write 〈〉 ` B for a judgement in

the empty context, or just B.

The metavariable conventions used throughout this thesis are listed in

Appendix A. The top-level grammar of the syntactic categories is

Expressions U ::= r | φ | P

Basic Judgements B ::= r : φ | P | φ : Ref (τ) | P wf | Γ wf

Judgements J ::= Γ ` B

31

Chapter 2

Preliminaries

In this chapter we give the theoretical basis on which we will build the refinement

calculus. We first describe the simply-typed lambda calculus with products and

explain how to formulate applied theories. We use a theory of booleans and

naturals with primitive recursion as a particular example. We define Henkin

interpretations and models, and use them to give a semantics to the lambda

calculus. We then describe first-order logic over the equational theory of the

simply-typed lambda calculus and show how it can also be modelled using Henkin

interpretations, for which we prove completeness theorems.

2.1 Simply-typed Lambda Calculus

We base the theory of refinement on an explicitly typed (Church style) formulation

of the simply-typed lambda calculus [Cro93, Mit96]. Here “simply-typed lambda

calculus” means with finite products and some axioms over a signature with

ground types γ and constants k. The emphasis on axioms will be a feature of this

thesis.

2.1.1 Syntax

The terms of an applied lambda theory are with respect to some signature of

ground types and constant symbols.

Definition 2.1.1 A type signature consists of a collection of symbols, which we

call ground types. We define the simple types over a type signature, G, by the

grammar

τ ::= 1 | γ | τ × τ | τ → τ

where γ ∈ G.

32

For technical reasons, we will assume that all signatures in this thesis are count-

able, but will not bother to repeat this assumption.

In order to define the notion of constant over a type signature, we follow

Mitchell [Mit96] in making a distinction between types and sorts. To each prim-

itive constant we ascribe a sort — a metalevel construct which explains how to

form well-formed terms using the constant.

Definition 2.1.2 A sort over type signature, G, with arity n, is a list of n + 1

simple types over G. We write the sort [τ1, . . . , τn, τ] using the functional notation

τ1, . . . , τn → τ (where n ≥ 0).

Definition 2.1.3 Let G be a type signature. We define a constant signature, K,

over G, to be a collection of symbols — constants — each of which is ascribed a

sort over G.

Definition 2.1.4 A λ×→-signature Sg consists of a type signature, G, and a

constant signature, K, over G.

We write k : τ1, . . . , τn → τ ∈ K to indicate that constant k in signature

Sg = 〈G,K〉 has sort τ1, . . . , τn → τ . This does not mean that k itself is a well-

typed term, but that with n well-formed arguments of the correct types, t1 : τ1

up to tn : τn, the term k(t1, . . . , tn) is well-formed with type τ . For example, the

conditional, if then else , has sort bool, τ, τ → τ , but is not itself a

well-formed term with type bool× τ × τ → τ .

Alternatively, we could have chosen to give all constants a functional type, but

the choice is not significant here. In practice, we will drop the brackets around the

arguments to constants and allow ourselves to use any form of mixfix notation.

Rather than write the sort of nullary constants as k :→ τ , we will just write

k : τ . Since we will not consider any nullary constants of functional type, there

is no ambiguity with unary constants.

Definition 2.1.5 The preterms over signature Sg are given by the grammar

t ::= x | k(t1, . . . , tn) | ∗ | 〈t, t′〉 | λx : τ .t | π1(t) | π2(t) | tt′

For each type we assume a countably infinite number of variables drawn from

some set so, strictly speaking, the set of preterms is parameterised on both the

signature and the variables. We adopt the convention that in writing x : τ , the

variable x is drawn from the set of variables of type τ .

33

We will use γ and k as metavariables for ground types and constant symbols

respectively. Henceforth, we will assume the existence of some signature when

writing k and γ.

The contexts are constructed from types and variables via the grammar:

Γ ::= 〈〉 | Γ, x : τ

We use the notation Γ, x : τ , Γ′ (with the obvious meaning) to construct contexts,

and assume that all the variables in a context are distinct. This assumption of

well-formedness is external to the system (or ‘logicistic’). In later calculi we will

give explicit rules for the well-formedness of contexts. The ordering of variables

is not actually important in the simply-typed lambda calculus, but is significant

in the extended calculi of later chapters.

The typing judgement Γ ` t : τ means “under assumption Γ, term t has

type τ .” The typing rules of λ×→ are standard [Cro93, Mit96] and we do not

repeat them here. All judgements are given in a context of variable typings,

x1 : τ1, . . . , xn : τn. We write Sg . Γ ` t : τ when the judgement Γ ` t : τ

is derivable from signature Sg, but will drop the Sg . when it is clear which

signature is intended.

We will write FV (t) for the set of free variables in preterm t, and use the

notation t[t′/x] to indicate the (capture avoiding) substitution of t′ for each free

occurrence of variable x in t. The simultaneous substitution of tuple g (or syn-

tactic environment) for the variables in context Γ in t is indicated similarly by

t[g/Γ]. We sometimes write t[x] to distinguish all the free occurrences of variable

x in t. This does not mean that x is the only free variable, nor that it actually

appears free in t. When writing t[x], we may use t[t′] to indicate the substitution

t[t′/x].

We adopt the usual notational conventions of the lambda calculus to avoid

excessive bracketing: for example, λx : τ .tx means λx : τ .(tx). Round brackets

() will sometimes be used to increase readability. We will write ≡ for syntactic

equivalence (that is, up to bracketing and α-equivalence), and contrast this with

= for the provable equality defined below.

The obvious extensions of these conventions hold for the other syntactic cat-

egories introduced later.

Remark 2.1.6 Weakening, permutation and substitution rules are derivable for

the typing judgement. This is not the case with the equality judgement, because

of the presence of axioms, so we will add rules for these in the next section.

34

2.1.2 λ×→-Axiom Systems

We give extralogical axioms (on top of the logical axioms of the basic theory) with

respect to a particular signature. It is common in the literature to not distinguish

between a collection of axioms and the theory they generate, but we will do so

here.

Definition 2.1.7 A λ×→-axiom system consists of a λ×→-signature, Sg, and a

collection, Ax, of equations in context, Γ ` t =τ t′, well-typed with respect to

Sg, that is, Sg . Γ ` t : τ and Sg . Γ ` t′ : τ .

The theorems of λ×→ are generated using rules of two kinds — rules for the

pure theory of λ-calculus, and rules for inferring theorems from these and the

axiom system.

In Figures 2.1 and 2.2 we give the rules for the pure theory of the λ-calculus,

and in Figure 2.3 we give the additional rules necessary for inferring theorems from

an arbitrary axiom system. It is possible to give a stronger rule of Substitution

(Figure 2.3) which would let us derive the congruence rules, but we prefer to give

them explicitly thus establishing the pattern for later calculi.

Definition 2.1.8 Let 〈Sg, Ax〉 be a λ×→-axiom system. We define the theorems

of 〈Sg, Ax〉 to be the equations which can be inferred using the rules of Figures 2.1,

2.2 and 2.3. We write 〈Sg, Ax〉 . Γ ` t =τ t′ to indicate that equation Γ ` t =τ t′

is a theorem of axiom system 〈Sg, Ax〉.

In general, we do not assume that all types are inhabited (by closed terms).

Recall here that the (complete) equational theory of the simply-typed lambda cal-

culus differs depending on whether or not empty types are allowed in the semantics

[MM91, MMMS87]. We will explicitly state the assumption of inhabitation when

necessary, such as when giving a completeness theorem.

2.1.3 Booleans and Naturals

We will use booleans and natural numbers as a running example of an axiom

system throughout the thesis. Although we do not consider more complex data

types, this could be regarded as a simple case study in how datatypes are treated

in refinement calculi. We add booleans and naturals as ground types:

γ ::= bool | nat

35

Γ ` t : τ
Γ ` t =τ t

Reflexivity

Γ ` t =τ t′

Γ ` t′ =τ t

Symmetry

Γ ` t =τ t′ Γ ` t′ =τ t′′

Γ ` t =τ t′′

Transitivity

Figure 2.1: Rules for Equational Reasoning

The constants are:

k ::= 0 | succ | true | false | if then else | natrec

In this section we take some time to explain the meaning of the various constants.

We use b̄ to signify either of the boolean truth values, and n̄ for numerals. We

use b and n as metavariables for expressions of type bool and nat respectively.

In fact, we have a family of recursion operators, natrecτ and so on. Rather

than make this explicit or introduce polymorphism we just ignore this (unim-

portant) point. Similarly, there are separate conditionals for each type τ but we

ignore this too.

We give the sortings and equations for booleans and naturals in Figures 2.5

and 2.4. There is a constant for primitive recursion.

natrec : τ, (nat→ τ → τ), nat→ τ

Although we axiomatise constants equationally (as opposed to giving an op-

erational semantics), the idea is that natrec z s n computes a loop in which s is

applied n times to z, where s can also use the stage n. For example, a function to

add up the first n naturals is sum n = natrec 0 (λx : nat . λy : nat . add x y) n.

We will allow ourselves the abuse of language referring to loops and termination.

The primitive recursion natrec z s n will loop at most n times, so is guaran-

teed to ‘terminate’. This corresponds to for loops in imperative languages.

36

Γ, x : σ ` t : τ Γ ` t′ : σ

Γ ` (λx : σ.t)t′ =τ t[t′/x]
(β)

Γ ` t : σ → τ
Γ ` λx : σ.(tx) =σ→τ t

(x 6∈ FV (t)) (η)

Function Equations

Γ ` t1 : σ1 Γ ` t2 : σ2

Γ ` π1〈t1, t2〉 =σ1 t1

Γ ` t1 : σ1 Γ ` t2 : σ2

Γ ` π2〈t1, t2〉 =σ2 t2

Γ ` t : σ × τ
Γ ` 〈π1(t), π2(t)〉 =σ×τ t

Product Equations

Γ ` t : 1
Γ ` t =1 ∗

Unit Equation

Γ, x : σ ` t =τ t′

Γ ` λx : σ.t =σ→τ λx : σ.t′

Γ ` t1 =τ1 t′1 · · · Γ ` tn =τn t′n
Γ ` k(t1, . . . , tn) =τ k(t′1, . . . , t

′
n)

(k : τ1, . . . , τn → τ ∈ K)

Γ ` t1 =σ→τ t′1 Γ ` t2 =σ t′2
Γ ` t1t2 =τ t′1t

′
2

Γ ` t1 =σ t′1 Γ ` t2 =τ t′2
Γ ` 〈t1, t2〉 =σ×τ 〈t′1, t′2〉

Γ ` t =σ×τ t′

Γ ` π1(t) =σ π1(t
′)

Γ ` t =σ×τ t′

Γ ` π2(t) =τ π2(t
′)

Congruence Equations

Figure 2.2: Equality rules

37

Γ ` t =τ t′
(Γ ` t =τ t′ ∈ Ax)

Axioms

Γ1, Γ2 ` t =τ t′

Γ1, x : σ, Γ2 ` t =τ t′

Weakening

Γ1, x1 : σ1, Γ2, x2 : σ2, Γ3 ` t =τ t′

Γ1, x2 : σ2, Γ2, x1 : σ1, Γ3 ` t =τ t′

Permutation

Γ, x : σ ` t1 =τ t′1 Γ ` t2 : σ

Γ ` t1[t2/x] =τ t′1[t2/x]

Substitution

Figure 2.3: Theorems Generated from an Axiom System 〈Sg, Ax〉

true : bool

false : bool

if then else : bool, τ, τ → τ

Sortings

x : τ , y : τ ` if true then x else y =τ x (βtrue)

x : τ , y : τ ` if false then x else y =τ y (βfalse)

f : bool→ τ , b : bool ` f(b) =τ if b then f(true) else f(false) (η)

Axioms

Figure 2.4: Axiom System for Booleans

38

0 : nat

succ : nat→ nat

natrec : τ, (nat→ τ → τ), nat→ τ

Sortings

z : σ, s : nat→ σ → σ ` natrec z s 0 =σ z

z : σ, s : nat→ σ → σ, n : nat ` natrec z s (succ n) =σ s n (natrec z s n)

Axioms

Figure 2.5: Axiom System for Naturals

Iteration is a special case of (primitive) recursion, in which the stage number

is not used.

natiter z s n = sn(z)

where sn is the n-th composite of s. Formally,

natiter = λz : τ . λs : τ → τ . λn : nat . natrec z (λa : τ .λx : τ .s x) n

In the subsequent chapters we will explain how this treatment of constants is

extended to richer calculi, using naturals and booleans as examples.

There are two β-equalities for booleans, and one η-equality. From the η-

equality we can deduce

if b then t else t =σ t

as well as the commuting conversion

f(if b then t else t′) = if b then f(t) else f(t′)

2.2 Models of Simply-typed Lambda Calculus

We give interpretations of the calculus in Henkin models. These are a form

of ‘non-standard’ set-theoretic model for which simply-typed lambda calculi (in

particular, systems containing arithmetic) are complete. As is usual in concrete

models of applied lambda calculi, we must consider Henkin models in order to

get completeness.

39

We give a Church style semantics by interpreting typing derivations, and write

Γ ` t : τ as a linear shorthand for the derivation of that judgement. (In Chapters

4 and 5 we will interpret ‘pre-judgements’ rather than derivations.)

For a fixed λ×→-signature, we define Henkin interpretations in two stages.

Definition 2.2.1 Let Sg be a λ×→-signature. A Sg-applicative structure (with

products) is a tuple of families indexed by the types generated by Sg:

〈{σA}, {Projσ,τ
1 }, {Projσ,τ

2 }, {Appσ,τ}, {kA}〉

To each type σ (not just ground types) we ascribe a set σA, and to each constant

k : τ1, . . . , τn → τ , a function kA : τA1 × · · ·× τAn → τA. There are projection and

application maps:

Proj
σ,τ
1 : (σ × τ)A → σA

Proj
σ,τ
2 : (σ × τ)A → τA

Appσ,τ : (σ → τ)A × σA → τA

A Henkin interpretation is an applicative structure with two additional condi-

tions, namely, that it is extensional, and that it satisfies the environment model

condition.

Definition 2.2.2 An applicative structure with products

〈{σA}, {Projσ,τ
1 }, {Projσ,τ

2 }, {Appσ,τ}, {kA}〉

is extensional when

• 1A has exactly one element

• for all f, f ′ ∈ (σ → τ)A, if Appσ→τ (f, a) = Appσ→τ (f ′, a) for all a ∈ σA,

then f = f ′

• for all p, p′ ∈ (σ × τ)A, if Proj
σ,τ
1 (p) = Proj

σ,τ
1 (p′) and Proj

σ,τ
2 (p) =

Proj
σ,τ
2 (p′) then p = p′

Meanings are given in an environment. For contexts Γ ≡ x1 : σ1, . . . , xn : σn

(n ≥ 0), a Γ-environment in A is a tuple 〈a1, . . . , an〉 such that ai ∈ σAi for

i = 1, .., n. We will use η to range over environments, and use notation like

〈η, a, η′〉 to form the obvious environment. We write η �A Γ to indicate that η

is a Γ-environment in interpretation A, but will generally drop the A when it is

obvious which interpretation is intended.

40

Extensionality allows us to use implicit interpretations for abstractions, pairs

and the unit which are unique. However, this does not guarantee that there are

actually enough elements in the structure to interpret terms at all. The second

condition forces models to have enough elements, and is simply given by say-

ing that the interpretation exists. In Figure 2.6 we define the interpretation of

terms in an extensional applicative structure. There we write [[Γ ` t : τ]]A(η)

for the meaning of the term-in-context Γ ` t : τ with environment η in Henkin

interpretation A, and again, usually drop the A. Strictly speaking, for an arbi-

trary applicative structure this only defines a partial meaning function. To give

a semantics, we must assume that it is, in fact, total.

Definition 2.2.3 An applicative structure satisfies the environment model con-

dition when the interpretation in Figure 2.6 in well-defined.

Definition 2.2.4 We say that an applicative structure is a λ×→-Henkin inter-

pretation when it is extensional and satisfies the environment model condition.

We do not have (σ × τ)A = σA × τA in general, but we do have a bijection

mediated by the projection functions, Proj
σ,τ
1 : (σ × τ)A → σA and Proj

σ,τ
2 :

(σ× τ)A → τA, and the induced pairing map. In general, (σ → τ)A is embedded

in, but not bijective with, σA → τA. For a1 ∈ σA, a2 ∈ τA, we write 〈a1, a2〉 for

the unique element a ∈ (σ × τ)A such that Projσ,τ
1 (a) = a1 and Proj

σ,τ
2 (a) = a2.

We write Γ �A,η t =τ t′ when [[Γ ` t : τ]]A(η) = [[Γ ` t′ : τ]]A(η), and write

Γ �A t =τ t′ when Γ �A,η t =τ t′ for every Γ-environment, η, in A.

Definition 2.2.5 Let A be a Henkin interpretation of λ×→-signature Sg. We

say that A is a Henkin model of the axiom system 〈Sg, Ax〉 when for each axiom

Γ ` t =τ t′ in Ax, Γ �A t =τ t′.

Theorem 2.2.6 (Soundness) Let A be a Henkin model of axiom system 〈Sg, Ax〉.
If 〈Sg, Ax〉 . Γ ` t =τ t′ then Γ �A t =τ t′.

Proof: The proof is by induction on the derivation of the judgement.

As we remarked above, a complete axiomatisation of the lambda calculus

depends on whether or not nonemptiness of types is assumed. If types are allowed

to be empty then a form of case analysis on emptiness is require, either by having

a special rule (as in [MMMS87]) or by using a logic powerful enough to derive

this (as in the next section). Alternatively, a wider class of models could be used

[MM91]. Here, we will just assume that all types are syntactically inhabited, that

is, there are closed terms at every type. In fact, for completeness, a slightly weaker

assumption would suffice, namely, that the system is closed under strengthening.

41

[[Γ, x : σ, Γ′ ` x : σ]]〈η, a, η′〉 = a

[[Γ ` t1 : τ1]](η) = a1 · · · [[Γ ` tn : τn]](η) = an

[[Γ ` k(t1, . . . , tn) : τ]](η) = kA(a1, . . . , an)

[[Γ ` ∗ : 1]](η) = the unique a in 1A

[[Γ ` t : σ]](η) = a [[Γ ` t′ : τ]](η) = a′

[[Γ ` 〈t, t′〉 : σ × τ]](η) =
the unique p in (σ × τ)A such that

Proj
σ,τ
1 (p) = a and Proj

σ,τ
2 (p) = a′

[[Γ, x : σ ` t : τ]]〈η, a〉 = ma for each a in σA

[[Γ ` λx : σ.t : σ → τ]](η) =
the unique f in (σ → τ)A such that
∀a ∈ σA . App(f, a) = ma

[[Γ ` t : τ × τ ′]](η) = p

[[Γ ` π1(t) : τ]](η) = Proj
τ,τ ′

1 (p)

[[Γ ` t : τ × τ ′]](η) = p

[[Γ ` π2(t) : τ ′]](η) = Proj
τ,τ ′

2 (p)

[[Γ ` t : σ → τ]](η) = f [[Γ ` t′ : σ]](η) = a

[[Γ ` tt′ : τ]](η) = App(f, a)

Figure 2.6: Interpretation of Terms of Simply-typed Lambda Calculus

42

Theorem 2.2.7 (Completeness of equational system) Let 〈Sg, Ax〉 be a λ×→-

axiom system for which all types are syntactically inhabited. If Γ �A t =τ t′ for

all Henkin models A of 〈Sg, Ax〉, then 〈Sg, Ax〉 . Γ ` t =τ t′.

Proof : We give a sketch of the proof. The idea is to construct a minimal term

model T for our signature of ground types, constants and equational assumptions

(with no empty types).

1. Fix an infinite context Γ∞ with an infinite number of variables at each type.

We use Γ∞ in judgements to mean some finite Γ′ ⊆ Γ∞ so, for example,

Γ∞ ` t : τ means Γ′ ` t : τ for some Γ′ ⊆ Γ∞.

2. Define τT as the set of =τ -equivalence classes of open terms of type τ . We

write [t] for the equivalence class of t, so τT = {[t] | Γ∞ ` t : τ}. The set τT

is nonempty since we have variables at each type. The projection, applica-

tion and constant interpretation mappings are interpreted syntactically.

3. We use the fact that Γ∞ contains an infinite number of variables at each

type to show that T is extensional. If App([t], a) = App([t′], a) for all a ∈ σT ,

then since x : σ ∈ Γ∞, we infer that Γ∞ ` tx =τ t′x, and so by Congruence

Equations and Function Equations (η), we infer that Γ∞ ` t =σ→τ t′,

i.e. [t] = [t′]. The condition for products is straightforward.

4. Prove that [[Γ ` t : τ]]T (η) = [t[η/Γ]], where t[η/Γ] has the obvious meaning.

Hence the environment model condition holds and T is a Henkin interpre-

tation.

5. Now Γ �T t =τ t′ means for all η �T Γ, [[Γ ` t : τ]]T (η) =

[[Γ ` t′ : τ]]T (η), that is Γ∞ ` t[η/Γ] =τ t′[η/Γ] for all η, (more cor-

rectly, 〈Sg, Ax〉 . Γ ` t[η/Γ] =τ t′[η/Γ]). Then if Γ ` t =τ t′ ∈ Ax we

infer Γ∞ ` t[η/Γ] =τ t′[η/Γ], so Γ �A,η t =τ t′ for all η �T Γ and the

interpretation T is a Henkin model of 〈Sg, Ax〉.

6. Finally, if Γ ` t =τ t′, is an arbitrary equation which is true in the term

model, then (for Γ ≡ x1 : σ1, . . . , xn : σn) setting η = 〈[x1], . . . , [xn]〉 gives

Γ∞ ` t =τ t′ which, because of inhabitation, implies Γ ` t =τ t′.

Hence, we conclude completeness: if an equation is true in all models, it is

true in the term model, and so it is provable.

43

2.3 First-order Logic of Simply-typed Lambda

Calculus

We follow the pattern of Section 2.1 and first define the notion of signature, and

then axioms over a signature. We now extend signatures with primitive predicate

symbols, sometimes called relation symbols.

Definition 2.3.1 A first-order λ×→-signature consists of a λ×→-signature, and

a collection of predicate symbols, F , each of which has an arity n, and a sort,

given by a list of types, which we write as F : Pred (τ1, . . . , τn).

Definition 2.3.2 Let Sg = 〈G,K,F〉 be a first-order λ×→-signature. The pre-

propositions over Sg are:

P ::= ⊥ | F (t1, . . . , tn) | P ⊃ P ′ | ∀x : τ .P | t =τ t′

where F ∈ F , and τ and t are types and preterms over 〈G,K〉 respectively.

The atomic propositions are equalities and predications. The other constructors

are sufficient to define >, ∧, ∨, ∃ and ¬.

We need a well-formedness judgement

Sg . Γ ` P wf

but omit the rules here. In particular, the proposition t =τ t′ is well-formed when

t and t′ have type τ and, for F : Pred (τ1, . . . , τn), the predication F (t1, . . . , tn)

is well-formed when ti : τi for each i. For ∆ a list of propositions, we write

Sg . Γ ` ∆ wf

when for each P in ∆, Sg . Γ ` P wf.

Definition 2.3.3 A first-order λ×→-axiom system consists of a first-order λ×→-

signature, Sg, and a collection, Ax, of closed propositions, well-formed in Sg,

that is, Sg . 〈〉 ` P wf.

We take axioms in first-order logic to be closed propositions for simplicity’s sake,

but this is not important, as quantification gives the same expressiveness as al-

lowing propositions in context. Allowing arbitrary closed propositions as axioms

subsumes the equational axioms of λ×→-axiom systems.

We will adopt the convention here, and in subsequent chapters, that when

schematic rules are ‘included’ from one calculus to another, the rules should be

44

understood in the latter calculus: that is, metavariables range over expressions

in the latter calculus.

In Figures 2.7 and 2.8 we give the rules for classical natural deduction, mod-

ified to allow for the possibility of empty types. Only the rules for ⊃, ∀ and ⊥
are necessary, but we give the derived rules for some other connectives as well.

The form of the judgement is Γ; ∆ ` P , which means: for all variables in Γ, if

each proposition in ∆ in true, then P is true.

One property which we want the proof system to have is that all provable

judgements are well-formed. It is necessary, therefore, to place well-formedness

conditions on those formulae which appear in conclusions but not hypotheses.

Otherwise, for example, we could infer that P ` P for any pre-proposition P .

Definition 2.3.4 Let 〈Sg, Ax〉 be a first-order λ×→-axiom system. We define

the theorems of 〈Sg, Ax〉 to be the propositions which can be inferred using the

rules of Figures 2.1, 2.2 and 2.3, together with Figures 2.7 and 2.8.

We write 〈Sg, Ax〉 . Γ; ∆ ` P to indicate that Γ; ∆ ` P is a theorem of axiom

system 〈Sg, Ax〉.

Remark 2.3.5 In this thesis, we will make an important distinction between

booleans and propositions. Booleans are terms of a computational datatype and

can be evaluated, whereas propositions are the expressions of a logical language. It

is common, however, to blur the distinction in program development frameworks,

so as to reason about branches of conditionals (using booleans as propositions),

and to refine a proposition into a conditional (with a proposition as the condi-

tion). However, without making the distinction, it is not clear that the refinement

of propositions (as specifications) into booleans is itself a part of program devel-

opment.

Figure 2.9 gives the first-order axioms for booleans and naturals. These are

induction rules, expressed as schemas of closed propositions, but they can also be

given as inference rules. We can derive the general rules:

Sg . Γ ` ∆ wf Sg . Γ, b : bool ` P wf

Γ; ∆ ` P [true/b] ∧ P [false/b] ⊃ ∀b : bool . P

Sg . Γ ` ∆ wf Sg . Γ, n : nat ` P wf

Γ; ∆ ` P [0/n] ∧ (∀n : nat . P ⊃ P [(succ n)/n]) ⊃ ∀n : nat . P

We retain the equational axioms in Figures 2.4 and 2.5 as part of the first-order

axiom systems.

45

Γ; ∆ ` P Γ; ∆ ` Q
Γ; ∆ ` P ∧Q

Γ; ∆ ` P ∧Q
Γ; ∆ ` P

Γ; ∆ ` P ∧Q
Γ; ∆ ` Q

Conjunction

Γ; ∆ ` P
Γ; ∆ ` P ∨Q

Γ; ∆ ` Q
Γ; ∆ ` P ∨Q

Γ; ∆ ` P ∨Q Γ, P ` R Γ, Q ` R
Γ; ∆ ` R

Disjunction

Γ; ∆, P ` Q

Γ; ∆ ` P ⊃ Q

Γ; ∆ ` P Γ; ∆ ` P ⊃ Q
Γ; ∆ ` Q

Implication

Γ; ∆ ` ∀x : τ .P Γ ` t : τ

Γ; ∆ ` P [t/x]

Γ, x : τ ; ∆ ` P
Γ; ∆ ` ∀x : τ .P

(x 6∈ ∆)

Universal Quantification

Sg . Γ ` P wf Sg . Γ ` ∆ wf

Γ; ∆,⊥ ` P

Γ; ∆,¬P ` ⊥
Γ; ∆ ` P

Falsehood

Figure 2.7: Natural Deduction Rules for Classical First-order Logic

46

Γ; ∆ ` t =τ t′ Γ; ∆ ` P [t/x]

Γ; ∆ ` P [t′/x]

Equality

Sg . Γ ` P wf Sg . Γ ` ∆ wf

Γ; ∆, P ` P

Assumptions

Sg . Γ ` ∆ wf

Γ; ∆ ` P
(P ∈ Ax)

Axioms

Figure 2.8: Natural Deduction Rules cont.

Remark 2.3.6 Although we have defined first-order logic over the simply-typed

lambda calculus to include all the rules given in Section 2.1, some of these are

derivable. The convention that axioms can be used in arbitrary contexts means

that the rules of Figure 2.3 are superfluous. Moreover, the general Equality rule,

together with Reflexivity, is enough to derive the other rules in Figure 2.1 and

all the Congruence Equations.

The induction rule for booleans says that true and false are the only (closed)

booleans. We can prove

b : bool ` b = true ∨ b = false

In fact, this also implies the η-equality for booleans.

Using the rule of mathematical induction in Figure 2.9, we can deduce com-

putational induction

P [z] ∀n : nat.∀x : τ . P [x] ⊃ P [s n x]

∀n : nat . P [natrec z s n]

(
Sg .z : τ , s : nat→ τ → τ
Sg . x : τ ` P [x] wf

)
and well-founded induction

∀n : nat . (∀n′ < n.P [n′]) ⊃ P [n]

∀n : nat . P [n]
(Sg . n : nat ` P [n] wf)

47

P [true/b] ∧ P [false/b] ⊃ ∀b : bool . P (for Sg . b : bool ` P wf)

Booleans

P [0/n] ∧ (∀n : nat . P ⊃ P [(succ n)/n]) ⊃ ∀n : nat . P
(for Sg . n : nat ` P wf)

Naturals

Figure 2.9: First-order Logic of Booleans and Naturals

2.4 Models of First-order Logic

We give Henkin models of first-order logic. First we define interpretations for a

particular signature.

Definition 2.4.1 Let 〈G,K,F〉 be a first-order λ×→-signature. A first-order

λ×→-Henkin interpretation, A, of 〈G,K,F〉 is a λ×→-Henkin interpretation of

〈G,K〉 together with a family of subsets to interpret predicate symbols in F

FA ⊆ τA1 × . . .× τAn , for F : Pred (τ1, . . . , τn)

Figure 2.10 gives the interpretation of propositions in a first-order λ×→-Henkin

interpretation. There we interpret well-formed propositions in context, Γ ` P wf,

as the set, [[Γ ` P]]A of environments, η �A Γ, in which P holds, though we usually

drop the superscript A. We write Γ �A,η P to mean η ∈ [[Γ ` P]]A. If A is a

Henkin interpretation, we say that Γ; ∆ �A,η P , if for all η �A Γ, if Γ �A,η A for

each A in ∆, then Γ �A,η P . We write Γ; ∆ �A P when Γ; ∆ �A,η P for each

η �A Γ.

Definition 2.4.2 Let 〈Sg, Ax〉 be a first-order λ×→-axiom system. A Henkin

interpretation A of signature Sg is a model of 〈Sg, Ax〉 when for each axiom P

in Ax, �A P .

One reason for studying the logic is that it is complete over the same class

of models as the equational theory. Completeness is with respect to the class of

Henkin models (of an axiom system).

In order to prove completeness for an arbitrary axiom system we will construct

a term model from its theory. The main problem lies in constructing witnesses for

48

[[Γ ` ⊥]] = ∅
[[Γ ` F (t1, . . . , tn)]] = {η � Γ | 〈[[Γ ` t1 : τ1]](η), . . . , [[Γ ` tn : τn]](η)〉 ∈ FA}

[[Γ ` P ⊃ P ′]] = {η � Γ | η /∈ [[Γ ` P]] or η ∈ [[Γ ` P ′]] }
[[Γ ` ∀x : τ .P]] = {η � Γ | for all a in τA . 〈η, a〉 ∈ [[Γ, x : τ ` P]] }

[[Γ ` t =τ t′]] = {η � Γ | [[Γ ` t : τ]](η) = [[Γ ` t′ : τ]](η)}

Figure 2.10: Interpretation of Well-formed Propositions

existentials. We will achieve this by using the notion of Henkin theory1 [vD94]. A

Henkin theory, T , has the property that if the proposition ∃x : τ .P is in T , then

P [t/x] is in T for some t : τ .

Definition 2.4.3 A first-order λ×→-Henkin theory, T , over an axiom system

〈Sg, Ax〉, in context Γ, is a collection of propositions well-formed in Γ, and closed

under derivation from 〈Sg, Ax〉, such that for every proposition ∃x : τ . P in T ,

there is a term Γ ` t : τ such that P [t/x] is in T .

We can construct Henkin theories by adding witness variables for existentials,

taking care with empty types. As pointed out after Definition 2.1.5 we assume a

countably infinite set of variables at each type.

Definition 2.4.4 Let Γ be a context and ∆ a set of propositions. We define the

Henkin closure of Γ; ∆ by the following procedure:

1. First enumerate all the types. Then for each type, τi (i ≥ 1), we decide if

it is to be inhabited or not. For i ≥ 1, we define the proposition Inhi as{
>, if Γ; ∆, (Inh1 ⊃ ∃x : τ1.>), . . . , (Inhi−1 ⊃ ∃x : τi−1.>), ∃x : τi.> 0 ⊥
⊥, otherwise

2. Then we make a list of all well-formed propositions of the form ∃x : σn.Pn

for inhabited σn, i.e. those for which Inhn = >. This is countable since the

signature is countable.

3. Then we make a list of variables {yn : σn} such that yn 6∈ Γ and yn 6∈ Pn′

for n′ ≤ n.

4. We define the Henkin closure of Γ; ∆ as ΓH ; ∆H, where ΓH = Γ∪{yn : σn},
and ∆H = ∆ ∪ {∃x : σn . Pn ⊃ Pn[yn/x]}.

1These have nothing to do with Henkin models.

49

Although an infinite supply of variables in the context is not necessary to meet

the definition of Henkin theory, it is used in the proof below. The point of the

completeness proof is to construct the maximal such Henkin theory.

Theorem 2.4.5 (Soundness and Completeness of logical system) Let 〈Sg, Ax〉
be a first-order λ×→-axiom system. Then 〈Sg, Ax〉 . Γ; ∆ ` P iff Γ; ∆ �A P for

every Henkin model A of 〈Sg, Ax〉

Proof: Soundness is straightforward to prove. As for completeness, we do not

have a minimal (Henkin) model for the logical system, but nevertheless, we can

still use a term model in order to prove deductive completeness, by showing that

any consistent theory is satisfiable. For axiom system 〈Sg, Ax〉, we want to show

that 〈Sg, Ax〉 .Γ; ∆ ` P iff Γ; ∆ �A P in all Henkin models A of 〈Sg, Ax〉. (Note

that we do not assume that types are nonempty.)

1. Given 〈Sg, Ax〉 6. Γ; ∆ ` P we want to find a Henkin model A of 〈Sg, Ax〉,
and Γ-environment, η, in A such that Γ �A,η A for each A in ∆,¬P .

2. We construct a maximal consistent theory ∆∞ and infinite context Γ∞ such

that Ax ∪∆ ∪ {¬P} ⊆ ∆∞, Γ ⊆ Γ∞, and ∆∞ is a Henkin theory in Γ∞.

First let ΓH ; ∆H be the Henkin closure of Γ;Ax ∪ ∆ ∪ {¬P}. Now we

consider consistent theories in ΓH which extend ∆H .

We form the partial order of such theories, ordered by pairwise inclusion.

The poset is nonempty since it contains the deductive closure of ∆H . Each

member is a Henkin theory. The poset is closed under taking unions, and

so each chain has an upper bound. Thus, by Zorn’s Lemma, the collection

has a maximal element, ∆∞.

3. We define the term interpretation on equivalence classes of open terms prov-

ably equal in ΓH ; ∆∞.

By renaming variables, we can assume without loss of generality that all

terms are open in ΓH .

We write [t] for the equivalence class of t, so that [t] = [t′] iff

ΓH ; ∆∞ ` t =τ t′ (i.e. t =τ t′ ∈ ∆∞).

First, we show that A is extensional. The interesting case is for function

types. We must show that if ΓH ; ∆∞ ` ta =τ t′a for every ΓH ` a : σ, then

ΓH ; ∆∞ ` t =σ→τ t′. We reason on whether or not ∃x : σ.> is in ∆∞, that

is, σ is inhabited.

50

If it is then, since ΓH contains infinitely many variables for each inhabited

type, there exists a variable x : σ ∈ ΓH which does not appear in t or t′.

Hence, ΓH ; ∆∞ ` tx =τ t′x, so ΓH ; ∆∞ ` λx : σ.tx =σ→τ λx : σ.t′x and

ΓH ; ∆∞ ` t =σ→τ t′.

If it is not, then by maximality, ¬∃x : τ .> ∈ ∆∞, and since ∆∞ is consistent,

there are no terms ΓH ` a : σ and so the implication trivially holds.

4. Prove that [[Γ ` t : τ]]A(η) = [t[η/Γ]], and so A satisfies the environment

model condition and is a Henkin interpretation.

5. For all η′ � Γ′, prove that Γ′ �A,η′ Q iff Q[η′/Γ′] ∈ ∆∞, by induction over Q.

It is here that the proof rules for each construct are used. We use the fact

that for a maximal consistent theory T and well-formed (in ΓH) proposition

Q, exactly one of Q, ¬Q is in T. The crucial case is ∃x : τ . Q, which goes

through by virtue of ∆∞ being a Henkin theory.

From this it follows that A is a Henkin model of 〈Sg, Ax〉, since for each

axiom Q, clearly Q ∈ ∆∞.

6. Finally, using the extension property of ΓH ; ∆∞, if Γ ≡ x1 : σ1, . . . , xn : σn,

then we define the Γ-environment, η, to be simply 〈[x1], . . . , [xn]〉, and then

Γ �A,η A, for each A in ∆,¬P .

As a corollary of these completeness results, we can deduce that the first-order

calculus is conservative over the equational calculus.

Corollary 2.4.6 Let 〈Sg, Ax〉 be a λ×→-axiom system. If all types are inhabited,

then 〈Sg, Ax〉 . Γ ` t =τ t′ iff 〈Sg, Ax〉 . Γ; 〈〉 ` t =τ t′.

Proof: Both systems are complete with respect to Henkin models, and the state-

ments have the same interpretation.

51

Chapter 3

Refinement Terms

In this chapter we develop a theory of ‘simple’ refinement. We see that, in addition

to aspects of refinement, the use of stubs and skeletons in top-down program

development can also be studied in this language. We give a calculus, λ×→? (λ?

for short), in which we can express such constructs and a simple semantics using

Henkin models for which the calculus is proven sound and complete.1

3.1 Introduction

We introduce an extension of the simply-typed lambda calculus (λ×→) with con-

structs for expressing a notion we call underdeterminism. Consider the term

λx : σ.〈2, x〉 of type σ → nat × σ. This term is determined in the sense that

we have complete knowledge about it. Suppose now, we know that some term

of the same type always returns pairs of which the left component is 2, but we

know nothing about the right component. We might write this as λx : σ.〈2, ?σ〉,
where ?σ means ‘some unknown of type σ’ (possibly depending on x). We allow

?σ to stand for any subterm which is well-formed in the local context, so these

unknowns can contain the variable x. This is in contrast to the use of variables as

indeterminates. If, instead of the stub ?σ, we were to use a free variable y of type

σ as a parameter, writing the above term as λx : σ.〈2, y〉, then we can substitute

any term for y which is well-formed in the global context. The point is, though,

that because of variable capture, we cannot substitute x to get λx : σ.〈2, x〉. This,

of course, is crucial to the use of stubs.

Now, a still less determined term would be λx : σ.〈?nat, ?σ〉. This is a term

of type σ → (nat × σ) which returns . . . what? Evaluation does not make sense

in general for such partially constructed terms anyway, but our intuition tells

us that the term λx : σ.〈?nat, ?σ〉 carries the same information as λx : σ.?nat×σ

1Some of the work of this chapter was presented in [Den97b].

52

and ?σ→(nat×σ). We would like to prove equivalences such as this, and in general

consider a specialisation ordering at each type, such that

?σ→(nat×σ) vσ→(nat×σ) λx : σ.〈2, ?σ〉 vσ→(nat×σ) λx : σ.〈2, x〉

Moreover, we would like to study how underdeterminism interacts with the usual

equational rules of λ×→. Our interest in such a calculus comes from our belief that

this is a fundamental aspect of program development. The refinement methodol-

ogy of program development consists of writing a term meaning ‘a program which

satisfies specification φ’, and transforming it step by step into an actual program

satisfying the specification φ. We view types as rudimentary specifications, and

defer study of the logic to the next chapter. We believe it is worthwhile to study

underdeterminism in isolation from logic, as much of the difficulty in reasoning in

refinement calculi is in understanding how underdeterminism interacts with the

programming features.

In Section 3.2 we describe the language and its refinement rules. The equa-

tional theory is then studied as part of a simple logic. We give a simple denota-

tional semantics in Section 3.4, and show that our calculus is complete for proving

refinements valid in this class of models.

3.2 The Calculus

We give the syntax of the language and the classes of judgements. Then we give

some syntactic results and a short example of refinement.

3.2.1 Syntax

We start by defining the notion of λ?-signature. In fact, signatures and axioms

are the same as we defined in the previous chapter for λ×→. The significance of

this is discussed later, in Remark 3.3.4.

Definition 3.2.1 A λ?-signature Sg consists of a collection, G, of ground types

(ranged over by γ) and a collection, K, of constant symbols (ranged over by k),

each of which is assigned some sort τ1, . . . , τn → τ .

We extend the simply-typed lambda calculus with an underdeterminism con-

struct, ?τ , meaning ‘some term with type τ ’. We view the type τ as a rudimentary

specification and refer to terms with such ‘holes’ for programs to be supplied later

as refinement terms. We assume throughout some fixed signature of types and

constants.

53

The types, preterms and contexts are given by:

τ ::= 1 | γ | τ × τ | τ → τ

r ::= x | k(r1, . . . , rn) | ∗ | 〈r, r′〉 | λx : τ .r | ?τ | π1(r) | π2(r) |
rr′ | let x : τ be r in r′

Γ ::= 〈〉 | Γ, x : τ

We say that a term is determined if it contains no stubs, that is, subterms of

the form ?τ . Otherwise, we call a term underdetermined. We use the metavariable

t to range over determined terms, and r over arbitrary underdetermined terms.

Note that primitive constants are determined. In fact, each term of the simply-

typed lambda calculus is determined. The converse does not hold, however, since

we allow let x : σ be t in t′ to be determined. We will see, though, that every

determined term is provably equal to a term of the simply-typed lambda calculus.

Intuitively, we can think of a term r as being a kind of description or spec-

ification of determined terms, so for example, 〈2, ?nat〉 is a term which specifies

pairs of terms 〈2, t〉, where t is any term of type nat. Conversely, we say that

〈2, t〉 satisfies 〈2, ?nat〉.
Formally, r denotes a set of values. Each program, t, to which r can refine,

denotes a member of this set. The abstraction λx : τ .r denotes a set of functions,

rather than one nondeterministic function. Intuitively, it refines to those abstrac-

tions, λx : τ .t, such that for each argument t′ : τ , the result t[t′/x] is a refinement

of r[t′/x]. It is not a nondeterministic program which takes an argument t′ and

returns a term r[t′/x].

Since let x : σ be t in t′ is provably equal to t′[t/x], we can eliminate all

determined let-subterms, and show that every determined term is provably equal

to an ordinary term of the simply-typed lambda calculus.

Although terms of the language denote sets of values, we want to regard

variables as ranging over single values in order to retain the familiar rules of

λ×→. Because of this we will only allow determined terms to be substituted for

variables. We use an axiomatisation of let expressions, let x : τ be r in r′, as in

the computational lambda calculus [Mog91], as a way of discharging an arbitrary

underdetermined term r, without substituting directly for a variable x. The idea

is that let x : τ be r in r′ defers the substitution of r for x until r has been

refined into some determined t, but still lets us reason about the substitution.

The expression let x : τ be r in r′ refines to t′, then, when t′ is a refinement of

r′[t/x] for some refinement, t, of r.

Although we do not assume that all types are inhabited (by closed terms), for

various statements below we will make this restriction. This avoids the semantic

54

complications mentioned in Chapter 2. Nevertheless, although empty types may

or may not be appropriate for any particular programming language, this assump-

tion is independent of the use of the calculus for specification. The reader might

assume, though, that this assumption means that our calculus is of no interest in

studying program specification, where in traditional type-theoretic approaches,

specifications are viewed as possibly empty types. However, the idea in the next

chapter is not to use types themselves as specifications, but that a specification

(which may be unsatisfiable) is something ‘over’ an ordinary program type. e.g.

the specification (n : nat) even(n), of the set of even natural numbers (in the

notation of the subsequent chapters) is over nat.

3.2.2 Judgements

We axiomatise an equational theory with two basic judgements

Typing Γ ` r : τ

Refinement Γ ` r vτ r′

where Γ is a context of variable assumptions. As is usual with lambda calculi,

(in)equations are at a type, which we sometimes drop when not significant. We

write the refinement of r to r′ (at τ) as r vτ r′, to indicate that r′ is more

determined than r. Note that some authors use w for refinement.

We take equality to be the derived notion defined as mutual refinement. This

is reasonable because, as we show by a semantic argument below, the calculus

is a conservative extension of the simply-typed lambda calculus, as determined

terms are mutually refinable if and only if they are provably equal in λ×→.

Contexts are well-formed

` Γ wf

if and only if they contain distinct variables. We adopt the convention that in

writing a judgement we assume its context to be well-formed.

The typing judgement Γ ` r : τ is axiomatised in Figure 3.1. This just extends

the rules of the simply-typed lambda calculus with typing rules for the ? and let

constructs. We write Sg.Γ ` r : τ to indicate that the typing judgement Γ ` r : τ

is derivable from signature Sg.

3.2.3 λ?-Axiom Systems

We can define the notion of axiom system with respect to a signature as a set of

well-typed equations in context between determined terms.

55

Γ, x : σ, Γ′ ` x : σ

Variables

Γ ` r1 : τ1 · · · Γ ` rn : τn

Γ ` k(r1, . . . , rn) : τ
(k : τ1, . . . , τn → τ ∈ K)

Constants

Γ ` ∗ : 1

Unit

Γ ` ?σ : σ

Stubs

Γ ` r : σ Γ ` r′ : τ
Γ ` 〈r, r′〉 : σ × τ

Γ ` r : σ × τ
Γ ` π1(r) : σ

Γ ` r : σ × τ
Γ ` π2(r) : τ

Product Terms

Γ, x : σ ` r : τ
Γ ` λx : σ.r : σ → τ

Γ ` r : σ → τ Γ ` r′ : σ
Γ ` rr′ : τ

Function Terms

Γ ` r : τ Γ, x : τ ` r′ : τ ′

Γ ` let x : τ be r in r′ : τ ′

Let Terms

Figure 3.1: Typing Rules

56

Definition 3.2.2 A λ?-axiom system, 〈Sg, Ax〉, consists of a λ?-signature, Sg,

and a collection, Ax, of equations in context, Γ ` t =τ t′, well-typed with respect

to the signature, that is, Sg . Γ ` t : τ and Sg . Γ ` t′ : τ .

