A Theory of Program Refinement

Ewen W.K.C. Denney

Doctor of Philosophy
University of Edinburgh
1998

Do mo pharantan

Abstract

We give a canonical program refinement calculus based on the lambda calculus
and classical first-order predicate logic, and study its proof theory and seman-
tics. The intention is to construct a metalanguage for refinement in which basic
principles of program development can be studied.

The idea is that it should be possible to induce a refinement calculus in a
generic manner from a programming language and a program logic. For con-
creteness, we adopt the simply-typed lambda calculus augmented with primitive
recursion as a paradigmatic typed functional programming language, and use
classical first-order logic as a simple program logic.

A key feature is the construction of the refinement calculus in a modular
fashion, as the combination of two orthogonal extensions to the underlying pro-
gramming language (in this case, the simply-typed lambda calculus).

The crucial observation is that a refinement calculus is given by extending a
programming language to allow indeterminate expressions (or ‘stubs’) involving
the construction ‘some program x such that P’. Factoring this into ‘some z ...’
and ‘... such that P’, we first study extensions to the lambda calculus providing
separate analyses of what we might call ‘true’ stubs, and structured specifications.
The questions we are concerned with in these calculi are how do stubs interact
with the programming language, and what is a suitable notion of structured
specification for program development.

The full refinement calculus is then constructed in a natural way as the com-
bination of these two subcalculi. The claim that the subcalculi are orthogonal
extensions to the lambda calculus is justified by a result that a refinement can
actually be factored into simpler judgements in the subcalculi, that is, into logical
reasoning and simple decomposition.

The semantics for the calculi are given using Henkin models with additional
structure. Both simply-typed lambda calculus and first-order logic are interpreted
using Henkin models themselves. The two subcalculi require some extra structure
and the full refinement calculus is modelled by Henkin models with a combination
of these extra requirements. There are soundness and completeness results for
each calculus, and by virtue of there being certain embeddings of models we
can infer that the refinement calculus is a conservative extension of both of the

subcalculi which, in turn, are conservative extensions of the lambda calculus.

Acknowledgements

Thanks to Gordon Plotkin and John Power for supervising this thesis and for
providing advice and encouragement. I hope their suffering over my writing has
not been in vain. Marcelo Fiori also supervised the early stages. Thanks also to
John for his famous chats.

I had useful conversations with Alex Bunkenburg, Joe Morris, Alvaro Moreira,
Masahito Hasegawa, Thomas Kleymann, David Aspinall, and Jitka Stiibrna.

This work was supported by an EPSRC studentship and, in the final year, by
a part-time research contract with Gordon Plotkin.

This thesis was examined by Don Sannella and Peter O’Hearn. Thanks to

them for all their helpful comments.

Thanks to Yukki and my parents for their support. g agus moran taing.

Declaration

I declare that this thesis was composed by myself and that the work contained

therein is my own, except where explicitly stated otherwise in the text.

(Bwen W.K.C. Denney)

Table of Contents

Chapter 1 Introduction

1.1

1.2
1.3

1.4
1.5
1.6

1.7
1.8

Refinement Methodology
1.1.1 Stepwise Development
1.1.2 Programming Knowledge
Program Logics and Specification
Calculi
1.3.1 Refinement Terms.
1.3.2 Refinement Types
1.3.3 Refinement Calculus
Other Methodologies
Choices
Related Work
1.6.1 Refinement Terms.
1.6.2 Refinement Types
1.6.3 Refinement Calculi
Summary of Thesis

Notation

Chapter 2 Preliminaries

2.1

2.2
2.3
24

Simply-typed Lambda Calculus
2.1.1 Syntax
2.1.2 N7-Axiom Systems
2.1.3 Booleans and Naturals
Models of Simply-typed Lambda Calculus
First-order Logic of Simply-typed Lambda Calculus
Models of First-order Logic

Chapter 3 Refinement Terms

3.1
3.2

Introduction
The Calculus,

10
12
14
15
17
18
19
22
23
23
25
27
28
30

32
32
32
35
35
39
44
48

Chapter 0 — 2

3.2.1 Syntax 53
3.22 Judgementso 55
3.2.3 Ae-Axiom Systems 55

3.3 Metatheory 73
34 Models 76
3.5 First-order Logic of Simply-typed Refinement 83
3.6 Conclusions 87
Chapter 4 Refinement Types 88
4.1 Introduction 88
4.2 Example 90
4.3 The Calculus 94
4.3.1 Syntax 94
4.3.2 Judgements 96
4.3.3 Ap-Axiom Systems 97
4.3.4 Rules of the Calculus 99
4.3.5 Booleans and Naturals 111
4.3.6 Metatheory 114

4.4 Division by 2 Revisited o000 119
4.5 Models 120
4.6 Conclusions 134
Chapter 5 Refinement Calculus 135
5.1 Introduction 135
5.2 The Calculus 137
5.2.1 Syntax 137
5.2.2 Judgementso 139
5.2.3 Ag-Axiom Systems 139
5.2.4 Rules of the Calculus 140

5.3 An Example of Refinement 154
54 Comparisons 159
54.1 Extended ML 159
54.2 Aspinall’'s Aaspe - - - o o oo 160
5.4.3 Type Theory 161
5.44 Legoo 162
5.4.5 Refinement Calculus of Back, Morgan and Morris 163

5.5 Metatheory 167
56 Models 177

Chapter 0 — 3

5.6.1 Discussion 178
5.6.2 Ag-Henkin Models 179

5.7 Conclusion 192
Chapter 6 Conclusions and Further Work 193
6.1 Conclusions 193
6.1.1 Refinement Terms. 195
6.1.2 Refinement Types 195

6.2 Technical Extensions and Conjectures 196
6.3 Operational Semantics L. 199
6.3.1 Refinement Terms. 199
6.3.2 Refinement Types 202

6.4 Annotations 202
6.5 Search Calculi o 203
6.6 Logical Variables oL 205
6.7 Second Order: Data Refinement 205
6.8 Full Recursion 206
6.9 Program Transformation 206
6.10 Abstract Viewpointo 207
6.11 Aspects of the Software Life-cycle 208
6.11.1 Prototyping 208
6.11.2 Maintenanceo 209
6.11.3 Reverse Engineering 209
Appendix A Notation 210

Bibliography 211

Chapter 1

Introduction

Program refinement is a programming methodology in which a formal description
of what a program should do — a specification — is gradually refined into an
executable program satisfying that specification.

This thesis is a study of program refinement for a simple idealised program-
ming and specification language. Although our analysis is theoretical, we give
motivation from practical considerations.

The kind of issues with which we are concerned are:

e What logical machinery and semantic principles are involved in program

refinement?

e Are there interesting fragments of refinement calculus which have practical

uses?

e Given a program logic, what is a suitable specification language based on

it for program refinement?

e Understanding the general relationship between a refinement calculus, a

programming language, and a program logic.

e How might the structure of a calculus inform the architecture of tools for

program development?

Although we pose these questions here in general terms, for concreteness we
use typed A-calculus as a paradigmatic functional programming language, and
classical first-order logic as a program logic. It is our hope that by making clear
how these choices affect our analysis, we will attain some degree of generality.
The significance of these decisions is discussed below.

In order to address these questions, we carry out a modular analysis of a simple

refinement calculus. We suggest that a refinement calculus can be understood as

4

a combination of two extensions to the underlying programming language — one
accounting for specifications, and the other for what we call ‘pure’ refinement.

Just as the lambda calculus can be used as a metalanguage for studying func-
tional programming languages, so the lambda calculus based refinement calculus
we develop could be used as a metalanguage for studying refinement in func-
tional programming languages. The interest in studying metalanguages is that
they provide a simple setting in which fundamental issues can be studied.

The purpose of this analysis then is not to justify or consider refinement as
a viable methodology, nor to develop an industrial strength refinement calculus!,
but to fully work out the theory of refinement in one limited area. Ultimately this
knowledge could help to delimit the boundary between manual and automated
program development and so be used in theorem provers.

Certainly, a theory of specification and programming is a necessary precursor
to having tools which support automatic or manual refinement and synthesis. We
will suggest later how the theory can inform the construction of a tool.

In this introduction we give an overview of the issues involved and how our
refinement calculus is built up. We start with a description of the refinement
methodology of program development in Section 1.1, then in Section 1.2 describe
the related notion of program verification in terms of a simple satisfaction relation
between programs and specifications, and the relevance of program logics for
refinement. Then we will see that there are essentially two themes in refinement
— structure on specifications, and internalisation of development — and this is
discussed in Section 1.3, where we give an overview of the calculi in this thesis.
In Section 1.4 we compare the particular form of refinement studied here with
other methodologies. In Section 1.5 we discuss the significance of the choices we
have made for programming language and program logic. Then in Sections 1.6

and 1.7 we describe related work and summarise the thesis.

1.1 Refinement Methodology

We now describe how program refinements are constructed, and consider what
features a calculus should have in order to formalise refinement. There are two
uses for refinement. First, it is a methodology for the construction of correct
programs. Second, refinement can form the basis of a framework in which pro-

gramming knowledge can be presented (as collections of refinements).

LA contradiction in terms, some would say!

1.1.1 Stepwise Development

When programmers write programs they often use a mixture of top-down and
bottom-up development. Central to the method of top-down development is the
idea of a stub. Suppose we are writing some program, the main body of which
needs to use a sorting function on lists. We prefer to get the structure of the
main body correct first before writing the sorting function, but in order to get
the program to compile, or even to type-check, we must at least declare the sorting

function, and give it a dummy body — a stub.
fun Sort 1 =nil;
Any use of the function elsewhere is now well-defined
1’ = Sort some_list;

Conceptually, however, this seems rather inelegant. Practically, although the
program will compile and will run, the programmer must always bear in mind
that this is not ‘true’ code. When testing the behaviour of the partially written
program this must be taken into account. One way of avoiding behaviour which
depends on dummy bodies would be to use some kind of error or exception mech-
anism as a stub. This is not entirely satisfactory, however, since it is possible
that the programmer might forget that various stubs are left throughout the pro-
gram. It would be better to have a language construct that allows true stubs to

be written. The sorting function would be written as
fun Sort 1 =74t 15st;

The idea is that 75, 15t stands for some unwritten code of type int 1ist. This
can then be type-checked and the system would give a warning message to the
effect that certain lines of code still remain to be implemented. We would like to
be able to compile and run such partially written programs. In general, this is not
possible since our program might just be one big stub. However, we would like an
understanding of programs with stubs which lets us do this whenever possible.
Now, this much is a true description of (part of) what programmers do in
practice. However, it is little more than a convenient notation for recording the
development of a program through a sequence of abstractions. The essence of
refinement lies in being able to use the full expressive power of a program logic.
Rather than just have a stub for ‘some program’ we use the logic to say ‘some
program such that P’. So whereas above we could do no more than just specify

the type of a program using 7., we now extend this to 7(,.;)p, meaning ‘some

6

program z such that P’, where proposition P can contain free variable z of type
7. For example, suppose we have defined predicates Sorted and Permutation in

first-order logic. We can then write

fun Sort 1 :?(l’:int 1ist) Sorted (I’) A Permutation(l,l’) 5

This should be thought of as a description of some program which takes a list
[and returns a list I’ such that [’ is sorted and a permutation of I, and not
as a nondeterministic function which returns all such I’. This contrast between
nondeterminism and, what we will refer to as underdeterminism, is of central
importance in this thesis and is discussed in more detail below.

We can think of these combinations of logical specifications with program
code as a kind of ‘abstract program’. Languages which combine program and
specification constructs in this way are called wide-spectrum languages.

Now, we proceed by doing a case analysis on the input. If the input is the nil
list then clearly we just return the nil list. If it is of the form z :: s then we must
decide how this is to be sorted. We can decompose the sortedness of a nonempty

list into the correct insertion of some element into a sorted list, since,
Sorted ({;) A Sorted (o) A l; <z A x<ly D Sorted (l; + (x::1ly))

Let us write Insertion (I, x,l’) for the proposition that the list I’ is the insertion

of x into list [, that is,
(3 :int list . Fly:intlist =L H L AL <z Az <L Al =L+ (x:1])
Using the above proposition, we can prove that

Sorted (I) A Insertion (I,z,l') D Sorted (I')

Using this idea, we replace the specification of sorting with this more constructive
form.

fun Sort 1 =

?(l/ :int list) [=nil D !/ =nil A
Jz :int.3Jzs: int list.l =z s D Jxs’ : int list.Sorted(xs’) APermutation(xs,zs’) AInsertion (zs’,x,l’)

Now, this specification has a recursive form. Assuming the existence of a refine-
ment rule which lets us replace a recursive specification with a recursion over a
specification, we aim to shift the recursion from specification to code. This is

more clearly explained by the example. Let us write Insert for the specification

(f :int list — int — int list) ¥/ : int list.Vx : int. Insertion ([, z, flx)

7

After introducing the recursion, the sorting specification is
fnl:int list = listrec (nil, ?1sert, 1)

This is a specification of insertion sort. Although this may seem rather a large
step, we will cover a similar example in more detail in Chapter 5.

Thus, we decompose the specification into the simpler specification of an in-
sertion function, and some code to carry out the recursion over the list.

The development so far can be represented as a process of refinement of a
piece of ‘unwritten code’ corresponding to the original specification, which we

summarise as

9%t = fnl:int list =
?(l/ :int list) [=nil D I/ =nil A
Jx :int.Jxs:int list . l=x 1 xs D
Jzs’ : int 1list.Sorted(xs’) A Permutation(zs,xs’) A Insertion (zs’,x,l’)

C fnl:int list = listrec (nil, ?1psert, 1)

This hierarchical separation of concerns illustrates the stepwise refinement method-
ology of program development. The idea is to gradually implement the specifi-
cation in stages. At each stage, we either simplify a specification, possibly by
decomposing it into a combination of subspecifications, or introduce some pro-
gram code. Thus refinement can be seen as consisting of two alternating phases.
On the one hand, logical specifications are replaced with something equivalent
or more specific, so that they are more amenable to implementation. On the
other, there are decomposition rules, where a specification is split into a number
of simpler specifications while introducing a program constructor.

Now, although refinement is an inherently top-down methodology, there is
also a bottom-up aspect. We sometimes want to use programs which have already
been written, from a library say. So-called problem reduction is when a program
is used to directly implement a specification. For example, we might have written
the insertion function before, or be able to take it from a library. We illustrate

this by simply assuming a free variable
ins :int list — int — int list

for which VI : int 1ist.Vz : int . Insertion (I, x,ins [x).

The final step in the refinement then is

ins : int list — int — int list
F Al:int list . listrec (nil, 7ipgers, 1) C Al : int list . listrec (nil,ins,1)

This is typical of the general form of programming problems. In practice, the

question we ask is given a library of component programs, how can we implement

8

a specification? Even if we start with an empty context, during decomposition of
a specification we will often construct subprograms which can be used elsewhere.

We can represent this formally by a global context of assumptions of the form
x : 7| P, meaning that program x has type 7 and that proposition P (which can
contain z) holds. For example, the insertion function is assumed as:
ins : int list — int — int list |

VIl :int list.Vz: int . Insertion (/,z,ins [x)
The final step in the refinement above follows from the following simple rule for
problem reduction:
r:7|PF?unp Ex

Two important characteristics of refinement are that it is stepwise and piece-
wise. By stepwise, we mean that the specification can be refined into a program
in a number of small steps, while piecewise means that a large specification can be
refined one piece at a time, in the knowledge that this leads to a valid refinement
of the whole specification. This means that the calculus should have rules so
that the refinement relation is transitive and compositional (with respect to the
program constructors). Moreover, the refinement rules should be syntax-directed
(as far as this is possible).

There are some other features we would like in a refinement calculus. If we
can place requirements on the output, it is convenient to also make assumptions
about the input. For example, the specification of a search function might assume
that the input list was sorted. This could be expressed with a notation like

fun Search 1 n where Sorted(l)
= ?(b:bool) b=true <= In(n,l) ;
We are allowed to use the fact that [is sorted when implementing the body.
However, (I : int list) Sorted (/) is not a type of the programming language
We must still produce a function which works for all arguments of type int list.
In particular, any implementation of this specification must produce a result for
unsorted lists. The point is, however, that for the purpose of implementing the
specification it does not matter what the result is for unsorted lists. In a sense,
we can regard two implementations ¢ and t' as being the same when they give the

same results for sorted lists. We can write this as

/
t —((l:int list) Sorted (I))—int—bool t

where we think of (I : int 1ist) Sorted (/) — int — bool as the specification of
functions from (/ : int list) Sorted () and int to bool, and of the equality as

being ‘at the specification’.

Now, the intention behind annotating stubs with logical properties is, of
course, that they will eventually be replaced with code satisfying that property.
The slogan of the refinement methodology is that it is correctness preserving —
programs will be automatically correct by construction. By requiring that each
refinement step preserve properties, the program eventually constructed in a chain
of refinement steps from a specification will be guaranteed to satisfy the original
specification. The proof of correctness has been carried out essentially as a side-
effect of the program’s construction. This is easier than verifying the completed
program independent of its construction.

However, if we start a refinement from a mixture of specification and code,
then what is a correct refinement? Indeed, what does it mean for the individual
rules to be correct? This is related to the question of how the specifications,
logic and refinement all relate to each other. It is often most natural to specify a
program using a mixture of logic and algorithm. We will discuss specifications in
more detail below.

Just as we want to be able to reason about programs, so we would like to be
able to reason about abstract programs. We can formalise all of this by defining a
notion of satisfaction of specifications by programs, and extending this to abstract
programs. As this is all carried out in a context of assumptions, the form of the

satisfaction judgement is
xysat (x:m)P,...,x, sat (v :7,)P, Frsat (z:7)P

Then to say that a refinement rule, I' - r C 7’| is correct means: for all specifica-
tions (z: 7)P,if T'Fr sat (z:7)P then ' F 7' sat (z: 7)P.

The notation for refinement is suggestive of the fact that refinement is an
inequality. This raises the question of the relationship it bears to the underlying
equality? of the programming language. In general, we will address questions of
conservativity of refinement calculi over program logics and the equational theory
of a programming language.

In addition we would like completeness of refinement with respect to the logic,
if at all possible: if T' i ¢ sat (x : 7)P then we should be able to obtain the
program by refinement: I' = 7.p C .

1.1.2 Programming Knowledge

Although some researchers have portrayed refinement as a framework for eventual

automated programming tools, this should not be seen as the sole selling point of

2That is, some notion of equivalence of programs.

10

the refinement methodology. There is no doubt that constructing a program by
refinement involves more work than just writing it directly. The point is that the
discipline this imposes offers a framework in which programming as a whole can
be more easily carried out. We feel that this aspect of refinement has not been
sufficiently emphasised in the literature.

Actual programming practice involves a sequence of decisions, in which the
programmer figures out how to solve some problem. In figuring out how to imple-
ment a specification, the programmer will use a number of insights in order to (in-
formally) justify these decisions. This sequence of decisions is usually discarded,
just leaving the final program. Such an approach is reasonable if the program is
only intended for consumption by computer. However, program comprehension is
necessary whenever a program is intended to be processed by humans. Moreover,
there are two activities for which it is essential — verification and maintenance.
The difficulty in understanding programs arises from the need to rediscover the
insights that the programmer used in writing the program in the first place, and
so it would be best if these were retained. Hence we are led to study a paradigm
of programming in which derivations are primary. Scherlis and Scott [SS83] dis-
cuss the need for a logic of programming, as distinct from a logic of programs. An
early advocate of refinement and its use for program comprehension was Wirth
[Wir71].

The idea of explaining a program by its refinement can, in principle, be ap-
plied to program optimisation. Although an executable program may consist
of optimised ‘spaghetti’, there will be a level of structured code above this in
the derivation. The relationship between the two is justified by some optimising
transformations.

The particular knowledge of some application domain can be collected in a
library of programs, each paired with its specification, prog sat spec. This can
be viewed as a refinement, spec C prog, but this does not give all the information
that might be useful to a programmer. It is more insightful to read such relation-
ships as a sequence of abstractions. Similarly, for teaching purposes, algorithms
and general programming principles can often be best explained as a refinement
through several levels of abstraction.

The knowledge of experienced programmers is essentially having solutions to
generic problems and how to apply them in particular situations. Empirical stud-
ies have shown that programming knowledge can be encapsulated as collections
of derivations [SE84].

To a certain extent, modern programming languages encourage programmers

11

to indicate levels of abstraction through the use of abstract data types and struc-
tured programming methods, but it is not always possible to express all the
structure in the program text. The refinement paradigm is applicable to all pro-

gramming languages and development methodologies.

1.2 Program Logics and Specification

The specification of a computer program is a formal description of the essential
properties it is to have. Correctness of a program means that it satisfies some
intended specification and verification is the task of establishing correctness. Ver-
ifying that a program satisfies a specification is, in some sense, dual to refining
specifications to programs.

Program properties can be expressed in a number of ways. We will first
consider logics in which the propositions refer to programs — program logics. The
term ‘program logic’ is often used specifically for the first-order dynamic logic of
Harel [Har79] (see the survey in [vL90] for example), but we use it more generally,
for any logic of programs (although we will only consider one ourselves). Harel
[Har80] gives a survey of different techniques for proving program correctness.

However, a basic distinction can be drawn between extensional and intensional
properties. Extensional (or functional) properties are those concerned with a
program’s input-output behaviour, that is, by viewing it as a black box. Formally,
we can say that they are the properties preserved under extensional equality
(which has a suitable inductive definition). Intensional properties, on the other
hand, depend on the structure of the program itself. Examples of such notions
include complexity, program style, and so on. Here we will be concerned with
extensional properties and say more about this later in Section 1.4.

Program analysis [Nie96] is the task of taking a program and finding which,
of a specific class of properties, it satisfies. These are typically computational in
nature, such as strictness properties, or binding times.

A specification, on the other hand, is generally of more complex properties.
For concreteness, let us use the classical first-order equational theory of simply-

typed A-calculus as a program logic. We will lay the basis of this in Chapter 2,

12

and give an outline here. The pre-expressions are:

Types To=1 |y | 7x7T | T—7T

Terms tuo=ax | k(ty,....tn) | = | &) | A7t | m(t) | t
Propositions P:=1 | PDOP | Ve:7.P | F(ti,...,t,) | t=;1
Variable contexts o= | T,o:7

Propositional contexts Az=() | AP

This is with respect to a collection of ground types 7, constants k, and primitive
predicates F' (extensional predicates such as Iszero and Even).

There are well-formedness judgements
'et:.r

I'-P wt

and a proof judgement
IAFP

meaning: for all values in the types of I'; if each proposition in A holds then P
holds.

Now, the next question is how to write specifications using the program logic.
The simplest choice is to write (z : 7)P, where z is allowed to be free in P, for
the specification of the property of the program z of type 7 such that P holds.

The satisfaction judgement can be formulated, then, as
ARt sat (x:7)P

meaning: for all values in the types of I, if each proposition in A holds then ¢
has type 7 and P[t/z] holds.

Now either we take this judgement as derived, and an abbreviation for
C'Et:7 and T;AF Plt/z]

or we can axiomatise it directly on the structure of P, and have this correspon-

dence as a theorem. For example, we would have rules like

[CAFtsat (x:7)P T';AbFtsat (v:7)P
ITAbtsat (z:7)PAP

This is really just an alternative presentation of the logic, so we do not consider

it when we give the satisfaction rules.

13

It is also possible to have rules on the structure of the terms, such as

ICAFtsat (x:7)P AR sat (y:)P
OyA R () sat (207 x 7')Plm(2) /x] A Pllma(2) /Y]

This is in the spirit of the refinement types which we introduce later as our notion
of specification.

In Chapter 2 we will give a set-theoretic semantics to the logic (making the
extensionality clear) and prove it sound and complete.

The real difference between a specification and a proposition of a program
logic, however, is that a specification possesses structure ‘in the large’ [|]. It
is important to structure specifications in order to handle the large scale and
complexity involved in real systems. Structure allows us to reason about speci-
fications in a compositional way and, in particular, to carry out component-wise
refinement.

We can distinguish two approaches to structuring specifications — algebraic
and type-theoretic. The distinction is best illustrated by considering how a
datatype would be specified. There is a signature of basic types and operations,
and axioms over this signature. The axioms are given using some base logic,
so specifications are constructed on top of this. This generates a theory for the
datatype consisting of all theorems provable from the axioms. In algebraic spec-
ification the generated theory is regarded as the specification, and structuring of
specifications takes place at the level of the theory. For example, we might take
the union of two theories.

This theory-level structuring should be contrasted with structuring the sig-
nature itself. In type theory, signatures with axioms can be given as existential
types, and then specifications are combined using the type-theoretic constructors.
For example, we can take the product of two specifications. The axioms are given
within the type theory itself.

In Section 1.3.2 below we will suggest a third approach which combines aspects

of both algebraic and type-theoretic specification.

1.3 Calculi

We observed in the discussion of refinement in Section 1.1 that the basic construct
in the calculus is some means of expressing “some z such that P”. We can
factor this into “some z” and “... such that P”, and study separate extensions

of *7 with each construct. We believe these extensions to be of independent

14

interest providing, respectively, analyses of ‘pure’ refinement and of structured
specifications.

Coming from another direction, we would expect refinement to subsume veri-
fication, and so should be able to extend the verification calculus of Section 1.2 in
some minimal way to get a refinement calculus. We can ask the question, given
a satisfaction system, what are the minimum additions needed to get a refine-
ment calculus? There are essentially two things which need to be added — a
notion of structured proof, so that structure can be transferred from the proof to
a program, and a means of internalising backwards search. These two additions

correspond to the extended calculi which we have mentioned:
e Structured proofs — refinement types

e Internalisation of backwards search — refinement terms.

1.3.1 Refinement Terms

So we first develop a simple equational theory of refinement based on a lambda cal-
culus with true stubs. Rather than wuse the ML-like notation of
fun Sort 1 = 754t 15, We will write the lambda term A\ : int 1ist.7i5¢ 15s¢. We
will call lambda terms with the possibility of such stubs, refinement terms, and
refer to this possibility of terms only being partially determined as underdetermin-
ism. We are careful to make a distinction between underdeterminism and nonde-
terminism, which we regard as a computational, as opposed to a specificational,
phenomenon. For example, we do not regard abstractions with underdetermined
body as being determined, which is what some authors are led to do, by viewing
terms as being nondeterministic. This difference is not just one of intuition —
different axioms are satisfied. Moreover, we could imagine nondeterminism and
underdeterminism arising together in a concurrent setting, for example. Then it
would be particularly important to maintain a distinction. We will elaborate on
these differences in Chapter 3.

Without logic, the calculus may seem too simple to be interesting but it is
worth studying for a number of reasons. The full refinement calculus is quite
complicated and the subcalculus can act as a stage towards understanding the
full system. As we will see, this is justified by virtue of the full calculus being a
conservative extension.

Secondly, by not having any logical annotations in the stubs, it is possible

to automatically check for well-formedness and, in fact, to evaluate terms in

15

some cases. The calculus could serve as a basis for a simple practical program
development system.

There are two forms of judgement in the calculus. Letting r range over re-
finement terms, we give judgements for typing z1:04,...,2,:0, F 7 : 7 and
refinement xy : 0q,...,2, : 0, & r C, 1". Refinement subsumes equality, which
can be defined as mutual refinement.

As for the lambda calculus, it would be possible to regard typing as a derived
judgement, with r : 7 meaning r T, 7’. However, it is clearer to keep the
judgements separate.

There are refinement rules for decomposition

?O'XT EO‘XT <?07 ?T>

and problem reduction
Fx:7H7,Crx

Intuitively, we think of programs either in terms of how they evaluate, or
as computing some mathematical value. We will think of abstract programs in
terms of how they can be implemented. An intuitive way to think of this is that
a term r corresponds to the set of realizers obtained by all possible ways of filling
in the stubs with program code. Refinement, then, is the subset relation. We
axiomatise refinement so that it is complete with respect to this semantics.

Based on this intuition, we can see that only determined terms can be sub-
stituted for variables, as substituting directly would duplicate underdeterminism.
For example, the term (An :nat.(n,n))?m.. should not be equal to (7n.t, 7nat)-
However, we do expect (An :nat.n)?p. = Tnas. For similar reasons to those of
the computational lambda calculus [Mog91], this leads us to introduce a ‘let’
construction, albeit with a different axiomatisation than there.

A direct motivation for introducing a let-construct comes from considering
the result of combining underdetermined terms. Suppose two programs are being
developed one of which depends on the other. Let the partially developed pro-
grams be ri[z] and ro where the free variable x is intended to be replaced by the
program, the current state of development of which is 5. If we want to consider
the system as a whole, so as to prove some property say, then we cannot just
substitute ro for x in r1. The combined system can be represented by the let
term

letx:7beryinnm

where 7 is the type of rs.

16

1.3.2 Refinement Types

We give a calculus in which we formalise the specification language and program
logic. This task can be phrased in general terms as addressing the question of
what is a suitable notion of specification for a programming language, where the
properties of interest can be expressed using some given program logic. If we
are just interested in input-output relations of programs then classical first-order
logic will suffice for program logic.

In Section 1.2, we used the program logic to give specifications directly, but
noted in Section 1.1.1 that (x : 0)P — (y : 7)Q is a useful abbreviation for com-
bining specifications. We will write II,.41 for the specification of those functions
which for all arguments x which satisfy ¢ return a result which satisfies ¢). This
formulation of specifications is useful for reasoning inductively.

The general idea is to use type constructors to combine specifications. Simi-
larly, we write X,.4% for the specification of pairs such that the left component x
satisfies ¢ and the right satisfies 1.

We also saw in Section 1.1.1 that it is natural to introduce a notion of equality
at a specification. This leads us to take specifications as primitive rather than
types.

This combination of the program logic with the type theory of the program-
ming language is a form of refinement types. The general idea of refinement types
is to have two levels — an underlying level of program types, and a more expres-
sive level of program properties, which are then treated like types. For us, this
more expressive level will be the specifications.

This provides an alternative to simply using a program logic, or to using a
type theory irrespective of any logic, and we discuss the advantages in Chapter 4.

This simple extension — replacing types by refinement types — affords a
considerable degree of conceptual simplicity. Satisfaction of specifications by
programs can then be formalised as a (refinement) typing judgement. Rather
than write ¢ sat ¢ we regard satisfaction as generalised typing and write ¢ : ¢.

The terms of the A-calculus are extended by allowing refinement types in
abstractions. This subsumes the idea of indicating assumptions on the input by
annotating the types in abstractions.

Contexts consist of variable assumptions of the form z : ¢. This means that
the (refinement) typing judgement formalises the satisfaction of specifications by
programs, under the assumption that some other programs satisfy specifications.

It is also convenient, though not essential, to also allow propositions as as-

sumptions in the context.

17

Finally, we need to define a notion of refinement on specifications, i.e. on
refinement types. This is the replacement of a specification by one more logically
specific (and not the replacement of stubs by code).

If we just use the program logic, then refinement of specifications is no more
than logical implication. With refinement types, however, we must define a refine-
ment judgement, ¢ C, ¢, which we give as a form of subtyping on specifications

over a type 7.

1.3.3 Refinement Calculus

We combine the calculi of stubs and specifications to get a logical refinement cal-
culus. The fundamental construct is the logical stub, 74, where ¢ is a refinement
type. Using logical stubs to combine specifications with code gives us a useful
means of specifying programs.

For example, using a refinement type Sorted_List, we can specify a search

function as

An na‘t‘?Hl;SOrted_List (b:bool)b=true <= In(1,n)

The rules of the refinement calculus are the natural generalisations from the
subcalculi. The satisfaction of specifications by programs is generalised to ab-
stract programs, with the idea that an abstract program has a property if every
program to which it could refine has that property. This lets us ask of partially
developed programs what properties they are guaranteed to have, when fully
written.

The refinement rules make use of the underlying logic, and just as we intro-
duced a notion of equality at a specification, so we have refinement at a specifica-
tion. We write r Ty r’ for the refinement of r to ’ at refinement type ¢, but often
omit the ¢ when not significant. In fact, the idea of the ¢ not being significant
can be made formal.

So in the refinement calculus there are two kinds of refinement, one inherited
from each subcalculus. This does reflect programming practice. A partially im-
plemented program, r consists of a mixture of logical specification and program
code. At any stage there are two options open: write some more code, replacing a
piece of specification with concrete program, or modify some specification, either
by replacing it with an equivalent specification, or with a more constrained one.

The connection between logic and refinement is given by the rule

I'FgC ¢
IE?7,C 7 (1.1)

18

a particular case of which is

Le:7=P DP
'+ ?(:)::T)P E ?(I:T)P/

and the rule
Fx:obrCyr’

LA gr G, g Av: ¢

For example, in the search function specified above, we can use the information
that [is sorted, expressed as the refinement typing [: Sorted_List, when refining
the body.

These are sufficient to derive all uses of the logic in refinement. For example,

refinement steps can generate proof obligations such as

?(Z:JXT)P[Z] L <?(:)::a')Q[z]> ?(y:T)R[y}>

when

Va : oy : 7.Q[z] A Rly] D P[(z,y)]

but this can be factored into an instance of (1.1) and decomposition.

To summarise then, we want a calculus where we can prove propositions, P,
where we can prove refinement typings, r : ¢, and where we have correctness
preserving refinement rules to prove refinements of the form, r Ty r/, which
generalise ordinary program equality. So we would like an extension of the simply-
typed lambda calculus, where the usual equivalences hold, and in addition, we
can express refinements.

We construct the refinement calculus in a modular fashion, as the combination
of these two calculi. We are justified in understanding the refinement calculus in
this way since it is a conservative extension of both of the subcalculi.

In Figure 1.1 we summarise the important judgements of the different calculi,
and indicate the connections between the calculi and their classes of models. The
upwards arrows are intended to indicate conservative extensions of calculi, and
‘inclusions’ of models, in the sense of there being a correspondence between the

meanings of judgements.

1.4 Other Methodologies

Refinement is just one of many methodologies for formal program development:
other approaches include program extraction and deliverables for example. The

idea in all of these is to start with a formal description of the behaviour of a

19

—— Judgements

— Refinement Types

— Refinement Terms

'Er:.r FEt:o
ThrC, o Phi=yt
o, ¢

— Refinement Calculus —

L'Er:¢
TErC. s r refinement terms ¢ refinement types
=9 t determined terms 7 types
I-opC ¢

— Inclusion of Calculi

Theories Models
reﬁnement Henkin mOdeIS
calculus with logical factoring
refinement Henkin models
types with per structure

Henkin models
with factoring

N

Henkin
Models

refinement
terms

N

simply-typed
A_Calculus
+ first-order logic

Figure 1.1: Overview of Calculi

20

program, usually expressed in some logical language, and construct a program
which meets that description.

The idea in program refinement is to construct the program in a stepwise
manner from the specification, and to have an explicit record of the stage of de-
velopment in a wide-spectrum language. An advantage of using a wide-spectrum
language is that it is often convenient to specify using a mixture of logic and
algorithm. Refinement is a formal program development methodology since each
refinement step preserves correctness, so the program is guaranteed to meet its
description.

It is possible to study refinement via an encoding in a type theory (assuming
that the programming language constructs can be suitably encoded — not nec-
essarily the case in the presence of recursion). Luo [Luo91] gives an encoding of
data refinement in the Extended Calculus of Constructions. An explicit calcu-
lus for refinement, however, has the advantage that it forces us to think directly
about the formalism and the semantics.

Now, a contrast can be drawn between program and data refinement. In data
refinement, a program written using an abstract data type, such as stacks, is
rewritten to use a more concrete data type, lists say. The abstract data type Stack
can be seen as a specification, and the implementation by lists, as a refinement of
the program. Program refinement on the other hand, starts with a specification of
a program, rather than a datatype. In this thesis we are concerned with program
refinement.

Some authors see data refinement as being the central concept in program
development. This is the basis of the VDM methodology [Jon90] for example.
However, we believe that any calculus for data refinement would have to incorpo-
rate program refinement anyway, as the stepwise development of a datatype must
include the stepwise development of its operations, that is, of programs, and so
program refinement seems a natural starting point.

A similar concept to what we have called abstract programs, also used in
program development, is that of program skeletons. These are templates of code
expressing useful algorithm schemes, such as divide-and-conquer. We can regard
refinement terms as a simple formalisation of skeletons, rather than taking them
to be some kind of meta-entity. We cannot in general express skeletons using
parameterisation, since parameters cannot range over code which can contain
local variables.

To many people, “program refinement” and “program transformation” are

synonyms. While the basic idea of either can be generalised to include the other,

21

it is useful to draw a distinction between refinement of a logical specification
into concrete code, and transformation of concrete program code into ‘better’
code. In this thesis then, our notion of refinement will not incorporate program
transformation.

The other key aspect of our approach to refinement is that we work within
an equational paradigm, viewing refinement as a kind of generalised (in)equality:
spec C prog. Although equality seems a natural thing to consider when studying
lambda calculi, a notion of program equivalence is not primary for reasoning about
programs in some languages. It is not so important, for example, in hardware
derivation. Nevertheless, we study refinement in this higher-order manner: given
two terms, prove one refines the other.

This is not the only possibility however. We could have a search-oriented
system where the user starts with the specification and directly refines it to a
program without explicitly indicating a refinement. This is the more likely to be
useful in practice but, curiously, the equational paradigm has received far more
attention from the refinement calculus community. A search-oriented system
might be a more natural formalism for work on program synthesis. We leave it
as conjecture, for the time being, that an equational refinement calculus is the

theory generated from a search calculus.

1.5 Choices

The use of A*™ involves two choices: a typed language and a functional language.
By providing an element of syntax-direction, types help in narrowing down the
number of refinement rules which can be applied at any stage. As explained
above, types can be used to structure specifications.

We choose to use a functional language, simply because the theory is better
understood. The lambda calculus is a paradigmatic functional language, and
comes in many ‘flavours’. As part of a longer term research plan, we can tackle the
problem of finding refinement calculi for complicated computational scenarios in
a modular way by first finding a refinement calculus for the simply-typed lambda
calculus, and then extending it in a suitable way.

We do not consider full recursion. This may seem like a significant omission,
but non-termination would be a significant addition to the calculus and require
various choices not central to the basic theory of refinement. Instead, we use
well-founded recursion which is sufficiently expressive to get interesting programs.

The reasoning involved in constructing fully recursive terminating programs is the

22

same as in constructing programs which use well-founded recursion.

We use classical first-order logic for our program logic. The intention is that
we should be able to choose an arbitrary logic, and the corresponding refinement
calculus would be induced by the general rules. However, it turns out that in
fact, we must choose an extensional logic. That is, a logic for which ¢ and ¢/
are extensionally equal whenever for all propositions P, P[t/z] <= P[t'/z].
The refinement calculus makes essential use of replacing ‘equals by (extensional)
equals’ which would not be possible if our specifications described intensional
properties of programs. Intuitionistic logic also has this property; all that matters
is that the atomic propositions are extensional. Classical first-order logic is an
example of a simple and expressive logic.

As for lambda calculi, extensional logics are better understood than more
intensional calculi, so it is more likely that connections can be made between this
and other work.

The approach we have taken here is to start with a programming language,
a specification language, an equational theory and a notion of satisfaction. It
is reasonable to understand the language through its equational theory when we
are only concerned with extensional properties. However, an alternative approach
would be to start with an operational semantics for the programming language,
and understand satisfaction operationally. For example, the equational theory
considered here could be generated from a call-by-name operational semantics.
The sort of question that might be addressed then would be to find the natural

refinement calculus corresponding to a call-by-value semantics, say.

1.6 Related Work

We group relevant work by way of comparison with the calculi of this thesis. We
describe related concepts to underdeterminism, work on structured specifications,

and some calculi of program development.

1.6.1 Refinement Terms

The study of indefinite descriptions — ‘some x such that P’ — goes right back
to the earliest work on modern logic (e.g. [Ros39]) but the idea there is that a
description ranges over semantic values. Hilbert and his collaborators intro-
duced the e-operator (see the monograph [Lei69]), as a formalisation of indefinite
descriptions, in order to provide an alternative formulation of mathematical logic.

The expression ex. P, meaning ‘some x such that P’, is always defined, and denotes

23

some unknown, but fixed, element which satisfies P, if one exists, and otherwise
denotes some arbitrary, but fixed, element.

The logic of e-expressions is modelled using some arbitrary, but fixed, choice
function which picks out a member of each nonempty set and returns anything
for the empty set. This means, then, that the value of [z F ey.T](n) is fixed,
for any given interpretation of terms, and does not depend on n. Thus, the ab-
straction Ax.ey. T denotes a constant function. Thus, the e-operator for indefinite
descriptions is essentially a localisation of global variables. Although descriptions
can appear embedded anywhere in a term, this is just like using global variables
since the denotation must be a value.

We might imagine that a similar technique could be used for our purposes as
the terms of our calculus can be thought of a kind of parameterised programs. The
simplest choice would be to just consider terms with a free variable in the global
context, representing a ‘hole’ to be filled in with program code. This will not work
however, since variable capture prevents the variable being replaced by programs
which contain local variables. Therefore we must embed underdeterminism locally
in the terms with the 7. construct. We will discuss this further in Chapter 3.

Hermida and Jacobs’ study of indeterminates in the lambda calculus [HJ95]
is essentially the same form of global indeterminacy and does not account for
substitution allowing variable capture.

Although much work has been published on refinement calculi, there seem
to be no fully axiomatised systems. Morgan [Mor94] describes the ‘classical’
refinement calculus, developed independently by Back, Morgan and Morris. This
is an imperative language extended with specification constructs. Their system
however, uses nondeterminism to express specification constructs. We believe this
to be a mistake, as nondeterminism is a computational phenomenon distinct from
our view of underdeterminism as a specificational phenomenon at a level above
the programming language. Moreover, we might want to consider a combination
of nondeterminism and underdeterminism, for example when developing a logic
program.

Proof development systems, such as Lego [LP92], allow users to interactively
construct a proof by refinement. Intermediate states in a proof development may
be modelled as underdetermined terms. The idea there of allowing existential
variables in terms is similar to our refinement terms. In a similar vein, so-called
logical variables have been used in artificial intelligence, and are essentially the
same concept.

We make a more extensive comparison with the refinement calculi of Back

24

et.al., and with Lego, in Section 5.4.

The concept of underdeterminism also arises in linguistics (with the name
‘underspecification’), where semantically ambiguous statements such as “every
student iS ?youn_phrase” are studied. Bos [Bos95] for example, considers a language

with metavariables for representing such statements.

1.6.2 Refinement Types

A number of authors have advocated program analysis using annotated type sys-
tems. An example in the ‘non-standard type system as program logic’ paradigm
is [NN88], a system for binding time analysis (and optimisation). Jensen [Jen91]
performs strictness analysis using intersection types and primitive types to indi-
cate termination. Burn [Bur92] considers a more general framework, with inter-
section and union types. Each of these systems axiomatises property deductions
using refinements ¢ C ¢'.

Pfenning, who introduced the term “refinement type”, gave a refinement type
system for expressing properties of mini-ML programs [FP91]. In another work
[Pfe93] he gave an extension to LF with (possibly intensional) properties such as
“in normal form” (a property of derivations), given as refinement types. He does
not allow refinement types in abstractions though. In both works, the idea is
that refinement types offer greater expressivity but carefully restricted to retain
desirable properties.

The paper of Coppo, Damiani and Giannini [CDG96] is quite similar to our
approach, using refinement types for dead code elimination. They also give a
semantics using pers.

There have been various approaches by type theorists to combining logic and
types. Feferman’s system of variable types [Fef85] extends A*~ with subset types,
though equality does not depend on the type. Refinement (of refinement types)
can be defined in the logic, but is not explicitly axiomatised. Talcott [Tal90] used
a similar form of refinement types (though the underlying theory is untyped),
based on Feferman’s work, in order to express local information for use in trans-
formations to introduce continuations. However, since she lacks a typed equality,
local assumptions cannot be discharged and conclusions take the form “t = ¢’ if
x satisfies ¢”, rather than Az.t =4_, Az.t’, say.

Other type-theoretic approaches include [Asp95, AC96], which differ from the
present work in being concerned with subtyping type families. Dependency there
is at the level of types themselves, whereas we only allow dependent structure

at the refinement type level. Aspinall’s [Asp95] dependent type theory, A<y, is

25

formally similar in that it has subtyping on dependent functions and products.
Dependency in A<yy comes from singleton types, which are a special case of subset
types. The purpose of Aspinall’s system is not to be a specification language,
however, but to give a type structure to specification building operations. His
system is based on subtyping rather than refinement types. We discuss Aspinall’s
thesis further in 5.4.2.

Hayashi’'s ATTT [Hay94b] is a rich type theory conservatively extending the
polymorphic lambda calculus with singleton, union and intersection types. It
is based on the refinement type philosophy, maintaining a distinction between
types and specified subsets in order to eliminate non-computational information
during program extraction. Refinement types are not allowed on abstractions.
Dependent function and product types can be defined from the nondependent
constructors [Hay94al, as well as subset types constructed using full second order
intuitionistic logic. The type theory can also internalise notions of realisability
and refinement.

As pointed out by Hayashi, schemas in the Z specification language [Spi92]
can be seen as refinement types. They comprise two parts — a typing declaration,
and a logical predicate given as a collection of axioms.

The deliverables approach [BM92, McK92| is to consider a program paired
with its proof of correctness. We are similarly motivated in wanting to structure
specifications using program types, but differ in taking proof existence as more
important than the proof itself — terms do not need a witness to satisfy a re-
finement type. In the conclusion to [McK92], McKinna suggests dropping the
requirement for proof existence and, moreover, that implementations should be
regarded as being equal up to some extensional equivalence. He proposes a def-
inition of specification which includes an explicit definition of per. Our calculus
could be regarded as an internal language for this notion.

The work of Luo [Luo91] presents an encoding of specifications and ‘speci-
fication morphisms’ (corresponding to our terms) in an expressive type theory.
Our work provides a more direct analysis of the concept of specification by giving
an explicit syntax and axiomatisation. The existential form of Martin-Lof’s type
theory with subset types in [NPS90] is similar, and indeed, our work on refine-
ment types could be regarded as providing an alternative interpretation of their
system.

The program refinement community has traditionally used unstructured spec-
ifications of the (z : 7)P form. For example, Morgan [Mor94] describes a refine-

ment calculus based on the use of propositions of first-order predicate logic.

26

1.6.3 Refinement Calculi

Although there have been many papers on refinement calculi, no authors in this
area seem to have presented explicit proof-theoretic axiomatisations of refinement,
or given a logic for reasoning about refinement terms. Laws are usually introduced
as needed. Proving properties of partially developed programs seems not to have
been considered before, except in the sense of regarding abstract programs as
specifications so that satisfying a property amounts to refinement.

The classical refinement calculus of Back, Morgan and Morris [Bac88, Mor94,
Mor87], based on Dijkstra’s Guarded Command Language [Dij76], is a calculus
for deriving imperative programs from specifications expressed in terms of pre-
and postconditions in first-order logic. They do not consider refinement on ex-
pressions. The Guarded Command Language is nondeterministic and, though not
a refinement calculus, seems to have influenced later refinement calculi in their
use of nondeterminism for specification.

Bunkenburg [Bun97] continued their approach for a functional language, re-
taining some imperative features using a state monad in the style of the compu-
tational lambda calculus. Norvell and Hehner [NH92] and Ward [War94] consider
functional languages based on the untyped lambda calculus.

All these authors have based their calculi on nondeterminism which, we will
see, has consequences for the axiomatisation of refinement.