We will discuss below (Remark 3.2.4) why we do not allow axioms to be arbitrary

refinements. We assume some fixed axiom system 〈Sg, Ax〉 throughout.

Definition 3.2.3 Let 〈Sg, Ax〉 be a λ?-axiom system. We define the theorems of

〈Sg, Ax〉 to be the refinements which can be inferred using the rules of Figures 3.2,

3.3, 3.4, 3.5 and 3.6. We write 〈Sg, Ax〉 . Γ ` r vτ r′ to indicate that refinement

Γ ` r vτ r′ is a theorem of axiom system 〈Sg, Ax〉.

We write the equality, r =τ r′, to mean the mutual refinement, r vτ r′ and

r′ vτ r, and extend the rule convention mentioned in the previous chapter, so

that when we include rules from λ×→ in λ?, equality rules are to be taken as

mutual refinements.

Figure 3.2 gives the rules for inferring theorems from a λ?-axiom system.

These are the natural extension of the rules in Chapter 2, with the condition that

substitution is restricted to determined terms.

The equality rules of Figures 3.3 and 3.4 are on top of those of the simply-

typed lambda calculus in Figure 2.2, Chapter 2, which should now be read as

mutual refinements.

The rules are given for determined terms. Although we show below various

generalisations of these to arbitrary underdetermined terms, we prefer to give

the axioms of the calculus in this minimal form as it more clearly shows that

refinement is an axiomatisation on top of the underlying equational theory.

Figures 3.3 and 3.4 axiomatise how underdeterminism combines with program

constructs via the let expressions. Most of these rules are taken from the com-

putational lambda calculus. The exception is the rule for Abstractions, which

makes explicit the ‘hidden dependency’ of specifications on variables in the con-

text. A specification, ?τ , under an abstraction, λx : σ, can be refined to terms

which contain the x. We remarked on p. 24 that this is an important difference

between ? and ε. Now, this is equivalent to specifying some term ?σ→τ outside

the λ, which is then applied to x under the λ. This rule is the only addition

to Moggi’s computational lambda calculus, and has significant consequences (see

Lemma 3.2.10). Logically, we can think of the rule as a form of skolemisation,

where abstractions correspond to universal quantifications and let’s to existential

quantifications.

57

Γ ` t =τ t′
(Γ ` t =τ t′ ∈ Ax)

Axioms

Γ1, Γ2 ` r vτ r′

Γ1, x : σ, Γ2 ` r vτ r′

Weakening

Γ1, x1 : σ1, Γ2, x2 : σ2, Γ3 ` r vτ r′

Γ1, x2 : σ2, Γ2, x1 : σ1, Γ3 ` r vτ r′

Permutation

Γ, x : σ ` r vτ r′ Γ ` t : σ

Γ ` r[t/x] vτ r′[t/x]

Substitution

Figure 3.2: Theorems Generated from a λ?-Axiom System 〈Sg, Ax〉

In view of Let Associativity, we use let x1 : σ1, x2 : σ2 be r1, r2 in r as an

abbreviation of the nested let-term let x1 : σ1 be r1 in (let x2 : σ2 be r2 in r).

Note that because of the assumption of well-formedness of contexts, we can omit

side-conditions on the occurrence of variables. For example, in Let Associativ-

ity, since Γ, y : τ is well-formed, y is not in Γ and so y is not in r′′.

Figures 3.5 and 3.6 axiomatise the refinement relation. The intuition behind

the refinement relation is that it should correspond to an increase in information,

and a decrease in the possible programs to which a term can refine. There are

top-down rules for decomposing a specification by refinement into a combination

of simpler ones. We also have a weakening rule Let Weakening which may

be thought of as claiming an auxiliary lemma, and a congruence rule for let-

expressions, which lets us derive the corresponding rules for pairs, applications

and projections.

A number of similar refinement rules for the destructors, and sequent style

bottom-up rules for making use of the context are derived below (Propositions

3.2.19 and 3.2.20, respectively).

58

The equality rules in Figures 2.1 and 2.2, Chapter 2 together with:

Γ ` t : τ Γ, x : τ ` r : τ ′

Γ ` let x : τ be t in r[x] =τ ′ r[t]

Let Beta

Γ ` r : τ
Γ ` let x : τ be r in x =τ r

Let Eta

Γ ` r : τ Γ, y : τ ` r′ : τ ′ Γ, x : τ ′ ` r′′ : τ ′′

Γ ` let x : τ ′ be (let y : τ be r in r′[y]) in r′′[x]
=τ ′′ let y : τ be r in (let x : τ ′ be r′[y] in r′′[x])

Let Associativity

Figure 3.3: Equality Rules

Example 3.2.4 Since the definitions of signatures and axiom systems are the

same for λ? and λ×→, we just use the axiomatisation of booleans and naturals in

Chapter 2, given in Figures 2.4 and 2.5. It is an important point that axioms

are given as equations between determined terms, and not as refinements.

The practical implication of this is that if we enrich the language with some

new operations, then no extra work is required to give refinement rules, except for

equalities (which are a trivial form of refinement). Since all valid refinements are

derivable from the rules of the calculus it is unnecessary to have to come up with

new rules. The theoretical justification for this will follow from the completeness

theorems. For any axiom system, the rules we give are sufficient to prove all true

refinements.

We indicate now how this is done in the case of the booleans. We need

only use the general rule for combining let-terms and constants. For constant

k : τ1, . . . , τn → τ , we have

let x1 : τ1, . . . , xn : τn be r1, . . . , rn in k(x1, . . . , xn) = k(r1, . . . , rn)

For booleans this gives for example

let x : bool, y : σ, z : σ be r1, r2, r3 in (if x then y else z)
=σ if r1 then r2 else r3

59

Γ ` r1 : τ1 · · · Γ ` rn : τn

Γ ` let x1 : τ1, . . . , xn : τn be r1, . . . , rn

in k(x1, . . . , xn) =τ k(r1, . . . , rn)

(k : τ1, . . . , τn → τ ∈ K)

Constants

Γ ` r : σ → τ Γ ` r′ : σ
Γ ` let x : σ → τ, x′ : σ be r, r′ in xx′ =τ rr′

Applications

Γ ` r : τ Γ ` r′ : τ ′

Γ ` let x : τ, x′ : τ ′ be r, r′ in 〈x, x′〉 =τ×τ ′ 〈r, r′〉

Pairs

Γ ` r : τ1 × τ2

Γ ` let x : τ1 × τ2 be r in πi(x) =τi πi(r)
(i = 1, 2)

Projections

Γ, x : σ, y : τ ` r[x, y] : τ ′

Γ ` let z : σ → τ be ?σ→τ in λx : σ.r[x, zx]
=σ→τ ′ λx : σ.(let y : τ be ?τ in r[x, y])

Abstractions

Figure 3.4: Equality rules cont.

60

Γ, x : σ, Γ′ ` ?σ vσ x

Variables

Γ ` ?τ vτ k(?τ1 , . . . , ?τn) (k : τ1, . . . , τn → τ ∈ K)

Constants

Γ ` ?1 v1 ∗

Unit

Γ ` ?σ×τ vσ×τ 〈?σ, ?τ〉

Pairs

Γ ` ?σ→τ vσ→τ λx : σ.?τ

Abstractions

Figure 3.5: Refinement Rules

61

Γ ` r1 vτ1 r′1 Γ, x : τ1 ` r2 vτ2 r′2
Γ ` let x : τ1 be r1 in r2 vτ2 let x : τ1 be r′1 in r′2

(let)

Γ, x : σ ` r vτ r′

Γ ` λx : σ.r vσ→τ λx : σ.r′
(abs)

Congruence

Γ ` r : τ
Γ ` r vτ r

Reflexivity

Γ ` r vτ r′ Γ ` r′ vτ r′′

Γ ` r vτ r′′

Transitivity

Γ ` r′ : τ Γ ` r : σ
Γ ` r′ vτ let x : σ be r in r′

(x /∈ FV (r′))

Let Weakening

Figure 3.6: Refinement Rules cont.

There is one refinement rule for each constant. If Sg . k : τ1, . . . , τn → τ then

Γ ` ?τ vτ k(?τ1 , . . . , ?τn)

In combination with the congruence rule for let-terms, we have, in particular

then:

?bool v b̄

?nat v n̄

?τ v if ?bool then ?τ else ?τ

Now, we say that a term, r is satisfiable if there exists a determined t, such

that r refines to t. Otherwise r is unsatisfiable. A consequence of the way we

have axiomatised constants and, in particular, the conditional, is that if emptynat
is an unsatisfiable term (see Remark 3.2.18) of type nat, then the conditional

if true then 3 else emptynat is unsatisfiable. We can not apply the equation

βtrue of Figure 2.4 since emptynat is not determined.

62

This is in contrast to refinement calculi based on nondeterminism (e.g.[Bun97,

Mor94]) so it is worth considering why we should expect this term to be unsatis-

fiable.

Although the calculus is (in)equational, the idea is that terms represent stages

in the search for a program. We would only expect such a term to have arisen

during refinement if the intention is to refine into a conditional, and so both

branches must be refined to program code. Since this is not possible, the whole

term is unsatisfiable. The fact that the satisfiability of a term depends on the

satisfiability of all its subterms means that we can reason about specifications

compositionally. In order to implement a specification, we need just implement

its components. The alternative would be if we had to do some implementation,

combine the resulting specifications somehow, then do some more implementation

and so on. Thus we adhere to the ‘principle of modular decomposition’ advocated

in [SST92]. The same principle applies when refining into the application of two

terms (see Remark 5.2.7).

Remark 3.2.5 Let us consider why a ‘naive’ approach using free variables is

not sufficient. Suppose we represent a stage of refinement as a term t[x1, . . . , xn]

with free variables x1, . . . , xn such that Q1[x1] ∧ · · · ∧ Qn[xn] ⊃ P [t[x1, . . . , xn]].

The free variables stand for unwritten programs and to refine we replace a free

variable with a term, possibly introducing more free variables and constraints.

We could refine x1 to a term t1[y1, . . . , ym], say, by introducing new free variables,

y1, . . . , ym, with constraints such that

R1[y1] ∧ · · · ∧Rm[ym] ⊃ Q1[t1[y1, . . . , ym]]

However, this does not address the possibility of refining under an abstrac-

tion. If t1[y] is of the form λx : σ.t2[y], then the constraint could be given as

∀x : σ.∃y : τ . R[x, y] ⊃ Q1[λx : σ.t2[y]], so now y is not a (global) free variable.

If, instead, we represent variables under abstractions using functional variables,

and write ∃f : σ → τ .∀x : σ . R[x, fx] ⊃ Q1[λx : σ.t2[fx]], then this just avoids

the issue: the unwritten program has the same representation as a variable of

type σ → τ and we make no progress!

Logically, this leads to arbitrarily nested quantifiers. In fact, the logic of

refinement is a formalism for just that. This justifies the need for a ‘theory of

refinement’ which can handle such reasoning more naturally.

Remark 3.2.6 Although a naive use of global variables is unable to account for

variable capture, we could some form of variable labelled with the local context.

63

However, we would then need to make a distinction between variables representing

something taken as given, and those representing something which remains to be

implemented. We will make some suggestions for such a system, based on logical

variables, in Section 6.6.

However, refinement calculi have traditionally been formulated in terms of

some kind of specification construct, variations on the stubs we use here. The

equivalence with, and axiomatisation in terms of logical variables is a subject for

future work.

Remark 3.2.7 The ? is not the same as a nonterminating or undefined term,

⊥. If it was, then in a call-by-value operational semantics, we would have

(λx : σ.2)?σ = ?nat, which is not true in λ? if σ is inhabited; in a call-by-name

semantics we would have (λx : σ.〈x, x〉)?σ = 〈?σ, ?σ〉 and this is not true in λ? if

σ has more than one inhabitant.

More significantly, we show below in Remark 3.4.8 that interpreting ? as ⊥ in

a cpo does not even provide a sound model of λ?.

Remark 3.2.8 In Chapter 1, we noted that Hilbert’s ε-operator differs from

?. In particular, because models are given using a global choice function, the

abstraction λx.εy.> will always be interpreted as a constant function.

The equational theory of λ? developed in this chapter is based on the idea

that we cannot substitute arbitrary underdetermined terms for variables, so we

use let-terms. Since ε-expressions denote individuals, they can be substituted like

other terms. For example, (λx.〈x, x〉)εx.> = 〈εx.>, εx.>〉 is sound. In fact, the

ε-operator can be axiomatised by adding P [t/x] ⊃ P [εx.P/x] for each t and P ,

which is not the case for underdetermined terms.

The logic of the HOL proof assistant contains a (polymorphic) ε-operator,

ε : (α → bool) → α. It is modelled using a choice function, and there is no

explicit refinement.

The following lemma provides some insight into underdeterminism. Although

stubs can be embedded anywhere in a term, we can give a canonical form with

all the underdeterminism moved ‘to the outside’. For example, λx : σ.〈2, ?nat〉 is

equal to let f : σ → nat be ?σ→nat in λx : σ.〈2, fx〉. Thus, each term can be

viewed as a simple combination of program and specification.

Lemma 3.2.9 For all terms in context Γ ` r : τ , there exists a determined term

in context Γ, x1 : σ1, . . . , xn : σn ` t : τ such that each xi appears exactly once in

t, and Γ ` (let x1 : σ1, . . . , xn : σn be ?σ1 , . . . , ?σn in t) =τ r.

64

Proof: Use let rules to move the underdeterminism outwards, the important

case being the abstractions.

Note the linearity – each stub counts exactly once, so 〈?σ, ?σ〉 has canonical form

let x : σ, y : σ be ?σ, ?σ in 〈x, y〉 and not let z : σ be ?σ in 〈z, z〉 (to which it

refines though). We will not, however, use the linearity in appeals to the lemma

below. Note also that such canonical forms need not be unique. We sometimes

use the useful abbreviation let x1 : σ1, . . . , xn : σn in t for the canonical form.

So, for example, λx : σ.〈2, ?nat〉 is equal to let f : σ → nat in λx : σ.〈2, fx〉.
In fact, by repeated pairing, we can always express terms in the simpler form

let x : σ in t.

It is often convenient to write let x1 : σ1, . . . , xn : σn in t as let Γ in t,

where Γ stands for the local context x1 : σ1, . . . , xn : σn. We also write t[Γ] as

informal notation for t[x1, . . . , xn].

By expressing terms in canonical form, we can prove a few results about let

expressions. None of these results hold in the computational lambda calculus.

Lemma 3.2.10 The following rules are admissible:

1. (let-commutativity)

Γ ` r : τ Γ ` r′ : τ ′ Γ, x : τ, y : τ ′ ` r′′ : τ ′′

Γ ` let x : τ, y : τ ′ be r, r′ in r′′ =τ ′′ let y : τ ′, x : τ be r′, r in r′′

2. (let-contraction)

Γ ` r : σ Γ, x : σ, y : σ ` r′ : τ

Γ ` let x : σ, y : σ be r, r in r′ vτ let z : σ be r in r′[z/x, z/y]

3. (Strengthen local context)

For x /∈ FV (r′),

Γ ` r′ : τ ′ Γ, x : τ, y : τ ′ ` r : τ ′′

Γ ` λx : τ.(let y : τ ′ be r′ in r) vτ→τ ′′ let y : τ ′ be r′ in λx : τ.r

Proof: We prove (3).

First we show that

λx : σ.let y : τ in r[y] v let y : τ in λx : σ.r[y] (3.4)

65

This is:

λx : τ .let y : τ ′ in r[y]
= let z : τ → τ ′ in λx : τ .r[zx] (Abstractions)
v let y : τ ′ in let z : τ → τ ′ in λx : τ .r[zx] (Let Weakening)
v let y : τ ′ in (y : τ ′ ` ?τ→τ ′ v λx : τ .y,

let z : τ → τ ′ be λx : τ .y in λx : τ .r[zx] and Congruence)
= let y : τ ′ in λx : τ .r[y] (Congruence)

Then:

λx : τ .let y : τ ′ be r′ in r[x, y]
= λx : τ .let y : τ ′ be (let z : σ in t) in r[x, y] (Lemma 3.2.9; can. form)
= λx : τ .let z : σ in (let y : τ ′ be t in r[x, y]) (Let Associativity)
v let z : σ in λx : τ .(let y : τ ′ be t in r[x, y]) (3.4)
= let z : σ in let y : τ ′ be t in λx : τ .r[x, y] (Let Beta)
= let y : τ ′ be (let z : σ in t) in λx : τ .r[x, y] (Let Associativity)
= let y : τ ′ be r′ in λx : τ .r[x, y] (can. form)

The proofs of (1) and (2) are carried out similarly, by expressing terms in

canonical form.

Commutativity of let’s corresponds to the idea that it does not matter what

order we solve subproblems in (so long as they do not depend on each other),

and contraction of let’s says that we can solve two identical problems by just

solving the problem once and using the solution twice. The third rule illustrates

the dependence of underdeterminism on the context. There are more determined

terms which satisfy the term on the left, since x can be used in refining r′, but

this is not possible when r′ is outside the bound variable on the right.

If all types are inhabited then, in fact, all terms are satisfiable. Because of this,

the rule Let Weakening can be strengthened to an equality, i.e. for x /∈ FV (r′),

we have r′ = let x : σ be r in r′. We use this fact to derive strengthened forms

of the β-equality for products and η-equality for units (Chapter 2) for arbitrary

underdetermined terms (of appropriate type).

Proposition 3.2.11 If all types are inhabited:

1.

Γ ` r1 : τ1 Γ ` r2 : τ2

Γ ` πi〈r1, r2〉 =τi ri
(i = 1, 2)

2.
Γ ` r : 1

Γ ` r =1 ∗

Proof:

1. The first is derived as:

π1〈r1, r2〉 = π1〈let x : σ in t1, let y : τ in t2〉 (for some t1, t2)
= let x : σ, y : τ in π1〈t1, t2〉
= let x : σ, y : τ in t1

= let x : σ in t1

= r1

66

The v of the second last equality is by refining with some determined term

of type τ , and the w is an instance of Let Weakening.

2. Suppose r has type 1. Now r has canonical form let x : σ in t, say, where

t has type 1. By Unit Equation we can prove x : σ ` t =1 ∗ and so

let x : σ in t =1 let x : σ in ∗, which since σ is inhabited, equals ∗.

We can strengthen the β-equality for abstractions, without the assumption of

nonemptiness.

Proposition 3.2.12 The following is admissible:

Γ, x : σ ` r : τ Γ ` t : σ

Γ ` (λx : σ.r)t =τ r[t/x]

Proof: We use the auxiliary result that for any t of type σ

let f : σ → τ in r[ft/x] = let x : τ in r

Then,
(λx : σ.r)t = (λx : σ.let z : τ ′ in t′)t

= let f : σ → τ ′ in (λx : σ.t′[fx/z])t
= let f : σ → τ ′ in t′[ft/z, t/x]
= let z : τ ′ in t′[t/x]
= r[t/x]

Remark 3.2.13 We can use Proposition 3.2.12 to derive Landin’s Equation:

(λx : σ.r)r′ = let x : σ be r′ in r

In principle, therefore, it would be possible to define let in terms of abstraction

and application. However, this would lead to unnatural looking equivalents for

the let axioms. A more significant reason for making let primitive is that this

equation fails when we incorporate logic in the λv calculus in Chapter 5.

Because of Proposition 3.2.12, we can β-reduce applications with arbitrary

function bodies. This is significant as it means that underdetermined terms can

be executed, up to a point, as ordinary programs. In general, this is not possible

as evaluation can not proceed when a stub is encountered. For example, π1(?σ×τ)

cannot be reduced. This observation could form the basis for a single-step oper-

ational semantics, and we discuss this in Chapter 6.

67

At this point, we pause to review our motivation for studying this calcu-

lus. Program refinement is a stepwise decomposition of logical specifications and

their gradual replacement with code. The calculus which we are studying here

formalises refinement for a limited form of specification, with no logic, and is a

fragment of a larger calculus studied in Chapter 5.

The statement corresponding to Proposition 3.2.12 does not hold in the full

system (see Remark 5.2.7) and the auxiliary result fails too. That is, in the pres-

ence of logic, we cannot β-reduce with arbitrary function bodies. This is not a

problem, as such, since the specification language is not intended to be evaluated.

Rather, it is a bonus that β-reduction does make sense here. We believe that this

is motivation for studying this subcalculus of a full logical refinement calculus.

In an implementation of a program development system, we would like to be able

to evaluate partially developed programs such as is formalised in the dynamic

semantics of Extended ML [KST97]. If the system is based on the logical refine-

ment calculus of Chapter 5, then we cannot directly evaluate terms. We can,

however, use the fragment based on the λ?-calculus.

Now, Propositions 3.2.11 and 3.2.12 show that we can deduce general forms

of β-equality, although the axioms for pairs and abstractions are given for de-

termined terms. We do not, however, have η-equalities for arbitrary pairs and

abstractions.

To see why this should be so, recall, first, that we think intuitively of λ?-terms

as describing a set of values. Equality of terms corresponds to equality of the sets

of values. Now, it is possible for two different sets of functions to return the same

set of results for each argument. Thus the equation λx : σ.rx =σ→τ r cannot be

valid. Likewise, different sets of pairs can have the same set of first (or second)

projections.

To illustrate this, we give two terms, r1 and r2, which have the same set of

results for each argument, but such that r1 does not equal r2. Let r1 ≡ let b :

bool in λx : σ.b and r2 ≡ λx : σ.?bool. These terms are different, since one can

refine to any function in σ → bool, and the other to any such constant function.

We can prove that they have the same set of results, for each argument x : σ,

however. In fact, we have λx : σ.r1x =σ→τ r2.

λx : σ.(let b : bool be ?bool in λx : σ.b)x
= λx : σ.let b : bool be ?bool in (λx : σ.b)x
= λx : σ.?bool

Remark 3.2.14 As in the computational lambda-calculus, application dis-

tributes over let’s. Using the rules of Let Associativity (twice) and Applica-

68

tions we get:
(let x be r in r′)t = let x1 be (let x be r in r′) in x1t

= let x be r in (let x1 be r′ in x1t)
= let x be r in r′t

Although the η-equalities do not hold for arbitrary pairs and abstractions,

inequalities are admissible.

Proposition 3.2.15 The following are admissible:

Γ, x : σ ` r : τ
Γ ` λx : σ.rx vσ→τ r

Γ ` r : σ × τ
Γ ` 〈π1r, π2r〉 vσ×τ r

Proof: We sketch the proof of the first statement. By Lemma 3.2.9, r has canon-

ical form let y : σ′ in t. Then, λx : σ.(let y : σ′ in t)x = λx : σ.let y : σ′ in tx,

by the distribution of application over let’s. By Lemma 3.2.10(3), this refines to

let y : σ′ in λx : σ.tx, which by Function Equations (η) and Congruence,

equals let y : σ′ in t, that is, r.

Proposition 3.2.16 The axiom Abstraction follows from the simpler

Γ, x : σ, y : τ ` t[x, y] : τ ′

Γ ` let z : σ → τ in λx : σ.t[x, zx] =σ→τ ′ λx : σ.(let y : τ in t[x, y]) (3.5)

where the term t is determined.

Proof: The first step is to show, by induction over terms, that (3.5) is sufficient

to prove that all terms have a canonical form. For the abstraction case, we

have λx : σ.r = λx : σ.let y : τ in t[x, y], by induction, and using (3.5) we get

let f : σ → τ in λx : σ.t[x, fx]. Now we prove the full axiom.

Assume λx : σ.let y : τ in r : σ → τ ′.
λx : σ.let y : τ in r[x, y] = λx : σ.let y : τ , z : τ ′ in t[y, z]

= λx : σ.let p : τ × τ ′ in t[π1p, π2p]
= let f ′′ : σ → τ × τ ′ in λx : σ.t[π1(f

′′x), π2(f
′′x)]

= let f : σ → τ , f ′ : σ → τ ′ in λx : σ.t[fx, f ′x]
= let f : σ → τ in λx : σ.let z : τ ′ in t[fx, z]
= let f : σ → τ in λx : σ.r[x, fx]

The next lemma says that our refinement rules are complete, in the sense that

they allow us to construct by refinement any program which satisfies a specifica-

tion (recalling that, for now, we view types as rudimentary specifications).

Lemma 3.2.17 If Γ ` t : σ then Γ ` ?σ vσ t.

Proof:

By Proposition 3.2.12, ?σ = (λx : σ.?σ)t. Then (λx : σ.?σ)t v (λx : σ.x)t = t.

69

The fact that this can be proven trivially motivates restricted calculi better suited

to proof search, where construction must be on the structure of t. We will discuss

this in Chapter 6.

Remark 3.2.18 Using booleans, we can define a form of binary choice on

terms. For r, r′ : σ, define

r[]r′ , let b : bool in (if b then r else r′)

We can prove that [] is commutative, associative, and idempotent, and so is a

reasonable notion of choice. This definition is useful because it helps to illustrate

the differences between underdeterminism and nondeterminism (e.g.[Dij76]). If

the reader is unfamiliar with nondeterminism, then this remark can be safely

ignored.

We compare our axiomatisation of underdeterminism with a notion of ex-

ternal nondeterminism, that is, where the nondeterminism arises from the en-

vironment making the choice. In particular, we compare a nondeterministic

choice operator, +, with []. For example, we would intuitively expect to have

λx : nat.2 + 3 = λx : nat.2 + λx : nat.3 (using some constants for naturals). This

contrasts with the properties of [] under a binding, since 2[]3 can refine to anything

well-formed in the local context. For example, 2[]3 v if x > 3 then 2 else 3, so

λx : nat.2[]3 v λx : nat.if x > 3 then 2 else 3. Then we have λx : nat.2[]3 v
λx : nat.2[]λx : nat.3, but not the reverse.

Another difference is between nondeterministic failure terms and the analo-

gous idea for underdeterminism — unsatisfiable terms. Suppose the type τ is

uninhabited. Then there are unsatisfiable terms at every type. Any term of the

form let x : τ in r, where r is any term of type σ, will be unsatisfiable. Now, for

nondeterministic failure, we expect r + 0 = r. However, if the term emptyσ is un-

satisfiable, then r[]emptyσ is also unsatisfiable. Informally, ‘r[]emptyσ = emptyσ’.

We now show that ‘underdeterminism commutes with determinism’, in the

sense that underdeterminism at a particular type can be expressed at a lower type

using the relevant term constructor. This offers some conceptual justification for

regarding underdeterminism as being a feature at a level above a programming

language. There is no interaction with computation.

Proposition 3.2.19 The following are derivable:

1. ?σ×τ = 〈?σ, ?τ〉

2. 〈π1(?σ×τ), π2(?σ×τ)〉 = ?σ×τ

70

3. If τ is inhabited, then π1(?σ×τ) = ?σ, and if σ is inhabited, then

π2(?σ×τ) = ?τ .

4. ?σ→τ = λx : σ.?τ and ?σ→τr =τ ?τ for all satisfiable r : σ.

Proof: We prove (1), that ?σ×τ =σ×τ 〈?σ, ?τ〉. Clearly, the refinement rule for

Pairs lets us refine from left to right. We prove the other direction.
〈?σ, ?τ〉 = let x : σ, y : τ be ?σ, ?τ in 〈x, y〉

v let z : σ × τ be ?σ×τ in

let x : σ, y : τ be ?σ, ?τ in 〈x, y〉
v let z : σ × τ be ?σ×τ in

let x : σ, y : τ be π1z, π2z in 〈x, y〉
= let z : σ × τ be ?σ×τ in 〈π1z, π2z〉
= ?σ×τ

The proofs of the other statements are carried out in a similar way, by expressing

the terms in canonical form, and using the let-axioms and Lemma 3.2.10 to

manipulate the terms.

We can derive some useful refinement rules. As mentioned above, it is possible

to derive bottom-up style refinement rules, complementing the top-down rules

given as primitive, as well as various congruence rules. Bottom-up rules put

together existing programs, whereas top-down rules decompose specifications. We

formulate the bottom-up rules in terms of manipulating variables in the context.

Proposition 3.2.20 The following are derivable:

Γ ` t : σ Γ, x : τ ` r vν r′[x]

Γ, y : σ → τ ` r vν r′[yt]
x /∈ FV (r)

Γ, x : τ ` r vσ r′[x]

Γ, z : τ × τ ′ ` r vσ r′[π1z]
x /∈ FV (r)

Γ, y : τ ′ ` r vσ r′[y]

Γ, z : τ × τ ′ ` r vσ r′[π2z]
y /∈ FV (r)

Bottom-up Refinement

Γ ` r1 vσ r′1 Γ ` r2 vτ r′2
Γ ` 〈r1, r2〉 vσ×τ 〈r′1, r′2〉

Γ ` r1 vτ1 r′1 · · · Γ ` rn vτn r′n
Γ ` k(r1, . . . , rn) vτ k(r′1, . . . , r

′
n)

Γ ` r vτ1×τ2 r′

Γ ` πi(r) vτi πi(r
′)

(i = 1, 2)
Γ ` r1 vσ→τ r′1 Γ ` r2 vσ r′2

Γ ` r1r2 vτ r′1r
′
2

Congruence

71

Proof: The bottom-up refinement rules are obtained by substitution. The first

projection rule, for example, is derived as:

Γ, x : τ ` r vσ r′[x]

Γ ` λx : τ .r vτ→σ λx : τ .r′[x]

Γ, z : τ × τ ′ ` (λx : τ .r)π1z vσ (λx : τ .r′[x])π1z

Γ, z : τ × τ ′ ` r vσ r′[π1z]

Alternatively, this can be derived directly using Substitution. The congruence

rules all follow from the rule for let-terms. For example, the rule for pairs follows

since 〈r1, r2〉 equals let x1 : τ1, x2 : τ2 be r1, r2 in 〈x1, x2〉. Then using Congru-

ence (let), this refines to let x1 : τ1, x2 : τ2 be r′1, r
′
2 in 〈x1, x2〉, which equals

〈r′1, r′2〉.
We make a similar point here to that made after Lemma 3.2.17. In a search-

directed refinement calculus (as discussed in Chapter 1), where the rules are given

for direct refinement, we would expect these rules would be primitive. Our inten-

tion here, though, is to give a system complete for proving arbitrary refinements

of the form r vτ r′ and not goal-directed refinements r vτ t.

Another point is that although we can infer forms of the bottom-up rules in

which the substitution takes place in both terms (for example, if y : τ ′ ` r[y] vσ

r′[y] then z : τ × τ ′ ` r[π2z] vσ r′[π2z]) the forms we gave are more suitable for

directed refinement.

Example 3.2.21 We can use Let Weakening (or the derived rule of contraction

in Lemma 3.2.10) to combine two equivalent stubs into one:

〈?σ, ?σ〉 v let z : σ be ?σ in 〈?σ, ?σ〉 v let z : σ be ?σ in 〈z, z〉

The first step uses Let Weakening, and the second uses the refinement rules

Variables, Reflexivity, Pairs and Congruence (let).

Example 3.2.22 We give a short example, using refinement to derive a swap

function. Transitivity of refinement means that we can often present much of a

refinement derivation as a form of equational reasoning. Here there are two main

steps.

?σ×τ→τ×σ v λz : σ × τ .?τ×σ v λz : σ × τ .〈π2z, π1z〉

Formally, this is

` ?σ×τ→τ×σ v λz : σ × τ .?τ×σ ` λz : σ × τ .?τ×σ v λz : σ × τ .〈π2z, π1z〉
` ?σ×τ→τ×σ v λz : σ × τ .〈π2z, π1z〉

Trans.

72

The first hypothesis follows from Congruence (abs), and the second is derived

as

z : σ × τ ` ?τ×σ v 〈?τ , ?σ〉
Pairs see below

z : σ × τ ` 〈?τ , ?σ〉 v 〈π2z, π1z〉
z : σ × τ ` ?τ×σ v 〈π2z, π1z〉

Trans.

` λz : σ × τ .?τ×σ v λz : σ × τ .〈π2z, π1z〉
Congruence

y : τ ` ?τ v y
Variables

z : σ × τ ` ?τ v π2z
Congruence

x : σ ` ?σ v x
Variables

z : σ × τ ` ?σ v π1z
Congruence

z : σ × τ ` 〈?τ , ?σ〉 v 〈π2z, π1z〉
Congruence

3.3 Metatheory

In this section we prove some results which illustrate the fine structure of the

refinement relation. Intuitively, refinement is a combination of coding, where

stubs are replaced with program code, and equational reasoning using the rules

of the calculus. It is possible to formalise this by defining an explicit coding

relation, , and factorising refinement into a combination of and =.

Definition 3.3.1 We define the coding relation on well-typed terms, Γ ` r r′,

as the reflexive, transitive, congruence closure of the following one-step relation:

Γ ` t : τ
Γ ` ?τ t

We can express any term, r , in the form t[?Γ1
σ1

, . . . , ?Γn
σn], where ?Γi

σi
means that

the subterm ?σi appears in ‘local context’ (of let’s and λ’s) Γi, and each such

subterm appears exactly once. Then Γ ` r t′ means that for each i = 1 . . . n,

there exists a determined term Γ, Γi ` ti : σi, such that Γ ` t[t1, . . . , tn] =τ t′.

We now show that any refinement to a program can be given as a ‘standard

refinement sequence’ consisting of coding followed by equational reasoning.

Lemma 3.3.2 Let 〈Sg, Ax〉 be a λ?-axiom system and suppose that

〈Sg, Ax〉.Γ ` r vτ t′. Then there exists a term Sg .Γ ` t : τ such that Γ ` r t

and 〈Sg, Ax〉 . Γ ` t =τ t′.

Proof: We can prove the lemma by induction on the derivation of refinement.

The inductive case involves showing that the coding can be extended back along

each rule. We consider two cases. The reasoning is similar for the others.

73

• Let Weakening

Suppose Γ ` r v let x : σ be r′ in r t′′, where r ≡ t1[?
Γ1
σ1

, . . . , ?Γn
σn]. By

the inductive hypothesis, there exists a t′ and t2[x] such that Γ ` r′ v t′

(the details of this refinement do not matter), and Γ, x : σ ` r t2[x] with

Γ ` let x : σ be t′ in t2 = t′′, so Γ ` t2[t
′] = t′′. Now the coding of r gives

terms Γ, x : σ, Γi ` ui : σi for each i = 1 . . . n, and so Γ, Γi ` ui[t
′/x] : σi.

Hence, Γ ` r t2[t
′] = t′′, by refining ?Γi

σi
to ui[ti/x].

• Abstractions

Since this rule is given as an equation, we must consider the two directions

of refinement separately. Suppose

Γ ` let z : σ → τ in λx : σ.t′[?Γi
σi

, x, zx]

v λx : σ.(let y : τ in t′[?Γi
σi

, x, y]) t

(using the abbreviated notation for let-terms). For clarity, we just indicate

the one specification ?σi . Here Γi records the context in t′.

By induction, there exist terms Γ, x : σ, y : τ , Γi ` ui[x, y] : σi and

Γ, x : σ ` u[x] : τ such that Γ ` λx : σ.(let y : τ be u in t′[ui, x, y]) = t,

that is, Γ ` λx : σ.t′[ui[x, u], x, u] = t.

Then, Γ ` λx : σ.u[x] : σ → τ and Γ, z : σ → τ , x : σ, Γi ` ui[x, zx] : σi so

we can refine the left term to

Γ ` let z : σ → τ be λx : σ.u[x] in λx : σ.t′[ui[x, zx], x, zx], which equals

λx : σ.t′[ui[x, u[x]], x, u[x]], and this equals t.

Now we consider the reverse refinement. Suppose

Γ ` λx : σ.(let y : τ in t′[?Γi
σi

, x, y])

v let z : σ → τ in λx : σ.t′[?Γi
σi

, x, zx] t

By induction, we have terms Γ ` u : σ → τ and

Γ, z : σ → τ , x : σ, Γi ` ui[z, x] : σi such that

Γ ` let z : σ → τ be u in λx : σ.t′[ui[z, x], x, zx] = t

so Γ ` λx : σ.t′[ui[u, x], x, ux] = t.

Hence we have terms

Γ, x : σ ` ux : τ

Γ, x : σ, y : τ , Γi ` ui[u, x] : σi

for which

Γ ` λx : σ.(let y : τ be ux in t′[ui[u, x], x, y]) = t

and so we can refine the left term in the standard way.

74

We can use this lemma to deduce that all auxiliary ‘claims’ made using Let

Weakening can be immediately satisfied.

Lemma 3.3.3 Let 〈Sg, Ax〉 be a λ?-axiom system.

If 〈Sg, Ax〉 . Γ ` let z : σ be r in r′ vτ t′′ then there exists a determined term

Sg . Γ ` t : σ such that 〈Sg, Ax〉 . Γ ` r vσ t and 〈Sg, Ax〉 . Γ ` r′[t/z] vτ t′′.

Proof: Suppose that r ≡ u[?Γi
σi

] and r′ ≡ u′[z, ?Γj
τj

]. Then by Lemma 3.3.2, there

exist ti, uj such that Γ ` let z : σ be t[ti] in t′[z, uj] =τ t′′. Hence, Γ ` r vσ t[ti]

and r′[t[t′]] vτ t′[t[ti], uj] =τ t′′.

Remark 3.3.4 For the above two lemmas to hold it is crucial that the ax-

ioms of a λ?-axiom system just consist of determined equations, t =τ t′. If,

for example, we had constants k1, k2, k3 : τ and axiom k1[]k2 vτ k3, that is,

let b : bool in (if b then k1 else k2) vτ k3, then we would not be able to find

a specific t : bool such that if t then k1 else k2 =τ k3.

In the introduction, we said that refinement should be thought of intuitively

as a reduction in the set of programs which satisfy a specification (or refinement

term, rather). We can formalise this by defining an ordering r .Γ
τ r′, on well-

formed terms Γ ` r : τ and Γ ` r′ : τ , to mean: for all Γ′ ⊇ Γ, for all determined

Γ′ ` t : τ , if Γ′ ` r′ vτ t then Γ′ ` r vτ t.

Lemma 3.3.5 (Refinement Mappings)

If let x1 : σ1, . . . , xn : σn in t .Γ
τ let y1 : τ1, . . . , ym : τm in t′ then

for all i = 1 . . . n, there exist terms Γ, y1 : τ1, . . . , ym : τm ` ti : σi, such that

Γ, y1 : τ1, . . . , ym : τm ` t[t1/x1, . . . , tn/xn] =τ t′.

Proof: First of all, note that this can be reduced by repeated pairing to the one

variable case. Now if let x : σ in t .Γ
υ let y : τ in t′, then since

Γ, y : τ ` let y : τ in t′ v t′[y], we have Γ, y : τ ` let x : σ in t v t′[y], so

by Lemma 3.3.3, there must exist a term Γ, y : τ ` u[y] such that

Γ, y : τ ` t[u[y]] =υ t′.

Because of the definition of .Γ
τ in terms of all Γ′ ⊇ Γ we do not need to assume

that all types are inhabited. If ε1 and ε2 are both empty types, then it might

seem that let x : ε1 in ∗ .〈〉1 let x : ε2 in ∗ since neither term can refine to a

determined term in the empty context, yet we cannot produce a term t : ε2. The

75

point is, though, that since we can use the context, x : ε2, to refine let x : ε2 in ∗
but not let x : ε1 in ∗ the terms are not related by .〈〉1 .

These metatheoretic results will be used in the completeness proof of the next

section.

3.4 Models

We can interpret the calculus using a simple generalisation of Henkin models.

In Chapter 2, Section 2.2, we used λ×→-Henkin Interpretations to give models

of the simply-typed lambda calculus. There, terms of type τ were interpreted

as elements of a set τA. We will use the same apparatus, but interpret our

underdetermined terms as subsets of the τA, rather than elements.

We make one additional assumption of our models. We require that the func-

tion sets be ‘closed under factoring’.

Definition 3.4.1 We say that a λ×→-Henkin interpretation satisfies the factor-

ing condition if, letting f ′ ∈ (τ → τ ′)A, f ∈ (σ → τ ′)A: if for all b ∈ τA,

there exists an a ∈ σA such that App(f ′, b) = App(f, a), then there exists an el-

ement g ∈ (τ → σ)A such that for all b ∈ τA, App(f ′, b) = App(f, App(g, b)).

In other words, writing f̄ for the function associated with f ∈ Aσ→τ , that is,

(a ∈ σA 7→ App(f, a)): if there exists a function h : τA → σA such that f̄ ′ = h; f̄ ,

then there exists an element g ∈ (τ → σ)A such that f̄ ′ = ḡ; f̄ . Note that we do

not require ḡ = h.

The factoring condition is essentially a form of choice axiom and is necessary in

order to prove soundness.

Recall that signatures are the same for λ? and λ×→.

Definition 3.4.2 Let 〈Sg, Ax〉 be a λ?-signature. A λ?-Henkin interpretation of

〈Sg, Ax〉 is a λ×→-Henkin interpretation of 〈Sg, Ax〉 with the factoring condition.

Note that we do not require an environment model condition directly on the

interpretation of λ? terms, but rather on the underlying λ×→-Henkin interpreta-

tion. The condition lifts in the sense that satisfiable terms are given nonempty

interpretations. Moreover, the extensionality condition means that programs have

unique interpretations (as singleton sets).

Before proceeding further, we give an example of a Henkin interpretation with

the factoring condition.

76

Example 3.4.3 (Full set-theoretic function hierarchy) The sets of the full set-

theoretic function hierarchy for a given signature are defined inductively as

γA = any set

1A = {∗}

(σ × τ)A = σA × τA

(σ → τ)A = σA → τA

The projection and application maps are the usual set-theoretic maps, and con-

stants are interpreted as any elements in the appropriate sets.

We will see below that the open term model is another example. First though,

we give an example of a Henkin interpretation which does not satisfy the factoring

condition.

Example 3.4.4 The applied λ×→ theory with primitive types nat and bool,

and constants 0 : nat, succ : nat → nat, true : bool, false : bool, cond :

bool, nat, nat → nat and eq : nat, nat → bool has a Henkin model in which

natA = N , the set of natural numbers, boolA = B, the set of boolean truth

values, and the constants have the expected interpretations, where the function

sets are subsets of the space (σ → τ)A ⊆ σA → τA. The elements of the model

are just those generated by the environment model condition, that is, just those

elements required to interpret the terms of the calculus. In particular, there is

no element corresponding to the predecessor function, although the function pred

such that pred; succ = idpos, where idpos is the identity on positive naturals

λn : nat.cond(eq(n, 0), 1, n), clearly exists.

As for λ×→ in Chapter 2, meanings are given in an environment. For context

Γ ≡ x1 : σ1, . . . , xn : σn (n ≥ 0), a Γ-environment, η, in interpretation A, is a

tuple of elements defined as for λ×→, and not a tuple of subsets. We write η �A Γ

when η is a Γ-environment in A.

Now we interpret Γ ` r : τ inductively on the structure of the typing deriva-

tion. In Figure 3.7 we define the interpretation of terms in context, Γ ` r : τ , at

Γ-environment, η, written [[Γ ` r : τ]]A(η). We write the λ?-interpretation of ∗ as

{∗} rather than (the equivalent) 1A to emphasise the fact that the interpretations

are subsets. Similarly, we write the interpretation of ?σ as {a | a ∈ σA}.
We say that the typing judgement, Γ ` r : τ , is true in interpretation A and

Γ-environment, η, written Γ �A,η r : τ , when [[Γ ` r : τ]]A(η) ⊆ τA. We say that

77

[[Γ, x : σ, Γ′ ` x : σ]]〈η, a, η′〉 = {a}
[[Γ ` r1 : τ1]] = m1 · · · [[Γ ` rn : τn]] = mn

[[Γ ` k(r1, . . . , rn) : τ]](η) = {kA(a1, . . . an) | ai ∈ mi(η)}
[[Γ ` ∗ : 1]](η) = {∗}

[[Γ ` r : σ]] = m [[Γ ` r′ : τ]] = m′

[[Γ ` 〈r, r′〉 : σ × τ]](η) = {a ∈ (σ × τ)A | Projσ,τ
1 (a) ∈ m(η), Projσ,τ

2 (a) ∈ m′(η)}
[[Γ, x : σ ` r : τ]] = m

[[Γ ` λx : σ.r : σ → τ]](η) = {f ∈ (σ → τ)A | ∀a ∈ σA . App(f, a) ∈ m〈η, a〉}
[[Γ ` ?σ : σ]](η) = {a | a ∈ σA}

[[Γ ` r : τ × τ ′]] = m

[[Γ ` π1(r) : τ]](η) = {Projτ,τ ′

1 (a) | a ∈ m(η)}

[[Γ ` r : τ × τ ′]] = m

[[Γ ` π2(r) : τ ′]](η) = {Projτ,τ ′

2 (a) | a ∈ m(η)}

[[Γ ` r : σ → τ]] = m [[Γ ` r′ : σ]] = m′

[[Γ ` rr′ : τ]](η) = {App(f, a) | f ∈ m(η), a ∈ m′(η)}

[[Γ ` r : σ]] = m [[Γ, x : σ ` r′ : τ]] = m′

[[Γ ` let x : σ be r in r′ : τ]](η) =
⋃

a∈m(η) m′(〈η, a〉)

Figure 3.7: Interpretation of Well-formed Terms

Γ ` r : τ is true in A, written Γ �A r : τ , when it is true for all Γ-environments

in A. It is easily seen that we have soundness of typing, that is, if Γ ` r : τ , then

Γ �A r : τ .

Similarly, we say that the refinement, Γ ` r vτ r′, is true in interpreta-

tion A and environment η, written Γ �A,η r vτ r′, when [[Γ ` r : τ]]A(η) ⊇
[[Γ ` r′ : τ]]A(η), and define truth in an interpretation to be for all environments.

We will usually drop explicit annotation of an interpretation, A.

Definition 3.4.5 Let 〈Sg, Ax〉 be a λ?-axiom system, and let A be a λ?-Henkin

interpretation of Sg. We say that A is a λ?-Henkin model of 〈Sg, Ax〉 when each

axiom in Ax is true in A.

We will prove soundness of refinement below, but first, it is easy to see that

for determined t, the interpretation [[Γ ` t : τ]](η) is a singleton set. Now we

78

prove a standard lemma.

Lemma 3.4.6 (Substitution Lemma) For well-formed terms in context

x1 : τ1, . . . , xn : τn ` r : τ and Γ ` ti : τi (i = 1, . . . , n), we have

[[x1 : τ1, . . . , xn : τn ` r : τ]](〈a1, . . . , an〉) = [[Γ ` r[ti/xi]]](η)

where ai is the unique inhabitant of [[Γ ` ti : τi]](η).

Proof: The proof is a straightforward induction over the typing judgement

x1 : τ1, . . . , xn : τn ` r : τ .

This may be compared with the analogous form for ‘substituting’ an under-

determined term, which follows directly from the semantics of let-terms:⋃
a∈m(η)

[[Γ, x : σ ` r′ : τ]](〈η, a〉) = [[Γ ` let x : σ be r in r′ : τ]](η)

where m = [[Γ ` r : σ]].

Theorem 3.4.7 (Soundness) Let A be a λ?-Henkin model of λ?-axiom system,

〈Sg, Ax〉. If 〈Sg, Ax〉 . Γ ` r vτ r′ then Γ �A r vτ r′.

Proof: The proof is by induction on the derivation of the judgement. Most cases

are straightforward. We prove two key cases.

• Let Beta

The interpretation [[Γ ` let x : τ be t in r : τ ′]](η) is defined to be⋃
a∈[[Γ`t:τ]](η)[[Γ, x : τ ` r]]〈η, a〉. Since t is determined, this is

[[Γ, x : τ ` r : τ ′]]〈η, a〉 where a is the unique member of [[Γ ` t : τ]](η), so by

the substitution lemma, the interpretation is [[Γ ` r[t/x] : τ ′]](η).

• Abstractions (Equality rules)

It is easier to prove the simpler rule (3.5) of Proposition 3.2.16 sound (im-

plies the soundness of the full rule).

Let η � Γ.

We aim to prove that

[[Γ ` let z : σ → τ be ?σ→τ in λx : σ.t[x, zx] : σ → τ ′]](η)
= [[Γ ` λx : σ.(let y : τ be ?τ in t[x, y]) : σ → τ ′]](η)

Now if f ∈ [[Γ ` let z : σ → τ be ?σ→τ in λx : σ.t[x, zx] : σ → τ ′]](η), that

is,⋃
a∈(σ→τ)A [[Γ, z : σ → τ ` λx : σ.t[x, zx] : σ → τ ′]]〈η, a〉, then

∃a ∈ (σ → τ)A such that ∀b ∈ σA, fb ∈ [[Γ, z : σ → τ, x : σ ` t[x, zx] : τ ′]]〈η, a, b〉
(3.6)

79

And if f ∈ [[Γ ` λx : σ.(let y : τ be ?τ in t[x, y]) : σ → τ ′]](η), then

∀b ∈ σA, ∃ab ∈ τA such that fb ∈ [[Γ, x : σ, y : τ ` t[x, y] : τ ′]]〈η, b, ab〉
(3.7)

We must prove (3.6) and (3.7) are equivalent. Suppose (3.6). Now let

b ∈ σA. We can define ab as App(a, b). We have
fb ∈ [[Γ, z : σ → τ, x : σ ` t[x, zx] : τ ′]]〈η, a, b〉

= [[Γ, x : σ, y : τ ` t[x, y] : τ ′]]〈η, b, ab〉
by the substitution lemma, so (3.7) holds.

Now suppose (3.7). Define h : σA → (σ × τ)A to be (b ∈ σA 7→ 〈b, ab〉),
where ab is any witness of the existential in (3.7). Note that h is a function.

We now use the factoring condition to construct a corresponding element

of the Henkin model.

First define f ′ : (σ × τ → τ ′)A as the unique inhabitant of

[[Γ ` λp : σ × τ .t[π1p, π2p] : σ × τ → τ ′]](η).

Then we have h; f̄ ′(b) = f̄ ′ 〈b, ab〉. Now, this equals

[[Γ, p : σ × τ ` t[π1p, π2p] : τ ′]](η, 〈b, ab〉) which, by the substitution lemma,

is [[Γ, x : σ, y : τ ` t[x, y]]](〈η, b, ab〉). Then (3.7) can be read as f̄ = h; f̄ ′.

By the factoring condition, there exists an element g ∈ (σ → σ × τ)A such

that f̄ = ḡ; f̄ ′. Now define a = App(App(comp, g), p2) ∈ (σ → τ)A, where

the elements comp = [[λj : σ → σ × τ . λk : σ × τ → τ . λx : σ . k(jx)]] and

p2 = [[λp : σ × τ . π2(p)]] exist by the environment model condition.

We now prove (3.6). Let b ∈ σA. Then, by assumption (3.7),

fb ∈ [[Γ, x : σ, y : τ ` t[x, y] : τ ′]]〈η, b, ab〉 which, by the substitution lemma,

is [[Γ, z : σ → τ, x : σ ` t[x, zx] : τ ′]]〈η, a, b〉, so (3.6) holds.

Remark 3.4.8 A naive interpretation of λ? in cpo’s where ? is interpreted as

⊥ is not sound. If we use a cpo with strict functions, then let x : σ in 2 would

be interpreted as ⊥nat, and the let-weakening axiom would fail. For example,

2 v let n : nat in 2 would not be sound. On the other hand, if we use non-strict

functions, then this conflicts with the fact that the variables of the theory should

range over values (i.e. not ⊥) so that the determined equations are extensional.

For example, using the eta rule for booleans, we can deduce that 〈1, 2[]3〉 =

〈1, 2〉[]〈1, 3〉. However, b[]b′ would be interpreted as ⊥, so 〈1, 2[]3〉 and 〈1, 2〉[]〈1, 3〉
would be interpreted as 〈1,⊥nat〉 and ⊥nat×nat respectively, and the equation

would not be sound.

80

More significantly, however, we have completeness of the equational theory

of simply-typed underdeterminism with respect to the class of Henkin models

with factoring. This implies that the system is a conservative extension of the

simply-typed lambda calculus.

For the same reasons as in the case of Theorem 2.2.7, we only get a complete-

ness result if we restrict to nonempty types.

Theorem 3.4.9 (Completeness of equational system) Let 〈Sg, Ax〉 be a λ?-axiom

system for which all types are inhabited. If Γ �A r vτ r′ for all λ?-Henkin models

A of 〈Sg, Ax〉, then 〈Sg, Ax〉 . Γ ` r vτ r′

Proof: We give a sketch of the proof. The idea is to construct a minimal term

model for our signature of ground types, constants and equational assumptions

(with no empty types).

1. Define the term interpretation T as in Theorem 2.2.7. That is, define an

infinite context Γ∞ with an infinite number of variables at each type. Define

τA as the set of =τ -equivalence classes of open (with respect to Γ∞) deter-

mined terms of type τ , that is, τA = {[t] | Γ∞ ` t : τ}. The projection,

application and constant interpretation mappings are interpreted syntac-

tically. Recall from Theorem 2.2.7 that this gives a well-defined Henkin

interpretation.

To see that the interpretation satisfies the factoring condition, suppose

h; f̄ = f̄ ′, where f = [x : σ ` t[x] : τ ′] and f ′ = [y : τ ` t′[y] : τ ′].

This says that for all terms u′ : τ there exists a term h(u′) : σ such that

t[h(u′)] = t′[u′]. In particular then, for the variable y : τ , there exists some

term u[y] : σ such that t[u[y]] = t′[y]. We can define η to be λy : τ .u[y], and

then ḡ; f̄ = f̄ ′.

2. Prove that [[Γ ` r : τ]](η) = {[t] | Γ∞ ` r[η/Γ] vτ t}, where r[η/Γ] has the

obvious meaning. The ?σ case uses Lemma 3.2.17.

For abstractions:

[[Γ ` λx : σ.r : σ → τ]](g) = {[u] | for all Γ∞ ` t′ : σ , Γ∞ ` r[η/Γ, t′/x] vτ ut′}

The result follows since Γ∞ ` λx : σ.r vσ→τ λx : σ.t iff for each Γ∞ ` t′ : τ ,

Γ∞ ` r[t′/x] vτ t[t′/x].

For let-terms, the interpretation is

[[Γ ` let z : σ be r in r′]](η) =
⋃

a∈[[Γ`r:σ]](η)[[Γ, z : σ ` r′]]〈η, a〉
=

⋃
a∈{ [t] | r[η/Γ]vt}{[t′] | r′[η/Γ, a/z] v t′}

81

Now t′ is in the set when there exists a t such that r[η/Γ] v t and

r′[η/Γ, t/z] v t′. Hence (let z : σ be r in r′)[η/Γ] v t′.

Conversely, if let z : σ be r[η/Γ] in r′[η/Γ] v t′, then by Lemma 3.3.3,

there exists a t such that r[η/Γ] v t and r′[η/Γ, t/z] v t′.

3. Prove that Γ �T r vτ r′ iff 〈Sg, Ax〉 . Γ ` r vτ r′.

By step 2, Γ �T r vτ r′ is equivalent to: for all η �A Γ, r[η/Γ] .Γ∞
τ r′[η/Γ].

We show that this, in turn, is equivalent to Γ ` r vτ r′.

Clearly Γ ` r vτ r′ ⇒ r[η/Γ] .Γ∞
τ r′[η/Γ]. To get completeness, we need to

prove the converse. The crucial step uses the canonical form of refinement

terms. Suppose r[η/Γ] .Γ∞
τ r′[η/Γ] for all η �A Γ. In particular, then,

r .Γ∞
τ r′. We can express this using canonical forms as

let x1 : σ1, . . . , xn : σn in t .Γ∞
τ let y1 : τ1, . . . , ym : τm in t′

so assume r ≡ let x1 : σ1, . . . , xn : σn in t and r′ ≡ let y1 : τ1, . . . , ym : τm in t.

Now using Lemma 3.3.5 we deduce the existence of terms

Γ∞, y1 : τ1, . . . , ym : τm ` ti : σi (for i = 1..n) such that

Γ∞, y1 : τ1, . . . , ym : τm ` t[t1/x1, . . . , tn/xn] =τ t′, and so, since by Let

Weakening, Γ∞ ` r vτ let y1 : τ1, . . . , ym : τm in r, we have

Γ∞ ` r vτ let y1 : τ1, . . . , ym : τm in r vτ

let y1 : τ1, . . . , ym : τm in t[t1/x1, . . . , tn/xn]

Then this is equal to let y1 : τ1, . . . , ym : τm in t′, which equals r′. Hence

Γ∞ ` r vτ r′, and since types are nonempty, we can substitute closed (deter-

mined) terms for each variable of Γ∞ that is not in Γ, getting

Γ ` r vτ r′.

Hence the interpretation T is a model of 〈Sg, Ax〉, from which we conclude com-

pleteness.

The first two steps are standard in completeness proofs; the third is particular

to our calculus.

Corollary 3.4.10 If Γ ` r : σ then Γ ` ?σ vσ r.

Corollary 3.4.11 For axiom systems with inhabited types, λ? is a conservative

extension of λ×→.

Proof: Clearly term models for λ×→-axiom systems satisfy the factoring condition

and so λ×→ is actually complete for λ?-Henkin models. Since both calculi are

complete for λ?-Henkin models, and the determined equation Γ ` t =τ t′ has the

same interpretation, the result follows.

82

In fact, conservativity probably holds without the restriction to nonempty types.

This could be shown using a more general notion of model, such as Kripke models

[MM91].

Remark 3.4.12 An alternative (and probably equivalent) approach would be

to interpret the term in context, Γ ` r : τ , as a set of mappings from ΓA to τA,

rather than as a single map taking an environment in ΓA to a subset of τA. The

first approach would avoid the factoring condition.

3.5 First-order Logic of Simply-typed Refine-

ment

Just as we presented a first-order logic over the simply-typed lambda calculus

in Section 2.3, now we give a first-order logic of the equational theory of simple

refinement.

This combination of logic and refinement is not the same as internalising logic

into the stubs themselves; that will be carried out in Chapter 5. In this section

we present an ‘external’ logic for reasoning about refinement.

We should regard the logic as being orthogonal to refinement. Again, we

use classical first-order logic over a signature of primitive predicate symbols, and

constant symbols and ground types. We use first-order λ×→-axiom systems, as

in Definition 2.3.3, though now the atomic propositions are predications of the

form F (r1, . . . , rn) and refinements r vτ r′.

In addition to the rules for refinement, we assume some (extralogical) axioms.

Given that we have universal quantification, we can take these, without loss of

generality, to be closed propositions.

Definition 3.5.1 A first-order λ?-signature is the same as a first-order λ×→-

signature.

Definition 3.5.2 Let Sg = 〈G,K,F〉 be a first-order λ?-signature. The pre-

propositions over Sg are:

P ::= ⊥ | F (r1, . . . , rn) | P ⊃ P ′ | ∀x : τ .P | r vτ r′

where F ∈ F , and τ and r are types and λ?-preterms over 〈G,K〉 respectively.

The well-formedness judgement

Sg . Γ ` P wf

83

is the natural extension of that given in Section 2.3. For ∆ a list of propositions,

we write

Sg . Γ ` ∆ wf

when for each P in ∆, Sg . Γ ` P wf.

Definition 3.5.3 A first-order λ?-axiom system consists of a first-order λ?-signature,

Sg, and a collection, Ax, of closed λ?-propositions, well-formed in Sg, that is,

Sg . 〈〉 ` P wf.

We will continue to write equations between determined terms as t =τ t′.

Formally, these are propositions of the form t vτ t′ ∧ t′ vτ t. Given our intuition

of constructing a refinement theory on top of a λ×→-theory, it might seem nat-

ural to restrict axioms to only involve equations. However, if we allow arbitrary

propositions, even without refinement, then we will see below that we can encode

refinements as propositions of the form ∀x : σ . ∃y : τ .t =τ ′ t
′ anyway.

Definition 3.5.4 Let 〈Sg, Ax〉 be a first-order λ?-axiom system. We define the

first-order λ?-theorems of 〈Sg, Ax〉 to be the judgements which can be inferred us-

ing the natural deduction rules of first-order logic in Figures 2.7 and 2.8, Chapter

2 (extended to λ?-propositions), and Figures 3.2 to 3.6, with the convention that

Γ ` r vτ r′ means Γ; ∆ ` r vτ r′ for all well-formed contexts, in order to include

the equational theory of refinement in the logic. As before, the judgements are of

the form

Γ; ∆ ` P

where Γ is a variable context, ∆ is a list of propositions well-formed in Γ, and P

a proposition well-formed in Γ. The meaning is: in context Γ, if each proposition

in ∆ is true, then P is true.

We write 〈Sg, Ax〉 . Γ; ∆ ` P to indicate that proposition in context Γ ` P is

a theorem of axiom system 〈Sg, Ax〉.

As in Chapter 2, the logic is complete over the same class of models as the

equational theory (now the first-order λ?-Henkin models). After giving a seman-

tics and proving completeness below, we will be able to conclude that refinement

can be encoded in the logic using just equality. This does not mean that the no-

tion of refinement is superfluous. Rather, we can consider r vτ r′ to be a useful

high-level notation for some Π2-proposition.

Figure 3.8 gives the interpretation of propositions in a first-order λ?-Henkin

interpretation. There we interpret well-formed propositions in context, Γ ` P wf,

84

[[Γ ` ⊥]] = ∅
[[Γ ` F (r1, . . . , rn)]] = {η � Γ | for all ai in [[Γ ` ri]](η) . 〈a1, . . . , an〉 ∈ FA}

[[Γ ` P ⊃ P ′]] = {η � Γ | η /∈ [[Γ ` P]] or η ∈ [[Γ ` P ′]]}
[[Γ ` ∀x : σ.P]] = {η � Γ | for all a in σA . 〈η, a〉 ∈ [[Γ, x : σ ` P]]}

[[Γ ` r vσ r′]] = {η � Γ | [[Γ ` r : σ]](η) ⊇ [[Γ ` r′ : σ]](η)}

Figure 3.8: Interpretation of Well-formed Propositions

as the set, [[Γ ` P]]A of environments, η �A Γ, in which P holds, though we usually

drop the superscript A. We write Γ �A,η P to mean η ∈ [[Γ ` P]]A. If A is a

Henkin interpretation, we say that Γ; ∆ �A,η P , if for all η �A Γ, if Γ �A,η A for

each A in ∆, then Γ �A,η P . We write Γ; ∆ �A P when Γ; ∆ �A,η P for each

η �A Γ.

Completeness is with respect to the class of Henkin models (of the axiom

system) with the factoring condition.

We extend the definition of Henkin theory to account for refinement. The

idea is that a refinement is a form of existential for which we add a witness. If

let x : τ in t vσ let x′ : τ ′ in t′, then for all x′ : τ , there must exist an x : τ

such that t =σ t′. In fact, for completeness we make the stronger assumption that

we can make a uniform choice of x for each x′ given by a term t′′ : τ ′ → τ .

Definition 3.5.5 A first-order λ?-Henkin theory, T , over axiom system 〈Sg, Ax〉,
in context, Γ, is a collection of propositions closed under derivation from 〈Sg, Ax〉,
such that for every proposition ∃x : τ . P , there is a term Γ ` t : τ such that P [t/x]

is in T , and for every proposition let x : τ in t vσ let x′ : τ ′ in t′ there exists a

term Γ ` t′′ : τ ′ → τ such that ∀x′ : τ ′.t[t′′x′/x] =σ t′ is in T .

One subtle point is that we must be sure that adding witnesses for refinements pre-

serves consistency. This is because the refinement let x : τ in t vσ let x′ : τ ′ in t′

is admissibly equivalent to ∃f : τ ′ → τ .∀x′ : τ ′.t[fx′/x] =σ t′

Theorem 3.5.6 (Soundness and Completeness of logical system) Let 〈Sg, Ax〉
be a first-order λ×→-axiom system. Then, 〈Sg, Ax〉 . Γ; ∆ ` P iff Γ; ∆ �A P for

all Henkin models A of 〈Sg, Ax〉.

Proof: We modify the proof of Theorem 2.4.5. As there, soundness is straight-

forward to prove, and completeness is shown using a term model. We show that

85

any consistent axiom system is satisfiable. For axiom system 〈Sg, Ax〉, we want

to show that 〈Sg, Ax〉 . Γ; ∆ ` P iff Γ; ∆ �A P in all λ?-Henkin models, A, of

〈Sg, Ax〉. (As in Theorem 2.4.5, we do not assume that types are nonempty.)

1. Given 〈Sg, Ax〉 6. Γ; ∆ ` P we want to find a Henkin model A of 〈Sg, Ax〉
and Γ-environment, η, in A such that Γ �A,η A for each A in ∆,¬P .

2. Construct a maximal consistent Henkin theory ∆∞ and infinite context Γ∞

such that Ax ∪∆ ∪ {¬P} ⊆ ∆∞, Γ ⊆ Γ∞, and ∆∞ is a λ?-Henkin theory

in Γ∞.

As in the proof of Theorem 2.4.5, we construct a first-order λ?-Henkin

theory which extends Γ and Ax ∪∆ ∪ {¬P}, by taking the Henkin closure

of Γ; Ax ∪ ∆ ∪ {¬P} and the limit of sets of propositions, ∆′, which are

well-formed consistent extensions.

3. Construct the term interpretation A where τA is the set of equivalence

classes of determined terms, where [t] = [t′] iff Γ∞; ∆∞ ` t =σ t′ and show

that [[Γ ` r : τ]]A(η) = {[t] | Γ∞; ∆∞ ` r[η/Γ] vτ t}. This requires the

generalisation of Lemma 3.3.2 to logical contexts. In contrast with Remark

3.3.4, this holds because of the construction of the Henkin theory ∆∞.

A is a Henkin interpretation with the factoring condition.

4. For all η′ � Γ′, prove that Γ′ �A,η′ P iff P [η′/Γ′] ∈ ∆∞. The crucial cases

are ∃x : τ . P and r vτ r′, which go through by virtue of ∆∞ being a λ?-

Henkin theory. The r vτ r′ case is proven as in Theorem 3.4.9, with the

observation that the appropriate generalisation of Lemma 3.3.2 holds.

5. Hence A is a λ?-Henkin model of 〈Sg, Ax〉, and for Γ ≡ x1 : σ1, . . . , xn : σn,

defining η to be 〈[x1], . . . , [xn]〉, we have Γ �A,η A, for each A in ∆,¬P .

The use of canonical forms in the proof of Theorem 3.4.9 suggests that we can

translate refinement into first-order logic over λ×→, that is, just using equality of

determined terms. If we let r◦ denote the canonical form of open term r, then if

r◦ = let x1 : σ1, . . . , xn : σn in t, and r′◦ = let y1 : τ1, . . . , ym : τm in t′, define

(r vυ r′)◦ to be ∀y1 : τ1, . . . , ym : τm . ∃x1 : σ1, . . . , xn : σn.t =υ t′.

We use the completeness results (Theorems 3.4.9 and 3.5.6) to infer that the

logical system is a conservative extension of the equational system (which, in

turn, is a conservative extension of the simply-typed lambda calculus). In fact,

we have

86

Corollary 3.5.7 Let 〈Sg, Ax〉 be a first-order λ×→-axiom system for which all

types are inhabited. Then 〈Sg, Ax〉 . Γ ` r vτ r′ iff 〈Sg, Ax〉 . Γ; 〈〉 ` r vτ r′ iff

〈Sg, Ax〉 . Γ; 〈〉 ` (r vτ r′)◦.

Proof: Both systems are complete with respect to Henkin models (with the fac-

toring condition), and the statements have the same interpretation.

Remark 3.5.8 The above corollary suggests an alternative proof of complete-

ness. Since (r v r′)◦ is a proposition in first-order logic, we can prove directly

that r v r′ (in λ?) iff (r v r′)◦ (in FOL), and then use the completeness of

first-order logic over the λ-calculus (Theorem 2.4.5) to deduce the completeness

of first-order λ?.

3.6 Conclusions

Though the language we have presented in this chapter is very simple, we believe

that it captures an important part of program refinement. In combination with

the calculus of specifications in the next chapter, this gives a calculus which is

conceptually simple, but expressive enough to study program development.

87

Chapter 4

Refinement Types

In this chapter we develop a theory of refinement types. This is intended to

give us a calculus, λ(:), for refining specifications, and for proving that programs

satisfy specifications. This is a necessary part of a theory of program refinement.

We will first justify our view of specification, and then outline what constructs

this requires in a calculus and the associated judgement forms. We then give the

calculus and illustrate its use with an example verification. In the final section

we give a semantics based on Henkin models and prove the system to be sound

and complete.1

4.1 Introduction

We address the question of what is a suitable notion of specification for a program-

ming language, where the properties of interest can be expressed using some given

program logic. Recall that we restrict our attention to those languages which can

be studied using typed lambda calculi, that is, typed functional programming

languages.

A number of possibilities can be considered. One is to say that a specification

is a type in some expressive type theory. This is the approach taken by [Luo91]

and [NPS90] for example. An integer square root function might be specified as

the existential type ∃f : nat→ nat . Πn : nat . (f n)2 = n ∨ (f n)2 + 1 = n,

where the logic is encoded in the type theory.

The problem is that this only works for an intuitionistic logic. Classical logics

are more common for specification, and cannot easily be encoded in type theories.

Also, programming languages generally have a simple type system of their own,

and this must somehow be related to the specification type theory. A further

problem is that it is not easy to combine nontermination with type theories.

1Earlier versions of some of the work in this chapter were presented in [Den97a] and [Den98].

88

Another possibility is to say that a specification is just a proposition of the

program logic with a distinguished free variable. Our square root example would

be the proposition ∀n : nat . (f n)2 = n ∨ (f n)2 + 1 = n, where f is a free

variable of type nat → nat. This is the approach traditionally taken by the

program refinement community. Morgan [Mor94] describes a refinement calculus

based on the use of first-order predicate logic.

However, this approach has a number of shortcomings, which we illustrate

with an example below. The main point is that for compositional verification

and program development it is better to put more structure on specifications.

In this thesis, we suggest a third possibility: a combination of the program

logic with the type theory of the programming language, known as refinement

types. The notion of refinement type has been studied extensively in program

analysis (under different names) and there are many different systems, depending

on the area of interest. The general idea is to have two levels — an underlying level

of program types, and a more expressive level of program properties, which are

then treated like types. For us, this more expressive level will be the specifications.

Hence we can exploit type-theoretic structure in our specifications, but do not

need to encode propositions as types but, rather, use them directly.

We describe a verification calculus based on the simply-typed lambda calculus

with products (λ×→) and some ground types such as nat and bool. The satisfac-

tion of specifications by programs is axiomatised as a generalised typing relation,

in a sense which we make precise below. We do this by viewing specifications

as refinements of an underlying type, expressed using the program logic. We use

typed classical predicate logic as program logic here, and axiomatise an ordering

on the refinement types, to be viewed as an increase in information, or refinement

of specifications.

Refinement types are constructed as combinations of types and propositions

from the program logic. Types themselves are trivial refinement types, and we

can restrict a refinement type to those elements for which some proposition holds.

This is similar to subset types [NPS90], though not quite the same since we

maintain a distinction from the types themselves. Also, it is convenient to form

dependent functions and products at the level of refinement types, even though

the underlying types are not dependent.

Refinement types are not the same as subtypes though. For example, nat

might be a subtype of real say, but not a refinement type. Though we are

careful to distinguish refinement types from subtypes, equality is ‘stratified’ at

different refinement types as in subtyping systems.

89

Contexts consist of both variable assumptions x : φ, and propositions P .

These are combined so as to make explicit the mutual dependencies in well-

formedness. The dependency arises because we allow refinement types in terms,

which in turn can appear in propositions.

We give a simple set-theoretic interpretation of the calculus. The main result

of this chapter is soundness and completeness with respect to the resulting class

of models.

In Section 4.2 we consider a simple example of specifying and verifying a

program in order to motivate the features of our calculus. We then give the syntax

and rules of the calculus in Section 4.3. In Section 4.4 we return to the example.

Section 4.5 gives the semantics and proofs of soundness and completeness. Finally,

we give some conclusions in Section 4.6.

4.2 Example

Let us consider specifying division by 2 on the naturals and verifying that a pro-

gram satisfies the specification. We will take the simply-typed lambda calculus

and classical first-order predicate logic as simple programming and specification

languages respectively. We will use the constant, natiter, for iteration over the

naturals, where natiter z f n computes the n-th iterate fn(z). As a first approx-

imation to specifications we use propositions with a distinguished free variable,

which we write as (x : τ)P where τ is the type of the variable x in proposition P .

A program div2 which implements division on the naturals is

div2 = λn : nat . π1(div2
′ n) : nat→ nat

where this uses the auxiliary function

div2′ = natiter 〈0, 0〉 (λp : nat× nat . 〈π2p, π1p + 1〉)

Now this can be specified as

div2 spec = (f : nat→ nat) ∀n : nat . n = 2 ∗ fn ∨ n = 2 ∗ fn + 1

We want to axiomatise a satisfaction relation sat between programs (closed

terms) and specifications, so that we can prove

div2 sat div2 spec

One simple way of doing this is to say that t sat (x : τ)P is just taken to be a

notation for a typing and a proposition, with the rule that t sat (x : τ)P when

90

t : τ and P [t/x]. This example reduces then to proving

∀n : nat.n = 2 ∗ div2(n) ∨ n = 2 ∗ div2(n) + 1

Now, our specification language is rather cumbersome as it stands, so let us

introduce dependent products and functions as abbreviations

Σx:σ|P (y : τ)Q for (z : σ × τ)P [π1z/x] ∧Q[π1z/x, π2z/y]

Πx:σ|P (y : τ)Q for (f : σ → τ)∀x : τ . P ⊃ Q[fx/y]

The dependent function Πx:σ|P (y : τ)Q specifies some function which for all x : σ

such that P , returns a y : τ such that Q. This has combined the two quantifica-

tions in (f : σ → τ) ∀x : σ . P ⊃ Q[fx/y], which we read as some f : σ → τ such

that for all x : σ, if P then Q[fx/y]. If we allow ourself the further abbreviation

of viewing types as trivial specifications, so that for example, nat can stand for

x : nat |>, then we can write our specification more compactly as

div2 spec = Πn:nat(m : nat)n = 2 ∗m ∨ n = 2 ∗m + 1

Now, using our abbreviations, the following rule is admissible from our definition

of sat

n : nat ` π1(div2
′ n) sat (m : nat)n = 2 ∗m ∨ n = 2 ∗m + 1

λn : nat.π1(div2
′ n) sat Πn:nat(m : nat)n = 2 ∗m ∨ n = 2 ∗m + 1

where we informally understand the sequent n : nat ` t sat φ to mean for all

closed t′ : nat (or equivalently, for all numerals), t[t′/n] sat φ[t′/n]. In general

then, we want to consider satisfaction in an arbitrary context. Note the similarity

to a typing rule. In fact, not only are Σ and Π useful structuring devices for spec-

ifications, they are also useful for proofs, as specifications of programs often tend

to be most naturally expressed and proved in a ‘shape’ similar to the program.

For example, the program div2 is an abstraction and the specification div2 spec

is of the form Πx:φψ. The rule directly reflects a natural proof that div2 satisfies

div2 spec. Similarly, the auxiliary function div2′ has specification

div2′ spec = Πn:natΣm:nat|n=2m∨n=2m+1(m
′ : nat)m + m′ = n

The proof of this, in turn, involves showing that a pair satisfies a product spec-

ification, and an abstraction satisfies a functional specification (as above). We

also have to use induction to show that an iteration satisfies some specification

parameterised on the naturals. We consider this example more fully in Section

4.4.

91

We do not throw away the original rule that t satisfies (x : τ)P when t : τ and

P [t/x], however.

A significant benefit in writing specifications in this more structured form is

conceptual — it is preferable to structure specifications for then the task of com-

prehension need not be duplicated unnecessarily for specification and program.

Also, separate checks of well-formedness (i.e. type-checking here) and correct-

ness, will involve some duplication of effort, so it is better to combine types and

correctness properties. In order to be the basis of a useful program development

methodology, it helps for our specifications and proofs to reflect the structure of

the programs.

In this small example, the disadvantage of using propositions as specification is

not so obvious. However, structure is essential for large specifications so we build

it into the theory. Moreover, it is natural to incorporate equality in the definition

of specification, rather than express it as a separate proposition. McKinna was

led to the same conclusion in [McK92].

There is one final aspect of specifications which we must consider — equality.

The kind of specifications with which we are concerned here are those which

specify the input-output characteristics of programs. We are only interested in

programs up to extensional equality. The alternative, in a type-theoretic setting,

is to use an intensional equality and distinguish programs on the basis of syntactic

form.

This would be unnatural here however, so we view specifications as inducing

an equality on terms. This is a partial equivalence relation (per) on terms at

the underlying type. A per is a symmetric and transitive relation on some set,

or equivalently, an equivalence relation on a particular subset. The partiality is

because not all terms (of the corresponding type) need satisfy a specification.

For example, the specification Πl:nonemptylist(n : nat)Min(n, l) where the propo-

sition Min(n, l) says that n is the minimum element in list l, is a refinement type

over type list→ nat. We want to regard functions f, f ′ : list→ nat as equal

solutions of this specification if they give the same results for nonempty lists. Any

program satisfying this specification must be defined on the empty list, but we

are not interested in the value it takes there.

Moreover, it is a useful abbreviation in specifications themselves to write equal-

ity at a specification, =Πx:σ|P (y:τ)Q, where t =Πx:σ|P (y:τ)Q t′ means

∀x, x′ : σ.(x =σ x′) ∧ P [x] ∧ P [x′] ⊃ (tx =τ t′x′) ∧Q[tx] ∧Q[t′x′]

Now, we would attain some conceptual simplicity if specifications were to

subsume types, satisfaction to subsume typing, and equality at a specification to

92

subsume the usual equality at a type (which is often left implicit). For example,

we use (n : nat)> in place of nat, and Σn:(n:nat)>(b : bool)> for nat×bool, where

Σx:φ|Pψ abbreviates Σx:(x:φ)P ψ, and similarly for Π. At this point, we must cease

to regard Πx:σ|P (y : τ)Q as we did before, since the above convention means that

the equality is only with respect to arguments in (x : σ)P , rather than σ as for

(f : σ → τ) ∀x : σ . P ⊃ Q[fx/y].

We believe it is misleading to regard specifications a rich form of types, though,

and refer to the specifications of this idealised specification language as refinement

types. We regard types, rather, as being part of the programming language, and

specifications as being constructed at a level above this.

In fact, we will take the denotation of refinement types to be a per. A speci-

fication therefore, is a refinement type, and denotes

• a set, together with

• a per over the set

We take a program in this calculus to denote

• an equivalence class of a per φ

The alternative would be to take a program as denoting an element of the domain

of a per, but this would be unnatural because we would then be distinguishing

programs beyond extensional equality.

So refinement types induce a per on the set of terms of the underlying type.

The converse is not true, that is, not all pers of terms correspond to refinement

types. For example, the per R on naturals, n R n′ ⇐⇒ “both n and n′ are even,

or both are odd”.

We use a notation for the equivalence classes of pers, by allowing refinement

types on the variables in abstractions. For example, λn : even.n denotes a class

in the per denoted by even→ nat (functions in the corresponding set are equal if

they give the same results for even arguments) but not nat→ nat, and λn : nat.n

denotes a class in both even→ nat and nat→ nat. The meaning of the equality

t =φ t′ is that t and t′ denote sets in the same equivalence class of per φ.

For refinement types φ and φ′ over the same underlying type, we want to

consider refinements φ vτ φ′, to be thought of semantically as per inclusion (i.e.

equality at φ′ implies equality at φ). We use the square vτ symbol to indicate an

information ordering — the refinement of specifications over type τ . Note that

this convention for refinement is the opposite direction to the usual subtyping

relation.

93

4.3 The Calculus

We now give the syntax of the system and describe its judgements. Some syntactic

results are then given and we give an operational intuition for the language.

4.3.1 Syntax

The idea is that we construct a theory of refinement types on top of an underlying

λ×→ theory and a first-order logic theory. This is generated from a signature of

types, constants and predicate symbols (in the underlying theory) and axioms (in

the full theory). The well-formedness conditions on axioms will be explained in

Section 4.3.4 below.

We construct the theory of refinement types from the same basic data as the

first-order theories of lambda calculus. A λ(:)-signature is the same as a first-order

λ×→-signature. We repeat the definition.

Definition 4.3.1 A λ(:)-signature, Sg = 〈G,K,F〉, consists of:

• a collection, G, of ground types (ranged over by γ)

• a collection, K, of constant symbols (ranged over by k), each of which has

an arity n and sort τ1, . . . , τn → τ , which we write as k : τ1, . . . , τn → τ .

• a collection, F , of predicate symbols (ranged over by F) each of which has

an arity n and sort τ1, . . . , τn, which we write as F : Pred (τ1, . . . , τn).

Although we do not have arbitrary refinement types as primitive in a signature,

we get much the same expressiveness using predicate symbols. For example, with

the primitive type nat, we could have predicate Even : Pred (nat), and write

even for the refinement type (n : nat) Even(n).

Definition 4.3.2 Let Sg = 〈G,K,F〉 be a λ(:)-signature. The pre-expressions

over Sg are given by a mutual recursion over (pre-) refinement types, terms and

propositions:

φ ::= 1 | γ | Σx:φψ | Πx:φψ | (x : φ)P

t ::= x | k(t1, . . . , tn) | ∗ | 〈t, t′〉 | λx : φ.t | π1(t) | π2(t) | tt′

P ::= ⊥ | P ⊃ P ′ | ∀x : φ.P | F (t1, . . . , tn) | t =φ t′ | φ vτ φ′

The pre-contexts are:

Γ ::= 〈〉 | Γ, x : φ | Γ, P

We say that Γ ` U is a pre-expression in context when Γ is a pre-context, U is a

pre-expression, and FV (U) ⊆ Γ.

94

As for the previous calculi, we assume a countably infinite set of variables. We

adopt the usual abbreviations of φ × ψ for Σx:φψ and φ → ψ for Πx:φψ, when

x /∈ FV (ψ), and use φ, ψ and χ as metavariables for refinement types. We

sometimes abbreviate the assumption x : (x : φ)P , on abstractions or in contexts,

as x : φ |P .

Conceptually, it is simpler not to distinguish types and refinement types as

syntactic categories. In an informal sense which we will later make formal, re-

finement types should be viewed as being refinements of underlying types, so for

example, if φ is a refinement of (we will just say ‘over’) σ, and ψ is over τ , then

Σx:φψ is over σ × τ . Formally however, types are just refinement types with no

logical information, that is, not containing any propositions. We use σ and τ as

metavariables for types, and refer to the type underlying a refinement type.

Here we extend the variable convention of p. 33 so that by writing x : φ, where

φ is over τ , we assume that x is drawn from the set of variables for type τ .

There is a term ∗ of unit type 1. After we introduce the equality judgement

we will see that ∗ is the unique term at 1 up to equality. The meaning of the

other refinement types in terms of satisfaction is that 〈t, t′〉 satisfies Σx:φψ when t

satisfies φ and t′ satisfies ψ[t/x]; term t satisfies Πx:φψ when for every t′ satisfying

φ, tt′ is well-formed and satisfies ψ[t′/x]; and t satisfies (x : φ)P when it satisfies

φ and the proposition P [t/x] holds.

We think of terms of the calculus as being simple specifications of terms in the

underlying λ×→. We will refer to terms of λ×→ as total terms. Terms have their

usual meaning in the lambda calculus, except that an abstraction λx : φ.t should

be thought of as a simple specification of terms λx : σ.t′ such that for all t′′ which

satisfy φ, t′[t′′/x] satisfies t[t′′/x]. For example, λn : even.n specifies total terms

of type nat → nat which are the identity on even arguments. The application

(λx : φ.t)t′′ is only well-formed for arguments t′′ which satisfy φ so behaviour

outwith φ is not constrained. Note that this means that although even → even

is a refinement of the type nat→ nat, the term λn : even.n does not itself have

type nat → nat. Intuitively, we can say that a term t has refinement type φ if

its behaviour ‘at φ’ is uniquely determined, that is, any two total terms which

satisfy t are themselves equal at φ.

The propositions are a typed first-order predicate logic of equalities and typed

refinements. In practice, we will almost always omit the subscript from φ vτ φ′.

We use classical typed first-order logic as an example of a simple expressive logic.

Remark 4.3.3 Our choice of first-order classical logic is only significant insofar

as it is an example of what we might call an extensional logic. In type theory, a

95

distinction is often made between extensional and intensional equality [NPS90].

Terms are extensionally equal if they have the same input-output behaviour, as

given by some proposition (hence, also called ‘propositional equality’), whereas

intensional equality is a definitional equality which is generally decidable.

In this sense, intensional means ‘relating to syntactic form’, but there is a more

general sense in which it is with respect to richer properties than input-output

behaviour, such as time-complexity, and it is this kind of predicate we want to

contrast with those used here.

Since we allow the propositional equality in properties, the system only makes

sense for extensional predicates. We make essential use of the fact that for all

terms t, t′ and propositions P , if t is extensionally equal to t′, then P [t/x] holds

if and only if P [t′/x] does.

Since the converse clearly holds, we can express this as saying that we re-

quire Leibniz (satisfaction of the same predicates) and observational (same input-

output behaviour) equality to coincide. It does not matter whether the logic is

classical or intuitionistic.

This can be contrasted with, say, the use of an intensional logic such as the

modal µ-calculus, where terms are viewed as transition systems through their

reduction sequences.

4.3.2 Judgements

The main judgements of the calculus have the forms

Γ ` t : φ

Γ ` P

where the atomic propositions include Γ ` t =φ t′ and Γ ` φ vτ φ′. Equality and

refinement are not separate judgement classes from the other propositions. We

will write Γ ` φ = φ′ for the mutual refinement Γ ` φ v φ′ and Γ ` φ′ v φ.

All judgements are made in a context Γ of variable assumptions x : φ and

propositions P . There are also mutually dependent well-formedness judgements

` Γ wf

Γ ` φ : Ref (τ)

Γ ` P wf

We say that a term t is well-formed in context Γ when there exists a refinement

type φ such that Γ ` t : φ. Note that φ need not be unique, though the underlying

96

type is unique. We understand Γ ` t : φ to mean that for all the variables in

the context Γ, if they satisfy the relevant refinement types, then the term t has

refinement type φ. Sometimes we write Γ ` t, t′ : φ for Γ ` t : φ and Γ ` t′ : φ.

The well-formedness judgement for refinement types, Γ ` φ : Ref (τ), says

that refinement type φ in context Γ is over the type τ . We abbreviate φ : Ref (τ)

as φ wf when the type τ is not significant. Although the extra information that

φ is over τ is not required for the well-formedness of φ itself, it is used to check

the well-formedness of refinements.

We use g as a metavariable for ‘syntactic environments’, that is, tuples of

terms which satisfy the refinement types and propositions in the context. We

will use the abbreviations g : Γ, g =Γ g′ and t[g/Γ] to indicate simultaneous

satisfaction, equality and substitution respectively.

Remark 4.3.4 We should not think of Ref (τ) as a power type of τ , since the

refinement τ v φ is not the same as φ : Ref (τ). This is because the attribution

of refinement types is not contravariant at function types. For example, since

nat → nat 6v even → nat we cannot regard even → nat as a subtype of

nat → nat even though it is a refinement type. The difference between power

types and refinement types can be seen by considering encodings in higher-order

logic. The power types of τ may be encoded as τ → Prop, whereas refinement

types of τ would correspond to τ → τ → Prop, since specifications comprise a

(partial) equality relation. The λ(:)-calculus can be seen as a convenient formalism

for such relations.

4.3.3 λ(:)-Axiom Systems

A λ(:)-axiom system consists of a collection of first-order axioms over some signa-

ture. There is a crucial difference from Definition 2.3.3, however. Since refinement

types can appear in terms, well-formedness involves logical reasoning and, in par-

ticular, can depend on the axioms. If axioms themselves are to be well-formed,

therefore, we must have some dependencies among the axioms. The problem is

that with axiom schemas it is possible for one instance to be needed to prove the

well-formedness of another. For example, an induction principle over the naturals

is schematic in some proposition P [n] for n : nat, but the well-formedness of P

might itself require induction.

This problem is common to all logics in which well-formedness depends on

provability. Rather than introduce a hierarchy of axioms, the solution we adopt

here is to drop the requirement that axioms are well-formed, and instead only

check for this when they are used in a proof.

97

It is natural to give axioms in a deliverables style [McK92]. If k is a unary

constant with sort σ → τ , then we give axioms of the form “if the argument

satisfies some specification then the result satisfies some specification”. We write

k : φ→ ψ to mean that if t has refinement type φ then k(t) has refinement type

ψ. In general, we allow the refinement types to be open in some context. (Note

that this is not a judgement form (see below) but an axiom which we will use in

side-conditions.) Thus we have the following definition.

Definition 4.3.5 A λ(:)-axiom system, 〈Sg, Ax〉, consists of a λ(:)-signature, Sg,

and a collection of axioms Ax formed from pre-contexts and pre-expressions over

Sg. Axioms are of two forms:

• propositions in context, Γ ` P

• axioms for constants, Γ ` k : φ1, . . . , φn → ψ.

We do not put any well-formedness requirements on axioms, but check for

well-formedness at the point of using the axiom in a proof. A similar convention

is adopted by Pitts for dependently-typed algebraic theories [Pit95].

Hence, although we intend that when k has sort τ1, . . . , τn → τ , that we have

Γ ` φi : Ref (τi) (i = 1, . . . , n) and Γ ` ψ : Ref (τ) we do not enforce it in

the axiom system. We could, for example, have required for axiom Γ ` P that

FV (P) ⊆ Γ but this will follow automatically from the well-formedness check

when the axiom is used, and similarly for constant axioms.

Note that the sorting k : τ → τ ′ and axiom k : φ → ψ do not say that

the unary constant k is a well-formed term without the necessary number of

arguments. For t : τ , we have k(t) : τ ′, and if t : φ then k(t) : ψ. We do, however,

consider sortings as axioms.

Allowing arbitrary propositions as axioms subsumes the definition of λ×→-

axiom systems, since we can include equations in context between determined

terms, Γ ` t =φ t′.

Remark 4.3.6 It is not clear that it is necessary to allow arbitrary proposi-

tions as axioms in Definition 4.3.5. We will show later (in Section 4.3.5) that

induction schemas follow from the axiomatisation of the corresponding constant

for recursion. This suggests that we may only need propositional axioms in order

to axiomatise the predicate symbols. It seems that these axioms can always be

given in the form Γ ` F (t) or Γ ` ¬F (t).

The axioms for constants could be given in the form Γ, x1 : φ1, . . . , xn : φn `
k(x1, . . . , xn) : ψ, which is actually equivalent to the, perhaps more natural,

general form Γ ` k(t1, . . . , tn) : ψ.

98

4.3.4 Rules of the Calculus

Definition 4.3.7 Let 〈Sg, Ax〉 be a λ(:)-axiom system. We define the theorems

of 〈Sg, Ax〉 to be the judgements which can be inferred using the rules of Figures

4.1 to 4.10. We write 〈Sg, Ax〉 . J to indicate that judgement J is a theorem of

axiom system 〈Sg, Ax〉.