In the presence of nontermination, this use of nondeterminism gives rise to a
choice between demonic and angelic nondeterminism, a choice arising from com-
putational considerations which we believe to be unnecessary. However, we do
not consider nontermination here. Most authors have considered total correct-
ness, which leads to the use of demonic nondeterminism. Ward also adds angelic
nondeterminism, though it is doubtful whether this brings any advantages when
not considering concurrency.

We mentioned the algebraic approach to specification in Section 1.2 above.
This is a program specification and development methodology [vL90] centred on
the use of abstract data types. An ADT is specified to be an algebra (in the sense
of universal algebra) with a given signature, which satisfies a collection of axioms.
Thus, a simple specification, (X, E'), consists of a signature, %, and a collection
of axioms, F, over that signature. There are various theory-level operators for
combining such specifications. In the simplest approach, programs are thought
of as total algebras, so there are various extensions to cope with partiality, errors
and so on.

There are two styles of semantics. On the one hand, a specification can be

27

viewed as an exact description of a program, so the semantics is defined as some
specific algebra (such as the initial or terminal algebra for this specification, with
respect to algebra homomorphisms). On the other hand, the specification can be
taken to be a description of the required properties of the program, but leaving
some possibilities open. In this ‘loose’ approach, the semantics of a specification
is taken to be the collection of all algebras which satisfy the specification, or
possibly some restriction on this (such as all reachable algebras).

The loose approach is appropriate for program development. Here, refinement
is thought of as “the implementation of one specification by another”, and is
defined formally as: SP’ is an implementation of SP if sig(SP') = sig(SP)
and mod(SP’") C mod(SP), that is, as model inclusion over the same signature.
This is a very general semantic definition of refinement. There are no axioms
for actually proving refinements, for example. More elaborate notions in terms
of ‘constructors’ and abstraction have been developed by Sannella and Tarlecki
[ST87].

Extended ML [San91, KST97| is a wide-spectrum language which extends (a
subset of) the functional programming language ML. Tt is similar to our calculus
in that there are essentially two specification features — a place holder, 7, and the
facility to incorporate logical axioms in signatures. See Section 5.4.1 for further
discussion.

Bednarczyk and Borzyszkowski [BB95] present a system of rules for finding
programs which inhabit specifications. Although they have partial terms repre-
senting intermediate steps in the search for inhabitation, they do not have an
explicit refinement relation. The Lego proof system [LP92] has a notion of re-
finement of proof state. If we regard refinement terms as being representations
of such a proof state, then Lego’s notion of refinement is like ours.

The relational calculus, Ruby [JS91], is essentially an untyped functional lan-
guage extended with inverses. It is the use of inverses which gives the language
specificational power. Nevertheless, specifications in Ruby are usually functions,

and refinement amounts to equational transformation.

1.7 Summary of Thesis

In Chapter 2 we make some preliminary definitions which will be used in the rest
of the thesis. We give the basic equational theory of the simply-typed lambda
calculus, and describe the applied theory of booleans and naturals. We give a first-

order logic theory over this, explaining how induction is formalised. The calculus

28

and logic can be given a semantics using Henkin models, a class of non-standard
set-theoretic models which we define. We prove soundness and completeness of
the equational and logical theories with respect to this class of models.

In Chapter 3 we give the calculus of refinement terms. We add 7, terms to the
simply-typed lambda calculus, as a formalisation of true stubs, getting a system
for the study of what we call simply-typed underdeterminism. The judgements of
the calculus are

'Er:7

FErCcC,. v

We show that terms can be expressed in a particular canonical form and use this
to derive some results about refinement. We then show that all refinements can
be given in a standard form in which replacement of stubs by code precedes all
equational reasoning.

The terms can be interpreted in Henkin models, with each type o being as-
cribed a set o4, and terms in context I' - 7 : ¢ interpreted, given the appropriate
notion of environment, as subsets of cA. We show that terms can be expressed in
a canonical form, and use this to prove completeness of the calculus with respect
to the class of models.

We study a first-order logical theory of refinement, where the atomic propo-
sitions are refinements, and give a semantics using Henkin models, for which the
logic is proven sound and complete. We infer that the logical theory is conserva-
tive over the equational theory.

In fact, since the first-order logic of equality in Chapter 2 is also complete
with respect to this class of models, we are able to show that every refinement is
equivalent to a proposition in first-order logic involving only equality.

In Chapter 4 we give the calculus of refinement types. This involves an analysis
of a suitable notion of specification for refinement, independently of considerations
of underdeterminism. We argue that it is natural to use (a syntax representing)
partial equivalence relations (pers) for specifications. Terms, then, denote equiv-
alence classes of pers. Refinement typing subsumes typing and formalises the
satisfaction of specifications by programs. There is a refinement relation on re-
finement types.

The judgements are

'Et:o¢

r=~pr

Tht=yt

29

I'FoC ¢

The calculus is interpreted using a per structure over the sets in a Henkin model.
We prove soundness and completeness with respect to such ‘Henkin pers’, which
lets us conclude that the system is a conservative extension of both the simply-
typed lambda calculus, and of first-order logic.

In Chapter 5 we present the combination of the two subcalculi, giving a refine-
ment calculus for the refinement of specifications in first-order logic into lambda

terms. The syntax of the full refinement calculus is

¢ u= 1| 7| Zagtp | Hagtp | (z:0)P

rou= x| k(ry,..om) | ox | () | Az | Ty | mi(r) | ma(r) |
rr’ | letx:¢berinr’

P = L | PDOP | Vo:¢.P | F(ri,...,rn) | 7Ty’

r .= (| Lx:¢p | TP

We show that the subcalculi can be embedded in the full refinement calculus
by defining relations between terms which generalise the nonlogical refinement
and logical equality of those systems. We show that logical refinement can be
factored into these two relations. We also extend the result from Chapter 3 on
standardisation of refinements to the full calculus.

Unlike the calculus of simple underdeterminism, refinement terms here can not
be interpreted as sets. Both refinement terms and refinement types are interpreted
as pers in Henkin Models, and we show how this generalises the semantics of the
subcalculi.

We prove soundness of the calculus, but have to be careful with how com-
pleteness is formulated. For a restricted class of terms, omitting any higher-order
features, we have completeness of the various judgements with respect to inter-
pretation in the class of models.

In Chapter 6 we make some conclusions and suggestions for future work,
suggesting how the simple notion of refinement described here could be extended
to other situations, and how refinement itself might be incorporated into a larger

theory of program development.

1.8 Notation

Following Martin-Lof [Mar96] we refer to the atomic statements of a theory as
basic judgements. These are either judgements of well-formedness or of truth.

The most general form of judgement is in hypothetico-general form, that is, under

30

the assumption of hypotheses and in a context of free variables. In this thesis
we will work in contexts consisting of a combination of variables and proposi-
tional assumptions. We will use I' as a metavariable for contexts, appropriate to
whichever calculus is under consideration. We write () = B for a judgement in
the empty context, or just B.

The metavariable conventions used throughout this thesis are listed in

Appendix A. The top-level grammar of the syntactic categories is

Expressions U x=17r|¢|P
Basic Judgements B == 7r:¢ | P | ¢: Ref (r) | P wf | I' wf
Judgements J = T'FB

31

Chapter 2

Preliminaries

In this chapter we give the theoretical basis on which we will build the refinement
calculus. We first describe the simply-typed lambda calculus with products and
explain how to formulate applied theories. We use a theory of booleans and
naturals with primitive recursion as a particular example. We define Henkin
interpretations and models, and use them to give a semantics to the lambda
calculus. We then describe first-order logic over the equational theory of the
simply-typed lambda calculus and show how it can also be modelled using Henkin

interpretations, for which we prove completeness theorems.

2.1 Simply-typed Lambda Calculus

We base the theory of refinement on an explicitly typed (Church style) formulation
of the simply-typed lambda calculus [Cro93, Mit96]. Here “simply-typed lambda
calculus” means with finite products and some axioms over a signature with
ground types v and constants k. The emphasis on axioms will be a feature of this

thesis.

2.1.1 Syntax

The terms of an applied lambda theory are with respect to some signature of

ground types and constant symbols.

Definition 2.1.1 A type signature consists of a collection of symbols, which we
call ground types. We define the simple types over a type signature, G, by the
grammar

To=1|~v | 7x7 | T>7T

where v € G.

32

For technical reasons, we will assume that all signatures in this thesis are count-
able, but will not bother to repeat this assumption.

In order to define the notion of constant over a type signature, we follow
Mitchell [Mit96] in making a distinction between types and sorts. To each prim-
itive constant we ascribe a sort — a metalevel construct which explains how to

form well-formed terms using the constant.

Definition 2.1.2 A sort over type signature, G, with arity n, is a list of n + 1
simple types over G. We write the sort [T, ..., T, T| using the functional notation

Tiy.woyTn — T (where n > 0).

Definition 2.1.3 Let G be a type signature. We define a constant signature, K,
over G, to be a collection of symbols — constants — each of which is ascribed a

sort over G.

Definition 2.1.4 A *7-signature Sg consists of a type signature, G, and a

constant signature, K, over G.

We write k : 7,...,7, — 7 € K to indicate that constant k£ in signature
Sg = (G,K) has sort 11,...,7, — 7. This does not mean that k itself is a well-
typed term, but that with n well-formed arguments of the correct types, t; : 7
up to t, : 7,, the term k(t1,...,t,) is well-formed with type 7. For example, the
conditional, if _ then _ else _, has sort bool,7,7 — 7, but is not itself a
well-formed term with type bool X 7 X 7 — 7.

Alternatively, we could have chosen to give all constants a functional type, but
the choice is not significant here. In practice, we will drop the brackets around the
arguments to constants and allow ourselves to use any form of mixfix notation.

Rather than write the sort of nullary constants as k :— 7, we will just write
k : 7. Since we will not consider any nullary constants of functional type, there

is no ambiguity with unary constants.
Definition 2.1.5 The preterms over signature Sg are given by the grammar
to=x | k(ty,....t) | = | (&) | M7t | m(t) | m(t) | ¢

For each type we assume a countably infinite number of variables drawn from
some set so, strictly speaking, the set of preterms is parameterised on both the
signature and the variables. We adopt the convention that in writing x : 7, the

variable x is drawn from the set of variables of type 7.

33

We will use v and k as metavariables for ground types and constant symbols
respectively. Henceforth, we will assume the existence of some signature when
writing £ and ~.

The contexts are constructed from types and variables via the grammar:
=) | To:7

We use the notation I', z : 7, " (with the obvious meaning) to construct contexts,
and assume that all the variables in a context are distinct. This assumption of
well-formedness is external to the system (or ‘logicistic’). In later calculi we will
give explicit rules for the well-formedness of contexts. The ordering of variables
is not actually important in the simply-typed lambda calculus, but is significant
in the extended calculi of later chapters.

The typing judgement I' F ¢ : 7 means “under assumption I', term ¢ has
type 7.” The typing rules of A*~ are standard [Cro93, Mit96] and we do not
repeat them here. All judgements are given in a context of variable typings,
X1 Tl T Tp. We write Sg> 1" F ¢ : 7 when the judgement I' - ¢ : 7
is derivable from signature Sg, but will drop the Sg > when it is clear which
signature is intended.

We will write F'V(t) for the set of free variables in preterm ¢, and use the
notation t[t'/x] to indicate the (capture avoiding) substitution of ¢’ for each free
occurrence of variable z in t. The simultaneous substitution of tuple g (or syn-
tactic environment) for the variables in context I' in ¢ is indicated similarly by
tlg/T]. We sometimes write ¢[z] to distinguish all the free occurrences of variable
x in t. This does not mean that x is the only free variable, nor that it actually
appears free in t. When writing t[z]|, we may use t[t'] to indicate the substitution
tit'/z].

We adopt the usual notational conventions of the lambda calculus to avoid
excessive bracketing: for example, Az : 7.tz means Az : 7.(tz). Round brackets
() will sometimes be used to increase readability. We will write = for syntactic
equivalence (that is, up to bracketing and a-equivalence), and contrast this with
= for the provable equality defined below.

The obvious extensions of these conventions hold for the other syntactic cat-

egories introduced later.

Remark 2.1.6 Weakening, permutation and substitution rules are derivable for
the typing judgement. This is not the case with the equality judgement, because

of the presence of axioms, so we will add rules for these in the next section.

34

2.1.2 X*7-Axiom Systems

We give extralogical axioms (on top of the logical axioms of the basic theory) with
respect to a particular signature. It is common in the literature to not distinguish
between a collection of axioms and the theory they generate, but we will do so

here.

Definition 2.1.7 A * 7 -axiom system consists of a * 7~ -signature, Sg, and a
collection, Ax, of equations in context, I' = t =, t/, well-typed with respect to
Sg, that is, SgrT'Ft:7 and SgoT 1t : 7.

The theorems of *~ are generated using rules of two kinds — rules for the
pure theory of A-calculus, and rules for inferring theorems from these and the
axiom system.

In Figures 2.1 and 2.2 we give the rules for the pure theory of the A-calculus,
and in Figure 2.3 we give the additional rules necessary for inferring theorems from
an arbitrary axiom system. It is possible to give a stronger rule of Substitution
(Figure 2.3) which would let us derive the congruence rules, but we prefer to give

them explicitly thus establishing the pattern for later calculi.

Definition 2.1.8 Let (Sg, Az) be a *~ -aziom system. We define the theorems
of (Sg, Ax) to be the equations which can be inferred using the rules of Figures 2.1,
2.2 and 2.3. We write (Sg, Ax)>T Ft =, t' to indicate that equation I' -t =, ¥

is a theorem of axiom system (Sg, Ax).

In general, we do not assume that all types are inhabited (by closed terms).
Recall here that the (complete) equational theory of the simply-typed lambda cal-
culus differs depending on whether or not empty types are allowed in the semantics
[MM91, MMMS87]. We will explicitly state the assumption of inhabitation when

necessary, such as when giving a completeness theorem.

2.1.3 Booleans and Naturals

We will use booleans and natural numbers as a running example of an axiom
system throughout the thesis. Although we do not consider more complex data
types, this could be regarded as a simple case study in how datatypes are treated

in refinement calculi. We add booleans and naturals as ground types:

~ :=Dbool | nat

35

—— Reflexivity

'Ht:1
'Ft=,1t
—— Symmetry
FHt=,t
't =t
—— Transitivity
F'tt=t THt=1t"
Fet=t"

Figure 2.1: Rules for Equational Reasoning

The constants are:
k=0 | succ | true | false | if _ then _ else _ | natrec

In this section we take some time to explain the meaning of the various constants.
We use b to signify either of the boolean truth values, and a for numerals. We
use b and n as metavariables for expressions of type bool and nat respectively.

In fact, we have a family of recursion operators, natrec, and so on. Rather
than make this explicit or introduce polymorphism we just ignore this (unim-
portant) point. Similarly, there are separate conditionals for each type 7 but we
ignore this too.

We give the sortings and equations for booleans and naturals in Figures 2.5

and 2.4. There is a constant for primitive recursion.
natrec : 7, (nat — 7 — 7),nat — 7

Although we axiomatise constants equationally (as opposed to giving an op-
erational semantics), the idea is that natrec z s n computes a loop in which s is
applied n times to z, where s can also use the stage n. For example, a function to
add up the first n naturals is sum n = natrec 0 (Az : nat.\y : nat.add x y) n.
We will allow ourselves the abuse of language referring to loops and termination.

The primitive recursion natrec z s n will loop at most n times, so is guaran-

teed to ‘terminate’. This corresponds to for loops in imperative languages.

36

—— Function Equations

Dx:obt:7 T'Ht:0 (8)
C'E Az :ot)t =, t[t'/x]

F |—t 0 — T
TF e s o(ta) =gt EEVI) (n)

—— Product Equations

I'Eti:o0 ThHity:09 I'Eti:o0 ThHity:09
'~ 7r1<t1,t2> =5 0 '~ 7T2<t1,t2> =4, L2
I't:oxT
[(i (), ma(t)) =oxr t

—— Unit Equation

'—¢:1
'Ft=q1«

—— Congruence Equations

De:okt=;1
I'FXe:ot =, \x:ot

Fl_tlzr tllrl_tn:T tl
: 22 (kT ..
U E k(.. tn) = k(... 1,) (k:m,. 7 — 7 €K)

Tkt =gt Thty=,t) Tkt =,t, Thkty=,1,
T+ tity =, tht) T F (g, ts) =onr (t), 1))
Cht=gy, t Cht=,, t
'+ st (t) o T (t,) 'k 7T2(t) ==r Wg(t,)

Figure 2.2: Equality rules

37

—— Axioms
(Tt =1t e Ax)

CHt= ¢t
—— Weakening
N, Iyt =1
MN,z:o,Iyt=1t

—— Permutation

Flaxl $ 01, F27x2 : 02, F3 -t =T t

Fl,l‘g . O'Q,FQ,Il . 0'1,F3 Ft =r t/
—— Substitution

Cox:obty=1t Tkty:0o
'+ tl[tg/l’] =r tll[tg/l’]

Figure 2.3: Theorems Generated from an Axiom System (Sg, Ax)

—— Sortings
true : bool
false : bool
if _ then _else _:bool, 7,7 — T
— Axioms
x:7,y:T7hH if truethenzelsey =, x (Berue)
x:7,y:7Hif false thenx elsey =, ¥y (Btaise)
f :bool — 7,b:bool - f(b) =, if b then f(true) else f(false) (n)

Figure 2.4: Axiom System for Booleans

38

—— Sortings
0 : nat
succ : nat — nat

natrec : 7, (nat — 7 — 7),nat — 7

—— Axioms
z:0,5:nat — o — ok natreczs0=, z

z:0,8:nat — o — o,n :nat - natrec z s (succ n) =, sn (natrec z s n)

Figure 2.5: Axiom System for Naturals

Iteration is a special case of (primitive) recursion, in which the stage number
is not used.

natiter z s n = s"(2)

where s" is the n-th composite of s. Formally,
natiter = Az :7.\s:7 — 7.An:nat.natrec z (Aa: T Ax:T.sx)Nn

In the subsequent chapters we will explain how this treatment of constants is
extended to richer calculi, using naturals and booleans as examples.
There are two [-equalities for booleans, and one n-equality. From the n-
equality we can deduce
if bthentelset=,1

as well as the commuting conversion

f(if b thent else t’) = if b then f(t) else f(t')

2.2 Models of Simply-typed Lambda Calculus

We give interpretations of the calculus in Henkin models. These are a form
of ‘non-standard’ set-theoretic model for which simply-typed lambda calculi (in
particular, systems containing arithmetic) are complete. As is usual in concrete
models of applied lambda calculi, we must consider Henkin models in order to

get completeness.

39

We give a Church style semantics by interpreting typing derivations, and write
't : 7 as a linear shorthand for the derivation of that judgement. (In Chapters
4 and 5 we will interpret ‘pre-judgements’ rather than derivations.)

For a fixed *~-signature, we define Henkin interpretations in two stages.

Definition 2.2.1 Let Sg be a *-signature. A Sg-applicative structure (with
products) is a tuple of families indexed by the types generated by Sg:

({0}, {Proj ™}, {Projs 7}, {App” 7}, {k})

To each type o (not just ground types) we ascribe a set o, and to each constant

k:m,...,7 — T, afunctionk““:q-f“x...XTA

A — 74 There are projection and

application maps:
)A A

Proj]" : (o X 1) — 0o

Projs” : (o X T)A — A

o,T

)A A A

App?T i (0 = T) X0t =T

A Henkin interpretation is an applicative structure with two additional condi-
tions, namely, that it is extensional, and that it satisfies the environment model

condition.

Definition 2.2.2 An applicative structure with products
({o'}, {Proj77}, {Proj3 7}, {App™ 7}, {k})

15 extensional when

o 14 has exactly one element

o forall f.f' € (o0 — 7%, if hpp"~"(f,0) = App""(f',a) for all a € o,
then f = f'

o for all p,p' € (0 x 7)*, if Proj7"(p) = Proj{"(p') and Proj3’(p) =
Proj3’(p') then p = p/

Meanings are given in an environment. For contexts I' = x; :0q,...,2, : 0y
(n > 0), a T-environment in A is a tuple (ay,...,a,) such that a; € o7* for
t = 1,..,n. We will use n to range over environments, and use notation like

(n,a,n’) to form the obvious environment. We write 7 F4 T to indicate that 7
is a I'-environment in interpretation A, but will generally drop the A when it is

obvious which interpretation is intended.

40

Extensionality allows us to use implicit interpretations for abstractions, pairs
and the unit which are unique. However, this does not guarantee that there are
actually enough elements in the structure to interpret terms at all. The second
condition forces models to have enough elements, and is simply given by say-
ing that the interpretation exists. In Figure 2.6 we define the interpretation of
terms in an extensional applicative structure. There we write [[' F ¢ : 7]4(n)
for the meaning of the term-in-context I' - ¢ : 7 with environment 7 in Henkin
interpretation A, and again, usually drop the A. Strictly speaking, for an arbi-
trary applicative structure this only defines a partial meaning function. To give

a semantics, we must assume that it is, in fact, total.

Definition 2.2.3 An applicative structure satisfies the environment model con-

dition when the interpretation in Figure 2.6 in well-defined.

Definition 2.2.4 We say that an applicative structure is a *~-Henkin inter-

pretation when it is extensional and satisfies the environment model condition.

We do not have (o x 7)* = 04 x 74 in general, but we do have a bijection

A — o# and Projj’ :

mediated by the projection functions, Proj]” : (o x 7)
(0 x 7)* — 74, and the induced pairing map. In general, (¢ — 7)* is embedded
in, but not bijective with, o — 74. For a, € o4, ay € 74, we write (a,, as) for
the unique element a € (o x 7)* such that Proj{"(a) = a; and Proj;” (a) = as.

We write I' B4 ¢t =_ ' when [[" ¢ : 7]4(n) = [T F ¢ : 7]4(n), and write

I At =, ¢ when I EA" t =_ t' for every I'-environment, 7, in A.

Definition 2.2.5 Let A be a Henkin interpretation of *~ -signature Sg. We
say that A is a Henkin model of the axiom system (Sg, Ax) when for each aziom
FHt=,t inAx, TEAt =, 1.

Theorem 2.2.6 (Soundness) Let A be a Henkin model of axiom system (Sg, Ax).
If (Sg, Ax) Tt =t then T FA t =, t'.

Proof: The proof is by induction on the derivation of the judgement. |

As we remarked above, a complete axiomatisation of the lambda calculus
depends on whether or not nonemptiness of types is assumed. If types are allowed
to be empty then a form of case analysis on emptiness is require, either by having
a special rule (as in [MMMS87]) or by using a logic powerful enough to derive
this (as in the next section). Alternatively, a wider class of models could be used
[MMO91]. Here, we will just assume that all types are syntactically inhabited, that
is, there are closed terms at every type. In fact, for completeness, a slightly weaker

assumption would suffice, namely, that the system is closed under strengthening.

41

[Cz:0,T"Fa:o]{n,an)=a

[CEt:n]n)=ar - [Tty : 1)) =an
[CFE(ty,. ...t 7](n) = kA(ad, . .., an)

[T+ *:1](n) = the unique a in 14

[CHt:o](n)=a [H:7](n)=d
the unique p in (o x 7)* such that
Proj?"(p) = a and Proj5” (p) = d’

[CF(t,t):0xT1](n) =

[T, :0tt:7]{n,a) =m, for each a in o

the unique f in (¢ — 7)* such that

[TFEXe:ot:0—71](n) = v@eaA.App(f,CL):ma

[CEt:7x7](n)=p
[T+ mi(t) : 7](n) = Proji™ (p)

[CEt:7x7](n)=p
[T+ ma(t) : 7'](n) = Proj3™ (p)

[THt:oc—71)n)=f [CFt:0](n)=a
[T+ ¢t 7)(n) = App(f, a)

Figure 2.6: Interpretation of Terms of Simply-typed Lambda Calculus

42

Theorem 2.2.7 (Completeness of equational system) Let (Sg, Ax) be a *~-

axiom system for which all types are syntactically inhabited. If T EAt =, t' for
all Henkin models A of (Sg, Ax), then (Sg, Az)>T Ft =, 1.

Proof : We give a sketch of the proof. The idea is to construct a minimal term

model 7 for our signature of ground types, constants and equational assumptions

(with no empty types).

1.

Fix an infinite context [',, with an infinite number of variables at each type.
We use ', in judgements to mean some finite I" C 'y, so, for example,

e bt:7means IVt : 7 for some IV C I'..

Define 77 as the set of =, -equivalence classes of open terms of type 7. We
write [t] for the equivalence class of ¢, s0 77 = {[t] | Tso It : 7}. The set 77
is nonempty since we have variables at each type. The projection, applica-

tion and constant interpretation mappings are interpreted syntactically.

. We use the fact that I'y, contains an infinite number of variables at each

type to show that 7 is extensional. If App([t], a) = App([t'],a) forall a € o7,
then since = : o € 'y, we infer that I'y, - tx =, 'z, and so by Congruence
/

Equations and Function Equations (7)), we infer that I'o, -t =, ¢/,
i.e. [t] = [t']. The condition for products is straightforward.

. Prove that [[' -t : 7]7(n) = [t[n/T]], where t[n/T] has the obvious meaning.

Hence the environment model condition holds and 7 is a Henkin interpre-

tation.

. Now I' 7 t =, t means for all n 7 T, [l F t : 7]7(n) =

[T+ ¢ : 7]%(n), that is Ty + t[n/T] =, ¢[n/T] for all n, (more cor-
rectly, (Sg,Az) > T F t[n/T] =; t'[n/T]). Then f I' - t =, ¢’ € Az we
infer Ty + t[n/T] =, t'[n/T], so T E4, t =, ' for all n FZ T and the
interpretation 7 is a Henkin model of (Sg, Az).

. Finally, if ' - ¢t =, t/, is an arbitrary equation which is true in the term

model, then (for I' = x1 : 01, ..., 2, : 0,) setting n = ([x1], ..., [x,]) gives

' F t =, t’ which, because of inhabitation, implies I' - ¢ =, t'.

Hence, we conclude completeness: if an equation is true in all models, it is

true in the term model, and so it is provable.

43

2.3 First-order Logic of Simply-typed Lambda
Calculus

We follow the pattern of Section 2.1 and first define the notion of signature, and
then axioms over a signature. We now extend signatures with primitive predicate

symbols, sometimes called relation symbols.

Definition 2.3.1 A first-order A*~-signature consists of a A* 7~ -signature, and
a collection of predicate symbols, F', each of which has an arity n, and a sort,

given by a list of types, which we write as F': Pred (71,...,7,).

Definition 2.3.2 Let Sg = (G, K, F) be a first-order *~ -signature. The pre-

propositions over Sg are:
P:=_1| F(ty,...,t,) | P>P | Ve:7.P | t=,1
where F' € F, and T and t are types and preterms over (G, K) respectively.

The atomic propositions are equalities and predications. The other constructors
are sufficient to define T, A, V, 3 and —.

We need a well-formedness judgement
Sg>T'F P wf

but omit the rules here. In particular, the proposition t =, t’ is well-formed when
t and ¢ have type 7 and, for ' : Pred (7y,...,7,), the predication F'(ty,...,t,)

is well-formed when t; : 7; for each i. For A a list of propositions, we write
SgeT' A wf

when for each P in A, SgT'+ P wf.

Definition 2.3.3 A first-order A*~-axiom system consists of a first-order * -
signature, Sg, and a collection, Ax, of closed propositions, well-formed in Sg,
that is, Sg> () - P wf.

We take axioms in first-order logic to be closed propositions for simplicity’s sake,
but this is not important, as quantification gives the same expressiveness as al-
lowing propositions in context. Allowing arbitrary closed propositions as axioms
subsumes the equational axioms of A*~-axiom systems.

We will adopt the convention here, and in subsequent chapters, that when

schematic rules are ‘included’ from one calculus to another, the rules should be

44

understood in the latter calculus: that is, metavariables range over expressions
in the latter calculus.

In Figures 2.7 and 2.8 we give the rules for classical natural deduction, mod-
ified to allow for the possibility of empty types. Only the rules for D, V and L
are necessary, but we give the derived rules for some other connectives as well.

The form of the judgement is I'; A = P, which means: for all variables in I', if
each proposition in A in true, then P is true.

One property which we want the proof system to have is that all provable
judgements are well-formed. It is necessary, therefore, to place well-formedness
conditions on those formulae which appear in conclusions but not hypotheses.

Otherwise, for example, we could infer that P+ P for any pre-proposition P.

Definition 2.3.4 Let (Sg, Az) be a first-order *~-aziom system. We define
the theorems of (Sg, Ax) to be the propositions which can be inferred using the
rules of Figures 2.1, 2.2 and 2.3, together with Figures 2.7 and 2.8.

We write (Sg, Az)>T; A+ P to indicate that T'; A = P is a theorem of axiom
system (Sgq, Az).

Remark 2.3.5 In this thesis, we will make an important distinction between
booleans and propositions. Booleans are terms of a computational datatype and
can be evaluated, whereas propositions are the expressions of a logical language. It
is common, however, to blur the distinction in program development frameworks,
so as to reason about branches of conditionals (using booleans as propositions),
and to refine a proposition into a conditional (with a proposition as the condi-
tion). However, without making the distinction, it is not clear that the refinement
of propositions (as specifications) into booleans is itself a part of program devel-

opment.

Figure 2.9 gives the first-order axioms for booleans and naturals. These are
induction rules, expressed as schemas of closed propositions, but they can also be

given as inference rules. We can derive the general rules:

SgoI'FA wf SgeI',b:bool k- P wf
' A+ Pltrue/b] A Plfalse/b] D Vb:bool.P

SgoI'FA wf SgeI',n:nathk P wf
I'AF PlO/n) A (Vn:nat. P D Pl(succn)/n]) D Vn:nat.P

We retain the equational axioms in Figures 2.4 and 2.5 as part of the first-order

axiom systems.

45

—— Conjunction
AFP TARQ
[AFEPAQ
AFPAQ AFPAQ
IAERP AR Q

—— Disjunction

IARP AR Q
ICAFPVQ [CAFPVQ
IAFPVQ T, PEFR TI'QFR

ICAFR

—— Implication
A PEQ
[AFPDQ
AFP T AFEPDQ
ARQ

—— Universal Quantification

AEYz:7.P T'Ht:7T
AR Plt/z

Lx:m; AP

ARz 7.P (z ¢ A)

—— Falsehood

SgrT'+P wf Sgol'FA wf
A LEP
A -PF L
IARP

Figure 2.7: Natural Deduction Rules for Classical First-order Logic

46

—— Equality
ARt =.t T;AF Plt/z]

A F Pt x]
—— Assumptions
SgoT'+P wf Sgol'HA wf
A PEP
— Axioms
SgrT'H A wf
marp (e

Figure 2.8: Natural Deduction Rules cont.

Remark 2.3.6 Although we have defined first-order logic over the simply-typed
lambda calculus to include all the rules given in Section 2.1, some of these are
derivable. The convention that axioms can be used in arbitrary contexts means
that the rules of Figure 2.3 are superfluous. Moreover, the general Equality rule,
together with Reflexivity, is enough to derive the other rules in Figure 2.1 and

all the Congruence Equations.

The induction rule for booleans says that true and false are the only (closed)

booleans. We can prove
b:boolFb=true V b= false

In fact, this also implies the n-equality for booleans.
Using the rule of mathematical induction in Figure 2.9, we can deduce com-

putational induction

Plz] Vn:natVz:7.P[z] D Plsnx] (Sgoz:7,s:nat -7 — T
Sgrx: 7k Plx] wf

Vn : nat. Plnatrec z s n]

and well-founded induction

Vn :nat. (¥Vn' <n.P[n']) D P[n]
Vn : nat . P[n|

(Sg>n :nat - Pln] wf)

47

—— Booleans

Pltrue/b] A P[false/b] D Vb:bool.P (for Sg>b:bool - P wf)

—— Naturals

P[0/n] A (Vn :nat.P D P[(succn)/n]) D Vn:nat.P
(for Sg>n :nat - P wf)

Figure 2.9: First-order Logic of Booleans and Naturals

2.4 Models of First-order Logic

We give Henkin models of first-order logic. First we define interpretations for a

particular signature.

Definition 2.4.1 Let (G,KC,F) be a first-order *7 -signature. A first-order
A*~-Henkin interpretation, A, of (G,KC,F) is a *7~-Henkin interpretation of
(G,K) together with a family of subsets to interpret predicate symbols in F

FACT x ... x 1A for F: Pred (ry,...,7n)

Figure 2.10 gives the interpretation of propositions in a first-order A*~-Henkin
interpretation. There we interpret well-formed propositions in context, I' = P wf,
as the set, [- P]# of environments, A T, in which P holds, though we usually
drop the superscript A. We write I' A7 P to mean n € [[' = PJA. If Ais a
Henkin interpretation, we say that I'; A EA47 P_if for all n EAT, if T EA7 A for
each A in A, then ' EA" P. We write I'; A 4 P when T'; A EA7 P for each
nEAT.

Definition 2.4.2 Let (Sg, Ax) be a first-order *~-aziom system. A Henkin
interpretation A of signature Sg is a model of (Sg, Az) when for each axiom P
in Az, EA P.

One reason for studying the logic is that it is complete over the same class
of models as the equational theory. Completeness is with respect to the class of
Henkin models (of an axiom system).

In order to prove completeness for an arbitrary axiom system we will construct

a term model from its theory. The main problem lies in constructing witnesses for

48

[CHL1]=0
[CFFE(t,.. . t)]={nET|([TFt:n]®),. .., [Ft,:m]®n) € F4Y}
[CFPOP]={nkET|n¢[l+Plorne[lF P}
[[FVY2:7.Pl={nET| forallain 7. (n,a) € [[,z: 7+ P]}
[CEt=tT={n=ET[[L+t:7](n) =[CHt:7](n)}

Figure 2.10: Interpretation of Well-formed Propositions

existentials. We will achieve this by using the notion of Henkin theory' [vD94]. A
Henkin theory, T', has the property that if the proposition dx : 7.P is in T, then

P[t/x] is in T for some t : 7.

Definition 2.4.3 A first-order A*~-Henkin theory, T, over an axiom system
(Sg, Ax), in context T', is a collection of propositions well-formed in T, and closed
under derivation from (Sg, Ax), such that for every proposition 3z :7.P in T,
there is a term I' =t : 7 such that P[t/xz] is in T.

We can construct Henkin theories by adding witness variables for existentials,
taking care with empty types. As pointed out after Definition 2.1.5 we assume a

countably infinite set of variables at each type.

Definition 2.4.4 Let I' be a context and A a set of propositions. We define the
Henkin closure of I'; A by the following procedure:

1. First enumerate all the types. Then for each type, 7; (i > 1), we decide if

it 1s to be inhabited or not. For 1 > 1, we define the proposition Inh; as

T, if I5A (Inhy DIz 7. T),...,(Inh; y DIr 71 T),Jx . TF L
L, otherwise

2. Then we make a list of all well-formed propositions of the form 3z : o,,.P,

for inhabited o, i.e. those for which Inh, = T. This is countable since the

signature is countable.

3. Then we make a list of variables {y, : 0,} such that y, ¢ T' and y, ¢ Py

forn’ <n.

4. We define the Henkin closure of T'; A as T'y; Ay, where Uy = TU{y, : 0.},
and Ay = AU{3x : 0,. P, D P,ly./z|}.

!These have nothing to do with Henkin models.

49

Although an infinite supply of variables in the context is not necessary to meet
the definition of Henkin theory, it is used in the proof below. The point of the

completeness proof is to construct the maximal such Henkin theory.

Theorem 2.4.5 (Soundness and Completeness of logical system) Let (Sg, Ax)
be a first-order *~ -aziom system. Then (Sg, Ax)>T; A= P iff T; A EA P for
every Henkin model A of (Sg, Ax)

Proof: Soundness is straightforward to prove. As for completeness, we do not
have a minimal (Henkin) model for the logical system, but nevertheless, we can
still use a term model in order to prove deductive completeness, by showing that
any consistent theory is satisfiable. For axiom system (Sg, Ax), we want to show
that (Sg, Az)>T; A Piff I; A B4 P in all Henkin models A of (Sg, Az). (Note

that we do not assume that types are nonempty.)

1. Given (Sg, Az) ¥T'; A+ P we want to find a Henkin model A of (Sg, Az),
and T-environment, 7, in A such that I' 47 A for each A in A, —P.

2. We construct a maximal consistent theory A, and infinite context I'y, such
that Az UAU{-P} C A, I CT, and A is a Henkin theory in I'...

First let I'y; Ay be the Henkin closure of I'; Az U A U {=P}. Now we

consider consistent theories in 'y which extend Apg.

We form the partial order of such theories, ordered by pairwise inclusion.
The poset is nonempty since it contains the deductive closure of Ay. Each
member is a Henkin theory. The poset is closed under taking unions, and
so each chain has an upper bound. Thus, by Zorn’s Lemma, the collection

has a maximal element, A.,.

3. We define the term interpretation on equivalence classes of open terms prov-

ably equal in I'y; Ax.

By renaming variables, we can assume without loss of generality that all

terms are open in ['y.

We write [t] for the equivalence class of ¢, so that [t] = [¢/] iff
T A Ft =t (ie.t =t € Ay).

First, we show that A is extensional. The interesting case is for function
types. We must show that if I'y; Ay F ta =, t'a for every 'y F a : o, then
;A Bt =,_, t'. We reason on whether or not dz : ¢.T is in A, that

is, o is inhabited.

50

If it is then, since I'y contains infinitely many variables for each inhabited
type, there exists a variable x : ¢ € I'y which does not appear in ¢ or t'.
Hence, I'g; Ao F tx =, t'z, so I'g; A F Av i 0t =50 A\v:o.t'x and
Il Ao Bt =5 t.

If it is not, then by maximality, -3z : 7.T € A, and since A is consistent,

there are no terms 'y F a : 0 and so the implication trivially holds.

4. Prove that [I" ¢ : 7]4(n) = [t[n/T]], and so A satisfies the environment

model condition and is a Henkin interpretation.

5. For all / £ TV, prove that IV EA Q iff Q[1 /T'] € AL, by induction over Q.
It is here that the proof rules for each construct are used. We use the fact
that for a maximal consistent theory 7" and well-formed (in I'y) proposition
@, exactly one of @), =) is in T. The crucial case is dz : 7. @), which goes
through by virtue of A, being a Henkin theory.

From this it follows that A is a Henkin model of (Sg, Az}, since for each
axiom (@, clearly QQ € A.

6. Finally, using the extension property of I'y; Ao, if ' =21 : 04,..., 2, : 0p,
then we define the T-environment, 7, to be simply ([z1], ..., [z,]), and then
I EAT A, for each A in A, —P.

As a corollary of these completeness results, we can deduce that the first-order

calculus is conservative over the equational calculus.

Corollary 2.4.6 Let (Sg, Ax) be a *~ -aziom system. If all types are inhabited,
then (Sg, Ax)>T +t =t iff (Sg, Ax)>T;)t =,1.

Proof: Both systems are complete with respect to Henkin models, and the state-

ments have the same interpretation. ||

51

Chapter 3

Refinement Terms

In this chapter we develop a theory of ‘simple’ refinement. We see that, in addition
to aspects of refinement, the use of stubs and skeletons in top-down program
development can also be studied in this language. We give a calculus, A\~ (A
for short), in which we can express such constructs and a simple semantics using

Henkin models for which the calculus is proven sound and complete.

3.1 Introduction

We introduce an extension of the simply-typed lambda calculus (A*~) with con-
structs for expressing a notion we call underdeterminism. Consider the term
Az :0.(2,z) of type 0 — mnat x o. This term is determined in the sense that
we have complete knowledge about it. Suppose now, we know that some term
of the same type always returns pairs of which the left component is 2, but we
know nothing about the right component. We might write this as Az : 0.(2,7,),
where 7, means ‘some unknown of type o’ (possibly depending on z). We allow
7, to stand for any subterm which is well-formed in the local context, so these
unknowns can contain the variable x. This is in contrast to the use of variables as
indeterminates. If, instead of the stub 7,, we were to use a free variable y of type
o as a parameter, writing the above term as Az : 0.(2,y), then we can substitute
any term for y which is well-formed in the global context. The point is, though,
that because of variable capture, we cannot substitute x to get Ax : 0.(2, z). This,
of course, is crucial to the use of stubs.

Now, a still less determined term would be Ax : 0.(?pas, 75). This is a term
of type 0 — (nat x o) which returns ...what? Evaluation does not make sense
in general for such partially constructed terms anyway, but our intuition tells

us that the term Az : 0.(74at, 7o) carries the same information as Az : 0. 750t x0

!Some of the work of this chapter was presented in [Den97b].

52

and ?,_.(natxo)- We would like to prove equivalences such as this, and in general

consider a specialisation ordering at each type, such that
?aﬁ(natxa') Eaa(natxo) AT U-<2a ?0'> Ea’%(natxa') AT 0'.<2,ZL‘>

Moreover, we would like to study how underdeterminism interacts with the usual
equational rules of A*7. Our interest in such a calculus comes from our belief that
this is a fundamental aspect of program development. The refinement methodol-
ogy of program development consists of writing a term meaning ‘a program which
satisfies specification ¢’, and transforming it step by step into an actual program
satisfying the specification ¢. We view types as rudimentary specifications, and
defer study of the logic to the next chapter. We believe it is worthwhile to study
underdeterminism in isolation from logic, as much of the difficulty in reasoning in
refinement calculi is in understanding how underdeterminism interacts with the
programming features.

In Section 3.2 we describe the language and its refinement rules. The equa-
tional theory is then studied as part of a simple logic. We give a simple denota-
tional semantics in Section 3.4, and show that our calculus is complete for proving

refinements valid in this class of models.

3.2 The Calculus

We give the syntax of the language and the classes of judgements. Then we give

some syntactic results and a short example of refinement.

3.2.1 Syntax

We start by defining the notion of A;-signature. In fact, signatures and axioms
are the same as we defined in the previous chapter for A*~. The significance of

this is discussed later, in Remark 3.3.4.

Definition 3.2.1 A \;-signature Sg consists of a collection, G, of ground types
(ranged over by ~v) and a collection, IC, of constant symbols (ranged over by k),

each of which is assigned some sort Ty, ..., T, — T.

We extend the simply-typed lambda calculus with an underdeterminism con-
struct, 7, meaning ‘some term with type 7’. We view the type 7 as a rudimentary
specification and refer to terms with such ‘holes’ for programs to be supplied later
as refinement terms. We assume throughout some fixed signature of types and

constants.

93

The types, preterms and contexts are given by:

T o= 1|~ | 7x7 | T>7T

rou= x| k(ry,..orn) | ox | (Y | AT | 7 | m(r) | ome(r) |
rr’ | letx:7ber inr’

r == (| a7

We say that a term is determined if it contains no stubs, that is, subterms of
the form 7. Otherwise, we call a term underdetermined. We use the metavariable
t to range over determined terms, and r over arbitrary underdetermined terms.
Note that primitive constants are determined. In fact, each term of the simply-
typed lambda calculus is determined. The converse does not hold, however, since
we allow let x: 0 be t in t' to be determined. We will see, though, that every
determined term is provably equal to a term of the simply-typed lambda calculus.

Intuitively, we can think of a term r as being a kind of description or spec-
ification of determined terms, so for example, (2, 7..¢) is a term which specifies
pairs of terms (2,¢), where t is any term of type nat. Conversely, we say that
(2,t) satisfies (2, 7pat)-

Formally, r» denotes a set of values. Each program, t, to which r can refine,
denotes a member of this set. The abstraction Az : 7.r denotes a set of functions,
rather than one nondeterministic function. Intuitively, it refines to those abstrac-
tions, Az : 7.t, such that for each argument ¢’ : 7, the result ¢[t'/z] is a refinement
of r[t'/x]. It is not a nondeterministic program which takes an argument ¢ and
returns a term rt'/x].

Since let z: 0 be t in t' is provably equal to t'[t/z], we can eliminate all
determined let-subterms, and show that every determined term is provably equal
to an ordinary term of the simply-typed lambda calculus.

Although terms of the language denote sets of values, we want to regard
variables as ranging over single values in order to retain the familiar rules of
A*7. Because of this we will only allow determined terms to be substituted for
variables. We use an axiomatisation of let expressions, let x : 7 be r in 7/, as in
the computational lambda calculus [Mog91], as a way of discharging an arbitrary
underdetermined term r, without substituting directly for a variable x. The idea
is that let x: 7 be r in 7’ defers the substitution of r for z until r has been
refined into some determined ¢, but still lets us reason about the substitution.
The expression let x : 7 be r in 7’ refines to ¢/, then, when ¢’ is a refinement of
r'[t/x] for some refinement, ¢, of r.

Although we do not assume that all types are inhabited (by closed terms), for

various statements below we will make this restriction. This avoids the semantic

54

complications mentioned in Chapter 2. Nevertheless, although empty types may
or may not be appropriate for any particular programming language, this assump-
tion is independent of the use of the calculus for specification. The reader might
assume, though, that this assumption means that our calculus is of no interest in
studying program specification, where in traditional type-theoretic approaches,
specifications are viewed as possibly empty types. However, the idea in the next
chapter is not to use types themselves as specifications, but that a specification
(which may be unsatisfiable) is something ‘over’ an ordinary program type. e.g.
the specification (n : nat) even(n), of the set of even natural numbers (in the

notation of the subsequent chapters) is over nat.

3.2.2 Judgements

We axiomatise an equational theory with two basic judgements
Typing 'Er:r

Refinement FErc. v’

where I' is a context of variable assumptions. As is usual with lambda calculi,
(in)equations are at a type, which we sometimes drop when not significant. We
write the refinement of r to v (at 7) as r T, 7/, to indicate that 7’ is more
determined than r. Note that some authors use 2 for refinement.

We take equality to be the derived notion defined as mutual refinement. This
is reasonable because, as we show by a semantic argument below, the calculus
is a conservative extension of the simply-typed lambda calculus, as determined
terms are mutually refinable if and only if they are provably equal in *.

Contexts are well-formed
FT wf

if and only if they contain distinct variables. We adopt the convention that in
writing a judgement we assume its context to be well-formed.

The typing judgement I' F 7 : 7 is axiomatised in Figure 3.1. This just extends
the rules of the simply-typed lambda calculus with typing rules for the ? and let
constructs. We write Sg>I" F r @ 7 to indicate that the typing judgement I' - r : 7

is derivable from signature Sg.

3.2.3 X\-Axiom Systems

We can define the notion of axiom system with respect to a signature as a set of

well-typed equations in context between determined terms.

95

—— Variables

Dx:ol'Fa:o

—— Constants
r't-rqy:m -+ I'kbr,:7,
CEk(ry,...orn) 7

(k:m,....,7a =T EK)

Unit
I'Fx%x:1

—— Stubs

'=7:0

—— Product Terms
'r:0 TFH 7
CEror):oxT

'Fr:oxr 'Fr:oxr
CEm(r):o ['Emo(r):

—— Function Terms
x:obr:7
' Xx:o0r:0—T

'Frio—7 T'Hr:0o
CErr’ T

—— Let Terms
'tr:7 Dok 7
I'Fletz:7berinr' 7

Figure 3.1: Typing Rules

56

Definition 3.2.2 A \,-axiom system, (Sg, Az), consists of a \s-signature, Sg,
and a collection, Ax, of equations in context, I' =t =, t', well-typed with respect
to the signature, that is, Sge-T' Ft:7 and Sg>T Ht' : 7.