Note that we consider judgements of well-formedness to also be theorems, since

they involve logical reasoning.

The rules of the calculus are listed in Figures 4.1-4.10. One distinctive feature

of the calculus is the mutual dependencies of the different syntactic categories,

and hence of the different judgement classes. Refinement types can contain propo-

sitions, which can contain terms, and these in turn can contain refinement types

in the abstractions.

In Figure 4.1 we give the rules for generating theorems from a λ(:)-axiom

system. It is here that we check that an axiom is well-formed before it can be

used. The substitution rule is for an arbitrary basic judgement, B. The rule

is quite simple because we have explicit congruence rules for the equalities. By

encoding B as a proposition, and using the rules for implication and universal

quantification we can actually derive a more general rule:

Γ, x : φ, Γ′ ` B Γ ` t : φ

Γ, Γ′[t/x] ` B[t/x]

Next we describe the well-formedness rules, starting with contexts. The empty

context is well-formed, and there are two rules for extending an existing context.

Figures 4.2 and 4.3 give the well-formedness rules for contexts and refinement

types respectively.

The well-formedness rules for refinement types essentially involve stripping off

the logic while checking that everything fits together correctly. There are checks

on the well-formedness of the context for the base cases so as to ensure that all

provable judgements are well-formed. Similar conditions are made for the base

cases of the other judgement classes.

It is straightforward to formulate well-formedness rules for propositions. These

are given in Figure 4.4. In proving the well-formedness of the implication P ⊃ P ′,

we can assume the truth of P for proving the well-formedness of P ′. For the

equality t =φ t′ to be well-formed we require that t and t′ are both well-formed

and have refinement types over the same type as φ. We do not require that t and

t′ have refinement type φ. This allows us to express the refinement typing t : φ as

the proposition t =φ t′. The appeal to refinement typing is why well-formedness

99

Γ ` P wf
Γ ` P

(Γ ` P ∈ Ax)

Axioms

Γ1, Γ2 ` B Γ1 ` φ wf

Γ1, x : φ, Γ2 ` B

Weakening

Γ1, x1 : φ1, Γ2, x2 : φ2, Γ3 ` B Γ1 ` φ2 wf

Γ1, x2 : φ2, Γ2, x1 : φ1, Γ3 ` B
(x1 6∈ Γ2, x2 : φ2)

Permutation

Γ, x : φ ` B Γ ` t : φ

Γ ` B[t/x]

Substitution

Figure 4.1: Theorems Generated from a λ(:)-Axiom System 〈Sg, Ax〉

` 〈〉 wf

Empty Context

Γ ` φ wf

` Γ, x : φ wf
(x /∈ Γ)

Variable Assumption

Γ ` P wf
` Γ, P wf

Propositional Assumption

Figure 4.2: Well-formedness of Contexts

100

` Γ wf
Γ ` 1 : Ref (1)

Unit

Γ ` φ : Ref (σ) Γ, x : φ ` ψ : Ref (τ)

Γ ` Σx:φψ : Ref (σ × τ)

Product

Γ ` φ : Ref (σ) Γ, x : φ ` ψ : Ref (τ)

Γ ` Πx:φψ : Ref (σ → τ)

Function

Γ ` φ : Ref (τ) Γ, x : φ ` P wf

Γ ` (x : φ)P : Ref (τ)

Refinement Types

` Γ wf
Γ ` γ : Ref (γ)

(γ ∈ G)

Ground Types

Figure 4.3: Well-formedness of Refinement Types

101

involves logical reasoning, and this propagates through the well-formedness rules

for the other syntactic categories. Similarly, the refinement φ v φ′ is only well-

formed when φ and φ′ are over the same type.

In Figures 4.5 and 4.6 we give the refinement typing rules, which also serve

as well-formedness rules for the terms. Where this differs from the simply-typed

lambda calculus is in the logical reasoning which pervades the rules. This is

evident in the Constants rule, where well-formedness uses a logical axiom. If

constant symbol k has axiom Γ′ ` k : φ1, . . . , φn → ψ ∈ Ax, then we infer a

refinement typing in the more general context Γ, where Γ′ ⊆ Γ. If Γ ` ti : φi

for i = 1, n, then we infer Γ ` k(t1, . . . , tn) : ψ. The reason for the more general

context is so that from an axiom like n : nat ` k : φ[n]→ ψ[n], we can infer that

x : φ[2] ` k(x) : ψ[2], by using the context n : nat, n = 2. (In fact, in the case

of refinement typing, we can derive the more general rule for constants from a

simpler one, but this is not the case for the rule of Constant Equations below

so we keep both rules in the same form.)

The refinement typing rules are the natural generalisations of the usual typing

rules for the simply-typed lambda calculus with products. For example, the

introduction rule for abstractions is

Γ, x : φ ` t : ψ
Γ ` λx : φ.t : Πx:φψ

For λx : φ.t to be well-formed in context Γ, it is sufficient, but not necessary

that t is well-formed in context Γ, x : φ.

This is because our notion of well-formedness is ‘having some refinement type’.

For example, we have λn : nat.(λm : even.m)n : even→ nat, although the body

is not well-formed in the context n : nat.

We have the obvious introduction rule for proving that a term inhabits a

refinement type, and a weakening rule:

Γ ` t : φ Γ ` P [t/x]

Γ ` t : (x : φ)P
Γ ` t : φ′ Γ ` φ v φ′

Γ ` t : φ

The corresponding elimination rule — concluding that t : φ from t : (x : φ)P —

follows from the weakening rule and the refinement rules which we give below.

One further rule is
Γ ` t =φ t′

Γ ` t : φ

Inferring a refinement typing from an equality may seem strange, but it saves us a

few rules. The reason for this is that in proving refinement typings and equalities

102

` Γ wf
Γ ` ⊥ wf

Falsehood

Γ ` P wf Γ, P ` P ′ wf

Γ ` P ⊃ P ′ wf

Implication

Γ, x : φ ` P wf

Γ ` ∀x : φ.P wf

Universal Quantification

Γ ` t1 : φ1 · · · Γ ` tn : φn

Γ ` φ1 : Ref (τ1) · · · Γ ` φn : Ref (τn)

Γ ` F (t1, . . . , tn) wf
(F : Pred (τ1, . . . , τn) ∈ F)

Predication

Γ ` t : ψ Γ ` t′ : ψ′ Γ ` ψ, ψ′, φ : Ref (τ)

Γ ` t =φ t′ wf

Equality

Γ ` φ : Ref (τ) Γ ` φ′ : Ref (τ)

Γ ` φ vτ φ′ wf

Refinement

Figure 4.4: Well-formedness of Propositions

103

` Γ, x : φ, Γ′ wf

Γ, x : φ, Γ′ ` x : φ

Variables

Γ ` φ1 : Ref (τ1) · · · Γ ` φn : Ref (τn)
Γ ` ψ : Ref (τ)
Γ ` t1 : φ1 · · · Γ ` tn : φn

Γ ` k(t1, . . . , tn) : ψ

{
Γ′ ` k : φ1, . . . , φn → ψ ∈ Ax ;
k : τ1, . . . , τn → τ ∈ K;
Γ′ ⊆ Γ

Constants

` Γ wf
Γ ` ∗ : 1

Unit

Γ ` t : φ Γ ` t′ : ψ[t/x] Γ, x : φ ` ψ wf

Γ ` 〈t, t′〉 : Σx:φψ

Γ ` t : Σx:φψ

Γ ` π1(t) : φ

Γ ` t : Σx:φψ

Γ ` π2(t) : ψ[π1(t)/x]

Product Terms

Γ, x : φ ` t : ψ
Γ ` λx : φ.t : Πx:φψ

Γ ` t : Πx:φψ Γ ` t′ : φ

Γ ` tt′ : ψ[t′/x]

Function Terms

Figure 4.5: Refinement Typings

104

Γ ` t : φ Γ ` P [t/x]

Γ ` t : (x : φ)P

Refinement Type Introduction

Γ ` t =φ t′

Γ ` t : φ

Equality

Γ ` t : φ′ Γ ` φ v φ′

Γ ` t : φ

Weakening

Figure 4.6: Refinement Typings cont.

we need to be able to combine assumptions on subterms. Since equalities are

subscripted with a refinement type, the rule lets us use equality rules to prove a

refinement typing. For example, the congruence equation for abstractions is

Γ, x : φ ` P wf Γ, x : φ, P ` t =ψ t′

Γ ` λx : (x : φ)P.t =Πx:(x:φ)Pψ λx : φ.t′

which lets us prove that λn : even.n =even→even λn : nat.n, and so we can in-

fer that λn : nat.n : even → even. The more general inference for φ′ v φ,

that λx : φ.t =Πx:φψ λx : φ′.t′, is not actually sound. For example, the term

λf : even→ nat.f does not have the refinement type (nat → nat) → (nat →
nat).

Figures 4.7 and 4.8 give equality rules for terms. In combination with the rule

of Equality, the Congruence Equations for abstractions lets us prove (as in

[Asp95]), for example, that λn : nat.n : even → even even though nat → nat

and even → even are incomparable (which is an obstacle for some subtyping

systems).

The η-equalities for abstractions and pairs have unconventional hypotheses,

enabling us to combine logical and typing assumptions.

Γ, x : φ ` tx : ψ
Γ ` λx : φ.tx =Πx:φψ t

(x /∈ FV (t))
Γ ` π1(t) : φ Γ ` π2(t) : ψ[π1(t)/x]

Γ ` 〈π1(t), π2(t)〉 =Σx:φψ t

The usual hypothesis for the abstraction rule would be Γ ` t : Πx:φψ. The

following example makes essential use of this rule.

105

Example 4.3.8 We use the η-equality for abstractions to infer a refinement typ-

ing.

f : nat→ nat, ∀x : nat.Even(fx), n : nat ` fn : nat
f : nat→ nat, ∀x : nat.Even(fx), n : nat ` Even(fn)

f : nat→ nat, ∀x : nat.Even(fx), n : nat ` fn : even

f : nat→ nat, ∀x : nat.Even(fx) ` f =nat→even λn : nat.fn
Function Eqs. (η)

f : nat→ nat, ∀x : nat.Even(fx) ` f : nat→ even

Similarly, we use the η rule for pairs in order to prove, for example, that

z : σ × τ, P [π1z], Q[π2z] ` z : (x : σ)P × (y : τ)Q

The well-formedness hypothesis in the rule of Logical Congruence is important

since, with stratified equalities, we require equality at the appropriate refinement

type.

Remark 4.3.9 We can define singleton types. For t : φ, write {t}φ for the

refinement type (x : φ) x =φ t. Then we have Γ ` P [t/x] iff Γ, x : {t}φ ` P . We

conjecture that the λ(:)-calculus is a conservative extension of Aspinall’s singleton

types calculus [Asp95].

Example 4.3.10

n : nat, Even(n) ` n : nat

nat v (n : nat)Even(n)
Ref.Types (R) n : even ` n : even

n : even ` n =even n
Reflexivity

λn : even.n =even→even λn : nat.n
Cong.Eqs.

λn : nat.n : even→ even
Equality

Using the symmetry rule we can deduce the symmetric forms for the congru-

ences. e.g. if t =Σx:φψ t′ then π2(t) =ψ[π1(t′)] π2(t
′).

Figure 4.9 lists the refinement rules. These are of two kinds — ‘structural’

and logical. The obvious structural rules are

` Γ wf
Γ ` 1 v 1

Γ ` φ v φ′ Γ, x : φ ` ψ v ψ′

Γ ` Σx:φψ v Σx:φ′ψ
′

Γ ` φ′ v φ Γ, x : φ ` ψ v ψ′

Γ ` Πx:φψ v Πx:φ′ψ
′

The interesting rules, however, are for refinement involving propositions. We

must say when an arbitrary refinement type is a refinement of a type with a

proposition, and when it refines to one.

Γ ` φ v ψ Γ, x : ψ ` P

Γ ` (x : φ)P v ψ

Γ, x : ψ, Q ` x : φ

Γ ` φ v (x : ψ)Q

The only other refinement rule is transitivity of refinement.

106

Γ ` t : φ
Γ ` t =φ t

Γ ` t =φ t′

Γ ` t′ =φ t

Γ ` t =φ t′ Γ ` t′ =φ t′′

Γ ` t =φ t′′

Equational Reasoning

Γ, x : φ ` t : ψ Γ ` t′ : φ

Γ ` (λx : φ.t)t′ =ψ[t′/x] t[t′/x]
(β)

Γ, x : φ ` tx : ψ
Γ ` λx : φ.tx =Πx:φψ t

(x /∈ FV (t)) (η)

Function Equations

Γ ` t1 : φ1 Γ ` t2 : φ2

Γ ` πi〈t1, t2〉 =φi ti
(β)

Γ ` π1(t) : φ Γ ` π2(t) : ψ[π1(t)/x]

Γ ` 〈π1(t), π2(t)〉 =Σx:φψ t
(η)

Product Equations

Γ ` t : 1
Γ ` t =1 ∗

Unit Equation

Figure 4.7: Equality Rules

107

Γ ` φ1 : Ref (τ1) · · · Γ ` φn : Ref (τn)
Γ ` ψ : Ref (τ)
Γ ` t1 =φ1 t′1 · · · Γ ` tn =φn t′n

Γ ` k(t1, . . . , tn) =ψ k(t′1, . . . , t
′
n)

{
Γ′ ` k : φ1, . . . , φn → ψ ∈ Ax ;
k : τ1, . . . , τn → τ ∈ K;
Γ′ ⊆ Γ

Constant Equations

Γ, x : φ ` P wf Γ, x : φ, P ` t =ψ t′

Γ ` λx : (x : φ)P.t =Πx:(x:φ)Pψ λx : φ.t′

Γ ` t1 =Πx:φψ t′1 Γ ` t2 =φ t′2
Γ ` t1t2 =ψ[t2/x] t′1t

′
2

Γ ` t1 =φ t′1 Γ ` t2 =ψ[t1/x] t′2
Γ ` 〈t1, t2〉 =Σx:φψ 〈t′1, t′2〉

Γ ` t =Σx:φψ t′

Γ ` π1(t) =φ π1(t
′)

Γ ` t =Σx:φψ t′

Γ ` π2(t) =ψ[π1(t)/x] π2(t
′)

Congruence Equations

Γ ` t =φ t′ Γ ` P [t/x] Γ, x : φ ` P wf

Γ ` t =(x:φ)P t′

Logical Congruence

Γ ` t =φ′ t Γ ` φ v φ′

Γ ` t =φ t′

Weakening

Figure 4.8: Equality Rules cont.

108

` Γ wf
Γ ` 1 v 1

Unit

Γ ` φ v φ′ Γ, x : φ ` ψ v ψ′

Γ ` Σx:φψ v Σx:φ′ψ
′

Product

Γ ` φ′ v φ Γ, x : φ ` ψ v ψ′

Γ ` Πx:φψ v Πx:φ′ψ
′

Function

Γ ` φ v ψ Γ, x : ψ ` P

Γ ` (x : φ)P v ψ
(L)

Γ, x : ψ, Q ` x : φ

Γ ` φ v (x : ψ)Q
(R)

Refinement Types

Γ ` φ v φ′ Γ ` φ′ v φ′′

Γ ` φ v φ′′

Transitivity

Figure 4.9: Refinement Rules

109

Γ ` P Γ ` Q
Γ ` P ∧Q

Γ ` P ∧Q
Γ ` P

Γ ` P ∧Q
Γ ` Q

Conjunction

Γ ` P Γ ` Q wf

Γ ` P ∨Q

Γ ` P wf Γ ` Q

Γ ` P ∨Q

Γ ` P ∨Q Γ, P ` R Γ, Q ` R
Γ ` R

Disjunction

Γ, P ` Q
Γ ` P ⊃ Q

Γ ` P Γ ` P ⊃ Q
Γ ` Q

Implication

Γ ` ∀x : φ.P Γ ` t : φ

Γ ` P [t/x]
Γ, x : φ ` P
Γ ` ∀x : φ.P

Universal Quantification

Γ ` P wf
Γ,⊥ ` P

Γ,¬P ` ⊥
Γ ` P

Falsehood

Γ ` P wf
Γ, P ` P

Assumptions

Γ ` t =φ t′ Γ, x : φ ` P wf Γ ` P [t/x]

Γ ` P [t′/x]

Γ ` t : (x : φ)P

Γ ` P [t/x]

Elimination Rules

Figure 4.10: Natural Deduction Rules in a Theory of Refinement Types

110

Finally, the rules of the logic are given in Figure 4.10. This is a natural deduc-

tion presentation of a typed classical predicate logic of equalities and refinements.

Assumptions in context can be used via Assumptions or Elimination Rules.

In order that when Γ ` P is derivable, we have well-formedness of P in Γ,

some rules (for false and assumptions) have explicit well-formedness hypotheses.

This prevents us proving non well-formed equalities from ⊥.

Contexts differ from the usual formulations of typed lambda calculi since they

contain propositions. The two forms of assumption are combined in the one

context to make explicit the mutual dependencies. This is illustrated by the two

introduction rules:
Γ, P ` Q

Γ ` P ⊃ Q
Γ, x : φ ` P
Γ ` ∀x : φ.P

We need a refinement typing for the ∀-elimination rule

Γ ` ∀x : φ.P Γ ` t : φ

Γ ` P [t/x]

and refinement typings are also used to infer propositions with the rules

Γ ` t =φ t′ Γ, x : φ ` P wf Γ ` P [t/x]

Γ ` P [t′/x]

Γ ` t : (x : φ)P

Γ ` P [t/x]

4.3.5 Booleans and Naturals

We give axioms for booleans and naturals which combine the typing and logical

rules of Chapter 2.

We give the λ(:)-axiom system for booleans in Figure 4.11. There is one ground

type bool, and constants true : bool, false : bool and if then else :

bool, τ, τ → τ , for each type τ . The axiom schema for conditionals is given as

if then else : P + P ′, (x : φ) P ⊃ Q[x], (y : φ) P ′ ⊃ Q[y]→ (z : φ) Q[z]

where P +P ′ abbreviates (b : bool) b = true ⊃ P ∧ b = false ⊃ P ′. The axiom

says that if the truth of the boolean condition implies P , and its falsity implies

P ′, and under these assumptions we can infer that the respective branches have

refinement type (z : φ)Q, then the conditional as a whole has this refinement

type.

In fact, this axiom implies the others. A particular case of this axiom is

Γ, b = true ` t : ψ Γ, b = false ` t′ : ψ

Γ ` if b then t else t′ : ψ

111

true : bool

false : bool

if then else : bool, τ, τ → τ

Sortings

x : φ, y : ψ ` if true then x else y =φ x

x : φ, y : ψ ` if false then x else y =ψ y

f : bool→ ψ, b : bool ` f(b) =ψ if b then f(true) else f(false)

if then else : P+P ′, (x : φ) P ⊃ Q[x], (y : φ) P ′ ⊃ Q[y]→ (z : φ) Q[z]

Axioms

Figure 4.11: Axiom System for Booleans

This could be expressed more elegantly using sums, which we have not studied

here.

In Figure 4.12 we give the λ(:)-axiom system for naturals, making use of the

singleton type notation from Remark 4.3.9. There are the zero and successor

constants, and two constants for recursion. There are refinement typing and

equational axioms for each form of recursion.

We give constants for both primitive and well-founded recursion. Primitive

recursion enables us to write simple terminating programs which loop through a

finite set of the values of some type, such that at each stage the program has access

to the computation on the previous value. This is the functional equivalent of the

for-loop. We use the constant natrec for primitive recursion over the naturals.

However, many programs are most naturally expressed by a form of recursion

for which, at each stage of looping over the values of some type, the program has

access to computations on all previous values. For example, the recursive call of

the merge sort algorithm is not to the tail of a list, but to a sublist. What we

require is the functional equivalent of the while-loop. The problem is that, in

general, while loops do not terminate, and if we add a construct for full recursion

to the simply-typed λ-calculus, then this results in inconsistency.2

2If we have constants muτ : (τ → τ) → τ such that f : τ → τ ` f(muτ (f)) =τ muτ (f), then
we can prove all well-typed equations. Let not : bool → bool and eq : bool → bool → bool
be the negation and equality functions, respectively. We can use the η-equality for conditionals
to prove that b : bool ` eq b b = true and b : bool ` eq b not(b) = false. By substituting
mubool(not) for b, we can prove that true = false.

112

0 : nat

succ : nat→ nat

natrec : τ, (nat→ τ → τ), nat→ τ

natwfrec : (nat→ (nat→ τ)→ τ)→ nat→ τ

Sortings

n : nat ` natrec : φ[0], Πn:natφ[n]→ φ[succ n], {n}nat → φ[n]

Γ ` z : φ[0] Γ ` s : Πn:natφ[n]→ φ[succ n]

Γ ` natrec z s 0 =φ[0] z

Γ ` z : φ[0] Γ ` s : Πn:natφ[n]→ φ[succ n]

Γ, n : nat ` natrec z s (succ n) =φ[succ n] s n (natrec z s n)

natwfrec : (Πx:nat(Πz<xφ[z])→ φ[x]) → Πx:natφ[x]

g : Πx:nat(Πz<xφ[z])→ φ[x], n : nat ` natwfrec g n =φ[n] g n (natwfrec g)

Axioms

Figure 4.12: Axiom System for Naturals

The solution is to restrict the recursion to loops which terminate. This can

be done by defining a well-founded order on the data which the recursion is

over, such that at each stage the computation on a value can only make use of

computations on values lower in the order. This form of recursion is known as

well-founded recursion [Nor88]. We will only use well-founded recursion over the

naturals with the usual less-than ordering. We write Πz<xφ[z] for Πz:nat|(z<x)φ[z].

Rather than separate the proof of termination from well-formedness, however,

we build it in by defining a constant, natwfrec, which can only construct ter-

minating loops. The termination requirement can be expressed using refinement

types.

The sorting is

natwfrec : (nat→ (nat→ τ)→ τ)→ nat→ τ

and the axiom is given as a refinement typing:

natwfrec : (Πx:nat(Πz<xφ[z])→ φ[x]) → Πx:natφ[x]

113

Recursion is formulated, without sacrificing termination, by

g : Πx:nat(Πz<xφ[z])→ φ[x], n : nat ` natwfrec g n =φ[n] g n (natwfrec g)

If f : nat → τ is given recursively as f(n) = t[n, f] where the body of the loop,

t[n, f], is such that f is applied to values smaller than n, then we can define f as

natwfrec (λn.λf.t). Then,

f n ≡ natwfrec (λn.λf.t) n
= t[n, natwfrec (λn.λf.t)]
≡ t[n, f]

so that f n can be thought of as looping to t[n, f].

The induction rules of Chapter 2 can be derived. For n : nat ` P [n] wf we

derive the rule of mathematical induction:

P [0]

∗ : (z : 1)P [0]

∀n : nat . P [n] ⊃ P [succn]

λn : nat.λz : 1.∗ : Πn:nat(z : 1)P [n]→ (z : 1)P [succn]

n : nat ` natrec ∗ (λn : nat.λz : 1.∗) n : (z : 1)P [n]

∀n : nat.P [n]

Similarly, we can derive well-founded induction, and computational induction

for natwfrec: for g : nat→ (nat→ τ)→ τ and x : τ , n : nat ` P [x, n] wf,

∀n : nat.(∀n′ < n.P [natwfrec g n′]) ⊃ P [g (natwfrec g n)]

∀n : nat.P [natwfrec g n]

In fact, as noted on p. 47, well-founded induction follows from mathematical

induction which, in turn, can be derived from the axiom for natrec.

Although constants are added in the simple type theory, axioms are given

using refinement types. For example, although natwfrec g is always defined for

g of appropriate type, the recursion equation for natwfrec only holds when g has

the appropriate refinement type. Semantically, natwfrec is interpreted as a map

from the set of the underlying type, but the interpretation is only constrained on

the refinement type.

4.3.6 Metatheory

We prove a few syntactic results about the calculus. Some of the following results

will be needed in Section 4.5 for proving completeness with respect to the seman-

tics. Other standard metatheoretic results (not listed here) can be deduced from

completeness.

114

Lemma 4.3.11 The following is derivable:

Γ ` t : φ Γ, x : φ ` P

Γ ` t : (x : φ)P

Proof:

Γ ` t : φ

Γ ` φ v φ Γ, x : φ ` P

Γ ` (x : φ)P v φ

Γ ` t : (x : φ)P

We use this to show that the rule of Refinement Type Introduction is

derivable.

Lemma 4.3.12 The rule

Γ ` t : φ Γ ` P [t/x]

Γ ` t : (x : φ)P

is derivable.

Proof:
Γ ` t : φ

Γ ` t : {t}φ
Γ ` P [t/x]

Γ, x : {t}φ ` P

Γ ` t : (x : {t}φ)P Γ ` φ v {t}φ
Γ ` t : (x : φ)P

It is an easy proof to show that for well-formed refinement types Γ ` φ,

we have reflexivity of refinement Γ ` φ v φ. We now give some other derived

refinements.

Lemma 4.3.13 The following rules can be derived:

1.

Γ, x : φ ` P ′ ⊃ P Γ ` φ v φ′

Γ ` (x : φ)P v (x : φ′)P ′

2.

Γ, P ` φ wf

Γ, P ` (x : φ)P = φ

3.

Γ ` φ wf

Γ ` (x : φ)> = φ

4.

Γ ` φ wf Γ, x : φ ` ψ wf Γ, x : φ, y : ψ ` Q wf

Γ ` Πx:(x:φ)P (y : ψ)Q v (f : Πx:φψ) ∀x : φ.P ⊃ Q[fx/y]

5.

Γ ` φ wf Γ, x : φ ` ψ wf Γ, x : φ, y : ψ ` Q wf

Γ ` Πx:φ(y : ψ)Q = (f : Πx:φψ) ∀x : φ.Q[fx/y]

115

6.

Γ ` φ wf Γ, x : φ ` P wf Γ, x : φ ` ψ wf Γ, x : φ, y : ψ ` Q wf

Γ ` Σx:(x:φ)P (y : ψ)Q = (z : Σx:φψ) P [π1z/x] ∧Q[π1z/x, π2z/y]

7.

Γ ` φ wf Γ, y : φ ` P wf Γ, x : φ, P [x/y] ` Q wf

Γ ` (x : (y : φ)P)Q = (z : φ)P [z/y] ∧Q[z/x]

In Remark 4.3.4 we said that refinement types correspond to a relation over

a type rather than a subset. One consequence of this is that we cannot give

a canonical form for refinement types simply using a type and a proposition as

(x : τ)P . This is in contrast to in [NPS90], where subset types are given meaning

via a translation into the underlying basic type theory (see Section 5.4.3).

Instead, we introduce the notion of pseudotype, which we will use in the proof

of completeness. These have some of the properties of types. For example, pseu-

dotypes have no logical import, in the sense that they are inhabited if and only

if the underlying type is. Moreover, we can express all refinement types in a

canonical form as a propositional ‘subset’ of pseudotypes.

Definition 4.3.14 The pseudotypes for a given λ(:)-signature are given by the

grammar:

κ ::= 1 | γ | Σx:κκ
′ | Πx:φκ

To see that we must keep the dependent constructors consider, for example, the

refinement type Σn:nat{n}nat → nat. This cannot be expressed in the form φ×φ′

for any φ and φ′.

Lemma 4.3.15 For all Γ ` φ wf, there exists a pseudotype κ and proposition P

such that, Γ ` φ = (x : κ)P .

Proof: Use the rules in Lemma 4.3.13.

Lemma 4.3.16 If ⊥, Γ ` φ, φ′ : Ref (τ), then ⊥, Γ ` φ vτ φ′.

Proof: By Lemma 4.3.15, we can assume, without loss of generality, that φ and

φ′ are in canonical form. The proof is a straightforward induction over τ .

The evident generalisation to arbitrary propositions (if ⊥, Γ ` P wf then

⊥, Γ ` P) holds also.

Well-formedness of terms is a combination of typing and satisfying logical

properties. This is illustrated in the following proposition.

Proposition 4.3.17 Given preterm t in context Γ, the following are equivalent:

116

1. Typify(t) is well-typed in typing context Typify(Γ), where Typify replaces

each occurrence of a refinement type with its underlying type and removes

propositions from the context.

2. There exists a refinement type φ such that ⊥, Γ ` t : φ.

3. There exists a type τ , such that for all ⊥, Γ ` φ : Ref (τ), we can prove

⊥, Γ ` t : φ.

Proof: Clearly (3) implies (2) and, by Lemma 4.3.16, (2) implies (3).

We induct over preterms to show that for each Γ ` t, (1) is equivalent to (2,3).

We write U for Typify(U). We just consider two cases.

(applications) If ⊥, Γ ` tt′ : φ then there exists a ψ such that ⊥, Γ ` t : ψ → φ

and ⊥, Γ ` t : ψ, so by induction, Γ ` t : σ → τ and Γ ` t′ : σ for some σ

and τ , and so Γ ` tt′ : τ .

Conversely, if Γ ` tt′ : τ , then Γ ` t : σ → τ and Γ ` t′ : σ so, by induction,

⊥, Γ ` t : φ→ ψ and ⊥, Γ ` t′ : φ, and so ⊥, Γ ` tt′ : ψ.

(abstractions) If ⊥, Γ ` λx : φ.t : χ then ⊥, Γ, x : φ, P ` t : χ′ for some P and

χ′, so Γ, x : σ ` t : τ and then Γ ` λx : σ.t : σ → τ , that is, Γ ` λx : φ.t :

σ → τ .

Conversely, if Γ ` λx : φ.t : σ → τ , then Γ, x : σ ` t : τ so, by induction,

⊥, Γ, x : φ ` t : ψ for some ψ, and so, ⊥, Γ ` λx : φ.t : Πx:φψ.

Definition 4.3.18 Let Γ ` t be a preterm in context. If the conditions of Propo-

sition 4.3.17 hold, then we say that Γ ` t is well-structured.

We extend the definition of well-structuredness to arbitrary pre-expressions,

and write Γ ` U ws for ⊥, Γ ` U wf.

We will sometimes say, informally, that an expression U is well-structured.

Note that if Γ is well-formed, then Γ ` U wf iff Γ,⊥ ` U wf.

There are two levels of ‘well-formedness’ therefore. What we have called

well-structured corresponds to terms being put together correctly, irrespective

of logical annotation, whereas being well-formed, as such, means that the logic

is respected. In contrast to well-formedness, Proposition 4.3.17 shows that well-

structuredness is decidable.

This distinction is reminiscent of the rough types of Sannella and Aspinall,

which are like the type underlying a refinement type.

We will see in Section 4.5 that we only give a semantic interpretation to well-

structured terms.

117

Proposition 4.3.19 If Γ ` φ, φ′ : Ref (τ), then Γ ` φ v (x : φ′)⊥.

Proof: Since Typify(Γ), x : τ ` x : τ , by Proposition 4.3.17 we infer that

Γ, x : φ′,⊥ ` x : φ, and so Refinement Types (R) gives Γ ` φ v (x : φ′)⊥.

Remark 4.3.20 Refinement is a definitional extension of refinement typing in

the sense that Γ, x : φ′ ` x : φ if and only if Γ ` φ v φ′.

Γ, x : φ′ ` x : φ

Γ, x : φ′,> ` x : φ

Γ ` φ v (x : φ′)> Ref.Types (R)
Γ ` φ′ v φ′ Γ, x : φ′ ` >

Γ ` (x : φ′)> v φ′
Ref.Types (L)

Γ ` φ v φ′

In fact, this can be strengthened by showing that for all Γ ` φ wf, we can prove

Γ ` φ v φ′ ≡ ∀x, y : φ′ . x =φ′ y ⊃ x =φ y.

A natural question, then, is can we eliminate the refinement relation and treat

it as syntactic sugar? As the calculus stands, the Weakening rule for refinement

typing has a refinement as hypothesis and so we cannot naively treat φ v φ′ as

syntactic sugar for Γ, x : φ′ ` x : φ.

Although the system could be reformulated, we believe it is more insightful

to have an explicit definition of refinement (as in Chapter 3). In practice, when

applying the rules of Figure 4.9 backwards to find a proof of φ v φ′, the refinement

type rules are only used in Refinement Types (R), when φ′ is of the form

(x : ψ)Q.

Remark 4.3.21 Although we have emphasised the per intuition for the λ(:)-

calculus, the match is not perfect. For example, we might expect equality at

(even → nat) → nat to mean that if arguments are equal at even → nat then

the results are equal (at nat), but this is not so. For example, λf : nat→ nat . 3

does not equal λf : even→ nat . 3 at (even → nat) → nat since the term

λf : nat→ nat . 3 does not have the refinement type (even→ nat)→ nat.

In Section 4.5, we will define relations on terms, 'φ, such that these two

terms are related by '(even→nat)→nat. Then we can think of terms of the calculus

as uniquely specifying total terms up to 'φ for some refinement type φ.

However, this is more a mismatch of refinement typing than equality, for if

t, t′ : φ, then t 'φ t′ implies t =φ t′.

Remark 4.3.22 We can define a form of annotation, P → φ, for proposition,

P , and refinement type, φ. We will use this notion in the completeness proof

below.

118

The definition is:

P → 1 ≡ 1

P → γ ≡ γ

P → Σx:φψ ≡ Σx:(P→φ)(P → ψ)

P → Πx:φψ ≡ Πx:(P→φ)(P → ψ)

P → (x : φ)Q ≡ (x : (P → φ))P ⊃ Q

We state the following two properties, for each P and φ:

1. If Γ, P ` φ wf then Γ ` (P → φ) wf.

2. Γ, P ` φ = (P → φ)

4.4 Division by 2 Revisited

As an illustration of how refinement types can provide a useful proof technique,

we give the division by 2 example from Section 4.2 again. Recall that we define

iteration from the more general recursion, as

natiter t t′ n = natrec t (λx : nat.t′) n

where x /∈ FV (t′).

The program is

div2 = λn : nat.π1(div2
′ n)

div2′ = natiter 〈0, 0〉 (λp : nat× nat.〈π2p, π1p + 1〉)

We prove that it satisfies the specification

div2 : Πn:nat(m : nat)n = 2m ∨ n = 2m + 1

div2′ : Πn:natΣ(m:nat)n=2m∨n=2m+1(m
′ : nat)m + m′ = n

In fact, there is little of interest in the main part of the proof. Since refinement

types explicitly indicate the structure of the specification, this enables much of

the proof to be carried out in a syntax-directed fashion. This would be useful for

automation.

Write φ[n] as an abbreviation for Σm:(m:nat)n=2m∨n=2m+1(m
′ : nat)m+m′ = n.

〈0, 0〉 : φ[0]

see below
n : nat, p : φ[n] ` 〈π2p, π1p + 1〉 : φ[n + 1] n : nat ` nat× nat v φ[n]

n : nat ` λp : nat× nat.〈π2p, π1p + 1〉 : φ[n]→ φ[n + 1]

n : nat ` natiter 〈0, 0〉 (λp : nat× nat.〈π2p, π1p + 1〉) n :
Σ(m:nat)n=2m∨n=2m+1(m

′ : nat)m+m′ = n

λn : nat.natiter 〈0, 0〉 (λp : nat× nat.〈π2p, π1p + 1〉) n :
Πn:natΣ(m:nat)n=2m∨n=2m+1(m

′ : nat)m + m′ = n

119

The proof continues with

n : nat, n = 2π1p ∨ n = 2π1p + 1, π1p + π2p = n
` n + 1 = 2π2p ∨ n + 1 = 2π2p + 1

n : nat, p : φ[n] ` n + 1 = 2π2p ∨ n + 1 = 2π2p + 1

n : nat, p : φ[n] ` π2p : (m : nat)n + 1 = 2m ∨ n + 1 = 2m + 1

The remainder of the proof is arithmetic reasoning. In practice, we would use a

theorem prover here.

n : nat, p : φ[n] ` π1p + π2p = n

n : nat, p : φ[n] ` π2p + π1p + 1 = n + 1

4.5 Models

In contrast with the previous two chapters we will not interpret derivations of

judgements, but rather ‘pre-judgements’. This is because we do not have unique

refinement typings, or even unique derivations of particular refinement typings.

To show that a semantics based on derivations gives unique interpretations would

require an analysis of coherence which we avoid. This is not quite what we might

call a ‘Curry-style’ interpretation, however, since we do not erase the refinement

types from terms.

In Chapter 2, we used Henkin models to interpret the simply-typed lambda

calculus and first-order logic. Here we will extend this, and interpret terms as

sets (their ‘total realizers’). Refinement types over type σ are interpreted as pers

over σA.

Definition 4.5.1 A Henkin interpretation of a λ(:)-signature is the same as a

Henkin interpretation of a first-order λ×→-signature.

Although the raw data of λ(:)- and first-order λ×→-interpretations (Definition

2.4.1) are the same, the induced semantics are different.

We assume some Henkin interpretation below when we write [[]]. A Henkin

interpretation A models an axiom system when all constants and predicates are

given an interpretation, and each axiom is true in the interpretation, as defined

below. Although the environment model condition is only given for λ×→, the

interpretation of λ(:)-terms is well-defined.

Strictly speaking, the meaning function is a partial mapping from pre-expressions

to meanings. We will show later that it is total for the well-structured terms.

120

a [[Γ ` 1]](η) a′ ⇐⇒ a, a′ ∈ 1A

[[Γ ` φ]] = R [[Γ, x : φ ` ψ]] = S

a [[Γ ` Σx:φψ]](η) a′ ⇐⇒ Proj
σ,τ
1 (a) R(η) Proj

σ,τ
1 (a′) and

Proj
σ,τ
2 (a) S〈η, Projσ,τ

1 (a)〉 Projσ,τ
2 (a′)

[[Γ ` φ]] = R [[Γ, x : φ ` ψ]] = S

f [[Γ ` Πx:φψ]](η) f ′ ⇐⇒ for all a R(η) a′, App(f, a) S〈η, a〉 App(f ′, a′)

[[Γ ` φ]] = R [[Γ, x : φ ` P]] = A

a [[Γ ` (x : φ)P]](η) a′ ⇐⇒ a R(η) a′, 〈η, a〉 ∈ A, 〈η, a′〉 ∈ A

a [[Γ ` γ]](η) a′ ⇐⇒ a, a′ ∈ γA and a = a′

Figure 4.13: Interpretation of Refinement Types

Now, expressions are all interpreted in context, so for context Γ we must first

define Γ-environments, η, in interpretation A, written η �A Γ (dropping the A
when not significant), where η is a tuple of elements in the domains of the pers

for the refinement types in Γ. We define this recursively with the interpretation

of refinement types and propositions. For per R, we write a ∈ R to indicate that

a is in the domain of R, i.e. a R a.

We first define the notion of equality of environments, in the obvious way, as

simultaneous equality of elements in the corresponding per, written η [[Γ]] η′.

〈〉 [[〈〉]] 〈〉

〈η, a〉 [[Γ, x : φ]] 〈η′, a′〉 when η [[Γ]] η′ and a [[Γ ` φ]](η) a′

η [[Γ, P]] η′ when η [[Γ]] η′ and η, η′ ∈ [[Γ ` P]]

Then we define η � Γ to mean η [[Γ]] η.

To avoid questions of coherence, we interpret pre-terms, and so pre-propositions

and pre-refinement types too.

Now as mentioned above, refinement types are interpreted as pers. The in-

terpretation is given in Figure 4.13 where we adopt the convention that the pers

are over the set corresponding to the underlying type. The unit and ground

types are interpreted as identities; the product and function refinement types are

interpreted as the expected combination of pers, and (x : φ)P is interpreted as

121

the restriction of φ to the elements for which P holds. It is easy to see that all

types are interpreted as identities.

There is an apparent asymmetry in the definition of the product per for Σx:φψ,

but in fact, if φ is a well-formed refinement type in context Γ, then the soundness

result below states that if η [[Γ]] η′ we have [[Γ ` φ]](η) = [[Γ ` φ]](η′).

In Figure 4.14, The pre-term in context Γ ` t is interpreted in environment

g � Γ as a subset (its ‘total realizers’) of σA, where σ is the type underlying t. The

types are implicit in the interpretation. An alternative would be to make them

explicit by giving an interpretation over well-structuredness judgements. This is

the approach taken in [Asp97], for example.

[[Γ ` φ]] = R

[[Γ, x : φ, Γ′ ` x]]〈η, a, η′〉 = {a′ | a′ R(η) a}
[[Γ ` t1]] = m1 · · · [[Γ ` tn]] = mn

[[Γ ` k(t1, . . . , tn)]](η) = {kA(a1, . . . , an) | ai ∈ mi(η)}
[[Γ ` ∗]](η) = 1A

[[Γ ` t]] = m [[Γ ` t′]] = m′

[[Γ ` 〈t, t′〉]](η) = {a ∈ (σ × τ)A | Projσ,τ
1 (a) ∈ m(η), Projσ,τ

2 (a) ∈ m′(η)}
[[Γ, x : φ ` t]] = m

[[Γ ` λx : φ.t]](η) =
{f ∈ (σ → τ)A | for all a ∈ [[Γ ` φ]](η) . App(f, a) ∈ m〈η, a〉}

[[Γ ` t]] = m

[[Γ ` π1(t)]](η) = {Projσ,τ
1 (a) | a ∈ m(η)}

[[Γ ` t]] = m

[[Γ ` π2(t)]](η) = {Projσ,τ
2 (a) | a ∈ m(η)}

[[Γ ` t]] = m [[Γ ` t′]] = m′

[[Γ ` tt′]](η) = {App(f, a) | f ∈ m(η), a ∈ m′(η)}

Figure 4.14: Interpretation of Terms

It is because of the refinement type in abstractions that we interpret terms

as sets rather than as single elements. For example, λn : even.n is interpreted as

the set of elements in (nat→ nat)A which are the identity for even arguments.

In Figure 4.15 we give the interpretation of propositions. We interpret a pre-

proposition in context Γ ` P as the set of environments η � Γ in which P holds.

As we mentioned above, although the interpretation function is partial, well-

structured terms are always given an interpretation. For example, (λn : even.n)∗

122

does not have a well-defined interpretation, but (λn : even.n)3 does, even though

it is not syntactically well-formed.

Proposition 4.5.2 If Γ ` U ws and η � Γ, then [[Γ ` U]](η) is defined.

Proof: We induct over pre-expressions, and consider two cases.

(applications) If Γ ` tt′ ws, then Γ ` tt′ : τ , so Γ ` t : σ → τ and Γ ` t′ : σ, so

by the inductive hypothesis, [[Γ ` t]](η) is a well-defined subset of (σ → τ)A,

and [[Γ ` t′]](η) is a well-defined subset of σA. Hence, [[Γ ` tt′]](η) is a

well-defined subset of τA.

(abstractions) If Γ ` λx : φ.t ws then Γ ` λx : σ.t : σ → τ , so Γ, x : σ ` t : τ

and, by induction, if η � Γ and a ∈ [[Γ ` φ]](η), then [[Γ, x : φ ` t]](〈η, a〉) ⊆
τA is well-defined.

[[Γ ` ⊥]] = ∅
[[Γ ` P ⊃ P ′]] = {η � Γ | η /∈ [[Γ ` P]] or η ∈ [[Γ ` P ′]]}

[[Γ ` ∀x : φ.P]] = {η � Γ | ∀a ∈ [[Γ ` φ]](η) . 〈η, a〉 ∈ [[Γ, x : φ ` P]]}
[[Γ ` t1]] = m1 · · · [[Γ ` tn]] = mn

[[Γ ` F (t1, . . . , tn)]] = {η � Γ | ∀ai ∈ miη . 〈a1, . . . , an〉 ∈ FA}
[[Γ ` t]] = m [[Γ ` t′]] = m′ [[Γ ` φ]] = R

[[Γ ` t =φ t′]] = {η � Γ | ∀a ∈ m(η) . ∀a′ ∈ m′(η) . a R(η) a′}
[[Γ ` φ]] = R [[Γ ` φ′]] = R′

[[Γ ` φ v φ′]] = {η � Γ | R(η) ⊇ R′(η)}

Figure 4.15: Interpretation of Propositions

We may now say what the semantic analogues of the judgements are. Let A
be a λ(:)-Henkin interpretation, and assume that η �A Γ. Define Γ �A,η t : φ when

for all η [[Γ]] η′, for all a ∈ [[Γ ` t]](η) and a′ ∈ [[Γ ` t]](η′), we have a [[Γ ` φ]](η) a′.

In other words, the interpretation is unique up to the equality of the per. We say

that Γ �A,η P when η ∈ [[Γ ` P]]. In particular, the refinement Γ �A,η φ v φ′

is true when there is an inclusion of pers [[Γ ` φ′]](η) ⊆ [[Γ ` φ]](η). We define

Γ �A,η φ wf to mean: for all η [[Γ]] η′, [[Γ ` φ]](η) = [[Γ ` φ]](η′), and Γ �A,η P wf

to mean: for all η [[Γ]] η′, η ∈ [[Γ ` P]] ⇐⇒ η′ ∈ [[Γ ` P]]. We define validity of a

basic judgement, B, to be its truth in all environments, that is, Γ �A B means:

for all η �A Γ, Γ �A,η B.

123

In defining when an interpretation models an axiom system we only require

the well-formed axioms to hold.

Definition 4.5.3 Let 〈Sg, Ax〉 be a λ(:)-axiom system. A Henkin interpretation

A of Sg is a model of 〈Sg, Ax〉 when

• for each Γ ` P ∈ Ax, if 〈Sg, Ax〉 . Γ ` P wf then Γ �A P .