We will discuss below (Remark 3.2.4) why we do not allow axioms to be arbitrary

refinements. We assume some fixed axiom system (Sg, Ax) throughout.

Definition 3.2.3 Let (Sg, Ax) be a A\r-axiom system. We define the theorems of
(Sg, Ax) to be the refinements which can be inferred using the rules of Figures 3.2,
3.3, 8.4, 8.5 and 3.6. We write (Sg, Ax)>T t r T, v to indicate that refinement

I'Fr C, ' is a theorem of aziom system (Sg, Az).

We write the equality, 7 =, 7/, to mean the mutual refinement, r =, r’ and
r" C, r, and extend the rule convention mentioned in the previous chapter, so
that when we include rules from A*7 in A;, equality rules are to be taken as
mutual refinements.

Figure 3.2 gives the rules for inferring theorems from a A;-axiom system.
These are the natural extension of the rules in Chapter 2, with the condition that
substitution is restricted to determined terms.

The equality rules of Figures 3.3 and 3.4 are on top of those of the simply-
typed lambda calculus in Figure 2.2, Chapter 2, which should now be read as
mutual refinements.

The rules are given for determined terms. Although we show below various
generalisations of these to arbitrary underdetermined terms, we prefer to give
the axioms of the calculus in this minimal form as it more clearly shows that
refinement is an axiomatisation on top of the underlying equational theory.

Figures 3.3 and 3.4 axiomatise how underdeterminism combines with program
constructs via the let expressions. Most of these rules are taken from the com-
putational lambda calculus. The exception is the rule for Abstractions, which
makes explicit the ‘hidden dependency’ of specifications on variables in the con-
text. A specification, 7., under an abstraction, Ax : o, can be refined to terms
which contain the x. We remarked on p. 24 that this is an important difference
between 7 and e. Now, this is equivalent to specifying some term 7,_., outside
the A\, which is then applied to z under the A. This rule is the only addition
to Moggi’s computational lambda calculus, and has significant consequences (see
Lemma 3.2.10). Logically, we can think of the rule as a form of skolemisation,
where abstractions correspond to universal quantifications and 1let’s to existential

quantifications.

o7

—— Axioms

—— Weakening
Fl, FQ l_ T ET 7',
MN,z:o0,FrC, o
—— Permutation
Flaml : O-IaFQa'TQ : UQ,FB For ET r
Fl,xg . O'Q,Fz,l’l . 0'1,F3 l_ T ET 7',
—— Substitution

Drx:obrC.r I'kHt:o
C'Erlt/z] T, r'[t)x]

Figure 3.2: Theorems Generated from a \,-Axiom System (Sg, Ax)

In view of Let Associativity, we use let x1 : 01,%2 : 09 be 11,75 in r as an
abbreviation of the nested let-term let x; : 07 be r; in (let x9 : 09 be ry in 7).
Note that because of the assumption of well-formedness of contexts, we can omit
side-conditions on the occurrence of variables. For example, in Let Associativ-
ity, since I', y : 7 is well-formed, y is not in I and so y is not in »”.

Figures 3.5 and 3.6 axiomatise the refinement relation. The intuition behind
the refinement relation is that it should correspond to an increase in information,
and a decrease in the possible programs to which a term can refine. There are
top-down rules for decomposing a specification by refinement into a combination
of simpler ones. We also have a weakening rule Let Weakening which may
be thought of as claiming an auxiliary lemma, and a congruence rule for let-
expressions, which lets us derive the corresponding rules for pairs, applications
and projections.

A number of similar refinement rules for the destructors, and sequent style
bottom-up rules for making use of the context are derived below (Propositions
3.2.19 and 3.2.20, respectively).

o8

The equality rules in Figures 2.1 and 2.2, Chapter 2 together with:

—— Let Beta
'tt:r Tx:rhkr:7
I'Fletx:7betinr[z] =4 rlt]

—— Let Eta

'Fr:.7
I'letx:7berinz =,r

—— Let Associativity
Ibrer Dy:rbr'er Do B0 7"
'k letxz:7 be(lety:7berinr'[y]) in r"[x]
— . dety:7ber in (Let a : 7 be /[y] in r'[r)

Figure 3.3: Equality Rules

Example 3.2.4 Since the definitions of signatures and axiom systems are the
same for A\, and *7, we just use the axiomatisation of booleans and naturals in
Chapter 2, given in Figures 2.4 and 2.5. It is an important point that axioms
are given as equations between determined terms, and not as refinements.

The practical implication of this is that if we enrich the language with some
new operations, then no extra work is required to give refinement rules, except for
equalities (which are a trivial form of refinement). Since all valid refinements are
derivable from the rules of the calculus it is unnecessary to have to come up with
new rules. The theoretical justification for this will follow from the completeness
theorems. For any axiom system, the rules we give are sufficient to prove all true
refinements.

We indicate now how this is done in the case of the booleans. We need
only use the general rule for combining let-terms and constants. For constant

k:m,...,7 — T, we have
letxy :7y,...,&p :Tpbery,....1r in k(xq, ..., x,) = k(ry, ..., 7r0)

For booleans this gives for example

let x : bool,y: 0,z :0 bery,re,ry in (if = then y else z)
=, if 1 then ry else 13

99

—— Constants

'crpim -2 ThEmimy ‘
FFletzy:m,...,xp:Thobery,...,m, (kim0 =7 €K)
in k(21 ..., 20) = k(r1,...,70)
—— Applications

'Frio—7 I'Er:0
I'Fletx:0— 71,2 :ober,r inxx’ =, rr’

— Pairs
CkEr:r Tk 7
F'Fletxz:7,2' 7" ber r in (x,a') =, (r,1')
—— Projections
Fl—r:7'1>’<7'2 (i=1,2)
I'Fletz:m X 1 berinm(z) =, m(r)
—— Abstractions

Cox:oyy:mErfzy 7

['Fletz:0 —7be?, ., in Az : o.rz, zx]
=5 Ax:0.(lety:7be 7, inrz,y])

Figure 3.4: Equality rules cont.

60

—— Variables

Lx:o"F7,Chx

—— Constants

FI_?TETk(?Tlv'--u?Tn) (k:Th””Tn_)TEIC)

Unit
F I— ?1 El k
—— Pairs
'k ?O'XT EO’XT <?0'7 ?T>
—— Abstractions

'7, 0, Cor Az : 0.7,

Figure 3.5: Refinement Rules

61

—— Congruence

FErmCory Thoinbr 7l (let)

['Fletx:mberyinry &, let x: 7 ber] in 1}

Dx:obrC.r (abs)
I'EXe:orC,o, Ao’

—— Reflexivity

'kr:7
'ErC,r

—— Transitivity

'ErC.r TR
'ErC, "

—— Let Weakening

FI—T,:T I'br:o (J]%FV(T,))

I'Fr"C,letz:0berinr’

Figure 3.6: Refinement Rules cont.

There is one refinement rule for each constant. If Sg>k : 7,...,7, — 7 then

Tk 2. Co k(2.

o)

In combination with the congruence rule for let-terms, we have, in particular
then:
?bool E 6

?nat E I_]-
7. C if 7p01 then 7. else 7,

Now, we say that a term, r is satisfiable if there exists a determined ¢, such
that r refines to t. Otherwise r is unsatisfiable. A consequence of the way we
have axiomatised constants and, in particular, the conditional, is that if empty,,,
is an unsatisfiable term (see Remark 3.2.18) of type nat, then the conditional
if true then 3 else empty,,, is unsatisfiable. We can not apply the equation

Berue of Figure 2.4 since empty,,, is not determined.

62

This is in contrast to refinement calculi based on nondeterminism (e.g.[Bun97,
Mor94]) so it is worth considering why we should expect this term to be unsatis-
fiable.

Although the calculus is (in)equational, the idea is that terms represent stages
in the search for a program. We would only expect such a term to have arisen
during refinement if the intention is to refine into a conditional, and so both
branches must be refined to program code. Since this is not possible, the whole
term is unsatisfiable. The fact that the satisfiability of a term depends on the
satisfiability of all its subterms means that we can reason about specifications
compositionally. In order to implement a specification, we need just implement
its components. The alternative would be if we had to do some implementation,
combine the resulting specifications somehow, then do some more implementation
and so on. Thus we adhere to the ‘principle of modular decomposition’ advocated
in [SST92]. The same principle applies when refining into the application of two
terms (see Remark 5.2.7).

Remark 3.2.5 Let us consider why a ‘naive’ approach using free variables is
not sufficient. Suppose we represent a stage of refinement as a term t[xq, ..., ;]
with free variables xy,...,x, such that Qi[x1] A -+ A Qulz,] D Plt[z1,. .., x,]].
The free variables stand for unwritten programs and to refine we replace a free
variable with a term, possibly introducing more free variables and constraints.
We could refine 1 to a term t1[yy, . . ., Ym|, say, by introducing new free variables,

Y1, - - -, Ym, With constraints such that

Rl[yl] AREERA Rm[ym]) Ql[tl[yla .- -aym“

However, this does not address the possibility of refining under an abstrac-
tion. If t1[y| is of the form Az : o.f3]y], then the constraint could be given as
Vo :o3y:7.R[x,y] D Q1[A\r : 0.t2[y]], so now y is not a (global) free variable.
If, instead, we represent variables under abstractions using functional variables,
and write 3f : 0 — 7.Vz 1 0. Rz, fx] D Q[\x : o.ta[fx]], then this just avoids
the issue: the unwritten program has the same representation as a variable of
type ¢ — 7 and we make no progress!

Logically, this leads to arbitrarily nested quantifiers. In fact, the logic of
refinement is a formalism for just that. This justifies the need for a ‘theory of

refinement’” which can handle such reasoning more naturally.

Remark 3.2.6 Although a naive use of global variables is unable to account for

variable capture, we could some form of variable labelled with the local context.

63

However, we would then need to make a distinction between variables representing
something taken as given, and those representing something which remains to be
implemented. We will make some suggestions for such a system, based on logical
variables, in Section 6.6.

However, refinement calculi have traditionally been formulated in terms of
some kind of specification construct, variations on the stubs we use here. The
equivalence with, and axiomatisation in terms of logical variables is a subject for

future work.

Remark 3.2.7 The 7 is not the same as a nonterminating or undefined term,
1. If it was, then in a call-by-value operational semantics, we would have
(Ax : 0.2)7; = 7hat, which is not true in \; if ¢ is inhabited; in a call-by-name
semantics we would have (Az : o.(x,x))?, = (7,,7,) and this is not true in A7 if
o has more than one inhabitant.

More significantly, we show below in Remark 3.4.8 that interpreting 7 as L in

a cpo does not even provide a sound model of \;.

Remark 3.2.8 In Chapter 1, we noted that Hilbert’s e-operator differs from
?. In particular, because models are given using a global choice function, the
abstraction Az.ey. T will always be interpreted as a constant function.

The equational theory of \; developed in this chapter is based on the idea
that we cannot substitute arbitrary underdetermined terms for variables, so we
use let-terms. Since e-expressions denote individuals, they can be substituted like
other terms. For example, (Az.(x,z))ex. T = (ex.T,ex.T) is sound. In fact, the
e-operator can be axiomatised by adding P[t/z] D Plex.P/z] for each ¢t and P,
which is not the case for underdetermined terms.

The logic of the HOL proof assistant contains a (polymorphic) e-operator,
€ : (¢ — bool) — «. It is modelled using a choice function, and there is no

explicit refinement.

The following lemma provides some insight into underdeterminism. Although
stubs can be embedded anywhere in a term, we can give a canonical form with
all the underdeterminism moved ‘to the outside’. For example, Az : 0.(2, 7p,¢) 18
equal to let f: 0 — nat be 75 pa in Az :0.(2, fx). Thus, each term can be

viewed as a simple combination of program and specification.

Lemma 3.2.9 For all terms in context I' =1 : 7, there exists a determined term
in context I',xy 1 0q,..., 2, : 0, =1 T such that each x; appears exactly once in

t,and U'F (let @y : 0y, ..., 0, be 75, ..., 75 int) =, r.

64

Proof: Use let rules to move the underdeterminism outwards, the important

case being the abstractions. ||

Note the linearity — each stub counts exactly once, so (7,,7,) has canonical form
let z:0,y:0 be 7,,7, in (z,y) and not let z: 0 be 7, in (z,2) (to which it
refines though). We will not, however, use the linearity in appeals to the lemma
below. Note also that such canonical forms need not be unique. We sometimes
use the useful abbreviation let z1 : 01,...,x, : 0, in t for the canonical form.
So, for example, Az : 0.(2,7.) is equal to let f:o0 — nat in Az :0.(2, fx).
In fact, by repeated pairing, we can always express terms in the simpler form

letx:01int.

It is often convenient to write let xy : 01,...,2, : 0, in t as let [' in ¢,
where T" stands for the local context z; : oy,...,2, : 0,. We also write ¢[I'] as
informal notation for t[xy, ..., z,].

By expressing terms in canonical form, we can prove a few results about let

expressions. None of these results hold in the computational lambda calculus.
Lemma 3.2.10 The following rules are admaissible:

1. (let-commutativity)

F'eEr:r Ler 7 De:ry:7 0" 7"
F'Fletx:7,y:7ber,r inr”" = lety: 7, x:7ber' rinr”

2. (let-contraction)

F'kr:o Dx:oyy:obr 7
FFletx:o,y:ober,rinr’ C, let z: 0 ber inr'[z/z, 2/y]

3. (Strengthen local context)
Forx ¢ FV(r'),
LEr 7 Dx:ry:7Fr:7"
F'FXx:7.(lety: 7 ber' inr) T, v lety: 7 ber in Az : 7.r

Proof: We prove (3).
First we show that

Ar:olety:7Tinrly]C lety:7in Az : 0.1y (3.4)
65

This is:
Az :T.let y: 7' in rfy]

= letz:7 — 7 in Az : 7.r[21] (Abstractions)

C lety:7'inletz:7 — 7' in Az : 7.r[zx] (Let Weakening)

C lety:7'in (y:7F7 0 ATy,

let z:7 — 7' be Az : 7.y in Az : T.r[zx] and Congruence)

= lety:7 in Az : 7.1y (Congruence)

Then:

Az :7.lety: 7' ber’ in r[m Y]

= Mr:7lety:7 be(letz:0int) inr[z,y] (Lemma 3.2.9; can.form)

= Mr:7.let z:0in (lety: 7 bet in r[x,y]) (Let Assoc1at1v1ty)

C letz:oinAz:7.(lety: 7' betinrz,y]) (3.4)

= letz:oinlety:7' betin\x:T.rx, y] (Let Beta)

= lety:7 be(letz:0int)in Az : 1.r[z,y] (Let Associativity)

= lety:7' ber' in Az : 7.r[z,y] (can. form)

The proofs of (1) and (2) are carried out similarly, by expressing terms in

canonical form. [|

Commutativity of let’s corresponds to the idea that it does not matter what
order we solve subproblems in (so long as they do not depend on each other),
and contraction of let’s says that we can solve two identical problems by just
solving the problem once and using the solution twice. The third rule illustrates
the dependence of underdeterminism on the context. There are more determined
terms which satisfy the term on the left, since x can be used in refining 7/, but
this is not possible when 1’ is outside the bound variable on the right.

If all types are inhabited then, in fact, all terms are satisfiable. Because of this,
the rule Let Weakening can be strengthened to an equality, i.e. for = ¢ FV (1),
we have ' = let x : 0 be r in ’. We use this fact to derive strengthened forms
of the (-equality for products and n-equality for units (Chapter 2) for arbitrary

underdetermined terms (of appropriate type).

Proposition 3.2.11 If all types are inhabited:
'+ T T 'k ro I T

 =1.2
1. TEm(ry,r) =, (2 2)
ThEr:1
Q.F'_Tzl*

Proof:

1. The first is derived as:
m(ry, o) = m(letx:ointy,lety: 7 inty) (for some ty,ts)
= letx:o,y:7inm(ty,ts)
= letx:0,y:7int
= letx:0int
= 7

66

The C of the second last equality is by refining with some determined term

of type 7, and the 1 is an instance of Let Weakening.

2. Suppose r has type 1. Now r has canonical form let z : ¢ in ¢, say, where
t has type 1. By Unit Equation we can prove z:0 F t =; * and so

let x: 0 int =; let x : ¢ in *, which since ¢ is inhabited, equals . ||

We can strengthen the (-equality for abstractions, without the assumption of
nonemptiness.
Proposition 3.2.12 The following is admissible:

Ne:obr:7 T'Ht:o
C'E(Ax:or)t=,rt/x]

Proof: We use the auxiliary result that for any ¢ of type o
let f:o = Tinr[ft/x]=1letx: 7 inr

Then,
Mz :or)t = (Ax:olet z:7 int')t
= let f:0— 7 in (\z:o.t/[fx/z])t
let f:0 — 7 int'[ft/z,t/x]
= let z:7 in¢'[t/x]

= rlt/q]

Remark 3.2.13 We can use Proposition 3.2.12 to derive Landin’s Equation:
(A :or)r'=1letx:ober inr

In principle, therefore, it would be possible to define let in terms of abstraction
and application. However, this would lead to unnatural looking equivalents for
the let axioms. A more significant reason for making let primitive is that this

equation fails when we incorporate logic in the A calculus in Chapter 5.

Because of Proposition 3.2.12, we can (3-reduce applications with arbitrary
function bodies. This is significant as it means that underdetermined terms can
be executed, up to a point, as ordinary programs. In general, this is not possible
as evaluation can not proceed when a stub is encountered. For example, (75)
cannot be reduced. This observation could form the basis for a single-step oper-

ational semantics, and we discuss this in Chapter 6.

67

At this point, we pause to review our motivation for studying this calcu-
lus. Program refinement is a stepwise decomposition of logical specifications and
their gradual replacement with code. The calculus which we are studying here
formalises refinement for a limited form of specification, with no logic, and is a
fragment of a larger calculus studied in Chapter 5.

The statement corresponding to Proposition 3.2.12 does not hold in the full
system (see Remark 5.2.7) and the auxiliary result fails too. That is, in the pres-
ence of logic, we cannot (-reduce with arbitrary function bodies. This is not a
problem, as such, since the specification language is not intended to be evaluated.
Rather, it is a bonus that S-reduction does make sense here. We believe that this
is motivation for studying this subcalculus of a full logical refinement calculus.
In an implementation of a program development system, we would like to be able
to evaluate partially developed programs such as is formalised in the dynamic
semantics of Extended ML [KST97]. If the system is based on the logical refine-
ment calculus of Chapter 5, then we cannot directly evaluate terms. We can,
however, use the fragment based on the \s,-calculus.

Now, Propositions 3.2.11 and 3.2.12 show that we can deduce general forms
of B-equality, although the axioms for pairs and abstractions are given for de-
termined terms. We do not, however, have n-equalities for arbitrary pairs and
abstractions.

To see why this should be so, recall, first, that we think intuitively of A\s-terms
as describing a set of values. Equality of terms corresponds to equality of the sets
of values. Now, it is possible for two different sets of functions to return the same
set of results for each argument. Thus the equation Az : o.rx =,_,, r cannot be
valid. Likewise, different sets of pairs can have the same set of first (or second)
projections.

To illustrate this, we give two terms, r; and 79, which have the same set of
results for each argument, but such that r; does not equal r,. Let ry = let b :
bool in Az : 0.b and 79 = Ax : 0.7001. These terms are different, since one can
refine to any function in ¢ — bool, and the other to any such constant function.
We can prove that they have the same set of results, for each argument x : o,
however. In fact, we have Az : o.rx =,_, 1.

Az : 0.(let b : bool be 7pee1 in Az : 0.b)x
= Ax:o0.let b:bool be 7poo1 in (A : 0.b)x
=)\:L' . U-?bool

Remark 3.2.14 As in the computational lambda-calculus, application dis-

tributes over let’s. Using the rules of Let Associativity (twice) and Applica-
68

tions we get:
(let xber inr’)t = let x; be (let z ber in7’) in x4t
= let x ber in (let xy be 7’ in z4t)
= letzberinr't
Although the n-equalities do not hold for arbitrary pairs and abstractions,

inequalities are admissible.

Proposition 3.2.15 The following are admissible:

x:okr:7 I'r:oxr
I'bAXx:orz Gy I'F (mr,mor) Cowr 1

Proof: We sketch the proof of the first statement. By Lemma 3.2.9, r has canon-
ical form let y : 0’ int. Then, Az : 0.(let y : 0’ int)x = A\x : 0.let y : ¢’ in tx,
by the distribution of application over let’s. By Lemma 3.2.10(3), this refines to
let y: o0’ in Az : o.tz, which by Function Equations (7) and Congruence,

equals let y : ¢’ in ¢, that is, r. [|

Proposition 3.2.16 The axiom Abstraction follows from the simpler

Cox:oyy:7Htlx,y]: 7

'Fletz:o0—7inAr:ot[r,zz] =, Ax:o.(lety:7int[z,y]) (3.5)
where the term t is determined.

Proof: The first step is to show, by induction over terms, that (3.5) is sufficient
to prove that all terms have a canonical form. For the abstraction case, we
have Az : o.r = Az : 0.let y : 7 in t[x,y|, by induction, and using (3.5) we get
let f:0 — 7in Az : o.t[z, fz]. Now we prove the full axiom.

Assume Az :o.lety:7inr : o — 7.
Ar:olety:Tinr[r,y] = Mx:olety:7,z:7 intly, 7]
= Ar:o.letp:7 X7 in t[mp, mop]
let [0 — 7 x 7 in Ax: o.t[m (f"z), m(f"x)]
let f:o—7,f 00— 7 in Xz :o.t[fz, f'z]
let f:o0 —TinAr:o.let z: 7' int[fx, 2]
= let f:0—7Tin Az :o.rx, fo
[|
The next lemma says that our refinement rules are complete, in the sense that
they allow us to construct by refinement any program which satisfies a specifica-

tion (recalling that, for now, we view types as rudimentary specifications).
Lemma 3.2.17 IfT'+t: 0o then'F 7, C, t.

Proof:
By Proposition 3.2.12, 7, = (Az : 0.7,)t. Then (Az: 0.7,)t C (Az:0.2x)t=t. B

69

The fact that this can be proven trivially motivates restricted calculi better suited
to proof search, where construction must be on the structure of t. We will discuss
this in Chapter 6.

Remark 3.2.18 Using booleans, we can define a form of binary choice on

terms. For r,r’ : o, define
r|r’ 2 let b: bool in (if b then r else r’)

We can prove that | is commutative, associative, and idempotent, and so is a
reasonable notion of choice. This definition is useful because it helps to illustrate
the differences between underdeterminism and nondeterminism (e.g.[Dij76]). If
the reader is unfamiliar with nondeterminism, then this remark can be safely
ignored.

We compare our axiomatisation of underdeterminism with a notion of ex-
ternal nondeterminism, that is, where the nondeterminism arises from the en-
vironment making the choice. In particular, we compare a nondeterministic
choice operator, +, with |. For example, we would intuitively expect to have
Az :nat.2 +3 = Az : nat.2 + Az : nat.3 (using some constants for naturals). This
contrasts with the properties of | under a binding, since 2|3 can refine to anything
well-formed in the local context. For example, 2|3 C if x > 3 then 2 else 3, so
Az :nat.2[3 C Az :nat.if x > 3 then 2 else 3. Then we have Az : nat.2|3 C
Az : nat.2][Az : nat.3, but not the reverse.

Another difference is between nondeterministic failure terms and the analo-
gous idea for underdeterminism — unsatisfiable terms. Suppose the type 7 is
uninhabited. Then there are unsatisfiable terms at every type. Any term of the
form let z : 7 in 7, where r is any term of type o, will be unsatisfiable. Now, for
nondeterministic failure, we expect r + 0 = r. However, if the term empty is un-

satisfiable, then r]empty, is also unsatisfiable. Informally, ‘r|empty_ = empty, .

We now show that ‘underdeterminism commutes with determinism’, in the
sense that underdeterminism at a particular type can be expressed at a lower type
using the relevant term constructor. This offers some conceptual justification for
regarding underdeterminism as being a feature at a level above a programming

language. There is no interaction with computation.

Proposition 3.2.19 The following are derivable:
1. ?a'><7' = <?07 ?T>

2. <7rl(?a'><7)7 7T2(?0'><T)> = ?O'XT

70

3. If T is inhabited, then m (?5x-) = 75, and if o is inhabited, then

7T2(?0><7') = ?’T‘

4. Yo =Ax 0.7, and ?,_.r =, 7, for all satisfiable r : o.

Proof: We prove (1), that ?,x, =gxr (?s,?+). Clearly, the refinement rule for

Pairs lets us refine from left to right. We prove the other direction.
(75,7,) = letx:o,y:7be?,, 7, in (x,y)
C letz:0XT7Tbe7;us in
letx:0,y:7be?,, 7 in (x,y)
let z:0 X T be 75, in
let x:0,y:7bemz mz in (x,y)
= letz:0 X Tbe 75y, in (mz,m2)

M

o
*OXT
The proofs of the other statements are carried out in a similar way, by expressing

the terms in canonical form, and using the let-axioms and Lemma 3.2.10 to

manipulate the terms. ||

We can derive some useful refinement rules. As mentioned above, it is possible
to derive bottom-up style refinement rules, complementing the top-down rules
given as primitive, as well as various congruence rules. Bottom-up rules put
together existing programs, whereas top-down rules decompose specifications. We

formulate the bottom-up rules in terms of manipulating variables in the context.

Proposition 3.2.20 The following are derivable:

—— Bottom-up Refinement

'bt:o T,z:7krC,] ¢ FV(r)
Tyy:o0—1ErC,ryt] v "
Cox:mkrC, [z Loy 7' FrC, [y
— F — F
F,Z:T><7"|—7’E(,7”[7T12]xg_f Vi) F,z:TXT’I—rEJr’[Wgz]y¢ Vi)
—— Congruence
FErmCory TErCr 'emCory - I'kr, &1
['F (r1,7re) Soxr (1], 75) CEk(ry, ... m) 5 k(. ..10)
ChErCrxn (i=1,2) FErm Gy DhEr G,
I'Em(r) S, m(r) ’ ['Foryrg S, orird

71

Proof: The bottom-up refinement rules are obtained by substitution. The first

projection rule, for example, is derived as:

Cox:1hkrC,]
PEXe 7 C, A 70 [x]
Coziorx7'b Az rr)mz B, Az 7.0'[z])mz

Coz:mx 7' FrC,r[mz]

Alternatively, this can be derived directly using Substitution. The congruence
rules all follow from the rule for let-terms. For example, the rule for pairs follows
since (rq,79) equals let 1 : 7y, X9 : To be r1, 75 in (xq, x9). Then using Congru-
ence (let), this refines to let zy : 7y, 29 : 7o be r}, 75 in (xq, x9), which equals
(r1,75). i
We make a similar point here to that made after Lemma 3.2.17. In a search-
directed refinement calculus (as discussed in Chapter 1), where the rules are given
for direct refinement, we would expect these rules would be primitive. Our inten-
tion here, though, is to give a system complete for proving arbitrary refinements
of the form r C, " and not goal-directed refinements r C, .

Another point is that although we can infer forms of the bottom-up rules in
which the substitution takes place in both terms (for example, if y : 7/ rly] C,
r'[y] then z : 7 X 7/ F rmz| C, r'[myz]) the forms we gave are more suitable for

directed refinement.

Example 3.2.21 We can use Let Weakening (or the derived rule of contraction

in Lemma 3.2.10) to combine two equivalent stubs into one:
(75,75,) C letz:obe?,in(?,,7,) C let z:0be?,in (z, 2)

The first step uses Let Weakening, and the second uses the refinement rules

Variables, Reflexivity, Pairs and Congruence (let).

Example 3.2.22 We give a short example, using refinement to derive a swap
function. Transitivity of refinement means that we can often present much of a
refinement derivation as a form of equational reasoning. Here there are two main
steps.

Toxrorxe = A2:0 X T.7ve T Az:0 X 7.(mez,m2)

Formally, this is

F loxrmrxe & A2:0 X T.0ws FAz:i0 X770 C Az:0 X T.(mz,m2)

Trans.
F 2oxrorxe = Az 10 X T.(Maz,m2)

72

The first hypothesis follows from Congruence (abs), and the second is derived

as
. see below
Pairs
2:0XTE e C(7,,7,) z:oXThH(1.,7,) C (mz,m 2)
Trans.
2:0XThE 7w, C(mz,m2)
Congruence
FAz:0X T2 EAz:0 X T.(me2,m 2)
— = Variables —— 5 —=— Variables
y:7HE?7,Cy r:oF?7,Cx
Congruence Congruence
z:0oXTHE7. Cmyz z:oXTHE?7, Cmz
Congruence

z:0XTH(7,,7,) C (maz,m2)

3.3 Metatheory

In this section we prove some results which illustrate the fine structure of the
refinement relation. Intuitively, refinement is a combination of coding, where
stubs are replaced with program code, and equational reasoning using the rules
of the calculus. It is possible to formalise this by defining an explicit coding

relation, ~», and factorising refinement into a combination of ~» and =.

Definition 3.3.1 We define the coding relation on well-typed terms, I' = r ~ 1/,

as the reflexive, transitive, congruence closure of the following one-step relation:

'Ht:r
I'E7?7. ~t
We can express any term, r , in the form t[?gll, ey ?5;;], where 75 means that

the subterm ?,, appears in ‘local context’ (of let’s and \’s) I';, and each such

subterm appears exactly once. Then I" b r ~» ¢/ means that for each ¢ = 1...n,

there exists a determined term I',T'; F ¢; : oy, such that T' & ¢[ty, ... ¢, =, t.
We now show that any refinement to a program can be given as a ‘standard

refinement sequence’ consisting of coding followed by equational reasoning.

Lemma 3.3.2 Let (Sg, Az) be a Ar-aziom system and suppose that
(Sg, Ax)y>T' Fr T, t'. Then there exists a term SqgoT' =t : 7 such that T 1~ t
and (Sg, Ax)>T' Ft=,1.

Proof: We can prove the lemma by induction on the derivation of refinement.
The inductive case involves showing that the coding can be extended back along

each rule. We consider two cases. The reasoning is similar for the others.

73

e Let Weakening
Suppose I' - r C let z: 0 be 1’ in 7 ~~ t”, where r = tl[?gll,~~~,?£Z]- By
the inductive hypothesis, there exists a ¢’ and t3[x] such that T' - ' C ¢
(the details of this refinement do not matter), and I', x : 0 & 7 ~ to[z] with
'Fletxz:obet inty =1, so I' - £,[t'] = t”. Now the coding of r gives
terms I',x : 0, Fw; 20y foreach i = 1...n, and so I',T'; b w;[t' /2] : 0.
Hence, I' 7~ to[t'] = ", by refining 707 to w,[t;/].

e Abstractions
Since this rule is given as an equation, we must consider the two directions
of refinement separately. Suppose
'tletz:0—7inAz: ot/ z, 22

C Az:o.(lety:7int/[?, 2,y]) ~ ¢

(using the abbreviated notation for let-terms). For clarity, we just indicate
the one specification 7,,. Here I'; records the context in ¢
By induction, there exist terms I',z:o,y: 7, F wlz,y] : o; and
I,z:o b ulz] . 7 such that '+ Az : 0.(let y: 7 be u in t'[u;, x,y]) = ¢,
that is, I' = \x : 0.t/ [u[z, u], x,u] = t.
Then, ' F Az :owfx] : 0 > 7and ', z2: 0 — 7,2 : 0, b wlx, z2] : 0; so
we can refine the left term to
'k let z:0 — 7 be Ax:owlz| in \x : 0.t/ [w[z, zz], x, zz], which equals
Az ot [ui|x, ulx]], z, u[z]], and this equals ¢.
Now we consider the reverse refinement. Suppose

I Az:o.(lety:7int/ 7,7, ,y])
C letz:0 — 7in\x:o.t/[7,} x, 2a] ~ ¢t

By induction, we have terms ' - v : ¢ — 7 and
Iz:0—71,2:0,1;Fuz x] : 0; such that

IF'Fletz:0—7beuin \v: o.t'[ulz, 2], z, 2] =t
so I'F Az @ o.t'[ufu, x], x, uz] = t.

Hence we have terms

I'Nr:obFux:t
Doy 7,1 Fwlu, 2] : oy
for which
I'FAx:o.(lety:7beur in t'|uu, x|, z,y]) =t
and so we can refine the left term in the standard way.

74

We can use this lemma to deduce that all auxiliary ‘claims’ made using Let

Weakening can be immediately satisfied.

Lemma 3.3.3 Let (Sg, Az) be a \s-aziom system.
If (Sg, Ax)>T F let z:0 ber in 1’ T, t” then there exists a determined term
SgeT Ft:o such that (Sg, Axy>T' Fr T, t and (Sg, Ax)y>T F1'[t/z] T, .

Proof: Suppose that r = u[?,] and r’ = u/[z, 75]7] Then by Lemma 3.3.2, there
exist ¢;, u; such that I' - let z : 0 be t[t;] in [z, u;] =, t". Hence, I' - r C, ¢[t;]
and r'[t[t']] T, t'[t]ti], us] =, t". i

Remark 3.3.4 For the above two lemmas to hold it is crucial that the ax-
ioms of a As,-axiom system just consist of determined equations, t =, t'. If,
for example, we had constants ki, ko, k3 : 7 and axiom ki]ky T, ks, that is,
let b:bool in (if b then ky else ko) T, ks, then we would not be able to find
a specific t : bool such that if ¢ then k; else ky =, k3.

In the introduction, we said that refinement should be thought of intuitively
as a reduction in the set of programs which satisfy a specification (or refinement
term, rather). We can formalise this by defining an ordering r <I' v’ on well-

formed terms I' = r : 7 and I' =" : 7, to mean: for all [V D T', for all determined
I'et:r, if IV C,tthen IV Fr C, £,

Lemma 3.3.5 (Refinement Mappings)
If let @y : 01,...,%, : 0, int <U' let 1 : 7,. ., Ym : T in ' then

for all i = 1...n, there exist terms U',yy : 71, ., Ym : Tm F t; @ 0;, such that

Coyr 71,y Um s T B[t /2y, ot fan] =t

Proof: First of all, note that this can be reduced by repeated pairing to the one
variable case. Now if let x:0 in ¢t <U let y:7 in t/, then since
Cy:7F let y:7in ¢/ C [y], we have ',y : 7 let x:0 in t C t'[y], so
by Lemma 3.3.3, there must exist a term T,y:7 F wly] such that
Doy :7mFtuly]] =, t. ||
Because of the definition of <I' in terms of all I” D T' we do not need to assume
that all types are inhabited. If ¢; and e; are both empty types, then it might
seem that let x : ¢ in * §<1> let : € in * since neither term can refine to a

determined term in the empty context, yet we cannot produce a term ¢ : €5. The

75

point is, though, that since we can use the context, x : €, to refine let x : €5 in %
but not let x : €; in * the terms are not related by §<1>
These metatheoretic results will be used in the completeness proof of the next

section.

3.4 Models

We can interpret the calculus using a simple generalisation of Henkin models.
In Chapter 2, Section 2.2, we used *~-Henkin Interpretations to give models
of the simply-typed lambda calculus. There, terms of type 7 were interpreted
as elements of a set 74. We will use the same apparatus, but interpret our
underdetermined terms as subsets of the 74, rather than elements.

We make one additional assumption of our models. We require that the func-

tion sets be ‘closed under factoring’.

Definition 3.4.1 We say that a *~-Henkin interpretation satisfies the factor-
ing condition if, letting f' € (1 —)4, f € (6 — 7)A: if for all b € T4,
there exists an a € o such that App(f’,b) = App(f,a), then there exists an el-
ement g € (1 — o)* such that for all b € 7, App(f’,b) = App(f,App(g,b)).
In other words, writing f for the function associated with f € A°~7, that is,
(a € o +— App(f,a)): if there exists a function h : T* — o such that f' = h; f,
then there exists an element g € (T — o)? such that f' = g; f. Note that we do

not require g = h.

The factoring condition is essentially a form of choice axiom and is necessary in
order to prove soundness.

Recall that signatures are the same for Ay and A*~.

Definition 3.4.2 Let (Sg, Az) be a \;-signature. A \.-Henkin interpretation of
(Sg, Ax) is a N*7-Henkin interpretation of (Sg, Ax) with the factoring condition.

Note that we do not require an environment model condition directly on the
interpretation of \; terms, but rather on the underlying A*~-Henkin interpreta-
tion. The condition lifts in the sense that satisfiable terms are given nonempty
interpretations. Moreover, the extensionality condition means that programs have
unique interpretations (as singleton sets).

Before proceeding further, we give an example of a Henkin interpretation with

the factoring condition.

76

Example 3.4.3 (Full set-theoretic function hierarchy) The sets of the full set-

theoretic function hierarchy for a given signature are defined inductively as

A

v~ = any set
14 = {x}
(0 x)4 =0o* x 74
(0 = 1)A =04 =14

The projection and application maps are the usual set-theoretic maps, and con-

stants are interpreted as any elements in the appropriate sets.

We will see below that the open term model is another example. First though,
we give an example of a Henkin interpretation which does not satisfy the factoring

condition.

Example 3.4.4 The applied A*~ theory with primitive types nat and bool,
and constants O : nat, succ : nat — nat, true : bool, false : bool, cond :
bool,nat,nat — nat and eq : nat,nat — bool has a Henkin model in which
nat? = A/, the set of natural numbers, bool? = B, the set of boolean truth
values, and the constants have the expected interpretations, where the function
sets are subsets of the space (¢ — 7)4 C 04 — 74, The elements of the model
are just those generated by the environment model condition, that is, just those
elements required to interpret the terms of the calculus. In particular, there is
no element corresponding to the predecessor function, although the function pred
such that pred; SUCC = 1idpes, Where idpes is the identity on positive naturals

An : nat.cond(eq(n,0),1,n), clearly exists.

As for A*7 in Chapter 2, meanings are given in an environment. For context
=2z :00,...,2,:0, (n > 0), a '-environment, n, in interpretation A, is a
tuple of elements defined as for A*~, and not a tuple of subsets. We write n FA T
when 7 is a ['-environment in A.

Now we interpret I' - r : 7 inductively on the structure of the typing deriva-
tion. In Figure 3.7 we define the interpretation of terms in context, I' - r : 7, at
[-environment, 1, written [7 : 7]4(n). We write the A,-interpretation of * as
{} rather than (the equivalent) 1* to emphasise the fact that the interpretations
are subsets. Similarly, we write the interpretation of ?, as {a | a € o}.

We say that the typing judgement, I' - 7 : 7, is true in interpretation A and
[-environment, n, written I' EA" r: 7 when [F r : 7]4(n) € 74. We say that

77

[T,z :0,T"Fx:o]nan)={a}
[CEr:n]=my - [T Fr, 7] =m,
[CFk(ry,...,m) 7](n) = {k*a, .. .an) | a; € mi(n)}

[T 1] (n) = {*}

[TEr:o]l=m [[Fr:7]=m

[TF (r,r) o x 7](n) = {a € (0 x)" | Proj{7(a) € m(n),Proj3"(a) € m'(n)}
[Cyz:obr:7]=m
[CEXz:or:0—7](n)={f€(c—7)"|Vaeat. App(f,a) € m(n,a)}
[T+ 7, :0](n) ={a|aca?}

[CEr:mx7]=m

[T Fm(r) s 7](n) = {Proii" (a) | a € m(n)}

[CEr:rTx7]=m

[I'F ma(r) : 7'1(n) = {Projy™ (a) | a € m(n)}

[TFr:oc—=71]=m [k :0]=m'
[C'F ' 7](n) = {App(f.a) | f € m(n),a € m'(n)}

[CEr:o]l=m [[x:obr:7]=m
[CFletx:oberinr :7|(n) = UaEm(n) m’({n,a))

Figure 3.7: Interpretation of Well-formed Terms

I'For:7is true in A, written I' 4 7 : 7, when it is true for all I'-environments
in A. It is easily seen that we have soundness of typing, that is, if ' - r : 7, then
FEAr:T.

Similarly, we say that the refinement, I' & r T, 7/, is true in interpreta-
tion A and environment 7, written I' B4 » . 7/, when [I' F r : 7]4(n) 2
[T F 7" 7]4(n), and define truth in an interpretation to be for all environments.

We will usually drop explicit annotation of an interpretation, A.

Definition 3.4.5 Let (Sg, Az) be a \r-axiom system, and let A be a \o-Henkin
interpretation of Sg. We say that A is a A,-Henkin model of (Sg, Ax) when each

azxiom in Ax is true in A.

We will prove soundness of refinement below, but first, it is easy to see that

for determined ¢, the interpretation [I' - ¢ : 7](n) is a singleton set. Now we

78

prove a standard lemma.

Lemma 3.4.6 (Substitution Lemma) For well-formed terms in context

T1iTly ey Ty Ty bEroTand Ut o7 (1=1,...,n), we have

[z 7,z T b 7] ({an, ..o yan) = [T F ot /z]](n)
where a; is the unique inhabitant of [I' +t; : ;] (n).

Proof: ~ The proof is a straightforward induction over the typing judgement
T1 Ty Ty i T E T 1T, [|
This may be compared with the analogous form for ‘substituting” an under-
determined term, which follows directly from the semantics of let-terms:
U [C,x:ob7 :7]((n,a)) =T+ let z:oberinr : 7](n)
a€m(n)

where m = [I' Fr: o].

Theorem 3.4.7 (Soundness) Let A be a \7-Henkin model of A2-axziom system,
(Sg, Ax). If (Sq, Az)>T Fr C, ' then T EAr T, 7.

Proof: The proof is by induction on the derivation of the judgement. Most cases

are straightforward. We prove two key cases.

e Let Beta
The interpretation [I' = let z:7 be ¢t in 7 : 7'](n) is defined to be
Userretrgop L@ 2 7 Fr](n,). Since t is determined, this is
[Tz :7Fr:7'](n,a) where a is the unique member of [I' - ¢ : 7](n), so by
the substitution lemma, the interpretation is [I" - r[t/x] : 7'](n).

e Abstractions (Equality rules)
It is easier to prove the simpler rule (3.5) of Proposition 3.2.16 sound (im-

plies the soundness of the full rule).
Let n =T

We aim to prove that

[CHletz:0 —7be? ., in Az : o.t[z,zz] : 0 — 7'](n)
=['FXz:0.(lety:7be? int[z,y]) : 0 — 7'](n)

Nowif f € [I'F1let z:0 — 7be ?,_, in Az : 0.t[z, zz]| : 0 — 7'[(n), that
is,
Useoomyalls 210 = 7 Az otz zz] : 0 — 7'](n, a), then
Ja € (0 — 7)A such that Vb € oA, fo € [I',2: 0 — 7,2 : 0 & t[x, z2] : 7']{n, a, b)
(3.6)
79

Andif fe['F A x:o.(lety:7be?. int[z,y]) : 0 — 7'](n), then

Vb € 0, 3ay € 7 such that fo € [T,z :0,y:7F tlx,y]: 7]{n, b, a)

(3.7)

We must prove (3.6) and (3.7) are equivalent. Suppose (3.6). Now let

b € 0. We can define a; as App(a,b). We have

foelz:0—1,x:0bFtx zz]: 7']{n,a,b)

=D,z :0,y:7kFtlx,y]:7]{nb ap)

by the substitution lemma, so (3.7) holds.

Now suppose (3.7). Define h : 04 — (0 x 7)* to be (b € o — (b, a)),

where ay, is any witness of the existential in (3.7). Note that & is a function.

We now use the factoring condition to construct a corresponding element

of the Henkin model.

First define f': (0 x 7 — 7/)* as the unique inhabitant of

[C'FAp:oxT.tmp,mp|:ox1—1]n).

Then we have h; f'(b) = f' (b, a;). Now, this equals
[T,p:ox 71t tlmp,mp| : 7'](n, (b, ap)) which, by the substitution lemma,
is [0,z :0,y:7Ft[z,y]]((n,b,a)). Then (3.7) can be read as f = h; f.

A such

By the factoring condition, there exists an element g € (0 — o X 7)
that f = g; f’. Now define a = App(App(comp, g),p2) € (0 — 7)A, where
the elements comp = [A\j:0 — o xT7.M\k:0x7T—7.\x:0.k(jr)] and

pa = [Ap: 0 x 7.m(p)] exist by the environment model condition.

We now prove (3.6). Let b € o*. Then, by assumption (3.7),
foel,z:oy: 1k tlx,y]: 7']{n,b,ay) which, by the substitution lemma,
is[['z:0— 720k tlx,zz] : 7'](n,a,b), so (3.6) holds.

Remark 3.4.8 A naive interpretation of A, in cpo’s where ? is interpreted as

1 is not sound. If we use a cpo with strict functions, then let z : o in 2 would

be interpreted as 1,.., and the let-weakening axiom would fail. For example,

2 C let n :nat in 2 would not be sound. On the other hand, if we use non-strict
functions, then this conflicts with the fact that the variables of the theory should

range over values (i.e. not L) so that the determined equations are extensional.

For example, using the eta rule for booleans, we can deduce that (1,2]3) =
(1,2)](1, 3). However, b]b’ would be interpreted as L, so (1,2[3) and (1,2)[(1, 3)

would be interpreted as (1, L) and Lpacxnas respectively, and the equation

would not be sound.

80

More significantly, however, we have completeness of the equational theory
of simply-typed underdeterminism with respect to the class of Henkin models
with factoring. This implies that the system is a conservative extension of the
simply-typed lambda calculus.

For the same reasons as in the case of Theorem 2.2.7, we only get a complete-

ness result if we restrict to nonempty types.

Theorem 3.4.9 (Completeness of equational system) Let (Sg, Ax) be a A7-aziom
system for which all types are inhabited. If T EA r T, v for all \»-Henkin models
A of (Sg, Ax), then (Sg, Ax)>T Fr C, ¢/

Proof: 'We give a sketch of the proof. The idea is to construct a minimal term
model for our signature of ground types, constants and equational assumptions

(with no empty types).

1. Define the term interpretation 7 as in Theorem 2.2.7. That is, define an
infinite context ', with an infinite number of variables at each type. Define

A as the set of = -equivalence classes of open (with respect to I'y,) deter-

-
mined terms of type 7, that is, 7* = {[t] | I's, ¢ : 7}. The projection,
application and constant interpretation mappings are interpreted syntac-
tically. Recall from Theorem 2.2.7 that this gives a well-defined Henkin

interpretation.

To see that the interpretation satisfies the factoring condition, suppose
hif = f, where f = [z : o F tlz] : 7] and f = [y : 7 F t'[y] : 7]
This says that for all terms ' : 7 there exists a term h(u') : o such that
tlh(u')] = ¢'[v/]. In particular then, for the variable y : 7, there exists some

term u[y] : o such that t{u[y]] = t'[y]. We can define n to be Ay : 7.u[y], and
then g; f = f'.

2. Prove that [I' Fr: 7](n) = {[t] | T F r[n/T] C, t}, where r[n/T'] has the
obvious meaning. The 7, case uses Lemma 3.2.17.
For abstractions:
[CEXe:or:0—7](g) ={[u]| foral T -t :0, T b r[n/T,t'/z] C, ut'}
The result follows since I'o o H Az : 0.1 Ty Av : ot iff for each I'oo ¢/ 7,
Lo Bt /2] T, t[t') x].
For let-terms, the interpretation is

[[Fletz:oberin[(n) = Uwrrromll:z: 07 1n.a)
= Ut rpyymca T 7' [0/Ta/z] E ¢}
81

Now ¢’ is in the set when there exists a t such that r[n/I'] C ¢ and
r'[n/T,t/z] Ct'. Hence (let z: o ber inr’')[n/T] C .