• for each Γ ` k : φ1, . . . , φn → ψ ∈ Ax such that Sg . k : σ1, . . . , σn → τ ,

〈Sg, Ax〉 . Γ ` φi : Ref (σi), 〈Sg, Ax〉 . Γ ` ψ : Ref (τ),

for all η �A Γ, if ai [[Γ ` φi]]
A(η) a′i for each i = 1, . . . , n, then

kA(a1, . . . , an) [[Γ ` ψ]]A(η) kA(a′1, . . . , a
′
n)

We write this as Γ �A k : φ1, . . . , φn → ψ.

First we give a substitution lemma.

Lemma 4.5.4 (Substitution Lemma) If Γ �A,η ti : φi (i = 1, . . . , n), then

[[x1 : φ1, . . . , xn : φn ` U]]A 〈a1, . . . , an〉 = [[Γ ` U [ti/xi]]]
A(η)

where ai ∈ [[Γ ` ti]]
A(η) (so 〈a1, . . . , an〉 �A x1 : φ1, . . . , xn : φn).

Proof: Induction over x1 : φ1, . . . , xn : φn ` U .

We need the condition that Γ �A,η ti : φi. The weaker requirement that for

ai ∈ [[Γ ` ti]]
A(η), ai ∈ [[Γ ` φi]]

A(η) is not sufficient. For example, in any model

λn : even.n 2 nat→ nat, and for each a ∈ [[λn : even.n]] we have a � nat→ nat,

but [[f : nat→ nat ` f]](a) 6= [[λn : even.n]].

Note also that the substitution pre-expression Γ ` U [ti/xi] might not be well-

formed. It is, however, if Γ ` ti : φi (for i = 1, n).

A consequence of the substitution lemma is that for x : φ ` U wf, and

Γ �A,η t : φ, we can unambiguously use the notation [[x : φ ` U]] ([[Γ ` t]](η))

(dropping the A) to mean [[x : φ ` U]](a) for any a ∈ [[Γ ` t]](η). We can then

express (an instance of) Lemma 4.5.4 as

[[x : φ ` U]] ([[Γ ` t]](η)) = [[Γ ` U [t/x]]](η)

More generally,

[[Γ, x : φ, Γ′ ` U]]〈η, [[Γ ` t]](η), η′〉 = [[Γ, Γ′[t/x] ` U [t/x]]]〈η, η′〉

Lemma 4.5.5 If � t =φ t′ and x : φ � U wf, then [[U [t/x]]] = [[U [t′/x]]].

Proof: Let a ∈ [[t]], a′ ∈ [[t′]]. Then a [[φ]] a′, and [[U [t/x]]] = [[x : φ ` U]](a) =

[[x : φ ` U]](a′) = [[U [t′/x]]].

124

Lemma 4.5.6 For � t : φ, and x : φ � P wf, if [[t]] ⊆ [[x : φ ` P]] then � P [t].

Proof: This is an immediate consequence of Lemma 4.5.4.

We now verify that interpretations respect the rules of the calculus, that is,

the calculus is sound with respect to models of λ(:)-axiom systems. A consequence

of this is that the axiom system for booleans and naturals is consistent since we

can give nontrivial models.

Theorem 4.5.7 (Soundness) Let A be a Henkin model of λ(:)-axiom system

〈Sg, Ax〉. Then if 〈Sg, Ax〉 . Γ ` t : φ then Γ �A t : φ, if 〈Sg, Ax〉 . Γ ` φ wf

then Γ �A φ wf, if 〈Sg, Ax〉 .Γ ` P wf then Γ �A P wf, and if 〈Sg, Ax〉 .Γ ` P

then Γ �A P .

Proof: Simultaneous induction over all derivations. The soundness of β-equality

for abstractions follows from Lemma 4.5.4. Assume that Γ, x : φ � t : ψ,

Γ � t′ : φ, and let η [[Γ]] η′, a ∈ [[Γ ` (λx : φ.t)t′]](η), a′ ∈ [[Γ ` t[t′/x]]](η′).

Then a [[Γ ` ψ[t′/x]]](η) a′.

Although we interpret a term in an environment as a set, the soundness theorem

shows that since contexts can be seen as pers, the interpretation of a term gives

rise to a morphism of pers, that is, a map of equivalence classes. For example,

we can think of the interpretation of a variable as a map from an element to its

equivalence class (in the relevant refinement type). These informal remarks will

be further clarified in the next chapter.

A more challenging question is whether the calculus is in any sense complete,

that is, if a particular judgement holds in all the models of some axiom system

then it is provable. The ‘ideal’ completeness theorem would be (for refinement

typings) that if Γ � t : φ then Γ ` t : φ. Unfortunately, this fails for two reasons.

Firstly, due to the way in which well-formedness is combined with satisfying

logical properties, we must assume that the judgement is well-formed, by which

we mean the well-formedness of its component expressions. This is because it

is possible for non well-formed terms to have a unique interpretation, and so,

semantically, have a refinement type. For example, (λn : even . ∗)3 is interpreted

as the unique inhabitant of unit type, but cannot be typed in the system.

The second point arises with higher-order terms, and is due to the calculus

requiring arguments to an abstraction to have the refinement type on the abstrac-

tion, but the model just needing equality of arguments at that refinement type

to give equal results. For example, λf : nat→ nat . 3 has the refinement type

(even→ nat)→ nat in the model, but not in the calculus.

125

What we can show, however, is that if a term in context, Γ ` t, has refinement

type φ in the model, then there exists a term t′ which does have refinement type φ,

such that Γ � t =φ t′. In other words, t and t′ correspond to the same equivalence

class of φ. We will give a syntactic characterisation of this.

As in the previous two chapters, we prove completeness using the notion of

Henkin theory, suitably extended. We will regard theories as infinite contexts, Γ,

rooted on the left, for which Γ ` P iff P ∈ Γ. We say that an infinite context is

well-formed when every finite prefix is well-formed.

Definition 4.5.8 Let 〈Sg, Ax〉 be a λ(:)-axiom system. A λ(:)-Henkin theory

over 〈Sg, Ax〉, is a well-formed infinite context, Γ, closed under derivation from

〈Sg, Ax〉 such that if ∃x : φ.P is in Γ, then there is a term Γ ` t : φ such that

P [t/x] is in Γ.

The completeness proof rests on the construction of a term model, formed

from a suitable Henkin theory.

There are actually a number of possibilities which, a priori, we can consider

for the class of terms in the set τA. Firstly, there is a choice between total terms

of λ×→ and arbitrary terms of λ(:). Another choice is between well-formed terms

— either terms with type τ , or with any refinement type φ such that φ : Ref (τ)

— or all well-structured terms over τ .

We rule out total terms at types because, with such an interpretation, it

is not immediately obvious how to construct an environment in the proof of

completeness. For example, if halt : Ref(nat) is the refinement type of encodings

of programs which halt, and x : halt → nat is in the context, then there would

be no term in natA (i.e. no term of type nat) which equals x.

We do not use arbitrary terms at refinement types because, as pointed out

in the discussion after Lemma 4.5.4, this would lead to substitutions not being

well-formed. For example,

[[h : (even→ nat)→ nat ` (λh′ : (even→ nat)→ nat.h′)h]] [λf : nat→ nat.3]

would contain a pre-term which is not well-formed.

Thus, we will use the well-structured terms of λ×→. We use the following

definition to characterise the term model.

Definition 4.5.9 We define P̃ for each proposition, P by replacing each equality,

t =φ t′, with t 'φ t′, where we write:

• t1 '1 t2 for t1 =1 t2

126

• t1 'γ t2 for t1 =γ t2

• t1 'Σx:φψ t2 for π1(t1) 'φ π1(t2) ∧ π2(t1) 'ψ[π1(t1)] π2(t2)

• t1 'Πx:φψ t2 for ∀x : τ .∀x′ : τ . x 'φ x′ ⊃ t1x 'ψ t2x
′ (where φ : Ref (τ))

• t1 '(x:φ)P t2 for t1 'φ t2 ∧ P̃ [t1] ∧ P̃ [t2]

Lemma 4.5.10 If Γ ` t 'φ′ t
′ and Γ ` φ v φ′ then Γ ` t 'φ t′.

Proof: Induction over Γ ` φ v φ′.

Lemma 4.5.11 Suppose x /∈ FV (ψ). If Γ, x : φ ` t : ψ and Γ ` t1 'φ t2, then

Γ ` t[t1/x] 'ψ t[t2/x].

Lemma 4.5.12 If Γ ` t 'φ t then there exists a t′ such that Γ ` t 'φ t′ and

Γ ` t′ : φ.

Proof: Induction over φ.

Definition 4.5.13 Let u and t be well-formed terms with u total. We define

u satΓ t to mean: for all φ, if Γ ` t : φ then Γ ` u 'φ t.

Although this definition would make sense for arbitrary well-formed terms, the

idea is that it formalises when total u is a realizer of t. We superscript the context,

Γ, rather than writing Γ ` u sat t, so that when we use infinite contexts, Γ∞,

this will not clash with our convention of writing Γ∞ ` B to mean Γ ` B for Γ

‘some sub-context’ of Γ∞.

Definition 4.5.14 We define Γ ` t ∼ φ to mean: there exists a term t′ such that

Γ ` t′ : φ and Γ ` t 'φ t′.

In Definition 2.4.4, we defined the Henkin closure of a collection of first-order

λ×→-propositions by adding variables for every nonempty type and propositions

stating that all existentials have witnesses. The analogous definition here would

be to repeat this for all refinement types (over nonempty types), φ, and proposi-

tions, ∃x : φ.P , but there are several problems with this.

One problem is that we cannot just assume some variable x : φ, because this

has some logical import which might give a contradiction in the current context.

We will see that it suffices, in fact, to work with pseudotypes (Definition 4.3.14),

since for pseudotype, κ, the assumption x : κ has no logical import.

127

Another problem is that an arbitrary (well-structured) proposition or pseudo-

type need not be well-formed in the given context. An added complication is that

the order in which assumptions are listed might be significant. We can get round

these problems by the following trick. For any well-structured expression, U ,

we can give a well-formed proposition, wf(U), which says that U is well-formed.

Then, for example, the proposition wf(P) ⊃ P is always well-formed, and when

P is actually well-formed, is equivalent to P . Similarly, for any well-structured

pre-refinement type, φ, the refinement type wf(φ) → φ (using the notation of

Remark 4.3.22) is always well-formed.

Thus, the only order that matters in the Henkin theory is that variables

precede any expressions in which they appear. This is similar to Definition 2.4.4

for first-order λ×→.

Definition 4.5.15 Let Γ be a λ(:)-context. We define the Henkin closure of Γ by

the following procedure.

1. Iterate through the well-structured κ deciding which are inhabited (as in

Definition 2.4.4),

2. List all well-structured propositions of the form ∃x : κn.Pn for inhabited κn.

3. Make a list of variables {yn : κn} such that yn 6∈ Pn′ , κn′, for n′ ≤ n, and

FV (∃x : κn.Pn) ⊆ Γ, y1 : κ1, . . . , yn : κn.

4. Let Qn ≡ wf(∃x : κn.Pn) ⊃ ∃x : κn.Pn ⊃ Pn[yn/x], and κ′n ≡ wf(κn)→ κn.

Define the Henkin closure, ΓH, as Γ, y1 : κ′1, Q1, y2 : κ′2, Q2, . . .

As was the case with first-order λ×→ and λ?, although we do not have minimal

term models (due to having propositional assumptions), we can still use a term

model construction to prove completeness. We use a slight generalisation of the

standard ‘consistency implies satisfiability’ argument.

First we generalise consistency and satisfiability from sets of closed proposi-

tions to arbitrary contexts. We say that context Γ is consistent, when Γ 0 ⊥,

and satisfiable, when there exists a model A and Γ-environment η in A, that is,

η �A Γ. In the case that Γ is a context of closed propositions, these reduce to the

usual definitions of consistency and satisfiability. Let us write Γ � P to mean,

informally, that Γ �A P for every model A of some axiom system. Now we want

to show that Γ � P ⇒ Γ ` P , so suppose Γ 0 P . Then Γ,¬P is consistent and so,

by assumption, is satisfiable. Hence Γ 2 P . The situation for the other judgement

form, namely refinement typings, can be reduced to that of propositions.

128

Theorem 4.5.16 (Completeness) Let 〈Sg, Ax〉 be a λ(:)-axiom system.

For 〈Sg, Ax〉 . Γ ` P wf, if Γ �A P for all Henkin models A of 〈Sg, Ax〉 then

〈Sg, Ax〉 . Γ ` P . For 〈Sg, Ax〉 . Γ ` t wf and 〈Sg, Ax〉 . Γ ` φ wf, if Γ �A t : φ

for all models A of 〈Sg, Ax〉 then 〈Sg, Ax〉 . Γ ` t ∼ φ.

Proof:

Let Γ be a λ(:)-context such that Γ̃ is consistent. First we sketch the construc-

tion of a particular model T and environment η such that η �T Γ (steps 1-5),

and then use this to deduce completeness (step 6).

1. Construct a maximal consistent Henkin theory Γ∞ such that

{P | Γ̃ ` P} ⊆ Γ∞.

Let ΓH be the Henkin closure of Γ̂ ∪Ax. We apply the (̃) operation to

the axioms so that the interpretation will be a model.

First we consider sets of propositions, ∆, with the property that ∆ can

be ‘inserted’ into ΓH giving a consistent extension; that is, there exists a

context Γ′ such that Γ is a subcontext of Γ′, and Γ′ consists of Γ plus the

propositions in ∆, in some order. We form the partial order of such sets,

ordered by subsetting. This is clearly nonempty. It is also closed under

unions of chains. To see why, let us formalise the insertion of a set, ∆n,

as a mapping in : ∆n → N . Then, by always adding new elements ‘to the

right’, it is possible to insert ∆n in ΓH in such a way that all supersets

can be inserted in a way which extends this insertion, that is, such that

in+1 � ∆n = in. The limit, i∞, is not necessarily an embedding of the union,

since it might try to insert all the set at one place (if ι(n) = n, for example).

We must be careful to ‘spread’ the set throughout ΓH . This can be achieved

by inserting each element at double the index of the naive embedding so we

define i(n) = 2× i∞(n).

Hence each chain has an upper bound and so, by Zorn’s Lemma, the collec-

tion has a maximal element, ∆∞. We define Γ∞ to be any insertion of ∆∞

into ΓH . Clearly Γ∞ is a theory, that is, it is well-formed and closed under

deduction.

2. We define a relation = on well-structured terms in Γ∞. For Γ∞ ` u, u′ ws,

we define u = u′ to mean: if Γ∞ ` u, u′ wf then u satΓ∞ u′ and u′ satΓ∞ u;

otherwise, if neither is well-formed then >, else ⊥. The intuition behind

this definition is that terms which are not well-formed correspond to the set

of all well-structured terms and so should be equal. Define σT as the set of

129

=-equivalence classes of well-structured terms of λ×→, open with respect to

Γ∞, and over the type σ, that is,

{u | Γ∞,⊥ ` u : σ}

The position of ⊥ in the context does not matter since Γ∞ is well-formed.

We write [u] for the equivalence class of u.

We construct a Henkin interpretation, T , by interpreting constants syntacti-

cally. For constant symbol k : τ1, . . . , τn → τ , define kT : τT1 ×· · ·×τTn → τT

as kT ([u1], . . . , [un]) = [k(u1, . . . , un)]. Since these terms are well-structured,

the interpretation is well-defined.

For predicate symbol F : Pred (τ1, . . . , τn), define F T ⊆ τT1 × · · · × τTn as

{〈[u1], . . . , [un]〉 | F (u1, . . . , un) ∈ Γ∞}.

We can show that T is extensional, and since the environment model con-

dition clearly holds, T is an interpretation.

3. We must characterise the interpretation of terms and refinement types in

the term interpretation, T .

We need two cases, if η′ �T Γ′:

• for Γ∞ ` P̃ [η′/Γ′] wf, prove that Γ′ �T ,η′ P ⇐⇒
Γ∞ ` P̃ [η′/Γ′]

• for Γ∞ ` φ̃[η′/Γ′] wf, [u] [[Γ′ ` φ]]T (η′) [u′] ⇐⇒ Γ∞ ` u 'φ̃[η′/Γ′] u′

This is carried out in Lemma 4.5.17 below, after the sketch of completeness.

4. The interpretation, T , is a model of the axioms. For each axiom of the

form Γ′ ` P , we can define a closed equivalent which we write as ∀Γ′ . P .

This has the obvious inductive definition: ∀〈〉 . P ≡ P , ∀(Γ′, x : φ) . P ≡
∀Γ′ . ∀x : φ.P , and ∀(Γ′, P ′) . P ≡ ∀Γ′ . P ′ ⊃ P .

Then since ∀̂Γ′.P is well-formed and Γ∞ ` ∀̂Γ′.P , by the previous step we

get �T ∀Γ′.P and so Γ′ �T P .

We must show that for each axiom Γ′ ` k : φ→ ψ (without loss of generality,

we just consider unary constants), for all η′ �T Γ′, for all

a [[Γ′ ` φ]](η) a′, that kT (a) [[Γ′ ` ψ]](η) kT (a′). By step 3, this is if

when Γ∞ ` η′ 'Γ′ η
′ and Γ∞ ` u 'φ[η′/Γ′] u′, then Γ∞ ` k(u) 'ψ[η′/Γ′] k(u′).

130

We use singleton types (as discussed on p. 106) to derive this:

Γ∞ ` u 'φ[η′/Γ′] u′

Γ∞, Γ′, η′ 'Γ′ η
′ ` u 'φ u′

Γ∞, Γ′, η′ 'Γ′ η
′ ` k(u) 'ψ k(u′)

(Lemma 4.5.11)

Γ∞ ` k(u) 'ψ[η′/Γ′] k(u′)

Hence T models 〈Sg, Ax〉.

5. As in the proof of completeness for first-order λ×→, if x1 : φ1, . . . , xn : φn are

the variables in Γ, then we define the Γ-environment, η, as 〈[x1], . . . , [xn]〉.
We can show that η �T Γ, by induction over subcontexts of Γ.

Thus for an arbitrary context, Γ, if Γ̃ is consistent then Γ is satisfiable.

6. Finally, we show that if Γ �T B then Γ̃ ` B̃, for B a proposition or refine-

ment typing (writing t̃ : φ for t ∼ φ). Thus if Γ � B we have Γ̃ ` B̃.

Suppose Γ̃ 0 P̃ . Then Γ̃,¬P̃ is consistent, so by the previous step, there is

an environment, η, such that η �T Γ,¬P , so Γ 2T ,η P , and Γ 2 P .

The situation for refinement typings can be reduced to that of propositions,

since Γ′ �T ,η′ t : φ is equivalent to Γ′ �T ,η′ t =φ t. The crucial point is that

the permissive well-formedness rule for equalities (Equality) means that

t =φ t′ is well-formed even though t and t′ need not have refinement type φ.

Then, Γ � t =φ t implies Γ̃ ` t 'φ t so, by Lemma 4.5.12, Γ̃ ` t ∼ φ.

In order to prove the equivalence in step 3, we need to characterise the inter-

pretation of expressions in the term model, T . Because of the mutual recursion

between terms, refinement types and propositions, we must carry out the proof

for each syntactic category simultaneously.

For the reasons given in Remark 4.3.21, the pers, [[φ]]T , do not correspond

exactly to the equalities, =φ.

Lemma 4.5.17 Let Γ be a λ(:)-context and define Γ∞ as in the proof of Theorem

4.5.16. Then, for η �T Γ:

1. For Γ∞ ` φ̃[η/Γ] wf, [u] [[Γ ` φ]]T (η′) [u′] ⇐⇒ Γ∞ ` u 'φ̃[η/Γ] u′

2. For Γ∞ ` t̃[η/Γ] wf, [[Γ ` t]]T (η) = {[u] | u satΓ∞ t̃[η/Γ]}

3. For Γ∞ ` P̃ [η/Γ] wf, Γ �T ,η P iff Γ∞ ` P̃ [η/Γ]

131

Proof: Simultaneous induction over all expressions, unpacking the definition in

the term model. The inductive ordering is

P, P ′ < P ⊃ P ′

φ, P [t] < ∀x : φ.P

φ < t =φ t′

t < F (t)

φ, φ′ < φ v φ′

φ, ψ[t] < Σx:φψ

φ, ψ[t] < Πx:φψ

φ, P [t] < (x : φ)P

The interesting cases are for propositions so we prove these in detail. To save on

symbols, we will write U for Ũ [η/Γ].

• Γ 2T ,η ⊥, and Γ∞ 0 ⊥ by construction of Γ∞.

• Γ �T ,η P ⊃ Q ⇐⇒ Γ 2T ,η P or Γ �T ,η Q ⇐⇒ Γ∞ ` ¬P or Γ∞ ` Q ⇐⇒
Γ∞ ` P ⊃ Q.

• Γ �T ,η ∀x : φ.P when for all a ∈ [[Γ ` φ]](η), 〈η, a〉 ∈ [[Γ, x : φ ` P]]. Now

if Γ∞ ` t : φ, by the inductive hypothesis on φ we have Γ �T ,η t : φ, and

so for each a ∈ [[Γ ` t]](η), 〈η, a〉 ∈ [[Γ, x : φ ` P]]. Then, by Lemma 4.5.6,

Γ �T ,η P [t/x], and by the inductive hypothesis on P [t/x], Γ∞ ` P̄ [t/x]. In

other words, for all Γ∞ ` t : φ we have Γ∞ ` P [t/x]. Thus Γ∞ ` ∀x : φ.P ,

for if not, by maximality we would have Γ∞ ` ∃x : φ.¬P , and since Γ∞ is a

Henkin theory, Γ∞ ` ¬P contradicting the above.

Conversely, suppose Γ∞ ` ∀x : φ.P . Now let [u] ∈ [[Γ ` φ]](η). By the

inductive hypothesis and Lemma 4.5.12, Γ∞ ` u ∼ φ, that is, there exists

t : φ such that u 'φ t. Now by Quantification, Γ∞ ` P [t/x] so by the

inductive hypothesis, Γ �T ,η P [t/x], so 〈η, u〉 ∈ [[Γ ` P]]. Hence Γ �T ,η

∀x : φ.P .

• Γ �T ,η F (t) when [[Γ ` t]](η) ⊆ F T . Since t is well-formed we have Γ ` t : φ.

Define the maximal refinement type over τ , max(τ), as:

max(1) = 1

132

max(γ) = γ

max(σ × τ) = max(σ)×max(τ)

max(σ → τ) = (x : σ)⊥ → τ

Then all terms over τ have refinement type max(τ). Let χ be max(τ),

where φ : Ref (τ). Then we have x : χ ` F (x) wf by the permissive well-

formedness rule for predications. Let [u] ∈ [[Γ ` t]](η), so by induction on

t, u satΓ∞ t, and since u : χ, and u =χ t̄, by Elimination Rules we have

Γ∞ ` F (t̄).

Conversely, if Γ∞ ` F (t), then Γ∞ ` t : (x : φ)F (x) for some φ, so by the

definition of sat, Γ∞ ` F (u) for all u satΓ∞ t, and so [[Γ ` t]](η) ⊆ F T .

• Γ �T ,η t =φ t′ is: for all u satΓ∞ t and u′ satΓ∞ t′, we have Γ∞ ` u 'φ u′.

We can show that this is equivalent to Γ∞ ` t 'φ t′, by induction over φ.

• Assume that Γ �T ,η φ v φ′. By induction on φ, φ′, this is: for all u, u′, if

u 'φ′ u
′ then u 'φ u′.

If x : φ′ ∈ Γ∞ then Γ∞ ` x : φ and we can deduce (see Remark 4.3.20) that

Γ∞ ` φ v φ′.

If φ′ 6∈ Γ∞, then we can prove Γ∞ ` φ v φ′ directly. Since φ′ 6∈ Γ∞

there does not exist a term Γ∞ ` t : φ′. Suppose ∃x : φ′ .> ∈ Γ∞. Then

since Γ∞ is a λ(:)-Henkin theory we must have Γ∞ ` t′ : φ′, for some

t′. We deduce that there exists a Γ∞ ` t′ : φ′, a contradiction. Hence,

since Γ∞ is maximally consistent, we must have ¬∃x : φ′ .> ∈ Γ∞, and so

Γ∞, x : φ′ ` ⊥. Hence by Refinement Types (L), Γ∞ ` (x : φ′)⊥ v
φ′. Now Proposition 4.3.19 gives us Γ∞ ` φ v (x : φ′)⊥ and so using

Transitivity, Γ∞ ` φ v φ′.

Conversely, suppose Γ∞ ` φ v φ′, then by Lemma 4.5.10 and the inductive

hypothesis on φ and φ′, we get Γ �T ,η φ v φ′.

Now since first-order logic, the first-order logic of simply-typed lambda cal-

culus, and the refinement types calculus are all complete for the class of Henkin

models (without the assumption of nonemptiness), we have:

Corollary 4.5.18 The calculus is a conservative extension of the first-order logic

of λ×→: If Γ ` t =τ t′ is a well-formed equation in λ×→, then it is provable in

λ×→, if and only if it is provable in the calculus of refinement types.

133

Corollary 4.5.19 The calculus is a conservative extension of first-order logic: If

Γ ` P wf does not contain any refinement types, then it is provable in first-order

logic, if and only if it is provable in the calculus of refinement types.

The significance of these corollaries is that we are free to use the specification

language for proving program equivalences and for reasoning about programs

using the program logic, in the knowledge that it faithfully reflects the equality

in the underlying programming language, and proofs in the program logic.

4.6 Conclusions

We have described the refinement type methodology of specification. This is a

way of combining the type system of a programming language with a program

logic to give a specification language. This is an alternative to approaches which

rely on encoding a logic into an expressive type theory, and those which simply

use a program logic.

Although we give a refinement relation φ v φ′ on specifications, this does

not constitute a full refinement calculus (such as in [Mor94]). The idea there is

to internalise specifications into programs and consider a refinement relation on

mixtures of specification and program.

In the proof that div2 satisfied its specification we used the proof for div2′.

There is an implicit element of refinement on terms here. This is made explicit

in the next chapter.

134

Chapter 5

Refinement Calculus

In this chapter, we present the full refinement calculus, λv. This is a calcu-

lus in which the stepwise refinement of logical specifications into programs, and

the correctness of partially developed programs can be formalised. The calculus

combines the refinement terms and refinement types calculi of the previous two

chapters.

We define a notion of refinement axiom system and a corresponding class of

Henkin models with ‘logical factoring’. We prove soundness of the calculus in

these models, and prove completeness for a restricted fragment.

5.1 Introduction

Much of the intuition for specification and refinement has been presented in the

previous two chapters. Let us recall the scenario in which we are studying refine-

ment. We have a programming language and a program logic. In Chapter 3, we

showed how to internalise a simple notion of partial development in a program-

ming language, the terms of which, refinement terms, are a record of the stage

of development towards a program. In Chapter 4, we studied how to construct

a specification language from a program logic, the specifications being given as

refinement types. These are orthogonal extensions to the programming language,

which in our case is the simply-typed lambda calculus. We now combine these

calculi to give a refinement calculus for the stepwise refinement of logical specifi-

cations into programs. This claim of orthogonality will be backed up in Section

5.5 below. We now discuss how the features of the subcalculi are combined. The

main issue is combining the logic with refinement.

The central language construct is the logical stub. We write ?φ, where φ is a

refinement type, to denote some unknown program with refinement type φ, and

combine such unknowns with the other language features as in Chapter 3. As

135

in the simpler system, λ?, we will refer to such terms as refinement terms. If

φ expresses the properties of interest then a refinement will begin with ?φ. In

general, though, it can be useful to specify with a mixture of logic and program

code. Of course, we are now at liberty to ‘overspecify’, and can write specifications

which cannot be implemented, even when all types are inhabited. This is in

contrast to λ?, and has a bearing on the refinement rules of λv.

One of the slogans of the refinement methodology is that “refinement is

correctness-preserving”. To make this clear we must have a notion of partially

developed program, that is, refinement term, satisfying a property. In fact, one

of the main reasons for keeping an explicit record of the stage of development

is that we can draw inferences about partially developed programs. During the

course of development, questions might arise of the form, “given that certain im-

plementation steps have now been made, is the final program guaranteed to have

a certain property?”

In Chapter 4, we formulated the satisfaction of specifications as programs

having a refinement type. We generalise these rules from programs to partially

developed programs, that is, we generalise the rules for proving r : τ and t : φ to

proving r : φ. The main technical problem here is combining underdetermined

terms with the logic. Since we cannot substitute arbitrary terms for variables

we cannot infer that r : (x : φ)P from r : φ and P [r/x]. Intuitively, we must

show that r : φ and that every determined term t to which r refines, P [t/x]

holds. Let us write this second fact as “∀x ∈ r.P”. It is cumbersome to prove

quantifications like this, however, so observe that we can preserve the truth of

such quantifications with rules like

∀x ∈ r.P ∀y ∈ r′.Q

∀z ∈ 〈r, r′〉.P [π1z/x] ∧Q[π2z/y]

In other words, we can use the refinement type methodology for proving that

an arbitrary r has refinement type φ, without ever substituting r directly in a

proposition.

In Chapter 3, refinement was the decomposition of stubs and their replacement

with code. In Chapter 4, the idea was that the refinement of refinement types

formalised logical manipulations of specifications. In the combined refinement

calculus we combine these two distinct aspects of refinement, by adding a rule

that if φ refines to φ′ then ?φ refines to ?φ′. Moreover, just as equality in λ(:) is

defined with respect to a refinement type, we now extend this idea to refinement

at a refinement type, and write the refinement of r to r′ at φ as r vφ r′.

Hence, there are two complementary aspects to refinement in λv, correspond-

136

ing to the forms of refinement in the two subcalculi. We can manipulate specifi-

cations and replace them with something more specific. This corresponds to the

refinement of refinement types in λ(:), φ vτ φ′. We can also decompose specifica-

tions and replace ‘holes’ in refinement terms with code, and this is formalised by

the refinement of refinement terms, r vφ r′. One difference from the λ?-calculus

is that in λv refinement is under a context with logical assumptions, as given in

λ(:).

Sometimes the particular φ at which the refinement is carried out is not im-

portant, so we define a notion of ‘nonlogical refinement’ (on refinement terms),

r v r′, meaning: for all φ, if r : φ then r vφ r′. We will use this notion in the

formal system. One of the main results of this chapter will be the factorisation

of vφ into v and =φ.

In Chapter 3, we saw that refinement was a sequence of implementation steps

terminating in a program, i.e. a term of λ×→. In the refinement calculus with

refinement types, it is more natural to refine to a term of λ(:). In particular, we

take λx : φ.t to be determined. This is a natural choice when we only consider

terms modulo some refinement type.

Although our notion of program now is not some unique term of λ×→, it is

unique up to the equality of some refinement type. It is in the spirit of refinement

to only refine as far as is necessary. We can always give a term of λ×→ by replacing

the refinement types in a λ(:)-term by their underlying types.

5.2 The Calculus

Following the pattern of previous chapters, we give the syntax of the calculus,

and the judgement classes. Next we define the notion of λv-axiom system, and

give the rules of the calculus.

5.2.1 Syntax

We define an applied refinement calculus by first giving a signature of ground

types, constants and predicate symbols. The terms are generated from the same

basic signature as in the λ(:)-calculus.

Definition 5.2.1 A λv-signature Sg = 〈G,K,F〉 consists of:

• a collection, G, of ground types (ranged over by γ)

• a collection, K, of constants (ranged over by k), each of which has an arity

n and sort τ1, . . . , τn → τ , which we write as k : τ1, . . . , τn → τ .

137

• a collection, F , of predicate symbols (ranged over by F) each of which has

an arity n and sort τ1, . . . , τn, which we write as F : Pred (τ1, . . . , τn).

Definition 5.2.2 Let Sg = 〈G,K,F〉 be a λv-signature. The pre-expressions

over Sg are generated by the grammar:

φ ::= 1 | γ | Σx:φψ | Πx:φψ | (x : φ)P

r ::= x | k(r1, . . . , rn) | ∗ | 〈r, r′〉 | λx : φ.r | ?φ | π1(r) | π2(r) |
rr′ | let x : φ be r in r′

P ::= ⊥ | P ⊃ P ′ | ∀x : φ.P | F (r1, . . . , rn) | r vφ r′

The pre-contexts are:

Γ ::= 〈〉 | Γ, x : φ | Γ, P

As in Chapter 4, we write φ × ψ and φ → ψ for Σx:φψ and Πx:φψ, respectively,

when x /∈ FV (ψ). We also abbreviate the assumption x : (x : φ)P as x : φ |P .

Refinement types have the same meaning as in λ(:), and correspond to a partial

equality over an underlying type.

The specification construct is the logical stub, ?φ, for each refinement type,

φ, meaning ‘some unknown of refinement type φ’. The stub also carries the data

of when concrete implementations are to be regarded as equal (that is, up to φ).

This will be made clearer in Section 5.6. In general, λv-terms can be thought of

as specifying a collection of programs, up to some equivalence.

We say that a term is determined if it contains no stubs, and otherwise is

underdetermined. We use the metavariable t to range over determined terms, and

r over arbitrary refinement terms.

Refinement types also appear in the two binding constructs — abstractions

and let-terms. This is useful for specification and refinement. When refining the

body of the abstraction, λx : φ.r, the information in φ can be used. The term

itself can be thought of as a specification of programs which only constrains the

result for arguments in φ. We regard λx : φ.t as being determined even though,

in general, it does not uniquely specify a program in λ×→. These programs are

unique up to the equality of some refinement type, however, and we can always

give a canonical example by replacing refinement types with the underlying types.

The let-term let x : φ be r in r′ is a description of some y in r′[x] for some x

in r, where y is only specified up to φ. For example, the term

let f : even→ nat be λn : nat.n in f

specifies the even→ nat class which contains λn : nat.n.

138

The other terms have much the same meaning as in Chapter 3. As in Chapter

4, the interaction between well-formedness and logical reasoning means that we

cannot define well-formedness until we give the rules of the calculus, and that

axioms are not assumed to be well-formed until their use in a proof.

5.2.2 Judgements

The refinement calculus, λv, consists of two basic judgements.

Γ ` r : φ

Γ ` P

where the propositions include refinement of terms, Γ ` r vφ r′, and of refinement

types, Γ ` φ vτ φ′. There are also well-formedness judgements

` Γ wf

Γ ` φ : Ref (τ)

Γ ` P wf

The judgements extend those of λ(:) in Chapter 4, and have similar intuitive

readings. As there, we will use g as a metavariable for syntactic environments,

but we use tuples of determined terms, as in λ?.

5.2.3 λv-Axiom Systems

We adopt the same definition of axiom system as in the λ(:)-calculus.

Definition 5.2.3 A λv-axiom system consists of a λv-signature Sg and a col-

lection of λ(:)-axioms Ax formed from pre-contexts and pre-expressions in Sg.

Axioms are of two forms:

• propositions in context, Γ ` P

• axioms for constants, Γ ` k : φ1, . . . , φn → ψ.

The comments following Definition 4.3.5 for λ(:) are relevant here too. The restric-

tion of axioms to the λ(:)-fragment is a natural restriction to disallow refinements

as axioms. Moreover, this ensures certain metatheoretic properties.

139

5.2.4 Rules of the Calculus

In Figure 5.1 we summarise the different forms of judgement in the λv-calculus.

We can make a basic division into judgements of well-formedness for each syn-

tactic category, and judgements of truth. The division into well-formedness and

truth is somewhat arbitrary as all judgements involve logical reasoning, and the

refinement typings formalise both well-formedness of terms and the satisfaction

of specifications. The upward arrow in Figure 5.1 indicates inclusion of rules. We

do not make refinement a separate judgement class from the other propositions.

Similarly, the equality rules are just mutual refinements.

Definition 5.2.4 Let 〈Sg, Ax〉 be a λv-axiom system. We define the theorems of

〈Sg, Ax〉 to be the judgements which can be inferred from the rules in Figures 4.2,

4.3, and 5.2 to 5.12. We write 〈Sg, Ax〉.J when the judgement J is provable from

the λv-axiom system 〈Sg, Ax〉. We drop the Sg and Ax when they are obvious

and just write J, meaning ‘J is provable’.

As for the λ(:)-calculus, we consider the provable well-formedness judgements to

be theorems too.

The well-formedness rules for contexts and refinement types are given in Fig-

ures 4.2 and 4.3 in Chapter 4. The well-formedness rules for propositions are

the natural extensions of those in Chapter 4, with the additional rule that the

well-formedness of the refinement r vφ r′ requires that r, r′ and φ have the same

underlying type; they are given in Figure 5.3.

The refinement typing rules in Figures 5.4 and 5.5 are the obvious general-

isations of those in Chapter 4, with side-conditions on the elimination rules to

ensure that we do not substitute underdetermined terms in refinement types (see

Remark 5.2.5 below). For example, the elimination rule for Function Terms

has the hypothesis Γ ` r : φ → ψ which abbreviates Γ ` r : Πx:φψ with the side

condition that x /∈ FV (ψ).

There are also rules for logical stubs and let-terms.

A special case of the introduction rule for Product Terms is:

Γ ` r : φ Γ ` r′ : ψ

Γ ` 〈r, r′〉 : φ× ψ

The connection between the logic and refinement typing lies in the two rules

for Refinement Type Introduction in Figure 5.5. The first rule is actually

derivable (as in Chapter 4) but is natural to include. It does not generalise to

a rule for arbitrary underdetermined terms, however, since in general, r having

140

` Γ wf Figure 4.2

Γ ` P wf 5.3
Well-formedness


Γ ` φ : Ref (τ) 4.3

Γ ` r : φ 5.4, 5.5

Γ ` P 5.12

 Truth

↑

Γ ` φ vτ φ′ 5.11
Refinement


Γ ` r vφ r′ 5.9, 5.10

↑

Γ ` t =φ t′ 5.6

Γ ` r =φ r′ 5.7, 5.8

 Equality

Figure 5.1: Summary of Judgements in the Refinement Calculus

refinement type (x : φ)P can not be encoded as the proposition P [r/x], as dis-

cussed in Section 5.1. This is the case, though, for determined terms and for

predications.

The Refinement Elimination rule is the generalisation of the Equality rule

on p. 105. This is so that refinements can be used to infer refinement typings.

The related rule
Γ ` r vφ r′

Γ ` r′ : φ

is admissible (being a special case of Subject Refinement, Lemma 5.5.2). It would

be unnatural to take this rule as primitive and use it in proving refinement typings

because this would require guessing the term r.

It is to make Subject Refinement admissible that the λv-calculus has stronger

rules for abstractions and let-terms than might be expected:

Γ, x : φ, P ` r : ψ
Γ ` λx : φ.r : Πx:φ|Pψ

Γ ` r : (x : φ)P Γ, x : φ, P ` r′ : χ

Γ ` let x : φ be r in r′ : χ
(x /∈ FV (χ))

141

We can derive the obvious simpler forms by letting P be >. We use (x : φ)P

rather than the general φ v φ′ for the same reason as in λ(:) (see p. 105). The cor-

responding rule for abstractions in λ(:) (inferring that λx : φ.t : Πx:φ|P ′ψ) follows

from the rule for equality elimination in λ(:).

The final rule for refinement typing is a Weakening rule. We need to add

this because the axioms are not necessarily closed under weakening.

Figures 5.6 to 5.10 formalise refinement of terms. This includes the equality

rules for determined terms in Figure 5.6, and the equality rules for let-terms in

Figures 5.7 and 5.8, which are a straightforward extension of those in Chapter 3,

replacing arbitrary types with arbitrary refinement types.

The rule for Abstractions is most conveniently given using nonlogical equal-

ity, that is, using mutual v (see p. 137). As mentioned on p. 137, r v r′ is not a

new judgement, as such, but rather a meta-judgement with the meaning: if r has

refinement type χ, then r refines to r′ at χ and r′ has refinement type χ. We use

different symbols to distinguish the abbreviation, v̂, from the meta-judgement,

v, for clarity’s sake.

Formally, we can write rv̂r′ in the conclusions of rules, where

Γ ` J

Γ ` rv̂r′

abbreviates the schemas (for well-formed φ):

Γ ` J Γ ` r : φ

Γ ` r vφ r′

Γ ` J Γ ` r : φ

Γ ` r′ : φ

Superficially, the Abstractions rule is stronger than the form with refinement

types:

Γ, x : φ, y : ψ ` r[x, y] : ψ′

Γ ` let z : φ→ ψ be ?φ→ψ in λx : φ.r[x, zx]
=φ→ψ′ λx : φ.(let y : ψ be ?ψ in r[x, y])

(x /∈ FV (ψ))

though they may be equivalent. In the absence of a proof of equivalence we adopt

the former for technical reasons. (We will need this for the Generation Lemma

below.)

There is no primitive rule for stubs (though see Chapter 6). We can derive:

let x : φ in ?(y:τ) Q[x,y] = ?(y:τ) ∃x:φ.Q[x,y]

142

The other refinement rules for terms are listed in Figures 5.9 and 5.10. It is

the rule for Stubs that allows the refinement of refinement types inside terms,

and formalises the interaction between the two forms of refinement:

Γ ` φ v φ′

Γ ` ?φ vφ ?φ′

There is a weakening rule, Refinement Weakening, and a strengthening

rule, Logical Congruence.

Finally, Figure 5.11 lists the rules for refinement of refinement types, and

Figure 5.12 extends the first-order logic of Chapter 4 with one additional rule of

Predicates:
Γ, x : φ ` F (x) Γ ` r : φ

Γ ` F (r)

This lets us substitute an arbitrary r directly into a predication so we can derive

Γ ` r : (x : φ)F (x)

Γ ` F (r)

We have a Refinement Type Introduction rule in λv for the converse of this:

Γ ` r : φ Γ ` F (r)

Γ ` r : (x : φ)F (x)

In addition, we must add a rule for a limited form of subject refinement:

Γ ` r : (x : φ)F (x) Γ ` r vφ r′

Γ ` r′ : (x : φ)F (x)

We would have expected this rule to at least be admissible, but if F (r) is assumed

in the context there seems no other way to conclude F (r′). However, it seems

that if we can prove F (r) directly, then we can prove F (r′) without using this

rule, so the rule is only necessary in this one case.

Hence λv has two refinement type introduction rules and two elimination rules

for arbitrary underdetermined terms. The introduction and elimination rules for

determined terms can be derived.

Remark 5.2.5 In Chapter 3 we introduced let-terms since we cannot substitute

arbitrary terms for variables in terms. Similarly, we cannot substitute arbitrary

terms for variables in refinement types. If r : Πx:φψ and r′ : φ then it is not the

case that rr′ : ψ[r/x]. However, instead of carrying out a similar extension for

refinement types here, we make a restriction on the elimination rules for function

and product terms so that this problem does not arise. This is discussed further

in Chapter 6.

143

Γ ` P wf
Γ ` P

(Γ ` P ∈ Ax)

Axioms

Γ1, Γ2 ` B Γ1 ` φ wf

Γ1, x : φ, Γ2 ` B

Weakening

Γ1, x1 : φ1, Γ2, x2 : φ2, Γ3 ` B Γ1 ` φ2 wf

Γ1, x2 : φ2, Γ2, x1 : φ1, Γ3 ` B
(x1 6∈ Γ2, x2 : φ2)

Permutation

Γ, x : φ ` B Γ ` t : φ

Γ ` B[t/x]

Substitution

Figure 5.2: Theorems Generated from a λv-Axiom System 〈Sg, Ax〉

Example 5.2.6 The λ(:)-axiom systems for booleans and naturals from Section

4.3.5 serve also as λv-axiom systems so we do not repeat them here. The main

point to be made here is (as for λ?) that we do not need special refinement rules

for particular constants. This is important because it means that if we extend

the theory with new constants, we need only add equations for determined terms;

refinement rules will be automatic from the general rules already in the calculus.

For constant k : φ1, . . . , φn → ψ, there is one refinement rule (omitting the

well-formedness hypotheses):

Γ ` ?ψ vψ k(?φ1 , . . . , ?φn)

For example, since

if then else : P + P ′, (x : φ) P ⊃ Q[x], (y : φ) P ′ ⊃ Q[y]→ (z : φ) Q[z]

we have

?(z:φ)Q v if ?P+P ′ then ?(x:φ) P⊃Q[x] else ?(y:φ) P ′⊃Q[y]

Now, if Γ, P ` ?(x:φ) Q[x] v r, then Γ ` ?(x:φ) P⊃Q[x] v r, so we have an admissible

rule for refining to conditionals:

Γ, P ` ?(x:φ)Q[x] v r Γ, P ` ?(y:φ) Q[y] v r′

Γ ` ?(z:φ)Q v if ?P+P ′ then r else r′

144

` Γ wf
Γ ` ⊥ wf

Falsehood

Γ ` P wf Γ ` P ′ wf
Γ ` P ⊃ P ′ wf

Implication

Γ, x : φ ` P wf

Γ ` ∀x : φ.P wf

Universal Quantification

Γ ` r1 : φ1 · · · Γ ` rn : φn

Γ ` φ1 : Ref (τ1) · · · Γ ` φn : Ref (τn)

Γ ` F (r1, . . . , rn) wf
(F : Pred (τ1, . . . , τn) ∈ F)

Predication

Γ ` r : ψ Γ ` r′ : ψ′ Γ ` φ, ψ, ψ′ : Ref (τ)

Γ ` r vφ r′ wf

Γ ` φ : Ref (τ) Γ ` φ′ : Ref (τ)

Γ ` φ vτ φ′ wf

Refinement

Figure 5.3: Well-formedness of Propositions

145

` Γ, x : φ, Γ′ wf

Γ, x : φ, Γ′ ` x : φ

Variables

Γ ` φ1 : Ref (τ1) · · · Γ ` φn : Ref (τn)
Γ ` ψ : Ref (τ)
Γ ` r1 : φ1 · · · Γ ` rn : φn

Γ ` k(r1, . . . , rn) : ψ

{
Γ′ ` k : φ1, . . . , φn → ψ ∈ Ax;
k : τ1, . . . , τn → τ ∈ K;
Γ′ ⊆ Γ

Constants

` Γ wf
Γ ` ∗ : 1

Unit

Γ ` φ wf

Γ `?φ : φ

Stubs

Γ ` r : φ Γ, x : φ ` r′ : ψ

Γ ` let x : φ be r in 〈x, r′〉 : Σx:φψ

Γ ` r : φ× ψ

Γ ` π1(r) : φ

Γ ` r : φ× ψ

Γ ` π2(r) : ψ

Product Terms

Γ, x : φ, P ` r : ψ
Γ ` λx : φ.r : Πx:φ|Pψ

Γ ` r : φ→ ψ Γ ` r′ : φ

Γ ` rr′ : ψ

Function Terms

Γ ` r : (x : φ)P Γ, x : φ, P ` r′ : ψ

Γ ` let x : φ be r in r′ : ψ
(x /∈ FV (ψ))

Let Terms

Figure 5.4: Refinement Typings

146

Γ ` t : φ Γ ` P [t/x]

Γ ` t : (x : φ)P

Γ ` r : φ Γ ` F (r)

Γ ` r : (x : φ)F (x)

Γ ` r : (x : φ)F (x) Γ ` r vφ r′

Γ ` r′ : (x : φ)F (x)

Refinement Type Introduction

Γ ` r vφ r′

Γ ` r : φ

Refinement Elimination

Γ ` r : φ′ Γ ` φ v φ′

Γ ` r : φ

Weakening

Figure 5.5: Refinement Typings cont.