Conversely, if let z: 0 be r[n/I'| in r'[n/T'] C ¢/, then by Lemma 3.3.3,
there exists a t such that r[n/I| C ¢ and »'[n/T',t/z] C .

3. Prove that ' 7 r C, o/ iff (Sg, Az)>T Fr C, 1.
By step 2, I' 7 r T, 1/ is equivalent to: for all n EA T, r[n/T] <= +/[n/T7.

We show that this, in turn, is equivalent to I' - r T, 7.

Clearly T' 17 C, v = r[n/T] <L~ ¢'[n/T]. To get completeness, we need to
prove the converse. The crucial step uses the canonical form of refinement
terms. Suppose r[n/T] <= ¢/[n/T] for all n B4 T'. In particular, then,

~T

r <Ie /. We can express this using canonical forms as

letxy :00,...,Tp 0pint <E* let 17y, Ym: T int/

soassume r = let xy :01,...,T, 0, intandr’ = let y; i 71, ..., Ym : T iD t.
Now using Lemma 3.3.5 we deduce the existence of terms
Loy Y1 :T1s- -y Ym : Tm bt 2 0y (for ¢ = 1..n) such that
Doy U1 : Ty oy Ym = T = tt1/z1, ...t /2] =- t', and so, since by Let
Weakening, I'o(o Fr T, let 1 : 7, ...,Ym : Ty in 7, we have
lobFrCrlety 7, ..y Ym: T inr C,
let yp Ty v oy Ym T AR E[E /21, oot/]
Then this is equal to let y1 : 71,...,ym : T in t', which equals r'. Hence
' F 7 C, 7/, and since types are nonempty, we can substitute closed (deter-
mined) terms for each variable of I', that is not in I', getting
| R G W
Hence the interpretation 7 is a model of (Sg¢, Az), from which we conclude com-
pleteness. [|

The first two steps are standard in completeness proofs; the third is particular

to our calculus.
Corollary 3.4.10 IfT'tr:o then'F 7, C, r.

Corollary 3.4.11 For aziom systems with inhabited types, A; is a conservative

extension of *.

Proof: Clearly term models for *~-axiom systems satisfy the factoring condition
and so A7 is actually complete for A»-Henkin models. Since both calculi are
complete for A\,-Henkin models, and the determined equation I' - ¢ =, ¢’ has the

same interpretation, the result follows. [|

82

In fact, conservativity probably holds without the restriction to nonempty types.
This could be shown using a more general notion of model, such as Kripke models

IMMO1].

Remark 3.4.12 An alternative (and probably equivalent) approach would be
to interpret the term in context, I' - r : 7, as a set of mappings from ' to 74,
rather than as a single map taking an environment in I'* to a subset of 7. The

first approach would avoid the factoring condition.

3.5 First-order Logic of Simply-typed Refine-
ment

Just as we presented a first-order logic over the simply-typed lambda calculus
in Section 2.3, now we give a first-order logic of the equational theory of simple
refinement.

This combination of logic and refinement is not the same as internalising logic
into the stubs themselves; that will be carried out in Chapter 5. In this section
we present an ‘external’ logic for reasoning about refinement.

We should regard the logic as being orthogonal to refinement. Again, we
use classical first-order logic over a signature of primitive predicate symbols, and
constant symbols and ground types. We use first-order *~-axiom systems, as
in Definition 2.3.3, though now the atomic propositions are predications of the
form F(ry,...,r,) and refinements r T, 7.

In addition to the rules for refinement, we assume some (extralogical) axioms.
Given that we have universal quantification, we can take these, without loss of

generality, to be closed propositions.

Definition 3.5.1 A first-order A;-signature is the same as a first-order *7 -

signature.

Definition 3.5.2 Let Sg = (G, K, F) be a first-order \;-signature. The pre-

propositions over Sq are:
P:=11| F(r1,...,7) | PDP | Vx:7.P | r .o
where F' € F, and T and r are types and \q-preterms over (G, K) respectively.

The well-formedness judgement

SgoT F P wf
83

is the natural extension of that given in Section 2.3. For A a list of propositions,
we write

SgeT'HA wf
when for each P in A, Sg>T'+ P wf.

Definition 3.5.3 A first-order A\,-axiom system consists of a first-order As-signature,
Sg, and a collection, Az, of closed \;-propositions, well-formed in Sg, that is,
Sgr> () - P wf.

We will continue to write equations between determined terms as t =, t'.
Formally, these are propositions of the form ¢t =, ¢ At' T, t. Given our intuition
of constructing a refinement theory on top of a A*~-theory, it might seem nat-
ural to restrict axioms to only involve equations. However, if we allow arbitrary
propositions, even without refinement, then we will see below that we can encode

refinements as propositions of the form Vx : 0.3y : 7.t = t' anyway.

Definition 3.5.4 Let (Sg, Ax) be a first-order As-aziom system. We define the
first-order \;-theorems of (Sg, Az) to be the judgements which can be inferred us-
ing the natural deduction rules of first-order logic in Figures 2.7 and 2.8, Chapter
2 (extended to \;-propositions), and Figures 3.2 to 3.6, with the convention that
I'ErCor means U; A Fr &, 1 for all well-formed contexts, in order to include
the equational theory of refinement in the logic. As before, the judgements are of
the form
ARP

where I is a variable context, A is a list of propositions well-formed in I", and P
a proposition well-formed in I'. The meaning is: in context I', if each proposition
in A is true, then P is true.

We write (Sg, Ax)>T; A+ P to indicate that proposition in context I' = P is

a theorem of axiom system (Sg, Ax).

As in Chapter 2, the logic is complete over the same class of models as the
equational theory (now the first-order A,-Henkin models). After giving a seman-
tics and proving completeness below, we will be able to conclude that refinement
can be encoded in the logic using just equality. This does not mean that the no-
tion of refinement is superfluous. Rather, we can consider r =, 7’ to be a useful
high-level notation for some Ily-proposition.

Figure 3.8 gives the interpretation of propositions in a first-order \;-Henkin

interpretation. There we interpret well-formed propositions in context, I' = P wf,

84

[CHL1]=0
[CFE(ry,...,r)] ={nET| forall a; in [['Fr](n). (a,..., a,) € F4}
[CEFPDOP]={nET|n¢[lFPlorne[ltk P}
[CFVz:0.Pl={nET| forallain o*.(n,a) € [[',z: 0+ P]}
[CErCrl={nkET[[LFr:oln) 2 [Fr:0](n)}

Figure 3.8: Interpretation of Well-formed Propositions

as the set, [I' = P]A of environments, 4 T', in which P holds, though we usually
drop the superscript A. We write I' A7 P to mean n € [[' = PJA. If Ais a
Henkin interpretation, we say that I'; A EA7 P_if for all n AT, if I' E47 A for
each A in A, then I' A" P. We write I'; A EA P when I'; A 47 P for each
nEAT.

Completeness is with respect to the class of Henkin models (of the axiom
system) with the factoring condition.

We extend the definition of Henkin theory to account for refinement. The
idea is that a refinement is a form of existential for which we add a witness. If
let x:7int C, let 2/ : 7/ in ¢/, then for all 2’ : 7, there must exist an = : 7
such that ¢t =, t’. In fact, for completeness we make the stronger assumption that

we can make a uniform choice of x for each 2’ given by a term t" : 7/ — 7.

Definition 3.5.5 A first-order A\;-Henkin theory, T', over aziom system (Sg, Az),
in context, ', is a collection of propositions closed under derivation from (Sg, Ax),
such that for every proposition 3x : 7. P, there is a term I' &t : T such that Pt/ x]
is in T, and for every proposition let x : 7 int C, let 2’ : 7/ in t’ there exists a

term T'Ht" 7" — 7 such that Vo' : 7' t[t"2' [x] =, t' is in T.

One subtle point is that we must be sure that adding witnesses for refinements pre-
serves consistency. This is because the refinement let z : 7 int &, let 2’ : 7/ in t/
is admissibly equivalent to 3f : 7/ — 7.Va' : 7.t[fa' [x| =, ¥

Theorem 3.5.6 (Soundness and Completeness of logical system) Let (Sg, Ax)
be a first-order *~ -aziom system. Then, (Sg, Ar)>T; A P iff I; A EA P for
all Henkin models A of (Sg, Ax).

Proof: We modify the proof of Theorem 2.4.5. As there, soundness is straight-

forward to prove, and completeness is shown using a term model. We show that

85

any consistent axiom system is satisfiable. For axiom system (Sg, Ax), we want
to show that (Sg, Az)>T;A F P iff T; A B4 P in all A\,-Henkin models, A, of
(Sg, Az). (As in Theorem 2.4.5, we do not assume that types are nonempty.)

1. Given (Sg, Az) ¥I'; A+ P we want to find a Henkin model A of (Sg, Ax)
and T-environment, 7, in A such that I' 47 A for each A in A, —P.

2. Construct a maximal consistent Henkin theory A, and infinite context 'y,
such that Az UA U{-P} C A, ' C T, and A, is a A»-Henkin theory

inI'y.

As in the proof of Theorem 2.4.5, we construct a first-order \,-Henkin
theory which extends I" and Ax U A U {=P}, by taking the Henkin closure
of T'; Az U A U {=P} and the limit of sets of propositions, A’, which are

well-formed consistent extensions.

3. Construct the term interpretation A where 74

is the set of equivalence
classes of determined terms, where [t] = [t'] iff T'w; Ao F t =, t' and show
that [I' F r : 7]4(n) = {[t] | Te; Awe F r[n/T] =, t}. This requires the
generalisation of Lemma 3.3.2 to logical contexts. In contrast with Remark

3.3.4, this holds because of the construction of the Henkin theory A..

A is a Henkin interpretation with the factoring condition.

4. For all oy E T", prove that IV A" P iff Pi//T"] € As. The crucial cases
are dr : 7. P and r T, »/, which go through by virtue of A, being a ;-
Henkin theory. The r T, 7’ case is proven as in Theorem 3.4.9, with the

observation that the appropriate generalisation of Lemma 3.3.2 holds.

5. Hence A is a A\»-Henkin model of (Sg, Ax), and for ' = 21 : 01, ..., 2, : op,
defining 7 to be ([x1],...,[x,]), we have I A" A, for each A in A,-P. &

The use of canonical forms in the proof of Theorem 3.4.9 suggests that we can
translate refinement into first-order logic over A* 7, that is, just using equality of
determined terms. If we let r° denote the canonical form of open term r, then if
r°=1let x1:01,...,&, : 0, int, and 7"° = let y; : T,...,Ym : T in t', define
(rCyr)tobeVyy T, Ym T - 31 2 01, oo T Ot =, T

We use the completeness results (Theorems 3.4.9 and 3.5.6) to infer that the
logical system is a conservative extension of the equational system (which, in
turn, is a conservative extension of the simply-typed lambda calculus). In fact,

we have

86

Corollary 3.5.7 Let (Sg, Ax) be a first-order *~-axiom system for which all
types are inhabited. Then (Sg, Ax)>T Fr T, v iff (Sg, Az) > T () = r T, ' iff
(Sg, Az)> T () F (r &, 1)°.

Proof: Both systems are complete with respect to Henkin models (with the fac-

toring condition), and the statements have the same interpretation. ||

Remark 3.5.8 The above corollary suggests an alternative proof of complete-
ness. Since (r C 77)° is a proposition in first-order logic, we can prove directly
that » C ' (in A;) iff (r © #/)° (in FOL), and then use the completeness of
first-order logic over the A-calculus (Theorem 2.4.5) to deduce the completeness
of first-order A-.

3.6 Conclusions

Though the language we have presented in this chapter is very simple, we believe
that it captures an important part of program refinement. In combination with
the calculus of specifications in the next chapter, this gives a calculus which is

conceptually simple, but expressive enough to study program development.

87

Chapter 4

Refinement Types

In this chapter we develop a theory of refinement types. This is intended to
give us a calculus, A, for refining specifications, and for proving that programs
satisfy specifications. This is a necessary part of a theory of program refinement.
We will first justify our view of specification, and then outline what constructs
this requires in a calculus and the associated judgement forms. We then give the
calculus and illustrate its use with an example verification. In the final section
we give a semantics based on Henkin models and prove the system to be sound

and complete.!

4.1 Introduction

We address the question of what is a suitable notion of specification for a program-
ming language, where the properties of interest can be expressed using some given
program logic. Recall that we restrict our attention to those languages which can
be studied using typed lambda calculi, that is, typed functional programming
languages.

A number of possibilities can be considered. One is to say that a specification
is a type in some expressive type theory. This is the approach taken by [Luo91]
and [NPS90] for example. An integer square root function might be specified as
the existential type 3f :nat — nat . [In:nat . (fn)> =n V (fn)>+1=n,
where the logic is encoded in the type theory.

The problem is that this only works for an intuitionistic logic. Classical logics
are more common for specification, and cannot easily be encoded in type theories.
Also, programming languages generally have a simple type system of their own,
and this must somehow be related to the specification type theory. A further

problem is that it is not easy to combine nontermination with type theories.

IEarlier versions of some of the work in this chapter were presented in [Den97a] and [Den98].

88

Another possibility is to say that a specification is just a proposition of the
program logic with a distinguished free variable. Our square root example would
be the proposition Vn :nat . (f n)2 =n V (f n)2+ 1 = n, where f is a free
variable of type nat — nat. This is the approach traditionally taken by the
program refinement community. Morgan [Mor94| describes a refinement calculus
based on the use of first-order predicate logic.

However, this approach has a number of shortcomings, which we illustrate
with an example below. The main point is that for compositional verification
and program development it is better to put more structure on specifications.

In this thesis, we suggest a third possibility: a combination of the program
logic with the type theory of the programming language, known as refinement
types. The notion of refinement type has been studied extensively in program
analysis (under different names) and there are many different systems, depending
on the area of interest. The general idea is to have two levels — an underlying level
of program types, and a more expressive level of program properties, which are
then treated like types. For us, this more expressive level will be the specifications.
Hence we can exploit type-theoretic structure in our specifications, but do not
need to encode propositions as types but, rather, use them directly.

We describe a verification calculus based on the simply-typed lambda calculus
with products (A*7) and some ground types such as nat and bool. The satisfac-
tion of specifications by programs is axiomatised as a generalised typing relation,
in a sense which we make precise below. We do this by viewing specifications
as refinements of an underlying type, expressed using the program logic. We use
typed classical predicate logic as program logic here, and axiomatise an ordering
on the refinement types, to be viewed as an increase in information, or refinement
of specifications.

Refinement types are constructed as combinations of types and propositions
from the program logic. Types themselves are trivial refinement types, and we
can restrict a refinement type to those elements for which some proposition holds.
This is similar to subset types [NPS90]|, though not quite the same since we
maintain a distinction from the types themselves. Also, it is convenient to form
dependent functions and products at the level of refinement types, even though
the underlying types are not dependent.

Refinement types are not the same as subtypes though. For example, nat
might be a subtype of real say, but not a refinement type. Though we are
careful to distinguish refinement types from subtypes, equality is ‘stratified’ at

different refinement types as in subtyping systems.

89

Contexts consist of both variable assumptions x : ¢, and propositions P.
These are combined so as to make explicit the mutual dependencies in well-
formedness. The dependency arises because we allow refinement types in terms,
which in turn can appear in propositions.

We give a simple set-theoretic interpretation of the calculus. The main result
of this chapter is soundness and completeness with respect to the resulting class
of models.

In Section 4.2 we consider a simple example of specifying and verifying a
program in order to motivate the features of our calculus. We then give the syntax
and rules of the calculus in Section 4.3. In Section 4.4 we return to the example.
Section 4.5 gives the semantics and proofs of soundness and completeness. Finally,

we give some conclusions in Section 4.6.

4.2 Example

Let us consider specifying division by 2 on the naturals and verifying that a pro-
gram satisfies the specification. We will take the simply-typed lambda calculus
and classical first-order predicate logic as simple programming and specification
languages respectively. We will use the constant, natiter, for iteration over the
naturals, where natiter z f n computes the n-th iterate f™(z). As a first approx-
imation to specifications we use propositions with a distinguished free variable,
which we write as (z : 7) P where 7 is the type of the variable z in proposition P.

A program div2 which implements division on the naturals is
div2 = An : nat . m;(div2’ n) : nat — nat
where this uses the auxiliary function
div2’ = natiter (0,0) (Ap: nat x nat . (mp, mp+ 1))
Now this can be specified as
div2_spec = (f :nat — mnat)Vn:nat .n=2x* fnVn=2x* fn+1

We want to axiomatise a satisfaction relation sat between programs (closed

terms) and specifications, so that we can prove
div2 sat div2_spec

One simple way of doing this is to say that ¢ sat (z : 7)P is just taken to be a

notation for a typing and a proposition, with the rule that ¢ sat (z : 7)P when

90

t: 7 and P[t/x]. This example reduces then to proving
Vn :nat.n =2xdiv2(n) Vn =2xdiv2(n) + 1

Now, our specification language is rather cumbersome as it stands, so let us

introduce dependent products and functions as abbreviations
Yuop(y:7)Q for (z:0 x7)P[mz/x] NQmz/z,mz/y]

Hpoip(y : 7)Q for (f:o—71)Vo:7.PDQ[fr/y]

The dependent function Il,..p(y : 7)Q specifies some function which for all z : o
such that P, returns a y : 7 such that). This has combined the two quantifica-
tions in (f : 0 — 7) Vo : 0. P D Q[fx/y], which we read as some f : 0 — 7 such
that for all z : o, if P then Q[fz/y]. If we allow ourself the further abbreviation
of viewing types as trivial specifications, so that for example, nat can stand for

x :nat|T, then we can write our specification more compactly as
div2_spec = [l pas(m :nat)n =2xmvVn=2%xm+ 1

Now, using our abbreviations, the following rule is admissible from our definition

of sat

n:nat - m(div2’' n) sat (m:nat)n =2«mVn=2xm+ 1

An :nat.m (div2' n) sat pae(m nat)n =2«xmvVn=2xm+1

where we informally understand the sequent n : nat F ¢ sat ¢ to mean for all
closed t' : nat (or equivalently, for all numerals), ¢[t'/n| sat ¢[t'/n]. In general
then, we want to consider satisfaction in an arbitrary context. Note the similarity
to a typing rule. In fact, not only are ¥ and IT useful structuring devices for spec-
ifications, they are also useful for proofs, as specifications of programs often tend
to be most naturally expressed and proved in a ‘shape’ similar to the program.
For example, the program div2 is an abstraction and the specification div2_spec

is of the form II,.47). The rule directly reflects a natural proof that div2 satisfies

div2_spec. Similarly, the auxiliary function div2’ has specification
diV2/—SPeC = Hn:natEm:nat|n:2m\/n:2m+l (m/ : nat)m + m' =n

The proof of this, in turn, involves showing that a pair satisfies a product spec-
ification, and an abstraction satisfies a functional specification (as above). We
also have to use induction to show that an iteration satisfies some specification
parameterised on the naturals. We consider this example more fully in Section
4.4.

91

We do not throw away the original rule that ¢ satisfies (x : 7)P when ¢ : 7 and
P[t/x], however.

A significant benefit in writing specifications in this more structured form is
conceptual — it is preferable to structure specifications for then the task of com-
prehension need not be duplicated unnecessarily for specification and program.
Also, separate checks of well-formedness (i.e. type-checking here) and correct-
ness, will involve some duplication of effort, so it is better to combine types and
correctness properties. In order to be the basis of a useful program development
methodology, it helps for our specifications and proofs to reflect the structure of
the programs.

In this small example, the disadvantage of using propositions as specification is
not so obvious. However, structure is essential for large specifications so we build
it into the theory. Moreover, it is natural to incorporate equality in the definition
of specification, rather than express it as a separate proposition. McKinna was
led to the same conclusion in [McK92].

There is one final aspect of specifications which we must consider — equality.
The kind of specifications with which we are concerned here are those which
specify the input-output characteristics of programs. We are only interested in
programs up to extensional equality. The alternative, in a type-theoretic setting,
is to use an intensional equality and distinguish programs on the basis of syntactic
form.

This would be unnatural here however, so we view specifications as inducing
an equality on terms. This is a partial equivalence relation (per) on terms at
the underlying type. A per is a symmetric and transitive relation on some set,
or equivalently, an equivalence relation on a particular subset. The partiality is
because not all terms (of the corresponding type) need satisfy a specification.

For example, the specification IIj.nonempty11st (7 : nat)Min(n, [) where the propo-
sition Min(n,) says that n is the minimum element in list [, is a refinement type
over type list — nat. We want to regard functions f, f' : 1ist — nat as equal
solutions of this specification if they give the same results for nonempty lists. Any
program satisfying this specification must be defined on the empty list, but we
are not interested in the value it takes there.

Moreover, it is a useful abbreviation in specifications themselves to write equal-

ity at a specification, =T, p (5:7)Q where ¢ =M, p(y:7)Q t means
Vo, o' o.(x =, 2') A Plz] A Pl2'] D (tx =, t'2") A Qtx] A Q[t'2]]

Now, we would attain some conceptual simplicity if specifications were to

subsume types, satisfaction to subsume typing, and equality at a specification to

92

subsume the usual equality at a type (which is often left implicit). For example,
we use (n : nat)T in place of nat, and X, (ymat)7 (b : D00ol) T for nat xbool, where
Y2/ PY abbreviates Xg.(,.¢)p?, and similarly for II. At this point, we must cease
to regard IL,.,p(y : 7)Q as we did before, since the above convention means that
the equality is only with respect to arguments in (x : o) P, rather than o as for
(f:0—=7)Vor:0.PDQ[fx/y]

We believe it is misleading to regard specifications a rich form of types, though,
and refer to the specifications of this idealised specification language as refinement
types. We regard types, rather, as being part of the programming language, and
specifications as being constructed at a level above this.

In fact, we will take the denotation of refinement types to be a per. A speci-

fication therefore, is a refinement type, and denotes
e a set, together with
e a per over the set
We take a program in this calculus to denote
e an equivalence class of a per ¢

The alternative would be to take a program as denoting an element of the domain
of a per, but this would be unnatural because we would then be distinguishing
programs beyond extensional equality.

So refinement types induce a per on the set of terms of the underlying type.
The converse is not true, that is, not all pers of terms correspond to refinement
types. For example, the per R on naturals, n R n’ <= “both n and n’ are even,
or both are odd”.

We use a notation for the equivalence classes of pers, by allowing refinement
types on the variables in abstractions. For example, An : even.n denotes a class
in the per denoted by even — nat (functions in the corresponding set are equal if
they give the same results for even arguments) but not nat — nat, and An : nat.n
denotes a class in both even — nat and nat — nat. The meaning of the equality
t =, t' is that ¢ and ' denote sets in the same equivalence class of per ¢.

For refinement types ¢ and ¢’ over the same underlying type, we want to
consider refinements ¢ T, ¢/, to be thought of semantically as per inclusion (i.e.
equality at ¢’ implies equality at ¢). We use the square T, symbol to indicate an
information ordering — the refinement of specifications over type 7. Note that
this convention for refinement is the opposite direction to the usual subtyping

relation.

93

4.3 The Calculus

We now give the syntax of the system and describe its judgements. Some syntactic

results are then given and we give an operational intuition for the language.

4.3.1 Syntax

The idea is that we construct a theory of refinement types on top of an underlying
A*7 theory and a first-order logic theory. This is generated from a signature of
types, constants and predicate symbols (in the underlying theory) and axioms (in
the full theory). The well-formedness conditions on axioms will be explained in
Section 4.3.4 below.

We construct the theory of refinement types from the same basic data as the
first-order theories of lambda calculus. A A)-signature is the same as a first-order

A*7-signature. We repeat the definition.
Definition 4.3.1 A \(,-signature, Sg = (G, I, F), consists of:
e a collection, G, of ground types (ranged over by v)

e a collection, IC, of constant symbols (ranged over by k), each of which has

an arity n and sort Ty, ..., T, — T, which we write as k : 7,...,7, — T.

e a collection, F, of predicate symbols (ranged over by F') each of which has

an arity n and sort T, ..., T,, which we write as F': Pred (71,...,T,).

Although we do not have arbitrary refinement types as primitive in a signature,
we get much the same expressiveness using predicate symbols. For example, with
the primitive type nat, we could have predicate Even : Pred (nat), and write

even for the refinement type (n : nat)Even(n).

Definition 4.3.2 Let Sg = (G,K,F) be a A)-signature. The pre-expressions

over Sg are given by a mutual recursion over (pre-) refinement types, terms and

Propositions:
toum x| k() | ok | (B | Aot | m(t) | m(t) |t
P = 1| PDOP | Vx:9.P | F(t,...,tn) | t=4t | 0T, ¢

The pre-contexts are:

Fe=() | La:9 | [P

We say that I' = U is a pre-expression in context when I' is a pre-context, U is a

pre-expression, and FV(U) CT.
94

As for the previous calculi, we assume a countably infinite set of variables. We
adopt the usual abbreviations of ¢ x ¢ for ¥,.4,9 and ¢ — 1 for Il,.4, when
x ¢ FV(¢), and use ¢, ¢ and y as metavariables for refinement types. We
sometimes abbreviate the assumption x : (x : ¢) P, on abstractions or in contexts,
as x: ¢|P.

Conceptually, it is simpler not to distinguish types and refinement types as
syntactic categories. In an informal sense which we will later make formal, re-
finement types should be viewed as being refinements of underlying types, so for
example, if ¢ is a refinement of (we will just say ‘over’) o, and v is over 7, then
Y is over o x 7. Formally however, types are just refinement types with no
logical information, that is, not containing any propositions. We use ¢ and 7 as
metavariables for types, and refer to the type underlying a refinement type.

Here we extend the variable convention of p. 33 so that by writing x : ¢, where
¢ is over 7, we assume that x is drawn from the set of variables for type 7.

There is a term * of unit type 1. After we introduce the equality judgement
we will see that * is the unique term at 1 up to equality. The meaning of the
other refinement types in terms of satisfaction is that (¢,¢') satisfies 3., when ¢
satisfies ¢ and ¢’ satisfies ¢[t/x]; term ¢ satisfies I1,.,¢ when for every ¢’ satisfying
o, tt' is well-formed and satisfies ¥[t'/x]; and ¢ satisfies (x : ¢) P when it satisfies
¢ and the proposition P[t/z] holds.

We think of terms of the calculus as being simple specifications of terms in the
underlying *7. We will refer to terms of A*™ as total terms. Terms have their
usual meaning in the lambda calculus, except that an abstraction Az : ¢.t should
be thought of as a simple specification of terms Ax : 0.’ such that for all ¢’ which
satisfy ¢, t'[t"/x] satisfies t[t”/x]. For example, An : even.n specifies total terms
of type nat — nat which are the identity on even arguments. The application
(Ax : ¢.t)t" is only well-formed for arguments t” which satisfy ¢ so behaviour
outwith ¢ is not constrained. Note that this means that although even — even
is a refinement of the type nat — nat, the term An : even.n does not itself have
type nat — nat. Intuitively, we can say that a term ¢ has refinement type ¢ if
its behaviour ‘at ¢’ is uniquely determined, that is, any two total terms which
satisfy t are themselves equal at ¢.

The propositions are a typed first-order predicate logic of equalities and typed
refinements. In practice, we will almost always omit the subscript from ¢ C, ¢'.

We use classical typed first-order logic as an example of a simple expressive logic.

Remark 4.3.3 Our choice of first-order classical logic is only significant insofar

as it is an example of what we might call an extensional logic. In type theory, a

95

distinction is often made between extensional and intensional equality [NPS90].
Terms are extensionally equal if they have the same input-output behaviour, as
given by some proposition (hence, also called ‘propositional equality’), whereas
intensional equality is a definitional equality which is generally decidable.

In this sense, intensional means ‘relating to syntactic form’, but there is a more
general sense in which it is with respect to richer properties than input-output
behaviour, such as time-complexity, and it is this kind of predicate we want to
contrast with those used here.

Since we allow the propositional equality in properties, the system only makes
sense for extensional predicates. We make essential use of the fact that for all
terms t, ¢’ and propositions P, if ¢ is extensionally equal to ¢, then P[t/x] holds
if and only if P[t'/z] does.

Since the converse clearly holds, we can express this as saying that we re-
quire Leibniz (satisfaction of the same predicates) and observational (same input-
output behaviour) equality to coincide. It does not matter whether the logic is
classical or intuitionistic.

This can be contrasted with, say, the use of an intensional logic such as the
modal p-calculus, where terms are viewed as transition systems through their

reduction sequences.

4.3.2 Judgements

The main judgements of the calculus have the forms
'Ft:¢

r=~pr

where the atomic propositions include I' - ¢ =, t' and I' - ¢ T, ¢'. Equality and
refinement are not separate judgement classes from the other propositions. We
will write I' - ¢ = ¢’ for the mutual refinement ' - ¢ C ¢ and ' F ¢/ C ¢.

All judgements are made in a context I' of variable assumptions = : ¢ and

propositions P. There are also mutually dependent well-formedness judgements
FIT wf
'k ¢: Ref (1)
'k P wt

We say that a term ¢ is well-formed in context I' when there exists a refinement
type ¢ such that I' - ¢ : ¢. Note that ¢ need not be unique, though the underlying

96

type is unique. We understand I" - ¢ : ¢ to mean that for all the variables in
the context T, if they satisfy the relevant refinement types, then the term ¢ has
refinement type ¢. Sometimes we write ' =¢,t' ¢ for TFt:pand ' : ¢.

The well-formedness judgement for refinement types, I' = ¢ : Ref (1), says
that refinement type ¢ in context I is over the type 7. We abbreviate ¢ : Ref (1)
as ¢ wf when the type 7 is not significant. Although the extra information that
¢ is over 7 is not required for the well-formedness of ¢ itself, it is used to check
the well-formedness of refinements.

We use g as a metavariable for ‘syntactic environments’, that is, tuples of
terms which satisfy the refinement types and propositions in the context. We
will use the abbreviations g : I, g =r ¢ and t[g/T] to indicate simultaneous

satisfaction, equality and substitution respectively.

Remark 4.3.4 We should not think of Ref (7) as a power type of 7, since the
refinement 7 C ¢ is not the same as ¢ : Ref (7). This is because the attribution
of refinement types is not contravariant at function types. For example, since
nat — nat [£ even — nat we cannot regard even — nat as a subtype of
nat — nat even though it is a refinement type. The difference between power
types and refinement types can be seen by considering encodings in higher-order
logic. The power types of 7 may be encoded as 7 — Prop, whereas refinement
types of 7 would correspond to 7 — 7 — Prop, since specifications comprise a
(partial) equality relation. The A.)-calculus can be seen as a convenient formalism

for such relations.

4.3.3 A-Axiom Systems

A A)-axiom system consists of a collection of first-order axioms over some signa-
ture. There is a crucial difference from Definition 2.3.3, however. Since refinement
types can appear in terms, well-formedness involves logical reasoning and, in par-
ticular, can depend on the axioms. If axioms themselves are to be well-formed,
therefore, we must have some dependencies among the axioms. The problem is
that with axiom schemas it is possible for one instance to be needed to prove the
well-formedness of another. For example, an induction principle over the naturals
is schematic in some proposition P[n] for n : nat, but the well-formedness of P
might itself require induction.

This problem is common to all logics in which well-formedness depends on
provability. Rather than introduce a hierarchy of axioms, the solution we adopt
here is to drop the requirement that axioms are well-formed, and instead only

check for this when they are used in a proof.

97

It is natural to give axioms in a deliverables style [McK92]. If k is a unary
constant with sort ¢ — 7, then we give axioms of the form “if the argument
satisfies some specification then the result satisfies some specification”. We write
k : ¢ — 1 to mean that if ¢ has refinement type ¢ then k(t) has refinement type
Y. In general, we allow the refinement types to be open in some context. (Note
that this is not a judgement form (see below) but an axiom which we will use in

side-conditions.) Thus we have the following definition.

Definition 4.3.5 A \(,-axiom system, (Sg, Ax), consists of a A\(-signature, Sg,
and a collection of axioms Ax formed from pre-contexts and pre-expressions over

Sg. Axioms are of two forms:

e propositions in context, I' = P

e axioms for constants, Utk : ¢1,..., ¢, — 1.

We do not put any well-formedness requirements on axioms, but check for
well-formedness at the point of using the axiom in a proof. A similar convention
is adopted by Pitts for dependently-typed algebraic theories [Pit95].

Hence, although we intend that when £ has sort 7,...,7, — 7, that we have
'k ¢;: Ref (r;) (i = 1,...,n) and I' - ¢ : Ref (7) we do not enforce it in
the axiom system. We could, for example, have required for axiom I' = P that
FV(P) C T but this will follow automatically from the well-formedness check
when the axiom is used, and similarly for constant axioms.

Note that the sorting k£ : 7 — 7’ and axiom k : ¢ — 1 do not say that
the unary constant k is a well-formed term without the necessary number of
arguments. For ¢ : 7, we have k(t) : 7/, and if ¢ : ¢ then k(t) : ¢». We do, however,
consider sortings as axioms.

Allowing arbitrary propositions as axioms subsumes the definition of A*7-
axiom systems, since we can include equations in context between determined
terms, I' -t =4 t'.

Remark 4.3.6 It is not clear that it is necessary to allow arbitrary proposi-
tions as axioms in Definition 4.3.5. We will show later (in Section 4.3.5) that
induction schemas follow from the axiomatisation of the corresponding constant
for recursion. This suggests that we may only need propositional axioms in order
to axiomatise the predicate symbols. It seems that these axioms can always be
given in the form I' = F'(t) or I' = = F(1).

The axioms for constants could be given in the form 'z : ¢q, ..., 2, : dp F
k(zy,...,z,) : v, which is actually equivalent to the, perhaps more natural,
general form T'F k(ty,...,t,) : 9.

98

4.3.4 Rules of the Calculus

Definition 4.3.7 Let (Sg, Az) be a A)-axiom system. We define the theorems
of (Sg, Ax) to be the judgements which can be inferred using the rules of Figures
4.1 to 4.10. We write (Sg, Az) > J to indicate that judgement J is a theorem of

azxiom system (Sg, Ax).

Note that we consider judgements of well-formedness to also be theorems, since
they involve logical reasoning.

The rules of the calculus are listed in Figures 4.1-4.10. One distinctive feature
of the calculus is the mutual dependencies of the different syntactic categories,
and hence of the different judgement classes. Refinement types can contain propo-
sitions, which can contain terms, and these in turn can contain refinement types
in the abstractions.

In Figure 4.1 we give the rules for generating theorems from a A()-axiom
system. It is here that we check that an axiom is well-formed before it can be
used. The substitution rule is for an arbitrary basic judgement, B. The rule
is quite simple because we have explicit congruence rules for the equalities. By
encoding B as a proposition, and using the rules for implication and universal
quantification we can actually derive a more general rule:

Le:¢,I'EB T'Ht:¢
[, TV[t/x] - B[t/x]

Next we describe the well-formedness rules, starting with contexts. The empty
context is well-formed, and there are two rules for extending an existing context.
Figures 4.2 and 4.3 give the well-formedness rules for contexts and refinement
types respectively.

The well-formedness rules for refinement types essentially involve stripping off
the logic while checking that everything fits together correctly. There are checks
on the well-formedness of the context for the base cases so as to ensure that all
provable judgements are well-formed. Similar conditions are made for the base
cases of the other judgement classes.

It is straightforward to formulate well-formedness rules for propositions. These
are given in Figure 4.4. In proving the well-formedness of the implication P O P’,
we can assume the truth of P for proving the well-formedness of P’. For the
equality ¢ =4 t’ to be well-formed we require that ¢ and ¢ are both well-formed
and have refinement types over the same type as ¢. We do not require that ¢t and
t’ have refinement type ¢. This allows us to express the refinement typing t : ¢ as

the proposition ¢t =4 . The appeal to refinement typing is why well-formedness

99

—— Axioms

I'EP wt
TLp (I'FP € Ax)

—— Weakening

Fl,rzl_B F1|_¢ wf
F1,$I¢,F2|_B

—— Permutation

i, 21: 01,090,290 : 9o, T3 B T F ¢y wf |
[y, o0 ¢2, o2 1 1, I3 = B (21 & T2, 62)

— Substitution
Nx:¢oFB T'Ht:o
'+ Bt/x]

Figure 4.1: Theorems Generated from a A()-Axiom System (Sg, Ax)

—— Empty Context

—— Variable Assumption

Tk we
To ot CED

—— Propositional Assumption

[P wf
FT,P wt

Figure 4.2: Well-formedness of Contexts

100

Unit

FIT wf
I'F1: Ref (1)

—— Product

I'F¢: Ref (o) T,z:¢kF1: Ref (1)
I'F X, : Ref (0 X 7)

— Function
I'F¢: Ref (o) T,z:¢kF1: Ref (1)
I' 1.4 : Ref (0 — 7)

—— Refinement Types

'F¢: Ref (1) Tyax:¢kF P wf
' (z:¢)P: Ref (1)

—— Ground Types

FI' wf
['F~v: Ref () (v€9)

Figure 4.3: Well-formedness of Refinement Types

101

involves logical reasoning, and this propagates through the well-formedness rules
for the other syntactic categories. Similarly, the refinement ¢ C ¢’ is only well-
formed when ¢ and ¢ are over the same type.

In Figures 4.5 and 4.6 we give the refinement typing rules, which also serve
as well-formedness rules for the terms. Where this differs from the simply-typed
lambda calculus is in the logical reasoning which pervades the rules. This is
evident in the Constants rule, where well-formedness uses a logical axiom. If
constant symbol k has axiom [" - k : ¢1,...,¢, — v € Ax, then we infer a
refinement typing in the more general context I, where IV C I'. If I' - ¢; : ¢;
for i = 1,n, then we infer I' - k(t1,...,t,) : 0. The reason for the more general
context is so that from an axiom like n : nat - &k : ¢[n] — 1[n], we can infer that
x 1 ¢2] F k(z) : ¢[2], by using the context n : nat,n = 2. (In fact, in the case
of refinement typing, we can derive the more general rule for constants from a
simpler one, but this is not the case for the rule of Constant Equations below
so we keep both rules in the same form.)

The refinement typing rules are the natural generalisations of the usual typing
rules for the simply-typed lambda calculus with products. For example, the
introduction rule for abstractions is

rx:pkFt: Y
| R VR A P

For Ax : ¢.t to be well-formed in context I, it is sufficient, but not necessary
that t is well-formed in context I', x : ¢.

This is because our notion of well-formedness is ‘having some refinement type’.
For example, we have An : nat.(Am : even.m)n : even — nat, although the body
is not well-formed in the context n : nat.

We have the obvious introduction rule for proving that a term inhabits a

refinement type, and a weakening rule:

CHt:(z:0)P L-t:¢

The corresponding elimination rule — concluding that ¢ : ¢ from ¢ : (x : ¢)P —
follows from the weakening rule and the refinement rules which we give below.

One further rule is
F'Et=4t

'Et:o¢

Inferring a refinement typing from an equality may seem strange, but it saves us a

few rules. The reason for this is that in proving refinement typings and equalities

102

—— Falsehood

FI wt
' 1 wt

—— Implication

r-Pwt I''PFP wf
I'FPDP wuf

—— Universal Quantification

Ne:¢oF P wi
'FVx:¢.P wt

—— Predication

Fl—thbl Fl—tngbn
'k ¢y: Ref (1y) -+ T'F ¢, : Ref (1)
TFF(ty,... t,) uf

(F: Pred (m,...

;Tn) € F)

—— Equality
'Et:yY Lty Tk,9 ¢: Ref (1)
ThHt=4t wf

— Refinement
'F¢: Ref (1) T'F ¢ : Ref (1)
o T, ¢ wE

Figure 4.4: Well-formedness of Propositions

103

—— Variables
T, xz: ¢, IV wf
Cox:o,I"Fax: ¢

—— Constants

' ¢y : Ref (1) --- I'F ¢y, Ref (7,)

['F 4 : Ref (1) / . |
Thti:¢y - Tty oy g";lk-%;--;qi?e—;cl‘beAx,
TFk(ty,... ty):0 bt ;

Unit

T wf
'Fx:1

—— Product Terms
F'Ht:¢p THE:Yit/z] T,x: ¢k wf
I'E (1) st
Dt Y0 Dt Y0
Thm(t): ¢ T F mo(t) : lmi (1) /2]

—— Function Terms
x:obt: 9y
I'EAz ot 140
F'Et: ey TEE: 9
Tkttt /2]

Figure 4.5: Refinement Typings

104

—— Refinement Type Introduction
'kt:¢ Tk Plt/x]
FEt:(x:)P

—— Equality

Tht=yt
'Ft:o¢

—— Weakening

THt:¢) THOLC ¢
Tt

Figure 4.6: Refinement Typings cont.

we need to be able to combine assumptions on subterms. Since equalities are

subscripted with a refinement type, the rule lets us use equality rules to prove a

refinement typing. For example, the congruence equation for abstractions is
Fe:opFPwt Tax:g,PHt=yt
I'FXx:(x:¢)Pt=n w AT Pt

z:(z:9) P

which lets us prove that An : even.n =gyeneven AN :nat.n, and so we can in-
fer that An :nat.n : even — even. The more general inference for ¢/ C o,
that A\v: ¢.t =p, 4 Av: ¢, is not actually sound. For example, the term
Af : even — nat.f does not have the refinement type (nat — nat) — (nat —
nat).

Figures 4.7 and 4.8 give equality rules for terms. In combination with the rule
of Equality, the Congruence Equations for abstractions lets us prove (as in
[Asp95]), for example, that An : nat.n : even — even even though nat — nat
and even — even are incomparable (which is an obstacle for some subtyping
systems).

The n-equalities for abstractions and pairs have unconventional hypotheses,
enabling us to combine logical and typing assumptions.

L.x:oFtr: I'Em(t): ['Fmo(t) : Ylm(t)/x

'k /’\x ; Z.tm :Hiw t (z & FV(2)) ;(Ij <7T¢i(t), 7r2(t§§):Zji[wlt(=

The usual hypothesis for the abstraction rule would be I' = ¢ : II,.49. The

following example makes essential use of this rule.

105

Example 4.3.8 We use the n-equality for abstractions to infer a refinement typ-
ing.
f :nat — nat,Vz : nat.Even(fz),n :nat F fn:nat
f :nat — nat, Vx : nat.Even(fz),n : nat - Even(fn)
f :nat — nat,Vz : nat.Even(fx),n :nat - fn: even
f :nat — nat,Vx : nat.Even(fz) F f =pateven AN : Dat.fn
f :nat — nat,Vx : nat.Even(fz) - f : nat — even

Function Egs. ()

Similarly, we use the n rule for pairs in order to prove, for example, that
z:0 X T,Plmz],QlmzlFz:(x:0)P X (y:7)Q

The well-formedness hypothesis in the rule of Logical Congruence is important

since, with stratified equalities, we require equality at the appropriate refinement

type.

Remark 4.3.9 We can define singleton types. For t : ¢, write {t}4 for the
refinement type (x : ¢) x =, t. Then we have I' = P[t/z] iff I',z : {t}, F P. We
conjecture that the A(,-calculus is a conservative extension of Aspinall’s singleton

types calculus [Asp95].

Example 4.3.10

n :nat,Even(n) F n : nat i i
. () Ref.Types (R) n:event n :even Reflexivity
nat C (n : nat)Even(n) n:evenk n =qyen N

Cong.Eqs.
AN eVeN.N —eyeneven AT : NAL.T

An :nat.n : even — even

Equality

Using the symmetry rule we can deduce the symmetric forms for the congru-
ences. e.g. if t =s g t' then ma(t) =ypr, @y m2(t).

Figure 4.9 lists the refinement rules. These are of two kinds — ‘structural’
and logical. The obvious structural rules are

FT wf PFoC ¢ Ta:gbyp Ty THYCY Mgy Ty
-1 E]- Fl_Ez:qﬁwEZx:dﬂd/ Fl_Ha::¢>w;Hz:¢/d/

The interesting rules, however, are for refinement involving propositions. We
must say when an arbitrary refinement type is a refinement of a type with a

proposition, and when it refines to one.

'-oCvy T,x:¢YFP x:Y,QFx:¢
['E(@:9)PEY I'-¢C(z:¢)Q

The only other refinement rule is transitivity of refinement.

106

—— Equational Reasoning

Tht:g¢
THt=yt
Tht=yt
THt =4t

Tht=gt' THt =4t

TFt=4t"

—— Function Equations

Dx:obt:yp T'HEY ¢

/ / (/6)
'+ (/\l‘ . qb.t)t =[t! /] t[t /l‘]
x:obFtr: vy
Tz : gt =, t (v & FV(£)))
—— Product Equations
F"tligbl Fl—tglqbg (5)
'+ 7Tz‘<t1,t2> =, tz
CEm(t): ¢ TEm(t): m(t)/x] ()
[(mi(t), ma(t)) =s,.,0 t
—— Unit Equation
'¢:1
't =1 *

Figure 4.7: Equality Rules

107

—— Constant Equations

'k ¢y: Ref(mq) -+ I'F ¢y, : Ref (7,)

['F: Ref (1) /
Tty =g t) - TFt, =y t U'Ekidr,....0n— ¢ € Az
— k:ti,...,7 —T€K;
Tk k(ty,. .. ty) =y k(t;, ..., 1) pg}

—— Congruence Equations

Fe:pFPwuf Tax:g, PHt=,t
LEAp (20 @)Pt=n,, ., pp AT Ot

Dbty =m0 t) Thty=th

I' - tts =p[t2/z] t)t),
Tkt =g t, TFty =g /e th
[E (t,t2) =5, (11, 12)
Et=g, ot [Et=g, ot
IEm(t) = m(t) DEmo(t) =uimi(t)/2) m2(1)

—— Logical Congruence

Tht=4,t TrPt/z] T,a:¢F P uf
TFt =@gyp

—— Weakening

Thi=yt THOLC ¢
TFt=yt

Figure 4.8: Equality Rules cont.

108

Unit

—— Product

'FoE¢ Tx:pkoyp Ty
TF Sppth C Saupt)!

—— Function

FYCo Ta:pbyp Ty
[F ygtp C Myt

—— Refinement Types

oy T,x:yYFP (L)
Tk (z:0)PC ¢
Fx:Y,QFx:¢ (R)
F'FoC (z:9)Q

—— Transitivity

FFoC¢ THYLCP
o C ¢’

Figure 4.9: Refinement Rules

109

—— Conjunction

'-P THQ
'EPAQ
'EPAQ 'FPAQ
r=rpP '@
—— Disjunction
'FP I'kFQ wf 'FPwt T'HQ
'-PVvQ '-PvQ
r-pPvqQ TI''PFR T'QFR
'R
—— Implication
IPEQ '-P TTEPDQ
'-P>Q '@

—— Universal Quantification

'EVr:9o.P T'Ht:9¢ x:¢oFP
['F Plt/z] '-Vx:¢.P
— Falsehood
L+ P wf I-PFL
LLEP =P
—— Assumptions
['FP wf
IPHP

—— Elimination Rules
'tt=4t' T,o:¢FP wt I'F Pt/x]
' P[t'/x]
FEt:(x:9)P
'k P[t/x]

Figure 4.10: Natural Deduction Rules in a Theory of Refinement Types

110

Finally, the rules of the logic are given in Figure 4.10. This is a natural deduc-
tion presentation of a typed classical predicate logic of equalities and refinements.
Assumptions in context can be used via Assumptions or Elimination Rules.