The derived refinement rule for natwfrec (the constant for well-founded re-

cursion) is particularly interesting, as rules for ‘recursive refinement’ are central

to many refinement calculi (see, for example, [Bun97], p. 46). The axiom is

natwfrec : (Πx:nat(Πz<xφ[z])→ φ[x]) → Πx:natφ[x]

so, after simplifying the well-formedness hypotheses, the refinement rule is

Γ, x : nat ` φ[x] wf

Γ ` ?Πx:natφ[x] v natwfrec (?Πx:nat(Πz<xφ[z])→φ[x])

We can then derive the rule of recursive (or ‘circular’) refinement:

Γ, n : nat ` ?φ[n] vφ[n] t[n, λm : nat |m < n.?φ[m]]

Γ ` ?Πn:natφ[n] vΠn:natφ[n] natwfrec (λn.λf.t[n, f])

Compare this with the discussion of equality on p. 113. This rule is equivalent to

(Intro. rec. func.) on p. 46 of [Bun97].

Remark 5.2.7 As mentioned in Remark 3.2.13, a general form of β-equality

does not hold in the λv-calculus; instead we have β-equality only for determined

147

Γ ` φ1 : Ref (τ1) · · · Γ ` φn : Ref (τn)
Γ ` ψ : Ref (τ)
Γ ` t1 =φ1 t′1 · · · Γ ` tn =φn t′n

Γ ` k(t1, . . . , tn) =ψ k(t′1, . . . , t
′
n)

{
Γ′ ` k : φ1, . . . , φn → ψ ∈ Ax ;
k : τ1, . . . , τn → τ ∈ K;
Γ′ ⊆ Γ

Constant Equations

Γ, x : φ ` t : ψ Γ ` t′ : φ

Γ ` (λx : φ.t)t′ =ψ[t′/x] t[t′/x]
(β)

Γ, x : φ ` tx : ψ
Γ ` λx : φ.tx =Πx:φψ t

(x /∈ FV (t)) (η)

Γ, x : φ ` P wf Γ, x : φ, P ` t =ψ t′

Γ ` λx : (x : φ)P.t =Πx:φ|Pψ λx : φ.t′
(ξ)

Function Equations

Γ ` t1 : φ1 Γ ` t2 : φ2

Γ ` π1〈t1, t2〉 =φ1 t1

Γ ` t1 : φ1 Γ ` t2 : φ2

Γ ` π2〈t1, t2〉 =φ2 t2

(β)

Γ ` π1(t) : φ Γ ` π2(t) : ψ[π1(t)/x]

Γ ` 〈π1(t), π2(t)〉 =Σx:φψ t
(η)

Product Equations

Γ ` t : 1
Γ ` t =1 ∗

Unit Equation

Figure 5.6: Equality Rules for Determined Terms

148

Γ ` t : φ Γ, x : φ ` r : ψ

Γ ` let x : φ be t in r =ψ[t/x] r[t/x]

Let Beta

Γ ` r : φ
Γ ` let x : φ be r in x =φ r

Let Eta

Γ ` r : φ Γ, y : φ ` r′ : ψ Γ, x : ψ ` r′′ : ψ′

Γ ` let x : ψ be (let y : φ be r in r′[y]) in r′′[x]
=ψ′ let y : φ be r in (let x : ψ be r′[y] in r′′[x])

Let Associativity

Figure 5.7: Let Term Equalities

arguments and bodies. This is unlike refinement calculi based on nondeterminism

(such as [Bun97] and [Mor94]). To illustrate this, let n : nat ` Fermat(n) :

Ref (nat×nat×nat) be the specification of solutions to Fermat’s Last Theorem

at index n (i.e. tuples 〈x, y, z〉 such that xn + yn = zn). Then, in contrast to λv,

[Bun97] and [Mor94] both have:

(λn : nat.?Fermat(n))2 = Fermat(2)

In λv, the left hand side is unsatisfiable, whereas the right hand side is satisfiable.

This is similar to the situation with ASL and Extended ML. As observed

in [SST92] (Section 4.3), the “principle of modular decomposition” means that

if a module is decomposed into the application of a parameterised module to

some other module, the parameterised module must be implemented for arbitrary

arguments so as to be implementation independent, and not make use of particular

properties of the actual argument. A similar point was made in Example 3.2.4.

We discuss EML in more detail in Section 5.4.1 below.

Although the general β-equality does not hold in λv, we do have the in-

equality, r[t/x] v (λx : φ.r)t, for underdetermined r. This means that we can

use the common programming technique of refining by first abstracting from a

specific t, and then implementing recursively for a general argument. For ex-

ample, ?φ[t] v (λx.?φ[x])t, and we could then use recursive refinement to get

natwfrec (λn.λf.u[n, f]) t for some u.

149

Γ ` r1 : φ1 · · · Γ ` rn : φn

Γ ` let x1 : φ1, . . . , xn : φn be r1, . . . , rn

in k(x1, . . . , xn) =ψ k(r1, . . . , rn)

(Γ ` k : φ1, . . . , φn → ψ ∈ Ax)

Constants

Γ ` r : φ→ ψ Γ ` r′ : φ

Γ ` let x : φ→ ψ, x′ : φ be r, r′ in xx′ =ψ rr′

Applications

Γ ` r : φ Γ ` r′ : ψ

Γ ` let x : φ, x′ : ψ be r, r′ in 〈x, x′〉 =φ×ψ 〈r, r′〉

Pairs

Γ ` r : φ1 × φ2

Γ ` let x : φ1 × φ2 be r in πi(x) =φi πi(r)

Projections

Γ, x : φ, y : ψ ` r[x, y] : ψ′

Γ ` let z : Πx:φψ be ?Πx:φψ in λx : φ.r[x, zx]
=̂ λx : φ.(let y : ψ be ?ψ in r[x, y])

Abstractions

Figure 5.8: Let Term Equalities cont.

150

` Γ, x : φ, Γ′ wf

Γ, x : φ, Γ′ ` ?φ vφ x

Variables

Γ ` φ1 : Ref (τ1) · · · Γ ` φn : Ref (τn)
Γ ` ψ : Ref (τ)

Γ ` ?ψ vψ k(?φ1 , . . . , ?φn)

{
Γ′ ` k : φ1, . . . , φn → ψ ∈ Ax ;
k : τ1, . . . , τn → τ ∈ K;
Γ′ ⊆ Γ

Constants

` Γ wf
Γ ` ?1 v1 ∗

Unit

Γ ` φ× ψ wf

Γ ` ?φ×ψ vφ×ψ 〈?φ, ?ψ〉

Pairs

Γ ` Πx:φψ wf

Γ ` ?Πx:φψ vΠx:φψ λx : φ.?ψ

Abstractions

Figure 5.9: Refinement Rules

151

Γ ` φ v φ′

Γ ` ?φ vφ ?φ′

Stubs

Γ, x : φ ` P ′ ⊃ P Γ, x : φ, P ′ ` r vψ r′

Γ ` λx : (x : φ)P.r vΠx:φ|P ′ψ λx : φ.r′

Γ ` φ v φ′ Γ ` r1 vφ′ r
′
1 Γ, x : φ ` r2 vψ r′2

Γ ` let x : φ be r1 in r2 vψ let x : φ′ be r′1 in r′2
(x /∈ FV (ψ))

Γ, x : φ ` P wf Γ ` r1 =(x:φ)P r′1 Γ, x : φ, P ` r2 =ψ r′2
Γ ` let x : (x : φ)P be r1 in r2 =ψ let x : φ be r′1 in r′2

(x /∈ FV (ψ))

Congruence

Γ ` r vφ r′ Γ ` r : (x : φ)P

Γ ` r v(x:φ)P r′

Logical Congruence

Γ ` r : φ

Γ ` r vφ r

Reflexivity

Γ ` r vφ r′ Γ ` r′ vφ r′′

Γ ` r vφ r′′

Transitivity

Γ ` r′ : ψ Γ ` r : φ

Γ ` r′ vψ let x : φ be r in r′
(x /∈ FV (r′))

Let Weakening

Γ ` r vφ′ r
′ Γ ` φ v φ′

Γ ` r vφ r′

Refinement Weakening

Figure 5.10: Refinement Rules cont.

152

` Γ wf
Γ ` 1 v 1

Unit

Γ ` φ v φ′ Γ, x : φ ` ψ v ψ′

Γ ` Σx:φψ v Σx:φ′ψ
′

Product

Γ ` φ′ v φ Γ, x : φ ` ψ v ψ′

Γ ` Πx:φψ v Πx:φ′ψ
′

Function

Γ ` φ v ψ Γ, x : ψ ` P

Γ ` (x : φ)P v ψ

Γ, x : ψ, Q ` x : φ

Γ ` φ v (x : ψ)Q

Refinement Types

Γ ` φ v φ′ Γ ` φ′ v φ′′

Γ ` φ v φ′′

Transitivity

Figure 5.11: Refinements on Refinement Types

Γ, x : φ ` F (x) Γ ` r : φ

Γ ` F (r)

Predicates

Together with the rules in Figure 4.10, Chapter 4.

Figure 5.12: First-order Logic for the Refinement Calculus

153

Finally, it is interesting, in retrospect, that we do have the general β-equality

for the λ? fragment, as discussed on p. 67. This means that, to a certain extent,

we can evaluate such terms as though they were programs.

One other illustration of the difference between λv and two refinement cal-

culi based on nondeterminism, [Bun97] and [War94], is that, as for call-by-value

nondeterminism, arbitrary abstractions are considered to be values, i.e. nonde-

terministic functions.

5.3 An Example of Refinement

The example we will consider involves sorting association lists of keys and complex

values. The idea behind association lists is that values of a complex datatype can

be manipulated efficiently by pairing them with keys that encode some useful

information.

We will develop two programs: first a sorting function and, then, a function

which determines whether or not two lists are permutations. We use the axiom

system for naturals and booleans given in Example 5.2.6 and extend it with an

axiom system for keys, values and association lists (though we will only give some

of the axioms).

The axiom system 〈SgAssoc, AxAssoc〉 is defined as follows. Let SgAssoc =

〈GAssoc,KAssoc,FAssoc〉, where

GAssoc = {key, value, assoclist}

KAssoc = {eq key, compare key, nil, cons, head, tail, remove, listrec}

FAssoc = {Ordered, In, Sublist}

The ground types are key, value and assoclist. We define association pairs

as assocpair = key× value.

There are efficient equality and comparison functions on keys:

compare key : key, key→ bool

eq key : key, key→ bool

The signature for lists is:

nil : assoclist

cons : assocpair, assoclist→ assoclist

head : assoclist→ assocpair

154

tail : assoclist→ assoclist

remove : assocpair, assoclist→ assoclist

listrec : τ, (assoclist→ assocpair→ τ → τ), assoclist→ τ

The constants head and tail are defined for all lists, including nil. However,

the axioms do not say what the values at nil are. We use listrec, which is

primitive recursion over lists (fold left in functional programming).

The axioms include:

head : (l : assoclist) l 6= nil → assocpair

tail : (l : assoclist) l 6= nil → assoclist

listrec (t, f, nil) = t

listrec (t, f, cons(x, xs)) = f xs x (listrec (t, f, xs))

l : assoclist `
listrec : φ[nil], Πl′:assoclistΠp:assocpairΠx:φ[l′]φ[cons(p, l′)], {l}assoclist → φ[l]

We will use the predicate symbols:

Ordered : Pred (assoclist, assocpair→ assocpair→ bool)

In : Pred (assocpair, assoclist)

Sublist : Pred (assoclist, assoclist)

with the axioms

∀p : assocpair.¬In(p, nil) ∧ ∀p.∀x.∀xs.In(p, x :: xs) ⇐⇒ p = x ∧ In(p, xs)

∀l′ . Sublist(nil, l′)

∀x.∀l.∀l′ . Sublist(cons(x, l), l′) ⇐⇒ In(x, l′) ∧ Sublist(l, remove(x, l′))

Ordered(nil, <) ∧ x′ < x ∧ Ordered(x :: xs, <) ⊃ Ordered(x′ :: x :: xs, <)

where Ordered(l, <) holds when the list l is sorted relative to ordering <, and

In(p, l) holds when the pair p is in the list l, that is, mathematically in, rather

than in terms of the key.

For l, l′ : assoclist, the proposition Perm[l, l′] is defined as:

Perm[l, l′] ≡ Sublist(l, l′) ∧ Sublist(l′, l)

We specify the ordering on association pairs as

compare : assocpair→ assocpair→ bool

155

∀k, k′ : key.∀v, v′ : value .
compare key (k, k′) = true ⊃ compare 〈k, v〉 〈k′, v′〉 = true

For example,

compare = λa : assoclist.λa′ : assoclist.compare key(π1(a), π1(a
′))

and the sorting function as

sort spec : Ref (assoclist→ assoclist)

sort spec ≡ Πl:assoclist(l
′ : assoclist) Ordered(l′, compare) ∧ Perm[l, l′]

Note that this specification does not say what should happen when two values

have the same key, but this does not matter for now. We remark that the seman-

tics of ?sort spec is truly underdetermined.

Define φ[l] to be the specification ‘is a sorting of l’:

(l′ : assoclist) Ordered(l′, compare) ∧ Perm[l, l′] : Ref (assoclist)

The refinement begins as:

?sort spec

v λl : assoclist . ?(l′:assoclist) Ordered(l′,compare) ∧ Perm[l,l′]

v λl : assoclist . listrec (?φ[nil], ?Πl′:assoclistΠp:assocpairΠx:φ[l′]φ[cons(p,l′)], ?{l}assoclist)

v λl : assoclist . listrec (nil, ?Πl′:assoclistΠp:assocpairΠx:φ[l′]φ[cons(p,l′)], l)

We now plan the next stage of the implementation. One possibility is to

construct a new list by systematically removing elements, and inserting them in

the correct position in a new list. This is an insertion sort. We need to implement

the specification

Πl′:assoclistΠp:assocpairΠx:φ[l′]φ[cons(p, l′)] : Ref(assoclist→ assocpair→ τ → τ)

In fact, we do not need to use the first argument. The specification of an insertion

function is (for l′ : assoclist):

insert spec ≡ Πp:assocpairΠx:φ[l′]φ[cons(p, l′)]
: Ref (assocpair→ assoclist→ assoclist)

which says ‘given p : assocpair and x a sorting of l′, return a sorting of cons(p, l′)’,

that is, ‘insert p in the correct position in the sorted list x’. Thus,

?Πl′:assoclistΠp:assocpairΠx:φ[l′]φ[cons(p,l′)] v λl′ : assoclist.?insert spec

156

We use the refinement rule for listrec again to refine insert spec. For

m : assoclist, let ψ[m] ≡ φ[cons(p, m)]. We have

?insert spec

v λp : assocpair.λx : φ[l′].?ψ[l′]

v λp : assocpair.λx : φ[l′].listrec (?ψ[nil], ?Πm:assoclistΠp′:assocpairΠy:ψ[m]ψ[cons(p′,m)], x)

v λp : assocpair.λx : φ[l′].listrec (cons(p, nil), ?Πm:assoclistΠp′:assocpairΠy:ψ[m]ψ[cons(p′,m)], x)

Then since we can prove

p : assocpair, x : φ[l′], m : assoclist, p′ : assocpair, y : ψ[m] `
if compare p′ p then cons(p′, y) else cons(p, cons(p′, m)) : ψ[cons(p′, m)]

we have

p : assocpair ` ?Πm:assoclistΠp′:assocpairΠy:ψ[m]ψ[cons(p,m)] v
λm : assoclist.λp′ : assocpair.λy : ψ[m] .

if compare p′ p then cons(p′, y) else cons(p, cons(p′, m))

This is the only step of the refinement that generates a proof obligation.

We can now give the code for the sorting algorithm:

sort = λl : assoclist . listrec (nil, λl′ : assoclist.insert, l)

where insert is

λp : assocpair.λx : φ[l′].
listrec ([p],

λm : assoclist.λp′ : assocpair.λy : ψ[m] .
if compare p′ p then cons(p′, y) else cons(p, cons(p′, m)), x)

We are guaranteed (by subject refinement; see Lemma 5.5.2) that sort :

sort spec.

Now suppose we want to write a function to test whether two association lists

are (true) permutations of each other, and so implement Perm. We can sort the

lists using sort and compare corresponding entries using compare key. This is

not quite right, though, since as pointed out above, distinct values may have the

same key and so end up with different relative orderings in separate lists. We

would like to specify that our sorting is, in some sense, ‘context independent’,

in the sense that two pairs in a list will always be sorted in the same order,

no matter where they appear in a list. This can be done by strengthening the

specification on insert so that in the case when two values have the same key, the

insert function makes some predetermined choice dependent only on the value.

We require

∀v, v′ : value . v 6= v′ ⊃ choose(v, v′) ⇐⇒ ¬choose(v′, v)

157

We specify

insert′ : assocpair→ assoclist → assoclist

∃choose : value→ value→ bool . ∀p : assocpair . ∀l : assoclist .
Ordered(insert′ p l, compare′) ∧ Perm[insert p l, cons(p, l)]

where compare′ is a lexicographic ordering that first orders on the key, then on

choose:

compare′ 〈k, v〉 〈k′, v′〉 =
if (compare key(k, k′) = true) then true else

if (eq key(k, k′) = true) then choose v v′ else false

Thus, we leave it up to the implementer of insert′ to find some injective ordering,

perhaps by exploiting implementation details of the values.

We can now define the permutation function as

perm : assoclist→ assoclist→ bool

perm l1 l2 = eqlist (sort′ l1) (sort′ l2)

where eqlist is defined using listrec, and sort′ uses insert′.

Remark 5.3.1

The functions head and tail are partial in the sense that their results are not

defined for the argument nil. In [vL90], various ways of accounting for partiality

in algebraic specification are considered. There are two ways in which the simple

approach of total algebras can be extended. On the one hand, we can extend the

syntax of specifications; on the other, the algebra semantics.

With error algebras, the specification is augmented with error values at each

type, together with predicates to distinguish between error and non-error values,

and axioms to explain how errors are propagated. This complicates specifications

considerably, but terms can still be interpreted as total functions.

An extension of this idea is to use monotonic (or continuous) algebras, where

each type is axiomatised as a poset (or cpo). Again, terms are interpreted as total

functions, but must be monotonic (or continuous) with respect to the orderings.

An alternative approach is to just change the definition of algebras, rather

than the specifications. In a partial algebra, terms are interpreted as partial

functions over the carrier sets. This necessitates a change in the definition of

homomorphism, satisfaction, and so on.

An approach which alters both the notion of specification and algebra is

order-sorted algebras. This is a form of subtype polymorphism with an order-

ing defined on the sorts. The idea is to give terms more specific sorts so they

158

become total. For example, we can define Nonemptylist ≤ List and then have

tail : Nonemptylist → List.

The approach we have used here differs from each of these ideas. Although we

have a form of subtyping, this is not used to constrain the domains of primitive

functions. Instead, by regarding terms as representatives of equivalence classes

we can abstract away irrelevant details. This seems a natural approach because,

at the end of the day, we write total programs in the underlying programming

language. We might say that such functions are computationally total but speci-

ficationally partial.

5.4 Comparisons

We compare λv with some related approaches to program development. Extended

ML and Lego are based on the same notion of refinement as λv. Although the

calculi of Morgan et.al. are also refinement calculi, they are based on nonde-

terminism. We show how λv can be used as a metalanguage for studying and

comparing program development methodologies. We also compare with two al-

ternative approaches to program development, based on type theory.

5.4.1 Extended ML

The Extended ML language (EML) is similar to spirit to our approach in that it

takes an existing language, in this case Standard ML, and conservatively extends

it with specification constructs to give a wide-spectrum development language.

Moreover, the constructs added – placeholders (“question marks”) and axioms –

corresponds exactly to those of our modular analysis here. There is a well-defined

semantics [KST97] and methodology [San91].

The semantics is separated into static, dynamic and verification parts. The

static semantics is analogous to finding the underlying type of a term, which

we have not formalised directly. Refinement typing corresponds to both static

and verification semantics. One difference is that a verification checks that an

abstract program is well-annotated with respect to a particular interpretation,

rather than showing that a particular property holds for all interpretations as we

do. The dynamic semantics formalises the evaluation of terms, whenever possible,

in order to ‘experiment’ with abstract programs. Although we have not formalised

this, we suggest how this could be considered here on p. 67.

The intention in EML is to formalise the specification language in terms of

an arbitrary logic (or rather, an institution). As here, the specification style is

159

property-oriented.

Terms are interpreted with respect to (amongst other things) a particular

“question mark interpretation”. This is a syntactic mapping of ?’s to arbitrary

expressions.

There are a number of other differences. The question marks can replace

arbitrary expressions and so, in particular, types. Booleans and propositions are

combined. Satisfaction of properties is up to behavioural equivalence.

There is no proof theory. Rather, three general forms of refinement rule are

given, any particular application of which generates proof obligations which must

be verified with respect to the semantics. In contrast, our rules are low-level

and have been proven sound (and complete). The rules of [San91] (in a suitably

translated form) are admissible in λv.

To take a simple example, if we model functors

functor F (X0 : SIG0) : SIG0′ = exp[X0]

as abstractions λX0 : SIG0.exp[X0], then the coding rule of [San91] can be de-

rived. The rule becomes

λX : SIG.?SIG′ v λX : SIG.r

when “SIG ∪ r � SIG′”, that is,

X : SIG ` r : SIG′

This follows since it is admissible that if r : φ then ?φ v r.

5.4.2 Aspinall’s λASL+

In his thesis [Asp97], Aspinall presents a number of lambda-calculus based calculi

for program development. In the same spirit as our work, he constructs his main

calculus from a number of subcalculi which he studies separately.

The development methodology is based on the “specification as type, element-

hood as satisfaction, subtyping as refinement” idea, but the specification language

is parameterised with respect to an arbitrary institution. The underlying type

theory is not used as a specification language, however, but gives a type structure

to the specification building operations of the institution.

The two subcalculi, λ≤{} and λPower, are extensions of the dependently-typed

lambda calculus with singleton and power types respectively. The singleton types

are a simple form of specification (independent of the institution) while the power

160

types allow parameterisation of specifications over arbitrary specifications. We

have not studied parameterised specifications however.

There are significant similarities between λ≤{} and λ(:). Although Aspinall’s

intention was to provide a framework in which modular specification constructors

could be studied independently of any particular logic, since specifications of

functions are a simple form of ‘specification of parameterised program’, this gives

a specification language anyway. The notion of refinement defined in λ≤{} only

accounts for singleton types, and not general propositions as in λ(:). Rather,

propositions are added on top with the institution.

Aspinall’s calculi are parameterised by a signature, and a consequence relation

over that signature which satisfies certain properties. In contrast, the axiom

systems used here are defined as a signature and an explicit set of axioms which

are then used with the inference rules.

Although specifications are treated as types, he has a notion of rough type

(originally due to Sannella) which is analogous to the underlying types here.

Another similarity is that he also uses a per semantics, interpreting specifica-

tions as pers over the underlying type. However, he interprets terms as elements

of pers whereas we interpret them as equivalence classes. This is evident in the in-

terpretation of abstractions, λx : φ.t. Aspinall does not take account of the φ but,

rather, uses the (rough) type of φ. However, he does not have any completeness

results.

5.4.3 Type Theory

There are two general approaches to using type theory for program derivation.

On the one hand, there is the subtyping approach, as exemplified by Sannella and

Tarlecki [ST87], and Aspinall. There, specifications are formalised as types, and

the refinement of specifications is formalised as a subtyping spec ≤ spec′. Refine-

ment continues until it is obvious that some program satisfies the specification,

that is, inhabits the type.

The other approach exploits the constructive nature of type theory via the

Curry-Howard isomorphism. A specification is phrased as a theorem so that the

proof of this theorem in the constructive logic of type theory automatically gives

a program which satisfies a specification, via some extraction mechanism.

In [NPS90], Nordström, Petersson and Smith, present Martin-Löf’s type the-

ory as a unified formalism for specification and programming based on the ex-

traction style. The derivation methodology is based on the idea that the typing

rules can be read as goal-directed tactics.

161

There are two levels to Martin-Löf type theory: the basic type theory of

dependent types, and on top of this, a theory with subset types. A subset type,

{x : τ | P}, consists of a type τ and propositional function, P and types those

terms with type τ for which P is true.

This split into two levels is similar to that of types and refinement types

here, but there is an important difference in that refinement types correspond to

relations over types rather than subsets. We could regard λ(:) as formalising an

alternative interpretation of the subset theory.

Some consequences of using this type-theoretic formalism for specification and

programming are that the logic is intuitionistic and all programs terminate. With

subset types, {x : τ |P}, the proposition P is translated into the underlying type

theory, and so must be intuitionistic.

The interpretation of the subset theory in the basic theory is given as a

translation of a type into basic types and propositional functions. For exam-

ple, even → even is translated to the type nat → nat and the propositional

function ∀x : nat . Even(x) ⊃ Even(fx) in f . The typing rules can be translated

in this way because they use Curry style rules where abstractions are not labelled

with types.

Program refinement, as conceived in this thesis, has similarities with both of

the type-theoretic approaches. The refinement relation of λ? corresponds to the

program extraction approach (where refinement is often implicit), whereas that

of λ(:) corresponds to the subtyping approach.

5.4.4 Lego

Lego [LP92] is an example of a proof assistant which implements the extraction

style of type-theoretic development. There is no subtyping, but instead an explicit

notion of refinement based on existential variables.

At any stage during a refinement in Lego, the user is presented with a proof

state consisting of a context of assumptions x1 : φ1, . . . , xn : φn, and a num-

ber of goals ?1 : ψ1, . . .?m : ψm. There is also a stored representation of the

proof so far, which is hidden from the user, and any other goals which are

out of context. Naively, we might represent this state as the refinement term

λx1 : φ1, . . . , xn : φn . let y1 : ψ1, . . . , ym : ψm in t where t is a translation of the

proof so far. To see how goals out of context arise, suppose the first goal is

?1 : ψ1 → ψ′1 and that we refine this. The resulting proof state contains assump-

tions x1 : φ1, . . . , xn : φn, z : ψ1 and the single goal ?m + 1 : ψ′1. The other goals

are hidden since we cannot use the assumption z : ψ1 to refine them. In fact,

162

the proof states correspond to arbitrary refinement terms. To a certain extent,

the user is able to manipulate terms which contain existential variables ?n : ψn

corresponding to refinement terms.

This is more sophisticated than the approach of [NPS90] since it incorporates

existential variables and an explicit notion of refinement, all of which is implicit

in the straightforward type-theoretic approach.

Existential variables correspond to stubs rather than free variables. In fact,

our refinement calculus may be viewed as an explicit formalisation of Lego’s

refinement process. Conversely, Lego may be viewed as a tool for performing re-

finement. Although a closer comparison would be between Lego and version of λ?

for the calculus of constructions, we consider underdeterminism to be orthogonal

to the type theory.

The basic commands in Lego are setting a goal, claiming a lemma, making a

local definition, refining the current goal, and changing the order of goals. Each

of these commands corresponds naturally to a refinement step in our calculus.

The first step in a development, setting a goal φ, introduces the refinement

term let x : φ in x; claiming a lemma is refinement by let-weakening; while

making a local definition x = t is also a let-weakening, though t must be deter-

mined (i.e. not contain any existential variables).

Refinement of goals in Lego is performed by directly solving a goal, unifying

it with another goal, or using some library function f : ψ1, ψ2 → φ, so that ?1 : φ

is refined to ?2 : ψ1, ?3 : ψ2. We translate this as

f : ψ1 × ψ2 → φ

let x : φ in t[x] v let y1 : ψ1, y2 : ψ2 in t[f(y1, y2)]

Rearrangement of goals corresponds to the commutativity of let-terms. We

could regard this as a nontrivial justification for the reordering of goals in Lego,

though for the simpler expressions arising here though, it is more obviously sound!

Lego has some ability to perform automatic unification during refinement. Such

steps are derived from more basic ones.

It would be interesting to formally compare the rules of Lego with those of

λv. This would let us apply some of the metatheoretic results here to Lego.

For example, if Lego has all the rules of λ? we could conclude that claims are

unnecessary.

5.4.5 Refinement Calculus of Back, Morgan and Morris

We compare our calculus with the imperative refinement calculus of Back, Morgan

and Morris. This version is taken from [Mor94]. A simplified grammar of the

163

language is:

C ::= skip | abort | x := E | if P1 → C1 [] . . . [] Pn → Cn fi | re x.C er |

if P then C else C ′ | ~x : [P, P ′] | var x : σ •C | con x : σ • C

E ::= expressions

P ::= first-order logic plus arithmetic etc.

There is also a notation for procedures, which we do not consider here.

Only commands can be specified, and not expressions. There are two specifi-

cation constructs. The notation ~x : [P, P ′] is a specification of a command which

with precondition P of the state, results in postcondition P ′, but only altering

variables in the ‘frame’ ~x.

The alternation construct, if . . . [] . . . fi, is a nondeterministic choice between

commands Ci whose ‘guard’ Pi is true. If none of the Pi are true then the

command is unsatisfiable.

The declaration of logical constants con x : σ • C, is not program code, but

an abbreviation introduced during development that must ultimately be refined

into code.

Annotations – ‘assumptions’ and ‘coercions’ – are defined as commands using

specifications (unlike in Remark 4.3.22). The assumption {pre} = 〈〉 : [pre,>],

and the coercion [post] = 〈〉 : [>, post]. In fact, abort and skip can be defined

using specifications.

The distinction between imperative and functional languages seems (theoret-

ically) irrelevant for our study of refinement. We can translate the imperative

features into our calculus in the style of Idealised Algol. For example, we add a

primitive type state, and define a translation ()◦ of terms into our calculus:

(com)◦ = state→ state

(x := E)◦ = assign(x, E◦)

(var x : σ • C)◦ = new(λx : σ.C◦)

In order to avoid considerations of nontermination, we could assume that all

recursion is terminating, and so could be encoded using primitive recursion (say).

We are more interested here though in translating the specificational features

into our calculus. Logical constants can be translated as:

(con x : σ • C)◦ = let x : σ in C◦

164

Although the imperative refinement calculus does not have choice for expressions,

most other authors do, and it is useful in our translation. We can define this as

(r[]r′)◦ = let b : bool in (if b then r else r′)

The connection between propositions and booleans is usually not satisfactorily

accounted for. It is commonplace (and useful) to write propositions in place of

booleans, but not explained how they might ultimately be refined into booleans.

We do not study this, but can associate boolean term t with proposition P , by

using sum types and asserting that t : 1 | P + 1 | ¬P . We use the notation

if P then P → r else ¬P → r′ to mean

case b : 1 |P + 1 |¬P of λz : 1 |P.r, λz : 1 |¬P.r

so may use the assumptions P , ¬P when reasoning about r and r′ respectively.

We will write propositions with this convention.

(if b→ r [] b′ → r′ fi)◦ =

if (b and b′) then r[]r′

else if b then r

else if b′ then r′

else ?(z:τ) b=true ∨ b′=true

The final branch is intended to mean that if both b and b′ are false, then the term

is unsatisfiable. If we had put ?(z:τ) ⊥ then this would force the whole term to be

unsatisfiable.

Logically, pre and postconditions are just a particular form of property. We

define the frame proposition FrΓ(s, s′) to mean that states s and s′ can only differ

on the variables in Γ. We use the propositions pre and post as properties over

state. Let FrΓ(s, s′) ≡ ∀x : var . sx 6= s′x ⊃ x ∈ Γ.

(Γ : [pre, post])◦ = ?Πs:pre(s′:post)FrΓ(s,s′)

We can show that

{pre}◦ = λs : pre.s

Without some form of annotation, coercions do not have such a neat representa-

tion though.

We assume a Hoare logic of commands is given schematically. For example,

for all propositions P , terms e : σ and variables x : σ, we have assignσ(x, e) :

165

P [e/x]→ P . With a sufficiently powerful type theory, and object level substitu-

tions, this definition could be internalised.

Morgan introduces a large number of refinement laws, though they are not

arranged into a complete system of refinement rules, and there is no logic of

refinement terms. We now consider two laws presented in [Mor94].

Absorb assumption {pre′}; (Γ : [pre, post]) = Γ : [pre′ ∧ pre, post]

This does not hold in our calculus. To see why, observe that in general we do

not have

(λx : φ |P.x); ?Πx:φψ = ?Πx:φ|Pψ

since although we might be able to satisfy ψ for every φ such that P , so the

second expression is satisfiable, we might not be able to do this for every φ, so

the first expression is unsatisfiable. Now, the translation of the left hand side of

the law is

(λs : pre′.s); ?Πs:pre(s′:post)FrΓ(s,s′)

The failure of this equivalence does not mean that in our calculus it is impossible

to use external assumptions when reasoning about specifications. Indeed, this

nonlocality of satisfiability leads to complications. In order to understand one

subspecification, the entire system needs to be considered. Rather, we believe

that satisfiability of specifications should be local, and that assumptions be made

contextually – that is, in an explicit global or local context. It seems unlikely

that an expression of the form {pre′}; Γ : [pre, post] would actually arise during

refinement anyway.

The contrasting status of the law in λv and [Mor94] is indicative of the dif-

ference between underdeterminism and nondeterminism (see Remark 5.2.7).

Alternation If pre ⊃ P1 ∨ P2, then Γ : [pre, post] refines to
if P1 → Γ : [pre ∧ P1, post] []

P2 → Γ : [pre ∧ P2, post] fi

Let r1 ≡ ?Πs:pre∧P1
(s′:post)FrΓ(s,s′) and r2 ≡ ?Πs:pre∧P2

(s′:post)FrΓ(s,s′). We show that

r ≡ ?Πs:pre(s′:post)FrΓ(s,s′)

v if P1 ∧ P2 then r1[]r2

else if P1 then r1

else if P2 then r2

else ?(c:com) P1∨P2

We need two auxiliary results

166

1. r v if P then P → r else ¬P → r

2. If r v r1 and r v r2, then r v r1[]r2

So by 1,

r v if P1 ∧ P2 then P1 ∧ P2 → r else ¬(P1 ∧ P2)→ r

and by 1 again, refine the second branch to get

if P1 ∧ P2 then P1 ∧ P2 → r
else if ¬(P1 ∧ P2) ∧ P1 then P1 → r
else ¬(P1 ∧ P2) ∧ ¬P1 → r

and then
if P1 ∧ P2 then P1 ∧ P2 → r
else if ¬(P1 ∧ P2) ∧ P1 then P1 → r
else if P2 then¬(P1 ∧ P2) ∧ ¬P1 → r
else ¬(¬(P1 ∧ P2) ∧ ¬P1)→ r

which refines to

if P1 ∧ P2 then P1 ∧ P2 → r
else if ¬(P1 ∧ P2) ∧ P1 then P1 → r
else ¬(P1 ∧ P2) ∧ ¬P1 → r

and then
if P1 ∧ P2 then P1 ∧ P2 → r
else if P1 then P1 → r
else if P2 then P2 → r
else ¬(P1 ∨ P2)→ r

Now P1 ` r v r1 and P2 ` r v r2, so by 2, P1 ∧ P2 ` r v r1[]r2. For the final

branch, if ¬(P1 ∨ P2) then r is unsatisfiable so we refine it to ?(c:com) P1∨P2. Hence

the term refines to

if P1 ∧ P2 then r1[]r2

else if P1 then r1

else if P2 then r2

else ?(c:com)P1∨P2

5.5 Metatheory

In this section we prove a number of proof-theoretic results about the refinement

calculus. Besides being used in the completeness proof of the next section, these

results are inherently interesting and provide insight into the nature of refinement.

We extend the results of Section 3.3 in which we showed that the simple re-

finement relation of λ? could be factored into ‘coding’ and equality. The main

167

idea is that a refinement can be factored into a simple form of ‘non-logical’ refine-

ment, and a logical equality. These relations can be seen as generalisations of the

simply-typed refinement relation in λ? and the logical equality in λ(:) respectively.

Mirroring the results for λ?, the simple refinement can, in turn, be factored into

coding and ‘coercion’.

Before proving the factorisation itself, we use the characterisation of logical

equality to show that refinement typings can be proven in a standard way. Such

so-called generation lemmas are useful for metatheoretic reasoning about judge-

ments.

The idea of the lemma is that if a term satisfies a specification, then we should

be able to prove this by induction on the structure of the term. For example,

if the pair 〈r, r′〉 satisfies some specification χ, then we should be able to prove

something about r, something about r′ and conclude from this that the pair

satisfies χ. Formally, we would like so say that there are refinement types φ and

ψ such that r : φ, r′ : ψ and that χ v φ×ψ (or, in general, that x : φ ` r′ : ψ and

χ v Σx:φψ). This is often the case. However, it is sometimes possible to directly

infer that a term satisfies a specification, if this is taken as an axiom, for example.

In fact, it is the three Refinement Type Introduction rules which break the

structural form of refinement typing, in the sense that the inferred refinement

type need have no relationship to the term. Thus we formulate the Generation

Lemma to account for these two possibilities.

The proof exploits the fact that Refinement Elimination is only useful

in combination with the subset of rules corresponding to a relation ‘logical eta’

which we will define, and that this can be eliminated.

Lemma 5.5.1 (Generation) If Γ ` r : χ then either this is derived using a rule

of Refinement Type Introduction, followed by Weakening, or it is derived

on the structure of r, as follows:

1. If Γ ` x : χ then there exists a φ such that Γ ≡ Γ1, x : φ, Γ2 and Γ1 ` χ v φ.

2. If Γ ` k(r1, . . . , rn) : χ then there is an axiom Γ ` k : φ1, . . . , φn → ψ such

that Γ ` ri : φi (i = 1, . . . , n) and Γ ` χ v ψ.

3. If Γ ` ∗ : χ then there exists Γ ` P wf such that Γ ` P and Γ ` χ = (z :

1)P .

4. If Γ ` 〈r, r′〉 : χ then there exists Γ ` φ, ψ wf such that Γ ` r : φ, Γ, x : φ `
r′ : ψ and Γ ` χ v Σx:φψ.

168

5. If Γ ` λx : φ.r : χ then there exists Γ, x : φ ` P wf and Γ, x : φ, P ` ψ wf

such that Γ, x : φ, P ` r : ψ and Γ ` χ v Πx:φ|Pψ.

6. If Γ ` ?φ : χ then Γ ` χ v φ.

7. If Γ ` π1(r) : χ then there exists Γ ` ψ wf such that Γ ` r : χ× ψ.

8. If Γ ` π2(r) : χ then there exists Γ ` φ wf such that Γ ` r : φ× χ.

9. If Γ ` rr′ : χ then there exists Γ ` φ wf and Γ ` ψ wf such that

Γ ` r : φ→ χ and Γ ` r′ : φ.

10. If Γ ` let x : φ be r in r′ : χ then there exists Γ, x : φ ` P wf such that

Γ ` r : (x : φ)P and Γ, x : φ, P ` r′ : χ.

Proof: We first show that we can eliminate ‘nonessential’ uses of the Refinement

Elimination rule. This rule is only useful in combination with the refinements

given by the logical equality rules of Figure 5.13. We induct over these rules to

show that in each case we can replace the use of the rule followed by a refinement

elimination with a single derived (or basic) rule whose hypotheses and conclusions

are all refinement typings (or well-formedness conditions). For example, in place

of using Function Equations (ξ) in

Γ, x : φ ` P wf Γ, x : φ, P ` t′ : ψ

Γ ` λx : (x : φ)P.t =Πx:φ|Pψ λx : φ.t′
Func. Eqs. (ξ)

Γ ` λx : φ.t′ : Πx:φ|Pψ
Ref. Elim.

we have the rule
Γ, x : φ ` P wf Γ, x : φ, P ` t′ : ψ

Γ ` λx : φ.t′ : Πx:φ|Pψ

Note that we are not eliminating uses of Refinement Elimination here. This

derived rule still makes use of it. The rule Let Eta would be used in

Γ ` r : φ

Γ ` let x : φ be r in x =φ r
Let Eta

Γ ` let x : φ be r in x : φ
Ref. Elim.

but this can be proven directly as

Γ ` r : φ Γ, x : φ ` x : φ
Γ ` let x : φ be r in x : φ

Similar analyses hold for the other rules of Figure 5.13.

Thus we can assume, without loss of generality, that if Γ ` r : φ is provable

and Ref.Type Intro. is not used, then it has been inferred from the refinement

169

typing rules of Figure 5.4, together with the derived rules above and Weakening

from Figure 5.5. Now we need just show that each of these rules preserves the

conditions of the lemma, in the sense that if the hypotheses of a rule can be

derived in the standard way (described by the lemma), then the conclusion can

be inferred in the standard way. In fact, this is immediate for the refinement

typing rules of Figure 5.4 and the derived rules. We need just check the case of

Weakening. For example, suppose

Γ ` 〈r, r′〉 : χ′ Γ ` χ v χ′

Γ ` 〈r, r′〉 : χ

By the inductive hypothesis, either there exists φ, ψ such that Γ ` r : φ, Γ, x : φ `
r′ : ψ and Γ ` χ′ v Σx:φψ, and so Γ ` χ v Σx:φψ.

Cases 7-9 show that nondependent hypotheses suffice for the elimination rules.

Then, from the point of view of completeness, the restriction on the rules for

Product Terms and Function Terms in Figure 5.4 is not a problem.

We remark that the proof of Lemma 5.5.1 does not depend on the factorisation

result which we give below.

Lemma 5.5.2 (Subject Refinement) If Γ ` r : (x : φ)P and Γ ` r vφ r′, then

Γ ` r′ : (x : φ)P .

Proof: We use induction over Γ ` r vφ r′ and the Generation Lemma. For

example, if Γ ` ?ψ×ψ′ : (x : φ)P then, either this follows from Ref. Type Intro.

followed by Weakening (in which case P must be a predicate symbol and we can

use Ref.Type Intro.) or Γ ` (x : φ)P v ψ × ψ′. So, Γ ` ?ψ×ψ′ vψ×ψ′ 〈?ψ, ?ψ′〉
and Γ ` 〈?ψ, ?ψ′〉 : ψ × ψ′ so by Weakening, Γ ` 〈?ψ, ?ψ′〉 : (x : φ)P .

We want to split a refinement r vφ r′ into an equality at φ and some form

of ‘nonlogical’ refinement independent of any refinement type. However, it is

not immediately clear how make such a definition, because we have only defined

refinement at specific refinement types. Some refinements are provable at every

refinement type (of the term to be refined), though, and this will be our definition.

For example, ?even→nat refines to λn : even.n at every refinement type of ?even→nat.

Definition 5.5.3 We define a form of untyped refinement, v, between terms.

We say that Γ ` r v r′ holds when for all provable Γ ` φ wf, if Γ ` r : φ is

provable then so is Γ ` r vφ r′.

170

In order to prove the factorisation theorem we need the fact that the axioms

can all be factorised. The easiest way of doing this is to assume that the axioms

are in λ(:) (which we assumed in Definition 5.2.3).

Theorem 5.5.4 (Factorisation) If Γ ` r vφ r′ then there exists a term r′′ such

that Γ ` r v r′′ and Γ ` r′′ =φ r′, and a term r′′′ such that Γ ` r =φ r′′′ and

Γ ` r′′′ v r′.

Proof: We give a sketch of the proof. The central idea is to partition the rules

into what we call logical eta, simple refinement, and computation, by defining

relations =η
φ, vs and =βlet, given in Figures 5.13, 5.14 and 5.15 respectively.

Note that the decomposition rules (top-down refinement rules of Figure 5.9) are

derivable for vs.

To a certain extent, the definitions of these relations are arbitrarily made to

get the proof to go through. For example, we include the Eta rule in vs simply

because it is not clear whether it commutes with the other rules in vs (this fact

being needed for the proof).

Then, by combining computation with simple refinement and logical eta, re-

spectively, we get nonlogical refinement and logical equality. Specifically, we

define =′φ as the reflexive symmetric transitive closure of =η
φ and =βlet; and de-

fine v′ as the reflexive transitive closure of vs and =βlet. (We will show that =′φ
is contained in =φ and v′ is contained in v.)

1. Refinement rules are of two kinds: axioms, that is, those whose hypotheses

do not contain refinements; and the congruence rules.

Prove that all axioms factor into =′φ;v′ and v′; =′φ, and that congruence

rules and Substitution preserve factorisations. For Disjunction, if assum-

ing P the refinement factors through rP and assuming Q it factors through

rQ, then assuming P ∨Q, it factors through P → rP [] Q→ rQ (defined us-

ing annotations and choice). The only rules which are not exclusively =βlet,

=η
φ or vs are the stubs refinement rule, and the three ‘complex’ congruence

rules.