In order that when I' - P is derivable, we have well-formedness of P in I,
some rules (for false and assumptions) have explicit well-formedness hypotheses.
This prevents us proving non well-formed equalities from 1.

Contexts differ from the usual formulations of typed lambda calculi since they
contain propositions. The two forms of assumption are combined in the one
context to make explicit the mutual dependencies. This is illustrated by the two

introduction rules:

PEQ lz:¢oFP
'-P>Q 'EVx:¢.P

We need a refinement typing for the V-elimination rule

'EVe:90.P T'Ht:¢
L'k Plt/z]

and refinement typings are also used to infer propositions with the rules

'Ft=4t T,x:¢FP wt Itk Plt/x] LHt:(z:0)P
TF Pi/z] T F Plt/a]

4.3.5 Booleans and Naturals

We give axioms for booleans and naturals which combine the typing and logical
rules of Chapter 2.

We give the \(.)-axiom system for booleans in Figure 4.11. There is one ground
type bool, and constants true : bool, false : bool and if _ then _ else _ :

bool, 7,7 — T, for each type 7. The axiom schema for conditionals is given as
if _then _else _: P+ P (z:9)PDQ[z], (y:¢) P DQly — (2: ¢) Q7]

where P+ P’ abbreviates (b : bool)b = true D P A b= false D P’. The axiom
says that if the truth of the boolean condition implies P, and its falsity implies
P’, and under these assumptions we can infer that the respective branches have
refinement type (z : ¢)@, then the conditional as a whole has this refinement
type.

In fact, this axiom implies the others. A particular case of this axiom is

I''b=truett:¢ I',b=~falsett :9
I'+if bthentelset : 4

111

—— Sortings

true : bool
false : bool

if _then _else _:bool, 7,7 — T

—— Axioms

x:¢,y: - if truethenz elsey =4
x: ¢,y if false thenz elsey =4 y
f:bool — 1), b:bool - f(b) =, if b then f(true) else f(false)
if _then _else _: P+P' (z:¢)P D Qlz],(y:¢) P D Qlyl — (2: ¢) Q[z]

Figure 4.11: Axiom System for Booleans

This could be expressed more elegantly using sums, which we have not studied
here.

In Figure 4.12 we give the A\y-axiom system for naturals, making use of the
singleton type notation from Remark 4.3.9. There are the zero and successor
constants, and two constants for recursion. There are refinement typing and
equational axioms for each form of recursion.

We give constants for both primitive and well-founded recursion. Primitive
recursion enables us to write simple terminating programs which loop through a
finite set of the values of some type, such that at each stage the program has access
to the computation on the previous value. This is the functional equivalent of the
for-loop. We use the constant natrec for primitive recursion over the naturals.

However, many programs are most naturally expressed by a form of recursion
for which, at each stage of looping over the values of some type, the program has
access to computations on all previous values. For example, the recursive call of
the merge sort algorithm is not to the tail of a list, but to a sublist. What we
require is the functional equivalent of the while-loop. The problem is that, in
general, while loops do not terminate, and if we add a construct for full recursion

to the simply-typed A-calculus, then this results in inconsistency.?

2If we have constants mu, : (7 — 7) — 7 such that f: 7 — 7 F f(mu,(f)) =, mu,(f), then
we can prove all well-typed equations. Let not : bool — bool and eq : bool — bool — bool
be the negation and equality functions, respectively. We can use the n-equality for conditionals
to prove that b : bool - eq b b = true and b : bool I eq b not(b) = false. By substituting
MUpeo1 (not) for b, we can prove that true = false.

112

—— Sortings
0 : nat
succ : nat — nat
natrec : 7, (nat — 7 — 7),nat — 7

natwfrec : (nat — (nat — 7) — 7) —» nat — 7

—— Axioms

n :nat F natrec : ¢[0], IL,,.nac0[n] — ¢[succ nl, {n}tnar — &[]

CEz:¢[0] TFs:Ipaon — ¢succ nj
I' F natrec 2 5 0 =40 2
C'Ez:¢[0] TFs:Ipaén — ¢succ nj
I',n :nat F natrec z s (succ n) =g[succn] S 7 (RAtrec z s n)

natwfrec: (Hx:nat(ﬂz<m¢[z]) - ¢[I]) - Ha::natgb[x]
g : Hpmar(Hc20[2]) — ¢[z], n : nat - natwfrec g n =4, g n (natwfrec g)

Figure 4.12: Axiom System for Naturals

The solution is to restrict the recursion to loops which terminate. This can
be done by defining a well-founded order on the data which the recursion is
over, such that at each stage the computation on a value can only make use of
computations on values lower in the order. This form of recursion is known as
well-founded recursion [Nor88]. We will only use well-founded recursion over the
naturals with the usual less-than ordering. We write II,.,¢[z] for IL,.pae(2<2)P[2]-

Rather than separate the proof of termination from well-formedness, however,
we build it in by defining a constant, natwfrec, which can only construct ter-
minating loops. The termination requirement can be expressed using refinement

types.
The sorting is

natwfrec : (nat — (nat — 7) — 7) — nat — 7
and the axiom is given as a refinement typing:

natwfrec : ([l (I, 0[2]) — @[z]) — Ilipas@|]

113

Recursion is formulated, without sacrificing termination, by
g Hpmae (Hoc00[2]) — @[z], n:nat - natwfrec g n =4, g n (natwfrec g)

If f:nat — 7 is given recursively as f(n) = t[n, f] where the body of the loop,
t[n, f], is such that f is applied to values smaller than n, then we can define f as
natwfrec (An.Af.t). Then,

fn = natwfrec (An.Af.t)n
= t[n,natwfrec (An.\f.t)]
tn, f]

so that f n can be thought of as looping to t[n, f].

The induction rules of Chapter 2 can be derived. For n : nat - Pln| wf we
derive the rule of mathematical induction:
PI0] Vn : nat. P[n] D P[succn]
x:(z:1)P[0] An:nat.Az: 1. : Ipa(z: 1)Pn] — (2 : 1)P[succn)]
n :nat - natrec * (An:nat.Az:1.x)n : (z:1)Pn]
Vn : nat.P[n]

Similarly, we can derive well-founded induction, and computational induction

for natwfrec: for g : nat — (nat — 7) — 7 and x : 7,n : nat - P[z,n] wf,

Vn : nat.(Vn' < n.Plnatwfrec g n']) D Plg (natwfrec g n)]
Vn : nat.P[natwfrec g n|

In fact, as noted on p. 47, well-founded induction follows from mathematical
induction which, in turn, can be derived from the axiom for natrec.

Although constants are added in the simple type theory, axioms are given
using refinement types. For example, although natwfrec ¢ is always defined for
g of appropriate type, the recursion equation for natwfrec only holds when ¢ has
the appropriate refinement type. Semantically, natwfrec is interpreted as a map
from the set of the underlying type, but the interpretation is only constrained on

the refinement type.

4.3.6 Metatheory

We prove a few syntactic results about the calculus. Some of the following results
will be needed in Section 4.5 for proving completeness with respect to the seman-
tics. Other standard metatheoretic results (not listed here) can be deduced from

completeness.

114

Lemma 4.3.11 The following is derivable:

Tht:¢p T,o:¢FP
C'Et:(x:)P

Proof:
'FoCo¢ T,x:0FP

THt:¢ TF(z:0)PCo
CHt:(x:0)P

|
We use this to show that the rule of Refinement Type Introduction is

derivable.

Lemma 4.3.12 The rule

THt:¢ Tk Plt/d]
F'Ft:(x:)P

1s derivable.

Proof:
F'Ht:¢ 'k P[t/x]
't {tyy Lz:{t}sFP
PEt:(z:{t}y)P I'o¢C{t}
C'Et:(x:)P

It is an easy proof to show that for well-formed refinement types I' = ¢,
we have reflexivity of refinement I' - ¢ C ¢. We now give some other derived

refinements.

Lemma 4.3.13 The following rules can be derived:
x:pFP DP THoLC ¢
1. TH(x:9)PLC (z:¢)P
I'PF ¢ wt
2.T,PF(x:9)P=2¢
I'-¢ wt
3TH(x:9)T =0¢
' wt Ty wE Dx:¢p,y: Y FQ wit
4. TF agyp(y - 0)Q E (f < Haigt)) Vi : 0.P D Q[fx/y]
'-¢pwt Tx:oFyY wt ax:¢,y:vEQ wt
115

'c¢pwt Tx:pFPwt Dax:oFyv wE Tix:oy:yYFQ wt
6. T'F3p@epr:)Q = (2:Ee0) Plmz/x] A Qmz/x, mz/y]
o wt Tyy:obFPwt D,x:¢, Plz/ylF Q wt
7. TH(z:(y:9)P)Q=(2:0)Plz/y] NQlz/x]

In Remark 4.3.4 we said that refinement types correspond to a relation over
a type rather than a subset. One consequence of this is that we cannot give
a canonical form for refinement types simply using a type and a proposition as
(x : 7)P. This is in contrast to in [NPS90], where subset types are given meaning
via a translation into the underlying basic type theory (see Section 5.4.3).

Instead, we introduce the notion of pseudotype, which we will use in the proof
of completeness. These have some of the properties of types. For example, pseu-
dotypes have no logical import, in the sense that they are inhabited if and only
if the underlying type is. Moreover, we can express all refinement types in a

canonical form as a propositional ‘subset’ of pseudotypes.

Definition 4.3.14 The pseudotypes for a giwen A(-signature are given by the
grammar:

ku=1 | v | Bpwk' | gk

To see that we must keep the dependent constructors consider, for example, the

refinement type X,.0at {7 }nat — nat. This cannot be expressed in the form ¢ x ¢’
for any ¢ and ¢'.

Lemma 4.3.15 For all' = ¢ wt, there exists a pseudotype k and proposition P
such that, T+ ¢ = (x : k) P.

Proof: Use the rules in Lemma 4.3.13. |

Lemma 4.3.16 If 1L .T'F ¢, ¢ : Ref (1), then L.TF ¢, ¢.

Proof: By Lemma 4.3.15, we can assume, without loss of generality, that ¢ and

¢’ are in canonical form. The proof is a straightforward induction over 7. |

The evident generalisation to arbitrary propositions (if L,I" + P wf then
1, T'F P) holds also.
Well-formedness of terms is a combination of typing and satisfying logical

properties. This is illustrated in the following proposition.

Proposition 4.3.17 Given preterm t in context I', the following are equivalent:

116

1. Typify(t) is well-typed in typing context Typify (L"), where Typify replaces
each occurrence of a refinement type with its underlying type and removes

propositions from the context.
2. There exists a refinement type ¢ such that L, T+t : ¢.

3. There exists a type T, such that for all L, T F ¢ : Ref (1), we can prove
1, Tt .

Proof: Clearly (3) implies (2) and, by Lemma 4.3.16, (2) implies (3).
We induct over preterms to show that for each I' F ¢, (1) is equivalent to (2,3).
We write U for Typify(U). We just consider two cases.

(applications) If L T" ¢’ : ¢ then there exists a ¢ such that L, T'Ft:¢ — ¢
and L, 't : 4, so by induction, TF#:0 — 7and I' F ¢ : o for some o

and 7, and so I -t : 7.

Conversely, if T -t/ : 7, then T +7:0 — 7 and T - ¢ : ¢ so, by induction,
1. I'Ft:¢p—pand L,T'H :¢, and so L, T tt' : 1.

(abstractions) If L, T'F Az : ¢.t: x then L I,z : ¢, PFt: X for some P and
Y,sol,z:o0Ft:7andthen T F \x:0f:0 — 7, thatis, I F Az : ¢.t :

g —T.

Conversely, if T F Az : ¢t : 0 — 7, then I,z : o F : 7 so, by induction,
LIz okt for some ¢, and so, L, ' Az : ¢.t : I .4%. ||

Definition 4.3.18 Let ' -t be a preterm in context. If the conditions of Propo-
sition 4.3.17 hold, then we say that ' -t is well-structured.

We extend the definition of well-structuredness to arbitrary pre-expressions,
and write ' U ws for L, ' U wf.

We will sometimes say, informally, that an expression U is well-structured.
Note that if I' is well-formed, then I' - U wf iff I', L - U wf.

There are two levels of ‘well-formedness’ therefore. What we have called
well-structured corresponds to terms being put together correctly, irrespective
of logical annotation, whereas being well-formed, as such, means that the logic
is respected. In contrast to well-formedness, Proposition 4.3.17 shows that well-
structuredness is decidable.

This distinction is reminiscent of the rough types of Sannella and Aspinall,
which are like the type underlying a refinement type.

We will see in Section 4.5 that we only give a semantic interpretation to well-

structured terms.

117

Proposition 4.3.19 IfI'F ¢,¢': Ref (1), thenT'F ¢ C (z:¢') L.

Proof: Since Typify(I'),xz:7 F z : 7, by Proposition 4.3.17 we infer that
[Lz:¢', LFx: ¢, and so Refinement Types (R) gives ' C (x:¢') L. N

Remark 4.3.20 Refinement is a definitional extension of refinement typing in
the sense that ',z : ¢’ -z : ¢ if and only if ' - ¢ C ¢'.

Dx:¢'Fx:¢
Lex:¢, Thx:0¢
F'FoC (x:¢))T

PFYCY Ta:d kT
IF(@:9)TCd

Ref.Types (R) Ref.Types (L)

I'EoC ¢

In fact, this can be strengthened by showing that for all I' - ¢ wf, we can prove
F'FoC ¢ =Vo,y: ¢ . x=pyDr=4v.

A natural question, then, is can we eliminate the refinement relation and treat
it as syntactic sugar? As the calculus stands, the Weakening rule for refinement
typing has a refinement as hypothesis and so we cannot naively treat ¢ C ¢ as
syntactic sugar for I'yz : ¢’ - x : ¢.

Although the system could be reformulated, we believe it is more insightful
to have an explicit definition of refinement (as in Chapter 3). In practice, when
applying the rules of Figure 4.9 backwards to find a proof of ¢ C ¢’, the refinement
type rules are only used in Refinement Types (R), when ¢’ is of the form

(z:9)Q

Remark 4.3.21 Although we have emphasised the per intuition for the A(,-
calculus, the match is not perfect. For example, we might expect equality at
(even — nat) — nat to mean that if arguments are equal at even — nat then
the results are equal (at nat), but this is not so. For example, A\f : nat — nat.3
does not equal A\f:even — nat.3 at (even — nat) — nat since the term
Af :nat — nat .3 does not have the refinement type (even — nat) — nat.

In Section 4.5, we will define relations on terms, ~,, such that these two
terms are related by ~(eyen—nat)—nat- Lhen we can think of terms of the calculus
as uniquely specifying total terms up to ~, for some refinement type ¢.

However, this is more a mismatch of refinement typing than equality, for if
t,t': ¢, then t ~, t' implies t =4 t'.

Remark 4.3.22 We can define a form of annotation, P — ¢, for proposition,
P, and refinement type, ¢. We will use this notion in the completeness proof

below.

118

The definition is:
P—-1 =1
P—y =7
P =30 = Sppog(P =)
P =1l = Ilpog(P — 1)
P—(z:9)Q = (z:(P—¢)PDQ
We state the following two properties, for each P and ¢:
1. T, PF ¢ wf then '+ (P — ¢) wf.

2. T,P+¢=(P— o)

4.4 Division by 2 Revisited

As an illustration of how refinement types can provide a useful proof technique,
we give the division by 2 example from Section 4.2 again. Recall that we define

iteration from the more general recursion, as
natiter t ¢ n = natrec ¢ (Ar : nat.t') n
where = ¢ FV (t').
The program is
div2 = An : nat.m (div2' n)

div2’ = natiter (0,0) (Ap: nat x nat.(mp, mp+ 1))

We prove that it satisfies the specification
div2 : [l et (m :nat)n =2mvVn=2m+1
div2" : Il nat Dmenat)n=2mvn=2m+1(m’ : nat)m+m' =n

In fact, there is little of interest in the main part of the proof. Since refinement
types explicitly indicate the structure of the specification, this enables much of
the proof to be carried out in a syntax-directed fashion. This would be useful for
automation.

Write ¢[n] as an abbreviation for ¥,,.(nmat)n=2mvn=2m+1(m’ : nat)m+m' = n.

see below
n:nat,p: @n| b (mp, mp+1): dn+ 1] n:nathF nat X nat C ¢[n]
(0,0) : ¢[0] n :nat b A\p: nat X nat.(mp, mp + 1) : ¢[n] — ¢[n + 1]

n :nat - natiter (0,0) (Ap: nat x nat.(mp, mp+ 1)) n :
Y (menat)n=2mvn=2m+1 (M : nat)m+m’ =n
An :nat.natiter (0,0) (\p : nat x nat.(mp, mp+ 1)) n :
et (minat)n=2mvn—2m+1 (M : nat)m +m’ =n

119

The proof continues with

n:nat,n=2mp V n=2mp+1,mp+mp=n
Fn+1l=2mpVn+1=2mp+1
n:nat,p:onlFn+1=2mp V n+1=2mp+1
n:nat,p:¢n|Fmp: (m:nat)n+1=2mVn+1=2m+1

The remainder of the proof is arithmetic reasoning. In practice, we would use a

theorem prover here.

n:nat,p:énlEmp+mp=n
n:nat,p:Pn|kFmp+mp+1l=n+1

4.5 Models

In contrast with the previous two chapters we will not interpret derivations of
judgements, but rather ‘pre-judgements’. This is because we do not have unique
refinement typings, or even unique derivations of particular refinement typings.
To show that a semantics based on derivations gives unique interpretations would
require an analysis of coherence which we avoid. This is not quite what we might
call a ‘Curry-style’ interpretation, however, since we do not erase the refinement
types from terms.

In Chapter 2, we used Henkin models to interpret the simply-typed lambda
calculus and first-order logic. Here we will extend this, and interpret terms as
sets (their ‘total realizers’). Refinement types over type o are interpreted as pers
over o,

Definition 4.5.1 A Henkin interpretation of a A()-signature is the same as a

Henkin interpretation of a first-order N> -signature.

Although the raw data of A¢)- and first-order *~-interpretations (Definition
2.4.1) are the same, the induced semantics are different.

We assume some Henkin interpretation below when we write | [. A Henkin
interpretation A models an axiom system when all constants and predicates are
given an interpretation, and each axiom is true in the interpretation, as defined
below. Although the environment model condition is only given for A*7, the
interpretation of \()-terms is well-defined.

Strictly speaking, the meaning function is a partial mapping from pre-expressions

to meanings. We will show later that it is total for the well-structured terms.

120

a[lF1](n) d <= a,d €14

[CF¢]=R [[,z:¢F1] =
, ProjT"(a) R(n) Proj{’(a’) and
a [['F Y] (n) o <= Projy " (a) S(n,Proj{"(a)) Projy’ (a’)

[FFEél=R [lz:¢F7]=
[0 Tp](n) f' <= forall a R(n) o, App(f,a) S(n,a) App(f’,d’)

[CH¢]=R [[,z:¢FP]=A
a[l'F(z:¢)Pl(n) d < aR(n)d,(na) €A (nad)ecA

a[TFA]n) d < a,d €y* anda=d

Figure 4.13: Interpretation of Refinement Types

Now, expressions are all interpreted in context, so for context I' we must first
define T-environments, 7, in interpretation A, written n F4 T' (dropping the A
when not significant), where 7 is a tuple of elements in the domains of the pers
for the refinement types in I'. We define this recursively with the interpretation
of refinement types and propositions. For per R, we write a € R to indicate that
a is in the domain of R, i.e. a R a.

We first define the notion of equality of environments, in the obvious way, as

simultaneous equality of elements in the corresponding per, written n [I'] 7'.

01010

(n,a) [T,z : 8] (', a’) when n [I'] " and a [I" F ¢](n) '
n [T, P] o when n [] ' and n,n" € [T+ P]J

Then we define n F I" to mean 7 [I'] 7.

To avoid questions of coherence, we interpret pre-terms, and so pre-propositions
and pre-refinement types too.

Now as mentioned above, refinement types are interpreted as pers. The in-
terpretation is given in Figure 4.13 where we adopt the convention that the pers
are over the set corresponding to the underlying type. The unit and ground
types are interpreted as identities; the product and function refinement types are

interpreted as the expected combination of pers, and (x : ¢)P is interpreted as

121

the restriction of ¢ to the elements for which P holds. It is easy to see that all
types are interpreted as identities.

There is an apparent asymmetry in the definition of the product per for 3,41,
but in fact, if ¢ is a well-formed refinement type in context I', then the soundness
result below states that if n [I'] ' we have [I' F ¢](n) = [I' F &] (7).

In Figure 4.14, The pre-term in context I" I ¢ is interpreted in environment
g E I as asubset (its ‘total realizers’) of o4, where ¢ is the type underlying ¢. The
types are implicit in the interpretation. An alternative would be to make them
explicit by giving an interpretation over well-structuredness judgements. This is

the approach taken in [Asp97], for example.

[CFo]l=R
[T,z ¢, 1" 2[(n,a,n') = {d" | ' R(n) a}
[CEt]=my - [T Ft,] =m,
[CF k(ty, ..., t)](n) = {k*(a,...,a,) | a; € mi(n)}
[T+ +](n) =14
[CEt]=m [CE]=m
[T+ (t,t)](n) = {a € (0 x 7)* | Proj{" (a) € m(n), Proj3 " (a) € m'(n)}
[C,z:ott)=m

[CEXx:o.t](n) =
{fe(oc—7)"forallac [l ¢](n).App(f,a) € m(n,a)}

[TEt]=m
[T mi()](n) = {Proji”(a) [a € m(n)}

[Tt =m
[T ma()](n) = {Projs™(a) [a € m(n)}

[Tt =m [[F¢]=n
[Ftt')(n) = {App(f,a) | f € m(n),a € m'(n)}

Figure 4.14: Interpretation of Terms

It is because of the refinement type in abstractions that we interpret terms
as sets rather than as single elements. For example, An : even.n is interpreted as
the set of elements in (nat — nat)* which are the identity for even arguments.
In Figure 4.15 we give the interpretation of propositions. We interpret a pre-
proposition in context I' = P as the set of environments 7 F I' in which P holds.

As we mentioned above, although the interpretation function is partial, well-

structured terms are always given an interpretation. For example, (An : even.n)x*

122

does not have a well-defined interpretation, but (An : even.n)3 does, even though

it is not syntactically well-formed.
Proposition 4.5.2 IfT'+U ws and n E T, then [I' = U](n) is defined.
Proof: 'We induct over pre-expressions, and consider two cases.

(applications) If ' -t ws,then T -t : 7,50 T Ff:0 —7and T ¥ : 0, so
by the inductive hypothesis, [I" -](n) is a well-defined subset of (o — 7)%,
and [I' F ¢](n) is a well-defined subset of oA. Hence, [F t'](n) is a

well-defined subset of 7.

(abstractions) If I' - Az : ¢t wsthen T Az :0f:0 - 71,50, x:0FT:7
and, by induction, if n ET" and a € [[' - ¢](n), then [,z : ¢ F t]((n,a)) C
74 is well-defined.

[CH1] =0
[CEPDOP]={nET|n¢[lFPlorne[lk P}
[TEYz:p.Pl={nET |Vac|[I'F¢](n).(na €[l,z: ¢k P|}
[CE#H]=my -+ [T Ft,]=m,
[CFFEty,....t)] ={nET |Va; € mm . {ay,...,a,) € F4}
[CEtf=m [CH{]=m' [CF¢]=R
[THt=,t]={nET|Yaecm(ny) . . Va em(n).aR(n) d}
[CFol=R [PF¢]=F
[TFeC ¢l ={nET[R®n 2 R0}

Figure 4.15: Interpretation of Propositions

We may now say what the semantic analogues of the judgements are. Let A
be a A,-Henkin interpretation, and assume that 7 EAT. Define I' EA7 ¢ : ¢ when
for all p [I'] 7/, for all @ € [I' F ¢](n) and o' € [T F ¢](n'), we have a [I' F ¢](n) o'
In other words, the interpretation is unique up to the equality of the per. We say
that I' 4" P when n € [I = P]. In particular, the refinement I' F47 ¢ C ¢/
is true when there is an inclusion of pers [[' - ¢'](n) C [I' F ¢](n). We define
[EAT ¢ wf to mean: for all n [[] 7/, [T+ ¢](n) = [T F ¢](n), and T EA" P wf
to mean: for all n [I'] ¥/, n € [['+ P] < ' € [I'F P]. We define validity of a
basic judgement, B, to be its truth in all environments, that is, I' 4 B means:
for all n AT, I EA" B,

123

In defining when an interpretation models an axiom system we only require

the well-formed axioms to hold.

Definition 4.5.3 Let (Sg, Ax) be a Ay-axiom system. A Henkin interpretation
A of Sg is a model of (Sg, Ax) when

o forecachT'- P € Az, if (Sg, Ax)>T I P wf then I FA P.
o foreachU'Fk:¢q,....,0, = € Ax such that Sg>k:o0y,...,0, — T,
(Sg, Az)>T'F ¢; : Ref (0y), (Sg, Ax)>T' 1 : Ref (1),
for alln BAT, if a; [T+ ¢;]4(n) al for eachi=1,...,n, then
K (a1, a) [DEIAn) KA, ay)
We write this as T EAk : ¢y, ..., ¢p — 1.

First we give a substitution lemma.
Lemma 4.5.4 (Substitution Lemma) If T EA" ¢, ¢; (i =1,...,n), then

[[3171 . le, P IR gbn H U]]A <CL1, s ,CLn> = [[F + U[tl/xZ]]]A(n)
where a; € [T Ft]4(n) (so (a1,...,an) FA Ty b1, 20).

Proof: Induction over x1 : ¢1,...,2,: ¢, F U. |

We need the condition that I' 47 ¢; : ¢;. The weaker requirement that for
a; € [T Ft]A(n), a; € [T+ ¢]*(n) is not sufficient. For example, in any model
An : even.n ¥ nat — nat, and for each a € [An : even.n| we have a F nat — nat,
but [f : nat — nat F f](a) # [MAn : even.n].

Note also that the substitution pre-expression I' - U[t; /x;] might not be well-
formed. It is, however, if I' - ¢; : ¢; (for i = 1,n).

A consequence of the substitution lemma is that for x : ¢ = U wf, and
[A7 ¢ 1 ¢, we can unambiguously use the notation [z : ¢ = U] ([T F ¢](n))
(dropping the A) to mean [z : ¢ F U](a) for any a € [I' F t](n). We can then

express (an instance of) Lemma 4.5.4 as

[: ¢+ U(ITF t](n) = [T+ Ut/z]](n)
More generally,
[Tz : ¢, 1" Uy, [T Ft)(n), n') = [T, T'[t/2] = ULt/][(n, ')
Lemma 4.5.5 IfEt =4t and x : ¢ E U wt, then [U[t/x]] = [U[t'/x]].

Proof: Let a € [t], @’ € [t']. Then a [¢] d’, and [Ult/z]] = [z : ¢ F Ul(a) =
[z:¢FU]d) = [U[t/z]]. i
124

Lemma 4.5.6 ForEt: ¢, andx:¢F P wt, if [t] C [z : ¢ P] then E P[t].

Proof: 'This is an immediate consequence of Lemma 4.5.4. |

We now verify that interpretations respect the rules of the calculus, that is,
the calculus is sound with respect to models of A(,-axiom systems. A consequence
of this is that the axiom system for booleans and naturals is consistent since we

can give nontrivial models.

Theorem 4.5.7 (Soundness) Let A be a Henkin model of A -axiom system
(Sg, Az). Then if (Sg,Az)>T Ft: ¢ thenT At : ¢, if (Sg,Ax)>T F ¢ wf
then T BEA ¢ wf, if (Sg, Ax)>T = P wf then T B4 P wf, and if (Sg, Az)>T = P
then T A P.

Proof: Simultaneous induction over all derivations. The soundness of (G-equality
for abstractions follows from Lemma 4.5.4. Assume that 'z : ¢ F ¢ : 9,
CEtY: ¢ and let n [I] 1, a € [F (\x:o.t)t'](n), « € [F t[t'/x]](n).
Then a [I' = [t /x]](n) o' ||
Although we interpret a term in an environment as a set, the soundness theorem
shows that since contexts can be seen as pers, the interpretation of a term gives
rise to a morphism of pers, that is, a map of equivalence classes. For example,
we can think of the interpretation of a variable as a map from an element to its
equivalence class (in the relevant refinement type). These informal remarks will
be further clarified in the next chapter.

A more challenging question is whether the calculus is in any sense complete,
that is, if a particular judgement holds in all the models of some axiom system
then it is provable. The ‘ideal’ completeness theorem would be (for refinement
typings) that if ' E ¢ : ¢ then I' - ¢ : ¢. Unfortunately, this fails for two reasons.
Firstly, due to the way in which well-formedness is combined with satisfying
logical properties, we must assume that the judgement is well-formed, by which
we mean the well-formedness of its component expressions. This is because it
is possible for non well-formed terms to have a unique interpretation, and so,
semantically, have a refinement type. For example, (An : even. %)3 is interpreted
as the unique inhabitant of unit type, but cannot be typed in the system.

The second point arises with higher-order terms, and is due to the calculus
requiring arguments to an abstraction to have the refinement type on the abstrac-
tion, but the model just needing equality of arguments at that refinement type
to give equal results. For example, \f : nat — nat.3 has the refinement type

(even — nat) — nat in the model, but not in the calculus.

125

What we can show, however, is that if a term in context, I' - ¢, has refinement
type ¢ in the model, then there exists a term ¢’ which does have refinement type ¢,
such that I' F ¢t =, t'. In other words, t and t' correspond to the same equivalence
class of ¢. We will give a syntactic characterisation of this.

As in the previous two chapters, we prove completeness using the notion of
Henkin theory, suitably extended. We will regard theories as infinite contexts, I,
rooted on the left, for which I' = P iff P € I'. We say that an infinite context is

well-formed when every finite prefix is well-formed.

Definition 4.5.8 Let (Sg, Ax) be a A¢y-aziom system. A \)-Henkin theory
over (Sg, Ax), is a well-formed infinite context, ', closed under derivation from
(Sg, Ax) such that if 3z : ¢.P is in T, then there is a term T' =t : ¢ such that
Plt/x] is in T.

The completeness proof rests on the construction of a term model, formed
from a suitable Henkin theory.

There are actually a number of possibilities which, a priori, we can consider
for the class of terms in the set 7. Firstly, there is a choice between total terms
of *™ and arbitrary terms of A\(;). Another choice is between well-formed terms
— either terms with type 7, or with any refinement type ¢ such that ¢ : Ref (1)
— or all well-structured terms over 7.

We rule out total terms at types because, with such an interpretation, it
is not immediately obvious how to construct an environment in the proof of
completeness. For example, if halt : Ref(nat) is the refinement type of encodings
of programs which halt, and : halt — nat is in the context, then there would
be no term in nat* (i.e. no term of type nat) which equals x.

We do not use arbitrary terms at refinement types because, as pointed out
in the discussion after Lemma 4.5.4, this would lead to substitutions not being

well-formed. For example,
[h: (even — nat) — nat = (AR : (even — nat) — nat.h’')h] [\f : nat — nat.3]

would contain a pre-term which is not well-formed.
Thus, we will use the well-structured terms of A*~. We use the following

definition to characterise the term model.

Definition 4.5.9 We define P for each proposition, P by replacing each equality,

t=¢t', witht ~4 t', where we write:

[} tl ~1 t2 fOT’ tl =1 t2

126

ot~ 1ty fort; =, ty
o b1 25, to for mi(ty) 22 T (t2) A ma(ty) 2y) T2(t2)
o ty o,y by for Vo i TVI T g ' Dt vy b’ (where ¢ 1 Ref (7))
o {1 ~ugyp ba for ty =y ta A P[] A P[ty]
Lemma 4.5.10 I[fI'Ft~y t' andT'F ¢ C ¢ then 't ~, t'.

Proof: Induction over I' - ¢ C ¢'. [|

Lemma 4.5.11 Suppose v ¢ FV (). IfI'x: ¢t : 1 and I' F t; >~ to, then
It/ x] ~y tte/x].

Lemma 4.5.12 IfI' b t ~4 t then there exists a t' such that I' -t ~, t' and
Lt .

Proof: Induction over ¢. ||

Definition 4.5.13 Let u and t be well-formed terms with u total. We define
u sat" t to mean: for all ¢, if Tt : ¢ then T Fu ~y t.

Although this definition would make sense for arbitrary well-formed terms, the
idea is that it formalises when total u is a realizer of t. We superscript the context,
[', rather than writing I' - u sat ¢, so that when we use infinite contexts, I',
this will not clash with our convention of writing I'oc F B to mean I' = B for I’

‘some sub-context’ of I'y,.

Definition 4.5.14 We define I' =t ~ ¢ to mean: there exists a term t' such that
F'Ft':pand 't oyt

In Definition 2.4.4, we defined the Henkin closure of a collection of first-order
A*7-propositions by adding variables for every nonempty type and propositions
stating that all existentials have witnesses. The analogous definition here would
be to repeat this for all refinement types (over nonempty types), ¢, and proposi-
tions, dx : ¢.P, but there are several problems with this.

One problem is that we cannot just assume some variable x : ¢, because this
has some logical import which might give a contradiction in the current context.
We will see that it suffices, in fact, to work with pseudotypes (Definition 4.3.14),

since for pseudotype, k, the assumption x : k has no logical import.

127

Another problem is that an arbitrary (well-structured) proposition or pseudo-
type need not be well-formed in the given context. An added complication is that
the order in which assumptions are listed might be significant. We can get round
these problems by the following trick. For any well-structured expression, U,
we can give a well-formed proposition, wf(U), which says that U is well-formed.
Then, for example, the proposition wf(P) D P is always well-formed, and when
P is actually well-formed, is equivalent to P. Similarly, for any well-structured
pre-refinement type, ¢, the refinement type wf(¢) — ¢ (using the notation of
Remark 4.3.22) is always well-formed.

Thus, the only order that matters in the Henkin theory is that variables
precede any expressions in which they appear. This is similar to Definition 2.4.4

for first-order A*—.

Definition 4.5.15 Let I be a \.y-context. We define the Henkin closure of I' by

the following procedure.

1. Iterate through the well-structured k deciding which are inhabited (as in
Definition 2.4.4),

2. List all well-structured propositions of the form 3x : k,.P, for inhabited k.

3. Make a list of variables {y, : kn} such that y, & P, Ky, for n’ < mn, and
FV(3z : kn.P,) ST y1 i Kay ooy Un t K

4. Let Q, =wf(3x: k,.P,) D Iz : k,.Py D Bylyn/x], and k), = wi(k,) — kK.
Define the Henkin closure, 'y, as T',y1 : K, Q1,y2 : kK5, Qa, . ..

As was the case with first-order A*~ and A7, although we do not have minimal
term models (due to having propositional assumptions), we can still use a term
model construction to prove completeness. We use a slight generalisation of the
standard ‘consistency implies satisfiability’ argument.

First we generalise consistency and satisfiability from sets of closed proposi-
tions to arbitrary contexts. We say that context I' is consistent, when I' ¥ L,
and satisfiable, when there exists a model A and I'-environment 7 in A, that is,
n EAT. In the case that I is a context of closed propositions, these reduce to the
usual definitions of consistency and satisfiability. Let us write [' E P to mean,
informally, that I' 4 P for every model A of some axiom system. Now we want
to show that I' F P = I' = P, so suppose I' ¥ P. Then I', =P is consistent and so,
by assumption, is satisfiable. Hence I' # P. The situation for the other judgement

form, namely refinement typings, can be reduced to that of propositions.

128

Theorem 4.5.16 (Completeness) Let (Sg,Ax) be a Ai-aziom system.
For (Sg,Ax)>T P wf, if I A P for all Henkin models A of (Sg, Ar) then
(Sg, Ax)y> T+ P. For (Sg, Ax) T Ft wf and (Sg, Az)>T F ¢ wt, if TEAL: ¢
for all models A of (Sg, Ax) then (Sg, Ax)>T Ft ~ ¢.

Proof:
Let I' be a A,)-context such that [is consistent. First we sketch the construc-
tion of a particular model 7 and environment 7 such that E7 T' (steps 1-5),

and then use this to deduce completeness (step 6).

1. Construct a maximal consistent Henkin theory I'y, such that
{P|T+ P} CTI..

—

Let 'y be the Henkin closure of TUAz. We apply the (_) operation to

the axioms so that the interpretation will be a model.

First we consider sets of propositions, A, with the property that A can
be ‘inserted’ into I'y giving a consistent extension; that is, there exists a
context I such that I" is a subcontext of I, and I" consists of " plus the
propositions in A, in some order. We form the partial order of such sets,
ordered by subsetting. This is clearly nonempty. It is also closed under
unions of chains. To see why, let us formalise the insertion of a set, A,,
as a mapping 4, : A,, — N. Then, by always adding new elements ‘to the
right’, it is possible to insert A, in 'y in such a way that all supersets
can be inserted in a way which extends this insertion, that is, such that
tnt1 | Ap = ip. The limit, iy, is not necessarily an embedding of the union,
since it might try to insert all the set at one place (if ¢(n) = n, for example).
We must be careful to ‘spread’ the set throughout I'y;. This can be achieved
by inserting each element at double the index of the naive embedding so we
define i(n) = 2 X ix(n).

Hence each chain has an upper bound and so, by Zorn’s Lemma, the collec-
tion has a maximal element, A,,. We define I'y, to be any insertion of A,
into I'y. Clearly I'y is a theory, that is, it is well-formed and closed under

deduction.

2. We define a relation = on well-structured terms in I's,. For I'og F u, v’ ws,
we define u = v/ to mean: if I'o F w, v’ wf then u sat'>~ «/ and v’ sat"> u;
otherwise, if neither is well-formed then T, else L. The intuition behind
this definition is that terms which are not well-formed correspond to the set

of all well-structured terms and so should be equal. Define o7 as the set of

129

=-equivalence classes of well-structured terms of A*~, open with respect to

', and over the type o, that is,
{u|To, Lt u:o}

The position of L in the context does not matter since I'y, is well-formed.

We write [u] for the equivalence class of w.

We construct a Henkin interpretation, 7, by interpreting constants syntacti-

cally. For constant symbol k : 7y, ...,7, — 7, define k7 : 7 x-- . x77 — 77
as kT ([u1], ..., [un)) = [k(uq, ..., u,)]. Since these terms are well-structured,

the interpretation is well-defined.

For predicate symbol F : Pred (7i,...,7,), define F7 C 77 x --- x 77 as

{(ua], -y [un)) | Flug, ... un) € T}

We can show that 7 is extensional, and since the environment model con-

dition clearly holds, 7 is an interpretation.

. We must characterise the interpretation of terms and refinement types in

the term interpretation, 7.

We need two cases, if / E7 T":

o for 'y, F ﬁ[n’/F’] wf, prove that I EZ7 P =
Poo b Pl /T
o for I F o[/ /T"] wE, [u] [["F¢]7 () W] <= T Fu ~ oy W

This is carried out in Lemma 4.5.17 below, after the sketch of completeness.

. The interpretation, 7, is a model of the axioms. For each axiom of the
form IV = P, we can define a closed equivalent which we write as VI". P.
This has the obvious inductive definition: V(). P = P, V(I",z:¢). P =
VIV .Vz : ¢.P,and V(I', P") . P =VI".P' D P.

e~ e~

Then since VI".P is well-formed and I', = VI”. P, by the previous step we
get 7 VIV.P and so I'" EZ P.
We must show that for each axiom I = k : ¢ — 1) (without loss of generality,

we just comsider unary constants), for all ' EZ TI', for all

a [T+ ¢](n) o, that k7 (a) [I" + ¥](n) k7 (d’). By step 3, this is if
when I'oo b1 ~p 1 and T'og b 0 gy) o, then Tog = k(w) gy k(W).

130

We use singleton types (as discussed on p. 106) to derive this:

oo 7t =gpyyr

Fooa F/, 77/ >~ 77/ Fu s u’
oo, 1,0 = ' = k(u) ==y k(W)
Poo B B(u) 2=ypy /oy k(W)

(Lemma 4.5.11)

Hence 7 models (Sg, Ax).

5. As in the proof of completeness for first-order * 7, if xy : ¢1,..., 2, : ¢, are
the variables in T', then we define the T'-environment, 1, as ([z1], ..., [z,])-

We can show that n 7 T', by induction over subcontexts of T
Thus for an arbitrary context, I', if [is consistent then T is satisfiable.

6. Finally, we show that if I' E7 B then I'+B , for B a proposition or refine-
ment typing (writing t/\gﬁ for t ~ ¢). Thus if I' E B we have I - B.

Suppose I' ¥ P. Then I, =P is consistent, so by the previous step, there is
an environment, 7, such that n EZ I', =P, so T ¥7" P and I ¥ P.

The situation for refinement typings can be reduced to that of propositions,
since IV E7" t : ¢ is equivalent to IV 77 ¢ =, t. The crucial point is that
the permissive well-formedness rule for equalities (Equality) means that
t =, t" is well-formed even though ¢ and ¢’ need not have refinement type ¢.

Then, I' F t =, ¢ implies THt ~, t so, by Lemma 4.5.12, THtn~ Q.
|

In order to prove the equivalence in step 3, we need to characterise the inter-
pretation of expressions in the term model, 7. Because of the mutual recursion
between terms, refinement types and propositions, we must carry out the proof
for each syntactic category simultaneously.

For the reasons given in Remark 4.3.21, the pers, [¢]7, do not correspond

exactly to the equalities, =4.

Lemma 4.5.17 Let I’ be a \()-context and define I'ss as in the proof of Theorem
4.5.16. Then, for n ET T':

1. For Too b @[n/T] wt, [u] [I'F 7 () o] <= Too b u gy p o
2. For T - t[n/T) wE, [T F)7 (n) = {[u] | u sat'> t[n/T]}
3. For Too & P[n/T) wt, T ET" P iff Too + P[n/T)|

131

Proof: Simultaneous induction over all expressions, unpacking the definition in

the term model. The inductive ordering is
P,PP<PD>PF

¢, P[t] <Vz:¢.P
p<t=4t
t < F(t)
¢, ¢ <P ¢
¢, Y[t] < gt
¢, Y[t] < aptp
¢, Plt] < (z: 9)P

The interesting cases are for propositions so we prove these in detail. To save on

symbols, we will write U for U[n/T).

o I'¥7" | and I'ox ¥ L by construction of I's.

e IEIMPQ <= TET"PorTEINQ +—= I'nF-Porl FQ —
' FPDQ.

o ' E7Z Ya : ¢.P when for all a € [T - ¢](n), (n,a) € [[',x: ¢+ P]. Now
if [oo F t : &, by the inductive hypothesis on ¢ we have I' E77 t : ¢, and
so for each a € [I' - t](n), (n,a) € [I'yz: ¢ F P]. Then, by Lemma 4.5.6,
I' 7 P[t/x], and by the inductive hypothesis on P[t/z], T's - P[t/z]. In
other words, for all Ty, - : ¢ we have 'y, = P[t/z]. Thus Ty, -V : ¢.P,
for if not, by maximality we would have I'y, = 32 : ¢.—P, and since ' is a

Henkin theory, I's - =P contradicting the above.

Conversely, suppose s, = Vo : ¢.P. Now let [u] € [I' + ¢](n). By the
inductive hypothesis and Lemma 4.5.12, I's, - u ~ ¢, that is, there exists
t : ¢ such that u ~ t. Now by Quantification, I's, Plt/z] so by the
inductive hypothesis, I' 7" P[t/z], so (n,u) € [I' = P]. Hence T' 7"
Vo :¢.P.

e I'E7" F(t) when [T - t](n) € F7. Since t is well-formed we have I" - ¢ : ¢.

Define the maximal refinement type over 7, max(7), as:
maz(l) =1

132

max(y) =
mazx(o X 7) = max(o) X mazx(T)
max(c - 717)=(x:0)L —> 71

Then all terms over 7 have refinement type max(7). Let x be maz(7),
where ¢ : Ref (7). Then we have x : x - F(x) wf by the permissive well-
formedness rule for predications. Let [u] € [I' F ¢](n), so by induction on

t, u sat' 7, and since u : y, and u =, ¢, by Elimination Rules we have
Tk F(2).

Conversely, if T, B F(f), then T, F ¢ : (2 : ¢)F(x) for some ¢, so by the
definition of sat, 'y, F F(u) for all u sat'™ , and so [[' - t](n) C F7.

L EZ ¢ =4t is: for all u sat™™ 7 and v’ sat™™ ¥/, we have 'y, F u ~zul.

We can show that this is equivalent to 'y, F ¢ ~3 ', by induction over ¢.

Assume that I' 77 ¢ C ¢'. By induction on ¢, ¢, this is: for all u, o/, if
u ~g u' then u ~gu'.

If v : ¢ € Ty then Iy, - 2 : ¢ and we can deduce (see Remark 4.3.20) that
b o d.

If ¢ ¢ I's, then we can prove I', F ¢ T ¢ directly. Since ¢/ & '
there does not exist a term I'sg - ¢ : ¢/. Suppose 3z : ¢ . T € I'no. Then
since ' is a A()-Henkin theory we must have ', F #' : @', for some
t'. We deduce that there exists a I's F t' : ¢, a contradiction. Hence,
since I's is maximally consistent, we must have =3z : ¢/ . T € I's, and so
[, 7:¢ = L. Hence by Refinement Types (L), 'y, - (z : ¢/) L C
¢'. Now Proposition 4.3.19 gives us I'x - ¢ T (z : ¢/) L and so using
Transitivity, oo F ¢ T ¢'.

Conversely, suppose I'oo ¢ C ¢/, then by Lemma 4.5.10 and the inductive
hypothesis on ¢ and ¢, we get I EZ" ¢ C /.

||
Now since first-order logic, the first-order logic of simply-typed lambda cal-

culus, and the refinement types calculus are all complete for the class of Henkin

models (without the assumption of nonemptiness), we have:

Corollary 4.5.18 The calculus is a conservative extension of the first-order logic

of N*7: If 't =, t' is a well-formed equation in A*—, then it is provable in

A7 if and only if it is provable in the calculus of refinement types.

133

Corollary 4.5.19 The calculus is a conservative extension of first-order logic: If
I' = P wf does not contain any refinement types, then it is provable in first-order

logic, if and only if it is provable in the calculus of refinement types.

The significance of these corollaries is that we are free to use the specification
language for proving program equivalences and for reasoning about programs
using the program logic, in the knowledge that it faithfully reflects the equality

in the underlying programming language, and proofs in the program logic.

4.6 Conclusions

We have described the refinement type methodology of specification. This is a
way of combining the type system of a programming language with a program
logic to give a specification language. This is an alternative to approaches which
rely on encoding a logic into an expressive type theory, and those which simply
use a program logic.

Although we give a refinement relation ¢ C ¢’ on specifications, this does
not constitute a full refinement calculus (such as in [Mor94]). The idea there is
to internalise specifications into programs and consider a refinement relation on
mixtures of specification and program.

In the proof that div2 satisfied its specification we used the proof for div2’.
There is an implicit element of refinement on terms here. This is made explicit

in the next chapter.

134

Chapter 5

Refinement Calculus

In this chapter, we present the full refinement calculus, Ac. This is a calcu-
lus in which the stepwise refinement of logical specifications into programs, and
the correctness of partially developed programs can be formalised. The calculus
combines the refinement terms and refinement types calculi of the previous two
chapters.

We define a notion of refinement axiom system and a corresponding class of
Henkin models with ‘logical factoring’. We prove soundness of the calculus in

these models, and prove completeness for a restricted fragment.

5.1 Introduction

Much of the intuition for specification and refinement has been presented in the
previous two chapters. Let us recall the scenario in which we are studying refine-
ment. We have a programming language and a program logic. In Chapter 3, we
showed how to internalise a simple notion of partial development in a program-
ming language, the terms of which, refinement terms, are a record of the stage
of development towards a program. In Chapter 4, we studied how to construct
a specification language from a program logic, the specifications being given as
refinement types. These are orthogonal extensions to the programming language,
which in our case is the simply-typed lambda calculus. We now combine these
calculi to give a refinement calculus for the stepwise refinement of logical specifi-
cations into programs. This claim of orthogonality will be backed up in Section
5.5 below. We now discuss how the features of the subcalculi are combined. The
main issue is combining the logic with refinement.

The central language construct is the logical stub. We write 74, where ¢ is a
refinement type, to denote some unknown program with refinement type ¢, and

combine such unknowns with the other language features as in Chapter 3. As

135

in the simpler system, \;, we will refer to such terms as refinement terms. If
¢ expresses the properties of interest then a refinement will begin with 74. In
general, though, it can be useful to specify with a mixture of logic and program
code. Of course, we are now at liberty to ‘overspecify’, and can write specifications
which cannot be implemented, even when all types are inhabited. This is in
contrast to A;, and has a bearing on the refinement rules of Ac.

One of the slogans of the refinement methodology is that “refinement is
correctness-preserving”. To make this clear we must have a notion of partially
developed program, that is, refinement term, satisfying a property. In fact, one
of the main reasons for keeping an explicit record of the stage of development
is that we can draw inferences about partially developed programs. During the
course of development, questions might arise of the form, “given that certain im-
plementation steps have now been made, is the final program guaranteed to have
a certain property?”

In Chapter 4, we formulated the satisfaction of specifications as programs
having a refinement type. We generalise these rules from programs to partially
developed programs, that is, we generalise the rules for proving r : 7 and ¢ : ¢ to
proving 7 : ¢. The main technical problem here is combining underdetermined
terms with the logic. Since we cannot substitute arbitrary terms for variables
we cannot infer that r : (z : ¢)P from r : ¢ and P[r/z]. Intuitively, we must
show that r : ¢ and that every determined term t to which r refines, P[t/z]
holds. Let us write this second fact as “Vx € r.P”. It is cumbersome to prove
quantifications like this, however, so observe that we can preserve the truth of

such quantifications with rules like

VeerP Yyer.Q
Vz € (r,r").Plmz/x] A Q[maz/y]

In other words, we can use the refinement type methodology for proving that
an arbitrary r has refinement type ¢, without ever substituting r directly in a
proposition.

In Chapter 3, refinement was the decomposition of stubs and their replacement
with code. In Chapter 4, the idea was that the refinement of refinement types
formalised logical manipulations of specifications. In the combined refinement
calculus we combine these two distinct aspects of refinement, by adding a rule
that if ¢ refines to ¢’ then 74 refines to 7. Moreover, just as equality in A is
defined with respect to a refinement type, we now extend this idea to refinement
at a refinement type, and write the refinement of r to v’ at ¢ as r T, 1.

Hence, there are two complementary aspects to refinement in A, correspond-

136

ing to the forms of refinement in the two subcalculi. We can manipulate specifi-
cations and replace them with something more specific. This corresponds to the
refinement of refinement types in A, ¢ T, ¢'. We can also decompose specifica-
tions and replace ‘holes’ in refinement terms with code, and this is formalised by
the refinement of refinement terms, » Ty 7'. One difference from the \;-calculus
is that in A refinement is under a context with logical assumptions, as given in
AG)-

Sometimes the particular ¢ at which the refinement is carried out is not im-
portant, so we define a notion of ‘nonlogical refinement’ (on refinement terms),
r C 7', meaning: for all ¢, if r : ¢ then r T, 7. We will use this notion in the
formal system. One of the main results of this chapter will be the factorisation
of &4 into C and =.

In Chapter 3, we saw that refinement was a sequence of implementation steps
terminating in a program, i.e. a term of A*~. In the refinement calculus with
refinement types, it is more natural to refine to a term of A¢). In particular, we
take Az : ¢.t to be determined. This is a natural choice when we only consider
terms modulo some refinement type.

Although our notion of program now is not some unique term of A*7, it is
unique up to the equality of some refinement type. It is in the spirit of refinement
to only refine as far as is necessary. We can always give a term of A*~ by replacing

the refinement types in a A¢)-term by their underlying types.

5.2 The Calculus

Following the pattern of previous chapters, we give the syntax of the calculus,
and the judgement classes. Next we define the notion of Ac-axiom system, and

give the rules of the calculus.

5.2.1 Syntax

We define an applied refinement calculus by first giving a signature of ground
types, constants and predicate symbols. The terms are generated from the same

basic signature as in the A(,)-calculus.
Definition 5.2.1 A Ac-signature Sg = (G, K, F) consists of:
e a collection, G, of ground types (ranged over by)

e a collection, IC, of constants (ranged over by k), each of which has an arity

n and sort T, ..., T, — T, which we write as 'k : 1,...,7, — T.

137

e a collection, F, of predicate symbols (ranged over by F') each of which has

an arity n and sort T, ..., T,, which we write as F': Pred (71,...,T,).

Definition 5.2.2 Let Sg = (G,K,F) be a Ac-signature. The pre-expressions

over Sg are generated by the grammar:

¢ = 1| 7| Sagtp | Hat | (z:9)P

rou= x| k(ry,..o,re) |k | (nr) | Xx g | 7y | mi(r) | ma(r) |
rr’ | letxz:¢berinr’

P = 1| PDOP | Vo:¢.P | F(ri,...,mn) | 7Ty’

The pre-contexts are:
r .= (| Tz:¢ | T,P

As in Chapter 4, we write ¢ x ¢ and ¢ — 9 for ¥,.41 and Il,.41, respectively,
when x ¢ F'V(1)). We also abbreviate the assumption = : (z : ¢)P as z : ¢| P.

Refinement types have the same meaning as in Ay, and correspond to a partial
equality over an underlying type.

The specification construct is the logical stub, 74, for each refinement type,
¢, meaning ‘some unknown of refinement type ¢’. The stub also carries the data
of when concrete implementations are to be regarded as equal (that is, up to ¢).
This will be made clearer in Section 5.6. In general, Ac--terms can be thought of
as specifying a collection of programs, up to some equivalence.

We say that a term is determined if it contains no stubs, and otherwise is
underdetermined. We use the metavariable ¢ to range over determined terms, and
r over arbitrary refinement terms.

Refinement types also appear in the two binding constructs — abstractions
and let-terms. This is useful for specification and refinement. When refining the
body of the abstraction, Az : ¢.r, the information in ¢ can be used. The term
itself can be thought of as a specification of programs which only constrains the
result for arguments in ¢. We regard Az : ¢.t as being determined even though,
in general, it does not uniquely specify a program in *~. These programs are
unique up to the equality of some refinement type, however, and we can always
give a canonical example by replacing refinement types with the underlying types.

The let-term let = : ¢ be r in r’ is a description of some y in 7’[z] for some x

in 7, where y is only specified up to ¢. For example, the term
let f:even — nat be An :nat.n in f

specifies the even — nat class which contains An : nat.n.

138

The other terms have much the same meaning as in Chapter 3. As in Chapter
4, the interaction between well-formedness and logical reasoning means that we
cannot define well-formedness until we give the rules of the calculus, and that

axioms are not assumed to be well-formed until their use in a proof.

5.2.2 Judgements

The refinement calculus, Ac, consists of two basic judgements.
F'kFr:¢

r=~pr

where the propositions include refinement of terms, I' = r &, 7/, and of refinement

types, ' F ¢ C, ¢'. There are also well-formedness judgements
FIT wf

'k ¢: Ref (1)
I'EP wt

The judgements extend those of A,y in Chapter 4, and have similar intuitive
readings. As there, we will use g as a metavariable for syntactic environments,

but we use tuples of determined terms, as in ;.

5.2.3 JAc-Axiom Systems

We adopt the same definition of axiom system as in the A(,)-calculus.

Definition 5.2.3 A Ac-axiom system consists of a Ac-signature Sg and a col-
lection of A)-azioms Az formed from pre-contexts and pre-expressions in Sg.

Axioms are of two forms:
e propositions in context, I' = P

e axioms for constants, 'k : ¢1,..., ¢, — 1.

The comments following Definition 4.3.5 for A(,) are relevant here too. The restric-
tion of axioms to the A.)-fragment is a natural restriction to disallow refinements

as axioms. Moreover, this ensures certain metatheoretic properties.

139

5.2.4 Rules of the Calculus

In Figure 5.1 we summarise the different forms of judgement in the A--calculus.
We can make a basic division into judgements of well-formedness for each syn-
tactic category, and judgements of truth. The division into well-formedness and
truth is somewhat arbitrary as all judgements involve logical reasoning, and the
refinement typings formalise both well-formedness of terms and the satisfaction
of specifications. The upward arrow in Figure 5.1 indicates inclusion of rules. We
do not make refinement a separate judgement class from the other propositions.

Similarly, the equality rules are just mutual refinements.

Definition 5.2.4 Let (Sg, Ax) be a Ac-aziom system. We define the theorems of
(Sg, Ax) to be the judgements which can be inferred from the rules in Figures 4.2,
4.8, and 5.2 to 5.12. We write (Sg, Az)>J when the judgement J is provable from
the A\c-aziom system (Sg, Ax). We drop the Sg and Ax when they are obvious

and just write J, meaning ‘J is provable’.

As for the A()-calculus, we consider the provable well-formedness judgements to
be theorems too.

The well-formedness rules for contexts and refinement types are given in Fig-
ures 4.2 and 4.3 in Chapter 4. The well-formedness rules for propositions are
the natural extensions of those in Chapter 4, with the additional rule that the
well-formedness of the refinement r C, r’ requires that r, v’ and ¢ have the same
underlying type; they are given in Figure 5.3.

The refinement typing rules in Figures 5.4 and 5.5 are the obvious general-
isations of those in Chapter 4, with side-conditions on the elimination rules to
ensure that we do not substitute underdetermined terms in refinement types (see
Remark 5.2.5 below). For example, the elimination rule for Function Terms
has the hypothesis I' = 7 : ¢ — 9 which abbreviates I' - r : II,.4 with the side
condition that x ¢ FV (¢).

There are also rules for logical stubs and let-terms.

A special case of the introduction rule for Product Terms is:

F'br:¢ THr: 9
CE{rr):¢pxe

The connection between the logic and refinement typing lies in the two rules
for Refinement Type Introduction in Figure 5.5. The first rule is actually
derivable (as in Chapter 4) but is natural to include. It does not generalise to

a rule for arbitrary underdetermined terms, however, since in general, r having

140

(
FT wf Figure 4.2
I'-P wf 5.3
Well-formedness
'k ¢: Ref (1) 4.3
\ F'kFr:¢ 5.4, 5.5
Truth
TP 5.12
T
o, ¢ 511
Refinement
I'ErCyr 5.9, 5.10
T
F'Et=,t 5.6
Equality
FEr=,1 5.7, 5.8

Figure 5.1: Summary of Judgements in the Refinement Calculus

refinement type (x : ¢)P can not be encoded as the proposition P[r/x], as dis-
cussed in Section 5.1. This is the case, though, for determined terms and for
predications.

The Refinement Elimination rule is the generalisation of the Equality rule
on p. 105. This is so that refinements can be used to infer refinement typings.

The related rule
F'ErCyr

LEr:¢
is admissible (being a special case of Subject Refinement, Lemma 5.5.2). It would
be unnatural to take this rule as primitive and use it in proving refinement typings
because this would require guessing the term 7.
It is to make Subject Refinement admissible that the A--calculus has stronger
rules for abstractions and let-terms than might be expected:
x:¢o,PEr 4
I'EAx g g pt
Ckr:(z:9)P T,z:0,PFHr":x
F
'Hletxz:¢berinr’:y (z & FV(X))

141

We can derive the obvious simpler forms by letting P be T. We use (z : ¢)P
rather than the general ¢ T ¢ for the same reason as in A, (see p. 105). The cor-
responding rule for abstractions in Ay (inferring that Az : ¢.t : II;.4pr1)) follows
from the rule for equality elimination in A).

The final rule for refinement typing is a Weakening rule. We need to add
this because the axioms are not necessarily closed under weakening.

Figures 5.6 to 5.10 formalise refinement of terms. This includes the equality
rules for determined terms in Figure 5.6, and the equality rules for let-terms in
Figures 5.7 and 5.8, which are a straightforward extension of those in Chapter 3,
replacing arbitrary types with arbitrary refinement types.

The rule for Abstractions is most conveniently given using nonlogical equal-
ity, that is, using mutual C (see p. 137). As mentioned on p. 137, r C r’ is not a
new judgement, as such, but rather a meta-judgement with the meaning: if r has
refinement type y, then r refines to r’ at x and r’ has refinement type y. We use
different symbols to distinguish the abbreviation, T, from the meta-judgement,
C, for clarity’s sake.

Formally, we can write rCr’ in the conclusions of rules, where

' :]
I'=rCy

abbreviates the schemas (for well-formed ¢):

'J T'kr:9¢
FErCyr

'J T'kr:¢
v 9

Superficially, the Abstractions rule is stronger than the form with refinement
types:
Dz gy gpbriryl:df
I'Fletz:¢ — 1 beyyin Az : ¢rlz, 2z
=y AT P.(let y: 1P be 7y in rlz, y])

(x & FV (1))

though they may be equivalent. In the absence of a proof of equivalence we adopt
the former for technical reasons. (We will need this for the Generation Lemma
below.)

There is no primitive rule for stubs (though see Chapter 6). We can derive:

let 2 : ¢ in ?(yr) Qg = *(yir) J2:6.Qw]

142

The other refinement rules for terms are listed in Figures 5.9 and 5.10. It is
the rule for Stubs that allows the refinement of refinement types inside terms,
and formalises the interaction between the two forms of refinement:

FHoC ¢
[E7,Cy

There is a weakening rule, Refinement Weakening, and a strengthening
rule, Logical Congruence.

Finally, Figure 5.11 lists the rules for refinement of refinement types, and
Figure 5.12 extends the first-order logic of Chapter 4 with one additional rule of

Predicates:
Lx:obF F(x) Tkr:¢

T'FF(r)

This lets us substitute an arbitrary r directly into a predication so we can derive

CEr:(z:¢)F(x)
C'EF(r)

We have a Refinement Type Introduction rule in A for the converse of this:

Thri¢ TFF(r)
F'kEr:(z:¢)F(x)

In addition, we must add a rule for a limited form of subject refinement:

F'kr:(x:9)F(x) T'ErCyr
CEr:(x:¢)F(x)

We would have expected this rule to at least be admissible, but if F'(r) is assumed
in the context there seems no other way to conclude F(r'). However, it seems
that if we can prove F(r) directly, then we can prove F(r’) without using this
rule, so the rule is only necessary in this one case.

Hence Ac has two refinement type introduction rules and two elimination rules
for arbitrary underdetermined terms. The introduction and elimination rules for

determined terms can be derived.

Remark 5.2.5 In Chapter 3 we introduced let-terms since we cannot substitute
arbitrary terms for variables in terms. Similarly, we cannot substitute arbitrary
terms for variables in refinement types. If r : II,.41 and r’ : ¢ then it is not the
case that rr’ : ¢[r/z]. However, instead of carrying out a similar extension for
refinement types here, we make a restriction on the elimination rules for function
and product terms so that this problem does not arise. This is discussed further
in Chapter 6.

143

—— Axioms

w(lw_p € Ax)

P
—— Weakening

FI;FQFB F1|_¢ wf

th : ¢, FQ l_ B
—— Permutation
F17x1 :¢17F27£C2 2¢2,F3|_B F1|_¢2 wf
x1 & Ly, 2o :
'y, 290 @2, 19,21 : 91, I'3 - B (21 & T, 2 o)

—— Substitution

Nx:¢oFB T'Ht:o
'+ Bt/x]

Figure 5.2: Theorems Generated from a A--Axiom System (Sg, Ax)

Example 5.2.6 The A)-axiom systems for booleans and naturals from Section
4.3.5 serve also as Ac-axiom systems so we do not repeat them here. The main
point to be made here is (as for A7) that we do not need special refinement rules
for particular constants. This is important because it means that if we extend
the theory with new constants, we need only add equations for determined terms;
refinement rules will be automatic from the general rules already in the calculus.

For constant k : ¢1,...,¢, — 1, there is one refinement rule (omitting the

well-formedness hypotheses):
DE2 Ty k(P65 70,)
For example, since
if _then _else _: P+ P (x:9)PDQ[z], (y:¢) P DQly — (z: ¢) Q7]

we have
"z9)q & 1f Tp4pr then) poglal e1se T(yg) Poqy
Now, if I', P = ?(.4) Qe) E 7, then I' = 7 4.0y p5gpa) E 7, S0 we have an admissible
rule for refining to conditionals:
D PE2agem Er TP F2yg) o E 77
't ?¢.4)qC if 7pip thenr else 1’

144

—— Falsehood

FI wt
' 1 wt

—— Implication

'-Pwf T'FP wf
I'-P>P wf

—— Universal Quantification

Ne:¢oF P wi
'FVx:¢.P wt

—— Predication

F'Friigr - I'kEry:op
't ¢y: Ref (1y) -+ T'F ¢, : Ref (1)
' F(ry,...,r,) wf

(F: Pred (m,...

,Tn) € F)

—— Refinement
Thr:gp DR Tk ¢4 : Ref (7)
F'FrCyr wt
I'F¢: Ref (1) I'F ¢ : Ref (7)
¢, ¢ wf

Figure 5.3: Well-formedness of Propositions

145

— Variables
FT,x: o, 1" wi
| RN I ol e

—— Constants

'k ¢y: Ref(rq) -+ I'F ¢y, : Ref (7,)

I'F: Ref (1) / , .
F"Tligbl..-rl—rnigbn £:1k¢1;__7>qifle—;cw€14x7
CEE(ry,...,rn) 0 F’.C,F”"n ’
Unit
FI wt
I'Fx%x:1
—— Stubs
I'F¢ wt
I'E?:0

— Product Terms
F'br:¢ Tx:pbF1r 9

I'Fletx:¢berin (x, 1) X, 40

FFr:pxy F'Fr:gpxv

CEm(r):¢ ['Fmo(r):

—— Function Terms
Lex:¢p,PFr:a
L' Ar g g pyp
F'Fr:gp—1¢ THr:¢
CErr

— Let Terms
Fkr:(x:9)P Dix:¢p,PEr 9
'letx:¢pberinr : o

(z & FV (1))

Figure 5.4: Refinement Typings
146

—— Refinement Type Introduction
'kt:¢ Tk Plt/x]
FEt:(x:)P
F'kr:¢ T'FF(r)
F'kr:(z:¢)F(x)
F'Er:(z:9)F(x) TErCyr
CEr:(z:¢)F(x)

—— Refinement Elimination
F'ErCyr
'Fr:o¢

—— Weakening

'kr:¢ Tk
'Fr:o¢

Figure 5.5: Refinement Typings cont.

The derived refinement rule for natwfrec (the constant for well-founded re-
cursion) is particularly interesting, as rules for ‘recursive refinement’ are central

to many refinement calculi (see, for example, [Bun97|, p. 46). The axiom is
natwfrec : (Hz:nat(Hz<x¢[z]) - ¢[:U]) - Hz:nat¢[x]

so, after simplifying the well-formedness hypotheses, the refinement rule is

[,z :nat b ¢[z] wf
I'F 1y aeofa) E natwirec (1, . (. coolz)—ofs))

We can then derive the rule of recursive (or ‘circular’) refinement:

[',n:nat b 7gp) Sepp tn, Am o nat |m < n.? 4]
I'F 2, e éin] Ellpaaco[n] RatwErec (An.Af.t[n, f])

Compare this with the discussion of equality on p. 113. This rule is equivalent to
(Intro. rec. func.) on p. 46 of [Bun97].

Remark 5.2.7 As mentioned in Remark 3.2.13, a general form of (-equality

does not hold in the Ac--calculus; instead we have 3-equality only for determined

147

—— Constant Equations

'k ¢y: Ref(rq) -+ I'F ¢y, : Ref (7,)

['F 4 : Ref (1) N A
Tty =g, t) - Dbty =y 1] {k -¢1,---,¢n7cwe @
— / / Ty T — T €K,
I'EE(ty, ..o tn) = E(E, ..., 1)) I'CT
—— Function Equations
Dx:obt:yp T'HE: ¢ (8)
I't+ ()\91: : ¢.t)t/ =y[t! /2] t[t’/x]
x:okFtr: vy (
’ n)
T Az : gba =, t (v & FV(£))
Fe:pFPwuf Tax:g, PHt=yt €)
LEAz (20 @)Pt =n, .y Av: 0.t
—— Product Equations
F|_t12¢1 Fl_t2:¢2 F|_t1:¢1 Fl_t22¢2 (5)
F l_ 7Tl<t1,t2> :¢1 tl F l_ 7T2<t1,t2> o tQ
CEm(t): ¢ Tk m(t): m(t)/x])

DE (i (t), m2(t) =5, 0t

—— Unit Equation

'Et:1
Fl_t:]_*

Figure 5.6: Equality Rules for Determined Terms

148

— Let Beta
'tt:g Dx:pkr:y
['Fleta:dpbetinr =yu/y rt/z]

—— Let Eta

'kEr:¢
I'Fletz:¢pberina =47

—— Let Associativity

F'kr:¢ Ty:obr ¢ Tyx:pbr")/
['Fletxz: 1y be(lety:¢berinr'y]) in r"[z]
=y let y: ¢ berin (let x: ¢ be r'[y] in 1"[z])

Figure 5.7: Let Term Equalities

arguments and bodies. This is unlike refinement calculi based on nondeterminism
(such as [Bun97] and [Mor94]). To illustrate this, let n : nat + Fermat(n) :
Ref (nat x nat X nat) be the specification of solutions to Fermat’s Last Theorem
at index n (i.e. tuples (z,y, z) such that ™ + y™ = 2"). Then, in contrast to Ac,
[Bun97] and [Mor94] both have:

(An : nat.7rerpat(n))2 = Fermat(2)

In Ac, the left hand side is unsatisfiable, whereas the right hand side is satisfiable.

This is similar to the situation with ASL and Extended ML. As observed
in [SST92] (Section 4.3), the “principle of modular decomposition” means that
if a module is decomposed into the application of a parameterised module to
some other module, the parameterised module must be implemented for arbitrary
arguments so as to be implementation independent, and not make use of particular
properties of the actual argument. A similar point was made in Example 3.2.4.
We discuss EML in more detail in Section 5.4.1 below.

Although the general (-equality does not hold in A, we do have the in-
equality, r[t/z] C (Ax: ¢.r)t, for underdetermined r. This means that we can
use the common programming technique of refining by first abstracting from a
specific ¢, and then implementing recursively for a general argument. For ex-
ample, 741 E (Ar.741))t, and we could then use recursive refinement to get

natwfrec (An.Af.u[n, f]) t for some u.

149

—— Constants

F'kri:¢pr - ThEr,: o,
'Fletxz:¢,...,2, Py ber,. .., 1T,
in k(zy, ..., @) =¢ k(r1, ..., 70)

Chk:gr,..., 00—t € Ax)

—— Applications

'tr:¢p—y T'kr:0¢
I'Fletz: ¢ — 4,2’ : ¢pberr in xa’ =y rr’

— Pairs
F'kr:¢ T'H: @
I'Fleta:¢,2' :pber,r in (x,2') =4xy (1,77)
—— Projections
I'kr: ¢1 X QZSQ
I'Flet z: ¢y X ¢ berin m(x) =4, mi(r)
— Abstractions

Doa:gy:idbrleyl ¢
['Flet z : Il.910 be 711, Ly in Az @ @[z, 27]
= \r: ¢.(let y: 1 be?y inrfz,y])

Figure 5.8: Let Term Equalities cont.

150

—— Variables

FT,x: o, 1" wi
Fx:o,I"F7,Chz

—— Constants
F"lei Ref(ﬁ) F"an Ref(Tn)
Tk : Ref (1) {glkk:%m’%;/cwEAx;
> 5 5 Ty eIy — T)
Unit
_FTwf
Fl—?l Cq %
— Pairs
I'Eo¢ x4y wt
F|—?¢><¢ Lpxyp <?¢,?w>
—— Abstractions

T b ,.pth wt
F I— ?Hm:¢w Enmquw)\ZL’ . ¢?w

Figure 5.9: Refinement Rules

151

— Stubs

'FoC ¢
TF 7 Cy g

—— Congruence
T,z:¢FP >P T,o:¢,PFrCyr
DAz (z:@)Pr T, g Azt @

F'oC ¢ ThErCyry Tio:opbry Tyl
'+ leqi;* :qbqb be 71 11n_7"(z Elw le;: x :¢¢’ be2 Ewinzré (v & FV(©)
Lx:pbEPwt I'kri=gapry o:¢, PEry=yr

FV
I'Fletz:(x:¢)Pber;inry =, let x: ¢ be r] inrh (v ¢ (¥))
—— Logical Congruence
I'FrCyr’ T'kFr:(z:¢)P
I'Er E(mqﬁ)P r
— Reflexivity
'Er:¢
'ErCyr
—— Transitivity
F'ErCyr TECTyr”
I'ErCyr”
—— Let Weakening
! . .
FEr:y I'kEr:¢ (x & FV ("))

'Er"Cyletx:¢pberiny’

—— Refinement Weakening

F"TE¢/T’ FI_QSEQZS/
F'ErCyr

Figure 5.10: Refinement Rules cont.

152

Unit

—— Product

FoC ¢ Tx:pFy Ty
TF Sopth C Soupt)!

—— Function

'FYCo Tx:pbyp Ty
T F ygtp C gt

—— Refinement Types
oy T,x:yYFP

TF(:0)PC ¢

Fx:Y,QFx:¢

oL (z:9)Q

—— Transitivity

F'FpC ¢ THE@LCY
Lo ¢

Figure 5.11: Refinements on Refinement Types

—— Predicates
Dz:opb F(z) Tkr:¢
' F(r)

Together with the rules in Figure 4.10, Chapter 4.

Figure 5.12: First-order Logic for the Refinement Calculus

153

Finally, it is interesting, in retrospect, that we do have the general g-equality
for the \; fragment, as discussed on p. 67. This means that, to a certain extent,
we can evaluate such terms as though they were programs.

One other illustration of the difference between Ac and two refinement cal-
culi based on nondeterminism, [Bun97] and [War94], is that, as for call-by-value
nondeterminism, arbitrary abstractions are considered to be values, .e. nonde-

terministic functions.

5.3 An Example of Refinement

The example we will consider involves sorting association lists of keys and complex
values. The idea behind association lists is that values of a complex datatype can
be manipulated efficiently by pairing them with keys that encode some useful
information.

We will develop two programs: first a sorting function and, then, a function
which determines whether or not two lists are permutations. We use the axiom
system for naturals and booleans given in Example 5.2.6 and extend it with an
axiom system for keys, values and association lists (though we will only give some
of the axioms).

The axiom system (S¢assoc, ATassoc) 1S defined as follows. Let Sgpssoc =
<gAssom Kassoc, -7:Assoc>, where

Grssoc = {key, value, assoclist}

Kissoc = {€q_key, compare key,nil, cons, head, tail, remove, listrec}
Fassoc = {Ordered, In, Sublist}

The ground types are key, value and assoclist. We define association pairs
as assocpair = key X value.

There are efficient equality and comparison functions on keys:
compare_key : key, key — bool

eq-key : key,key — bool

The signature for lists is:
nil : assoclist

cons : assocpair,assoclist — assoclist

head : assoclist — assocpair

154

tail : assoclist — assoclist
remove : assocpair, assoclist — assoclist
listrec : 7, (assoclist — assocpair — 7 — 7),assoclist — 7

The constants head and tail are defined for all lists, including nil. However,
the axioms do not say what the values at nil are. We use listrec, which is
primitive recursion over lists (fold left in functional programming).

The axioms include:
head : (/ : assoclist)l/ # nil — assocpair

tail: (I : assoclist)l # nil — assoclist
listrec (t, f,nil) =t

listrec (t, f,cons(z,xs)) = f xs x (listrec (¢, f,xs))
[: assoclist
listrec: ¢[ni1]7 Hl’:assoclistHp:assocpaier:qS[l’]¢[Cons(p7 l/)]a {l}assoclist - ¢[l]

We will use the predicate symbols:
Ordered : Pred (assoclist,assocpair — assocpair — bool)

In : Pred (assocpair, assoclist)
Sublist : Pred (assoclist,assoclist)

with the axioms
Vp : assocpair.—In(p,nil) A Vp.VzVes.In(p,x :: xs) <= p=x A In(p,xs)
VI’ .Sublist(nil,!l’)
V. VIVl . Sublist(cons(z,!),l') <= In(x,l") A Sublist(l,remove(x,!))
Ordered(nil,<) A o’ <x A Ordered(z :: xs, <) D Ordered(x’ :: x :: xs, <)

where Ordered(l, <) holds when the list [is sorted relative to ordering <, and
In(p,1) holds when the pair p is in the list [, that is, mathematically in, rather
than in terms of the key.

For [,1' : assoclist, the proposition Perm[l, '] is defined as:
Perm[l,l'] = Sublist(l,!") A Sublist(l, ()
We specify the ordering on association pairs as

compare : assocpair — assocpair — bool

155

Vk, k' : key.Vv,v' : value.
compare_key (k, k') = true D compare (k,v) (k',v') = true

For example,
compare = \a : assoclist.\a’' : assoclist.compare key(m;(a),mi(a’))
and the sorting function as
sort_spec : Ref (assoclist — assoclist)

sort_spec = Il}.ass0c1ist (I’ : @assoclist) Ordered(l’, compare) A Perml[l,]

Note that this specification does not say what should happen when two values
have the same key, but this does not matter for now. We remark that the seman-
tics of ?gore_spec 15 truly underdetermined.

Define ¢[l] to be the specification ‘is a sorting of ’:
(I : assoclist) Ordered(l’, compare) A Perm[l,l'] : Ref (assoclist)

The refinement begins as:

?sort_spec

Al : assoclist. ?(l/:assoclist) Ordered(l’,compare) A Perm[l,l’]

Al : aSSOCllSt : 1lStrec (?d)[nil}’ ?Hl’:assoclistHP:aSSOCPaiTHx:¢[l’]¢[c°ns(pvll)]7 ?{l}assoclist)

Al - assoclist. listrec (nil, Tm, .. Ty assocpaie Ty, g dlcons(p)] s |)

INRIRRIN

We now plan the next stage of the implementation. One possibility is to
construct a new list by systematically removing elements, and inserting them in
the correct position in a new list. This is an insertion sort. We need to implement

the specification
) assoc1ist Hpiassocpair g #[cons(p, I')] : Ref(assoclist — assocpair — 7 — 7)

In fact, we do not need to use the first argument. The specification of an insertion

function is (for I’ : assoclist):

insert_spec = Il assocpair g @[cons(p,)]
: Ref (assocpair — assoclist — assoclist)

which says ‘given p : assocpair and z a sorting of I, return a sorting of cons(p,(')’,

that is, ‘insert p in the correct position in the sorted list x’. Thus,

/. .
?Hl’:assoclistHpiassocpairnz:(b[l’]¢[cons(pal,)} E Al : aSSOCllSt'?insert—spec

156

We use the refinement rule for listrec again to refine insert_spec. For

m : assoclist, let ¥[m] = ¢[cons(p, m)]. We have

2

- insert_spec

Ap : assocpair. Az : @[l'].7

Ap : assocpair. Az : P[l'].listrec (Pypi), ?Hm:assocnstHp/;assocpairHyzw[m]w[cons(p’,m)]a)

Ap : assocpair.\z : ¢[l']|.listrec (cons(p,nil),? mytlcons(p'm)]s T)

s+ Ilim:assoclist Hp’:assocpair Hy:1/)

INRIRNIN

Then since we can prove

p: assocpair,z : ¢[l'], m : assoclist,p’ : assocpair,y : Y[m]
if compare p’ p then cons(p',y) else cons(p, cons(p’,m)) : 1[cons(p’,m)]

we have

b: aSSOCpair |_ ?Hm:assoclistHp/;assocpairHy:w[m]w[cons(p7m)] E
Am : assoclist.\p' : assocpair.\y : ¢[m].
if compare p’ p then cons(p’,y) else cons(p, cons(p’,m))
This is the only step of the refinement that generates a proof obligation.

We can now give the code for the sorting algorithm:
sort = Al : assoclist.listrec (nil, X' : assoclist.insert,()

where insert is

Ap : assocpair. Az : ¢[l'].
listrec ([p],
Am : assoclist.\p’ : assocpair.\y : ¢[m)].
if compare p’ p then cons(p/,y) else cons(p, cons(p’,m)),)

We are guaranteed (by subject refinement; see Lemma 5.5.2) that sort :
sort_spec.

Now suppose we want to write a function to test whether two association lists
are (true) permutations of each other, and so implement Perm. We can sort the
lists using sort and compare corresponding entries using compare_key. This is
not quite right, though, since as pointed out above, distinct values may have the
same key and so end up with different relative orderings in separate lists. We
would like to specify that our sorting is, in some sense, ‘context independent’,
in the sense that two pairs in a list will always be sorted in the same order,
no matter where they appear in a list. This can be done by strengthening the
specification on insert so that in the case when two values have the same key, the
insert function makes some predetermined choice dependent only on the value.

We require

Vo, v : value . v # v D choose(v,v") <= —choose(v',v)

157

We specify

insert’: assocpair — assoclist — assoclist

Jchoose : value — value — bool . Vp : assocpair .Vl : assoclist.

Ordered(insert’ p [, compare’) A Perm|insert p [, cons(p,!()]
where compare’ is a lexicographic ordering that first orders on the key, then on
choose:
compare’ (k,v) (k',v) =

if (compare_key(k, k') = true) then true else
if (eq-key(k, k') = true) then choose v V' else false

Thus, we leave it up to the implementer of insert’ to find some injective ordering,
perhaps by exploiting implementation details of the values.

We can now define the permutation function as
perm : assoclist — assoclist — bool

perm [y I, = eqlist (sort’l;) (sort’ls)

where eqlist is defined using listrec, and sort’ uses insert’.

Remark 5.3.1

The functions head and tail are partial in the sense that their results are not
defined for the argument nil. In [vL.90], various ways of accounting for partiality
in algebraic specification are considered. There are two ways in which the simple
approach of total algebras can be extended. On the one hand, we can extend the
syntax of specifications; on the other, the algebra semantics.

With error algebras, the specification is augmented with error values at each
type, together with predicates to distinguish between error and non-error values,
and axioms to explain how errors are propagated. This complicates specifications
considerably, but terms can still be interpreted as total functions.

An extension of this idea is to use monotonic (or continuous) algebras, where
each type is axiomatised as a poset (or cpo). Again, terms are interpreted as total
functions, but must be monotonic (or continuous) with respect to the orderings.

An alternative approach is to just change the definition of algebras, rather
than the specifications. In a partial algebra, terms are interpreted as partial
functions over the carrier sets. This necessitates a change in the definition of
homomorphism, satisfaction, and so on.

An approach which alters both the notion of specification and algebra is
order-sorted algebras. This is a form of subtype polymorphism with an order-

ing defined on the sorts. The idea is to give terms more specific sorts so they

158

become total. For example, we can define Nonemptylist < List and then have
tail : Nonemptylist — List.

The approach we have used here differs from each of these ideas. Although we
have a form of subtyping, this is not used to constrain the domains of primitive
functions. Instead, by regarding terms as representatives of equivalence classes
we can abstract away irrelevant details. This seems a natural approach because,
at the end of the day, we write total programs in the underlying programming
language. We might say that such functions are computationally total but speci-

ficationally partial.

5.4 Comparisons

We compare A\ with some related approaches to program development. Extended
ML and Lego are based on the same notion of refinement as Ac. Although the
calculi of Morgan et.al. are also refinement calculi, they are based on nonde-
terminism. We show how Ac- can be used as a metalanguage for studying and
comparing program development methodologies. We also compare with two al-

ternative approaches to program development, based on type theory.

5.4.1 Extended ML

The Extended ML language (EML) is similar to spirit to our approach in that it
takes an existing language, in this case Standard ML, and conservatively extends
it with specification constructs to give a wide-spectrum development language.
Moreover, the constructs added — placeholders (“question marks”) and axioms —
corresponds exactly to those of our modular analysis here. There is a well-defined
semantics [KST97] and methodology [San91].

The semantics is separated into static, dynamic and verification parts. The
static semantics is analogous to finding the underlying type of a term, which
we have not formalised directly. Refinement typing corresponds to both static
and verification semantics. One difference is that a verification checks that an
abstract program is well-annotated with respect to a particular interpretation,
rather than showing that a particular property holds for all interpretations as we
do. The dynamic semantics formalises the evaluation of terms, whenever possible,
in order to ‘experiment’ with abstract programs. Although we have not formalised
this, we suggest how this could be considered here on p. 67.

The intention in EML is to formalise the specification language in terms of

an arbitrary logic (or rather, an institution). As here, the specification style is

159

property-oriented.

Terms are interpreted with respect to (amongst other things) a particular
“question mark interpretation”. This is a syntactic mapping of 7’s to arbitrary
expressions.

There are a number of other differences. The question marks can replace
arbitrary expressions and so, in particular, types. Booleans and propositions are
combined. Satisfaction of properties is up to behavioural equivalence.

There is no proof theory. Rather, three general forms of refinement rule are
given, any particular application of which generates proof obligations which must
be verified with respect to the semantics. In contrast, our rules are low-level
and have been proven sound (and complete). The rules of [San91] (in a suitably
translated form) are admissible in Ac.

To take a simple example, if we model functors
functor F(X0: SIGO) : SIGO = exp[X0]

as abstractions AX0 : SIG0.exp[X0], then the coding rule of [San91] can be de-

rived. The rule becomes
AX SIG g1 EAX : SIG.r
when “SIGUr E SIG"”, that is,
X:SIGFr:SIG

This follows since it is admissible that if r : ¢ then 74 C r.

5.4.2 Aspinall’s A g7+

In his thesis [Asp97], Aspinall presents a number of lambda-calculus based calculi
for program development. In the same spirit as our work, he constructs his main
calculus from a number of subcalculi which he studies separately.

The development methodology is based on the “specification as type, element-
hood as satisfaction, subtyping as refinement” idea, but the specification language
is parameterised with respect to an arbitrary institution. The underlying type
theory is not used as a specification language, however, but gives a type structure
to the specification building operations of the institution.

The two subcalculi, A<y and Apyyer, are extensions of the dependently-typed
lambda calculus with singleton and power types respectively. The singleton types

are a simple form of specification (independent of the institution) while the power

160

types allow parameterisation of specifications over arbitrary specifications. We
have not studied parameterised specifications however.

There are significant similarities between A<gy and A(). Although Aspinall’s
intention was to provide a framework in which modular specification constructors
could be studied independently of any particular logic, since specifications of
functions are a simple form of ‘specification of parameterised program’, this gives
a specification language anyway. The notion of refinement defined in A<y only
accounts for singleton types, and not general propositions as in A.). Rather,
propositions are added on top with the institution.

Aspinall’s calculi are parameterised by a signature, and a consequence relation
over that signature which satisfies certain properties. In contrast, the axiom
systems used here are defined as a signature and an explicit set of axioms which
are then used with the inference rules.

Although specifications are treated as types, he has a notion of rough type
(originally due to Sannella) which is analogous to the underlying types here.

Another similarity is that he also uses a per semantics, interpreting specifica-
tions as pers over the underlying type. However, he interprets terms as elements
of pers whereas we interpret them as equivalence classes. This is evident in the in-
terpretation of abstractions, Ax : ¢.t. Aspinall does not take account of the ¢ but,
rather, uses the (rough) type of ¢. However, he does not have any completeness

results.

5.4.3 Type Theory

There are two general approaches to using type theory for program derivation.
On the one hand, there is the subtyping approach, as exemplified by Sannella and
Tarlecki [ST87], and Aspinall. There, specifications are formalised as types, and
the refinement of specifications is formalised as a subtyping spec < spec’. Refine-
ment continues until it is obvious that some program satisfies the specification,
that is, inhabits the type.

The other approach exploits the constructive nature of type theory via the
Curry-Howard isomorphism. A specification is phrased as a theorem so that the
proof of this theorem in the constructive logic of type theory automatically gives
a program which satisfies a specification, via some extraction mechanism.

In [NPS90], Nordstrém, Petersson and Smith, present Martin-Lof’s type the-
ory as a unified formalism for specification and programming based on the ex-
traction style. The derivation methodology is based on the idea that the typing

rules can be read as goal-directed tactics.

161

There are two levels to Martin-Lof type theory: the basic type theory of
dependent types, and on top of this, a theory with subset types. A subset type,
{x : 7 | P}, consists of a type 7 and propositional function, P and types those
terms with type 7 for which P is true.

This split into two levels is similar to that of types and refinement types
here, but there is an important difference in that refinement types correspond to
relations over types rather than subsets. We could regard Ay as formalising an
alternative interpretation of the subset theory.

Some consequences of using this type-theoretic formalism for specification and
programming are that the logic is intuitionistic and all programs terminate. With
subset types, {x : 7| P}, the proposition P is translated into the underlying type
theory, and so must be intuitionistic.

The interpretation of the subset theory in the basic theory is given as a
translation of a type into basic types and propositional functions. For exam-
ple, even — even is translated to the type nat — nat and the propositional
function Vz : nat .Even(x) D Even(fxz) in f. The typing rules can be translated
in this way because they use Curry style rules where abstractions are not labelled
with types.

Program refinement, as conceived in this thesis, has similarities with both of
the type-theoretic approaches. The refinement relation of \; corresponds to the
program extraction approach (where refinement is often implicit), whereas that

of A corresponds to the subtyping approach.

5.4.4 Lego

Lego [LP92] is an example of a proof assistant which implements the extraction
style of type-theoretic development. There is no subtyping, but instead an explicit
notion of refinement based on existential variables.

At any stage during a refinement in Lego, the user is presented with a proof
state consisting of a context of assumptions xy : ¢1,...,2, : ¢,, and a num-
ber of goals 71 : #y,...7m : 1,,. There is also a stored representation of the
proof so far, which is hidden from the user, and any other goals which are
out of context. Naively, we might represent this state as the refinement term
ALY D1, Tyt O let Yy sy, Y WU, in t where £ is a translation of the
proof so far. To see how goals out of context arise, suppose the first goal is
71 : 91 — ¢} and that we refine this. The resulting proof state contains assump-
tions 1 : ¢1,..., %y : On, 2 : Y1 and the single goal ?7m + 1 : ¢]. The other goals

are hidden since we cannot use the assumption z : 1 to refine them. In fact,

162

the proof states correspond to arbitrary refinement terms. To a certain extent,
the user is able to manipulate terms which contain existential variables 7n : 1,
corresponding to refinement terms.

This is more sophisticated than the approach of [NPS90]| since it incorporates
existential variables and an explicit notion of refinement, all of which is implicit
in the straightforward type-theoretic approach.

Existential variables correspond to stubs rather than free variables. In fact,
our refinement calculus may be viewed as an explicit formalisation of Lego’s
refinement process. Conversely, Lego may be viewed as a tool for performing re-
finement. Although a closer comparison would be between Lego and version of A,
for the calculus of constructions, we consider underdeterminism to be orthogonal
to the type theory.

The basic commands in Lego are setting a goal, claiming a lemma, making a
local definition, refining the current goal, and changing the order of goals. Each
of these commands corresponds naturally to a refinement step in our calculus.

The first step in a development, setting a goal ¢, introduces the refinement
term let x: ¢ in x; claiming a lemma is refinement by let-weakening; while
making a local definition x = t is also a let-weakening, though ¢ must be deter-
mined (i.e. not contain any existential variables).

Refinement of goals in Lego is performed by directly solving a goal, unifying
it with another goal, or using some library function f : 1,19 — ¢, so that 71 : ¢
is refined to 72 : ¢y, 73 : 1. We translate this as

[Xy — ¢
let x: ¢ intlx] T let yy @ 1, y2 : Yo int[f(y1, yo)]

Rearrangement of goals corresponds to the commutativity of let-terms. We
could regard this as a nontrivial justification for the reordering of goals in Lego,
though for the simpler expressions arising here though, it is more obviously sound!
Lego has some ability to perform automatic unification during refinement. Such
steps are derived from more basic ones.

It would be interesting to formally compare the rules of Lego with those of
Ac. This would let us apply some of the metatheoretic results here to Lego.
For example, if Lego has all the rules of A\ we could conclude that claims are

unnecessary.

5.4.5 Refinement Calculus of Back, Morgan and Morris

We compare our calculus with the imperative refinement calculus of Back, Morgan

and Morris. This version is taken from [Mor94]. A simplified grammar of the

163

language is:
C :=skip | abort | x:=F | if L —>C,|...| P, —> C,fi | rexz.Cer |

if PthenCelse(C' | Z:[P,P| | varz:0eC | conz:ce(
E ::= expressions
P ::= first-order logic plus arithmetic etc.

There is also a notation for procedures, which we do not consider here.

Only commands can be specified, and not expressions. There are two specifi-
cation constructs. The notation Z : [P, P’] is a specification of a command which
with precondition P of the state, results in postcondition P’, but only altering
variables in the ‘frame’ ¥.

The alternation construct, if ...[...f1i, is a nondeterministic choice between
commands C; whose ‘guard’ P; is true. If none of the P, are true then the
command is unsatisfiable.

The declaration of logical constants con x : o e ('] is not program code, but
an abbreviation introduced during development that must ultimately be refined
into code.

Annotations — ‘assumptions’ and ‘coercions’ — are defined as commands using
specifications (unlike in Remark 4.3.22). The assumption {pre} = () : [pre, T],
and the coercion [post] = () : [T, post]. In fact, abort and skip can be defined
using specifications.

The distinction between imperative and functional languages seems (theoret-
ically) irrelevant for our study of refinement. We can translate the imperative
features into our calculus in the style of Idealised Algol. For example, we add a

primitive type state, and define a translation (—)° of terms into our calculus:

(com)® = state — state
(x:= FE)° = assign(zx, E°)
(var z : 0@ ()° = new(Az : 0.C°)

In order to avoid considerations of nontermination, we could assume that all
recursion is terminating, and so could be encoded using primitive recursion (say).
We are more interested here though in translating the specificational features

into our calculus. Logical constants can be translated as:

(conz:0e(C)°=1letz:0inC"

164

Although the imperative refinement calculus does not have choice for expressions,

most other authors do, and it is useful in our translation. We can define this as
(r[r")° = let b:bool in (if b then r else 1)

The connection between propositions and booleans is usually not satisfactorily
accounted for. It is commonplace (and useful) to write propositions in place of
booleans, but not explained how they might ultimately be refined into booleans.
We do not study this, but can associate boolean term ¢ with proposition P, by
using sum types and asserting that ¢ : 1| P 4+ 1| =P. We use the notation

if P then P — r else =P — 7’ to mean
caseb:1|P+1|-Pof Az:1|Pr, \z:1|=Pr

so may use the assumptions P, =P when reasoning about r and ' respectively.