2. Induct over R ∈vs to show that

R; =′φ ⇒ =′φ;vs

=′φ; R ⇒ vs; =′φ

3. Since this clearly holds for R ∈=βlet we conclude that v′ (on φ) commutes

with =φ, and hence that vφ factors into v′ and =′φ.

171

4. Show that =′φ ⊆ =φ. Hence, vφ factorises into v′ and =φ.

Corollary 5.5.5 The refinement relation, vφ, factorises into v and =φ; that is,

if Γ ` r vφ r′ then

Proof: By Theorem 5.5.4, vφ factorises into v′ and =φ. The result follows on

using the Generation Lemma to show that v′ ⊆ v.

Corollary 5.5.6 If Γ ` r vφ t, then there exists a term t′ such that Γ ` r v t′

and Γ ` t′ =φ t.

Proof: Suppose Γ ` r vφ t. By Theorem 5.5.4, there exists a term r′ such

that Γ ` r v r′ and Γ ` r′ =φ t. Now, it is not necessarily the case that r′ is

determined. However, if we construct the term t′ by replacing each stub in r′

with a determined refinement, then Γ ` r v r′ v t′ and Γ ` t′ =φ t.

We now generalise the canonical forms lemma of Chapter 3 and show that

each term has a canonical form to which it is equal at all its refinement types.

Lemma 5.5.7 (Canonical Forms) For all terms in context Γ ` r, there exists

a context x1 : φ1, . . . , xn : φn and a determined term Γ, x1 : φ1, . . . , xn : φn ` t wf

such that each xi appears exactly once in t, and

Γ ` (let x1 : φ1, . . . , xn : φn be ?φ1, . . . , ?φn in t) = r

Proof: Use =βlet rules of Figure 5.15 to move the underdeterminism outwards.

We have shown that an arbitrary refinement, r vφ r′, factorises into v (or v′)
and =φ. We now show that further factorisations can be made when refinement

is to a determined term. We defined v′ as the reflexive transitive closure of vs

and =βlet. In fact, it factorises in the following way:

Lemma 5.5.8 If Γ ` r v′ t then there exists a t′ such that Γ ` r vs t′ and

Γ ` t′ =βlet t.

Proof: We can show that =βlet commutes with vs, in the direction: if

Γ ` r =βlet;vs r′ then Γ ` r vs; =βlet r′, and the result follows.

172

Function Equations (η) (Fig. 5.6)
Let Eta (Fig. 5.7)

Eta

Axioms of the form Γ ` t =φ t′

Axioms

Γ ` r =φ′ r
′ Γ ` φ v φ′

Γ ` r =φ r′

Weakening

Γ ` r =φ r′ Γ ` r : (x : φ)P

Γ ` r =(x:φ)P r′

Strengthening

Γ, x : φ, P ` t =ψ t′

Γ ` λx : φ |P.t =Πx:φ|Pψ λx : φ.t′

Γ, x : φ ` r =ψ r′

Γ ` λx : φ.r =Πx:φψ λx : φ.r′

Γ, x : φ ` P wf Γ ` r1 =(x:φ)P r′1 Γ, x : φ, P ` r2 =ψ r′2
Γ ` let x : (x : φ)P be r1 in r2 =ψ let x : φ be r′1 in r′2

(x /∈ FV (ψ))

congruence rules for constants, pairs, applications, projections

Congruence

Figure 5.13: Logical Eta: =η

173

Γ ` t : φ
Γ ` ?φ vs t

Coding

Γ ` r′ : ψ Γ ` r : φ

Γ ` r′ vs let x : φ be r in r′
(x /∈ FV (r′))

Let Weakening

Γ ` φ v φ′

Γ ` ?φ vs ?φ′

Stubs

Γ ` r : φ

Γ ` let x : φ be r in x vs r

Eta

Γ ` r vs r′

Γ ` C[r] vs C[r′]

Γ, x : φ, P ` r vs r′

Γ ` λx : φ |P.r vs λx : φ.r′

Γ ` φ v φ′ Γ ` r1 vs r′1
Γ ` let x : φ be r1 in r2 vs let x : φ′ be r′1 in r2

Γ ` φ v φ′ Γ, x : φ ` r2 vs r′2 Γ ` r1 : φ′

Γ ` let x : φ be r1 in r2 vs let x : φ′ be r1 in r′2

Congruence

Figure 5.14: Simple Refinement: vs

174

Γ ` φ× ψ wf

Γ ` ?φ×ψ = 〈?φ, ?ψ〉

Γ ` Πx:φψ wf

Γ ` ?Πx:φψ = λx : φ.?ψ

Decomposition

Function Equations (β) (Fig. 5.6)
Product Equations (β) (Fig. 5.6)

Beta

Product Equations (η) (Fig. 5.6)
Unit Equation (Fig. 5.6)

Eta

Figures 5.7 and 5.8 (except Let Eta)

Let Equalities

Γ, x : φ ` r = r′

Γ ` λx : φ.r = λx : φ.r′

Γ ` r1 = r′1 Γ, x : φ ` r2 = r′2
Γ ` let x : φ be r1 in r2 = let x : φ be r′1 in r′2

Congruence

Figure 5.15: Computation: =βlet

175

In Chapter 3, we defined a coding relation, , and we now extend the defini-

tion to λv in the obvious way.

Definition 5.5.9 We define the coding relation on well-formed terms,

Γ ` r r′, as the reflexive, transitive, congruence closure of the following one-

step relation:
Γ ` t : φ

Γ ` ?φ t

It is also possible to refine terms simply by weakening the refinement types

on binders. We define a relation, ≤, for this notion of ‘coercion’.

Definition 5.5.10 We define the coercion relation on well-formed terms,

Γ ` r ≤ r′, to be the reflexive, transitive, congruence closure of the following

one-step relation:
Γ, x : φ ` r wf Γ, x : φ ` P wf

Γ ` λx : φ |P.r ≤ λx : φ.r

Γ ` φ v φ′ Γ ` r : φ′ Γ, x : φ ` r′ wf

Γ ` let x : φ be r in r′ ≤ let x : φ′ be r in r′

Now, in Chapter 3 we showed that refinement to a determined term in λ?

could be factored into coding and equality (Lemma 3.3.2). The generalisation of

this lemma to λv is:

Lemma 5.5.11 If Γ ` r vs t then Γ ` r ;≤ t and Γ ` r ≤; t.

Proof: We first show that all rules of vs factor into and ≤. Clearly and ≤
commute. All we need show, then, is that the vs rules of Let Weakening and

Eta can be eliminated:

(Let Weakening) Suppose r′ vs let x : φ be r in r′ let x : φ be t in t′.

Then, clearly, r′ t′[t/x].

(Eta) Suppose let x : φ be r in x vs r t. Then let x : φ be r in x

let x : φ be t in x.

We will use the following consequences in the completeness proof:

Lemma 5.5.12 1. If Γ ` let z : φ be r in r′ v′ t′ then there exists a term

Γ ` t : φ such that Γ ` r v′ t and Γ ` r′[t/z] v′ t′.

2. If Γ ` let z : φ be r in r′ vψ t′ then there exists a term Γ ` t : φ such that

Γ ` r vφ t and Γ ` r′[t/z] vψ t′.

176

Proof:

1. Suppose Γ ` let z : φ be r in r′ v′ t′. Then, by Lemma 5.5.8, there exists a

term t′′ such that Γ ` let z : φ be r in r′ vs t′′, and Γ ` t′′ =βlet t′, so by

Lemma 5.5.11, Γ ` let z : φ be r in r′ ;≤ t′′, that is, there exists deter-

mined u, u′ such that Γ ` r u and Γ ` r′ u′ and let z : φ be u in u′ ≤
t′′. Hence, Γ ` r v′ u and Γ ` r′[u/z] v′ u′[u/z] v′ t′′ =βlet t′.

2. If Γ ` let z : φ be r in r′ vψ t′, then by Theorem 5.5.4, there exists a t′′

such that Γ ` let z : φ be r in r′ v′ t′′ =ψ t′. By part 1 of this lemma,

there exists a term Γ ` t : φ such that Γ ` r v′ t, so Γ ` r vφ t, and

Γ ` r′[t/z] v′ t′′, so Γ ` r′[t/z] vψ t′.

Lemma 5.5.13 (Completeness of refinement to programs) If Γ ` t : φ then

Γ ` ?φ vφ t.

Proof: This follows directly using Substitution.

Definition 5.5.14 For Γ ` r, r′ wf, define r .Γ
φ r′ to mean: for all Γ′ ⊇ Γ, for

all determined t′, if Γ′ ` r′ vφ t′, then Γ′ ` r vφ t′.

Lemma 5.5.15 (Refinement Mappings) If

let x : φ in t1 .
Γ
χ let y : ψ in t2

then there exists Γ, y : ψ ` t : φ, such that Γ, y : ψ ` t1[t/x] =χ t2.

Proof: Since Γ, y : ψ ` let y : ψ in t1 vχ t2[y], by the definition of .Γ
χ we have

Γ, y : ψ ` let x : φ in t1 vχ t2[y]. By Lemma 5.5.12 (2) this means there exists

a term Γ, y : ψ ` t : φ such that Γ, y : ψ ` t1[t/x] =χ t2.

5.6 Models

We first motivate the semantics for the λv-calculus in Section 5.6.1 before giving

the details in Section 5.6.2, and proving soundness and completeness.

177

5.6.1 Discussion

We discuss the properties we would like the semantics of the refinement calculus

to have and give intuitive meanings to refinement typing and refinement in the

λv-calculus. It is our intention to model the calculus using a form of Henkin

interpretation, and so enable comparison with the models of the subcalculi.

In Chapter 3, a refinement term r was thought of as denoting a set of values,

or realizers, corresponding to the programs which satisfy the specification. In

Chapter 4, determined terms t were also seen as denoting sets of total realizers.

Perhaps unexpectedly, we cannot think of terms in the full refinement calculus as

denoting sets.

To see this, we must consider what the meaning of the refinement typing, r : φ,

should be. A first approximation to what this means is ‘every realizer of r is in

φ’. This would be wrong, however, as we do not want λn : even.n : nat→ nat to

be true, yet every realizer of λn : even.n is certainly in nat→ nat. The problem

is that the interpretation of λn : even.n as a set is losing the information that its

realizers are only determined up to even→ nat.

This is analogous to the distinction between even → even and

(f : nat → nat) ∀n : even . Even(fn). Although these refinement types corre-

spond to the same sets of total terms, (we could say they have the same ‘exten-

sion’), they represent different equalities. We can recast this example as the dis-

tinction between the refinement terms λn : even.n and ?(f :nat→nat) ∀x:nat . Even(x)⊃ fx=x.

The problem is that our interpretation of refinement types uses pers, rather

than just types. Somehow we need to involve pers in the interpretation of terms

as well.

In Chapter 4, we said that t : φ is true when all realizers of t are equal at φ.

This will certainly prevent λn : even.n having refinement type nat → nat, but

then ?nat→nat : nat→ nat will not be true either.

The solution is to think of refinement terms as sets of equivalence classes of

some per. In the case of λn : even.n, we should interpret this as a single class

in the per even → nat. The term ?(f :nat→nat) ∀n:even.fn=n is interpreted as all the

classes in the per (f : nat→ nat) ∀n : even.fn = n.

However, since we interpret preterms, it is not immediately obvious which per

the equivalence classes should be from, but since a set of equivalence classes of

some per is itself just a per, we simply interpret refinement terms as pers.

For example, the refinement term ?φ will be interpreted as the same per as

the refinement type φ. Then we can succinctly express the semantic meaning

of refinement typing: r : φ is true when (the meaning of) r is a subper of (the

178

meaning of) φ.

We will show in the next section that determined terms (i.e. terms in the

λ(:)-calculus) are interpreted as a single equivalence class. Thus we can regain

the set-theoretic intuition that an underdetermined term r corresponds to a set

of realizers — now the realizers can be thought of as determined terms, corre-

sponding to the equivalence classes of r. This means that r : φ can be thought of

as “for all r vφ t, we have t : φ”. Semantically, the final stage of a refinement is

a single equivalence class.

Given this intuition of a refinement term as a per, how are we to think of

refinement? Semantically, there are two forms of refinement: reducing the number

of classes (restriction) and reducing the size of the classes (quotienting). For

example, ?even→nat can be quotiented to ?nat→nat, and restricted to λn : even.n.

Both operations give subpers.

In practice, refinement is more likely to consist of progressive restrictions (in

this semantic sense) on a specification towards a program. Non-discrete equiv-

alences can only arise through refinement types on abstractions. Quotienting

would correspond to a relaxing of these assumptions, thus increasing the domain

of definition.

We think of refinement at φ, then, as being a combination of reducing the

number of φ-classes, and of making the classes finer. These two relations can be

combined by saying that r vφ r′ is true when (using capitals for the meaning

of expressions) R′ is contained in the Φ-closure of R, that is, R′ is a subper of

Φ; R; Φ. In fact, we also require that R is a subper of Φ.

For example, λn : even.n vnat→nat λn : even.n is not true, since the single

class denoted by λn : even.n (in even→ nat) is not equal to itself at nat→ nat.

As pointed out above, λn : even.n does not have refinement type nat → nat.

Similarly, we do not have ?nat→nat vnat→nat λn : even.n.

Since the goal of refinement is to reach a term which represents a single equiv-

alence class, syntactically it culminates in a determined term, and not necessarily

as a term in λ×→. Hence, from a semantic standpoint, we are consistent in con-

tinuing to use t as a metavariable for determined terms.

5.6.2 λv-Henkin Models

As suggested for λ? in Remark 3.4.12, there are two possible approaches to giving

a semantics. One possibility is to interpret Γ ` r as a per. Here we interpret

the calculus in Henkin models with the additional structure introduced to model

the subcalculi in Sections 3.4 and 4.5, namely factoring and per structure. The

179

only difference is that the factoring condition must be strengthened to account

for logical structure.

We follow the pattern of previous chapters, by first giving the interpretation of

pre-expressions, and then defining when an interpretation of a signature models

an axiom system.

We define the notion of Γ-environment as in Chapter 4, and write η �A Γ when

η is a Γ-environment in λv-Henkin interpretation, A. Then the pre-expression in

context, Γ ` U , is interpreted in a Γ-environment, η. We interpret pre-expressions

so as to avoid the need for establishing coherence (as for the λ(:)-calculus).

Since the basic data of λv-axiom systems is the same as for first-order λ×→-

and λ(:)-axiom systems, we give the interpretation of pre-expressions in a first-

order λ×→-Henkin interpretation in Γ-environment, η, in Figures 5.16 to 5.18.

Figure 5.16 gives the interpretation of refinement types as pers over the set cor-

responding to the underlying type. This is the same interpretation for the λ(:)-

calculus but we repeat it here. Figure 5.17 gives the interpretation of refinement

terms, also as pers. For a an element of per R, we use the notation {a}R for the

singleton per consisting of the class of a.

As for λ(:)-models, the soundness theorem for λv will imply that the choice of

a in the semantics of abstractions is not important; similarly for the other binding

expressions.

We define some of the pers as sets of pairs. We explain the cases for ab-

stractions and pairs. The abstraction, λx : φ.r, denotes a per which relates two

functions if for all arguments related at φ, the results are related by r. The let-

expression, let x : φ be r in r′, is similar, but relates two individuals if there

exists a pair related by r. Since r : φ, soundness implies that the choice does not

matter.

The interpretation of pre-propositions, Γ ` P , is given in Figure 5.18 as the

set of Γ-environments in which P is true. It is convenient to write [[Γ ` P]](η) for

the truth or falsehood of η ∈ [[Γ ` P]].

Having given the interpretation of pre-expressions we can make the following

definitions.

Definition 5.6.1 Let A be a first-order λ×→-Henkin interpretation. We say that

A satisfies the logical factoring condition when for each f ′ ∈ Aτ→τ ′, f ∈ Aσ→τ ′,

such that f ′ ∈ [[ψ → ψ′]]A, f ∈ [[φ → ψ′]]A, we require that if there exists h ∈
Aτ → Aσ such that f̄ ′ = h; f̄ then there exists g ∈ [[ψ → φ]]A such that f̄ ′ = ḡ; f̄ .

Definition 5.6.2 Let Sg = 〈G,K,F〉 be a λv-signature. A λv-Henkin interpre-

tation of Sg is a first-order λ×→-Henkin interpretation of Sg which satisfies the

180

a [[Γ ` 1]](η) a′ ⇐⇒ a, a′ ∈ 1A

[[Γ ` φ]] = R [[Γ, x : φ ` ψ]] = S

a [[Γ ` Σx:φψ]](η) a′ ⇐⇒ Proj
σ,τ
1 (a) R(η) Proj

σ,τ
1 (a′) and

Proj
σ,τ
2 (a) S〈η, Projσ,τ

1 (a)〉 Projσ,τ
2 (a′)

[[Γ ` φ]] = R [[Γ, x : φ ` ψ]] = S

f [[Γ ` Πx:φψ]](η) f ′ ⇐⇒ for all a R(η) a′, App(f, a) S〈η, a〉 App(f ′, a′)

[[Γ ` φ]] = R [[Γ, x : φ ` P]] = A

a [[Γ ` (x : φ)P]](η) a′ ⇐⇒ a R(η) a′, 〈η, a〉 ∈ A, 〈η, a′〉 ∈ A

a [[Γ ` γ]](η) a′ ⇐⇒ a, a′ ∈ γA and a = a′

Figure 5.16: Interpretation of Refinement Types

logical factoring condition.

Remark 5.6.3 We make the obvious extension of Definition 4.3.18 (well-

structured expressions) to λv. As for the λ(:)-calculus, it turns out that well-

structured expressions have a well-defined interpretation. In fact, some other

expressions have an interpretation too, for example: (λn : nat.n)?(b:bool)⊥ is in-

terpreted as the empty per.

For A a λv-Henkin interpretation we define Γ �A U wf when η [[Γ]] η′ implies

[[Γ ` U]] (η) = [[Γ ` U]] (η′). That is, well-formedness is interpreted semanti-

cally as equal environments giving equal interpretations. For η �A Γ we define

Γ �A,η r : φ to mean: [[Γ ` r]](η) is a subper of [[Γ ` φ]](η) and Γ �A,η P to mean:

η � Γ ⇒ η ∈ [[Γ ` P]]. In particular, then, Γ �A,η r vφ r′ when R ⊆ Φ and

R′ ⊆ Φ; R; Φ, where R = [[Γ ` r]]A(η), R′ = [[Γ ` r′]]A(η), and Φ = [[Γ ` φ]]A(η).

We will see below that this ‘asymmetric’ meaning of refinement has a more sym-

metric formulation.

For judgement Γ ` J , we write Γ �A J when Γ �A,η J for all η �A Γ.

Definition 5.6.4 Let 〈Sg, Ax〉 be a λv-axiom system, and let A be a λv-Henkin

interpretation of signature Sg. We say that A is a model of 〈Sg, Ax〉 when

• for each well-formed axiom Γ ` P , for all η ∈ [[Γ]]A, η ∈ [[Γ ` P]]A. We

write this as Γ �A P .

181

b [[Γ, x : φ, Γ′ ` x]]〈η, a, η′〉 b′ ⇐⇒ b {a}[[Γ`φ]](η) b′

[[Γ ` r1]] = m1 · · · [[Γ ` rn]] = mn

b [[Γ ` k(r1, . . . , rn)]](η) b′ ⇐⇒ ∃ai mi(η) a′i . b = kA(a1, . . . , an) and
b′ = kA(a′1, . . . , a

′
n)

b [[Γ ` ∗]](η) b′ ⇐⇒ b, b′ ∈ A1

[[Γ ` r]] = m [[Γ ` r′]] = m′

b [[Γ ` 〈r, r′〉]](η) b′ ⇐⇒ Proj
σ,τ
1 (b) m(η) Projσ,τ

1 (b′) and
Proj

σ,τ
2 (b) m′(η) Projσ,τ

2 (b′)

[[Γ, x : φ ` r]] = m

f [[Γ ` λx : φ.r]](η) f ′ ⇐⇒ ∀a [[Γ ` φ]](η) a′ . App(f, a) m〈η, a〉 App(f ′, a′)

[[Γ ` φ]] = R

[[Γ ` ?φ]](η) = R(η)

[[Γ ` r]] = m

[[Γ ` π1(r)]](η) = {(Projσ,τ
1 (a), Projσ,τ

1 (a′)) | a m(η) a′}

[[Γ ` r]] = m

[[Γ ` π2(r)]](η) = {(Projσ,τ
2 (a), Projσ,τ

2 (a′)) | a m(η) a′}

[[Γ ` r]] = m [[Γ ` r′]] = m′

[[Γ ` rr′]](η) = {(App(f, a), App(f ′, a′)) | f m(η) f ′, a m′(η) a′}

[[Γ ` r]] = m [[Γ, x : φ ` r′]] = m′

b [[Γ ` let x : φ be r in r′]](η) b′ ⇐⇒ ∃a m(η) a′ . b m′〈η, a〉 b′

Figure 5.17: Interpretation of Refinement Terms

182

[[Γ ` ⊥]] = ∅
[[Γ ` P ⊃ P ′]] = {η � Γ | η /∈ [[Γ ` P]] or η ∈ [[Γ ` P ′]]}

[[Γ ` ∀x : φ.P]] = {η � Γ | ∀a ∈ [[Γ ` φ]](η) . 〈η, a〉 ∈ [[Γ, x : φ ` P]]}
[[Γ ` r1]] = R1 · · · [[Γ ` rn]] = Rn

[[Γ ` F (r1, . . . , rn)]] = {η � Γ | ∀ai ∈ Ri(η) . 〈a1, . . . , an〉 ⊆ FA}
[[Γ ` r]] = R [[Γ ` r′]] = R′ [[Γ ` φ]] = Φ

[[Γ ` r vφ r′]] = {η � Γ | R(η) ⊆ Φ(η) ∧ R′(η) ⊆ Φ(η); R(η); Φ(η)}
[[Γ ` φ]] = Φ [[Γ ` φ′]] = Φ′

[[Γ ` φ v φ′]] = {η � Γ | Φ(η) ⊇ Φ′(η)}

Figure 5.18: Interpretation of Propositions

• for each well-formed axiom Γ ` k : φ1, . . . , φn → ψ, for all η �A Γ, if

ai [[Γ ` φi]]
A(η) a′i (i = 1, n), then kA(a1, . . . , an) [[Γ ` ψ]]A(η) kA(a′1, . . . , a

′
n).

We write this as Γ �A k : φ1, . . . , φn → ψ

The meanings of the judgements may be equivalently expressed in terms of

equivalence classes. We will use cl and cl′ as metavariables for equivalence classes,

and by writing cl ∈ R, we mean that cl is a class of R, rather than a value.

Lemma 5.6.5

1. Γ �η r : φ when ∀cl ∈ [[Γ ` r]](η) . ∀x ∈ cl . ∀x′ ∈ cl . x [[Γ ` φ]](η) x′.

2. Γ �η r vφ r′ when Γ �η r : φ and

∀cl′ ∈ [[Γ ` r′]](η) . ∃cl ∈ [[Γ ` r]](η) . ∀x ∈ cl .∀x′ ∈ cl′ . x [[Γ ` φ]](η) x′.

Proof: We prove part (2). Suppose Γ �η r vφ r′. The literal reading is that

there is are inclusions of pers R′ ⊆ Φ; R; Φ and R ⊆ Φ, where R = [[Γ ` r]](η),

R′ = [[Γ ` r′]](η) and Φ = [[Γ ` φ]](η). Let cl′ ∈ R′. Then cl′ ∈ Φ; R; Φ. So for

every x′ ∈ cl′ there exists x1, x2 ∈ R such that x′ Φ x1 R x2 Φ x′. Let cl be the

set of such x1. Then we have cl Φ cl′.

Conversely, suppose ∀cl′ ∈ R′ . ∃cl ∈ R . cl Φ cl′. Let x′1 R′ x′2. Then

x′1, x
′
2 ∈ cl′ for some cl′ ∈ R′, and so there exists a cl ∈ R such that cl Φ cl′.

Choose any x ∈ cl. Then x′1 Φ x R x Φ x′2.

Lemma 5.6.6 For all determined terms t, the per [[Γ ` t]](η) is a singleton class.

Proof: Induction over preterms Γ ` t.

183

We can formalise a sense in which λv-interpretations generalise the semantics

of the two subcalculi. First observe that λ?- and λ(:)-axiom systems are also

λv-axiom systems. Now λ?- and λ(:)-Henkin interpretations also give rise to λv-

Henkin interpretations, and similarly for environments, though the interpretation

functions are different. Terms from λ? and λ(:) are interpreted as sets, but terms in

λv are interpreted as pers. Now the λv-interpretation of terms from the subcalculi

is a special kind of per. In particular, types and terms from λ? are interpreted as

discrete pers. Terms from λ(:) (i.e. determined terms) are interpreted as indiscrete

pers. We will subscript interpretations with the calculus.

Define two mappings ι and κ from sets to pers. Let S be a set. Then we

define pers ιS and κS as:

x ιS y ⇐⇒ x, y ∈ S and x = y discrete per
x κS y ⇐⇒ x, y ∈ S indiscrete per

Proposition 5.6.7 Let r and τ be a well-formed term and type in λ?. Then:

• [[Γ ` r]]Aλv(η) = ι ([[Γ ` r : τ]]Aλ?
(η))

• [[Γ ` τ]]Aλv(η) = ι (τA)

Let t, φ and P be a pre-term, -refinement type and -proposition in λ(:). Then:

• [[Γ ` t]]Aλv(η) = κ ([[Γ ` t]]Aλ(:)
(η))

• [[Γ ` φ]]Aλv(η) = [[Γ ` φ]]Aλ(:)
(η)

• [[Γ ` P]]Aλv(η) = [[Γ ` P]]Aλ(:)
(η)

Proof: Induction over λ?- and λ(:)-expressions.

Proposition 5.6.8 The λv-calculus is a conservative extension of λ? and λ(:) in

the following (semantic) sense:

• Let 〈Sg, Ax〉 be a λ?-axiom system, and A a λ?-Henkin model of 〈Sg, Ax〉.
Let η �A Γ and suppose that r and r′ are terms of λ?. Then,

Γ �A,η
λv

r vτ r′ ⇐⇒ Γ �A,η
λ?

r vτ r′

• Let 〈Sg, Ax〉 be a λ(:)-axiom system, and A a λ(:)-Henkin model of 〈Sg, Ax〉.
Let η �A Γ and suppose that t and t′ are terms of λ(:). Then,

Γ �A,η
λv

t =φ t′ ⇐⇒ Γ �A,η
λ(:)

t =φ t′

184

Proof:

Γ �A,η
λv

r vτ r′ ⇐⇒ [[Γ ` r′]]Aλv(η) ⊆ [[Γ ` τ]]Aλv(η); [[Γ ` r]]Aλv(η); [[Γ ` τ]]Aλv(η)

⇐⇒ ι ([[Γ ` r′]]Aλ?
(η)) ⊆ ι (τA); ι ([[Γ ` r]]Aλ?

(η)); ι (τA)

⇐⇒ [[Γ ` r′ : τ]]Aλ?
(η) ⊆ [[Γ ` r : τ]]Aλ?

(η)

⇐⇒ Γ �A,η
λ?

r vτ r′

Γ �A,η
λv

t =φ t′ ⇐⇒ ∀cl ∈ [[Γ ` t]]Aλv(η) . ∃cl′ ∈ [[Γ ` t′]]Aλv(η) . cl [[Γ ` φ]]Aλv(η) cl′ ∧

∀cl′ ∈ [[Γ ` t′]]Aλv(η) . ∃cl ∈ [[Γ ` t]]Aλv(η) . cl [[Γ ` φ]]Aλv(η) cl′

⇐⇒ the class [[Γ ` t]]Aλv(η) [[Γ ` φ]]Aλv(η) the class [[Γ ` t′]]Aλv(η)

⇐⇒ κ ([[Γ ` t]]Aλ(:)
(η)) [[Γ ` φ]]Aλ(:)

(η) κ ([[Γ ` t′]]Aλ(:)
(η))

⇐⇒ ∀a ∈ [[Γ ` t]]Aλ(:)
(η).∀a′ ∈ [[Γ ` t′]]Aλ(:)

(η) . a [[Γ ` φ]]Aλ(:)
(η) a′

We will need the generalisations of some lemmas used in the soundness and

completeness proofs of the two subcalculi.

Lemma 5.6.9 (Substitution Lemma) If Γ �A,η ti : φi (i = 1, . . . , n), then

[[x1 : φ1, . . . , xn : φn ` U]]A 〈a1, . . . , an〉 = [[Γ ` U [ti/xi]]]
A(η)

where ai ∈ [[Γ ` ti]]
A(η) (so 〈a1, . . . , an〉 �A x1 : φ1, . . . , xn : φn).

Proof: Induction over x1 : φ1, . . . , xn : φn ` U .

Although this is written the same as the substitution lemma for λ(:) (Lemma

4.5.4), there it is stated using sets, whereas here we use pers. The analogues of

Lemmas 4.5.5 and 4.5.6 follow similarly.

Theorem 5.6.10 (Soundness) Let A be a Henkin Model of axiom system 〈Sg, Ax〉.
If 〈Sg, Ax〉 . Γ ` B (where B ranges over basic judgements) then Γ �A B. In

particular, if 〈Sg, Ax〉 . Γ ` φ wf then Γ �A φ wf, if 〈Sg, Ax〉 . Γ ` P wf then

Γ �A P wf, if 〈Sg, Ax〉 . Γ ` r : φ then Γ �A r : φ, and if 〈Sg, Ax〉 . Γ ` P then

Γ �A P .

Proof: Simultaneous induction over derivations of all judgements. We can sim-

plify the proof of soundness of r vφ r′ by observing that, for those rules which

are v, that [[r]] ⊇ [[r′]] ⇒ � r v r′. Hence, we need only show that R′ ⊆ R,

from which R′ ⊆ Φ; R; Φ follows. We work through some key cases (omitting the

proofs that R ⊆ Φ).

185

• (Variables) Suppose � Γ, x : φ, Γ′ wf. Let 〈η, a, η′〉 � Γ, x : φ, Γ′ and sup-

pose that b [[Γ, x : φ, Γ′]]〈η, a, η′〉 b′. Then, b {a}[[Γ`φ]](η) b′, so b [[Γ ` φ]](η) b′,

and b [[Γ, x : φ, Γ′ ` φ]]〈η, a, η′〉 b′.

• (Constants) Fix η � Γ. Let b [[Γ ` k(r)]](η) b′, so b = kA(a), b′ =

kA(a′) for some a [[Γ ` r]](η) a′. By the soundness of Γ ` r : φ we have

a [[Γ ` φ]](η) a′. Now Γ′ ⊆ Γ so suppose Γ ≡ Γ1, Γ
′, Γ2, η ≡ 〈η1, η

′, η2〉.
Then [[Γ ` φ]](η) = [[Γ′ ` φ]](η′), so a [[Γ′ ` φ]](η′) a′, and since A models

the axiom, kA(a) [[Γ′ ` ψ]](η′) kA(a′). Hence b [[Γ ` φ]](η) b′.

• (Function Equations (β)) Suppose Γ, x : φ � t : ψ and Γ � t′ : φ.

Then b [[Γ ` (λx : φ.t)t′]](η) b′ iff there exists elements f, f ′, a, a′ such that

f [[Γ ` λx : φ.t]](η) f ′, a [[Γ ` t′]](η) a′ and b = App(f, a), b′ = App(f ′, a′).

This holds iff b [[Γ, x : φ ` t]](〈η, a〉) b′ for a ∈ [[Γ ` t]](η), iff

b [[Γ ` t[t′/x]]](η) b′ (substitution lemma).

• (Let Beta) Suppose η � Γ and b [[Γ ` let x : φ be t in r]](η) b′. This

is the same as b [[Γ, x : φ ` r]]〈η, a〉 b′ for some a ∈ [[Γ ` t′]](η). By the

Substitution Lemma, this is the same as b [[Γ ` r[t/x]]](η) b′.

• Let Term Equalities:

– (Projections) Suppose b [[Γ ` let x : φ1 × φ2 be r in π1(x)]](η) b′.

This is when there exists a ∈ [[Γ ` r]](η) such that

b [[Γ, x : φ1 × φn ` π1(x)]]〈η, a〉 b′. Hence b [[Γ ` π1(r)]](η) b′.

– (Abstractions) This is similar to the proof in Chapter 3, but uses

the stronger factoring condition. For the sake of simplicity, we will

consider closed terms. We must show that

[[let z : Πx:φψ in λx : φ.t[zx/y]]] = [[λx : φ.(let y : ψ in t)]]

Now f ∈ [[let z : Πx:φψ in λx : φ.t[zx/y]]] when

∃a ∈ [[Πx:φψ]] . ∀b ∈ [[φ]] . fb ∈ [[z : Πx:φψ, x : φ ` t[zx/y]]]〈a, b〉 (5.1)

and f ∈ [[λx : φ.(let y : ψ in t)]] when

∀b ∈ [[φ]] . ∃ab ∈ [[x : φ ` ψ]](b) . fb ∈ [[x : φ, y : ψ ` t]]〈b, ab〉 (5.2)

We follow the same line of reasoning as in Chapter 3, p. 80, to prove

these two statements equivalent. The interesting direction is showing

186

that (5.2) implies (5.1). Define h : σA → (σ×τ)A as (b ∈ σA 7→ 〈b, ab〉)
and f ′ as [[λp : Σx:φψ ` t[π1p/x, π2p/y]]].

Then, since (5.2) says that f̄ = h; f̄ ′, by the logical factoring condition,

there exists g ∈ [[φ→ Σx:φψ]] such that ḡ; f̄ ′ = f̄ .

The remainder of the proof follows Chapter 3.

• (Logical Congruence) Suppose Γ � r vφ r′ and Γ � r : (x : φ)P .

Let η � Γ, and suppose b R′(η) b′. Then there exists b1, b2 such that

b Φ(η) b1 R(η) b2 Φ(η) b′. Now b1 R(η) b2 implies that

b1 [[Γ ` (x : φ)P]](η) b2, so Γ, x : φ �η,b1 P , and since b2 [[Γ ` φ]](η) b′,

we have Γ, x : φ �〈η,b′〉 P , and so b2 [[Γ ` (x : φ)P]](η) b′. Similarly,

b [[Γ ` (x : φ)P]](η) b1, and so b [[Γ ` (x : φ)P]](η) R(η) [[Γ ` (x : φ)P]](η) b′.

• Refinement Rules: The soundness of r vφ r′ (Figures 5.7, 5.8, 5.9 and 5.10)

follows the corresponding proofs in Chapter 3.

Since η [[Γ]] η′ implies [[Γ ` r]](η) = [[Γ ` r]](η′) we can give the semantics as

a mapping from [[Γ]] classes. Sometimes we write an environment as [[t]], meaning

any member of the class of [[t]].

In Chapter 4 we had the problem of formulating a completeness result, since

the interpretation of refinement types as pers did not correspond exactly to the

rules of the calculus as they currently stand.

There were two kinds of mismatch. On the one hand, a term could be ‘well-

formed’ in the semantics, by virtue of having a unique interpretation, yet not be

syntactically well-formed, an example being (λn : even.∗)3. The other problem

arose with higher-order terms, and was due to the calculus requiring arguments

to an abstraction to have the refinement type on the abstraction, but the model

just needing equality of arguments at that refinement type to give equal results.

For example, λf : nat→ nat . 3 has refinement type (even→ nat)→ nat in the

model but not in the calculus.

We got round this in Chapter 4 by defining a contextual equivalence 'φ on

terms such that if � t : φ then there was a t′ such that t′ 'φ t and t′ : φ. For the

above two examples, we have (λn : even.∗)3 '1 ∗ and λf : nat→ nat . 3 'even→nat

λf : even→ nat . 3.

Another possibility is to restrict the statement of completeness to avoid these

classes of terms, and this is what we do in this chapter. This has the virtue of

being simpler, and it also makes it easier to extend the completeness theorem

using suggestions in Chapter 6.

187

Suppose some judgement is true in all λv-models of the relevant axiom system.

In order to show that the judgement is provable we first assume that it is well-

formed, where well-formedness of the judgement Γ ` r : φ means that Γ ` φ wf

and Γ ` r wf, that is, Γ ` r : φ′ for some φ′. We then make the additional

assumption that the judgement is of rank less than or equal to 1, where the rank

is defined recursively for each syntactic category, the idea being to exclude any

higher-order refinement types. For example, Rank (nat × bool → nat) = 1,

Rank ((even→ nat)→ nat) = 2.

The completeness proof has the same pattern as in previous chapters. We

construct a term model from an appropriate notion of Henkin theory. As with

Definition 4.5.8 in the λ(:)-calculus, we regard theories as infinite contexts, rooted

on the left.

Definition 5.6.11 Let 〈Sg, Ax〉 be a λv-axiom system. A λv-Henkin theory

over 〈Sg, Ax〉 is a well-formed infinite context, Γ, closed under derivation from

〈Sg, Ax〉 such that:

• if ∃x : φ.P ∈ Γ then for some term Γ ` t : φ, P [t/x] ∈ Γ

• if (let x : φ in t vχ let y : ψ in t′) ∈ Γ, then there is a determined term

Γ ` f : ψ → φ, such that (∀y : ψ . t[fy/x] =χ t′) ∈ Γ

Theorem 5.6.12 (Completeness) Let 〈Sg, Ax〉 be a λv-axiom system. For

〈Sg, Ax〉 . Γ ` B wf and Rank (Γ ` B) ≤ 1, if Γ �A B for all λv-Henkin Models,

A, of 〈Sg, Ax〉, then 〈Sg, Ax〉 . Γ ` B. In particular, assuming rank < 1, for

〈Sg, Ax〉.Γ ` P wf, if Γ �A P for all models, A, of 〈Sg, Ax〉 then 〈Sg, Ax〉.Γ `
P , and for 〈Sg, Ax〉 . Γ ` φ wf and 〈Sg, Ax〉 . Γ ` r wf, if Γ �A r : φ for all

models, A, of 〈Sg, Ax〉 then 〈Sg, Ax〉 . Γ ` r : φ.

Proof: Let Γ be a consistent context. We sketch the construction of a model A
and environment η �A Γ below, and use this to derive completeness.

1. Construct a maximal consistent λv-Henkin theory Γ∞ such that

{P | Γ ` P} ⊆ Γ∞.

The construction follows that of Theorem 4.5.16.

2. Construct the term model from open terms. Define τA as the set of equiv-

alence classes of well-structured open terms of λ×→, {u | Γ∞,⊥ ` u :

φ ∧ Γ∞ ` φ : Ref (τ)} with respect to the same equivalence as for λ(:).

188

We construct a λv-Henkin interpretation A, by interpreting constant and

predicate symbols syntactically. Prove that A satisfies the factoring condi-

tion, and so is a well-defined interpretation.

3. For η′ �A Γ′ and Γ∞ ` B[η′/Γ′] wf, prove that Γ′ �A,η′ B ⇐⇒
Γ∞ ` B[η′/Γ′]. This uses the characterisation of expressions in the term

model given in Lemma 5.6.15 below.

4. A is a model of the axioms, by reasoning similar to the step on p. 130

5. For x1 : φ1, . . . , xn : φn the variables in Γ, we define the Γ-environment, η,

as 〈[x1], . . . , [xn]〉. We can show that η �A Γ. Thus, we have shown that an

arbitrary consistent context is satisfiable.

6. The final step is to show that if Γ �A B then Γ ` B. This is just as for λ(:).

Suppose Γ 0 P . Then Γ,¬P is consistent, so by the previous steps, there

is an environment, η, such that η �A Γ,¬P , so Γ 2A,η P , and Γ 2 P .

The situation for refinement typings can be reduced to that of propositions,

since Γ �A,η r : φ is equivalent to Γ �A,η r vφ r. The crucial point is that

the permissive well-formedness rule for refinements (Refinement) means

that r vφ r is well-formed even though r need not have refinement type φ.

Thus, Γ � r vφ r implies Γ ` r vφ r so, by Refinement Elimination,

Γ ` r : φ.

In order to prove step 3, we use some lemmas.

First we characterise the interpretation of refinement terms and types in the

term model, A. In the following, the semantic interpretation [[]] is to be under-

stood as being in A and Γ∞ is fixed. As discussed above, we make restrictions so

that the pers correspond to equality.

For the completeness of λ(:), we used an implicit definition of sat. Here we

will use an explicit definition.

Definition 5.6.13 For Γ∞ ` r, t wf, define t sat r to mean Γ∞ ` r v′ t.

Refinement types are interpreted as pers whose equivalence classes are in one-

to-one correspondence with determined terms.

Lemma 5.6.14

[u] [[Γ ` φ]](η) [u′] ⇐⇒ [u] [[Γ ` t]](η) [u′], for some Γ �η t : φ

189

Proof: Define a term Γ ` tφ by induction on φ for each Γ ` φ. Let t1 = ∗, tγ = u,

tΣx:φψ = 〈tφ, tψ[tφ/x]〉, tΠx:φψ = λx : φ.tψ, and t(x:φ)P = tφ.

We prove, by induction over φ, that [u] [[Γ ` φ]](η) [u′] iff [u] [[Γ ` tφ]](η) [u′] and

Γ �A,η tφ : φ. The interesting cases are γ and (x : φ)P . Clearly, we have

[u] [[Γ ` γ]](η) [u′] iff [u] [[Γ ` u]](η) [u′]. For the (x : φ)P case, if

[u] [[Γ ` (x : φ)P]](η) [u′] then [u] ∈ [[Γ, x : φ ` P]](η), so we deduce that

Γ �A,η tφ : (x : φ)P .

Lemma 5.6.15 With the rank restriction: Let η �A Γ.

1. [u] [[Γ ` φ]](η) [u′] ⇐⇒ Γ∞ ` u =φ[η/Γ] u′

2. For Γ ` r wf, [u] [[Γ ` r]](η) [u′] ⇐⇒ [u] [[t]] [u′] for some t sat r[η/Γ]

3. For Γ∞ ` P [η/Γ] wf, Γ �A,η P ⇐⇒ Γ∞ ` P [η/Γ]

Proof: Simultaneous induction over expressions. The inductive ordering is

P, P ′ < P ⊃ P ′

φ, P [t] < ∀x : φ.P

φ < r vφ r′

r < F (r)

φ, φ′ < φ v φ′

φ, ψ[t] < Σx:φψ

φ, ψ[t] < Πx:φψ

φ, P [t] < (x : φ)P

The proof for let x : φ be r in r′ uses Lemma 5.5.12 (1). We prove the cases for

propositions, writing U for U [η/Γ].

• The ⊥, P ⊃ P ′, ∀x : φ.P and φ v φ′ cases are proven as in Chapter 4.

• Γ �A,η F (r) means (using the inductive hypothesis on r): for all t, t sat r

implies Γ∞ ` F (t). Since Γ∞ ` F (r) wf, we must have Γ∞ ` r : φ for

some φ. We assume, without loss of generality, that F : Pred (τ) and r

has the canonical form let x : ψ in t′. We must show that Γ �A,η F (r) is

equivalent to Γ∞ ` F (r).

Suppose Γ �A,η F (r). If ∃x : ψ.> ∈ Γ∞ (ψ is inhabited) then t′[x] sat r, so

Γ∞, x : ψ ` F (t′). If ∃x : ψ.> /∈ Γ∞ then by maximality, ∀x : ψ.⊥ ∈ Γ∞

190

and by consistency, we also infer that Γ∞, x : ψ ` F (t′). Then, by Refine-

ment Type Introduction, Γ∞, x : ψ ` t′ : (y : φ)F (y), so by Let Terms

Γ∞ ` let x : ψ in t′ : (y : φ)F (y), and using subject refinement

Γ∞ ` r : (y : φ)F (y). Hence, using Predicates, Γ∞ ` F (r).

Conversely, if Γ∞ ` F (r) then, by Refinement Type Introduction,

Γ∞ ` r : (y : φ)F (y), so by the definition of sat and using subject re-

finement, if t sat r then Γ∞ ` t : (y : φ)F (y), and so Γ∞ ` F (t).

• Γ �A,η r vφ r′: We show that this is equivalent to r .φ r′ which, in turn, is

equivalent to Γ∞ ` r vφ r′.

Suppose Γ �A,η r vφ r′. By Lemma 5.6.5, for all t′ sat r′ there exists t sat r

such that t [[Γ ` φ]](η) t′ (where t and t′ are representatives of equivalence

classes). By the inductive hypotheses, and reasoning as in Chapter 4, p. 133,

we have Γ∞ ` t =φ t′. Now suppose Γ∞ ` r′ vφ t′′. By Corollary 5.5.6,

there exists a (determined) term t′ such that Γ∞ ` t =φ t′′ and t′ sat r′.

Then there exists a t such that t sat r and Γ∞ ` t =φ t′. By the definition

of v, we have Γ∞ ` r vφ t′′, and so Γ∞ ` r vφ t′′ =φ t =φ t′, and hence

Γ∞ ` r vφ t′. Thus, r .φ r′.

Conversely, suppose that r .φ r′ and t′ sat r′. Then Γ∞ ` r′ vφ t′ so

Γ∞ ` r vφ t′. By Corollary 5.5.6, there exists a t such that t sat r and

t =φ t′, so by Lemma 5.6.5, Γ �A,η r vφ r′.

Now, we show that r .φ r′ ⇐⇒ Γ∞ ` r vφ r′.

The reasoning is the same as the corresponding step in the completeness

proof for the λ?-calculus. We can assume, without loss of generality, that

the terms are in canonical form, and since r, r′ : φ by the assumption of

well-formedness, Lemma 5.5.7 gives canonical forms which are equal to the

terms at φ. Hence we have

let x : ψ1 in t1 .
Γ∞
φ

let y : ψ2 in t2

If ψ2 ∈ Γ∞ then, by Lemma 5.5.15, there exists a term Γ∞, y : ψ2 ` t : ψ1

such that Γ∞, y : ψ2 ` t1[t] =φ t2.