We will write propositions with this convention.

(ifb—r |V =0 £i)° =
if (band) then r[r’
else if b thenr

else if b’ then r’

else ?(ZZT) b=true V b/=true

The final branch is intended to mean that if both b and b are false, then the term
is unsatisfiable. If we had put ?(..,y 1 then this would force the whole term to be
unsatisfiable.

Logically, pre and postconditions are just a particular form of property. We
define the frame proposition Frr(s, s’) to mean that states s and s’ can only differ
on the variables in I'. We use the propositions pre and post as properties over

state. Let Frp(s,s’) =Vr:var.sx #s'c Dx eT.

(F : [pre,post])o = ?Hs;pre(s/:post)Frp(s,s’)
We can show that
{pre}° = \s : pre.s
Without some form of annotation, coercions do not have such a neat representa-
tion though.

We assume a Hoare logic of commands is given schematically. For example,

for all propositions P, terms e : ¢ and variables x : o, we have assign_(z,e) :

165

Ple/x] — P. With a sufficiently powerful type theory, and object level substitu-
tions, this definition could be internalised.

Morgan introduces a large number of refinement laws, though they are not
arranged into a complete system of refinement rules, and there is no logic of

refinement terms. We now consider two laws presented in [Mor94].
Absorb assumption {pre'}; (I': [pre, post]) =T : [pre’ A pre, post]

This does not hold in our calculus. To see why, observe that in general we do

not have
(Ax : ¢| P.x); M, = ?Hmuﬂ?

since although we might be able to satisty ¢ for every ¢ such that P, so the
second expression is satisfiable, we might not be able to do this for every ¢, so
the first expression is unsatisfiable. Now, the translation of the left hand side of
the law is
(A8 pre’.8); Mpre(s'post)Frr(s.s')

The failure of this equivalence does not mean that in our calculus it is impossible
to use external assumptions when reasoning about specifications. Indeed, this
nonlocality of satisfiability leads to complications. In order to understand one
subspecification, the entire system needs to be considered. Rather, we believe
that satisfiability of specifications should be local, and that assumptions be made
contextually — that is, in an explicit global or local context. It seems unlikely
that an expression of the form {pre'};T" : [pre, post] would actually arise during
refinement anyway.

The contrasting status of the law in A\c and [Mor94] is indicative of the dif-

ference between underdeterminism and nondeterminism (see Remark 5.2.7).

Alternation If pre D P, V Py, then I' : [pre, post| refines to
if P, — T :[preA Py, post] |
Py, — T :[pre A Py, post] fi

Let r = ?Hszp're/\Pl (s':post)Frr(s,s’) and Ty = ('?Hsjpre/\p2 (s":post)Frr(s,s’)- We show that

r= ?Hs:pre(s’:post)Frr(s,s’)
E if P1 /\PQ then 7’1”7”2
else if P, then

else if P, then ry

else ?(c:com) PP

We need two auxiliary results

166

1. rC if Pthen P — r else =P —r
2. If r Cry and 7 C 1y, then r C 7y]ry
So by 1,
rCif PPAPythen PAP, —relse«(PAP) —r

and by 1 again, refine the second branch to get

ifPl/\PgthenPl/\Pg—W’
else if =«(Py A P,) AP, then P, —r
else 7"(PLAP)AN—=P —r

and then
ifPl/\PgthenPl/\Pg—W’

else if =«(P, A P,) AP, then P, —r
else if P, then—(PLAPy) AP, — 71
else 7(~(PLAP)AN—-P) —r

which refines to
ifPl/\Pchenpl/\PQ—w“

else if =(Py A P) AP, then P, —r
else 7"(PLAP)AN-P —r

and then
ifPl/\Pchenpl/\PQ—w“

else if P, then P, — r
else if P, then P, — r
else =(PV P) —r

Now PPFr Cryand Po 7 Cry, s0 by 2, Py APy r C rq]ry. For the final
branch, if =(P; V) then r is unsatisfiable so we refine it to ?(c.com p,vr,- Hence
the term refines to

if Py A P, then rq|ry

else if P, then rq

else if P, then 7y

else ?(c:com)Pl VP

5.5 Metatheory

In this section we prove a number of proof-theoretic results about the refinement
calculus. Besides being used in the completeness proof of the next section, these
results are inherently interesting and provide insight into the nature of refinement.

We extend the results of Section 3.3 in which we showed that the simple re-

finement relation of A\; could be factored into ‘coding’ and equality. The main

167

idea is that a refinement can be factored into a simple form of ‘non-logical’ refine-
ment, and a logical equality. These relations can be seen as generalisations of the
simply-typed refinement relation in A, and the logical equality in A(.) respectively.
Mirroring the results for \;, the simple refinement can, in turn, be factored into
coding and ‘coercion’.

Before proving the factorisation itself, we use the characterisation of logical
equality to show that refinement typings can be proven in a standard way. Such
so-called generation lemmas are useful for metatheoretic reasoning about judge-
ments.

The idea of the lemma is that if a term satisfies a specification, then we should
be able to prove this by induction on the structure of the term. For example,
if the pair (r,r’) satisfies some specification x, then we should be able to prove
something about r, something about r’ and conclude from this that the pair
satisfies x. Formally, we would like so say that there are refinement types ¢ and
Y such that r : ¢, 7’ : 1) and that x C ¢ x ¢ (or, in general, that z : ¢ -1’ : 1) and
X C X,.41). This is often the case. However, it is sometimes possible to directly
infer that a term satisfies a specification, if this is taken as an axiom, for example.
In fact, it is the three Refinement Type Introduction rules which break the
structural form of refinement typing, in the sense that the inferred refinement
type need have no relationship to the term. Thus we formulate the Generation
Lemma to account for these two possibilities.

The proof exploits the fact that Refinement Elimination is only useful
in combination with the subset of rules corresponding to a relation ‘logical eta’

which we will define, and that this can be eliminated.

Lemma 5.5.1 (Generation) If ' = r : x then either this is derived using a rule
of Refinement Type Introduction, followed by Weakening, or it is derived

on the structure of r, as follows:
1. IfT'F x : x then there exists a ¢ such that ' =11, 2 : ¢, 'y and 'y - x C ¢.

2. If T'F k(ry,...,7mn) @ x then there is an axiom U'F k@ ¢1,..., ¢, — 0 such
that Uk r;:¢; (i=1,...,n)and T F x C 4.

3. If T'F % : x then there exists ' = P wf such that ' P and T'F x = (2 :
1)P.

4. If T (r,1") : x then there exists I' = ¢, wf such thatT'Fr:¢, T x: ¢k
i and I'E x T X000,

168

10.

If ' Ax: ¢.r : x then there exists Usx: ¢ = P wf and U,z : ¢, P F ¢ wf
such that I',x : ¢, PEr e and I' E x E Il p1).

IfT'E?4:x thenT'F x C ¢.
If T+ my(r) : x then there exists T'F 1 wf such that T'Fr :y X 1.
If T' = mo(r) : x then there exists '+ ¢ wf such that T'Fr: ¢ X x.

If T F rr’ : x then there exists ' = ¢ wf and I' &+ ¢ wf such that
F'kr:¢p—xandF1r':¢.

IfT'Flet x: ¢ ber in 1’ : x then there exists I',x : ¢ = P wf such that
Pkr:(z:¢)Pand iz, PF1":x.

Proof: We first show that we can eliminate ‘nonessential’ uses of the Refinement

Elimination rule. This rule is only useful in combination with the refinements

given by the logical equality rules of Figure 5.13. We induct over these rules to

show that in each case we can replace the use of the rule followed by a refinement

elimination with a single derived (or basic) rule whose hypotheses and conclusions

are all refinement typings (or well-formedness conditions). For example, in place

of using Function Equations (&) in

Lz:oFPwt T,x:0, Pt 0
LDEAp: (20 @) Pt =n, 0 AT Q.1
Fl_)\x¢tlﬂz¢|p1/}

Func. Egs. (¢)

Ref. Elim.

we have the rule

Dx:¢obPwt Tz:0,PHE 0
TF Az o g pt)

Note that we are not eliminating uses of Refinement Elimination here. This

derived rule still makes use of it. The rule Let Eta would be used in

'Fr:o
I'Fletaz:¢berinz =47
'Fletx:¢pberinzx: ¢

Let Eta
Ref. Elim.

but this can be proven directly as

'kr:o Tx:obx:¢
'Fletxz:¢pberinx: ¢

Similar analyses hold for the other rules of Figure 5.13.

Thus we can assume, without loss of generality, that if I' - r : ¢ is provable

and Ref.Type Intro. is not used, then it has been inferred from the refinement

169

typing rules of Figure 5.4, together with the derived rules above and Weakening
from Figure 5.5. Now we need just show that each of these rules preserves the
conditions of the lemma, in the sense that if the hypotheses of a rule can be
derived in the standard way (described by the lemma), then the conclusion can
be inferred in the standard way. In fact, this is immediate for the refinement
typing rules of Figure 5.4 and the derived rules. We need just check the case of

Weakening. For example, suppose

CErr)y:x TExCY
CE{rr):x

By the inductive hypothesis, either there exists ¢, ¥ such that '7r: ¢, I',x : ¢ -
i and I'F x/' T 2,41, and so I'F x C E,.49. ||
Cases 7-9 show that nondependent hypotheses suffice for the elimination rules.
Then, from the point of view of completeness, the restriction on the rules for
Product Terms and Function Terms in Figure 5.4 is not a problem.
We remark that the proof of Lemma 5.5.1 does not depend on the factorisation

result which we give below.

Lemma 5.5.2 (Subject Refinement) If ' -1 : (x : ¢)P and I' = r T, 1/, then
CEr':(x:9)P.

Proof: We use induction over I' F r T, 7" and the Generation Lemma. For
example, if I' = 7y, 1 (x : ¢)P then, either this follows from Ref. Type Intro.
followed by Weakening (in which case P must be a predicate symbol and we can
use Ref. Type Intro.) or I' = (z : ¢)P C ¢ x ¢'. So, I' = Ty Ty (T, Tyr)
and I' - (7, 7y/) 1 ¥ X 9" so by Weakening, I' - (7, 7) : (z : ¢)P. i

We want to split a refinement r T, ' into an equality at ¢ and some form
of ‘nonlogical’ refinement independent of any refinement type. However, it is
not immediately clear how make such a definition, because we have only defined
refinement at specific refinement types. Some refinements are provable at every
refinement type (of the term to be refined), though, and this will be our definition.

For example, ?¢yen_nat refines to An : even.n at every refinement type of ?¢yennat-

Definition 5.5.3 We define a form of untyped refinement, T, between terms.
We say that T' = r C ' holds when for all provable I' - ¢ wf, if T’ b r : ¢ is
provable then so is I't1r Ty r'.

170

In order to prove the factorisation theorem we need the fact that the axioms
can all be factorised. The easiest way of doing this is to assume that the axioms

are in A¢) (which we assumed in Definition 5.2.3).

Theorem 5.5.4 (Factorisation) If T' =1 T, 1’ then there exists a term r" such
that ' =r Cr" and T' 1" =4 ', and a term r" such that I' b r =4 r" and
Thr o,

Proof: We give a sketch of the proof. The central idea is to partition the rules
into what we call logical eta, simple refinement, and computation, by defining

relations :g, Cs and =Pet

, given in Figures 5.13, 5.14 and 5.15 respectively.
Note that the decomposition rules (top-down refinement rules of Figure 5.9) are
derivable for C*.

To a certain extent, the definitions of these relations are arbitrarily made to
get the proof to go through. For example, we include the Eta rule in £° simply
because it is not clear whether it commutes with the other rules in ¢ (this fact
being needed for the proof).

Then, by combining computation with simple refinement and logical eta, re-
spectively, we get nonlogical refinement and logical equality. Specifically, we
define =, as the reflexive symmetric transitive closure of =} and =Pet: and de-
fine C’ as the reflexive transitive closure of C° and =Pet. (We will show that :;5

is contained in =, and C' is contained in C.)

1. Refinement rules are of two kinds: axioms, that is, those whose hypotheses
do not contain refinements; and the congruence rules.

Prove that all axioms factor into =4; " and C'; =), and that congruence

rules and Substitution preserve factorisations. For Disjunction, if assum-
ing P the refinement factors through rp and assuming @) it factors through
rg, then assuming PV @, it factors through P — rp | Q — rg (defined us-

ing annotations and choice). The only rules which are not exclusively ="1¢¢,

:g or C* are the stubs refinement rule, and the three ‘complex’ congruence

rules.
2. Induct over R €C° to show that
R;=), = =,;C°
=R = C% =,

3. Since this clearly holds for R €="1°* we conclude that C’ (on ¢) commutes

with =4, and hence that T, factors into " and :/¢>'
171

4. Show that :;5 C =,. Hence, C, factorises into =’ and =,.

Corollary 5.5.5 The refinement relation, T, factorises into T and =,; that is,
if T'Er Ty’ then

Proof: By Theorem 5.5.4, C, factorises into C" and =4. The result follows on
using the Generation Lemma to show that T’ C C. [|

Corollary 5.5.6 IfI' - r Ty t, then there exists a term t' such that ' =r C t/
and 't =4 t.

Proof: Suppose I' = r T4 t. By Theorem 5.5.4, there exists a term ' such
that ' = r C 7" and I' = ' =4 t. Now, it is not necessarily the case that r’ is
determined. However, if we construct the term t’ by replacing each stub in 7’
with a determined refinement, then 'Fr T ' C ¢ and I' ¢ =, ¢. [|

We now generalise the canonical forms lemma of Chapter 3 and show that

each term has a canonical form to which it is equal at all its refinement types.

Lemma 5.5.7 (Canonical Forms) For all terms in context I' = r, there ezists
a context r1: ¢1,...,Ty : ¢Op and a determined term U xy @ &1, ..., 2p @ Ft wE

such that each x; appears exactly once in t, and
' (letay:¢1,...,00 Ppbe g, ..., 7, int) =7

Proof: Use =Pt rules of Figure 5.15 to move the underdeterminism outwards. i

We have shown that an arbitrary refinement, r T, 7/, factorises into T (or C')
and =,. We now show that further factorisations can be made when refinement
is to a determined term. We defined C’ as the reflexive transitive closure of C?

__flet

and . In fact, it factorises in the following way:

Lemma 5.5.8 If ' - r C' t then there exists a t' such that I' = r C° t' and
[kt =Ptet ¢,

Proof: ~ We can show that =P'°* commutes with C° in the direction: if
I'Fr =P 5y then I Fr C%; =°* ¢/ and the result follows. |

172

Eta

Function Equations (7)) (Fig. 5.6)
Let Eta (Fig. 5.7)

— Axioms
Axioms of the form I' -t =, ¢/
—— Weakening
I'Fr=yr T'FoC¢
FEr=41
—— Strengthening
F'kr=4r" T'kFr:(z:¢)P
I'Er =(x:9)P T’/
—— Congruence

Dz, Pht=yt
[EAv:o|Pt=n,,w ot
Cox:obr=41
CEA:gr=n, ¢ Ax: o’
Dx:pbEPwt I'Eri=gapry Lo:g, PlEry=yr
I'Fletz: (x:¢)Pber;inry =, let x: ¢ be r| inrh

(z & FV (1))

congruence rules for constants, pairs, applications, projections

Figure 5.13: Logical Eta: =,

173

—— Coding

ThHt:¢
TF?,C°t

—— Let Weakening
FEr 9y Thr:¢
'Er'C®letxz:¢pberinyr’

(z & FV(r'))

—— Stubs
'FoC ¢
FE?7,C° 7y
Eta
'Fr:o¢
['Fletxz:¢pberinxzCér
—— Congruence
'-rcsy’
I'ECr] C° C[r]

Dx:¢,PErCsy
CEAXe:o|PrC®Ax: ¢’

DT ¢ Thr T

'Fletx:¢pber;inry Cf let o : ¢ ber] inr
FFoC ¢ Tix:pbro T80 Thry:g

'Fletxz:¢beryinry C° let x: ¢ ber; in 1)

Figure 5.14: Simple Refinement: C°

174

—— Decomposition

I'Fo¢xy wt
D' 7gxy = (g, Tp)

T b .yt wi
I'+ ?Hac:(bw = \z: gb‘?w

Beta

Function Equations (3) (Fig. 5.6)
Product Equations (3) (Fig. 5.6)

Eta

Product Equations () (Fig. 5.6)
Unit Equation (Fig. 5.6)

—— Let Equalities

Figures 5.7 and 5.8 (except Let Eta)

—— Congruence

De:obr=1
C'EXe:gr=Mx:or
Fkry=r] Tiz:pkre=r}
['Fletz:¢ber; inry =1let x: ¢ ber] inr)

Figure 5.15: Computation: =gjet

175

In Chapter 3, we defined a coding relation, ~», and we now extend the defini-

tion to Ac in the obvious way.

Definition 5.5.9 We define the coding relation on well-formed terms,
' r ~ 7', as the reflexive, transitive, congruence closure of the following one-

step relation:

ThHt:¢

It is also possible to refine terms simply by weakening the refinement types

on binders. We define a relation, <, for this notion of ‘coercion’.

Definition 5.5.10 We define the coercion relation on well-formed terms,
I' B r < 7', to be the reflexive, transitive, congruence closure of the following

one-step relation:
Fx:obFrwt Tx:ok P wf

CEXe:g|Pr<Xr:o¢r
'CoC ¢ Thr:¢ T,x:pbr wf
'Fletx:¢berinr <letxz:¢ ber iny’

Now, in Chapter 3 we showed that refinement to a determined term in A\,
could be factored into coding and equality (Lemma 3.3.2). The generalisation of

this lemma to Ac is:
Lemma 5.5.11 I[fTFrCt thenThEr~;<tand Tk r <;~t.

Proof: We first show that all rules of C° factor into ~» and <. Clearly ~» and <
commute. All we need show, then, is that the C° rules of Let Weakening and

Eta can be eliminated:

(Let Weakening) Suppose " C° let x:¢ be r in 1’ ~» let x: ¢ be ¢ in .
Then, clearly, r’ ~ t'[t/x].

(Eta) Suppose let x:¢ be r in © C° r ~» t. Then let x:¢ be r in = ~
let x: o bet in z. [|

We will use the following consequences in the completeness proof:

Lemma 5.5.12 1. I[fT'F let z:¢ be r in 1’ T’ ' then there exists a term
CHt:¢suchthatTErCt and T H'[t/z] T 0.

2. IfT'Flet z: ¢ berint’ Ty t' then there exists a term I' =t : ¢ such that
F'FrCytand D F1'[t)z] Ty t.

176

Proof:

1. Suppose ' - 1let z: ¢ be r in v’ C' ¢’. Then, by Lemma 5.5.8, there exists a
term t” such that ' - let z: ¢ ber inr’' C°t” and ' F " —plet y o4 by
Lemma 5.5.11, ' - let z: ¢ be r in r’ ~»; < t”, that is, there exists deter-
mined u, v’ such that ' -7 ~» vand I' F 7’ ~ v/’ and let z : ¢ be u in v’ <
t. Hence, T Fr T wand T F +'[u/z] ©' w/[u/2] T’ " =PLet ¢,

2. IfI'Flet z: ¢ be r in v’ T, t/, then by Theorem 5.5.4, there exists a t”
such that I' - let z: ¢ be r in v’ T’ " =, t'. By part 1 of this lemma,
there exists a term I' ¢ : ¢ such that ' - r C' ¢, so I' - r C, ¢, and
CEAE/z] Tt so T Fr't/z] Tyt

Lemma 5.5.13 (Completeness of refinement to programs) If T'F1t: ¢ then
FE7?74Cyt.

Proof: 'This follows directly using Substitution. ||

Definition 5.5.14 For I' b r,r" wf, define r ,Sg r’ to mean: for allT" D T, for
all determined t', if I" 1" Ty t/, then I =1 Ty t'.
Lemma 5.5.15 (Refinement Mappings) If

T

letz:¢int; 3,

let y: 1 inty
then there exists I',y : ¢ =1t : ¢, such that I',y : ¢ = t[t/x] =, ta.

Proof: Since I',y : ¢ F let y : ¥ in ty &, tofy], by the definition of <! we have
Iy:yFletz:¢int; C, t3]y]. By Lemma 5.5.12 (2) this means there exists
aterm ',y : ¢t t:¢such that I'y : ¢ - t[t/z] =, ta. [|

5.6 Models

We first motivate the semantics for the Ac-calculus in Section 5.6.1 before giving

the details in Section 5.6.2, and proving soundness and completeness.

177

5.6.1 Discussion

We discuss the properties we would like the semantics of the refinement calculus
to have and give intuitive meanings to refinement typing and refinement in the
Ac-calculus. It is our intention to model the calculus using a form of Henkin
interpretation, and so enable comparison with the models of the subcalculi.

In Chapter 3, a refinement term r was thought of as denoting a set of values,
or realizers, corresponding to the programs which satisfy the specification. In
Chapter 4, determined terms ¢ were also seen as denoting sets of total realizers.
Perhaps unexpectedly, we cannot think of terms in the full refinement calculus as
denoting sets.

To see this, we must consider what the meaning of the refinement typing, r : ¢,
should be. A first approximation to what this means is ‘every realizer of r is in
¢’. This would be wrong, however, as we do not want An : even.n : nat — nat to
be true, yet every realizer of An : even.n is certainly in nat — nat. The problem
is that the interpretation of An : even.n as a set is losing the information that its
realizers are only determined up to even — nat.

This is analogous to the distinction between even — even and
(f : nat — nat) Vn : even.Even(fn). Although these refinement types corre-
spond to the same sets of total terms, (we could say they have the same ‘exten-
sion’), they represent different equalities. We can recast this example as the dis-
tinction between the refinement terms An : even.n and ?(f.nat—nat) Va:nat . Even(z) 5 fo—a-

The problem is that our interpretation of refinement types uses pers, rather
than just types. Somehow we need to involve pers in the interpretation of terms
as well.

In Chapter 4, we said that t : ¢ is true when all realizers of ¢ are equal at ¢.
This will certainly prevent An : even.n having refinement type nat — nat, but
then 7 .+ _nat : nat — nat will not be true either.

The solution is to think of refinement terms as sets of equivalence classes of
some per. In the case of A\n : even.n, we should interpret this as a single class
in the per even — nat. The term 7(f.nat—nat) vn:even.fn—n is interpreted as all the
classes in the per (f : nat — nat) Vn : even.fn = n.

However, since we interpret preterms, it is not immediately obvious which per
the equivalence classes should be from, but since a set of equivalence classes of
some per is itself just a per, we simply interpret refinement terms as pers.

For example, the refinement term 7, will be interpreted as the same per as
the refinement type ¢. Then we can succinctly express the semantic meaning

of refinement typing: r : ¢ is true when (the meaning of) r is a subper of (the

178

meaning of) ¢.

We will show in the next section that determined terms (i.e. terms in the
A)-calculus) are interpreted as a single equivalence class. Thus we can regain
the set-theoretic intuition that an underdetermined term 7 corresponds to a set
of realizers — now the realizers can be thought of as determined terms, corre-
sponding to the equivalence classes of . This means that r : ¢ can be thought of
as “for all » £ ¢, we have t : ¢”. Semantically, the final stage of a refinement is
a single equivalence class.

Given this intuition of a refinement term as a per, how are we to think of
refinement? Semantically, there are two forms of refinement: reducing the number
of classes (restriction) and reducing the size of the classes (quotienting). For
example, ?even—nat Can be quotiented to 7h.t_nat, and restricted to An : even.n.
Both operations give subpers.

In practice, refinement is more likely to consist of progressive restrictions (in
this semantic sense) on a specification towards a program. Non-discrete equiv-
alences can only arise through refinement types on abstractions. Quotienting
would correspond to a relaxing of these assumptions, thus increasing the domain
of definition.

We think of refinement at ¢, then, as being a combination of reducing the
number of ¢-classes, and of making the classes finer. These two relations can be
combined by saying that r T, 7’ is true when (using capitals for the meaning
of expressions) R’ is contained in the ®-closure of R, that is, R’ is a subper of
®; R; $. In fact, we also require that R is a subper of .

For example, An : even.n L.t .ot AN : even.n is not true, since the single
class denoted by An : even.n (in even — nat) is not equal to itself at nat — nat.
As pointed out above, An : even.n does not have refinement type nat — nat.
Similarly, we do not have 7p.t nat Cnat—nat AN : even.n.

Since the goal of refinement is to reach a term which represents a single equiv-
alence class, syntactically it culminates in a determined term, and not necessarily
as a term in A*~. Hence, from a semantic standpoint, we are consistent in con-

tinuing to use t as a metavariable for determined terms.

5.6.2 Ac-Henkin Models

As suggested for A\; in Remark 3.4.12, there are two possible approaches to giving
a semantics. One possibility is to interpret I' - r as a per. Here we interpret
the calculus in Henkin models with the additional structure introduced to model

the subcalculi in Sections 3.4 and 4.5, namely factoring and per structure. The

179

only difference is that the factoring condition must be strengthened to account
for logical structure.

We follow the pattern of previous chapters, by first giving the interpretation of
pre-expressions, and then defining when an interpretation of a signature models
an axiom system.

We define the notion of I'-environment as in Chapter 4, and write ¥4 I when
n is a I'-environment in A\c-Henkin interpretation, .A. Then the pre-expression in
context, I' = U, is interpreted in a ['-environment, 1. We interpret pre-expressions
so as to avoid the need for establishing coherence (as for the A(,)-calculus).

Since the basic data of Az-axiom systems is the same as for first-order * -
and \()-axiom systems, we give the interpretation of pre-expressions in a first-
order A*7~-Henkin interpretation in I'-environment, 7, in Figures 5.16 to 5.18.
Figure 5.16 gives the interpretation of refinement types as pers over the set cor-
responding to the underlying type. This is the same interpretation for the A()-
calculus but we repeat it here. Figure 5.17 gives the interpretation of refinement
terms, also as pers. For a an element of per R, we use the notation {a}r for the
singleton per consisting of the class of a.

As for Ai;)-models, the soundness theorem for Ac will imply that the choice of
a in the semantics of abstractions is not important; similarly for the other binding
expressions.

We define some of the pers as sets of pairs. We explain the cases for ab-
stractions and pairs. The abstraction, Az : ¢.r, denotes a per which relates two
functions if for all arguments related at ¢, the results are related by r. The let-
expression, let = : ¢ be r in 1/, is similar, but relates two individuals if there
exists a pair related by r. Since r : ¢, soundness implies that the choice does not
matter.

The interpretation of pre-propositions, I' - P, is given in Figure 5.18 as the
set of I'-environments in which P is true. It is convenient to write [I" - P](n) for
the truth or falsehood of n € [I' F P].

Having given the interpretation of pre-expressions we can make the following

definitions.

Definition 5.6.1 Let A be a first-order *—-Henkin interpretation. We say that
A satisfies the logical factoring condition when for each f' € A", f € A7~
such that f' € [— 'JA, f € [¢ — ¢']A, we require that if there exists h €
AT — A° such that f' = h; f then there exists g € [t — ¢]* such that f' = g; f.

Definition 5.6.2 Let Sg = (G, K, F) be a Ac-signature. A A\--Henkin interpre-
tation of Sg is a first-order *~ -Henkin interpretation of Sg which satisfies the

180

a[lF1](n) d <= a,d €14

[CF¢]=R [[,z:¢F1] =
, ProjT"(a) R(n) Proj{’(a’) and
a [['F Y] (n) o <= Projy " (a) S(n,Proj{"(a)) Projy’ (a’)

[FFEél=R [lz:¢F7]=
[0 Tp](n) f' <= forall a R(n) o, App(f,a) S(n,a) App(f’,d’)

[CH¢]=R [[,z:¢FP]=A
a[l'F(z:¢)Pl(n) d < aR(n)d,(na) €A (nad)ecA

a[TFA]n) d < a,d €y* anda=d

Figure 5.16: Interpretation of Refinement Types

logical factoring condition.

Remark 5.6.3 We make the obvious extension of Definition 4.3.18 (well-
structured expressions) to Ac. As for the A()-calculus, it turns out that well-
structured expressions have a well-defined interpretation. In fact, some other
expressions have an interpretation too, for example: (An : nat.n)? poor) L 1S in-

terpreted as the empty per.

For A a Ac-Henkin interpretation we define I' B4 U wf when 7 [['] 7/ implies
[C'FU] (n) =[I'F U] (). That is, well-formedness is interpreted semanti-
cally as equal environments giving equal interpretations. For n EA T' we define
[EAT 71 ¢ to mean: [- 7](n) is a subper of [T F ¢](n) and T' E47 P to mean:
nET =n e[l + P]. In particular, then, I' FA" r C4 v/ when R C & and
R C ®;R;®, where R = [[F r]4(n), R' = [F r']*(n), and ® = [T I ¢]“(n).
We will see below that this ‘asymmetric’ meaning of refinement has a more sym-
metric formulation.

For judgement I' - J, we write I' A J when I' E47 J for all n EAT.

Definition 5.6.4 Let (Sg, Ax) be a A\c-azxiom system, and let A be a Ac-Henkin
interpretation of signature Sg. We say that A is a model of (Sg, Az) when

e for each well-formed aziom T = P, for allp € [T]A, n € [T = PJA. We
write this as T EA P.

181

b[0,x: ¢, T Fz[(n,a,n) b < b {a}rrg1m) b
[CEr]=my - [T Er]=m,

bLE*](n)t <= bt e A
[CEr]=m [TF]=m
) LIl ,((A

[C,z:pbr] =

fICE Az or](n) ff <= Va [+ ¢](n) App(f, a) m(n,a) App(f’,a’)

[CFo] =
[T+ ?61(n) = R(n)

[CEr] =
[T Fmi(r)](n) = {(Proj7”(a), Proji™(a')) | a m(n) a'}

[CEr] =
[T ma(r)](n) = {(Projz”(a), Projs™(a')) | a m(n) a'}

[CEr]=m [TF]=m
[T Frr'}(n) = {(App(f. @), App(f', @)) [f m(n) f';a m/(n) o'}

[CEr]=m [Cz:okr]=m
b[l'Fletz:¢pberinr’](n)t <= Jam(n)d .bm'(na) bt

Figure 5.17: Interpretation of Refinement Terms

182

[CHL1]=0
[TEPDOP]={nET|n¢[l'FPlorne[ltk P}
[CHV2:¢.Pl={nET |Vae[TF¢|(n) . na) e[l z:¢+ P}
[CFr]=R, - [CFr]=R,
[CFF(ry,...,r)] ={nET|Va; € Ri(n) . {ay,...,a,) C F4}
[CHr]=R [CF¥]=R [[+¢]=2>
[CErCyr]={nET|RHn) COn) A R(n) C2n);RM0n);PMN)}
[[F¢]l=2 [IF¢]=9
[[FoCd]={nkET|oHn) 2dMn)}

Figure 5.18: Interpretation of Propositions

o for each well-formed aziom T' = k : ¢1,...,¢n — 0, for all n A T, if
a; [T F ¢;JA(m) al (i = 1,n), then kM ay, ..., a,) [T+]A0n) kA(d, ... d,).
We write this asT EAk = ¢y, ..., ¢0p —

The meanings of the judgements may be equivalently expressed in terms of
equivalence classes. We will use ¢l and cl’ as metavariables for equivalence classes,

and by writing ¢l € R, we mean that cl is a class of R, rather than a value.
Lemma 5.6.5
1. TE"r: ¢ when Vel € [I' Fr](n) . Ve € cl. Vo' €cl.x [I'F ¢](n) «.

2. TFE"rCyr’ whenT'E"r: ¢ and
Vel e [T E7'[(n). 3l € [T Fr](n). Ve ecd N €.z [T'F ¢](n) «.

Proof: 'We prove part (2). Suppose I' E" r C, r’. The literal reading is that
there is are inclusions of pers R C ®&; R;® and R C ¢, where R = [I" - r](n),
R =[I'+7](n) and ® = [I' F ¢](n). Let I’ € R'. Then cl' € ®; R; ®. So for
every =’ € cl’ there exists x1,x9 € R such that 2’ ® x; R x5 ® 2/. Let ¢l be the
set of such ;. Then we have cl ® cl’.

Conversely, suppose Vel € R/ . Jcl € R . cl @ cl'. Let 2f R zl,. Then
xy,xy € cl' for some ¢’ € R, and so there exists a ¢l € R such that ¢l ® ¢l

Choose any x € cl. Then | ® z R x ® xi,. i

Lemma 5.6.6 For all determined terms t, the per [I' - t](n) is a singleton class.

Proof: Induction over preterms I" - ¢. ||

183

We can formalise a sense in which A--interpretations generalise the semantics
of the two subcalculi. First observe that A;- and A()-axiom systems are also
Ac-axiom systems. Now A.- and A(-Henkin interpretations also give rise to Ac-
Henkin interpretations, and similarly for environments, though the interpretation
functions are different. Terms from A, and A, are interpreted as sets, but terms in
Ac are interpreted as pers. Now the A--interpretation of terms from the subcalculi
is a special kind of per. In particular, types and terms from A\, are interpreted as
discrete pers. Terms from A, (i.e. determined terms) are interpreted as indiscrete
pers. We will subscript interpretations with the calculus.

Define two mappings ¢ and « from sets to pers. Let S be a set. Then we

define pers 1S and kS as:

xSy < x,yc Sand x =y discrete per
xSy < x,ye s indiscrete per

Proposition 5.6.7 Let r and 7 be a well-formed term and type in \o. Then:
o [MEr[5L(m) =c([0Fr:7]s(m)

o [[FrfL(n) =c(r)

In

In

Lett, ¢ and P be a pre-term, -refinement type and -proposition in \y. Then:
o [DH 42 () = £ (I0 112 ()
o [I'F ol (n) =[IF ¢l5, (n)
o [I'F Pl (n) =[I'F PIS, (n)

Proof: Induction over .- and A()-expressions. [|

Proposition 5.6.8 The Ac-calculus is a conservative extension of A» and Ay in

the following (semantic) sense:

o Let (Sg, Az) be a \s-aziom system, and A a A7-Henkin model of (Sg, Ax).
Let n EAT and suppose that r and ' are terms of \». Then,

r |=:\4£7 rc,r < T |=;\4?’" rC,rf

o Let (Sg, Ax) be a A¢y-aziom system, and A a A.y-Henkin model of (Sg, Ax).
Let n EAT and suppose that t and t' are terms of A¢y- Then,

PR =gt = TRt =4t

184

Proof:

FE St [0 I3 (n) € [0+ 75 () [0 rD5e (n): [0 F 715 (0)

(1) S e (T ([0 F 7] (m); e (74)
[[Fkr':T]]j\“?(n)g[[FFr:T]]ﬁ(n)

rTrua

r |=:\4;7 t=pt <<= Vee[l't 15]]:{‘E (n).3cl’ e [I'F t']]j\“E () .cl'F gb]]j\“g (n)cl’ A
Vel € [T+ t']]j\“ n).3cl € [I'+ t]]“;‘g(). eIk (b]]j\“E (n)cl
the class [[' F] (n) [T F o] t

(n = (n) the class [I' - ’]]“;‘7(77)
R(ITFEL) ITF IR () w (01, ()
Yae [T ()Y € [T (1) . a [T+ 6 (1)
i

IHIII

We will need the generalisations of some lemmas used in the soundness and

completeness proofs of the two subcalculi.

Lemma 5.6.9 (Substitution Lemma) If T EA" ¢, ¢y (i =1,...,n), then
[21: b1y syt b F U (an, ..., an) = [T F Ulti/z:]]A(n)

where a; € [T Ft]4(n) (so (a1,...,an) FA T b1, 0).

Proof: Induction over xy : ¢1,...,%, : ¢ b U. [|

Although this is written the same as the substitution lemma for A¢) (Lemma
4.5.4), there it is stated using sets, whereas here we use pers. The analogues of

Lemmas 4.5.5 and 4.5.6 follow similarly.

Theorem 5.6.10 (Soundness) Let A be a Henkin Model of axiom system (Sg, Ax).
If (Sg, Az)>T F B (where B ranges over basic judgements) then T FA B. In
particular, if (Sg, Az)>T F ¢ wf then T A ¢ wf, if (Sg, Az)>T = P wf then
I EA P wf, if (Sg,Az)>T 71 :¢ then T FAr: ¢, and if (Sg, Az)>T = P then
[EAP.

Proof: Simultaneous induction over derivations of all judgements. We can sim-
plify the proof of soundness of r Ty ' by observing that, for those rules which
are C, that [r] D ['] = FE r C r’. Hence, we need only show that R’ C R,
from which R C ®; R; ® follows. We work through some key cases (omitting the
proofs that R C ®).

185

e (Variables) Suppose F I',z : ¢, [wf. Let (n,a,n') E T,z : ¢, I and sup-
pose that b [I',z : ¢, I"](n,a,n’) V. Then, b {a}prrgjm Vs s0 b [I'F ¢](n) V',
and b [[',z: ¢, IV F ¢)(n,a,n') V.

e (Constants) Fix n E I. Let b [[' F k(r)](n) V', so b = k*a), ¥ =
kA(a') for some a [T r](n) /. By the soundness of ' r : ¢ we have
a [I''+ ¢](n) . Now I" C T' so suppose I' = I'1, IV, Ty, n = (1,1, 1m2).
Then [I' - ¢](n) = [I' + ¢](n'), so a [I" F ¢](1) @', and since A models
the axiom, k4(a) [T F ¢](n) k*4(a’). Hence b [T F ¢](n) ¥

e (Function Equations (3)) Suppose I''z:¢p E ¢t : ¢y and T E ' : ¢.
Then b [I' F (Az : ¢.t)t'](n) V' iff there exists elements f, ', a,a’ such that

fIUEXeotl(n) fsa [IFt](n) o and b = App(f,a), V' = App(f', d').
This holds iff b [[x:¢ F t]({(n,a)) O for a € [F t](n), iff
b [I'Ft[t'/x]](n) b (substitution lemma).

e (Let Beta) Suppose n F ' and b [I' - let x: ¢ be ¢ in 7](n) O'. This
is the same as b [I',x : ¢ F r](n,a) b for some a € [I' + ¢'[(n). By the
Substitution Lemma, this is the same as b [I' - r[t/x]](n) .

e Let Term Equalities:

— (Projections) Suppose b [I' F let z: ¢y X ¢o be 7 in m(x)](n) b'.
This is when there exists a € [I" - 7[(n) such that
bl z: ¢ X ¢p - m(x)](n,a) /. Hence b [I' - my(r)](n) V.

— (Abstractions) This is similar to the proof in Chapter 3, but uses
the stronger factoring condition. For the sake of simplicity, we will

consider closed terms. We must show that
[let 2 : [yt in Az : ot[z/y]] = [\z: é.(let y: ¢ in)]
Now f € [let z : I.»¢) in Az : ¢.t[zz/y]] when
S0 € [Mt] Vb€ [¢] . b€ [gy, z: 6 F tlza/yll{a) (5.1)
and f € [Ax: ¢.(let y: ¢ in t)] when
Ve o] .Jap€z: o)) . fbE[r:dy: vt a) (5.2)

We follow the same line of reasoning as in Chapter 3, p. 80, to prove

these two statements equivalent. The interesting direction is showing

186

that (5.2) implies (5.1). Define h: 04 — (o x7)* as (b € 0 +— (b, ap))
and f’ as [Ap: Xp.40 F tlmp/x, map/y]].

Then, since (5.2) says that f = h; f’, by the logical factoring condition,
there exists g € [¢ — Y,.4¢] such that g; f = f.

The remainder of the proof follows Chapter 3.

e (Logical Congruence) Suppose I' £ r Ty " and ' F r : (z : ¢)P.
Let n F I', and suppose b R'(n) b'. Then there exists by, by such that
b ®(n) by R(n) by (n) b'. Now by R(n) by implies that
by [T F (x : ¢)P](n) by, so T',x: ¢ EM P and since by [I' F ¢](n) ¥,
we have Iz : ¢ Fppy P, and so by [I' = (2 : ¢)P](n) ¥'. Similarly,
bIT+ (& 6)PJ(n) by, and s0 b [T (:)PI(n) R(n) [T+ (2 : 6)P)() V.

e Refinement Rules: The soundness of r Ty 7’ (Figures 5.7, 5.8, 5.9 and 5.10)

follows the corresponding proofs in Chapter 3.

|
Since n [I'] n" implies [I" F r](n) = [I' F 7](n") we can give the semantics as

a mapping from [I'] classes. Sometimes we write an environment as [t], meaning
any member of the class of [t].

In Chapter 4 we had the problem of formulating a completeness result, since
the interpretation of refinement types as pers did not correspond exactly to the
rules of the calculus as they currently stand.

There were two kinds of mismatch. On the one hand, a term could be ‘well-
formed’ in the semantics, by virtue of having a unique interpretation, yet not be
syntactically well-formed, an example being (An : even.x)3. The other problem
arose with higher-order terms, and was due to the calculus requiring arguments
to an abstraction to have the refinement type on the abstraction, but the model
just needing equality of arguments at that refinement type to give equal results.
For example, A\f : nat — nat .3 has refinement type (even — nat) — nat in the
model but not in the calculus.

We got round this in Chapter 4 by defining a contextual equivalence ~, on
terms such that if F ¢ : ¢ then there was a t' such that t' ~, t and ¢’ : ¢. For the
above two examples, we have (An : even.x)3 ~; xand A\f : nat — nat.3 ~eyennat
Af :even — nat.3.

Another possibility is to restrict the statement of completeness to avoid these
classes of terms, and this is what we do in this chapter. This has the virtue of
being simpler, and it also makes it easier to extend the completeness theorem

using suggestions in Chapter 6.

187

Suppose some judgement is true in all A\--models of the relevant axiom system.
In order to show that the judgement is provable we first assume that it is well-
formed, where well-formedness of the judgement I' - r : ¢ means that I' - ¢ wf
and I' - r wf, that is, ' = r : ¢ for some ¢. We then make the additional
assumption that the judgement is of rank less than or equal to 1, where the rank
is defined recursively for each syntactic category, the idea being to exclude any
higher-order refinement types. For example, Rank (nat X bool — nat) = 1,
Rank ((even — nat) — nat) = 2.

The completeness proof has the same pattern as in previous chapters. We
construct a term model from an appropriate notion of Henkin theory. As with
Definition 4.5.8 in the A(,-calculus, we regard theories as infinite contexts, rooted
on the left.

Definition 5.6.11 Let (Sg, Ax) be a Ac--aziom system. A A--Henkin theory
over (Sg, Az) is a well-formed infinite context, T", closed under derivation from
(Sg, Ax) such that:

e ifdx: ¢.P €T then for some term '+t : ¢, Plt/x] €T

o if(letz:¢pint T, let y:¢ int') € I', then there is a determined term
I'F f:9y— ¢, such that (Vy : ¢ . t[fy/x] =, ') €T

Theorem 5.6.12 (Completeness) Let (Sg, Ax) be a Ac-aziom system. For
(Sg,Az)>T + B wf and Rank (T + B) < 1, if I B4 B for all A\c-Henkin Models,
A, of (Sg, Az), then (Sg, Ax)>T + B. In particular, assuming rank < 1, for
(Sg, Ax)>T = P wt, if T BA P for all models, A, of (Sg, Az) then (Sg, Az)>T F
P, and for (Sg,Az)>T & ¢ wf and (Sg,Az)oT Fr wf, if D EA r . ¢ for all
models, A, of (Sg, Az) then (Sg, Ax)>T F1r: ¢.

Proof: Let I be a consistent context. We sketch the construction of a model A

and environment 1 F4 I' below, and use this to derive completeness.

1. Construct a maximal consistent Ac-Henkin theory I', such that
{P|T'+ P} CT.

The construction follows that of Theorem 4.5.16.

2. Construct the term model from open terms. Define 74 as the set of equiv-
alence classes of well-structured open terms of *7, {u | T'oo, L F u :

¢ N T's b ¢ Ref (1)} with respect to the same equivalence as for A(,).

188

We construct a Ac-Henkin interpretation A, by interpreting constant and
predicate symbols syntactically. Prove that A satisfies the factoring condi-

tion, and so is a well-defined interpretation.

. For y FA I" and T, F B[y//I"] wf, prove that I" FA" B <=
' F B[n'/T']. This uses the characterisation of expressions in the term

model given in Lemma 5.6.15 below.
. A is a model of the axioms, by reasoning similar to the step on p. 130

. For x1 : ¢1,...,2, : ¢, the variables in ', we define the I'-environment, 7,
as ([z1],...,[zn]). We can show that 7 F4 T'. Thus, we have shown that an

arbitrary consistent context is satisfiable.

. The final step is to show that if I' ¥4 B then I' - B. This is just as for A

Suppose [' ¥ P. Then I', =P is consistent, so by the previous steps, there
is an environment, 7, such that n A T, =P, so I #A7 P and T ¥ P.

The situation for refinement typings can be reduced to that of propositions,
since I' E47 1 @ ¢ is equivalent to I' E47 T, r. The crucial point is that
the permissive well-formedness rule for refinements (Refinement) means

that r &4 r is well-formed even though r need not have refinement type ¢.

Thus, I' B r &4 r implies I' = r &4 7 so, by Refinement Elimination,
'Er:o.

In order to prove step 3, we use some lemmas.

First we characterise the interpretation of refinement terms and types in the

term model, A. In the following, the semantic interpretation [-] is to be under-

stood as being in A and I'y, is fixed. As discussed above, we make restrictions so

that the pers correspond to equality.

For the completeness of A(.), we used an implicit definition of sat. Here we

will use an explicit definition.

Definition 5.6.13 For 'y, r,t wf, definet sat r to mean I'oo 1 T’ ¢.

Refinement types are interpreted as pers whose equivalence classes are in one-

to-one correspondence with determined terms.

Lemma 5.6.14

[w] [T+ ¢](n) W] <= [u] [T+ t])(n) [W], for some T E"t: ¢

189

Proof: Define a term I' - ¢4 by induction on ¢ for each I' = ¢. Let t1 = *, ¢, = u,
ty,ow = (te, tylte/2]), tr, .o = Ax : .y, and L.g)p = ty.

We prove, by induction over ¢, that [u] [I' - ¢](n) [«/] iff [u] [I" F t4](n) [«'] and
[FA7 ty © ¢. The interesting cases are v and (z : ¢)P. Clearly, we have
[u] [T F ~l(n) [] iff [u] [T F u](n) [¢]. For the (z : ¢)P case, if
[u] [I' F (z : ¢)P](n) [«] then [u] € [I',xz:¢ = P](n), so we deduce that
LEA ¢, (z:¢)P. i

Lemma 5.6.15 With the rank restriction: Let n FA T,
1. [u] [T+ ¢](n) [w] <= Too b u=gpm o/
2. ForT'kr wt, [u] [['Fr](n) [v] < [u] [t] [¢] for some t sat r[n/T]
3. For To = P[n/T| wf, T EA" P <= Ty, I P[n/T]
Proof: Simultaneous induction over expressions. The inductive ordering is
P, PP<PD>PF

¢, P[t] <Vz:¢.P
p<rCyr
r < F(r)
¢, 0 <o ¢
¢, Y[t] < Eaigt)
&, ¥[t] < gt
¢, Plt] < (z:9)P
The proof for let x : ¢ be r in 7’ uses Lemma 5.5.12 (1). We prove the cases for
propositions, writing U for U[n/T].

e The L, PD P Vr:¢.P and ¢ C ¢ cases are proven as in Chapter 4.

e I' 4" F(r) means (using the inductive hypothesis on r): for all ¢, t sat 7
implies I'o F F(t). Since I'xx F F(7) wf, we must have ' = 7 : ¢ for
some ¢. We assume, without loss of generality, that F' : Pred (7) and r
has the canonical form let x : ¢ in #’. We must show that T' EA" F(r) is
equivalent to I'o = F(7).

Suppose I' B4 F(r). If 3z : 4. T € 'y, (¢ is inhabited) then #'[z] sat 7, so
Lo,z b F(). If 3z :9.T ¢ T'sy then by maximality, Vo : ¢. L € Iy
190

and by consistency, we also infer that T's,, 2 : ¢ = F(¢'). Then, by Refine-
ment Type Introduction, I'n,z: ¢ -t : (y: $)F(y), so by Let Terms
I F let 2:9¢ in ¢ : (y : ¢)F(y), and using subject refinement
I F7:(y: ¢)F(y). Hence, using Predicates, I'o - F/(T).

Conversely, if ', b F(7) then, by Refinement Type Introduction,
Il B 7: (y: &)F(y), so by the definition of sat and using subject re-
finement, if ¢ sat 7 then I'w F1: (y : ¢)F(y), and so ' F F().

[EA7 ¢ Ty 1': We show that this is equivalent to 7 N7 r’ which, in turn, is

equivalent to I'os 7 E5 77,

Suppose I' 47 r T, r'. By Lemma 5.6.5, for all ¢’ sat r’ there exists ¢ sat T
such that ¢ [I' = ¢](n) ¢’ (where ¢t and ¢’ are representatives of equivalence
classes). By the inductive hypotheses, and reasoning as in Chapter 4, p. 133,
we have I'y, ¢ =5 t'. Now suppose I's, - r’ 5 t". By Corollary 5.5.6,
there exists a (determined) term #' such that 'y, =t =5 " and t' sat 7.
Then there exists a ¢ such that ¢ sat 7 and ' - ¢ =5 . By the definition
of &, we have I'c = T 5 t", and so 'y H T Cs t’ =5t =3 ', and hence
Lo BT 55t Thus, 7 S0

Conversely, suppose that 7 <3 r’ and t sat r/. Then 'y F 7/ C; ¢ so
I BT 55 t'. By Corollary 5.5.6, there exists a ¢ such that ¢ sat 7 and
t =4 t', so by Lemma 5.6.5, I EA47 r Ty 1.

Now, we show that 7 55 v = T kT s I

The reasoning is the same as the corresponding step in the completeness
proof for the \;-calculus. We can assume, without loss of generality, that
the terms are in canonical form, and since 7,7’ : ¢ by the assumption of
well-formedness, Lemma 5.5.7 gives canonical forms which are equal to the

terms at ¢. Hence we have
let z: % inty ggw let y: 1o inty

If 5 € T', then, by Lemma 5.5.15, there exists a term ['o,y : o F ¢ : 9y
such that [,y : 1 F t1[t] =, to.

Now suppose 1), is not inhabited. Let t be any term in the type below
¢. Such a term exists because of the assumption that all types are in-
habited. Then we have, ',y : %9 F 1, so Lemma 4.3.17 implies that
Foyy it F ¢t ¢ Similarly, I',y: ¢ F #[t/z] =, t2 wf, and
Lo,y 2 Ett/z] =, to.

191

Then, in the context 'y, the term let z :y in t; refines (at ¢) to
let y: 1y in (let z:4 in t;), which refines to let y: 1y in ti[t[y]],
and this equals let y : 1)y in to[y].

Hence ' =7 T 7.

The characterisation of the interpretation of expressions in Lemma 5.6.15 is
specific to the term model. For example, in the term model, [?pat—mat] consists
of equivalence classes of terms of type nat — nat, but in the full set-theoretic
function hierarchy (Definition 3.4.3), the classes consist of arbitrary functions.

In Lemma 5.6.6, we showed that determined terms are interpreted as a single
equivalence class. We can give a simple characterisation of that class in the term

model.

Lemma 5.6.16 With the rank restriction:
[ur] [T Ft)(n) [us] <= uy sat™ t[n/T] and uy sat"™ t[n/T

Proof: Follows from Lemmas 5.6.14 and 5.6.15. |

By Lemma 5.6.15, we see that in the term model, arbitrary refinement terms are

interpreted as pers consisting of classes of this form.

Corollary 5.6.17 With the rank restriction, if ' - 1r : ¢, then:
I'Er:(x:@)P iff for all determined t, if I'-r Tyt then I' = Plt/x]

Proof: Both statements have the same interpretation, so the result follows from

soundness and completeness. ||

Remark 5.6.18 The r: ¢ step in the proof of completeness suggests a gen-
eral strategy for proving that r : (z : ¢)P. First express r in canonical form
as let y : 1 in t. Then prove that Vy : ¢ . P[t/x]. We know that if the refine-
ment typing is true then, by the completeness of the propositional fragment, this
proposition is provable. Hence, we conclude that let y: ¢ int : (z : ¢)P and
so, by subject refinement, r: (x : ¢)P.

5.7 Conclusion

In this chapter we presented the Ac-calculus, a refinement calculus based on
the notions of refinement term and refinement type. In the next chapter we
discuss how this could give a basis for a more comprehensive theory of software

development.

192

Chapter 6

Conclusions and Further Work

6.1 Conclusions

In this thesis we constructed a canonical refinement calculus based on the lambda
calculus and classical first-order predicate logic, and studied its proof theory and

semantics. Let us summarise the main points of this formalisation:

Formalisation of Refinement

programs — lambda terms
abstract programs — refinement terms
specifications — refinement types

We gave a set-theoretic semantics based on Henkin models for which the
calculus was proven sound and complete. As far as we know, this is the first
proof of completeness of any refinement calculus.

A key feature of this approach was the construction of the refinement calculus
in a modular fashion, as the combination of two orthogonal extensions to the un-
derlying programming language (in this case, the simply-typed lambda calculus).
These subcalculi are interesting in their own right as they provide separate anal-
yses of structured specifications and non-logical decomposition. ‘Full’ refinement,
then, can be factored into logical equational reasoning and simple decomposition.
We used a two-level formalisation of specifications, consisting of an underlying
level of program types, and a more expressive level of program properties.

We now discuss how the issues raised in the introductory chapter have been
addressed.

We set ourselves the task of investigating the logic and semantics of refinement

193

calculi, and saw that it is possible to induce a refinement calculus from an exten-
sional program logic and the equational theory of a programming language (in
the canonical case of the simply-typed lambda calculus). We construct structured
specifications — refinement types — and have a notion of equality at a specifi-
cation. The syntactic category of refinement terms consists of combinations of
specifications and programs.

First-order logic and the simply-typed lambda calculus can be modelled using
Henkin interpretations, and given models of particular lambda theories and logics,
we can form a model of the corresponding refinement calculus.

The refinement calculus is completely characterised by the underlying theories
in the sense that it is complete (given certain restrictions) with respect to the
class of models induced from the models of the underlying theories. Moreover,
we can use the completeness theorems to deduce (under these restrictions) the
conservativity of refinement calculi over program logics and (equational theories
of) programming languages.

The refinement calculus can be thought of as being constructed from two
subcalculi — a calculus of refinement terms and a calculus of refinement types.
These calculi are useful in their own right. For example, we saw that terms
of the A;-calculus can be evaluated in a program-like fashion. A factorisation
theorem justifies us in regarding the subcalculi as being orthogonal extensions to
the programming language and program logic.

The factorisation suggests an interesting possibility for the construction of a
modular refinement tool, in which checking program correctness is a combina-
tion of type checking and theorem proving. The modularity would come from
constructing a verifier, or ‘specification checker’, from an existing theorem prover
(which we can think of as an oracle) and a type checker, for a program logic and
programming language respectively. Then we would write a separate program to
handle simple refinement and combine the two to get the refinement tool.

Although this thesis has presented a simple calculus, we believe that we have
motivated the general methodology of inducing a refinement calculus from a pro-
gramming language together with some logic, rather than constructing a develop-
ment methodology from scratch. We believe that, from a theoretical standpoint,
this approach is more likely to be useful for formal methods. It seems rather naive
to expect programmers to treat “programming as a mathematical activity”, work-
ing directly in some refinement calculus. Indeed, this is a dangerous viewpoint
insofar as it leads to taking the mathematical formalisation as the primary ob-

ject of interest, thus distancing theory from actual programming practice. While

194

formalisation of the relevant concepts is indeed desirable, it is more realistic to
provide a theoretical underpinning for tool support. The intention here is not that
the calculus should actually be used directly, but that it serves as an underlying
theory.

We believe that factoring a complicated calculus into two subcalculi has proven
its worth as a research methodology. Many of the extensions suggested below
could also be first studied as extensions to each of the two subcalculi.

We believe that the principles outlined here are general enough to be applied
to structures other than those traditionally studied — data flow diagrams for
example. Since the logic is arbitrary (up to a point) we are not constrained by the
type theory. It would be an interesting line of research to see how type-theoretic
and semantic ideas could help there. The calculus could provide a foundation for
other specification based formalisms, and we will make some specific suggestions

below.

6.1.1 Refinement Terms

We would be interested to see how this calculus might be usefully combined
with work on logical frameworks [Pfe96]. The use of logical variables there is an
example of underdeterminism.

Although Lego has a richer type system than those studied here, a fragment of
it could be studied using \; as a metalanguage. It would be interesting to use A,
as a metalanguage for giving a semantics to Lego and to prove some metatheoretic
results.

That the concept of underdeterminism arises both in computing science and
in linguistics strengthens our belief that it is an important concept in the study
of general informatics.

We could annotate the types with simple properties, such as whether or not
an exception is raised at some point. This would be a useful intermediate stage

between the calculus of refinement terms and the full refinement calculus.

6.1.2 Refinement Types

A number of systems have intersection and union types. This can not always
be expressed in our system. For example, no refinement type corresponds to
even — even A odd — odd. Hayashi’s [Hay94b]| intersection and union are even
more powerful. It is not clear whether the degree of expressivity in this system

is particularly useful (but see the comments about quotients below).

195

The two-level nature of the calculus suggests the construction of a modular
tool in which checking program correctness is a combination of type checking and
theorem proving. The modularity would come from constructing a ‘specification
checker’ from an existing theorem prover and a type checker, for the program logic
and programming language respectively. Indeed, this is similar to what is done in
the interactive proof development systems, Nuprl and PVS, where type-checking

can generate proof obligations.

6.2 Technical Extensions and Conjectures

We make some suggestions for various technical extensions and results for the
calculi. The first two extensions, in particular, are aimed at tidying up the two
main loose ends in this work — the restrictions on completeness in Chapter 4 and
5, and the restrictions on dependent refinement types in Chapter 5.

The final ideas (11, 12 and 13) are suggestions for reformulations of the calculi.

1. We had to place restrictions on the statements of completeness for Ay and
Ac due to the underlying mismatch between the refinement type ¢ — v and
its per semantics. For example, we could not prove that A\f : nat — nat . f2
has refinement type (even — nat) — nat. The problem is that as the
rules stand, for the abstraction Az : ¢'.t to have refinement type ¢ — 1
we require ¢’ T ¢ but, in this case, the refinement goes in the opposite
direction, nat — nat C even — nat. It is not sound, in general, to say
that Az : ¢'.t : ¢ — 1 when ¢ C ¢’ (and the other conditions). However,
the following rule does appear to be sound. Define dom ¢ to be the set of
terms with refinement type ¢. Then,

Dz:¢'Ft:p THYLCo
PEXe:gt: ¢ —

(dom ¢’ C dom ¢)

The combination of ¢' C ¢ and dom ¢/ C dom ¢ (i.e. x ¢ * = = ¢ x) means
that dom ¢’ = dom ¢, and ¢’ is a quotient of ¢. The rule would let us prove

Af :nat —nat. f2 : (even — nat) — nat
and may be enough to strengthen Theorems 4.5.16 and 5.6.12 (completeness
of A\¢;y and Ac) to unrestricted versions.

Similarly, this rule is sound, and may be admissible

¢' a quotient of ¢
76 Gy ¢

196

A provable consequence of the rule is ? .t —nat Cevenonat {even—nat-

The combination of quotienting and the subset type-like refinement types we
use might be interesting for specification. Many specification formalisms use
some form of quotienting and it would be interesting to see it arise naturally

here in order to get completeness.

. In Chapter 5, we used nondependent refinement types to avoid the combi-
nation of underdetermined terms with refinement types. The same problem
arose in Chapter 3 at the level of terms and led us to introduce let-terms. We
could introduce a notion of let-types, therefore, where let x : ¢ be r in 9

has the obvious meaning. The rule of introduction would be

Thr:My Thor'io
'Err':letx:¢pber in

We would have a special rule for stubs.

I'Er:¢p I'zx:pkyY wt
I'Fletaz:¢pberin?y = et spberiney

The refinement rules for let-types would be analogous to the equalities for
let-terms. To give these, it is convenient to extend the singleton type nota-
tion of Remark 4.3.9 to arbitrary refinement terms: we write {r}, for the

refinement type (z : ¢)r C, z. For example:
let x: ¢ betinp = [t/x]

letx:¢pberin{z}s ={r}s

let z: X, berin {mz}y = {mr}y

. It may be that any maximal first-order A*~-Henkin theory is a first-order
A2-Henkin theory. That is, the witness condition for refinements may follow

from the condition for existentials.

. We conjecture that the \; factoring condition is equivalent to the satisfac-

tion of a choice axiom (or skolemisation):
FVr:7.3y:0.P D 3f:7— oNv:7.P[fr/y]

for all P.

197

10.

11.

12.

13.

. We conjecture that the A)-calculus is a conservative extension of Aspinall’s

A<qy calculus [Asp95].

. If we define a notion of ‘strong’ well-formedness for Ay and Ac, which

requires the appropriate refinement typings for equalities and predications
(i.e. t =4 t when ¢,¢' : ¢), then it should be that for a strongly well-formed
P,ifTEPthen ' P.

We should formulate the connection between the different restrictions for

completeness of Ay and Ac.

In Remark 4.3.6 we suggested that axioms in A (and Ac) could be given

in a particular form and this should be investigated further.

. We conjecture that the Let Term Equality Abstractions in Chapter 5 is

equivalent to the typed form, and so we could avoid the meta-judgement in

the formal system.

. A satisfactory account of the subrelations in Section 5.5 remains to be given.

For example, does Eta commute with the other rules in C*®?

We have taken refinements (of both kinds) to be atomic propositions rather
than separate judgement classes. We conjecture that restricted calculi in
which the atomic propositions are equalities, and the refinements are sepa-
rate judgement classes would also be complete. If so, the full systems would

be conservative extensions.

This could be considered a more natural approach, as specification using
refinement itself is more complex than just using the underlying program

logic.

We conjecture that A\, and Ac are complete for the alternative semantics of

Remark 3.4.12. This would let us avoid using the factoring conditions.

We could use the suggestive notation (r, (z : ¢)r’) for let x : ¢ be r in (z,7”).

A dependent form of the refinement rule Pairs would be:

75w B (%6, (21 0)74)

There is some overlap between the refinement rules for terms and refinement

types. We could combine the two judgements into the form r: ¢ C ' : ¢/,

198

meaning r C, 1" and ¢ T ¢'. Some natural rules would be:

r-¢pC1
FE?7%:90Cx:1

I'Hx E Il
FE70ix B Ay .7y g

Using the notation introduced above we have:

'+ X E Zx:dﬂ/}
T+ ?X Y E <?¢, (l’ : ¢)?w> : Ezqu}

The overlap is clear when giving the rules for let-types. We could have, for

example:

x:obFr:y THt:¢
'Fletx:¢betinr:letz:¢pbetiney = rlt/z]:Y[t/x]

14. We could base the refinement calculus on primitive definitions of C and
=4 rather than C,. This might be more natural, as we usually omit the

subscripted ¢ anyway.

6.3 Operational Semantics

As for the denotational semantics, we can give a modular operational semantics,
by first giving a semantics to the subcalculi. Here we will just outline how to
do this for the subcalculi. We restrict ourselves to the specific axiom systems of

booleans and naturals.

6.3.1 Refinement Terms

Because terms of the calculus are a mixture of specification and program, we do
not inherit a notion of reduction from the lambda-calculus, but we can give an
operational semantics based on satisfaction of terms and properties by canonical
terms.

The canonical terms are the closed terms of the form:
cx:=b | nl| x| (¢,d) | Mv:0ot

where ¢ is an arbitrary determined term, b is one of the booleans true and false,
and n is a numeral. The operational semantics is given in Figures 6.1 to 6.4, and

consists of an evaluation relation on determined terms t |} ¢, together with three

199

x{*x nln blb
tlle ']
{t,t) I (e,)
Aot Ar:ot
td (e, c) td{c,c)

m(t) §e ma(t) b ¢
tyAe:odt” t"[t/x]] c
tt'§ c
t'[t/z] | ¢

letx:o0betint || ¢

Figure 6.1: Evaluation

mutually recursive relations: an extensional equality on canonical terms ¢ =, ¢;
a satisfaction relation between canonical and underdetermined terms, ¢ F r; and
the validity of propositions F P.

Since we want equality and refinement to be extensional for determined terms,
but not for arbitrary underdetermined terms we first define a typed extensional
equality on canonical terms, =,, by induction on o.

The second component of the operational semantics is a satisfaction relation,
¢ Er. For example, Az : 0.t E Ax : o.r when for all ¢: o, for all d : 0, d F t|c] =
d E rlc]. In fact, since there is a unique canonical form equal to t[c|, we could
have written t[c] E r[c|, but we do not assume the uniqueness here.

Now we can define Fr : o as: forallcFEr, c: 0. Next, for Fr:o, Er' : o,
we say define validity of refinement, F r C, 7’ as: for all ¢ F 7/, there exists ¢ E r

such that ¢ =, .

Remark 6.3.1 We say that a A\;-axiom system is operationally complete it
whenever a refinement is operationally valid, then it is provable. An example of
a signature which is not operationally complete was given in Example 3.4.4. We
have F An :nat.let y:nat in succ y & idpes, where idp.s is the identity on
positive naturals An : nat.cond(eq(n,0), 1,n), but without any form of recursion
we cannot define a predecessor term and actually prove the refinement. It is
important in practice to ensure that we only use operationally complete signa-
tures, so as to avoid writing specifications which can not be implemented, yet are
intuitively implementable.

We saw that \,-axiom systems are (denotationally) complete with respect to a

class of Henkin models with a factoring condition. It might be that operationally

200

¢ E % when ¢ = *

¢ E (ri,r) when ¢ = (¢1,¢0) and ¢1 E rq, ¢ F 1y
e cEXx:or whenc=Mr:ot, forald:o,tld] | dand dF r[]

e cE? whenc:o

¢ E m(r) when there exists ¢’ such that (¢,) F r

¢ E my(r) when there exists ¢ such that (¢, c) F r

¢ E rirg when there exists Az : 0.t F 11, co F 19, such that ¢ F t[ey/z]

e cFElet x: 0 berin 7’ when there exists ¢ F r such that ¢ F r'[¢ /]

Figure 6.2: Satisfaction

* =7 *
/ / / /
(€1,) =oxr (€], Cy) When ¢ =, ¢] and ¢ =; ¢,

AT ot =, A\x:o.t’ when for all c: o, for all d: 7, dF t[c/x] iff dF t'[c/x]

Figure 6.3: Equality of Canonical Terms

e = 1 never
e FP D P when¥ PorF P
e EVz:0.P when for all ¢c: o, F Plc/x]

e Fr C, 7" when for all ¢ F r/, there exists ¢ F r such that ¢ =, (.

Figure 6.4: Validity of Propositions

201

complete theories are complete for arbitrary Henkin models.

6.3.2 Refinement Types

We can also give an operational semantics to the A(,)-calculus based on the sat-
isfaction of terms and properties by canonical terms. There are three mutually
recursive components to the operational semantics: an extensional equality on
canonical terms, ¢ =, ¢’; the satisfaction of underdetermined terms by canonical
terms, ¢ F t; and the validity of propositions, F P.

We define extensional equality, ¢ =4 ¢/, by induction on ¢. Then the satis-
faction of refinement types by canonical terms, ¢ F ¢, can be defined as ¢ =4 c.
Now we can define F ¢ : ¢ as for all ¢ F ¢, ¢ F ¢. Finally, we say that t =, t’ is

operationally valid when for all ¢ F ¢, and for all ¢ E ¢/, ¢ =, .

6.4 Annotations

Program reasoning and manipulation often requires facts which are true at some
local program point. For example, if it is known that variable n must be within
certain bounds, then a programmer (or compiler) may be able to perform some
partial evaluation or optimisation.

Annotating program text with propositions was first suggested by Floyd [Flo67]
and is now used in many refinement calculi (e.g. [Bun97]) to facilitate reasoning
and to express local assumptions.

Extending the type system of A*™ to refinement types gives a simple notion
of program annotation, where variables on abstractions are labelled with logical
information. Although we do not have explicit annotations in our calculus, we

can define certain forms. For r : ¢, define

assertion 7 | (v :)P = Y(0i4)rCyu A P
guard (:0)P =71 ="(0:4) P> rCya

As we showed in Remark 4.3.22, we can also combine guards with the refinement

types. For example:
P—(z:0)Q=(z:(P—¢)PDQ
P—(¢p—v)=(P—¢)— (P—1)

Assertions could be treated similarly.

202

We could, however, consider a calculus with true annotations. One possibility
would be to extend the simply-typed lambda calculus with terms of the form

P — t and t| P where P is a proposition, and operational meanings
cEFE P —twhen F P implies cF t

cEt|P when F P and cEt

Thus if ¥ P, any ¢ (of appropriate type) will satisfy P — t.
We could define a (meaning preserving?) translation (-)° from a subset of A,

to the annotation calculus, with
(M :o|Pt)°=Xx:0.P—1t°

An alternative formulation of the refinement calculus would be to take an-
notations as primitive. Then we could define ‘set-theoretic’ (as opposed to per-

theoretic) specifications as

Y@ryp = let w7 in (x| P)

6.5 Search Calculi

The thesis of Pym [Pym90] presents a theory of proof search. One idea developed
there (and also in [PW90]) is to give a hierarchy of calculi each of which can be
regarded as the metatheory of the next and in which the search space for proofs
is increasingly constrained. This idea could be applied to the present work on
refinement.

Refinement is traditionally formulated as a generalised equality and, as pointed
out after Lemma 3.2.17, this is also the style of the A\»- and Ac-calculi. The re-
finement of specification ¢ to program t, ¢ C ¢, is thought of as “t is less than ¢ in
the refinement ordering”. The calculi do not contain rules for directing a search.
Now we commented in Section 1.4 that we could consider a search-oriented (rather
than equational) refinement calculus. Then ¢ is seen as a solution to the search
for a program to satisfy ¢.

In Section 5.5 we defined a number of auxiliary relations. The relationship
between C,; and ~~ is interesting because it mirrors the difference between refine-
ment and search. Following [PW90], we could consider a hierarchy of subsystems

of the full equational refinement theory. For example:

203

INr:o=o0 I'=1

I'=s>0 I'=>71 ly:o=r1
I'=soxT I'=s0—r71

De:my:7 =0
Iz:7x7 =0

Nr:7=0
y:r—7,2z:71=0

Figure 6.5: Type Inhabitation

1. I' = o (type inhabitation)
2. T'Fr ~t (coding)
3. ' r C* t (simple refinement)

4. I'Fr C t (nonlogical refinement)

We consider first the simple task of finding a program to inhabit a type.
Figure 6.5 presents backward oriented rules which may be used to automate such
a search. These rules can be viewed as reformulations of refinements of the form
I' = 7, C, t, where t could be read off the rules, or included as a labelled
deduction.

We can then consider rules for proving inhabitation of an arbitrary r. This
coding can be thought of as a ‘big step’ refinement. The rules for equality can be
omitted from C? as equality is orthogonal to refinement in the sense that if r» C ¢,
then there exists ¢’ such that r C° ¢/, and t = t'.

This system can then be embedded in a more general system for proving
refinements of the form r C ¢, where instead of thinking of refinement as a search
for inhabitation of a specification, we think of it as a generalised equality. Indeed,
we could view the refinement calculus as being a means of representing stages in
the search for inhabitants of specifications, and so as a metatheory for a search
calculus.

We could also study the difference between equational and search-oriented re-
finement from a semantic viewpoint. Perhaps a search calculus could be modelled

using a possible worlds semantics.

204

6.6 Logical Variables

A related idea to the distinction between equational and search-oriented refine-
ment is presenting the refinement calculus in both natural deduction and sequent
calculus styles. We chose what is essentially a sequent calculus presentation of
natural deduction because it is better suited to proof search. However, as pointed
out in the previous section, the calculus is not search-oriented anyway. A natural
deduction style presentation would be clearer, though. Hence, it might be best to
give the equational theory in a natural deduction style, translate a search-oriented
calculus into the sequent calculus style, and then prove them equivalent. We could
present the refinement calculus in true sequent style using logical variables.

This would effectively be a unification of the two paradigms of refinement, in
the sense that any search theory gives rise to an associated equational theory, and

the rules of any equational theory can be restricted to a search-oriented subset.

6.7 Second Order: Data Refinement

An extension to the second order (polymorphic) lambda calculus offers hope of
combining program and data refinement in one formalism, as well as allowing
specification by observational equivalence.

The account of specifications in Chapter 4 which brings equality to the fore
should be especially useful in data refinement, where it is natural to consider
different equalities at the abstract and concrete types. Moreover, the combination
of refinement types and existential variables would be a natural way of augmenting
the work in [MP88] with equations.

It will be interesting to see how the calculi can be extended to the second order.
This should reduce the number of rules through the impredicative encodings of
unit and product (as well as sum). More importantly, the calculus would then be
able to express inductive types and iteration. We ought to get derived refinement
rules for data types like nat and 1ist [X].

We can define abstract data types using existential types. The question of the
connection between this view of data refinement and that of the methodologists
(such as Back and Morgan) and the categorical studies of Hoare [Hoa87] and
Tennent et.al. [KOPT97] then arises. The use of parametric polymorphism might

throw some light on the use of relations in model-oriented data refinement.

205

6.8 Full Recursion

The introduction of nontermination (using say, Plotkin’s computational metalan-
guage) will raise particular issues. However, it should be possible to integrate
nontermination smoothly. Our modular approach should help in tackling this
problem.

Traditional type-theoretic approaches (such as [NPS90]) cannot handle non-
termination since all terms terminate. For example, naively adding full recursion
to the simply-typed lambda calculus results in inconsistency (see p. 112). How-
ever, A is ‘type-theoretic’ without maintaining a Curry-Howard isomorphism.

Many complications arise with nontermination when underdeterminism is
modelled as nondeterminism. This is most clearly seen from a semantic point
of view. Such models are based on powerdomains. However, simple sets (of
interpretations of determined terms, possibly nonterminating) would seem to suf-
fice here. This reflects the intuition that underdeterminism is something ‘above’
computation and does not ‘interact” with it.

By contrast, the powerdomain approaches raise a myriad questions concerning
how exactly the ? and L interact. For example, some authors have made a
distinction between erratic, demonic and angelic nondeterminism, but it is not
clear that these notions transfer to underdeterminism.

As for extending A(.) to nontermination, the distinction between partial and
total correctness then arises (and similarly for refinement in Ac). Although we
could still model specifications with pers, we might possibly want to add some
condition such as downward closure. This does not contradict the comment above
that nontermination should not interact with underdeterminism because (presum-
ably) we would still model Ac-terms as sets of equivalence classes.

Some other questions we might address are the interaction between refinement
types and recursion (e.g. whether we should have px:¢.r : px:¢.4[z]), and how
do we ensure progress during recursive refinement (i.e. avoiding refining to).
Recursion at the level of specifications is a separate issue. It is possible that work

on subtyping systems for recursive types would be useful there.

6.9 Program Transformation

To many people, “program refinement” and “program transformation” are syn-
onyms. While the basic idea of either can be generalised to include the other, it is
useful to draw a distinction between refinement of a logical specification into con-

crete code, and transformation of concrete program code into ‘better’ code. This

206

separation of concerns corresponds to the idea that a (particular) program devel-
opment calculus based on the simply-typed lambda calculus can be factored into
two orthogonal extensions to the lambda calculus, where program development
consists of two stages: developing functionally correct code which satisfies an ex-
tensional specification, and then the application of optimising transformations to
produce efficient code.

Reconciling these two approaches would address the common concern that an
emphasis on methodologies for developing structured programs can result in inef-
ficient code, while optimal programs tend to be hard to understand. Instead, both
approaches can be combined: programs can be constructed by refinement from a
specification, and then optimised using transformations. As the transformations,
and indeed the refinements, are recorded, it is possible to view a program at vari-
ous levels of abstraction, from non-optimal but clear code to logical specification.

Rather than just allow arbitrary, and possibly incorrect, transformations, we
could give a transformation calculus, where an applied theory consists of a par-
ticular intensional feature, such as time complexity, and a collection of atomic
transformations which respect this. The intensional feature is incorporated as an
extended type and transformation rules are generated from the atomic rules.

An interesting variety of intensional features could be incorporated into this
framework. For example, work on formalising program style could perhaps be
recast in this way.

The ability to express equality at a refinement type is useful in program
transformation. For example, we might want to transform a function of type
nat — nat, with the prescription “maintain value on evens, and improve on odds
(in some way)”. We can express (part of) this by saying that the terms are equal

at the refinement type even — nat.

6.10 Abstract Viewpoint

The semantics of refinement calculi could be extended to a more general cate-
gorical framework. Previous work has tended to characterise refinement in terms
of either inclusion of models, or of preservation of properties, from which proof
rules are then derived. We took the opposite approach by giving an explicit
axiomatisation of refinement in order to get a tractable syntactic definition.
Nevertheless, there is the question of an abstract characterisation in a general
semantic framework. For example, the factorisation of refinement in Ac should

have some semantic counterpart. A significant motivation for carrying this out is

207

that a general notion of model offers some hope of making connections between
refinement and popular development methodologies.

Hermida [Her93] uses fibrations to model predicates over A*~ (but not for
any more complicated type theories). He uses fibrations with indeterminates to
model parameterisation. Models of many calculi can be presented as fibrations.
For example, a dependently-typed calculus could be modelled by two fibrations
— one to handle the dependency and the other the logic. Underdeterminism
should be a separate feature on top of this set-up.

We should be able to characterise T, semantically, using the specialisation
order for example, as in [Fi094]. Whether derived or assumed, there is a poset-
enriched structure where the ordering of morphisms corresponds to refinement.

More generally, we could envisage a 2-categorical structure, where the 2-cells
correspond to proof of refinement. The let congruence rules give a 2-categorical
structure. If we interpret I' -7 C,, 1’ as a 2-cell, a, from [I' -7 : ¢] to [I' -1 : ¢],
and B=[FrCyr"],v=[r:9oFsCs],0=[r:¢F sC s"], then we can
define v x a to be

[CHletx:¢pberinsC letz: ¢ber in ']

Because of the congruence rules for let, this is a valid refinement. The inter-
change law, that (0% 3) o (y*a) = (d o) * (G o), then follows since both terms

correspond to the same refinement.

6.11 Aspects of the Software Life-cycle

Most theoretical work on formal methods has been on program verification and
development. However, the software life-cycle consists of many other activities,
and a comprehensive theory should include these. We make some suggestions for

how our work on refinement could be extended to some other related areas.

6.11.1 Prototyping

The calculus formalises partially developed programs as combinations of speci-
fication and code, and induces a logic for them from a logic on the underlying
programming language. Hence it is possible to reason about partially developed
programs as ‘first-class’ artifacts even though, in general, it is not possible to
evaluate arbitrary combinations of specification and program code. It is possible,
however, to give an operational semantics to the language so that terms can be

evaluated in certain situations as if they were programs.

208

This idea was the thinking behind the dynamic semantics of Extended ML
(section 5.4.1), so it would be interesting to investigate this simple notion of

prototyping further, and see what possibilities this offers for specification testing.

6.11.2 Maintenance

The problem of software maintenance is to modify legacy code which performs
some function, so that it performs some related function. This can be formulated
using the language of refinement. Given a program t which satisfies specification
¢, and another specification ¢’, which bears some relationship to ¢, the problem
is to construct a program which satisfies ¢'.

By an appropriate formalisation of how ¢’ relates to ¢, it should be possible
to automatically construct a partially developed program, r, which is ¢ with the
code that needs to be rewritten replaced by the appropriate specifications. More
ambitiously, it should be possible to reuse the refinement itself, so that part of
the refinement of ¢ to ¢t can be used in constructing a refinement from ¢ to r.

This idea of extracting part of a term based on a specification is similar to
program slicing, and we could investigate connections with this view of mainte-

nance.

6.11.3 Reverse Engineering

The general idea of reverse engineering is to recover a high-level description from
an actual implementation. This is useful for both comprehension and mainte-
nance. Some researchers have considered the problem of reverse engineering a
program t to specification ¢ [War88]. This appears, at first sight anyway, to be
dual to the problem of refinement from ¢ to ¢ so perhaps some formal connections

can be made.

209

Appendix A

Notation

Refinement Terms
Determined Terms
Total Terms

Individual Variables
Function Variables
Boolean Variables
Natural Number Variables
Variable Contexts
Propositional Contexts
Propositions

Ground Types

Types

Refinement Types
Pseudotypes

Basic Judgements
Judgements
Expressions

Constant Symbols
Predicate Symbols
Henkin Interpretations, Models
Sets

Individuals

Mappings

Syntactic Environments
Environments
Relations

Theories

210

[AC6]

[Asp95]

[Asp97]

[Bac88]

[BBY5]

[BM92]

[Bos95|

[Bun97]

[Bur92]

Bibliography

David Aspinall and Adriana Compagnoni. Subtyping dependent
types. In Proceedings of the eleventh IEEE Symposium on Logic in
Computer Science, 1996.

David Aspinall. Subtyping with singleton types. In Proceedings of
Computer Science Logic ‘94, volume 933 of LNCS, 1995.

David Aspinall. Type Systems for Modular Programs and Specifica-
tions. PhD thesis, Department of Computer Science, University of
Edinburgh, 1997.

R. J. R Back. A calculus of refinements for program derivations. Acta
Informatica, 25:593-624, 1988.

M. A. Bednarczyk and T. Borzyszkowski. Towards program develop-
ment, specification and verification with Isabelle. In Isabelle Users
Workshop, University of Cambridge, 1995.

R. Burstall and J. McKinna. Deliverables: A categorical approach to
program development in type theory. In Mathematical Foundations
of Computer Science: 18th International Symposium, volume 711 of
Lecture Notes in Computer Science, pages 32-67, 1992. An earlier
version appeared as LFCS Technical Report ECS-LFCS-92-242.

J. Bos. Predicate logic unplugged. In Tenth Amsterdam Colloguium,
1995.

Alex Bunkenburg. FEzxpression Refinement. PhD thesis, Department
of Computing Science, University of Glasgow, 1997.

G. L. Burn. A logical framework for program analysis. In J. Launch-
bury and P. Sansom, editors, Proceedings of the 1992 Glasgow Func-
tional Programming Workshop, pages 30-42. Springer-Verlag Work-
shops in Computer Science series, 6-8 July 1992.

211

[CDGY6]

[Cro93|

[Den97a]

[Den97b]

[Den9g|

[Dij76]

[Fef85)

[Fi094]

[Flo67]

[FP91]

[Har79]

Mario Coppo, Ferruccio Damiani, and Paola Giannini. Refinement
types for program analysis. In Static analysis: third International
Symposium, SAS 96, volume 1145 of Lecture Notes in Computer
Science, pages 143-158. Springer-Verlag, 1996.

Roy L. Crole. Categories for Types. Cambridge Mathematical Text-
books. Cambridge University Press, 1993.

Ewen Denney. Refining Refinement Types. In Informal Proceedings
of Types Workshop on Subtyping, Inheritance and Modular Develop-
ment of Proofs, University of Durham, 1997.

Ewen Denney. Simply-typed Underdeterminism. In EU KIT/ I0S
International Workshop on Formal Models of Programming and their
Applications, Institute of Software, Beijing, 1997. To appear in spe-

cial issue of Journal of Computer Science and Technology.

Ewen Denney. Refinement Types for Specification. In David Gries
and Willem-Paul de Roever, editors, IFIP Working Conference on
Programming Concepts and Methods (PROCOMET °98), Shelter Is-
land, New York, USA, pages 148-166. Chapman and Hall, 1998.

E. W. Dijkstra. A Discipline of Programming. Prentice-Hall Inter-
national, 1976.

Solomon Feferman. A theory of variable types. In Proceedings of the
Fifth Latin American Symposium on Mathematical Logic, volume 19

of Revista Colombiana de Matemdticas, 1985.

Marcelo Fiore. Aziomatic Domain Theory in Categories of Partial
Maps. PhD thesis, Department of Computer Science, University of
Edinburgh, 1994.

Robert W. Floyd. Assigning meanings to programs. In J. T. Schwarz,
editor, Proc. Symp. in Applied Mathematics, pages 19-32, 1967.

Tim Freeman and Frank Pfenning. Refinement types for ML. In
Proceedings of the SIGPLAN’91 Symposium on Language Design and
Implementation, pages 268-277. ACM Press, 1991.

David Harel. First-Order Dynamic Logic. Lecture Notes in Computer
Science. Springer-Verlag, 1979.

212

[Har80]

[Hay94a]

[Hay94b]

[Her93]

[HJ95]

[Hoa87]

[Jen91]

[Jon90]

JS91]

[KOP+97]

[KST97]

David Harel. Proving the correctness of regular deterministic pro-
grams: A unifying survey using dynamic logic. Theoretical Computer
Science, 12:61-81, 1980.

Susumu Hayashi. Logic of refinement types. In Types for Proofs and
programs, volume 806 of Lecture Notes in Computer Science. Springer
Verlag, 1994.

Susumu Hayashi. Singleton, union, and intersection types for pro-

gram extraction. Information and Computation, 109:174-210, 1994.

Claudio Hermida. Fibrations, Logical Predicates and Indeterminates.
PhD thesis, Department of Computer Science, University of Edin-
burgh, 1993.

Claudio Hermida and Bart Jacobs. Fibrations with indeterminates:
Contextual and functional completeness for polymorphic lambda cal-

culi. Mathematical Structures in Computer Science, 5(4), 1995.

C. A. R. Hoare. Data refinement in a categorical setting. Unpublished

manuscript, 1987.

Thomas Jensen. Strictness analysis in logical form. In J. Hughes,
editor, Proceedings of the Conference on Functional Programming
and Computer Architecture, volume 523 of LNCS, pages 352-366,
1991.

Cliff B. Jones. Systematic Software Development using VDM. Pren-
tice Hall International, 1990.

Geraint Jones and Mary Sheeran. Relations and refinement in circuit
design. In Carroll Morgan and Jim Woodcock, editors, 3rd Refine-
ment Workshop 1990, Springer Workshops in Computing, 1991.

Y. Kinoshita, P. W. O’Hearn, A. J. Power, M. Takeyama, and R. D.
Tennent. An axiomatic approach to binary logical relations with

applications to data refinement. Lecture Notes in Computer Science,
1281, 1997.

Stefan Kahrs, Donald Sannella, and Andrzej Tarlecki. The defini-
tion of Extended ML: A gentle introduction. Theoretical Computer
Science, 173:445-484, 1997.

213

[Lei69]

[LP92]

[Luo91]

[Mar96]

[McK92]

[Mit96]

[MMY1]

[MMMS87]

[Mog91]

[Mor87]

[Mor94]

A. C Leisenring. Mathematical Logic and Hilbert’s e-Symbol. Univer-
sity Mathematical Series. MacDonald Technical and Scientific, 1969.

Z. Luo and R. Pollack. LEGO Proof Development System: User’s
Manual. Technical Report ECS-LFCS-92-211, Department of Com-
puter Science, University of Edinburgh, 1992.

Z. Luo. Program specification and data refinement in type theory.
LFCS Technical Report ECS-LFCS-90-131, Department of Computer
Science, University of Edinburgh, 1991.

Per Martin-Lof. On the meanings of the logical constants and the
justifications of the logical laws. Nordic Journal of Philosophical
Logic, 1(1):11-60, 1996.

James McKinna. Deliverables: A Categorical Approach to Program
Development in Type Theory. PhD thesis, Department of Computer
Science, University of Edinburgh, 1992.

J. Mitchell. Foundations for Programming Languages. Foundations
of Computing Series. MIT Press, 1996.

J. C. Mitchell and E. Moggi. Kripke-style models for typed lambda
calculus. Annals of Pure and Applied Logic, 51:99-124, 1991. Pre-
liminary Version in Proc. IEEE Symposium on Logic in Computer
Science, 1987, pages 303-314.

A. R. Meyer, J. C. Mitchell, E. Moggi, and R. Statman. Empty
types in polymorphic lambda calculus. In Proc. 14th ACM Sympo-
sium on Principles of Programming Languages, pages 253-262, 1987.
Reprinted with minor revisions in Logical Foundations of Functional
Programming, ed. G. Huet, Addison-Wesley (1990), pages 273-284.

E. Moggi. Notions of computation and monads. Information and
Computation, 1, 1991.

J. Morris. A theoretical basis for stepwise refinement and the pro-
gramming calculus. Science of Computer Programming, 9:287-306,

1987.

C. Morgan. Programming from Specifications. Prentice Hall, 1994.

214

[MPSS]

INH92]

[Nie96]

[NNS8S]

[Nor88]

[NPS90]

[Pfe93)]

[Pfe6]

[Pit95]

[PW90]

John C. Mitchell and Gordon D. Plotkin. Abstract types have ex-
istential type. ACM Transactions on Programming Languages and
Systems, 10(3):470-502, July 1988.

T. S. Norvell and E. C. R. Hehner. Logical specifications for func-
tional programs. In Mathematics of Program Construction, volume
669 of Lecture Notes in Computer Science, 1992.

Flemming Nielson. Annotated type and effect systems. ACM Com-
puting Surveys, 28(2):344-345, June 1996.

Hanne Nielson and Flemming Nielson. Automatic binding time ana-
lysis for a typed A-calculus. In Proceedings of the Fifteenth Annual
ACM Symposium on Principles of Programming Languages, 1988.

Bengt Nordstrom. Terminating general recursion. Bit, 28:605-619,
1988.

B. Nordstrom, K. Petersson, and J. M. Smith. Programming in
Martin-Lof’s Type Theory, volume 7 of Monographs on Computer
Science. Oxford University Press, 1990.

Frank Pfenning. Refinement types for logical frameworks. In Herman
Geuvers, editor, Informal Proceedings of the Workshop on Types for
Proofs and Programs, pages 285299, 1993.

Frank Pfenning. The practice of logical frameworks. In Hélene Kirch-
ner, editor, Proceedings of the Colloguium on Trees in Algebra and
Programming, volume 1059 of Lecture Notes in Computer Science,
pages 119-134, 1996. Invited talk.

A. M. Pitts. Categorical logic. Technical Report 367, University of
Cambridge Computer Laboratory, May 1995. 94 pages.

David Pym and Lincoln Wallen. Investigations into proof-search in a
system of first-order dependent function types. In Proceedings of the
10th International Conference on Automated Deduction, volume 449
of Lecture Notes in Artificial Intelligence, pages 236-250. Springer-
Verlag, 1990. Also University of Edinburgh LFCS Report ECS-LFCS-
90-111.

215

[Pym90]

[Ros39)]

[San91]

[SE84]

[Spi92]

9S83]

[SST92]

[STS7]

[Tal90]

[vD94]

[vLIO]

[War88]

David Pym. Proofs, Search and Computation in General Logic. PhD
thesis, Department of Computer Science, University of Edinburgh,
1990.

B. Rosser. On the Consistency of Quine’s New Foundations for Math-
ematical Logic. Journal of Symbolic Logic, 4, 1939.

Donald Sannella. Formal program development in Extended ML for
the working programmer. In Proc. 3rd BCS/FACS Workshop on
Refinement, Workshops in Computing, pages 99-130. Springer, 1991.

Elliot Soloway and Kate Ehrlich. Empirical studies of program-
ming knowledge. [EEE Transactions on Software Engineering, SE-
10(5):595-609, 1984.

J. M. Spivey. The Z Notation: A Reference Manual. Prentice Hall
International, 2nd edition, 1992.

William L. Scherlis and Dana S. Scott. First steps towards inferential
programming. In R. E. A. Mason, editor, Information Processing 83:
Proceedings of the IFIP 9th World Computer Congress, 1983.

Donald Sannella, Stefan Sokotowski, and Andrzej Tarlecki. Toward
formal development of programs from algebraic specifications: Pa-
rameterisation revisited. Acta Informatica, 29(8):689-736, 1992.

Don Sannella and Andrzej Tarlecki. Toward formal development of
programs from algebraic specifications: implementations revisited.
In Proc. Joint Conf. on Theory and Practice of Software Develop-
ment, volume 249 of LNCS, pages 96-110. Springer, 1987. Extended

abstract.

Carolyn Talcott. A theory for program and data type specification.

Theoretical Computer Science, 1990. Disco90 special issue.
Dirk van Dalen. Logic and Structure. Springer-Verlag, 1994.

Jan van Leeuwen, editor. Handbook of Theoretical Computer Science,
volume B: Formal Models and Semantics. Elsevier: MIT Press, 1990.

Martin Ward. Transforming a program into a specification. Tech-
nical Report TR-88, Centre for Software Maintenance, University of

Durham, January 1988.
216

[War94] Nigel Ward. A Refinement Calculus for Nondeterministic Expres-
sions. PhD thesis, University of Queensland, 1994.

[Wir71] Niklaus Wirth. Program development by stepwise refinement. Com-
munications of the ACM, 14(4):221-227, 1971.

217

Index

abstract programs, 7
algebraic specification, 14, 27
annotations, 118, 202
axiom system

A=, BT

)\(;)—, 98

Ac-, 139

A= 35

first-order As-, 84

first-order A* -, 44

bottom-up, 71

coding, 73, 176

coercion, 176

computational lambda calculus, 54
consistent, 128

correctness, 10, 12

data refinement, 21, 205
determined, 54, 138

environment model condition, 41
existential variables, 162
extensional, 12, 40, 92, 95

factoring condition, 76
full set-theoretic function hierarchy,
7

generation lemma, 168

Henkin interpretation
A7-, 76
Ae)-> 120

218

Ac-, 180

A= 41

first-order A*7-, 48
Henkin model

A=, T8

Aq)-, 124

Ac-, 181

A*7- 41

first-order A* -, 48
Henkin theory

A¢)-s 126

Ac-, 188

first-order A.-, 85

first-order A*—-, 49

maximal refinement type, 132
nondeterminism, 7, 54, 63, 70, 206

partiality, 158
power types, 97
problem reduction, 8
program analysis, 12
program logic, 12

pseudotypes, 116
quotient, 196

recursive refinement, 147, 206
refinement terms, 53
refinement types, 89

rough types, 117

satisfiable, 62, 128

search, 203
signature
Ao-, B3
Aey-, 94
Ac-, 137
A= 33
constant, 33
first-order Ao-, 83
first-order A* -, 44
type, 32
singleton types, 106, 197
skeleton, 21
stub, 6
subset types, 162

syntactic environment, 34

total, 95

transformation, 21

underdetermined, 54

underdeterminism, 7, 52

well-structured, 117

wide-spectrum, 7, 21

219