Now suppose ψ2 is not inhabited. Let t be any term in the type below

φ. Such a term exists because of the assumption that all types are in-

habited. Then we have, Γ∞, y : ψ2 ` ⊥, so Lemma 4.3.17 implies that

Γ∞, y : ψ2 ` t : φ. Similarly, Γ∞, y : ψ2 ` t1[t/x] =χ t2 wf, and

Γ∞, y : ψ2 ` t1[t/x] =χ t2.

191

Then, in the context Γ∞, the term let x : ψ1 in t1 refines (at φ) to

let y : ψ2 in (let x : ψ1 in t1), which refines to let y : ψ2 in t1[t[y]],

and this equals let y : ψ2 in t2[y].

Hence Γ∞ ` r vφ r′.

The characterisation of the interpretation of expressions in Lemma 5.6.15 is

specific to the term model. For example, in the term model, [[?nat→nat]] consists

of equivalence classes of terms of type nat → nat, but in the full set-theoretic

function hierarchy (Definition 3.4.3), the classes consist of arbitrary functions.

In Lemma 5.6.6, we showed that determined terms are interpreted as a single

equivalence class. We can give a simple characterisation of that class in the term

model.

Lemma 5.6.16 With the rank restriction:

[u1] [[Γ ` t]](η) [u2] ⇐⇒ u1 satΓ∞ t[η/Γ] and u2 satΓ∞ t[η/Γ]

Proof: Follows from Lemmas 5.6.14 and 5.6.15.

By Lemma 5.6.15, we see that in the term model, arbitrary refinement terms are

interpreted as pers consisting of classes of this form.

Corollary 5.6.17 With the rank restriction, if Γ ` r : φ, then:

Γ ` r : (x : φ)P iff for all determined t, if Γ ` r vφ t then Γ ` P [t/x]

Proof: Both statements have the same interpretation, so the result follows from

soundness and completeness.

Remark 5.6.18 The r : φ step in the proof of completeness suggests a gen-

eral strategy for proving that r : (x : φ)P . First express r in canonical form

as let y : ψ in t. Then prove that ∀y : ψ . P [t/x]. We know that if the refine-

ment typing is true then, by the completeness of the propositional fragment, this

proposition is provable. Hence, we conclude that let y : ψ in t : (x : φ)P and

so, by subject refinement, r : (x : φ)P .

5.7 Conclusion

In this chapter we presented the λv-calculus, a refinement calculus based on

the notions of refinement term and refinement type. In the next chapter we

discuss how this could give a basis for a more comprehensive theory of software

development.

192

Chapter 6

Conclusions and Further Work

6.1 Conclusions

In this thesis we constructed a canonical refinement calculus based on the lambda

calculus and classical first-order predicate logic, and studied its proof theory and

semantics. Let us summarise the main points of this formalisation:

programs — lambda terms

abstract programs — refinement terms

specifications — refinement types

Formalisation of Refinement

We gave a set-theoretic semantics based on Henkin models for which the

calculus was proven sound and complete. As far as we know, this is the first

proof of completeness of any refinement calculus.

A key feature of this approach was the construction of the refinement calculus

in a modular fashion, as the combination of two orthogonal extensions to the un-

derlying programming language (in this case, the simply-typed lambda calculus).

These subcalculi are interesting in their own right as they provide separate anal-

yses of structured specifications and non-logical decomposition. ‘Full’ refinement,

then, can be factored into logical equational reasoning and simple decomposition.

We used a two-level formalisation of specifications, consisting of an underlying

level of program types, and a more expressive level of program properties.

We now discuss how the issues raised in the introductory chapter have been

addressed.

We set ourselves the task of investigating the logic and semantics of refinement

193

calculi, and saw that it is possible to induce a refinement calculus from an exten-

sional program logic and the equational theory of a programming language (in

the canonical case of the simply-typed lambda calculus). We construct structured

specifications — refinement types — and have a notion of equality at a specifi-

cation. The syntactic category of refinement terms consists of combinations of

specifications and programs.

First-order logic and the simply-typed lambda calculus can be modelled using

Henkin interpretations, and given models of particular lambda theories and logics,

we can form a model of the corresponding refinement calculus.

The refinement calculus is completely characterised by the underlying theories

in the sense that it is complete (given certain restrictions) with respect to the

class of models induced from the models of the underlying theories. Moreover,

we can use the completeness theorems to deduce (under these restrictions) the

conservativity of refinement calculi over program logics and (equational theories

of) programming languages.

The refinement calculus can be thought of as being constructed from two

subcalculi — a calculus of refinement terms and a calculus of refinement types.

These calculi are useful in their own right. For example, we saw that terms

of the λ?-calculus can be evaluated in a program-like fashion. A factorisation

theorem justifies us in regarding the subcalculi as being orthogonal extensions to

the programming language and program logic.

The factorisation suggests an interesting possibility for the construction of a

modular refinement tool, in which checking program correctness is a combina-

tion of type checking and theorem proving. The modularity would come from

constructing a verifier, or ‘specification checker’, from an existing theorem prover

(which we can think of as an oracle) and a type checker, for a program logic and

programming language respectively. Then we would write a separate program to

handle simple refinement and combine the two to get the refinement tool.

Although this thesis has presented a simple calculus, we believe that we have

motivated the general methodology of inducing a refinement calculus from a pro-

gramming language together with some logic, rather than constructing a develop-

ment methodology from scratch. We believe that, from a theoretical standpoint,

this approach is more likely to be useful for formal methods. It seems rather naive

to expect programmers to treat “programming as a mathematical activity”, work-

ing directly in some refinement calculus. Indeed, this is a dangerous viewpoint

insofar as it leads to taking the mathematical formalisation as the primary ob-

ject of interest, thus distancing theory from actual programming practice. While

194

formalisation of the relevant concepts is indeed desirable, it is more realistic to

provide a theoretical underpinning for tool support. The intention here is not that

the calculus should actually be used directly, but that it serves as an underlying

theory.

We believe that factoring a complicated calculus into two subcalculi has proven

its worth as a research methodology. Many of the extensions suggested below

could also be first studied as extensions to each of the two subcalculi.

We believe that the principles outlined here are general enough to be applied

to structures other than those traditionally studied — data flow diagrams for

example. Since the logic is arbitrary (up to a point) we are not constrained by the

type theory. It would be an interesting line of research to see how type-theoretic

and semantic ideas could help there. The calculus could provide a foundation for

other specification based formalisms, and we will make some specific suggestions

below.

6.1.1 Refinement Terms

We would be interested to see how this calculus might be usefully combined

with work on logical frameworks [Pfe96]. The use of logical variables there is an

example of underdeterminism.

Although Lego has a richer type system than those studied here, a fragment of

it could be studied using λ? as a metalanguage. It would be interesting to use λ?

as a metalanguage for giving a semantics to Lego and to prove some metatheoretic

results.

That the concept of underdeterminism arises both in computing science and

in linguistics strengthens our belief that it is an important concept in the study

of general informatics.

We could annotate the types with simple properties, such as whether or not

an exception is raised at some point. This would be a useful intermediate stage

between the calculus of refinement terms and the full refinement calculus.

6.1.2 Refinement Types

A number of systems have intersection and union types. This can not always

be expressed in our system. For example, no refinement type corresponds to

even → even ∧ odd → odd. Hayashi’s [Hay94b] intersection and union are even

more powerful. It is not clear whether the degree of expressivity in this system

is particularly useful (but see the comments about quotients below).

195

The two-level nature of the calculus suggests the construction of a modular

tool in which checking program correctness is a combination of type checking and

theorem proving. The modularity would come from constructing a ‘specification

checker’ from an existing theorem prover and a type checker, for the program logic

and programming language respectively. Indeed, this is similar to what is done in

the interactive proof development systems, Nuprl and PVS, where type-checking

can generate proof obligations.

6.2 Technical Extensions and Conjectures

We make some suggestions for various technical extensions and results for the

calculi. The first two extensions, in particular, are aimed at tidying up the two

main loose ends in this work — the restrictions on completeness in Chapter 4 and

5, and the restrictions on dependent refinement types in Chapter 5.

The final ideas (11, 12 and 13) are suggestions for reformulations of the calculi.

1. We had to place restrictions on the statements of completeness for λ(:) and

λv due to the underlying mismatch between the refinement type φ→ ψ and

its per semantics. For example, we could not prove that λf : nat→ nat . f2

has refinement type (even → nat) → nat. The problem is that as the

rules stand, for the abstraction λx : φ′.t to have refinement type φ → ψ

we require φ′ v φ but, in this case, the refinement goes in the opposite

direction, nat → nat v even → nat. It is not sound, in general, to say

that λx : φ′.t : φ → ψ when φ v φ′ (and the other conditions). However,

the following rule does appear to be sound. Define dom φ to be the set of

terms with refinement type φ. Then,

Γ, x : φ′ ` t : ψ Γ ` φ′ v φ

Γ ` λx : φ.t : φ′ → ψ
(dom φ′ ⊆ dom φ)

The combination of φ′ v φ and dom φ′ ⊆ dom φ (i.e. x φ′ x⇒ x φ x) means

that dom φ′ = dom φ, and φ′ is a quotient of φ. The rule would let us prove

λf : nat→ nat . f2 : (even→ nat)→ nat

and may be enough to strengthen Theorems 4.5.16 and 5.6.12 (completeness

of λ(:) and λv) to unrestricted versions.

Similarly, this rule is sound, and may be admissible

φ′ a quotient of φ

?φ vφ′ φ
′

196

A provable consequence of the rule is ?nat→nat veven→nat ?even→nat.

The combination of quotienting and the subset type-like refinement types we

use might be interesting for specification. Many specification formalisms use

some form of quotienting and it would be interesting to see it arise naturally

here in order to get completeness.

2. In Chapter 5, we used nondependent refinement types to avoid the combi-

nation of underdetermined terms with refinement types. The same problem

arose in Chapter 3 at the level of terms and led us to introduce let-terms. We

could introduce a notion of let-types, therefore, where let x : φ be r in ψ

has the obvious meaning. The rule of introduction would be

Γ ` r : Πx:φψ Γ ` r′ : φ

Γ ` rr′ : let x : φ be r′ in ψ

We would have a special rule for stubs.

Γ ` r : φ Γ, x : φ ` ψ wf

Γ ` let x : φ be r in ?ψ = ?let x:φ be r in ψ

The refinement rules for let-types would be analogous to the equalities for

let-terms. To give these, it is convenient to extend the singleton type nota-

tion of Remark 4.3.9 to arbitrary refinement terms: we write {r}φ for the

refinement type (x : φ)r vφ x. For example:

let x : φ be t in ψ = ψ[t/x]

let x : φ be r in {x}φ = {r}φ

let z : Σx:φψ be r in {π1z}φ = {π1r}φ

3. It may be that any maximal first-order λ×→-Henkin theory is a first-order

λ?-Henkin theory. That is, the witness condition for refinements may follow

from the condition for existentials.

4. We conjecture that the λ? factoring condition is equivalent to the satisfac-

tion of a choice axiom (or skolemisation):

� ∀x : τ .∃y : σ.P ⊃ ∃f : τ → σ.∀x : τ .P [fx/y]

for all P .

197

5. We conjecture that the λ(:)-calculus is a conservative extension of Aspinall’s

λ≤{} calculus [Asp95].

6. If we define a notion of ‘strong’ well-formedness for λ(:) and λv, which

requires the appropriate refinement typings for equalities and predications

(i.e. t =φ t′ when t, t′ : φ), then it should be that for a strongly well-formed

P , if Γ � P then Γ ` P .

We should formulate the connection between the different restrictions for

completeness of λ(:) and λv.

7. In Remark 4.3.6 we suggested that axioms in λ(:) (and λv) could be given

in a particular form and this should be investigated further.

8. We conjecture that the Let Term Equality Abstractions in Chapter 5 is

equivalent to the typed form, and so we could avoid the meta-judgement in

the formal system.

9. A satisfactory account of the subrelations in Section 5.5 remains to be given.

For example, does Eta commute with the other rules in vs?

10. We have taken refinements (of both kinds) to be atomic propositions rather

than separate judgement classes. We conjecture that restricted calculi in

which the atomic propositions are equalities, and the refinements are sepa-

rate judgement classes would also be complete. If so, the full systems would

be conservative extensions.

This could be considered a more natural approach, as specification using

refinement itself is more complex than just using the underlying program

logic.

11. We conjecture that λ? and λv are complete for the alternative semantics of

Remark 3.4.12. This would let us avoid using the factoring conditions.

12. We could use the suggestive notation 〈r, (x : φ)r′〉 for let x : φ be r in 〈x, r′〉.
A dependent form of the refinement rule Pairs would be:

?Σx:φψ v 〈?φ, (x : φ)?ψ〉

13. There is some overlap between the refinement rules for terms and refinement

types. We could combine the two judgements into the form r : φ v r′ : φ′,

198

meaning r vφ r′ and φ v φ′. Some natural rules would be:

Γ ` φ v 1
Γ ` ?φ : φ v ∗ : 1

Γ ` χ v Πφψ

Γ ` ?χ : χ v λy : φ.?ψ : Πx:φψ

Using the notation introduced above we have:

Γ ` χ v Σx:φψ

Γ ` ?χ : χ v 〈?φ, (x : φ)?ψ〉 : Σx:φψ

The overlap is clear when giving the rules for let-types. We could have, for

example:

Γ, x : φ ` r : ψ Γ ` t : φ

Γ ` let x : φ be t in r : let x : φ be t in ψ = r[t/x] : ψ[t/x]

14. We could base the refinement calculus on primitive definitions of v and

=φ rather than vφ. This might be more natural, as we usually omit the

subscripted φ anyway.

6.3 Operational Semantics

As for the denotational semantics, we can give a modular operational semantics,

by first giving a semantics to the subcalculi. Here we will just outline how to

do this for the subcalculi. We restrict ourselves to the specific axiom systems of

booleans and naturals.

6.3.1 Refinement Terms

Because terms of the calculus are a mixture of specification and program, we do

not inherit a notion of reduction from the lambda-calculus, but we can give an

operational semantics based on satisfaction of terms and properties by canonical

terms.

The canonical terms are the closed terms of the form:

c ::= b | n | ∗ | 〈c, c′〉 | λx : σ.t

where t is an arbitrary determined term, b is one of the booleans true and false,

and n is a numeral. The operational semantics is given in Figures 6.1 to 6.4, and

consists of an evaluation relation on determined terms t ⇓ c, together with three

199

∗ ⇓ ∗ n ⇓ n b ⇓ b
t ⇓ c t′ ⇓ c′

〈t, t′〉 ⇓ 〈c, c′〉
λx : σ.t ⇓ λx : σ.t

t ⇓ 〈c, c′〉
π1(t) ⇓ c

t ⇓ 〈c, c′〉
π2(t) ⇓ c′

t ⇓ λx : σ.t′′ t′′[t′/x] ⇓ c

tt′ ⇓ c

t′[t/x] ⇓ c

let x : σ be t in t′ ⇓ c

Figure 6.1: Evaluation

mutually recursive relations: an extensional equality on canonical terms c =σ c′;

a satisfaction relation between canonical and underdetermined terms, c � r; and

the validity of propositions � P .

Since we want equality and refinement to be extensional for determined terms,

but not for arbitrary underdetermined terms we first define a typed extensional

equality on canonical terms, =σ, by induction on σ.

The second component of the operational semantics is a satisfaction relation,

c � r. For example, λx : σ.t � λx : σ.r when for all c : σ, for all d : σ, d � t[c]⇒
d � r[c]. In fact, since there is a unique canonical form equal to t[c], we could

have written t[c] � r[c], but we do not assume the uniqueness here.

Now we can define � r : σ as: for all c � r, c : σ. Next, for � r : σ, � r′ : σ,

we say define validity of refinement, � r vσ r′ as: for all c′ � r′, there exists c � r

such that c =σ c′.

Remark 6.3.1 We say that a λ?-axiom system is operationally complete if

whenever a refinement is operationally valid, then it is provable. An example of

a signature which is not operationally complete was given in Example 3.4.4. We

have � λn : nat.let y : nat in succ y v idpos, where idpos is the identity on

positive naturals λn : nat.cond(eq(n, 0), 1, n), but without any form of recursion

we cannot define a predecessor term and actually prove the refinement. It is

important in practice to ensure that we only use operationally complete signa-

tures, so as to avoid writing specifications which can not be implemented, yet are

intuitively implementable.

We saw that λ?-axiom systems are (denotationally) complete with respect to a

class of Henkin models with a factoring condition. It might be that operationally

200

• c � ∗ when c ≡ ∗

• c � 〈r1, r2〉 when c ≡ 〈c1, c2〉 and c1 � r1, c2 � r2

• c � λx : σ.r when c ≡ λx : σ.t, for all c′ : σ, t[c′] ⇓ d and d � r[c′]

• c � ?σ when c : σ

• c � π1(r) when there exists c′ such that 〈c, c′〉 � r

• c � π2(r) when there exists c′ such that 〈c′, c〉 � r

• c � r1r2 when there exists λx : σ.t � r1, c2 � r2, such that c � t[c2/x]

• c � let x : σ be r in r′ when there exists c′ � r such that c � r′[c′/x]

Figure 6.2: Satisfaction

∗ =1 ∗
〈c1, c2〉 =σ×τ 〈c′1, c′2〉 when c1 =σ c′1 and c2 =τ c′2

λx : σ.t =σ→τ λx : σ.t′ when for all c : σ, for all d : τ, d � t[c/x] iff d � t′[c/x]

Figure 6.3: Equality of Canonical Terms

• � ⊥ never

• � P ⊃ P ′ when 2 P or � P ′

• � ∀x : σ.P when for all c : σ, � P [c/x]

• � r vσ r′ when for all c′ � r′, there exists c � r such that c =σ c′.

Figure 6.4: Validity of Propositions

201

complete theories are complete for arbitrary Henkin models.

6.3.2 Refinement Types

We can also give an operational semantics to the λ(:)-calculus based on the sat-

isfaction of terms and properties by canonical terms. There are three mutually

recursive components to the operational semantics: an extensional equality on

canonical terms, c =φ c′; the satisfaction of underdetermined terms by canonical

terms, c � t; and the validity of propositions, � P .

We define extensional equality, c =φ c′, by induction on φ. Then the satis-

faction of refinement types by canonical terms, c � φ, can be defined as c =φ c.

Now we can define � t : φ as for all c � t, c � φ. Finally, we say that t =φ t′ is

operationally valid when for all c � t, and for all c′ � t′, c =φ c′.

6.4 Annotations

Program reasoning and manipulation often requires facts which are true at some

local program point. For example, if it is known that variable n must be within

certain bounds, then a programmer (or compiler) may be able to perform some

partial evaluation or optimisation.

Annotating program text with propositions was first suggested by Floyd [Flo67]

and is now used in many refinement calculi (e.g. [Bun97]) to facilitate reasoning

and to express local assumptions.

Extending the type system of λ×→ to refinement types gives a simple notion

of program annotation, where variables on abstractions are labelled with logical

information. Although we do not have explicit annotations in our calculus, we

can define certain forms. For r : φ, define

assertion r | (x : φ)P = ?(x:φ) rvφ x ∧ P

guard (x : φ)P → r = ?(x:φ) P ⊃ rvφ x

As we showed in Remark 4.3.22, we can also combine guards with the refinement

types. For example:

P → (x : φ)Q ≡ (x : (P → φ))P ⊃ Q

P → (φ→ ψ) ≡ (P → φ)→ (P → ψ)

Assertions could be treated similarly.

202

We could, however, consider a calculus with true annotations. One possibility

would be to extend the simply-typed lambda calculus with terms of the form

P → t and t |P where P is a proposition, and operational meanings

c � P → t when � P implies c � t

c � t |P when � P and c � t

Thus if 2 P , any c (of appropriate type) will satisfy P → t.

We could define a (meaning preserving?) translation ()◦ from a subset of λ(:)

to the annotation calculus, with

(λx : σ |P.t)◦ = λx : σ.P → t◦

An alternative formulation of the refinement calculus would be to take an-

notations as primitive. Then we could define ‘set-theoretic’ (as opposed to per-

theoretic) specifications as

?(x:τ)P = let x : τ in (x |P)

6.5 Search Calculi

The thesis of Pym [Pym90] presents a theory of proof search. One idea developed

there (and also in [PW90]) is to give a hierarchy of calculi each of which can be

regarded as the metatheory of the next and in which the search space for proofs

is increasingly constrained. This idea could be applied to the present work on

refinement.

Refinement is traditionally formulated as a generalised equality and, as pointed

out after Lemma 3.2.17, this is also the style of the λ?- and λv-calculi. The re-

finement of specification φ to program t, φ v t, is thought of as “t is less than φ in

the refinement ordering”. The calculi do not contain rules for directing a search.

Now we commented in Section 1.4 that we could consider a search-oriented (rather

than equational) refinement calculus. Then t is seen as a solution to the search

for a program to satisfy φ.

In Section 5.5 we defined a number of auxiliary relations. The relationship

between vφ and is interesting because it mirrors the difference between refine-

ment and search. Following [PW90], we could consider a hierarchy of subsystems

of the full equational refinement theory. For example:

203

Γ, x : σ ⇒ σ Γ⇒ 1

Γ⇒ σ Γ⇒ τ
Γ⇒ σ × τ

Γ, y : σ ⇒ τ
Γ⇒ σ → τ

Γ, x : τ, y : τ ′ ⇒ σ

Γ, z : τ × τ ′ ⇒ σ

Γ, x : τ ′ ⇒ σ

Γ, y : τ → τ ′, z : τ ⇒ σ

Figure 6.5: Type Inhabitation

1. Γ⇒ σ (type inhabitation)

2. Γ ` r t (coding)

3. Γ ` r vs t (simple refinement)

4. Γ ` r v t (nonlogical refinement)

We consider first the simple task of finding a program to inhabit a type.

Figure 6.5 presents backward oriented rules which may be used to automate such

a search. These rules can be viewed as reformulations of refinements of the form

Γ ` ?σ vσ t, where t could be read off the rules, or included as a labelled

deduction.

We can then consider rules for proving inhabitation of an arbitrary r. This

coding can be thought of as a ‘big step’ refinement. The rules for equality can be

omitted from vs as equality is orthogonal to refinement in the sense that if r v t,

then there exists t′ such that r vs t′, and t = t′.

This system can then be embedded in a more general system for proving

refinements of the form r v t, where instead of thinking of refinement as a search

for inhabitation of a specification, we think of it as a generalised equality. Indeed,

we could view the refinement calculus as being a means of representing stages in

the search for inhabitants of specifications, and so as a metatheory for a search

calculus.

We could also study the difference between equational and search-oriented re-

finement from a semantic viewpoint. Perhaps a search calculus could be modelled

using a possible worlds semantics.

204

6.6 Logical Variables

A related idea to the distinction between equational and search-oriented refine-

ment is presenting the refinement calculus in both natural deduction and sequent

calculus styles. We chose what is essentially a sequent calculus presentation of

natural deduction because it is better suited to proof search. However, as pointed

out in the previous section, the calculus is not search-oriented anyway. A natural

deduction style presentation would be clearer, though. Hence, it might be best to

give the equational theory in a natural deduction style, translate a search-oriented

calculus into the sequent calculus style, and then prove them equivalent. We could

present the refinement calculus in true sequent style using logical variables.

This would effectively be a unification of the two paradigms of refinement, in

the sense that any search theory gives rise to an associated equational theory, and

the rules of any equational theory can be restricted to a search-oriented subset.

6.7 Second Order: Data Refinement

An extension to the second order (polymorphic) lambda calculus offers hope of

combining program and data refinement in one formalism, as well as allowing

specification by observational equivalence.

The account of specifications in Chapter 4 which brings equality to the fore

should be especially useful in data refinement, where it is natural to consider

different equalities at the abstract and concrete types. Moreover, the combination

of refinement types and existential variables would be a natural way of augmenting

the work in [MP88] with equations.

It will be interesting to see how the calculi can be extended to the second order.

This should reduce the number of rules through the impredicative encodings of

unit and product (as well as sum). More importantly, the calculus would then be

able to express inductive types and iteration. We ought to get derived refinement

rules for data types like nat and list[X].

We can define abstract data types using existential types. The question of the

connection between this view of data refinement and that of the methodologists

(such as Back and Morgan) and the categorical studies of Hoare [Hoa87] and

Tennent et.al. [KOP+97] then arises. The use of parametric polymorphism might

throw some light on the use of relations in model-oriented data refinement.

205

6.8 Full Recursion

The introduction of nontermination (using say, Plotkin’s computational metalan-

guage) will raise particular issues. However, it should be possible to integrate

nontermination smoothly. Our modular approach should help in tackling this

problem.

Traditional type-theoretic approaches (such as [NPS90]) cannot handle non-

termination since all terms terminate. For example, naively adding full recursion

to the simply-typed lambda calculus results in inconsistency (see p. 112). How-

ever, λ(:) is ‘type-theoretic’ without maintaining a Curry-Howard isomorphism.

Many complications arise with nontermination when underdeterminism is

modelled as nondeterminism. This is most clearly seen from a semantic point

of view. Such models are based on powerdomains. However, simple sets (of

interpretations of determined terms, possibly nonterminating) would seem to suf-

fice here. This reflects the intuition that underdeterminism is something ‘above’

computation and does not ‘interact’ with it.

By contrast, the powerdomain approaches raise a myriad questions concerning

how exactly the ? and ⊥ interact. For example, some authors have made a

distinction between erratic, demonic and angelic nondeterminism, but it is not

clear that these notions transfer to underdeterminism.

As for extending λ(:) to nontermination, the distinction between partial and

total correctness then arises (and similarly for refinement in λv). Although we

could still model specifications with pers, we might possibly want to add some

condition such as downward closure. This does not contradict the comment above

that nontermination should not interact with underdeterminism because (presum-

ably) we would still model λv-terms as sets of equivalence classes.

Some other questions we might address are the interaction between refinement

types and recursion (e.g. whether we should have µx :φ.r : µx :φ.ψ[x]), and how

do we ensure progress during recursive refinement (i.e. avoiding refining to ⊥).

Recursion at the level of specifications is a separate issue. It is possible that work

on subtyping systems for recursive types would be useful there.

6.9 Program Transformation

To many people, “program refinement” and “program transformation” are syn-

onyms. While the basic idea of either can be generalised to include the other, it is

useful to draw a distinction between refinement of a logical specification into con-

crete code, and transformation of concrete program code into ‘better’ code. This

206

separation of concerns corresponds to the idea that a (particular) program devel-

opment calculus based on the simply-typed lambda calculus can be factored into

two orthogonal extensions to the lambda calculus, where program development

consists of two stages: developing functionally correct code which satisfies an ex-

tensional specification, and then the application of optimising transformations to

produce efficient code.

Reconciling these two approaches would address the common concern that an

emphasis on methodologies for developing structured programs can result in inef-

ficient code, while optimal programs tend to be hard to understand. Instead, both

approaches can be combined: programs can be constructed by refinement from a

specification, and then optimised using transformations. As the transformations,

and indeed the refinements, are recorded, it is possible to view a program at vari-

ous levels of abstraction, from non-optimal but clear code to logical specification.

Rather than just allow arbitrary, and possibly incorrect, transformations, we

could give a transformation calculus, where an applied theory consists of a par-

ticular intensional feature, such as time complexity, and a collection of atomic

transformations which respect this. The intensional feature is incorporated as an

extended type and transformation rules are generated from the atomic rules.

An interesting variety of intensional features could be incorporated into this

framework. For example, work on formalising program style could perhaps be

recast in this way.

The ability to express equality at a refinement type is useful in program

transformation. For example, we might want to transform a function of type

nat→ nat, with the prescription “maintain value on evens, and improve on odds

(in some way)”. We can express (part of) this by saying that the terms are equal

at the refinement type even→ nat.

6.10 Abstract Viewpoint

The semantics of refinement calculi could be extended to a more general cate-

gorical framework. Previous work has tended to characterise refinement in terms

of either inclusion of models, or of preservation of properties, from which proof

rules are then derived. We took the opposite approach by giving an explicit

axiomatisation of refinement in order to get a tractable syntactic definition.

Nevertheless, there is the question of an abstract characterisation in a general

semantic framework. For example, the factorisation of refinement in λv should

have some semantic counterpart. A significant motivation for carrying this out is

207

that a general notion of model offers some hope of making connections between

refinement and popular development methodologies.

Hermida [Her93] uses fibrations to model predicates over λ×→ (but not for

any more complicated type theories). He uses fibrations with indeterminates to

model parameterisation. Models of many calculi can be presented as fibrations.

For example, a dependently-typed calculus could be modelled by two fibrations

— one to handle the dependency and the other the logic. Underdeterminism

should be a separate feature on top of this set-up.

We should be able to characterise vφ semantically, using the specialisation

order for example, as in [Fio94]. Whether derived or assumed, there is a poset-

enriched structure where the ordering of morphisms corresponds to refinement.

More generally, we could envisage a 2-categorical structure, where the 2-cells

correspond to proof of refinement. The let congruence rules give a 2-categorical

structure. If we interpret Γ ` r vφ r′ as a 2-cell, α, from [[Γ ` r : φ]] to [[Γ ` r′ : φ]],

and β = [[Γ ` r′ vφ r′′]], γ = [[x : φ ` s v s′]], δ = [[x : φ ` s v s′′]], then we can

define γ ? α to be

[[Γ ` let x : φ be r in s v let x : φ be r′ in s′]]

Because of the congruence rules for let, this is a valid refinement. The inter-

change law, that (δ ? β) ◦ (γ ? α) = (δ ◦ γ) ? (β ◦α), then follows since both terms

correspond to the same refinement.

6.11 Aspects of the Software Life-cycle

Most theoretical work on formal methods has been on program verification and

development. However, the software life-cycle consists of many other activities,

and a comprehensive theory should include these. We make some suggestions for

how our work on refinement could be extended to some other related areas.

6.11.1 Prototyping

The calculus formalises partially developed programs as combinations of speci-

fication and code, and induces a logic for them from a logic on the underlying

programming language. Hence it is possible to reason about partially developed

programs as ‘first-class’ artifacts even though, in general, it is not possible to

evaluate arbitrary combinations of specification and program code. It is possible,

however, to give an operational semantics to the language so that terms can be

evaluated in certain situations as if they were programs.

208

This idea was the thinking behind the dynamic semantics of Extended ML

(section 5.4.1), so it would be interesting to investigate this simple notion of

prototyping further, and see what possibilities this offers for specification testing.

6.11.2 Maintenance

The problem of software maintenance is to modify legacy code which performs

some function, so that it performs some related function. This can be formulated

using the language of refinement. Given a program t which satisfies specification

φ, and another specification φ′, which bears some relationship to φ, the problem

is to construct a program which satisfies φ′.

By an appropriate formalisation of how φ′ relates to φ, it should be possible

to automatically construct a partially developed program, r, which is t with the

code that needs to be rewritten replaced by the appropriate specifications. More

ambitiously, it should be possible to reuse the refinement itself, so that part of

the refinement of φ to t can be used in constructing a refinement from φ′ to r.

This idea of extracting part of a term based on a specification is similar to

program slicing, and we could investigate connections with this view of mainte-

nance.

6.11.3 Reverse Engineering

The general idea of reverse engineering is to recover a high-level description from

an actual implementation. This is useful for both comprehension and mainte-

nance. Some researchers have considered the problem of reverse engineering a

program t to specification φ [War88]. This appears, at first sight anyway, to be

dual to the problem of refinement from φ to t so perhaps some formal connections

can be made.

209

Appendix A

Notation

Refinement Terms r

Determined Terms t

Total Terms u

Individual Variables x, y, z

Function Variables f, g, h

Boolean Variables b

Natural Number Variables n

Variable Contexts Γ

Propositional Contexts ∆

Propositions P, Q, R

Ground Types γ

Types σ, τ, υ

Refinement Types φ, ψ, χ

Pseudotypes κ

Basic Judgements B

Judgements J

Expressions U, V

Constant Symbols k

Predicate Symbols F

Henkin Interpretations, Models A, T
Sets A

Individuals a, b

Mappings m

Syntactic Environments g

Environments η

Relations R, Φ

Theories T

210

Bibliography

[AC96] David Aspinall and Adriana Compagnoni. Subtyping dependent

types. In Proceedings of the eleventh IEEE Symposium on Logic in

Computer Science, 1996.

[Asp95] David Aspinall. Subtyping with singleton types. In Proceedings of

Computer Science Logic ‘94, volume 933 of LNCS, 1995.

[Asp97] David Aspinall. Type Systems for Modular Programs and Specifica-

tions. PhD thesis, Department of Computer Science, University of

Edinburgh, 1997.

[Bac88] R. J. R Back. A calculus of refinements for program derivations. Acta

Informatica, 25:593–624, 1988.

[BB95] M. A. Bednarczyk and T. Borzyszkowski. Towards program develop-

ment, specification and verification with Isabelle. In Isabelle Users

Workshop, University of Cambridge, 1995.

[BM92] R. Burstall and J. McKinna. Deliverables: A categorical approach to

program development in type theory. In Mathematical Foundations

of Computer Science: 18th International Symposium, volume 711 of

Lecture Notes in Computer Science, pages 32–67, 1992. An earlier

version appeared as LFCS Technical Report ECS-LFCS-92-242.

[Bos95] J. Bos. Predicate logic unplugged. In Tenth Amsterdam Colloquium,

1995.

[Bun97] Alex Bunkenburg. Expression Refinement. PhD thesis, Department

of Computing Science, University of Glasgow, 1997.

[Bur92] G. L. Burn. A logical framework for program analysis. In J. Launch-

bury and P. Sansom, editors, Proceedings of the 1992 Glasgow Func-

tional Programming Workshop, pages 30–42. Springer-Verlag Work-

shops in Computer Science series, 6–8 July 1992.

211

[CDG96] Mario Coppo, Ferruccio Damiani, and Paola Giannini. Refinement

types for program analysis. In Static analysis: third International

Symposium, SAS ’96, volume 1145 of Lecture Notes in Computer

Science, pages 143–158. Springer-Verlag, 1996.

[Cro93] Roy L. Crole. Categories for Types. Cambridge Mathematical Text-

books. Cambridge University Press, 1993.

[Den97a] Ewen Denney. Refining Refinement Types. In Informal Proceedings

of Types Workshop on Subtyping, Inheritance and Modular Develop-

ment of Proofs, University of Durham, 1997.

[Den97b] Ewen Denney. Simply-typed Underdeterminism. In EU KIT/ IOS

International Workshop on Formal Models of Programming and their

Applications, Institute of Software, Beijing, 1997. To appear in spe-

cial issue of Journal of Computer Science and Technology.

[Den98] Ewen Denney. Refinement Types for Specification. In David Gries

and Willem-Paul de Roever, editors, IFIP Working Conference on

Programming Concepts and Methods (PROCOMET ’98), Shelter Is-

land, New York, USA, pages 148–166. Chapman and Hall, 1998.

[Dij76] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall Inter-

national, 1976.

[Fef85] Solomon Feferman. A theory of variable types. In Proceedings of the

Fifth Latin American Symposium on Mathematical Logic, volume 19

of Revista Colombiana de Matemáticas, 1985.

[Fio94] Marcelo Fiore. Axiomatic Domain Theory in Categories of Partial

Maps. PhD thesis, Department of Computer Science, University of

Edinburgh, 1994.

[Flo67] Robert W. Floyd. Assigning meanings to programs. In J. T. Schwarz,

editor, Proc. Symp. in Applied Mathematics, pages 19–32, 1967.

[FP91] Tim Freeman and Frank Pfenning. Refinement types for ML. In

Proceedings of the SIGPLAN’91 Symposium on Language Design and

Implementation, pages 268–277. ACM Press, 1991.

[Har79] David Harel. First-Order Dynamic Logic. Lecture Notes in Computer

Science. Springer-Verlag, 1979.

212

[Har80] David Harel. Proving the correctness of regular deterministic pro-

grams: A unifying survey using dynamic logic. Theoretical Computer

Science, 12:61–81, 1980.

[Hay94a] Susumu Hayashi. Logic of refinement types. In Types for Proofs and

programs, volume 806 of Lecture Notes in Computer Science. Springer

Verlag, 1994.

[Hay94b] Susumu Hayashi. Singleton, union, and intersection types for pro-

gram extraction. Information and Computation, 109:174–210, 1994.

[Her93] Claudio Hermida. Fibrations, Logical Predicates and Indeterminates.

PhD thesis, Department of Computer Science, University of Edin-

burgh, 1993.

[HJ95] Claudio Hermida and Bart Jacobs. Fibrations with indeterminates:

Contextual and functional completeness for polymorphic lambda cal-

culi. Mathematical Structures in Computer Science, 5(4), 1995.

[Hoa87] C. A. R. Hoare. Data refinement in a categorical setting. Unpublished

manuscript, 1987.

[Jen91] Thomas Jensen. Strictness analysis in logical form. In J. Hughes,

editor, Proceedings of the Conference on Functional Programming

and Computer Architecture, volume 523 of LNCS, pages 352–366,

1991.

[Jon90] Cliff B. Jones. Systematic Software Development using VDM. Pren-

tice Hall International, 1990.

[JS91] Geraint Jones and Mary Sheeran. Relations and refinement in circuit

design. In Carroll Morgan and Jim Woodcock, editors, 3rd Refine-

ment Workshop 1990, Springer Workshops in Computing, 1991.

[KOP+97] Y. Kinoshita, P. W. O’Hearn, A. J. Power, M. Takeyama, and R. D.

Tennent. An axiomatic approach to binary logical relations with

applications to data refinement. Lecture Notes in Computer Science,

1281, 1997.

[KST97] Stefan Kahrs, Donald Sannella, and Andrzej Tarlecki. The defini-

tion of Extended ML: A gentle introduction. Theoretical Computer

Science, 173:445–484, 1997.

213

[Lei69] A. C Leisenring. Mathematical Logic and Hilbert’s ε-Symbol. Univer-

sity Mathematical Series. MacDonald Technical and Scientific, 1969.

[LP92] Z. Luo and R. Pollack. LEGO Proof Development System: User’s

Manual. Technical Report ECS-LFCS-92-211, Department of Com-

puter Science, University of Edinburgh, 1992.

[Luo91] Z. Luo. Program specification and data refinement in type theory.

LFCS Technical Report ECS-LFCS-90-131, Department of Computer

Science, University of Edinburgh, 1991.

[Mar96] Per Martin-Löf. On the meanings of the logical constants and the

justifications of the logical laws. Nordic Journal of Philosophical

Logic, 1(1):11–60, 1996.

[McK92] James McKinna. Deliverables: A Categorical Approach to Program

Development in Type Theory. PhD thesis, Department of Computer

Science, University of Edinburgh, 1992.

[Mit96] J. Mitchell. Foundations for Programming Languages. Foundations

of Computing Series. MIT Press, 1996.

[MM91] J. C. Mitchell and E. Moggi. Kripke-style models for typed lambda

calculus. Annals of Pure and Applied Logic, 51:99–124, 1991. Pre-

liminary Version in Proc. IEEE Symposium on Logic in Computer

Science, 1987, pages 303-314.

[MMMS87] A. R. Meyer, J. C. Mitchell, E. Moggi, and R. Statman. Empty

types in polymorphic lambda calculus. In Proc. 14th ACM Sympo-

sium on Principles of Programming Languages, pages 253–262, 1987.

Reprinted with minor revisions in Logical Foundations of Functional

Programming, ed. G. Huet, Addison-Wesley (1990), pages 273-284.

[Mog91] E. Moggi. Notions of computation and monads. Information and

Computation, 1, 1991.

[Mor87] J. Morris. A theoretical basis for stepwise refinement and the pro-

gramming calculus. Science of Computer Programming, 9:287–306,

1987.

[Mor94] C. Morgan. Programming from Specifications. Prentice Hall, 1994.

214

[MP88] John C. Mitchell and Gordon D. Plotkin. Abstract types have ex-

istential type. ACM Transactions on Programming Languages and

Systems, 10(3):470–502, July 1988.

[NH92] T. S. Norvell and E. C. R. Hehner. Logical specifications for func-

tional programs. In Mathematics of Program Construction, volume

669 of Lecture Notes in Computer Science, 1992.

[Nie96] Flemming Nielson. Annotated type and effect systems. ACM Com-

puting Surveys, 28(2):344–345, June 1996.

[NN88] Hanne Nielson and Flemming Nielson. Automatic binding time ana-

lysis for a typed λ-calculus. In Proceedings of the Fifteenth Annual

ACM Symposium on Principles of Programming Languages, 1988.

[Nor88] Bengt Nordström. Terminating general recursion. Bit, 28:605–619,

1988.

[NPS90] B. Nordström, K. Petersson, and J. M. Smith. Programming in

Martin-Löf ’s Type Theory, volume 7 of Monographs on Computer

Science. Oxford University Press, 1990.

[Pfe93] Frank Pfenning. Refinement types for logical frameworks. In Herman

Geuvers, editor, Informal Proceedings of the Workshop on Types for

Proofs and Programs, pages 285–299, 1993.

[Pfe96] Frank Pfenning. The practice of logical frameworks. In Hélène Kirch-

ner, editor, Proceedings of the Colloquium on Trees in Algebra and

Programming, volume 1059 of Lecture Notes in Computer Science,

pages 119–134, 1996. Invited talk.

[Pit95] A. M. Pitts. Categorical logic. Technical Report 367, University of

Cambridge Computer Laboratory, May 1995. 94 pages.

[PW90] David Pym and Lincoln Wallen. Investigations into proof-search in a

system of first-order dependent function types. In Proceedings of the

10th International Conference on Automated Deduction, volume 449

of Lecture Notes in Artificial Intelligence, pages 236–250. Springer-

Verlag, 1990. Also University of Edinburgh LFCS Report ECS-LFCS-

90-111.

215

[Pym90] David Pym. Proofs, Search and Computation in General Logic. PhD

thesis, Department of Computer Science, University of Edinburgh,

1990.

[Ros39] B. Rosser. On the Consistency of Quine’s New Foundations for Math-

ematical Logic. Journal of Symbolic Logic, 4, 1939.

[San91] Donald Sannella. Formal program development in Extended ML for

the working programmer. In Proc. 3rd BCS/FACS Workshop on

Refinement, Workshops in Computing, pages 99–130. Springer, 1991.

[SE84] Elliot Soloway and Kate Ehrlich. Empirical studies of program-

ming knowledge. IEEE Transactions on Software Engineering, SE-

10(5):595–609, 1984.

[Spi92] J. M. Spivey. The Z Notation: A Reference Manual. Prentice Hall

International, 2nd edition, 1992.

[SS83] William L. Scherlis and Dana S. Scott. First steps towards inferential

programming. In R. E. A. Mason, editor, Information Processing 83:

Proceedings of the IFIP 9th World Computer Congress, 1983.

[SST92] Donald Sannella, Stefan Soko lowski, and Andrzej Tarlecki. Toward

formal development of programs from algebraic specifications: Pa-

rameterisation revisited. Acta Informatica, 29(8):689–736, 1992.

[ST87] Don Sannella and Andrzej Tarlecki. Toward formal development of

programs from algebraic specifications: implementations revisited.

In Proc. Joint Conf. on Theory and Practice of Software Develop-

ment, volume 249 of LNCS, pages 96–110. Springer, 1987. Extended

abstract.

[Tal90] Carolyn Talcott. A theory for program and data type specification.

Theoretical Computer Science, 1990. Disco90 special issue.

[vD94] Dirk van Dalen. Logic and Structure. Springer-Verlag, 1994.

[vL90] Jan van Leeuwen, editor. Handbook of Theoretical Computer Science,

volume B: Formal Models and Semantics. Elsevier: MIT Press, 1990.

[War88] Martin Ward. Transforming a program into a specification. Tech-

nical Report TR-88, Centre for Software Maintenance, University of

Durham, January 1988.

216

[War94] Nigel Ward. A Refinement Calculus for Nondeterministic Expres-

sions. PhD thesis, University of Queensland, 1994.

[Wir71] Niklaus Wirth. Program development by stepwise refinement. Com-

munications of the ACM, 14(4):221–227, 1971.

217

Index

abstract programs, 7

algebraic specification, 14, 27

annotations, 118, 202

axiom system

λ?-, 57

λ(:)-, 98

λv-, 139

λ×→-, 35

first-order λ?-, 84

first-order λ×→-, 44

bottom-up, 71

coding, 73, 176

coercion, 176

computational lambda calculus, 54

consistent, 128

correctness, 10, 12

data refinement, 21, 205

determined, 54, 138

environment model condition, 41

existential variables, 162

extensional, 12, 40, 92, 95

factoring condition, 76

full set-theoretic function hierarchy,

77

generation lemma, 168

Henkin interpretation

λ?-, 76

λ(:)-, 120

λv-, 180

λ×→-, 41

first-order λ×→-, 48

Henkin model

λ?-, 78

λ(:)-, 124

λv-, 181

λ×→-, 41

first-order λ×→-, 48

Henkin theory

λ(:)-, 126

λv-, 188

first-order λ?-, 85

first-order λ×→-, 49

maximal refinement type, 132

nondeterminism, 7, 54, 63, 70, 206

partiality, 158

power types, 97

problem reduction, 8

program analysis, 12

program logic, 12

pseudotypes, 116

quotient, 196

recursive refinement, 147, 206

refinement terms, 53

refinement types, 89

rough types, 117

satisfiable, 62, 128

218

search, 203

signature

λ?-, 53

λ(:)-, 94

λv-, 137

λ×→-, 33

constant, 33

first-order λ?-, 83

first-order λ×→-, 44

type, 32

singleton types, 106, 197

skeleton, 21

stub, 6

subset types, 162

syntactic environment, 34

total, 95

transformation, 21

underdetermined, 54

underdeterminism, 7, 52

well-structured, 117

wide-spectrum, 7, 21

219

